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The emission and scattering of sound from bubble clouds is studied theoretically. It is shown 
that clouds having a size and air content similar to what might be expected as a consequence of 
the breaking of ocean waves can oscillate at frequencies as low as 100 Hz and below. Thus cloud 
oscillations may furnish an explanation of the substantial amount of low-frequency 
wind-dependent oceanic ambient noise observed experimentally. Detailed results for the 
backscattering from bubble clouds--particularly at low grazing angles--are also presented and 
shown to be largely compatible with oceanic data. Although the cloud model used here is 
idealized (a uniform hemispherical cloud under a plane water free-surface), it is shown that the 
results are relatively robust in terms of bubble size, distribution, and total air content. A similar 
insensitivity to cloud shape is found in a companion paper [Sarkar and Prosperetti, J. Acoust. 
Soc. Am. 93, 3128-3138 (1993)]. 

PACS numbers: 43.30. Nb, 43.30.Ft, 43.30. Lz 

INTRODUCTION 

Recent research has brought to the fore the impor- 
tance of bubble clouds at the ocean's surface for the prop- 
agation and generation of underwater sound (Carey and 
Bradley, 1985; Carey and Browning, 1988; Prosperetti, 
1985, 1988a,b; Lu et al., 1990; Yoon et al., 1991; Lu and 
Prosperetti, 1993). On the one hand, it has been realized 
that the clouds can oscillate in collective modes and give 
rise to acoustic emissions as low as a few tens of Hz irre- 

spective of the size oldthe c6nst•tuent bfibb•s. It is possible 
that in this fact an explanation may be found of the low- 
frequency component of wind-dependent oceanic ambient 
noise that has long puzzled investigators (Wenz, 1962; 
Kerman, 1984; Carey and Wagstaft, 1986; Kewley et al., 
1990). Secondly, several analyses have shown that the 
backscattering produced by bubble clouds can be quite sub- 
stantial and preliminary estimates indicate that these enti- 
ties may be responsible for the unexpectedly high back- 
scattering strengths found experimentally. 

The presence of bubbles in substantial numbers in the 
uppermost several meters of the ocean surface is so well 
known that a few references will be sufficient in this respect 
(Monahan, 1971; Thorpe, 1982; Farmer and Vagle, 1989). 
One may distinguish between the regions of "fresh" bub- 
bles, newly formed by breaking waves, and the "old" bub- 
bles, that are stabilized by still unclear mechanisms and 
survive long after their formation. Typically, "fresh" bub- 
bles are relatively highly concentrated in clouds very close 
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to the surface, while "old" bubbles are much less dense and 
are transported downward by turbulence and Langmuir 
circulation. We refer to these latter agglomeration as bub- 
ble "plumes" reserving the term "cloud" for the former. 

In this paper we consider both the active and passive 
facets of the acoustic behavior of bubble clouds. Our model 

is geometrically simple and consists of hemispherical 
clouds at the surface of a plane ocean. However, we use a 
relatively complete model for the bubbly region that goes 
beyondprevious calculations and we solve exactly--rather 
than in an approximate fashion--the emission and scatter- 
ing problems. In our basic model the bubble cloud has a 
uniform spatial distribution of gas and bubble radii. Later, 
we consider generalizations of this model and try to derive 
conclusions of more general validity. The dependence of 
the results on the cloud shape is clearly also important, and 
is addressed in a separate publication (Sarkar and Pros- 
peretti, 1993a). 

Crowther (1980), McDaniel and Gorman ( 1982, 
1983), and McDaniel (1987) have applied incoherent scat- 
tering methods to the calculation of backscattering from 
bubble layers. More recently, McDonald (1991) and 
Henyey (1991 ) have treated the backscattering from bub- 
ble plumes by the Born approximation. The methods used 
by these authors are not suitable for the denser bubble 
assemblies studied in this paper. A detailed comparison of 
these approaches can be found in Sarkar and Prosperetti 
( 1993a, 1993b). 

Perhaps the major piece of information missing for a 
quantitative description of bubble clouds is the gas concen- 
tration by volume, also called void fraction in the multi- 
phase flow literature. Some estimates of this quantity dur- 
ing the active breaking process are as high as 30% 
(Longuet-Higgins and Turner, 1974; Melville et al., 1992), 
but this situation of extremely large void fraction must be 
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very short lived. The gas content under the regions of the 
surface usually referred to as whitecaps must be much 
smaller and we use the figure of 1% as a representative 
order of magnitude. The effect of this variable on the re- 
sults will also be considered here. Bubble concentration in 

bubble plumes, on the other hand, is several orders of mag- 
nitude smaller (Thorpe, 1982). 

I. MATHEMATICAL MODEL 

The mathematical model that we use has already been 
described in several papers (e.g., Commander and Pros- 
peretti, 1989; Lu et al., 1990; Yoon et al., 1991; Lu and 
Prosperetti, 1993) and we do not present details here. Suf- 
fice it to say that the bubbly liquid is described by means of 
a Helmholtz equation for an effective medium having a 
wave number K given by 

4,rrw2an 

• = k2 + w•-- (.0 2 + 2ibw' ( 1 ) 
Here, k=w/c is the wave number in the pure liquid, c the 
speed of sound in the pure liquid, a the equilibrium bubble 
radius, n the bubble number density, b the frequency- 
dependent damping "constant," and w 0 the natural fre- 
quency. The explicit expressions for these quantities are 
somewhat involved and can be found in the above-cited 

references. Equation ( 1 ) is for the case of equal-sized bub- 
bles. The extension to a nonuniform size distribution is 

straightforward and can be found, e.g., in Commander and 
Prosperetti (1989) and Lu and Prosperetti (1993). 

