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Abstract

This dissertation studies the problem of free small-amplitude oscillations of a

droplet of a yield stress fluid under the action of surface tension forces. The problem

is treated both analytically and numerically. In particular, we address the question

if there exists a finite stopping time for an unforced motion of a yield stress fluid

with free surface.

In this thesis, a variational inequality formulation is deduced for the problem of

yield stress fluid dynamics with a free surface. The free surface is assumed to evolve

with a normal velocity of the flow. We also consider capillary forces acting along the

free surface. Based on the variational inequality formulation an energy equality is

obtained, where kinetic and free energy rate of change is in balance with the internal

energy viscoplastic dissipation and the work of external forces. Further, we consider

free small-amplitude oscillations of a droplet of Herschel-Bulkley fluid under the

action of surface tension forces. Under certain assumptions it is shown that the finite

stopping time Tf of oscillations exists once the yield stress parameter is positive and

the flow index α satisfies α ≥ 1. Results of several numerical experiments illustrate

the analysis, reveal the dependence of Tf on problem parameters and suggest an

instantaneous transition of the whole drop from yielding state to the rigid one.

In Charpter 1, we review the Navier-Stokes equations for motion of incompressible

viscous fluid and consider different boundary conditions. We also discuss several

approaches to recover the evolution of free interface.

In Charpter 2, we derive a variational inequality formulation for the problem

of yield stress fluid dynamics with a free surface. An energy balance follows from
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the variational inequality. In this chapter, we also describe a numerical method to

simulate a non-Newtonian fluid flow with free surface.

In Charpter 3, we apply the method of viscous velocity potentials to study the

problem of small-amplitude oscillations of a fluid droplet driven by surface tension

forces. First the Newtonian fluid is treated and some well-known results are derived.

Numerical experiments are provided to illustrate our results.

In Charpter 4, we apply the method of visco-plastic velocity potentials to study

the problem of small-amplitude oscillations of a non-Newtonian droplet driven by

free surface tension forces. For a yield stress fluid we prove that oscillations have

a finite stopping time. We describe the motion of a single harmonic (2nd order

harmonic) of oscillating droplet by an ODE. Numerical experiments illustrated our

results.

In Charpter 5, we give the conclusion and outlook.

The main results of the thesis are published in Cheng W., Olshanskii M.A.,

Finite stopping times for freely oscillating drop of a yield stress fluid, Journal of

Non-Newtonian Fluid Mechanics; 239 (2017) 7384.
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CHAPTER 1

Introduction

1.1 Basic equations of fluid dynamics

1.1.1 Governing equations for one phase flow

We review the derivation of the Navier-Stokes equations for a laminar flow of incom-

pressible fluid. We assume the fluid to be incompressible and pure (i.e., no mixture of

different components). Moreover, we assume isothermal conditions and therefore ne-

glect variations of density and viscosity of fluid due to temperature changes. Hence,

the dynamic viscosity coefficient is constant and positive. Due to incompressibility
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1.1. BASIC EQUATIONS OF FLUID DYNAMICS

the density is also constant and positive.

There are two general approaches to describe the motion of fluid. In the Eulerian

approach one measures a given property by either carrying out the measurement at

a fixed point in space as particles of the fluid pass by, or by following a parcel of

fluid along material lines. The derivative of a field with respect to a fixed position in

space is called the Eulerian derivative, while the derivative following a moving parcel

is called the advective or material (”Lagrangian” [40]) derivative. We always assume

that the fluid occupies a bounded time dependent domain Ω(t) ∈ R3 for t ∈ [0,∞).

The Eulerian coordinates of a point in Ω are denoted by x = (x1, x2, x3). We take a

fixed t0 ∈ (0, T ) and consider a time interval (t0 − δ, t0 + δ), with δ > 0 sufficiently

small such that for t ∈ (t0 − δ, t0 + δ). Let X denote a particle (also called material

point) in Ω at t = t0, with Eulerian coordinates ξ ∈ R3. LetXξ(t) denote the Eulerian

coordinates of the particle X at time t. The mapping

t→ Xξ(t), t ∈ (t0 − δ, t0 + δ)

describes the trajectory of the particle X. The particles are transported by the fluid

velocity field, which is denoted by u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3.

Hence

d

dt
Xξ(t) = u(Xξ(t), t). (1.1)

For the given X, the solution of the system of ordinary differential equations

d

dt
Xξ(t) = u(Xξ(t), t), t ∈ (t0 − δ, t0 + δ), Xξ(t0) = ξ

2



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

yields the trajectory of the particle ξ.

Physical processes can be modeled in different coordinate systems. For flow

problems, the two most important ones are (x, t) (Eulerian) and (ξ, t) (Lagrangian):

• Euler coordinates (x, t): one takes an arbitrary fixed point x in space and con-

siders the velocity u(x, t) at x. If time evolves different particles pass through

x.

• Lagrange (or material) coordinates (ξ, t): one takes an arbitrary fixed particle

(material point) and considers its motion. If time evolves one thus follows the

trajectory of a fixed particle

Related to the Lagrangian coordinates, we define the so-called material derivative of

a (sufficiently smooth) function f(x, t) on the trajectory of X:

ḟ(Xξ(t), t) :=
d

dt
f(Xξ(t), t)

The material derivative [24] describes the time rate of change of some physical

quantity (like momentum) for a material element subjected to a space-and-time-

dependent macroscopic velocity field. The material derivative can serve as a link

between Eulerian and Lagrangian descriptions of continuum deformation

If f is defined in a neighborhood of the trajectory, we obtain from the chain rule

and (1.1)

3



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

ḟ :=
∂f

∂t
+ u · ∇f

We further need the Reynolds’ transport theorem: for a scalar sufficiently

smooth function f = f(x, t) it holds

d

dt

ˆ
Ω(t)

f(x, t)dx =

ˆ
Ω(t)

(
ḟ(x, t) + f div u(x, t)

)
dx =

ˆ
Ω(t)

(
∂f

∂t
(x, t) + div(fu)(x, t)

)
dx

(1.2)

with ḟ := ∂f
∂t

+ u · ∇f the material derivative.

First we consider the conservation of mass principle. Then the variation of mass

is

d

dt

ˆ
Ω(t)

ρdx =

ˆ
Ω(t)

(
∂ρ

∂t
+ div(ρu)

)
dx = 0 for t ∈ (0, T )

which holds in particular for t = t0 and for an arbitrary material volume Ω(t0) = Ω0.

Since also t0 ∈ (0,∞) is arbitrary, we obtain the partial differential equation

∂ρ

∂t
+ div(ρu) = 0 in Ω× (0, T )

Due to the assumption ρ = const this simplifies to

div u = 0 in Ω× (0, T ) (1.3)

which is often called mass conservation equation or continuity equation.

We now consider conservation of momentum. The momentum of mass contained

4



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

in Ω(t) is given by

M(t) =

ˆ
Ω(t)

ρudx.

Due to Newton’s law the change of momentum M(t) is equal to the force F (t)

acting on Ω(t). This force is decomposed in a volume force F1(t) and a boundary

force F2(t),

F1(t) =

ˆ
Ω(t)

fdx.

The boundary force F2(t) is used to describe internal forces, i.e., forces that a

fluid exerts on itself. These include pressure and the viscous drag that a fluid element

Ω(t) gets from the adjacent fluid. These internal forces are contact forces: they act

on the boundary ∂Ω(t) of the fluid element Ω(t). Let t denote this internal force

vector, also called traction vector. Then we have

F2(t) =

ˆ
∂Ω(t)

tdx.

Cauchy derived fundamental principles of continuum mechanics and in particular

he derived the following law (often called Cauchys theorem): t is a linear function

of n, where n = n(x, t) ∈ R3 is the outer unit normal on ∂Ω(t).

Thus it follows that there is a matrix σ = σ(x, t) ∈ R3×3, called the stress tensor,

5



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

such that the boundary force can be represented as

F2(t) =

ˆ
∂Ω(t)

σndx.

Using these force representation in Newton’s law and applying Stokes’s theorem

for F2(t) we get

d

dt
M(t) = F1(t) + F2(t) =

ˆ
Ω(t)

(f + divσ) dx. (1.4)

Using Reynold’s transport theorem in the left-hand side of (1.4) with f = ρui,

i = 1, 2, 3, we obtain

ˆ
Ω(t)

∂ρui
∂t

+ div(ρuiu)dx =

ˆ
Ω(t)

(fi +∇ · σi) dx, i = 1, 2, 3, (1.5)

with σi the i-th row of tensor σ and fi the i-th component of vector f . Note that

div(uiu) = uidiv(u) + u · ∇ui

and due to the continuity equation (1.3), since t0 ∈ (0, T ) is arbitrary,

∂ρui
∂t

+ ρu · ∇ui = fi +∇ · σi, (1.6)

In vector notation, we get the so-called Cauchy momentum equation,

∂ρu

∂t
+ ρ(u · ∇)u = f + divσ, (1.7)

6



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

Equation (1.3) and (1.7) are known as the Navier-Stokes equations for incom-

pressible flow: 
ρ(
∂u

∂t
+ (u · ∇u))− divσ = f

∇ · u = 0

in Ω(t), (1.8)

1.1.2 Constitutive law between stress tensor and the rate of

deformation tensor

The Cauchy momentum equation (1.7) describes the non-relativistic momentum con-

servation of any continuum that conserves mass. σ is a symmetric tensor given by

its covariant components. In orthogonal coordinates in three dimensions it is repre-

sented as a 3× 3 matrix:

[
σij

]
=


σxx τxy τxy

τyx σyy τyz

τzx τzy σzz


where σij are normal stresses and τ are shear stresses.

The constitutive law between stress tensor and the rate of deformation tensor

defines the behavior of fluid flows, where Du := 1
2
(∇u +∇uT ) is the rate of defor-

mation tensor.

For viscous Newtonian fluids one assumes that the stress tensor σ is of the form

σ = −pI + L(Du),

7



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

where p is the pressure, ∇u := (∇u1, ∇u2, ∇u3)T and L is assumed to be a

linear mapping. Based on this structural model for the stress tensor and using

the additional assumptions that the medium is isotropic (i.e. its properties are the

same in all spatial directions) and the action of the stress tensor is independent of

the specific frame of reference, it can be shown [26] that the stress tensor of the

Newtonian fluid takes the form

σ = −pI + λ(∇ · u)I + 2µD(u)

Further physical considerations lead to relations for the parameters µ, λ, e.g., µ >

0(for a viscous fluid), λ ≥ −2
3
µ or even λ = −2

3
µ. For the case of an incompressible

fluid, i.e.,div u = 0, the relation for the stress tensor is simplified to

σ = −pI + 2µD(u) (1.9)

with µ > 0 the dynamic viscosity. Using the identity

2 div(Du) = ∆u

we get the fundamental Navier-Stokes equations for the incompressible Newtonian

fluid flow: 
ρ(
∂u

∂t
+ (u · ∇u))− µ∆u +∇p = f

∇ · u = 0

in Ω(t). (1.10)

For visco-plastic fluids, one common choice for constitutive law for the stress

8



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

tensor is the Herschel-Bulkley constitutive law:

τ = (K|Du|α−1 + τs|Du|−1)Du ⇔ |τ | > τs

Du = 0 ⇔ |τ | ≤ τs

(1.11)

where τ is the deviatoric part of the stress tensor, σij = τij + pδij, with pressure p.

Further notations introduced above are the following: For a tensor A, |A| denotes

its Frobenius norm

|A| = (A : A)
1
2 = (

∑
1≤i,j≤3

|Aij|2)
1
2 ,

Here τs is the yield stress parameter, K is the consistency parameter, α > 0 is the

flow index (for α < 1 the fluid exhibits shear-thinning property whereas for α > 1

it is shear-thickening; α = 1 corresponds to the classic case of the Bingham plastic).

The medium behaves like a fluid in the domain where |Du| 6= 0, the so-called flow

region, and exhibits the rigid body behavior in the region where the stresses do not

exceed the threshold parameter τs, the so-called rigid (or plug) region.

1.1.3 Navier-Stokes equations for two phase flow

We now consider two-phase flows, i.e., Ω contains two different immiscible incom-

pressible phases (liquid-liquid or liquid-gas) which may move in time and have dif-

ferent material properties ρi and µi, i = 1, 2.

For each point in time, t ∈ [0, T ], Ω is partitioned into two open subdomains

Ω1(t) and Ω2(t), Ω(t) = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = ∅, each of them containing

one of the phases, respectively.

9



1.1. BASIC EQUATIONS OF FLUID DYNAMICS

These phases are separated from each other by the interface Γ(t) = Ω(t)∩Ω2(t).

We do not consider reaction, mass transfer or phase transition.

In each of the phases, conservation of mass and momentum has to hold, yielding

the Navier-Stokes equations in the two domains Ωi, i = 1, 2


ρi(
∂u

∂t
+ (u · ∇u))− divσi = f

∇ · u = 0

in Ωi(t), (1.12)

We now consider coupling conditions at the interface. As the phases are viscous

and no phase transition takes place, the velocity can be assumed to be continuous

at the interface:

[u] = 0 on Γ (1.13)

Here for x ∈ Γ and a function f defined in a neighborhood of Γ, we define the

jump across Γ by

[f ](x) = [f ]Γ(x) := lim
h→0

(f(x− hnΓ(x))− f(x+ hnΓ(x))) (1.14)

where nΓ denotes the unit normal on Γ at x, pointing form Ω1 to Ω2.

