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ABSTRACT

The objective of the present work was to develop 
techniques for establishing uniaxial extensional flow and 
to use these techniques to study the extensional flow res
ponse of polymer solutions. To this end, an elongation drop 
apparatus was built in which either the extension, rate or the 
imposed stress could be controlled. A Newtonian silicone oil 
and two viscoelastic polymer solutions (10% polyisobutylene 
in Decalin(PIB) and 2.8% Separan AP 30 in 50:50 glycerol-water 
solution(PAA)) were tested in both stress growth (controlled 
extension rate) and approximate creep (controlled stress) ex
periments. Viscometric flow measurements were also performed 
on the polymer solutions using the Weissenberg Rheogoniometer.

Extensional flow tests with the Newtonian silicone 
oil established the capabilities of the drop elongation appa-' 
ratus. The prescribed responses in both stress growth and 
approximate creep experiments were reached within a time period 
of less than one second. The steady extensional viscosities 
obtained from both experiments were in good agreement with 
Trouton’s law.

From the extensional flow tests with the two polymer 
solutions, the steady extensional viscosities for both PIB and 
PAA were found to increase with increasing extension rate over 
a range of extension "rates from 0,003 sec”^ to O.035 sec”^ for 



PIB and from 0.003 sec""* 1 to 0.016 sec“^ for PAA. Two models( 

the Bird-Garreau model and the truncated Goddard expension) were 
tested with the experimental results. The parameters in both 
models were determined by fitting the viscometric and steady ex
tensional flow data with the viscometric and steady extensional 
flow data being weighted equally. Predictions of both models 
were in poor agreement with the transient extensional flow data 
on the two polymer solutions. For the viscometric and steady ex
tensional flow data*  the Bird-Garreau model described the observed 
behavior better than the truncated Goddard expansion.

In addition, several analyses were performed to estimate 
the interfacial effects in the drop elongation experiments. The 
analysis based on the assumption that the fluids near the end of 
the drop surface experience extensional flow was found to be the 
most satisfactory when compared with experimental results.
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1
CHAPTER I
INTRODUCTION

The behavior of polymeric materials in extensional 
flow is pragmatically important, since this type of flow 
occurs in such processes as fibre spinning, film drawing 
and certain extrusion operations. In each of these processes, 
the predominant motion is elongation, caused by differential 
motions of mechanical boundaries. Problems such as melt 
fracture in extrusion and draw resonance in fibre spinning 
are probably related to the elongational character of these 
operations. Thus, the behavior of polymeric materials in 
extensional flow has become a subject of much interest.

Beyond this practical motivation, there is a funda
mental interest in the behavior of fluid materials subjected 
to this motion. While the great majority of rheological 
investigations are expended to the study of polymeric, non
Newtonian fluids under shear conditions, little work has 
been done with extensional flow. In addition, many forms of 
constitutive equations which are currently popular predict 
widely different responses for the relation between stress 
and strain rate in extensional flow. Thus the extensional 
flow data would be quite valuable both to test existing 
constitutive equations and to guide the future development 
of others.

In recent years, a number of experiments have been 
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conducted to determine the extensional viscosity of several 
different materials. Because of the experimental difficulty 
of generating a well defined extensional flow field where the 
kinematic and dynamic conditions can be measured, most of these 
works have been limited by either very restrictive low levels 
of strain rate (1-3), inaccurate analyses of the deformation 
process (M, or uncertainties in stress measurement due to 
changing strain histories (5“7). The limited amount of quan
titatively reliable data has been obtained mainly for molten 
polymers or solutions with high viscosity(10^ poise). Materials 
with viscosities lower than 10^ poise are encountered in many 

commercial operations. To date, few well defined experimental 
techniques for studying extensional flow behavior of low to 
moderate viscosity materials have been established.

In this connection, an elongating drop technique has 
been proposed by Hsu and Flumerfelt(8), Using an experimental 
technique first suggested by Vonnegut(9)> and extended later 
by Princen(lO), Princen, Zia, and Mason(ll), and Wade et.al. 
(69)■ for measuring the interfacial tension, a liquid drop of 
interest is placed horizontally along the axis of a glass cy
linder filled with an immiscible liquid of high density. At 
increasingly high speeds of rotation", an initially spherical 
drop is elongated along the axis of the cylinder. The exten
sional flow properties of the drop phase can be obtained by 



3

knowing the drop dynamics during extension and the variables 
which affect it. This technique has been verified success
fully (8) by testing a Newtonian fluid drop (ASTM Standard Oil). 
However, for proper use of this technique, a more sophisticated 
experimental apparatus is required. In particular, either the 
extension rate or the imposed stress must be controllable.