Two recent papers (Omta, 1987; D'Agostino and 
Brennen, 1989) present a treatment of the oscillations of a 
spherical bubble cloud in an unbounded liquid including 
effectsmsuch as the "slip" velocity of the gas relative to the 
liquidmthat are not present in the theory leading to (1). 
On a practical level, such effects may be disregarded here 
as their inclusion leads to indistinguishable results for lin- 
ear problems and low gas concentrations (see, e.g., 
Caflisch et al., 1985; Commander and Prosperetti, 1989). 
It is of conceptual importance, however, that the model 
used to derive (1) is the only one so far available whose 
validity to first order in the gas concentration has been 
proven rigorously by ensemble averaging without ad hoc 
assumptions (Caflisch et al., 1985). Hence, Eq. (1) con- 
tains all the terms and the physical effects that survive 
consistently to first order in the gas volume fraction /3 
defined•for equal-size bubbles•by 

•= •ra3 n. (2) 

At frequencies much smaller than the resonance fre- 
quency of the bubbles and for gas volume fractions larger 
than about 10 -4, it is easy to show that ( 1 ) reduces to the 
following well-known result for the effective speed of prop- 
agation Cm of pressure waves in a bubbly liquid (Wood, 
1932; van Wijngaarden, 1972) 

2 
Cm = Po/ p•, (3) 

where P0 is the undisturbed pressure in the liquid and p the 
liquid density. It should be noted that this approximate 

expression is also valid for general bubble size distributions 
at frequencies smaller than the resonance frequency of the 
largest bubbles in the distribution. 

The pressure perturbation in the pure liquid is de- 
scribed by the Helmholtz equation with wave number k. 
The transition region between bubbly and clear liquid is 
modeled as a geometric surface across which the pressure 
and its normal derivative are continuous. 

This model is relatively simple and straightforward. 
Nevertheless it has been shown to agree remarkably well 
with experiment both in predicting the velocity of pressure 
waves and the normal modes of cylindrical bubble clouds 
(Commander and Prosperetti, 1989; Lu et al., 1990; Yoon 
et al., 1991; Nicholas et al., 1993). 

In the following we shall denote the cloud radius by R c 
and we shall use a polar coordinate system (r,O,•b) cen- 
tered at the cloud's center, with the polar axis directed 
vertically upward. The time dependence of the distur- 
bances is assumed proportional to exp(iwt). The ocean 
surface is taken to be plane and pressure release so that on 
it the perturbation field must satisfy 

p(r,O=rc/2,qb) =0. (4) 

The planarity of the surface is clearly a restriction of the 
model. For the emission problem, the ocean's roughness 
will cause a spatial dependence of the intensity different 
from the idealized one computed below but is not expected 
to alter our major conclusion, namely that the clouds are 
capable of oscillation at low frequencies. For the back- 
scattering problem, surface roughness is expected to 
increase•in a time-average sense--the effect of bubble 
clouds so that our results should give a lower bound for the 
backscattering strength. We shall show that, in general, the 
backscattering strengths that we estimate are in line with 
the data, while calculations based on surface roughness fall 
far below (McDaniel and Gorman, 1982). This suggests 
that surface roughness gives a relatively weak contribution 
so that its neglect is not entirely unjustified as a first ap- 
proximation. 

II. BUBBLE CLOUDS AS ACOUSTIC SOURCES 

To study the active acoustic behavior of a cloud, in the 
pure liquid we seek solutions of the Helmholtz equation in 
the form of outgoing spherical waves, 

p=h•2)(kr) Ylm(O, q5), (5) 
where the amplitude has been set to 1 for convenience, h (2) 
is a spherical Bessel function of the third kind, and Ytm a 
spherical harmonic defined by 

Ylm(O'•)= 4rr (l+lml)! 
1/2 

X Pt rn I ( cos 0) exp ( imc k ). 
These functions are normalized so that 

Ykl Yrnn dfl = 5 km 6In, 

(6) 

(7) 
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uj$(u) 
j(u) 

where 

where the overbar denotes the complex conjugate, 
riff=sin 0 dO dq• is the element of solid angle, and the in- 
tegration is extended over the entire solid angle 0<0<•r, 
0<•<2•r. 

The pressure-release boundary condition (4) is satis- 
fied by requiring l+m to be an odd integer. Inside the 
cloud the condition that the pressure perturbation be 
bounded at r=0 requires that it have the form 

p=AlmJl(• r) rlm(O,•), (8) 

where A•m is the amplitude and j• is a spherical Bessel 
function of the first kind. 

Equating the pressure amplitudes (5) and (8) on the 
two sides of the surface r=Rc gives 

A•m= j•(•Rc) ' (9) 
With this result, the matching of the normal derivatives 
gives the following characteristic equation: 

' 

u:KR c, v=kRc. (11) 

The eigenfrequencies are evidently independent of the or- 
der rn of the spherical harmonic provided, of course, that 
l+m is an odd integer. For every l= 1,2 .... there is an 
infinity of different modes. Numerical results obtained 
from this equation are presented in Sec. VI. 

III. ACOUSTIC SCATTERING FROM BUBBLE CLOUDS 

We now consider the scattering of an incident plane 
wave. The mathematical technique is very standard and 
can be found, e.g., in Morse and Feshbach (1953, Chap. 
•). 