At the interface there acts a surface tension force which is due to the fact that

on both sides of Γ there are different molecules that have different attractive forces.

The surface tension force acting on the interface segment γ can be modeled by

F3(t) = −τ
ˆ
γ(t)

κnΓds

10



1.2. BOUNDARY CONDITIONS

The parameter τ is the surface tension coefficient, which is a material property of

the two-phase system. This additional force term F3(t) has to be taken into account.

If we consider conservation of momentum, then the equation (1.15) should be

d

dt
M(t) = F1(t) + F2(t) + F3(t) =

ˆ
Ω(t)

(f + divσ) dx−
ˆ
∂ΩN

τκnΓds (1.15)

Since the stress tensor σ is not necessarily smooth across Γ, we split Ω into ∂Ω1

and ∂Ω2

ˆ
∂Ω(t)

σnds =

ˆ
∂Ω1(t)

σ1n1ds+

ˆ
∂Ω2(t)

σ2n2ds− τ
ˆ

Γ(t)

[σ]nΓds,

and apply the Stokes’ theorem on Ω1 and Ω2 separately. Note that ui is the outward

normal on ∂Ωi and nΓ the normal at Γ, pointing from Ω1 to Ω2. Thus we obtain

ˆ
Ω(t)

ρi(
∂u

∂t
+ (u · ∇u))dx

=

ˆ
Ω1(t)

divσidx+

ˆ
Ω2(t)

divσ2dx+

ˆ
Ω(t)

dx−
ˆ

Γ(t)

([σ]nγ − τκnγ) ds (1.16)

1.2 Boundary conditions

Modeling of fluid flows in the presence of solid bodies and free interfaces is a general

problem in science and engineering, and requires some assumptions about the nature

of the fluid motion (the boundary condition) at the solid surface and rheology of the

interface [61]. For the boundary conditions we distinguish between essential and

11



1.2. BOUNDARY CONDITIONS

natural boundary conditions. Let ∂Ω be subdivided into two parts ∂Ω = ΓD ∪ ΓN

with ΓD ∩ΓN = ∅. We use essential boundary conditions on ΓD that are of Dirichlet

type. In applications these describe inflow conditions or conditions at walls. Such

Dirichlet conditions are of the form

u(x, t) = uD(x, t) on ΓD (1.17)

with a given uD(x, t).

No-slip boundary condition is one of the simplest essential boundary conditions

used to describe conditions at walls. No-slip boundary condition, which states that

at a solid boundary the fluid will have zero velocity relative to the boundary, has

remarkable success in reproducing the characteristic of many types of flow, however,

there exist situations in which it leads to singular or unrealistic behavior–for example,

the spreading of a liquid on a solid substrate [60], corner flow and the extrusion of

polymer melts from a capillary tube [61].

Numerous boundary conditions that allow for finite slip at the solid interface

have been used to rectify these difficulties. The Navier boundary condition is a slip

boundary condition that assume that the tangential ”slip” velocity, rather than zero,

is proportional to the tangential stress. With a factor of proportionality a in L∞(Γ),

we can express the Navier boundary condition for a sufficiently regular vector field

u as

u · n = 0 and 2µ(n ·D(u)) · τ + au · τ = 0 on Γ

12



1.3. FREE SURFACE CAPTURING METHODS

A boundary condition on a free surface results from balancing the strain (surface

tension) and stress on the free surface

σnΓ = −γκn− pextn on ΓN(t), (1.18)

where γ is the surface tension coefficient which is a material property, κ is the mean

curvature, for which

κ(x) = div nΓ(x) on ΓN(t),

holds.

On the free surface Γ, there is no flow through this boundary, so we impose the

kinematic condition

uΓ = uΓ · nΓ (1.19)

where uΓ is the normal velocity of the free surface Γ(t).

1.3 Free Surface Capturing Methods

An interface between a gas and a liquid is often referred to as a free surface. The

reason for the free designation arises from the large difference in the densities of the

gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density

means that its inertia can generally be ignored compared to that of the liquid. In

this sense the liquid moves independently, or freely, with respect to the gas. The

only influence of the gas is the pressure it exerts on the liquid surface. In other

13



1.3. FREE SURFACE CAPTURING METHODS

words, the gas-liquid surface is not constrained, but free. Free surfaces require the

introduction of special methods to define their locations, their movements, and their

influences on a flow. Numerical simulations for a moving free surface are complicated

and difficult, the situation is further complicated if the boundaries are in motion or

moving bodies are present in the fluid system. In this section, we review the most

important approaches for describing the motion of the interface.

1.3.1 Free Surface Tracking

For a velocity field u and a smooth interface Γ(t) the trace u|Γ(t) and the immiscibility

condition uΓ = u ·n are well-defined. The evolution of the interface can be described

by using the Lagrangian coordinates. Take a (virtual) particle X on the interface

at t = t0 with Eulerian coordinates ξ ∈ Γ(t0). For t ≥ t0, let Xξ(t) be the Eulerian

coordinates of this particle.

The particles on the interface are transported by the flow field, hence for Xξ(t)

we have the ODE system


d

dτ
Xξ(τ) = u(Xξ(τ), τ), τ ≥ 0,

Xξ(0) = ξ

(1.20)

Xξ(τ) can be interpreted as the path of an infinitely small particle with initial position

ξ.

For u(x, t) sufficiently smooth (Lipschitz with respect to x), this system of

ODEs has a unique solution. This defines the coordinate transformation (x, t) =

14



1.3. FREE SURFACE CAPTURING METHODS

(Xξ(t), t)→ (ξ, t) from Eulerian coordinates (x, t) to Lagrangian coordinates (ξ, t).

And the interface Γ(t) can be characterized as follows,

x = ξ +

ˆ t

0

u(Xξ(τ), τ)dτ (1.21)

The interface representation in (1.21) also forms the basis for a class of numerical

methods, known as interface tracking. In these methods a collection of markers is

put on a given interface Γ(t0) and then transported (numerically) by the flow field u

to obtain the markers on the interface Γ(t0 +∆t). The collection of markers on Γ(t0)

could be the set of vertices of a triangulation of Γ(t0). In such methods one usually

has to redistribute the markers after a certain number of time steps. In general it is

rather difficult to treat topology changes (e.g., collision of droplets) in a systematic

and accurate way.

1.3.2 Volume tracking based on the level set function

Volume Tracking is based on the concept of a flow map φ(t,x), which is a function

that maps the location x of a particle at one time t0 to its position at another time

t1, thereby answering the question: ‘Where will this particle go?’ or ‘Where did this

particle come from?’[62]. Using a proper map, the evolution of any volume in the

flow can be defined: If the volume at the starting time t0 is Vt0 , and the volume at

another time t is V (t), we define V (t) as the image of V0 under the flow map as

V (t) = φ(Vt0).
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1.3. FREE SURFACE CAPTURING METHODS

The map φ is solved by an advection equation

∂φ

∂t
+ u · ∇φ = 0 (1.22)

So we can locate the new interface Γ(t) by

Γ(t) = φ(Γt0)

In this thesis we employ the surface capturing algorithm based on the implicit

definition of Γ(t) as the zero level of a globally defined function φ(t; x). A smooth

(at least Lipschitz continuous) function φ such that

φ(t,x) =


< 0 if x ∈ Ω(t)

> 0 if x ∈ R3/Ω(t)

= 0 if x ∈ Γ(t)

for all t ∈ [0, T ] (1.23)

is called the level set function. The kinematic boundary condition uΓ = u ·n implies

that for t > 0 the level set function can be found as the solution to the transport

equation:

∂φ

∂t
+ ũ · ∇φ = 0 in R3 × (0, T ]

where ũ is any (divergence-free) smooth velocity field such that ũ = u on Γ(t).
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CHAPTER 2

Mathematical Model and Numerical Method

2.1 Mathematical Model for Free Surface Flow

We consider a Newtonian fluid flow with a free-surface and surface tension forces

in section 2.1.1 and a full 3D model of vicoplastic fluid flow with a free-surface

and surface tension forces in section 2.1.2. In section 2.1.3 we deduce a suitable

variational inequality formulation satisfied by any sufficiently regular solution to the

fluid model. Then, the variational inequality provides us with an energy balance in

section 2.1.4.
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2.1. MATHEMATICAL MODEL FOR FREE SURFACE FLOW

2.1.1 Newtonian Fluild Model

Consider a Newtonian incompressible fluid flow in a bounded time-dependent domain

Ω(t) ∈ R3 for t ∈ (0, T ]. We apply constitutive law (1.9) in (1.8), and then get the

governing equation for fluid dynamics


ρ(
∂u

∂t
+ (u · ∇u))− µ∆u +∇p = f

∇ · u = 0

in Ω(t), (2.1)

The initial condition is the initial velocity filed and initial domain:

Ω(0) = Ω0, u|t=0 = u0, ∇ · u0 = 0. (2.2)

We assume that the entire boundary of the whole domain is a free surface Γ(t)

which passively evolves with the normal velocity of fluid, i.e., the following kinematic

condition is valid.

uΓ = u · n on Γ(t), (2.3)

where n is the unit external normal vector on Γ(t) and uΓ is the normal velocity of

Γ(t). Another boundary condition on Γ(t) results from balancing the surface tension

forces and the fluid stress forces:

σn|Γ = −γκn− pextn on Γ(t), (2.4)

where σ = µ[∇u+∇uT ]+pI is the stress tensor of the fluid, κ is the sum of principal
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2.1. MATHEMATICAL MODEL FOR FREE SURFACE FLOW

curvatures, γ is the surface tension coefficient, pext is an exterior pressure which we

set to be zero for the rest of the paper, pext = 0.

The system of equations (2.1), boundary condtions (2.3), (2.4) and intial condi-

tion (2.2) form a mathematical formulation of the problem of the Newtonian incom-

puressible fluid flow with free-surface.

2.1.2 Visco-plastic Fluid Model

A common choice to describle the dynamics of viscoplastic flow is to use Herschel-

Bulkley constitutive law:

τ = (K|Du|α−1 + τs|Du|−1)Du ⇔ |τ | > τs

Du = 0 ⇔ |τ | ≤ τs

(2.5)

in the governing equations (1.8)


ρ(
∂u

∂t
+ (u · ∇u))− divσ = f

∇ · u = 0

in Ω(t), (2.6)

K is the consistency parameter, τs is yield stress and α is flow index. The most

important feature of a viscoplastic fluid is its yield stress: Once the stresses exceed

a positive threshold parameter, the material flows like a fluid. Otherwise, it behaves

like a solid. To account for such a two-fold behaviour, one imposes conditioned

constitutive relations between the strain-rate tensor Du = 1
2
[∇u + (∇u)T ] and τ ,

19



2.1. MATHEMATICAL MODEL FOR FREE SURFACE FLOW

the deviatoric part of the stress tensor, σij = τij − pδij, with pressure p.

The system of equation (2.6), boundary condtions (2.3), (2.4) and intial condi-

tion (2.2) form a mathematical formulation of the problem of the Herschel-Bulkley

incompressible fluid flow with free-surface. The problem is challenging for analysis

and only partial results are known regarding its well-posedness, see, e.g., [11, 18] and

the reference therein for analysis of wall-bounded Herschel-Bulkley flows.

2.1.3 Variational Inequality

In this section, we show that any solution to (2.2)–(2.5) (if it possesses certain s-

moothness) and (2.6), satisfies a variational inequality.

For arbitrary smooth divergence-free vector field v, we first take the scalar prod-

uct of the first equation in (2.6) with v − u. This gives the relation

ρ(
∂u

∂t
+ (u · ∇u)) · (v − u)− divσ · (v − u) = f · (v − u) on Ω(t), (2.7)

for all t > 0. Further we integrate (2.7) over Ω(t) and obtain the identity

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ (u · ∇u))(v − u) + divσ · (v − u)− f · (v − u)

}
dx = 0

Then applying divergence theorem to the term divσ · (v − u), we get

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ (u · ∇u))(v − u) + σ : ∇(v − u)− f · (v − u)

}
dx =

ˆ
Γ(t)

σ(v − u)·n ds
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2.1. MATHEMATICAL MODEL FOR FREE SURFACE FLOW

Now we employ dynamics condition (2.4) and note that the symmetry of the

Cauchy tensor leads to the identity σ : ∇(v − u) = σ : (Dv −Du).

