

- Thermoelectric materials have a potential of converting heat to electricity
- Lower efficiency eliminates the usage of thermoelectrics in real world applications (Typical efficiency ~8%)
- Improve the thermoelectric performance and manufacture these materials at a low cost is very important

Thermoelectric materials used for power generation

https://www.nasa.gov/mission_pages/msl/index.html

Thermoelectric properties of Mg₂Sn_{0.75}Ge_{0.25} for power generation

U. Saparamadu¹, J. de Boor², Z. Ren¹

¹Department of Physics, University of Houston, Houston, TX, USA ²Institute of Materials Research, German Aerospace Center, Koeln, Germany

Method

Synthesis of Mg₂Sn_{0.75}Ge_{0.25} by ball milling

- All the elements are grind using a high energy ball milling machine
- Using hot pressing the ball milled powder can be densified

Hot pressed thermoelectric materials and the module

- systems

COLLEGE of NATURAL SCIENCES & MATHEMATICS

Results

• By this unique technique we found out that this material shows a outstanding efficiency of 12%

• This is the best efficiency reported for this type of material

Conclusion

• By ball milling and hot pressing an outstanding efficiency can be obtained for $Mg_2Sn_{0.75}Ge_{0.25}$

• Same technique can be used to other material systems so that this can improve the efficiency of different material

Acknowledgements