The plane of incidence is taken as the (x,z) plane and 
the incident wave is written as 

pi=exp[--i(k. x) ] =exp[ -/k(x sin aiq-z cos ai) ], 
(12) 

where a i is the angle of incidence, i.e., the angle that the 
normal to the wave front makes with the z axis. 

We write the total pressure field as 

P-'Pi-- exp ( -- &r' x) +Ps, ( 13 ) 

where kr= (k sin ai,- k cos ai) is the wave number of the 
wave specularly reflected by the free surface in the absence 
of the cloud, the effect of which is represented by the third 
term. Clearly p• must vanish on the plane •= •r/2 so as to 
satisfy (4). We therefore write 

oo 1 

ps = • • Blmh5 2) (kr) Ylm(O,q•). (14) 
/=1 rn=--l 

m 4- l= odd 

The disturbance pressure field inside the cloud is written as 
before as a superposition of terms of the form (8). The 
constants Aim and Btm are determined by the interface con- 

ditions. Continuity of the pressure field at r=R c gives 

A•m j•(s:Rc) -- B•mh• 2) (kRc) 

--8•(--i)ljl(kRc) •lm(Oti,O), 

while continuity of the normal derivative leads to 

(•c/k)A•m j$ ( kRc) -- Blmh•2)'( kRc) 

-' 8'rr( --i)•j• (kRc) •m(ai,O). 

(15) 

(16) 

In deriving these equations use has been made of the fol- 
lowing relation that is readily proved from known proper- 
ties of the Bessel functions and spherical harmonics: 

exp(--&.x)--exp(--&r.x) 

oo 1 

=8•r Z Z (- 1)•j,(kr)•,m(Ogi,O)Y,m(O,•). 
1=0 m= --1 

m + 1= odd 

Solution of the system (15) and (16) gives 

Alto :8rr(--i)l•lm(Oti,O) Ul( U,V ) , 

B•m = 8•r( -- i) •+ 1 ]•lm (ai,O) T•(u,v), 

where 

•)(u)- ff-Av) j•(v) 

Tt(u'v)=ff-t(u)_•t(v) h•2) (v) ' 

with 

(17) 

(18) 

(19) 

(20) 
ff)(v)-•Av) jay) 

Ut( u,v ) - if-t( u ) - •( v ) j •( u ) ' 

zj$(z) 
ff-•(z)- j•(z) ' •?f•(z) = h•2)(z•' (21) 

and u, v defined in ( 11 ). 

We define the dimensionless scattering amplitude f, 
of the bubble cloud in the usual way by writing that, as 
r-• •, Ps approaches 

ps-• (Rc/r)exp( -- ikr) f, ( O, q5). 

From (14), (18) we then find 

(22) 

87r oo 1 

f *(O'ck)--ikRc •o • T•(u,v) = m= -l 

m4./=odd 

• rlm(ai,O) Ylm(O, qb). (23) 

From its definition (22) it is seen that this quantity repre- 
sents the amplitude that the scattered wave would have at 
the cloud's surface, if the asymptotic expression of the scat- 
tered field were extrapolated there. The dimensionless dif- 
ferential cross section or, is related to f, by 
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cr,(0,•) = (1/•r)I f,(0,•)12. (24) 
This quantity represents the usual scattering cross section 
normalized by the "footprint" of the cloud on the ocean's 
surface. 

Below the resonance frequency of the bubbles the 
speed of sound in the bubbly mixture is much smaller than 
in the pure liquid (Wood, 1932; van Wijngaarden, 1972). 
In these conditions v,• I u I and (19) becomes, approxi- 
mately, 

Tt_•jt(v)/h• 2• (v), (25) 

which is the result that would be obtained by imposing the 
condition p=0 on the surface of the hemisphere r=R c 
directly (see, e.g., Morse and Feshbach, 1953, Sec. 11.3; 
Burke and Twersky, 1964). It will be seen below that the 
scattering from the cloud approaches this "soft" limit al- 
ready at relatively low volume fractions. 

A. Backscattering strength 

The backscattering strength •; • is defined by (see, e.g., 
Urick, 1967; McDonald, 1991) 

•; B-- r2Is/Ii AA, (26) 

where I i is the sound intensity of the incident wave, Is the 
intensity of the wave scattered in the backward direction, 
AA the ensonified area, and r the distance between AA and 
the receiver. The definition presupposes that AA ,• r •. From 
(22) and (24) we find 

•EB= ( •rR•/AA )a, ( •r--ai,•). (27) 

If the whitecap density is not unrealistically high, one may 
neglect multiple-scattering effects (Prosperetti and Sarkar, 
1992). In this case the ensonified area may be taken equal 
to the average area surrounding a cloud, which is obtained 
by considering a large area of the ocean and dividing by the 
number of whitecaps on it. With this approximation, the 
ratio in the fight-hand side of (27) can be approximated by 
the whitecap index W, i.e., the fraction of the ocean's sur- 
face covered by whitecaps, which is approximately known 
experimentally. A correlation for this quantity is (Mona- 
han and O'Muircheartaigh, 1980) 

W=3.86X 10-6U 3'41, (28) 

where U, expressed in m/s, is the wind speed. For wind 
speeds of 5, 10, and 15 m/s this relation gives W=9.33 
X 10 -4 9.92 X 10 -3 and 0.040, respectively. Carey et al. 
(1993) have presented a review and analysis of whitecap 
index correlations such as (28). They stress the uncer- 
tainty with which the exponent of U is known, with pos- 
sible values as low as 2.55 or as high as 3.75 or more. Since 
we are only concerned with crude estimates and trends 
here, this point is of no great concern for the present pur- 
poses. 