This brings us to the equality

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ (u · ∇u))(v − u) + σ : (Dv −Du)− f · (v − u)

}
dx

= −
ˆ

Γ(t)

γκn · (v − u) ds. (2.8)

As the next step, we decompose the stress tensor into deviatoric and volumetric

parts: σ = τ − pI (the decomposition is formal in the plug region). We treat the

stress term in (2.8) separately in the flow and plug regions of Ω(t). For the flow

region Ωf (t), we employ the first constitutive relation from (2.5) and further apply

the Cauchy-Schwarz inequality Du : Dv ≤ |Du||Dv|. We get

ˆ
Ωf (t)

σ : (Dv −Du) dx =

ˆ
Ωf (t)

(K|Du|α−1 + τs|Du|−1)Du : (Dv −Du) dx

=

ˆ
Ωf (t)

{
K|Du|α−1Du : (Dv −Du) + τs

(
|Du|−1(Du : Dv)− |Du|

)}
dx

≤
ˆ

Ωf (t)

{
K|Du|α−1Du : (Dv −Du) + τs(|Dv| − |Du|)

}
dx

(2.9)

The pressure term disappears above since both v and u are divergence free. The

same arguments and the second constitutive relation from (2.5) give for the plug
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region Ωp(t) = Ω(t) \ Ωf (t):

ˆ
Ωp(t)

σ : (Dv −Du) dx =

ˆ
Ωp(t)

τ : Dv dx

≤ sup
Ωp(t)

|τ |
ˆ

Ωp(t)

|Dv| dx ≤ τs

ˆ
Ωp(t)

|Dv| dx

(since |Du| = 0) =

ˆ
Ωp(t)

{
K|Du|α−1Du : (Dv −Du) + τs(|Dv| − |Du|)

}
dx

(2.10)

Substituting (2.9) and (2.10) back into (2.8) gives the inequality

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ u · ∇u) · (v − u) +K|Du|α−1Du : (Dv −Du) + τs(|Dv| − |Du|)

}
dx

−
ˆ

Ω(t)

f · (v − u) dx +

ˆ
Γ(t)

γκn · (v − u) ds ≥ 0 (2.11)

The arguments in this section are valid if a solution u is sufficiently smooth. The

sufficient regularity assumptions would be u ∈ W 1,α+1(Ω(t)), ∂u
∂t
∈ L2(Ω(t)), α is the

same as in (2.5), and Ω(t) is bounded and has C2 boundary for almost all t > 0.

W 1,α+1(Ω(t)) is a Sobolev space defined as

W p,k =
{
u ∈ Lp(Ω(t)) : Diu ∈ Lp(Ω(t)) ∀|i| ≤ k

}
For the case of general boundary condition on the normal stress tensor, inequality

(2.11) is found in [30].

We summarize the result of this section: A sufficiently smooth solution u to (2.6),

(2.2)–(2.5) satisfies the variational inequality (2.11) for almost all t > 0 and for any

v ∈ H1(Ω(t)) such that div v = 0.
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2.1.4 Energy balance

The energy balance for the solution to the free-surface flow problem (2.2)–(2.5) and

(2.6) follows from the variational inequality (2.11). To show this, we first recall a

few helpful identities. We shall assume that Γ(t) is sufficiently smooth and closed

for all t ∈ [0, T ]. For a smooth function g defined on
⋃

t∈[0,T ]

Ω(t)× {t}, the Reynolds

transport theorem gives the relation

d

dt

ˆ
Ω(t)

g dx =

ˆ
Ω(t)

∂g

∂t
dx +

ˆ
Γ(t)

vΓg ds. (2.12)

Thanks to the kinematic condition (2.3) on the normal velocity of Γ and divu = 0,

(2.12) yields the identity

d

dt

ˆ
Ω(t)

g dx =

ˆ
Ω(t)

(
∂g

∂t
+ (u · ∇)g

)
dx. (2.13)

Recall the definition of the surface gradient and divergence operators:

∇Γq = ∇q − (n · ∇q)n

and

divΓg = tr(∇Γg)

which are the intrinsic surface quantities and do not depend on extensions of a scalar

function q and a vector function g off the surface. The integration by parts formula
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over a closed smooth surface Γ reads

ˆ
Γ

( q(divΓg) + g · ∇Γq ) ds =

ˆ
Γ

κ(g · n)q ds, (2.14)

where κ denotes the (doubled) surface mean curvature as in (2.11). Finally, for Γ(t)

passively advected by a flow field u, the Leibniz formula gives

d

dt

ˆ
Γ(t)

g ds =

ˆ
Γ(t)

(
∂g

∂t
+ (u · ∇)g + g divΓu

)
ds. (2.15)

Now we are prepared to deduce the energy balance from (2.11). As the first step, we

test (2.11) with v = 0,

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ u · ∇u) · (−u)−K|Du|α+1 + τs(−|Du|)

}
dx

−
ˆ

Ω(t)

f · (−u) dx +

ˆ
Γ(t)

γκn · (−u) ds ≥ 0 (2.16)

and v = 2u,

ˆ
Ω(t)

{
ρ(
∂u

∂t
+ u · ∇u) · u +K|Du|α+1 + τs|Du|

}
dx

−
ˆ

Ω(t)

f · u dx +

ˆ
Γ(t)

γκn · u ds ≥ 0 (2.17)

Comparing two resulting inequalities, we obtain the equality

ˆ
Ω(t)

{
ρ(
∂u

∂t
· u + (u · ∇u) · u) +K|Du|α+1 + τs|Du|

}
dx+

ˆ
Γ(t)

γκn·u ds =

ˆ
Ω(t)

f ·u dx.
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We rewrite the first two terms as 1
2

´
Ω(t)

ρ(∂|u|
2

∂t
+u ·∇|u|2) dx and apply the Reynolds

transport formula. This gives the identity

d

dt

ˆ
Ω(t)

ρ|u|2

2
dx +

ˆ
Ω(t)

(
K|Du|α+1 + τs|Du|

)
dx +

ˆ
Γ(t)

γκn · u ds =

ˆ
Ω(t)

f · u dx.

(2.18)

With the help of integration by parts (2.14) over Γ = Γ(t) and the Leibniz formula

we calculate:

ˆ
Γ(t)

κ(n · u)ds =

ˆ
Γ(t)

divΓuds =
d

dt

ˆ
Γ(t)

1ds =
d

dt
|Γ(t)|

where |Γ(t)| denotes the area of the free surface. Employing these relations in (2.18)

leads to the following energy balance for the solution of (2.2)–(2.5), (2.6):

d

dt

(ˆ
Ω(t)

ρ|u|2

2
dx + γ|Γ(t)|

)
+

ˆ
Ω(t)

(
K|Du|α+1 + τs|Du|

)
dx =

ˆ
Ω(t)

f ·u dx. (2.19)

The energy balance (2.19) has the form

d

dt
Etotal(t) = −D(t) +Wext(t),

where the total energy Etotal(t) is the sum of kinetic energy Ekin(t) =
´

Ω(t)
ρ|u|2

2
dx and

potential energy Efree(t) = γ|Γ(t)| + const. The rate of change of Etotal is balanced

by the internal energy dissipation

D(t) =

ˆ
Ω(t)

(
K|Du|α+1 + τs|Du|

)
dx (2.20)
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and the work of external forces

Wext(t) =

ˆ
Ω(t)

f · u dx.

2.2 Numerical Method

One of the difficult features of the problem for simulating viscoplastic flows is that

two regions are unknown a priori. To avoid this difficulty, we regularize the problem

by enforcing the fluidic medium behavior in the entire computational domain (see,

e.g., [8, 20]). We use |Du|ε =
√
|Du|2 + ε2 to replace |Du|, where ε > 0 is a very

small constant (we set ε = 10−6 in our numerical method). Now the governing

equation for the whole domain is:


ρ(
∂u

∂t
+ (u · ∇u))− divµεDu+∇p = f

∇ · u = 0

in Ω(t), (2.21)

with the shear-dependent effective viscosity

µε = K|Du|α−1
ε + τs|Du|−1

ε

The initial condition and kinetic boundary condition are the same as in section 2.1.1:

Ω(0) = Ω0, u|t=0 = u0, ∇ · u0 = 0. (2.22)

uΓ = u · n on Γ(t), (2.23)
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The dynamics boundary condition is different:

σεn|Γ = −γκn− pextn on Γ(t), (2.24)

where σε = µεDu + pI is the regularized stress tensor of the fluid.

We employ the surface capturing algorithm based on the implicit definition of Γ(t)

as the zero level of a globally defined function φ(t;x). A smooth (at least Lipschitz

continuous) function φ such that (1.23) holds.

The initial condition (2.22) allows us to define φ(0;x). For t > 0 the level set

function satisfies the following transport equation [46]:

∂φ

∂t
+ ũ · ∇φ = 0 in R3 × (0, T ], (2.25)

where ũ is any smooth velocity field such that ũ = u on Γ(t). The employed

mathematical model consists of Eqs. (2.21), (2.22), (2.23), (2.24) and (2.25). We note

that the implicit definition of Γ(t) as zero level of a globally defined function φ leads

to numerical algorithms which can easily handle complex topological changes of the

free surface such as merging or pinching of two fronts and formation of singularities.

The level set function provides an easy access to useful geometric characteristics

of Γ(t). For instance, the unit outward normal to Γ(t) is nΓ = ∇φ/|∇φ|, and the

surface curvature is κ = ∇·nΓ. From the numerical point of view, it is often beneficial

if the level set function possesses the signed distance property, i.e. it satisfies the
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Eikonal equation

|∇φ| = 1

The numerical method applied in all our numerical experiments is based on the

level set method for capturing the free surface evolution and on locally refined and

dynamically adapted octree cartesian staggered grids for the discretization of fluid

and level set equations. The numerical approach we use has been developed in

[43, 44, 45]. To approximate complex geometries emerging in the process of the free

surface evolutions we use adaptive cartesian grids dynamically refined near the free

surfaces and coarsened in the fluid interior. For the application of such grids in

image processing, the visualization of amorphous medium, free surface Newtonian

ow computations and other applications where non-trivial geometries occur see, [36],

[39],[42],[49],[57]. We combine the mesh adaptation with a splitting algorithm for

time integration.

2.2.1 Numerical time integration

For the spatial discretization we use octree cubic meshes, which allow fast dynamic

mesh adaptation based on geometric or error indicators, the detail can be found in

[43] and the next section. In this section we ignore the spatial discretization for

the purpose of presentation. The time integration algorithm that we applied is a

projection method due to Chorin, Yanenko, Pironneau and others, see, for example,

[14],[48]. In our notation un, pn, φn are the velocity field, the pressure, and the level

set function at t = tn, respectively. Function φn implicitly defines an approximation
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to fluid domain at time t = tn through Ωn := {x ∈ R3 : φn(x) < 0}.

We assume that u0 = u(t0) and φ0 = φ(t0) since initial velocity field and domain

is known. Given un, φn such that div un = 0, we find un+1, pn+1, φn+1 in several

steps:

The semi-Lagrangian step for solving level set function Ωn → Ωn+1. Extend diver-

gence free velocity field to the exterior domain: un|Ωn → ũn|R3 , where the extension

domain is a bulk computational domain in our algorithm.

Find φn+1 from (2.25) by a numerical intergration with the semi-Lagrangian

method [59]. For every y ∈ R3, solve the characteristic equation backward in time

∂x(τ)

∂τ
= ũn(x(τ)), x(tn+1) = y, for τ ∈ [tn+1, tn]. (2.26)

The mapping X : y→ x(tn) defines an isomorphism on R3:

φn+1(y) = φn(X(y)). (2.27)

This mapping help us to determine new boundary Γn+1 = {y : |φn+1(y) = 0} by

updating the information from φn(y).

Remeshing. Given the new fluid domain we update and adapt the grid to account

for the new position of the free surface. The adaptation is based on the information

about the distance to the free surface provided by φn+1.

Re-interpolation. After remeshing we re-interpolate all discrete variables to the new
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grid. The re-interpolated velocity field is defined on the bulk computational domain

(due to the extension procedure at the beginning of the level-set part).

Next we handle viscoplastic terms and project the velocity into (discretely) divergence-

free functions subspace and recover the new pressure.

The convection-diffusion step: Solve for ũn+1 in Ωn+1:


ũn+1 − un

4tn
+G ◦ (un+ 1

2 ) · ∇ũn+1 +∇un

2
)− 1

2
div(µnε (un+ 1

2 )(Dun +Dũn+1)) = −∇pn,

(∇ũn+1 +∇ũn+1
T

)n

∣∣∣∣
Γ

= 0.

(2.28)

Where the operator G is a filter, which is needed to stabilize staggered grid dis-

cretizations on the octree meshes, un+ 1
2 = un + ξ(un + un−1) with ξ = ∆tn/∆tn−1.

The projection step: Project ũn+1 on the divergence-free space to recover un+1:


α(un+1 − ũn+1)/4tn −∇q = 0,

div un+1 = 0,

q|Γ = 0.

(2.29)

The problem (2.29) is reduced to the Poisson problem for q:


−∆q = α/4tn div ũn+1,

q|Γ = τκn+1.

(2.30)
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Finally, update the pressure:

pn+1 = pn − q + µε div ũn+1. (2.31)

The ‘extra’ divergence term in the pressure correction step (2.31) is used to reduce

numerical boundary layers in the pressure, see, e.g., [25], [50].

2.2.2 Spartial discretization

For the spatial discretization we apply dynamic octree cubic meshes instead of the

uniform mesh, since adapative meshes are cost-efficient comparing to the uniform

mesh. Octree meshes allow fast reconstruction.

