
• We first estimate the tonic component of the clean
EDA data [5].

• We recover underlying neural stimuli and model
parameters from the phasic component of the SC
signal, using a generalized-cross-validation-based
block coordinate descent approach [5].

• Of the current methods available for identifying
good regions of SC data for deconvolution,
manually selecting regions is the most reliable and
the most conservative.
• There is disagreement between methods in

identifying artifacts in EDA data.
• We plan to improve the automation of motion

artifact correction for EDA data.
• We plan to investigate the relationship between

voice data and the underlying neural stimuli and
model parameters recovered from the
deconvolution of EDA data.
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EDAQA:
• The Electrodermal Activity Automated Quality
Assessment (EDAQA) program is based on four
criteria:
1. a bounded range of possible SC values,
2. a maximum slope of SC data,
3. a bounded range of temperature values, and
4. whether surrounding SC data violates any of

the previous rules [3].
EDA Explorer:
• EDA Explorer program is a machine learning

algorithm for the automatic detection of EDA
artifacts [4].

• Trained by two reviewers on a data set of 1560
non-overlapping 5-second epochs of EDA data
[4].

• We perform these automatic methods on 5 EDA
data series to compare the relative performance of
each method.

Results for Automatic Methods:

• EDA Explorer is the least sensitive in identifying
corrupted EDA data on average.

• EDAQA excludes more data than EDAQA but
still includes more corrupted data than Visual
Scoring.

• Visual Scoring is the most conservative method
for identifying EDA data suitable for analysis,
selecting the least number of points of all three
methods.

• A conservative method is preferable to a lenient
method, in that a conservative method has a
higher standard for good data.

• No automatic method to reliably identify EDA
data suitable for analysis exists.

• Using the Visual Scoring data labels, we isolate
the good segments of EDA data from the raw
signal for analysis.

• Voice recordings and physiological data are
collected in a real-world environment, in order to
investigate the relationship between high-arousal
and VH [2].

• Accelerometer located at the base of the neck
measures voice data [2].

• EDA data is collected using the wrist-worn
Empatica E4.

• The patients participating in this study had either
healphonotraumatic vocal hyperfunction (PVH),
non-phonotraumatic vocal hyperfunction
(NPVH) or no VH at all.

Nature of Clean EDAData:
• Patient SC can be modelled as the sum of two

components.

• A fast-varying phasic component, i.e. a series of
biexponential responses.

• A slow-varying tonic component

• We analyze data which includes natural EDA
behavior, avoiding signals corrupted by artifacts.

• We investigate two published automatic methods
for identifying EDA segments suitable for
analysis: EDAQA and EDA Explorer.

• We also visually inspect the data and compare
with automatic methods.
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Introduction

• Vocal hyperfunction (VH) is a condition
characterized by chronically excessive or
unbalanced vocal muscle recruitment [1].

• Literature has demonstrated that patients with
non-phonotraumatic vocal hyperfunction (NPVH)
experience higher than normal levels of
psychological stress while speaking, which could
imply a correlation between high arousal and VH
[2].

• Investigating the relationship between arousal
level and voice recording may provide insights
into the prevention, diagnosis and treatment of
VH [2].

• Electrodermal activity (EDA) reflects the
stimulation from the autonomic nervous system
(ANS) to the eccrine sweat glands due to arousal.

• Skin conductance (SC), a measure of EDA, can
be used to retrieve arousal level information.

Goals & Challenges:

• Our goal is to infer ANS activity from EDA
measurements.

• However, extracting ANS activity solely using
EDA is challenging as the underlying
physiological system is also unknown.

• Moreover, artifacts originating in real-world
settings can corrupt the EDA, making portions of
the signal unsuitable for analysis.
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PVH NPVH Normal
# of female patients 96 36 50
# of male patients 0 8 2
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