Rather than the incidence angle ai, in the literature it 
is customary to use the grazing angle •l=sr/2-ai. Fur- 
thermore, the backscattering strength is expressed in dB 
according to the definition 

S(•/) • 10 loglo EB 

= 10 lOglo tr, (•r/2 + •/,•r) + 10 lOglo W. (29) 

IV. SPATIAL VARIATION OF THE GAS DISTRIBUTION 

The previous analysis was carried out under the as- 
sumption of a spaticily uniform distribution of bubbles in 
the cloud. This assumption is evidently rather unrealistic 
and the numerical results to be presented below would be 
quite uninteresting if they were to strongly depend on it. 
However, it is possible to show on the basis of a simple 
model of spatial inhomogeneity that the main qualitative 
features of our results are expected to be quite robust with 
respect to the detailed spatial distribution of the bubbles. 

We consider nonuniform clouds consisting of N con- 
centric spherical shells Rj>/r>/Rj+i, j=I,...,N, with 
R 1 = R ½ and R•v+ 1 = 0. In each shell the bubble distribution 
is uniform with a gas volume fraction Bj. In the innermost 
shell the pressure field is given, as before, by a superposi- 
tion of terms of the form (8), while in all others the ap- 
propriate form is 

co I 

L-'-Slm J l( 
1=0 m= --1 

m+l=odd 

+C•mJ)yl(g(J)r) l Ylm( O, tk). (30) 

By imposing continuity of pressure and normal derivative 
of the pressure at the innermost surface of discontinuity 
r=R2v, we have 

c(N- 1) •(N) •A(N- 1) Yl(UN-1) lm --Jl(ON)'•lm =--jl(UN-I• lm , (31) 

, c(N- 1) , (N) UN-lYI(UN-1) lm --1)Nil(ON)Aim 

__ ', ).4(N- 1) ----UN-1JI(UN-1 lm ß (32) 

Upon elimination of A I• ) we have 

C•-•) = _•v-•)jl(u•v_•) A(•v_•) y•(u•v_ 1) •m , (33) 
where 

•(N-1) ff-l(UN-1)-- ff-l(ON) I • • 1( UN-- 1 ) -- •-1(ON) ' (34) 
with •/l(z) defined similarly to (21) with the Bessel func- 
tion of the second kind yi replacing that of the first kind jl. 

In the same manner, proceeding backward, we can 
determine ,4 (j) and C}(m j-l) in terms of ,4/(m j-l) tO find for, lm 

i = 1,2,3,...,N- 1, 

C•(mj-1)-- g• j-1)jl(uj -1) Yl(Uj_l ) •m j-l) , (35) 
where now 
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•-1( U j_ 1 ) -- •-1( Uj ) --[- •SJ)si( uj ,uj ) [ • 1( uj ) -- •-1( u j_ 1 ) ] 
•/ •( u•_ • ) - •-•( v• ) + •?)&( u• ,v• ) [ •/ •( v• ) - •5( u•_ , ) ] ' 

(36) 

j•(u)y•(v) 

S•(u,v) --j•(v)y•(u) ' (37) 
V. NUMERICAL RESULTS: NORMAL MODES 

The eigenfrequencies of oscillation of the bubble 
clouds are given by Eq. (10). If the roots of this equation 
were real, it is seen upon comparison with the expression 
(19) for the/th partial scattering amplitude that each nor- 
mal mode would correspond to a pole in the scattering 
cross section. The nonzero imaginary part of the roots of 
(10) prevents this from happening exactly, but since this 
imaginary part is not very large, a close correspondence 
between the maxima of the scattering cross section and the 
eigenfrequencies of the cloud remains. Because of this, the 
eigenfrequencies can be approximately read off the figures 
for the scattering amplitudes presented in the next section 
and, conversely, they furnish close predictions for the lo- 
cation of the maxima of the scattering amplitudes. A sim- 
ilar situation was encountered in the case of plane bubble 
layers considered in Lu and Prosperetti (1993) and holds, 
of course, quite generally. 

For the case of a spherical bubble cloud in an infinite 
liquid the same characteristic equation (10) holds but, 
since the condition of zero pressure disturbance on the 
plane surface (4) is not relevant for this case, the lowest 
value allowed for the index I is/=0. With the neglect of 
liquid compressibility and dissipation effects, Eq. (10) 
gives then the following relationfor thel=•3 family o[ 
normal modes of the cloud: 

(O(n O) • dO e 1 +•r•a2(n+ 1/2) • 
-- 1/2 

(38) 

with n=0,1,2, .... This is the same result given in Omta 
[1987, after correction of a misprint in Eq. ( 125)] and, to 
the present O(/•) accuracy, it also coincides with that of 
D'Agostino and Brennen (1989). For not too large value 
of n, the second term in the square brackets in (38) is 
usually much greater than 1, so that we approximately find 

CO(n o) •__---• n + • roe. (39) 
Since R}/a3_•N/l•, with N the total number of bubbles in 
the cloud, the lowest mode n=O is therefore seen to be 
approximately equal to the natural frequency of the con- 
stituent bubbles divided by the cube root of N as deduced 
from other considerations in Lu et al. (1990). With Min- 

naert's (1933) approximate result roe --• (l/a)x/3yPo/p, 
where 1/is the ratio of the gas specific heats, Eq. (39) takes 
the form of a modified Minnaert formula as noted in Carey 
and Roy (1993). 