Figure 2.1: An octree mesh (left) and its representation as a tree (right).

The adaptation method is based on the graded refinement with cubic cells, see

Fig. 2.1. An octree mesh is graded if the size of cells sharing (a part of) an edge or

a face can differ in size only by the factor of two. This restriction simplifies support

of mesh connectivity and the construction of discrete differential operators. We use

the staggered location of velocity and pressure unknowns. The pressure degrees of
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freedom are assigned to cells centers and velocity variables are located at cells faces

in such a way that every face stores normal velocity flux. If a face is shared by cells

from different grid levels, then velocity degrees of freedom are assigned to the faces

centers of fine grid cells (in the case of graded octree mesh, the corresponding face

of the coarse grid cell holds 4 unknowns).

At time tn, the free surface Γ(tn+1) is recovered by solving the characteristic

equation (2.26) with the predicted location at time tn and current velocity un. The

grid refinement towards the predicted interface location is done in order to reduce the

loss of the local surface geometric information which occurs if Γn+1 is approximated

by a trilinear function on a coarser grid; such possible loss is illustrated in Fig 2.2.

Note, that the predicted location may slightly differ from the actually computed

Γ(tn+1) in the level set part of the algorithm, since the mesh adaptation step is

performed before the velocity is updated in the fluid part of the algorithm. However,

this allows us to preserve most of the local surface geometry and avoids double

remeshing. Details on how quadtree/octree structures can be efficiently handled

computationally are found in [54].

Figure 2.2: Left:2D quadtree grid adapted to free boundary. Right:The loss of dis-
crete free surface geometric information when φh is transported from a region with
finer mesh to the one with a coarser mesh
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The constructed spacial discretization is hybrid: a finite volume method was

used to handle incompressibility constrain and inertia terms, while a finite difference

method was applied to diffusion terms and pressure gradient. Here we will discuss the

discretization of gradient ∇h, the advective term u∇u, the diffusion term div µεDu

and the divergence div.

First we introduce the discrete gradient. We can define it as the adjoint of the

discrete divergence. However, an approximation of ∇h based on the formal Taylor

expansions gives more accurate results. Pressure gradient has to be assigned to every

internal face of the grid.

Figure 2.3: Left:Each shared face holds a node for velocity x-component.The nodes
are located at faces barycenters. Right: Discretization stencil for ∂p

∂x

For every internal face we assign the corresponding component of ∇hp as follows.

Since the octree mesh is graded, there can be only two geometric cases. If a face

is shared by two equal-size cells, then the central difference approximation is used.

Otherwise consider Fig. 2.3, for the approximation of px at the face center node y

one considers the centers of five surrounding cells x1, . . . ,x5 and expand the pressure
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value p(xi) with respect to p(y):

p(xi) = p(y) +∇p(y) · (xi − y) +O(|xi − y|2).

Neglecting the second-order terms, we obtain the following over-determined system:



1 −∆/2 ∆/4 ∆/4

1 ∆/4 0 0

1 ∆/4 ∆/2 0

1 ∆/4 0 ∆/2

1 ∆/4 ∆/2 ∆/2





p(y)

px(y)

py(y)

pz(y)


=



p(x1)

p(x2)

p(x3)

p(x4)

p(x5)


, (2.32)

where ∆ ≡ ∆x. The least squares solution of (2.32) gives the stencil for the x-

component of the gradient:

px(y) ≈ 1

3∆
(p2 + p3 + p4 + p5 − 4p1). (2.33)

The superposition of the discrete gradient and divergence operators generally leads

to the non-symmetric matrix for the pressure problem. However, the corresponding

linear algebraic systems are solved efficiently by a Krylov subspace method with an

appropriate preconditioner.

It was noted in [45] for octree staggered grids, the discrete Helmholtz decom-

position, which essentially constitutes the projection step of the splitting scheme,

is unstable due to oscillatory spurious velocity modes tailored to course-to-fine grid
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interfaces. If the viscosity is sufficiently large, then such modes are suppressed, oth-

erwise they propagate and destroy the accuracy of numerical solution. Following

that paper we apply a linear low-pass filter, which eliminates the spurious modes

and improves the accuracy of numerical solution significantly. The low-pass filter G

acts on the coarse-to-fine grid interface Γcf :

G◦u(x) =


1

4

4∑
i=1

u(xi) if x ∈ Γcf ,

u(x) otherwise,

for every internal velocity component node x.

Here Γcf denotes the union of all octree cells faces, which are shared by cells of

different sizes; xi are four velocity nodes lying on the same large cells face as x

(obviously x ∈ {x1,x2,x3,x4}).

Next, we describe how the advection u · ∇u and diffusion terms div µεDu are

treated in the interior of the computational domain. We consider a higher order

upwind finite volume scheme on the graded octree meshes, which is both stable and

accurate. In several places further in the text we need an approximation of the grid

velocity function a in an arbitrary point of the computational domain.

In several places of this section we need an approximation of the grid velocity

function a in an arbitrary point of the computational domain We interpolate the

grid velocity function a(y), where y ∈ Ω(t). Assume y belongs to a cell V and we

start to interpolate the x-component of velocity to y, i.e. ax(y). Consider a plane P

such that y ∈ P and P is orthogonal to the Ox axis. Let xV ∈ P be the orthogonal

projection of the center of V on P and xk, k = 1, . . . ,m, m ≤ 12, are the projections
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Figure 2.4: Reference points for the diffusion flux approximation

of centers of all cells sharing a face with V . The values ax(xV ) and ax(xk) can be

defined by a linear interpolation of the velocity values at nodes where ax is collocated.

Once ax(xV ) and ax(xk), k = 1, . . . ,m, are computed, we consider the triangle fan

based on xV and xk, k = 1, . . . ,m, as shown in Figure 2.5. Now ax(y) is defined by

a linear interpolation between the values of ax in the vertices of the triangle, which

contains y. ay(y) and az(y) are treated similarly.

For the incompressible fluid we treat the advection form u · ∇u = div (u ⊗ u),

where the vector div operator applies row-wise. Equation (2.28) of the splitting

method linearizes the nonlinear terms by using last time step’s velocity informa-

tion, so that we need to approximate div (u ⊗ a) for a known nodal velocity a =

(ax, ay, az)
T and unknown nodal velocity u = (u, v, w)T . Below we discuss the FV

discretization of div(ua). Other two components of div (u⊗a) are treated similarly.

Consider the velocity component u at the x-node xF , which is the barycenter of

the face F . If F is shared by the cells of different sizes, we define the control volume

V ′ as shown in Figure 2.4. If F is shared by the cells of the same size, then V ′ is

defined in the obvious way by merging two half-cells. Let F(V ′) denote the set of all
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Figure 2.5: Reference points for the upwind approximation of advection. This il-
lustration is for the derivative tangential to a face F , where the velocity degree of
freedom is located.

faces for V ′. We have

div(ua)(xF ) ≈ |V ′|−1
∑

F ′∈F(V ′)

|F ′|(a · n)(xF ′)u(xF ′), (2.34)

where the term a(xF ′)·nu at the barycenters xF ′ of faces F ′ ∈ F(V ′) is still need to be

interpolated. Consider F ′ orthogonal to Oy so that a ·n = ay. If two cells sharing F

have the same size, then (a ·n)(xF ′) is the simple averaging of ay values from the two

neighboring face center nodes. Otherwise ay(xF ′) is computed by the interpolation

procedure described above as in Fig 2.5. Now, consider the approximation of the

advective flux at F ′ ∈ F(V ′) parallel to F , hence a · n = ax. After prescribing

ax(xF ′) value with the help of the linear interpolation at the corresponding faces

of the control volume, we define u(xF ′) using (2.35). The only differences with the

treatment of the face F ′ orthogonal to Oy are the following: ax is defined in x (no

interpolation required), and the reference points x−1, x1, x2 are always lying on cells

x-faces (although not necessarily in the centers and one has to do the interpolation).
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Figure 2.6: Reference points for the diffusion flux approximation
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To define u(xF ′), we take four ‘reference’ points (x−1, x1, x2, x0 := xF ) as shown

in Figure 2.6. Note that x−1, x1, and x2 are not necessarily grid nodes. Values

u−1, u1, and u2 in these nodes are then defined based on the following interpolation

procedure. If the reference point belongs to a cell smaller than the cell of x0 (points

x1 and x2 in the figure), then the linear interpolation between the two barycenters of

adjunct faces is used. If the node belongs to a cell larger than the cell of x0 (point x−1

in the figure), then one apply the same interpolation procedure as we used above to

define the values of a. The only difference is that instead of the linear interpolation

using the fan triangulation for xV we use the weighted least-square method to fit the

velocity values u(xV ) and u(xk) by the second order polynomial Q2, and further set

u(x−1) := Q2(x−1).

If ay(xF ) > 0, the u-values in reference points x−1, x0, x1 are used to approximate

the flux. Otherwise, the u-values in the reference points x0, x1, x2 are needed.

Assume ay(xF ) < 0, we set

u(xF ′) = D−1
[
u0(hH2 − h2H) + u1(rH2 + r2H)− u2(hr2 + h2r)

+λ∆x2(u0(H − h)− u1(H + r) + u2(r + h))
]
, (2.35)

where D = (r+h)(H − r)(H + r). A family of second order upwind discretization is

parameterized by λ ∈ R. λ = 0 produces the most accurate results on octree meshes

and we use this value for numerical experiments.

Next, we explain how the discretization of diffusion terms div µεDu is computed.
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We use the following identity, which is valid for a smooth u such that div u = 0:

div µεDu =
1

2
(div µε∇u + (∇u)T∇µε)

We can approximate (∇u)T∇µε according to (2.33), while the term div µε∇u

still need to be further discreted.

Consider a node x holding the velocity component u and lying on a face F and

define a cubic control volume V ′ such that x is the center of V ′ and F is a middle

cross section of V ′. Note that the control volumes for x-nodes do not overlap, but

for locally refined mesh they do not necessarily cover the whole bulk domain. Hence

the dicretization of the diffusiion terms is a finite difference method, rather than a

finite volume method. We have

(div µε∇u)(x) ≈ |V ′|−1
∑

F ′∈F(V ′)

|F ′|(µε∇hu · n)(yF ′). (2.36)

To approximate the diffusion flux at the center yF ′ of F ′ ∈ F(V ′), we take four

reference points (x−1, x0, x1, x2) as shown in Figure 2.6 (top). Velocity values

u−1, u0, u1, and u2 are assigned to reference points same way as for the advective

terms described above. Using the notation from Figure 2.6, the formal third order
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approximation of the diffusion flux density (∇u · n) can be written out as

(∇u · n) ≈ D−1
[
(h2H3 + h3R2 −H3R2 + h2R3 −H2R3 − h3H2)u0

+ (H3R2 + r3R2 +H2R3 − r2R3 −H3r2 −H2r3)u1

+ (h3r2 + h2r3 − h3R2 − r3R2 − h2R3 + r2R3)u−1

+ (h3H2 − h2H3 − h3r2 +H3r2 − h2r3 +H2r3)u2

]
,

(2.37)

with D = (H − h)(h+ r)(H + r)(h+R)(H +R)(R− r). If the reference point in x2

is not available, we use the point x−2.

To enforce incompressibility condition, we approximate div u in the center xV of

a grid cell V . We define the grid divergence operator by

(divh uh)(xV ) = |V |−1
∑

F∈F(V )

|F |(uh · n)(xF ). (2.38)

Thanks to the staggered location of velocity nodes, the fluxes (uh · n)(xF ) are well-

defined.
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CHAPTER 3

Small-amplitude Oscillations of Newtonian Droplet

3.1 Introduction

The small-amplitude oscillatory motion of drops and bubbles about the spherical

shape is a classical problem in fluid mechanics considered in one form or another

already by Kelvin (l890), Lamb (1932) and Rayleigh (1894). A number of other

studies have also been devoted to this problem in recent times for its importance in

chemical engineering, spray cooling, multi-phase flow and meteorology, as well as for

its intrinsic scientific interest [51].
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3.2. IRROTATIONAL ASSUMPTION

In this charpter, we first discuss the irrotational assumption for the small-amplitude

oscillation of a Newtonian droplet. The analysis of periodicity and damping factor

of the osclllating droplet are reviewed, and numerical experiments illustrated our

analysis.

3.2 Irrotational Assumption

Lamb assumed an irrotational velocity field and used the dissipation method to

evaluate the effect of the viscosity on the decay of the oscillations. An exact solution

of this problem for the Newtonian case is found in the analysis by Miller and Scriven

[38] of the oscillations of a fluid droplet immersed in another fluid. The viscous

effects on the perturbed spherical flows were further studied in [51]. Those studies

indicated that the no-slip condition on the interface between two fluids is a major

source of vorticity production in the problem, while the irrotational velocity field is

an adequate approximation in the viscous case, if the interface is free and one of two

fluids is a gas of negligible density and viscosity. In the present study, the exterior is

vacuum and we enforce no condition on tangential velocities. Hence for the analysis

we accept the irrotational velocity field assumption. For the extended discussion of

the plausibility of the vorticity-free approximation for the oscillating viscous droplet

problem we refer to [33, 47].

Since the velocity field is assumed irrotational, we conclude it has a potential, a

single-valued function φ. The components of velocity field, u, v, w, can be expressed
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3.3. FREE OSCILLATIONS OF A DROPLET

as follows:

(u, v, w) = (−∂φ
∂x
,−∂φ

∂y
− ∂φ

∂z
), (3.1)

where φ is called a ‘velocity-potential’.

If a velocity potential exists, at any one instant, for any finite portion of an ideal

fluid in motion under the action of potential forces, then, provided the density of the

fluid be either constant or a function of the pressure only, a velocity-potential exists

for the same portion of the fluid at all instants before or after.

3.3 Free Oscillations of a Droplet

3.3.1 Classic Case of Newtonian Droplet

The oscillating droplet problem often serves as a benchmark test for free surface and

two-phase flow solvers for the Newtonian fluids.

Here we assume the motion of oscillating droplet is irrotational, i.e. ∇ × u = 0

Then the velocity field u has a potential φ s.t. u = −∇φ

Assuming the rotational symmetry 1, the initial shape of the droplet is given by

a perturbation of the sphere

r = r0(1 + ε̃
∑
n≥1

cnHn(θ, ϕ)), (3.2)

1The rotational symmetry is assumed for the presentation convenience. The arguments can be
extended to more general perturbations.
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3.3. FREE OSCILLATIONS OF A DROPLET

where (r, θ, ϕ) are spherical coordinates, Hn, n = 1, 2, . . . , is the nth spherical har-

monic and ε̃ > 0 is small comparable to r0. We denote by S0 the unperturbed

sphere of radius r0 and without loss of generality assume that Hn are normalized,

i.e. ‖Hn‖L2(S0) = 1, and
∑

n≥1 c
2
n = 1. The fluid is assumed to be in rest at time

t = 0 and f = 0 for all t ≥ 0. At t = 0 the mean curvature of the surface is not con-

stant, and an unbalanced surface tension force causes droplet oscillation. Consider

the evolution of the droplet surface given by

r = r0 +
∑
n≥1

An(t)Hn(θ, ϕ) =: r0 +
∑
n≥1

ξn. (3.3)

In the absence of dissipation, Lamb showed that An = r0cnε̃ sin(σnt+αn), where the

period of oscillations depends on surface tension, fluid density, the harmonic’s index

n, and r0.

3.3.2 Period and Damping Factor

For the Newtonian droplets, one may consider the evolution for the initial perturba-

tion given by the single n-th harmonic:

r = r0(1 + ε̃Hn(θ, ϕ)) (3.4)

Figure 3.1 illustrates the motion of a Newtonian droplet over one period for the

initial perturbation given by (3.4) with n = 2, ε̃ = 0.3, r0 = 1. For t = 0.0046s,

the droplet is a purtubation sphere and the north tip of the dorplet has maxium
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3.3. FREE OSCILLATIONS OF A DROPLET

displacement; with time increasing, the displacement of north tip gradually decrease

at t = 0.3845s; the droplet recovers to a sphere at t = 0.7644s; the displacement

keeps decreasing till t = 1.1443s; then the droplet recovers to a sphere again at

t = 1.5242s; with the displacement increase, finally, the droplet recover to the intial

state at t = 2.2840s. Two statistics of the motion of droplet are of common interest:

The droplet oscillation period T and the damping factor d. In this case and for

ε̃ � 1 , a linear stability analysis from [35] predicts the period and the damping

factor according to

Tref = 2π

√
ρr3

0

n(n− 1)(n+ 2)γ
, dref =

2r2
0

(n− 1)(2n+ 1)K

Further in the text, we apply the method of viscous potentials and we recover

the same period and damping factor as above, when the fluid is assumed Newtonian.

Before we start our analysis, we illustrate numerically the irrotational velocity field

assumption. We set surface tension coefficient γ = 1, density ρ = 1, harmonic order

n = 2, the original ridus of droplet r0 = 1 and ε̃ = 0.3. Then we compare the

skew-symmetric part of the velocity gradient tensor against its symmetric part for

several computed solutions. For the skew-symmetric part we have

ˆ
Ω(t)

|∇scewu|2dx =
1

2

ˆ
Ω(t)

|∇ × u|2dx.

Thus, Figure 3.2 shows the evolution of
´

Ω(t)
|Du|2dx and of the enstrophy for the

Newtonian droplet and for two values of parameter K = 10−2 and K = 10−3. For
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Figure 3.1: Oscillating droplet
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Figure 3.2: The evolution of
´

Ω(t)
|Du|2dx and of the enstrophy,

´
Ω(t)
|w|2dx, with

w = 1√
2
∇× u. All results are computed for n = 2.
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3.3. FREE OSCILLATIONS OF A DROPLET

Newtonian droplet, the produced vorticity appears to be minor compared to sym-

metric rate of strain tensor.

We conclude that it is reasonable to assume the velocity field u has a potential φ,

where ∇φ = −u. Since the fluid is incompressible(div u = 0), it holds div(∇φ) =

∆φ = 0. So φ is a harmonic function for all t > 0. We seek φ in the form of volume

spherical harmonics series

φ =
∑
n≥1

Bn(t)
rn

rn0
Hn, (3.5)

where Bn(t) is a function that only depends on time t. Let ξ :=
∑

n≥1 ξn in (3.3).

The kinematic boundary condition (2.3) can be written as

∂φ

∂r
=
∂ξ

∂t
on S0. (3.6)

This gives

n

r0

Bn =
dAn
dt

. (3.7)

With the help of ∆φ = 0 and divergence theorem, the kinetic energy

Ekin(t) =
ρ

2

ˆ
Ω(t)

|∇φ|2dx =
ρ

2

ˆ
Ω(t)

div(φ∇φ)− φ∆φ dx =
ρ

2

ˆ
Γ(t)

φ
∂φ

∂n
ds. (3.8)

By the definition of φ and dropping higher order terms one computes the kinetic

energy:

Ekin(t) =
ρ

2

ˆ
Γ(t)

φ
∂φ

∂n
ds ' ρ

2

ˆ
S0

φ
∂φ

∂r
ds =

ρ

2r0

∑
n≥1

nB2
n

ˆ
S0

H2
nds. (3.9)
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Recall that
´
S0
HnHmds = δnm. Employing (3.7), we find the rate of change of Ekin:

d

dt
Ekin(t) =

ρ

r0

∑
n≥1

n
dBn

dt
Bn = ρ

∑
n≥1

r0

n

d2An
dt2

dAn
dt

. (3.10)

For the potential energy, the rate of change of the potential energy is

d

dt
Efree(t) = γ

ˆ
Γ(t)

κ(n · u)ds ' γ

ˆ
S0

κ
∂φ

∂r
ds.

First we calculate

κ =
1

R1

+
1

R2

=
2

r0

− 2ξ

r2
0

− 1

r2
0

{
1

sin2 θ

∂2ξ

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂ξ

∂θ

)}
=

2

r0

−
∑
n≥1

{
2AnHn

r2
0

− n(n+ 1)

r2
0

AnHn

}
=

2

r0

+
∑
n≥1

An
r2

0

(n(n+ 1)− 2)Hn.

where R1, R2 are the radii of principal curvatures of the surface.

Noting
´
S0
Hn = 0 and

´
S0
HnHmds = δnm, n ≥ 1, thanks to (3.5), we have

γ

ˆ
S0

κ
∂φ

∂r
ds =

∑
n≥1

2n

r2
0

Bn

ˆ
S0

Hnds +
∑
m,n≥1

γ(n− 1)(n+ 2)n

r3
0

AnBm

ˆ
S0

HnHmds

=
∑
n≥1

γ(n− 1)(n+ 2)n

r3
0

BnAn

ˆ
S0

H2
nds

=
∑
n≥1

γ (n− 1)(n+ 2)

r2
0

dAn
dt

An.
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We have the variation of free surface potential energy

d

dt
Efree(t) =

∑
n≥1

γ (n− 1)(n+ 2)

r2
0

dAn
dt

An.

This and (3.9) give the variation of the total energy

d

dt
Etotal(t) =

∑
n≥1

{
r0ρ

n

d2An
dt2

dAn
dt

+
γ (n− 1)(n+ 2)

r2
0

dAn
dt

An

}
. (3.11)

For the ideal fluid setting d
dt
Etotal(t) = 0, one finds An = Â0 sin(σnt + αn) with the

frequency

σn =

√
γ n(n− 1)(n+ 2)

r
3
2
0 ρ

1
2

(3.12)

as in [35].

Thanks to irrotational condition ∇× u = 0, ∇u = Du is symmetric, we have

ˆ
Ω(t)

|Du|2dx =

ˆ
Ω(t)

|∇u|2dx =

ˆ
Γ(t)

u · ∂u

∂n
ds =

1

2

ˆ
Γ(t)

∂|u|2

∂n
ds ' 1

2

ˆ
S0

∂|∇φ|2

∂r
ds.

Note that ∂φn
∂r

= n
r
φn, with φn = Bn

rn

rn0
Hn, since Hn is a spherical harmonic which

does not depend on r.

With the help of these identities and the surface integration by parts formula
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(2.14), we handle the integral on the righthand side as follows:

ˆ
S0

∂|∇φ|2

∂r
ds =

ˆ
S0

∂

∂r

(
|∇Γφ|2 +

∣∣∣∣∂φ∂r
∣∣∣∣2
)

ds

=

ˆ
S0

∂

∂r

(
−φ∆Γφ+

∣∣∣∣∂φ∂r
∣∣∣∣2
)

ds

=
∑
n≥1

ˆ
S0

∂

∂r

(
n(n+ 1)r−2φ2

n + n2r−2φ2
n

)
ds

where ∆Γ is Laplace-Beltrami operator s.t. ∆Γ = ∆− 1
r2

∂
∂r

(r2 ∂
∂r

).

Substituting φn = Bn(r/r0)nHn, we find

ˆ
Ω(t)

|Du|2dx =
∑
n≥1

n(n− 1)(2n+ 1)r−3
0 [Bn]2

ˆ
S0

H2
nds

=
∑
n≥1

(n− 1)(2n+ 1)

nr0

∣∣∣∣dAndt
∣∣∣∣2 . (3.13)

Thus, for the Newtonian fluid, we get from (2.19), (4.4) and (4.25) that An satisfy

the ODE:

d2An
dt2

+
K (n− 1)(2n+ 1)

r2
0ρ

dAn
dt

+
γ n(n− 1)(n+ 2)

r3
0ρ

An = 0, for n = 2, 3, . . . .

(3.14)

When the determinant of the characteristic equation for some n > 1 is non-

negative (viscosity dominates over surface tension), then the corresponding harmonic

does not contribute to oscillations and, using the initial condition dAn

dt
= 0 (since the
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fluid is assumed at rest at initial time, i.e. φ = 0), one finds

An(t) = An(0)
λ1
n exp(λ2

nt)− λ2
n exp(λ1

nt)

λ1
n − λ2

n

, (3.15)

where λ1,2
n < 0 are corresponding real eigenvalues.

λ1,2
n = −K (n− 1)(2n+ 1)

2r2
0ρ

± 1

2

√(
K (n− 1)(2n+ 1)

r2
0ρ

)2

− 4γ n(n− 1)(n+ 2)

r3
0ρ

For complex eigenvalues, we observe oscillatory behavior. The amplitude of the

oscillations for nth harmonic decays exponentially:

An(t) = Ân(0) exp(−dn t) sin(σnt+ αn), with dn = −Re(λ1
n) =

K (n− 1)(2n+ 1)

2r2
0ρ

and σn from (3.12), Ân(0) = An(0)/ sinαn. We note that for any fixed positive

problem parameters r0, ρ, γ, K, it holds

|An| ≤ A(0) exp(−cdn2 t), (3.16)

with a constant cd depending only on the parameters of the problem.

Table 3.1: Approximate number of total active degrees of freedom and the error in
viscosity (numerical dissipation) introduced by the method for the ideal fluid.

hmin
`

16
`

32
`

64
`

128

≈ # d.o.f. 111333 142405 452681 1772340

Errorvisc 0.0032 9.5750e-04 7.2761e-04 4.8750e-04

To illustrate our analysis, we perform a series of experiments for the Newtonian
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oscillating droplet2. The computational domain in this and all further experiments

is the cube (0, `)3, ` = 10
3

; an initially perturbed sphere of radius r0 = 1 is placed in

the center of Ω. Everywhere in computations we set harmonic order n = 2, constant

density parameter ρ = 1 and surface tension coffecient γ = 1.

This series of experiments assessed the accuracy of the numerical method and

studied the convergence of flow statistics in this case to those given by the analysis

in [35, 38] and recovered in (3.12) and (3.15). Thus, a droplet of the ideal fluid

(ν = 0, τs = 0) oscillates infinitely with constant amplitude. We ran a series of

experiments with ν = 0 and different mesh size h. The results are shown in Figure

3.3. The deviation of the numerical solution from predicted behaviour allows us to

estimate (by fitting an exponential function to maximum values of the kinetic energy

over periods) the numerical dissipation of the method, which is reported in Table 3.1.

We see that the numerical dissipation is low and decreases when the mesh is refined.