The studies of the oscillations of spherical bubble 
clouds in infinite liquids reported in Omta (1987) and 

D'Agostino and Brennen (1989) considered only the/=0 
modes of oscillation of the cloud and the eigenfrequencies 
were identified indirectly from the maxima of the scatter- 
ing cross section as indicated at the beginning of this sec- 
tion. Here the boundary condition (4) forces us to con- 
sider different values of I. Furthermore, we tackle Eq. (10) 
directly. A numerical method useful for this purpose was 
outlined in Lu and Prosperetti (1993) and some numerical 
results for the normal modes have already been presented 
in Lu et al. (1990) in terms of the real and imaginary parts 
of the roots co defined by 

co = 2 try + ia. ( 40 ) 

Figures 1 and 2 show the values of v and a for the 
lowest-frequency normal mode of each of the families of 
modes corresponding to l= 1,2,3,4,5. The cloud has a ra- 
dius of 0.5 m and consists of 1-mm-radius bubbles. The 

natural frequency of these bubbles in isolation would be 
3.24 kHz, and the dramatic effects of the mutual interac- 
tions in lowering the natural frequencies of the system are 
quite striking. At/•= 10% the lowest mode has a frequency 
of about 35 Hz and the 5th one of about 95 Hz. Although 
the theory used here probably is not as accurate at these 
large/• values as it is up to a few percent, the basic down- 
ward trend is expected to be correct with higher-order cor- 
rections in/• well below q-20%. 

The effect of the cloud radius for a volume fraction of 

1% and 1-mm bubbles is shown in Figs. 3 and 4. There is 
a very rapid fall-off up to a radius of about 0.2 m, after 
which the decrease is less rapid although still clear. The 
effect of the bubble radius for a 0.5-m cloud and 1% vol- 

ume fraction is shown in Figs. 5 and 6. The very broad 
maximum in these figures corresponds to the frequency of 
the normal modes approaching that of the individual bub- 
bles. The effect of this interaction is much more pro- 

$ 

øell ' , , , , , , , I mode 1 

Illl .... mode2 
Ill --- mode 5 

0 6 t?• -'- mode 4 
{',/• ---- mode 5 

' "": 7.-.---.-------_:----=-- -- = --= 
5 6 7 8 10 
(%) 

FIG. 1. Real part of the eigenfrequencies (40) of the first normal mode 
for each of the families 1 <l<5 of a 0.5-m-radius air-bubble cloud as a 

function of the gas volume fraction fl. The constituent bubbles have a 
radius of 1 mm with a corresponding natural frequency of 3.24 kHz. 
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mode 1 

.... mode ,3 

mode 5 

,i 

: :'] '-'-' .......... :'.-. 7:: .':'.-..: .--.-.: .-...• :. 
I I 

Rc (m) 

FIG. 2. Imaginary part (damping rate) of the eigenfrequencies (40) of 
the first normal mode for each of the families 1 x<lx<5 of the 0.5-m-radius 

air-bubble cloud shown in the previous figure as a function of the gas 
volume fraction. 

nounced on the damping of the modes than on the natural 
frequency, which essentially remains fairly insensitive to 
the bubble radius. 

From Figs. 1, 3, and 5 it can be seen that frequencies 
of the order of a few hundred Hz can easily be produced 
over a broad range of volume fractions and cloud and bub- 
ble radii. This is precisely the range in which a relatively 
intense wind-dependent oceanic ambient noise is found 
(Wenz, 1962; Kerman, 1984; Wille and Geyer, 1984), and 
•he present results therefore strongly support the hypoth- 
esis that this component of the noise is due to the free 
oscillations of bubble clouds (Carey and Bradley, 1985; 
Carey and Browning, 1988; Prosperetti, 1985, 1988a,b; Lu 
et al., 1990; Yoon et al., 1991; Lu and Prosperetti, 1993). 

As a final point we would like to compare the results 
obtained by using the correct dispersion relation (1) with 
those that would follow from use of the simple approxima- 
tion (3) valid, it may be recalled, far below the resonance 
of the bubbles. In Fig. 7 we carry out this comparison for 
the l-- 1, 3, and 5 eigenfrequencies of a cloud with R½--0.2 
m comprised of bubbles 2 mm in radius (to0/2•r=l.63 
kHz). The two results are very close except when the 
eigenfrequencies start approaching the resonance fre- 
quency of the bubbles. If we look at the damping of the 
oscillations, however, the picture is quite different as 

FIG. 4. Imaginary part (damping rate) of the eigenfrequencies (40) of 
the lowest modes for l= 1, 3, and 5 of a bubble cloud shown in the 
previous figure as a function of the cloud's radius. 

shown in Fig. 8. It is clear here that essentially all of the 
damping of the cloud's normal modes is provided by the 
energy dissipation affecting the oscillations of the individ- 
ual bubbles, rather than by acoustic radiation. Therefore, 
use of the approximation (3) results in a gross underesti- 
mation of the damping at all frequencies. 