All following experiments in this charpter are done with hmin = `
64

. Tabel 3.2

shows the numerical viscosity and period for different viscosity parameters. In our

numerical experiments, we recover the volume vol by summing the volume of each

fluid cell in the computational domain, and compute the average raduis r0 with

r0 = 3

√
3

4π
vol. The oscillation period is found by applying Fourier transform of the

computed displacement of droplet’s north tip.

Figure 3.4 shows the evolution of the kinetic energy and the kinetic energy peaks

for several values of the viscosity parameter. For reference, we plot the exponent

functions from (3.15) (there graphs are straight lines in the log scale). The slopes

2Numerical method was described in section 2.2
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show the theoretically predicted asymptotic energy decay rates. Note that in the

viscous case the rate (3.15) is valid for large enough time or sufficiently small per-

turbation ε̃, see [51], and so a deviation at the initial stage of oscillations may be

expected.

K r0 T δ υnum
0 1.0068 2.3023 278.6191 7.3e-04
500−1 1.0068 2.2999 173.5589 0.0002
250−1 1.0068 2.2932 108.7023 -0.0001
100−1 1.0068 2.2847 47.3069 -0.0007
50−1 1.0068 2.2773 23.8173 -0.0015
20−1 1.0068 2.2658 9.3208 -0.0032
10−1 1.0068 2.2581 4.5837 -0.0058

Table 3.2: The damping factor d was computed by the least square fitting of the
function c exp(− t

d
), the effective numerical viscosity of the scheme υnum was assumed

to hold υnum = K− r20
5d

, r0 is the the radius of a spherical droplet with the same volume
as the initial droplet. T is the period for oscillation.
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Figure 3.3: The evolution of the kinetic energy (upper plots) and the trajectory of
the north tip (bottom plots) computed for different mesh size with K = 0.
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Figure 3.4: Evolution of Ekin(t) and decay of the maximum (over a period) kinetic
energy for the simulation of a Newtonian (τs = 0, α = 1) fluid droplet for several
values of the viscosity parameter.
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CHAPTER 4

Finite Stopping Time of Yield Stress Oscillating Droplet

4.1 Introduction

There are many materials in nature and industry exhibiting the viscoplastic be-

haviour. For example, these are fresh concrete, geomaterials, colloid solutions, pow-

der mixtures, lubricants, metals under pressure treatment, blood in a capillary, food-

stuffs, toothpaste. Such a medium below a certain stress value behaves as a rigid

body and above this level behaves as an incompressible fluid. In many applications

such as geophysical hazards (e.g., [3, 23]) or the damping of water waves by a muddy

bottom [63], the complex dynamics of viscoplastic fluids is coupled to the evolution
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4.1. INTRODUCTION

a free surface. Recently there has been a significant increase of interest in developing

and analyzing mathematical models and numerical methods for flows of yield stress

fluids, flows with free surfaces and a combination thereof. However, ‘yield stress

fluids slowly yield to analysis’ [10]. This section contributes to finding an answer to

the following question: If there exists a finite stopping time Tf for a free-surface flow

of an isolated volume of a yield stress fluid with surface tension forces? If the answer

is positive, one is also interested in knowing an estimate of Tf .

The property of an unforced yield stress fluid flow to come to a complete rest

in a finite time is an intrinsic one and often considered of keen importance[7]. For

the yield-stress fluid flows in pipes of a constant cross-section this property of a

weak solution to the variational formulation of the problem has been proved in [22,

30]. Theoretical upper bounds for the finite stopping times of several simple one-

dimensional flows can be found in [31, 29, 41]. In the presence of a free surface, one

may distinguish between the existence of a finite cessation time and the existence of a

final arrested state (the latter can be attained in a finite or infinite time). Although,

there is a common belief that the yield stress should bring an unforced free-surface

flow to rest in a finite time, we are not aware of a mathematical analysis of this

phenomenon except a few special flows. The question is intriguing since the theory

for viscoplastic films with a free surface suggests infinite stopping times [37]. This

may be an artifact of the thin-film approximation. The computational results in [43]

suggest that the finite stopping times exist for isolated volumes with momentum and

angular momentum free initial conditions.

The problem of yield stress fluid dynamics with free surface has been addressed
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also numerically. Since the full problem poses a serious challenge for numerical

simulations, it is common in the literature to consider simplified models of free-

surface yield stress fluids. The shallow approximation is one of the most common

reduced model for viscoplastic fluids flows over inclined planes and more complex

2D topographies, see [4, 6, 28] for recent reviews on this subject and [1, 9, 19, 32]

for more recent advances. The previous studies of free surface viscoplastic fluid flows

also include axisymmetric squeezing flows, bubble Bingham type flows [34, 2, 63],

the free interface lattice Boltzmann model [21], and the dam-break problem [43].

However, contrary to the wall-bounded flows, the free energy (due to surface ten-

sion) enters the energy balance and makes the analysis harder. This and the lack of

the embedding of W 1,1(Ω) in L2(Ω) for Ω ∈ R3 do not permit us to give the affirma-

tive answer to the question raised above for a general free-surface viscoplastic fluid

flow (see the next section). To gain more insight into the phenomenon, we consider

the problem of motion for a viscoplastic drop for which the evolution is driven only

by surface tension forces. Droplet flows of yield stress fluids, such as molten metal-

s or polymers, arise in many engineering applications, including spray coating, 3D

printing and arc welding [5, 27, 16]. In these and some other applications, surface

tension forces play essential role in the formation and evolution of fluid droplets, see,

e.g., [16, 53]. Thus, the oscillating viscoplastic droplet problem is also of its own

interest as a model problem for such industrial flows.

Following the analysis of the Newtonian case [35, 52, 38, 51] in section 3.3, we

assume that the initial shape of the drop is a perturbation of a sphere. For the

Newtonian fluid, a linear stability analysis predicts that the drop oscillates, while
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4.2. FINITE STOPPING TIME FOR YIELD STRESS DROPLET

an amplitude of the oscillations decays exponentially to zero with a damping factor

depending on the viscosity. To the best of our knowledge, this problem has never

been analysed for a viscoplastic fluid. Under certain assumptions the analysis in this

paper shows that in the presence of the yield stress the oscillations cease in a finite

time Tf . In a series of numerical experiments we study the dependence of Tf on

problem parameters: yield stress, flow index, and viscosity coefficient.

4.2 Finite Stopping Time for Yield Stress Droplet

4.2.1 Energy Inequality for Bingham Droplet

Since there is no explicit dissipation mechanism for the free surface energy Efree(t) in

(2.19), it is not easy to obtain directly from (2.19) a priori estimates for the solution

which would be sufficient for showing the (local) well-posedness of the problem.

Solonnikov in [56] was the first to study the solvability of the Newtonian fluid free-

surface flow problem subject to surface tension forces. His proof does not directly

rely on energy estimates, but rather on Fourier-Laplace transform techniques, which

required the use of exponentially weighted anisotropic Sobolev–Slobodeskii spaces

with fractional-order spatial derivatives. Further, energy methods to establish new

space-time estimates for the Newtonian flows were developed in [17] and semigroup

approach to establish the existence was used in [55]. None of these analyses are

known to be extended to viscoplastic fluid flow problems with free surfaces and

surface tension forces. If one is interested in the existence of the arrested state or
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4.2. FINITE STOPPING TIME FOR YIELD STRESS DROPLET

the finite stopping time, then the available analysis requires a lower bound for the

plastic dissipation term

c0

√ˆ
Ω(t)

τs|u|2dx ≤
ˆ

Ω(t)

τs|Du|dx for c0 > 0.

The bound is feasible for certain one-dimensional flows and for the flow in a long

pipe of a constant cross-section [22, 30]. However, in a more general case of Ω ∈ Rd,

the estimate implies the embedding W 1,1(Ω) ↪→ L2(Ω), which is known to be valid

only for d ≤ 2. We note that this fundamental difficulty arises within the existing

framework regardless of the form of exterior forces and also for the fixed (time-

independent) domain.

Following the assumption of Newtonian droplet in section 3.3.1, we assume that

the velocity field is irrotational. We shall illustrate this assumption numerically. The

velocity potential φ of irrotational flow of incompressible fluid is a harmonic function

for all t > 0. We seek φ in the form of volume spherical harmonics series

φ =
∑
n≥1

Bn(t)
rn

rn0
Hn

Let ξ :=
∑

n≥1 ξn. The kinematic boundary condition (2.3) can be written as

∂φ

∂r
=
∂ξ

∂t
on S0. (4.1)

This gives

n

r0

Bn(t) =
dAn(t)

dt
. (4.2)
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To illustrate ∇ × u = 0 assumption, we set surface tension coefficient γ = 1,

density ρ = 1, harmonic order n = 2, the original ridus of droplet r0 = 1 and

ε̃ = 0.3. We compare the skew-symmetric part of the velocity gradient tensor against

its symmetric part for several computed solutions. For the skew-symmetric part we

have
´

Ω(t)
|∇scewu|2dx = 1

2

´
Ω(t)
|∇ × u|2dx. Thus, Figure 4.1 shows the evolution

of
´

Ω(t)
|Du|2dx and of the enstrophy for the Newtonian droplet and for the yield

stress case with two values of parameter τs. For the yield stress fluid, we also plot
´

Ω(t)
|Du|dx, since this statistic enters the energy balance. In all cases, the produced

vorticity appears to be minor compared to symmetric rate of strain tensor.

By using the same analysis method as in section 3.3.2, with the help of ∆φ = 0

and dropping higher order with respect to ε̃ terms, we find the rate of change of Ekin:

d

dt
Ekin(t) = ρ

∑
n≥1

r0

n

d2An
dt2

dAn
dt

, (4.3)

and the rate of change of the potential energy

d

dt
Efree(t) =

∑
n≥1

γ (n− 1)(n+ 2)

r2
0

dAn
dt

An.

This and (4.3) gives the rate of change of the total energy

d

dt
Etotal(t) =

∑
n≥1

{
r0ρ

n

d2An
dt2

dAn
dt

+
γ (n− 1)(n+ 2)

r2
0

dAn
dt

An

}
. (4.4)

For the Bingham fluid, one should account for plastic dissipation besides viscous

dissipation term. Thanks to ∇ × u = 0, the tensor ∇u is symmetric. The viscous

63



4.2. FINITE STOPPING TIME FOR YIELD STRESS DROPLET

Figure 4.1: The evolution of
´

Ω(t)
|Du|2dx and of the enstrophy,

´
Ω(t)
|w|2dx, with

w = 1√
2
∇ × u. All results are computed for n = 2 and different values of τs. For

τs > 0 the figure also shows
´

Ω(t)
|Du|dx.
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4.2. FINITE STOPPING TIME FOR YIELD STRESS DROPLET

dissipation term is exactly same as Newonian case:

ˆ
Ω(t)

|Du|2dx =
∑
n≥1

(n− 1)(2n+ 1)

nr0

∣∣∣∣dAndt
∣∣∣∣2 . (4.5)

Further we consider the effect of the plastic dissipation. To this end, we need the

following trace inequality for functions of bounded variation in an N -dimensional

ball [15]:

‖u− |∂B|−1

ˆ
∂B

uds‖L1(∂B) ≤
N
√
π Γ(1

2
(N + 1))

2Γ(1
2
(N + 2))

‖∇u‖L1(B)

N=3
=
N
√
π Γ(2))

2Γ(5
2
)
‖∇u‖L1(B) = 2‖∇u‖L1(B),

(4.6)

where Γ(·) is Gamma function s.t. Γ(1
2

+ n) = (2n−1)!!
2n

√
π, Γ(n) = (n− 1)!.

Noting that for irrotational flow Du = ∇u and due to axial symmetries
´
S0
ui = 0,

i = 1, 2, 3, we apply the above inequality componentwise and we estimate the plastic

dissipation to be at least

τs

ˆ
Ω(t)

|Du|dx = τs

ˆ
Ω(t)

|∇u|dx ' τs

ˆ
Ω0

|∇u|dx ≥ τs
3

ˆ
Ω0

|∇u|`1dx

≥ τs
6

ˆ
S0

|u|`1ds =
τs
6

ˆ
S0

|∇φ|`1ds,

(4.7)

where |∇u| is the Frobenius norm of ∇u s.t. |∇u| =
√∑

1≤i,j≤3( ∂ui
∂xj

)2 and

|∇u|l1 =
∑

1≤i,j≤3

|∂ui
∂xj
|.
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We note 3|∇u| ≥ |∇u|l1 , since

|∇u|2l1 =
∑

1≤i,j,m,n≤3

|∂ui
∂xj

∂um
∂xn
|

≤
∑

1≤i,j,m,n≤3

1

2
(|∂ui
∂xj
|2 + |∂um

∂xn
|2)

= 9
∑

1≤i,j≤3

(
∂ui
∂xj

)2 = 9|∇u|2

(4.8)

In vector calculus, ∇φ can be decomposed into two parts: surface gradient ∇Γφ

and a component normal to the surface n · (∇φ · n). Then we have from (4.7):

τs

ˆ
Ω(t)

|Du|dx ≥ τs
6

ˆ
S0

|u|`1ds =
τs
6

ˆ
S0

|∇φ|`1ds ≥ τs
6

ˆ
S0

|∇φ|`2ds

=
τs
6

ˆ
S0

(
|∇Γφ|2 +

∣∣∣∣∂φ∂r
∣∣∣∣2
) 1

2

ds.