VI. NUMERICAL RESULTS: BACKSCATTERING 

Typical backscattering data are those obtained by 
Chapman and Harris ( 1962; see also Chapman and Scott, 
1964) which can be correlated by 

S(,/) -- 3.3b log(,//30)--42.4 log b+2.6, (41) 

where 

b-- 107.5 ( U¾ 1/3) -0.58, (42) 

in which U is again the wind speed in m/s and ¾--to/2•r 
the frequency. This correlation has been derived on the 
basis of experiments conducted in the range 0.4•<v•<6.4 
kHz, 0•< U•<15.4 m/s, 3ø•<,/•<40 ø, although not the entire 
ranges were covered for all values of the variables. The 
scatter of the data around the correlation (41) is given as 
q-3 dB. In some of our figures we indicate a band with this 
width. The Chapman-Harris data have been examined on 
the basis of recent experiments by Ogden and Erskine 
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FIG. 3. Real part of the eigenfrequencies (40) of the lowest modes for 
l= 1, 3, and 5 of a bubble cloud as a function of the cloud's radius Re. The 
gas volume fraction is 1% and the radius of the constituent bubbles 1 mm. 
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(1992) who, at frequencies less than about 200 Hz, find a 
tendency to over-estimate somewhat the backscattering 
cross section at wind speeds less than approximately 9 m/s. 
Since in the numerical examples that follow we are above 
these values, we can use (41) with some confidence. 

In attempting a comparison with our results it must be 
kept in mind that the theory refers to a single well-defined 
cloud while the data are averaged over many different 
clouds of varying size, shape, and volume fraction. Hence 
the theoretical results have a lot of structure that is not 

reflected in the data which, in effect, average over many 
clouds. What is significant, however, is a comparison of the 
levels and of the general trends of the results. 

Typical examples are shown in Figs. 9-11, which refer 
to grazing angles of 10 ø, 20 ø, and 30 ø, respectively. The left 
vertical scale gives the dimensionless back-scattering cross 
section (24), while the fight vertical scale indicates the 
backscattering strength $ (29) with W computed for a 
wind speed U-- 10 m/s. Due to the simple dependence of $ 
upon W, from (29), it is seen that the same scale will give 
the values appropriate to 5, 15, and 20 m/s by subtracting 
10.3 •lB's or adding 6.00 and 10.3 dB's, respectively. The 
three lines in these figures refer to clouds with a radius of 
0.25 m (dotted lines), 0.5 m (solid lines), and 0.75 m 
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FIG. 7. Comparison between the real part of the eigenfrequencies of the 
lowest modes for l= 1, 3, and 5 of a 0.2-m-radius bubble cloud as com- 
puted with the correct dispersion relation (1) (dashed lines) and the 
approximate one (3) (solid lines) as functions of the gas volume fraction. 
The bubble radius is 2 mm and the corresponding natural frequency 1.63 
kHz. 

FIG. 8. Comparison between the damping rates of the eigenfrequencies of 
the lowest modes for l--1, 3, and 5 of a 0.2-m-radius bubble cloud as 
computed with the correct dispersion relation ( 1 ) (dashed lines) and the 
approximate one (3) (solid lines). 

(dash-and-dot lines). In all of them the gas volume frac- 
tion is 1% and the undisturbed bubble radius 1 mm (the 
corresponding natural frequency is •o0/2•r--3.24 kHz). 
The dependence of the results on these parameters will be 
examined below. Some further backscattering results at 
large grazing angle, 60 ø and 90 ø , are shown in Figs. 12 and 
13 for the same three values of the cloud radius. 

Comparison with the Chapman-Harris results 
(hashed bands) reveals a general consistency of the levels 
and of the trends which suggests the strong possibility that 
bubble clouds may be responsible for the unexpectedly 
strong backscattering effect. Although the theoretical re- 
sults indicate that essentially any desired level may be 
matched by suitably adjusting the cloud's radius, the com- 
parison that one may make on the basis of these figures is 
far from empty in that the values assumed to generate 
these results are reasonable and the experimental trends 
are closely reproduced. The theoretical levels match the 
data at 30 ø , but start falling somewhat below at 20 ø and 
much more at 10 ø. This behavior is consistent with the 

over-estimation of the Chapman-Harris correlation found 
by Ogden and Erskine (1992) at frequencies below 200 
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FIG. 9. Dimensionless cross section for backscattering from hemispher- 
ical bubble clouds of different sizes (left scale) and backscattering 
strength for a 10-m/see wind (right scale) for a 10 ø grazing angle The 
clouds' radii are 0.25 m (dotted line), 0.5 m (solid line), and 0.75 m 
(dash-and-dot line). The hashed band indicates Chapman and Harris's 
(1962) data a: 3 dB's. The clouds' air volume fraction is 1% and the 
bubble radius 1 mm. 
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FIG. 10. Dimensionless cross section for backscattering from hemispher- 
ical bubble clouds of different sizes (left scale) and backscattering 
strength for a 10-m/s wind (right scale) for a 20 ø grazing angle. The 
clouds' radii are 0.25 m (dotted line), 0.5 m (solid line), and 0.75 m 
(dash-and-dot line). The hashed band indicates Chapman and Harris's 
(1962) empirical correlation 4- 3 dB's. The clouds' air volume fraction is 
1% and the bubble radius 1 mm. 