(4.9)

Let Cemb be optimal constant from the following Sobolev embedding inequality

for the two-dimensional sphere S0:

‖φ‖L2(S0) ≤ Cemb‖φ‖W 1,1(S0) for u ∈ W 1,1(S0), s.t.

ˆ
S0

φ ds = 0.

Applying this result, we proceed with the estimate on plastic dissipation from below
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as follows,

τs

ˆ
Ω(t)

|Du|dx ≥ τs
6

ˆ
S0

|∇Γφ|ds ≥ τs
6Cemb

(ˆ
S0

|φ|2ds

) 1
2

=
τs

6Cemb

(ˆ
S0

|
∑
n≥1

BnHn|2ds

) 1
2

=
τs

6Cemb

(∑
n≥1

B2
n

) 1
2

=
τsr0

6Cemb

(∑
n≥1

n−2

∣∣∣∣dAndt
∣∣∣∣2
) 1

2

.

(4.10)

Now we obtained lower bound for yield stress dissipation term.

4.2.2 Finite stopping time for Bingham drop

We first treat the case of the flow index α = 1 (Bingham fluid). From (4.5) and

(4.10) one gets the lower bound for the total internal energy dissipation (2.20) of the

viscoplastic droplet

D(t) =

ˆ
Ω(t)

(
K|Du|2 + τs|Du|

)
dx

≥
∑
n≥1

K(n− 1)(2n+ 1)

nr0

∣∣∣∣dAndt
∣∣∣∣2 +

τsr0

6Cemb

(∑
n≥1

n−2

∣∣∣∣dAndt
∣∣∣∣2
) 1

2

. (4.11)

Substituting this estimate to the total energy balance relation one obtains the fol-

lowing differential inequalities for An:
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∑
n≥1

{
ρ

2n

d

dt

∣∣∣∣dAndt
∣∣∣∣2 +

K (n− 1)(2n+ 1)

n r2
0

∣∣∣∣dAndt
∣∣∣∣2 +

γ (n− 1)(n+ 2)

2r3
0

d|An|2

dt

}

+
τs

6πCemb

∣∣∣∣∣∑
n≥1

n−2

∣∣∣∣dAndt
∣∣∣∣2
∣∣∣∣∣
1
2

≤ 0. (4.12)

Based on (4.12) and the previous analysis, we show that there exists such finite

Tf that dAn

dt
= 0 for all n ≥ 1 and t > Tf . However, we are not able to show the

existence of the finite stopping time direclty from (4.12) due to its complexity. We

need further estimate. To this end, we first estimates the third (surface tension)

term with the help of the Cauchy inequality:

∑
n≥1

γ (n− 1)(n+ 2)

2r3
0

d|An|2

dt
=
∑
n≥1

γ (n− 1)(n+ 2)

r3
0

dAn
dt

An

≤ γ

r3
0

(∑
n≥1

(n− 1)2(n+ 2)2n2A2
n

) 1
2
(∑
n≥1

n−2

∣∣∣∣dAndt
∣∣∣∣2
) 1

2

.

(4.13)

From the study of purely viscous case, when there is no additional plastic dissipa-

tion, we know that An decay at least exponentially with the decay factors not less

than −cdn2, see (3.16). If we assume that adding the plastic dissipation can only

contribute to the energy decay in a given harmonic, we conclude that there exists

such finite time T1 that

γ

r3
0

(∑
n≥1

(n− 1)2(n+ 2)2n2A2
n

) 1
2

≤ τs
12Cemb

for t ≥ T1. (4.14)
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Using this and (4.13) in (4.12), we get

∑
n≥1

{
ρn

2

d

dt
B2
n +

K (n− 1)(2n+ 1)n

r2
0

B2
n

}
+

τsr0

12Cemb

∣∣∣∣∣∑
n≥1

B2
n

∣∣∣∣∣
1
2

≤ 0 for t ≥ T1.

(4.15)

For the sake of convenient notation we also make the substitution dAn

dt
= n

r0
Bn.

Further we use the Hölder inequality

∑
k≥1

|xkyk| ≤ (
∑
k≥1

|xk|p)
1
p (
∑
k≥1

|xk|q)
1
q

where p and q are in an open interval (1,∞) with 1
p

+ 1
q

= 1, to estimate the plastic

dissipation term from below:

∑
n≥1

nB2
n ≤

(∑
n≥1

npB(2−α)p
n

) 1
p
(∑
n≥1

Bαq
n

) 1
q

p= 3
2
, q=3, α= 2

3=

(∑
n≥1

n
3
2B2

n

) 2
3
(∑
n≥1

B2
n

) 1
3

.

Thanks to the Young inequality ab ≤ δ
2
a2 + 1

2δ
b2, ∀δ > 0, we have

(∑
n≥1

nB2
n

) 3
4

≤

(∑
n≥1

n
3
2B2

n

) 1
2
(∑
n≥1

B2
n

) 1
4

≤ δ

2

∑
n≥1

n
3
2B2

n+
1

2δ

(∑
n≥1

B2
n

) 1
2

∀ δ > 0,

and after obvious rearrangement of terms, we get

2δ

(∑
n≥1

nB2
n

) 3
4

− δ2
∑
n≥1

n
3
2B2

n ≤

(∑
n≥1

B2
n

) 1
2

∀ δ > 0. (4.16)

Thanks to the kinetic energy decay, we may always assume that T1 is such that

Ekin(t) ≤ ρ
2

for t ≥ T1 and Ekin(t) = 1
2
ρ
∑

n≥1 nB
2
n. So B2

1 ≤ 2
ρ
Ekin ≤ 1 for t ≥ T1.

69



4.2. FINITE STOPPING TIME FOR YIELD STRESS DROPLET

Hence for δ ∈ (0, 1] it holds δ2B2
1 ≤ δ

(∑
n≥1 nB

2
n

) 3
4 . Now (4.16) yields

δ

(∑
n≥1

nB2
n

) 3
4

− δ2
∑
n≥2

n
3
2B2

n ≤

(∑
n≥1

B2
n

) 1
2

∀ δ > 0. (4.17)

If we substitute (4.17) in (4.15) with δ > 0 satisfying

τsr0

12Cemb

δ2 ≤ 5K

r2
0

√
2
, (4.18)

we have ∑
n≥1

{
ρn

2

d

dt
B2
n +

K (n− 1)(2n+ 1)n

r2
0

B2
n

}

+
τsr0

12Cemb

[δ

(∑
n≥1

nB2
n

) 3
4

− δ2
∑
n≥2

n
3
2B2

n] ≤ 0 for t ≥ T1.

(4.19)

Now 1
2

of the viscous term K (n−1)(2n+1)n

2r20
B2
n kills the negative term τsr0

12Cemb
δ2
∑

n≥2 n
3
2B2

n

on the left hand side of (4.19) due to equation (4.18). Further, for the viscous term

in (4.15), the following holds trivially

∑
n≥1

K (n− 1)(2n+ 1)n

2r2
0

B2
n ≥

5K

2r2
0

∑
n≥2

nB2
n. (4.20)

Finally, we must get control of 5K
2r20
B2

1 with the help of the viscoplastic term. Again,

thanks to the kinetic energy decay, we may assume that T1 is sufficiently large such

that for t ≥ T1 the coefficient B1 is small to satisfy the inequality

5K

2r2
0

B2
1 ≤

τsr0δ

24Cemb

(∑
n≥1

nB2
n

) 3
4

.
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Thus, using (4.17), (4.20) in (4.15) and choosing δ satisfying (4.18), we arrive at the

following differential inequality for the quantity B̂ :=
∑

n≥1 nB
2
n:

ρ

2

dB̂

dt
+

5K

2r2
0

B̂ +
τsr0δ

24Cemb

B̂
3
4 ≤ 0 for t ≥ T1.

We can rearrange y′ + c1y + c2y
s = 0 as

(y1−s +
c2

c1

)
′
+ c1(1− s)(y1−s +

c2

c1

) = 0

The ODE is solved by y1−s = (y1−s(0) + c2c
−1
1 )e−(1−s)c1t − c2c

−1
1 for t ≥ 0, s 6= 1.

We need the Gronwall inequality : If u is differentiable in the interior [a,∞] and

satisfies the differential inequality

u
′ ≤ β(t)u(t), t ∈ (a,∞),

then u is bouned by the solution of the corresponding differential equation y′(t) =

β(t)y(t):

u(t) ≤ u(a)exp(

ˆ t

a

β(s)ds), ∀t ∈ (a,∞)

Thanks to the Gronwall inequality we can find the bound

B̂
1
4 ≤ (B̂

1
4 (T1) + c2c

−1
1 )e−

c1(t−T1)
4 − c2c

−1
1 , for all t ≥ T1,

with c1 = 5K
r20ρ

, c2 = τsr0δ
12ρCemb

, s = 1
4

and y = B̂. From above inequality, we conclude

that B̂ = 0 for t ≥ Tf , with a finite stopping time Tf .
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Remark 4.1. The analysis above can be simplified for d = 2, i.e. for the problem

of 2D oscillating drop. Indeed, in this case one can use the continuous embedding

W 1,1(Ω) ↪→ L2(Ω), Ω ⊂ R2, and estimate the plastic dissipation terms from below

as follows (compare to (4.9)-(4.10) and arguments below (4.15)):

τs

ˆ
Ω(t)

|Du|dx = τs

ˆ
Ω(t)

|∇u|dx ' τs

ˆ
Ω0

|∇u|dx ≥ Ĉemb

(ˆ
Ω0

|u|2dx

) 1
2

=
√

2ĈembE
1
2
kin(t) = Ĉemb

(
ρ

r0

∑
n≥1

nB2
n

) 1
2

.

4.2.3 Shear Thickening Case

The fluid with the index α ≥ 1 fits the framework of the Bingham fluid if one notes

the inequality

K|Du|1+α + τs|Du| ≥ min{K, τs
2
}|Du|2 +

τs
2
|Du| for α ≥ 1.

Therefore, the above analysis applies with the viscosity coefficient min{K, τs
2
} and

yield stress τs
2

. However, the similar argument do not work for the shear thinning

case α < 1. Since our analysis relies on the viscosity term K|Du|1+α, we cannot find

a lower bound that is proportional to |Du|2.

72



4.3. NUMERICAL EXPERIMENTS

4.3 Numerical Experiments

In this section we present the results of several numerical experiments, which illus-

trate the analysis of section 4.2. These experiments also study the dependence of

the finite stopping time for the 3D droplet problem on various parameters. For the

computer simulations we use the numerical approach developed in [43, 45, 44] for

free-surface incompressible viscous flows and reviewed in section 2.2. The plasticity

term is regularized by the Bercovier-Engelman method [8] (|Du|−1 → (|Du|2 + ε2)
− 1

2

in (2.5) ) with the regularization parameter ε = 10−6. We note that regularized prob-

lem may not inherit to existence of arrested state from the original problem. How-

ever, numerical experiments in Fig 4.2 demonstrate the convergent results of flow

statistics for this level of values of ε. This indicates that the modelling error due

to the regularization for ε = 10−6 is minor compared to discretization errors. The

regularization allows us to overcome computational difficulties associated with the

non-differentiability of the constitutive relations and hence to perform 3D compu-

tations using dynamically refined grids towards the free surface, i.e. the refinement

follows the evolution of the free surface. Such a refinement is of crucial importance

for the sufficiently accurate computations of the surface tension forces. Only those

cells of the background octree mesh are active in computations, which are intersected

by the surface or belong to the interior of the droplet, so no auxiliary conditions are

needed on the boundary of the bulk domain.

First we experiment with the Bingham fluid (fluid index α = 1). As in the

experiments with the Newtonian fluid, the initial perturbation is defined by (3.2)
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with A2(0) = 1 and An(0) = 0 for n 6= 2, ε̃ = 0.3. Now Figures 4.3–4.6 show the

evolution of the total kinetic energy and the trajectory of the north tip computed for

viscosity coefficients K = 0.01 and K = 0.025 and different yield stress parameters

τs, with τs = 0 obviously showing the Newtonian case. Both from the kinetic energy

evolution and the trajectory of the drop tip we clearly see the complete cessation of

the motion in a finite time for all τs > 0. It is interesting to note from the north tip

trajectories that the final arrested state is not necessarily the original unperturbed

sphere. The quasi-period of the oscillations looks independent of the K and τs values.

The decay rate and the final stopping time, otherwise, depend on K and τs. The

final stopping times presented in Table 4.2 were estimated from the computed kinetic

energy applying the following formula:

Tf = arg min
t>0

max
s≥0
{Ekin(t+ s) ≤ 10−7}. (4.21)

As can be expected Tf , in general, decreases for larger values of K and τs. It is

interesting to note that for the range of modest, i.e., not too large, yield stress

parameter values, the final stopping time demonstrates the dependence on τs close

to Tf = O(τ−1
s ). The viscosity coefficient for this problem appears to have less

influence on the variation of the finite cessation time.