Hz. In addition, the effect of surface roughness becomes 
increasingly important at very low grazing angles (Dashen 
et al., 1990). A reviewer has pointed out that the gap be- 
tween theory and experiment increases somewhat with in- 
creasing wind speed contrary to what might be expected on 
this basis. Other compensating effects may however come 
into play at higher wind speeds. For example, the depth 
reached by the bubbles may increase faster than the white- 
cap surface coverage, giving rise to prolate plumes that are 
more efficient scatterers (Sarkar and Prosperetti, 1993a). 
The downward turbulent transport of the bubbles may also 
increase giving longer residence times for the sub-surface 
bubbles, which again might not be reflected in the increase 
with wind speed of the whitecap index. As a matter of fact, 
the explanation usually accepted for the experimental fact 
that the intensity of ambient noise decreases at very large 
wind speeds is the screening effect of a relatively thick layer 
of bubbles that forms at the ocean surface (Lemon and 
Farmer, 1984). In this connection see also the final com- 
ments of Sec. VII. 

FIG. 12. Dimensionless cross section for backscattering from hemispher- 
ical bubble clouds of different sizes (left scale) and backscattering 
strength for a 10-m/s wind (right scale) for a 60 ø grazing angle. The 
clouds' radii are 0.25 m (dotted line), 0.5 m (solid line), and 0.75 m 
(dash-and-dot line). The clouds' air volume fraction is 1% and the bub- 
ble radius 1 mm. 

Figure 14 shows the dependence of the dimensionless 
backscattering cross section (left vertical scale) and back- 
scattering strength for 10-m/s winds (right vertical scale) 
on the grazing angle for a cloud radius of 0.5 m. The dotted 
line is for a frequency of 0.25 kHz, the dashed line for 0.5 
kHz, and the dash-and-dot line for 2 kHz. The three solid 
lines are the Chapman-Harris correlation (41) for the 
three frequencies. As can be seen from Figs. 9-11, the 
corresponding results for 0.2 kHz, for example, would be 
more than 10 dB's lower than those for 0.25 kHz. This 

remark illustrates the sensitive dependence of the low- 
frequency scattering on the detailed conditions, but such 
dependence would not be observed in the presence of a 
number of clouds of different size and geometries. This 
conclusion is motivated by the results of Figs. 9-11 which, 
qualitatively, can also be interpreted as giving the behavior 
of the cloud for a fixed frequency and variable cloud ra- 
dius. 

The effect of the gas volume fraction in the cloud is 
shown in Fig. 15 where the dotted line is for 0.25 kHz, the 
solid line for 0.5 kHz, and the dashed line for 2 kHz. The 
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FIG. 11. Dimensionless cross section for backscattering from hemispher- 
ical bubble clouds of different sizes (left scale) and backscattering 
strength for a 10-m/s wind (right scale) for a 30 ø grazing angle. The 
clouds' radii are 0.25 m (dotted line), 0.5 m (solid line), and 0.75 m 
(dash-and-dot line). The hashed band indicates Chapman and Harris's 
(1962) empirical correlation 4- 3 dB's. The clouds' air volume fraction is 
1% and the bubble radius 1 mm. 
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FIG. 14. Dimensionless cross section for backscattering from a 0.5-m- 
radius hemispherical bubble cloud (left scale) and backscattering 
strength for a 10-m/s wind (fight scale) as a function of the grazing angle 
at frequencies of 0.25 kHz (dotted line), 0.5 kHz (dashed line), and 2 
kHz (dash-and-dot line). The air volume fraction is 1% and the bubbles' 
radius 1 mm. The three solid lines are Chapman and Harfis's (1962) 
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FIG. 15. Dimensionless cross section for backscattering from a 0.5-m- 
radius hemispherical bubble cloud (left scale) and backscattering 
strength for a 10-m/s wind (fight scale) as a function of the cloud's air 
volume fraction at frequencies of 0.25 kHz (dotted line), 0.5 kHz (solid 
line), and 2 kHz (dashed line). The three horizontal segments at the fight 
indicate the result (25) for a completely "soft" cloud. The radius of the 
bubbles is 1 mm. 

short horizontal segments along the right scale indicate the 
asymptotic result (25) for "soft" hemispheres. This figure 
clearly demonstrates an effect of "saturation," which oc- 
curs earlier and earlier as the frequency is increased. At 2 
kHz the scattering is essentially the same as from a com- 
pletely pressure-release boundary already at a gas volume 
fraction of the order of a few parts per thousand. At 0.5 
kHz this statement starts applying around 1%, and at 0.25 
kHz at a few percent. 

A. Spatial heterogeneity 

The robustness of the theoretical predictions illus- 
trated previously can be better appreciated by the consid- 
eration of a few examples in which the cloud consists of 
concentric shells with different bubble distributions as de- 

scribed in Sec. IV. Since the emphasis in this paper is pri- 
marily on low-frequency effects and since, as was shown 
above, the bubble radius does not play an important role 
provided that the frequency is below the resonance fre- 
quency of the bubbles, we shall keep the bubble radius 
a--1 mm and only vary the number density. 

Figure 16 compares, as a function of frequency, the 
backscattering cross section at 30 ø grazing angle for a 1-m 
cloud. The solid line is for a uniform 1% bubble distribu- 

tion, while the dashed one is for •=0 for 0<r<R• =0.75 
m, while ,8= 1% in R•<r<R½. Some differences of the or- 
der of • 5 dB's are apparent at lower frequencies, but the 
results are remarkably close at higher ones. Another com- 
parison of the same nature is shown in Fig. 17, which refers 
to a much smaller cloud, R½=0.2 m, and in which the 
backscattering cross section is plotted as a function of the 
grazing angle for v=0.5 kHz. Here the top curve is for a 
5-cm-thick, 1% volume fraction band, and the underlying 
curves are, in order, for a "soft" hemisphere, a 5-cm, 20% 
band, a 5-cm, 5% band, and a uniform 1% bubble distri- 

bution. There are of course differences as one goes from a 
5-cm-thick layer of bubbly liquid to a uniform distribution 
and between 1% and 20% gas volume fraction, but the 
results are, by and large, relatively close to one another. 

The fact that a 5-cm, 1% band (top curve) gives a higher 
backscattering than a uniform 1% gas distribution (lowest 
curve) indicates of course that resonance effects are 
present here. 

A stronger dependence on the detailed gas distribution 
is however observed at lower volume fractions. An exam- 

ple is given in Figs. 18 and 19 which show the backscatter- 
ing cross section from a 1-m cloud at a grazing angle of 20 ø 
and frequencies of 0.5 and 2 kHz as a function of the 
average gas volume fraction • defined by 

(43) 

where the •i's are the volumes of the concentric hemi- 
spherical shells into which the cloud is divided. In this case 
there are two regions enclosing equal volumes and the 
three curves correspond to •inner/•outer=l (uniform 
cloud), 2, and 3. 
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FIG. 16. Dimensionless cross section for backscattering from a 1-m- 
radius hemispherical bubble cloud as a function of frequency at a grazing 
angle of 30*. The solid line is for a uniform 1% air volume fraction 
distribution. The dash-and-dot line is for a 1% air volume fraction dis- 

tribution in the outer shell 0.75 m <r< 1 m, with no bubbles for 0<r<0.75 
m. The radius of the bubbles is 1 mm. 
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FIG. 17. Dimensionless cross section for backscattering from a 0.2-m- 
radius hemispherical bubble cloud as a function of the grazing angle for a 
frequency of 0.5 kHz and different bubble distributions. The top line 
(medium-dashed) is for a 5-cm-thick, 1%-volume fraction layer of bub- 
bles at the outer edge of the cloud, the second line (solid) is for a com- 
pletely "soft" cloud, the third line (dash-and-dotted) is for a 5-cm band 
with a volume fraction of 20%, the fourth line (long-dashed) is for a 
5-cm band with a volume fraction of 5%, and the lowest curve (dotted) 
is for a uniform 1%-air volume fraction distribution. The radius of the 
bubbles is 1 mm. 

Vii. CONCLUSIONS 

In the present paper we have studied the active and 
passive acoustic behavior of an idealized model of an oce- 
anic bubble cloud, a half-hemisphere below the surface of a 
plane ocean. In spite of the simplifications introduced in 
the model, our results enable us to reach some interesting 
conclusions. In the first place, we have shown that bubble 
clouds possess normal modes in the range of a few hundred 
or even a few tens of Hz. The oscillations of the clouds give 
then a plausible mechanism for the explanation of the 
wind-dependent component of oceanic ambient noise at 
low frequencies. In nature, the excitation of the normal 
modes is probably due to the same mechanism that pro- 
duces the bubble clouds in the first place, namely breaking 
waves. Other mechanisms, such as turbulence, may how- 
ever exist. As shown in Fig. 8, the damping affecting the 
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FIG. 18. Effect of the volume fraction distribution on the dimensionless 

cross section for backscattering from a 1-m-radius hemispherical bubble 
cloud as a function of the average air volume fraction (43) at 0.5 kHz and 
20 ø grazing angle. The solid line is for a uniform bubble distribution. For 
the other two lines the cloud's volume is divided into two equal parts. The 
dashed line is for the inner region having a volume fraction double that of 
the outer one, and the dash-and-dotted line for three times as large. The 
radius of the bubbles is 1 mm. 

FIG. 19. Effect of the volume fraction distribution on the dimensionless 

cross section for backscattering from a 1-m-radius hemispherical bubble 
cloud as a function of the average air volume fraction (43) at 2 kHz and 
20 ø grazing angle. The solid line is for a uniform bubble distribution. For 
the other two lines the cloud's volume is divided into two equal parts. The 
dashed line is for the inner region having a volume fraction double that of 
the outer one, and the dash-and-dotted line for three times as large. The 
radius of the bubbles is 1 mm. 

cloud emissions is large and arises mainly from the thermal 
effects associated with the oscillations of the constituent 

bubbles, rather than from acoustic radiation. Accordingly, 
the Q of the cloud resonances is not very large. 

For the passive case we have studied in some detail the 
backscattering problem. Our analysis leads to results that 
are in general quite compatible with the Chapman-Harris 
data, which suggests that bubble clouds may be responsible 
for the anomalously high levels observed by these and 
other investigators. We have shown that, as soon as the 
cloud's volume fraction of air reaches a few percent, the 
scattering results are nearly indistinguishable from a com- 
pletely acoustically "soft" cloud. This finding suggests a 
scattering mechanism that, in very crude terms, may be 
described as follows. The scattering occurs not at the 
ocean's surface, but at some surface below the air-water 
separation which marks a transition between a region with 
"few" or no bubbles to one with "many" bubbles. This 
"effective" scattering surface can evidently be far more ir- 
regular than the ocean's surface since its slope is not lim- 
ited by wave stability, breaking, etc. Correspondingly, the 
scattering is very much stronger. Clearly, a considerable 
amount of work--mostly experimental--is needed to put 
this picture on a firmer quantitative ground. 

In a companion paper (Sarkar and Prosperetti, 
1993a), the present results are extended to bubble clouds 
of several different shapes. The conclusions of that study 
are perfectly compatible with the present ones and prove 
the "robustness" of the results with respect to changes in 
the details of the model. 
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