We next experiment with different initial perturbations of the drop. In this

experiment, we set A4(0) = 1 and An(0) = 0 for n 6= 4, ε̃ = 0.3 in (3.2). For this

setup, Figure 4.10 shows the evolution of the total kinetic energy and the trajectory

of the north tip computed for viscosity coefficient K = 0.01 and different yield stress

parameters τs. Again we observe the complete cessation of the motion in a finite time
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for all τs > 0. As expected from the analysis, the decay of the oscillations for the

spherical harmonic with larger number happens faster and the computed stopping

time Tf is smaller.

Further, we simulate the droplet oscillations for different values of the fluid index

α. The computed evolution of the total kinetic energy and the trajectory of the north

tip for K = 0.01 and τs = 0.02 are shown in Figure 4.7. The estimated final stopping

times are shown in Table 4.1. The results indicate that shear-thinning/thickening

variation has some affect on the stopping times of the oscillations in general leading

to faster decay as α→ 0. At the same time, the results for n = 4 are inconclusive.

Table 4.1: Estimated final stopping times for various values of α and n ∈ {2, 4} (for
initial perturbation), with K = 0.01, τs = 0.02.

α n=2 n=4
0 7.96 5.55
0.5 9.09 5.53
1 10.27 5.46
2 11.40 4.92

We are also interested in the evolution of unyielded zones prior to the final ces-

sation of the drop motion. Note that numerical studies of the pipe and enclosed

flows typically demonstrate an earlier formation and further growth of the unyielded

zones until they occupy the whole domain and halt the motion, see, e.g., [12, 13, 58].

However, for the oscillating drop problem, if we accept the approach of Lamb and

seek the solution in the form of the series (3.3), then we conclude that the whole

droplet comes to the full stop at Tf without prior formation of rigid zones. The

solution in (3.3) is an approximation, and it is interesting to see which scenario the

fluid motion follows in practice. Results of the numerical experiments suggest that
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Lamb’s approach is remarkably predictive. Figure 4.8 and 4.9 shows the unyielded

regions computed with the help of von Mises criterion around the final stopping time

for the Bingham fluid and with other parameters K = 0.01, τ ∈ {0.04, 0.05}. The

von Mises criterion defines the rigid zone as {x : (K + τs|Du|−1
ε )|Du| ≤ τs}.

The regions are visualized by three consecutive time steps. We see the (almost)

immediate transition from fluidic to rigid phases in the entire droplet. Small unyield-

ed regions near the droplet tips right before the complete stop can be a numerical

phenomenon. We recall that the numerical method makes no use of the expansion in

(3.3) or any other assumptions, including rotational symmetry, made in the frame-

work of section 3.3; rather, it obtains the 3D solution of (2.2)–(2.5), (2.6) directly.

Postprocessing of the numerical results for other values of τs showed very similar

behavior of the rigid zones to those shown in Figure 4.8, so we skip including these

plots. It also occurs that the von Mises criterion yields the final stopping times very

close to those computed from (4.21).

4.4 Single Harmonic Bingham Droplet Analysis

It follows from the analysis in section 3.3, and was noticed already in [35], that for

the Newtonian case the drop oscillations are the linear superposition of individual

oscillations of each spherical harmonics, satisfying equations (3.14). For the non-

Newtonian case, we do not see why a similar superposition principle should be valid

in general. However, if for a prediction purpose one could assume that there is no

transfer of energy between different scales, then one can write an ODE for the time
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evolution of each harmonic separately. In addition to the terms in (3.14) one com-

putes for the plastic dissipation: τs
´

Ω(t)
|Du|dx ' τsn

−1r1−n
0

∣∣dAn

dt

∣∣ ´
Ω0
|D2(rnHn)|dx,

where D2(f) is the Hessian matrix for f .

For example, if we consider 2nd harmonics, the initial shape is given by

r = r0 + ε̃H2(θ, φ), t = 0. (4.22)

We set H2 = 1
4

√
5
π
(3cos2θ − 1) and ε̃ = 0.3 in our case.

Since we assume no energy transfer between individual harmonics, the oscillations

take the form:

r = r0 + A2(t)S2(θ), (4.23)

where A2(t) is the displacement of the north pole of sphere,

S2 =
1

2
(3cos2θ − 1) =

2z2 − x2 − y2

2r2
.

Now we consider the velocity potential φ = B(t) r
2

r20
S2. The kinematic boudary con-

dition gives

2

r0

B2 =
dA2

dt
. (4.24)

The change rate of the total energy is

d

dt
Etotal(t) =

{
r0ρ

2

d2A2

dt2
dA2

dt
+

4τ

r2
0

dA2

dt
A2

}¨
S2

2ds,
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The dissipation of viscosity term is

K

ˆ
Ω(t)

|Du|2dx = K
5

2r0

∣∣∣∣dA2

dt

∣∣∣∣2¨ S2
2ds. (4.25)

where
˜
S2

2ds =
´ 2π

0

´ π
0

1
4
(3cos2θ − 1)2sinθdθdφ = 4π

5
r2

0

Since we can complete ∇u explicitly

∇u = ∇(∇φ) = B2(t)
1

r2
0

∇(∇r2S2) =
B2(t)

r2
0


−1 0 0

0 −1 0

0 0 2

 ,

we get

|∇u| = |
√

6
B2(t)

r2
0

|.

The disspation of yield stress term for 2nd harmonic droplet should be

τs

ˆ
S(0)

|∇u|dx = τsr0
4

3
π
√

6B2(t) = τs
2

3
π
√

6|dA2(t)

dt
|

According to energy balance (2.20), we have the ODE,

d2A2

dt2
+

5K

r2
0ρ

dA2

dt
+

8τ

r3
0ρ
A2 +

τs
r0ρ

10√
6
sign{dA2

dt
} = 0 (4.26)

This ODE can be numerically solved with a high accuracy. The first time Tpred

such that An(t) = 0 for all t > Tpred may serve as a prediction to the actual stopping

time if the initial perturbation is defined only by the second harmonic (similar with
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other harmonics). We solve (4.26) by the 4th order Runge-Kutta method. Then we

compare the results with the one generated by the octree-CFD code in Figure 4.11

and 4.12 and report the computed Tpred in Table 4.2. The results obtained from

computing equation (4.26) are rather close to the numerical results obtaining from

system equations in section 2.1.2. The computed Tpred are close to Tf recovered by

the full 3D simulations. This suggests that the transfer of energy between the scales

(from lower to higher) does not play an essential role in this problem and gives an

additional support to the assumption leading to (4.14). The “—” sign in Table 4.2

indicates that for τs = 0.4, the droplet motion is halted at t = 0.

Table 4.2: Computed and ‘predicted’ final stopping times for various values of K
and τs, with α = 1, n = 2 (for initial perturbation).

τs K=0.005 K=0.01 K=0.025
Tf Tpred Tf Tpred Tf Tpred

0.02 10.29 9.940 10.27 8.873 9.182 7.760
0.03 8.274 6.647 6.847 6.629 7.125 5.543
0.04 5.712 4.439 5.722 4.434 4.568 4.434
0.05 4.573 4.416 4.577 4.361 4.688 3.326
0.1 2.279 2.213 2.279 2.213 2.289 2.213
0.2 1.135 1.099 1.130 1.099 1.130 1.099
0.4 1.260 – 1.265 – 1.237 –

We demonstrate below that for an isolated motion in the second harmonic there

exists the halting yield stress coefficient τs.

Without lost generaility, we assume A2(0) > 0. The energy balance equation

(2.19) also has the form

dEfree(t)

dt
+
dEkin(t)

dt
+D(t) = 0
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If the droplet starts to oscillate, then the kinetic energy of droplet should increase

and dA2(t)
dt

< 0, when t is close enough to 0, since A2(t) > 0.

The onset of droplet oscillations also means that the variation of kinetic energy

is positive, i.e., dEkin(t)
dt

> 0, since Ekin(0) = 0. Since the variation of kinetic energy

is positive, from the energy balance, for small enough t > 0, we have

dEfree(t)

dt
+D(t) < 0 (4.27)

By plugging the 2nd harmonic into equation (3.3.2), the variation of free surface

energy is

d

dt
Efree(t) =

{
4τ

r2
0

dA2

dt
A2

}¨
S2

2ds. (4.28)

and the plastic dissipation term

D(t) ≥ τs

ˆ
S(0)

|∇u|dx = τsr0
4

3
π
√

6|B2(t)| = τs
2

3
π
√

6|dA2(t)

dt
| (4.29)

Subsituting the variation of free surface (4.28) and dissipation (4.29) into (4.27), we

get

16

5
π
dA2(t)

dt
A2 + τs

2
√

6π

3
|dA2(t)

dt
| < 0

Since dA2(t)
dt

< 0, we have 4
√

6
5
A2(t) ≥ τs, for t enough close to 0. In other words,

4
√

6
5
A2(0) ≥ τs is a necessary condition for the droplet start to oscillate.

Note for A2(0) = 0.1892 (the initial displacement of the north pole of sphere),

τs = 0.3708 is the threshold yield stress parameter of droplet to begin oscillate.
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Figure 4.2: The evolution of the kinetic energy (upper plots) and the trajectory of the
north tip (bottom plots) computed for K = 0.01, τs = 0.02, different regularization
parameter ε and the second spherical harmonic (n = 2) to define initial perturbation.
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Figure 4.3: The evolution of the kinetic energy (upper plots) and the trajectory of
the north tip (bottom plots) computed for K = 0.01, different τs and the second
spherical harmonic (n = 2) to define initial perturbation.
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Figure 4.4: The evolution of the kinetic energy (upper plots) and the trajectory of
the north tip (bottom plots) computed for K = 0.01, different τs and the second
spherical harmonic (n = 2) to define initial perturbation.
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Figure 4.5: The evolution of the kinetic energy (upper plots) and the trajectory of
the north tip (bottom plots) computed for K = 0.025, different τs and the second
spherical harmonic (n = 2) to define initial perturbation.
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Figure 4.6: The evolution of the kinetic energy (upper plots) and the trajectory of
the north tip (bottom plots) computed for K = 0.025, different τs and the second
spherical harmonic (n = 2) to define initial perturbation.
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Figure 4.7: The evolution of the kinetic energy and the trajectory of the north tip
computed for K = 0.01, τs = 0.02, and different flow indexes α.
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t=5.703s

t=5.722s

t=5.740s

Figure 4.8: The visualization of the rigid zones near the final stopping time for
τs = 0.04, with other parameters K = 0.01, α = 1, n = 2. The cutaway by the xz-
midplane is shown. The unyielded regions by von Mises criterion are colored black.
Full cells are shown, but cut cells ensuring O(h2) boundary approximation are used
in computations.
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t=4.563s

t=4.582s

t=4.600s

Figure 4.9: The visualization of the rigid zones near the final stopping time for
τs = 0.05, with other parameters K = 0.01, α = 1, n = 2. The cutaway by the xz-
midplane is shown. The unyielded regions by von Mises criterion are colored black.
Full cells are shown, but cut cells ensuring O(h2) boundary approximation are used
in computations.
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Figure 4.10: The evolution of the kinetic energy and the trajectory of the north tip
computed for K = 0.01 and various τs, with n = 4 (for initial perturbation).
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Figure 4.11: The evolution of the kinetic energy (upper plots) and the trajectory
of the north tip (bottom plots) computed for equation 4.26(ODE) and octree-CFD
code(computing results).
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Figure 4.12: The evolution of the kinetic energy (upper plots) and the trajectory
of the north tip (bottom plots) computed for equation 4.26(ODE) and octree-CFD
code(computing results).
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CHAPTER 5

Conclusion and Outlook

We deduced a variational inequality for free surface fluid flow. By using the dissipa-

tion method, we proved there is a finite stopping time for shear-thicking and Bingham

oscillating droplet. The analysis for shear-thining case is lacking at present. Within

a currently available framework of variational inequalities and energy type estimates,

we don’t see how one could treat a more general problem. The fundamental difficul-

ty arises within the existing framework regardless of the form of exterior forces and

also for the fixed (time-independent) domain. This type of a lower bound for the

plastic dissipation term is crucial in the analysis of the finite stopping times of any

yield stress fluid. Theoretical upper bounds for the finite stopping times of several
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simple one-dimensional flows can be found in [31, 29, 41]. In the presence of a free

surface, one may distinguish between the existence of a finite cessation time and the

existence of a final arrested state (the latter can be attained in a finite or infinite

time). Although the non-Newtonian fluid community (arguably) believes that the

existence of finite stopping time is an intrinsic property of a yield stress fluid, there

are only very few cases where proofs are known (i.e., those mentioned above). We

consider the problem of small oscillations of the visco-plastic spheroid as another

rare example. Besides being another example, the problem allows one to have an

insight into the interplay between kinetic energy, free energy and dissipation for a

yield stress fluid. We believe that the example studied in the thesis is relevant for

a better understanding of physically- realiseable viscoplastic flows for the following

reasons: (i) There is a number of applications where droplet flows of viscoplastic flu-

ids arise; (ii) The crucial assumption about the irrotation velocity field is plausible

in our setup.
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