The purpose of the work presented here is to construct 
such an apparatus and test it. To this end, a controlled rota
ting cylinder apparatus was built. The kinematics of the drop 
are controlled by employing a feedback loop where the instan
taneous drop diameter is measured with a photomultiplier tube 
assembly and compared with a prescribed diameter signal from a 
function generator. Any existing difference between the values 
of those two signals will result in appropriate changes in the 
rotational speed of the apparatus. With this apparatus, a New
tonian silicone oil and two viscoelastic polymer solutions (10% 
polyisobutylene in Decalin and 2.8% Separan AP 30 in 50-50 
glycerin-water solution) have been tested in both controlled 
extension: rate and creep experiments. In addition, the dy
namics of the drop elongation phenomena, particularly, the 
resulting shape, internal flow patterns etc., have been analyzed. 
This involves the solution of a free surface problem using app
roximate methods such as orthogonal collocation and least squares. 
Finnally, the extensional flow data obtained with the viscoelstic 
polymer solutions were compared with the predictions of the Bird-
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Garreau model (12) and Truncated Goddard Expansion model (13). 
In addition to providing a basis for discrimination between 
constitutive equation, these studies provide various insight 
into the response of polymeric material in extensional flow.



CHAPTER II
5

BACKGROUND

2-1. Definition
Extensional flows have been defined in several ways 

(1^-17). In this work, using the rectangular Cartesian co
ordinate system, an extensional flow is defined as one in 
which the components of the velocity of a material point 
having coordinates (x^,x2,x^) are given as followst

Vi - Cli. Xx, (no summation) (2-1-1)
In general, are defined by equation (2-1-1) and 

may be arbitrary functions of time and of ith coordinate but 
not of the remaining two coordinate directions. If 5^ are
constant, the extension is steady and uniform. In such a

(2-1-2)case, the rate of deformation tensor, 2V- = -5- (57 + -ti.

reduces to the simple form:

In the special case of uniaxial extensional flow in, 
(2-1-3)

say, the
”1" direction, the continuity equation insures

ar "a, = - 3. (2-1-4)

where T is the extension. rate defined by Middleman (18).

By comparison, the kinematics of a simple steady shear flow 
are written as follows:

Vv = 0.sX1 ; = (2-1-5)
Here, Cl5 is the shear rate and the equation of continuity is 
satisfied identically.
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The extensional viscosity , , is defined as the ratio
of the primary normal stress difference to the exten
sion ■ rate _ 7r„-ir» 

(2-1-6) u o
which can be easily proved to be a unique function of extension 
rate "6 (15).
2-2. Theoretical Predictions of The Extensional Viscosity

The relationship between the present state of stress in 
a material and the complete history of the motion of that mate
rial is called a constitutive equation. The equation can take 
various forms, depending upon one’s previous understanding of 
the behavior of materials and conceptual notions of realistic 
material response.

Newtonian fluids can be characterized by the following 
constitutive equation

(2-2-1) 

where » "the shear viscosity, is a constant coefficient and
is the rate of deformation tensor defined by equation (2- 

1-2).

A straightforward calculation shows that for Newtonian 
fluids the extensional viscosity is independent of extension 
rate and is a constant multiple of the shear viscosityi

^=d2° (2-2-2)

This is known as Trouton’s Law. In the case of pure viscous 
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fluids, the dependence of extensional viscosity on extension " 
rate is qualitatively similar to the dependence of the shear 
viscosity on the shear rate (5)»

A completely different situation arises when visco
elastic fluids are considered. The reasons for this have been 
discussed in detail by Astarita (19). Basically, the principal 

axes of the rate-of-deformation ellipsoid always lie on the same 
material lines for extensional flow, so that such materials 
having- . a memory for the past history of deformation are severe
ly stressed, and may be unable to relax stresses more rapidly 
than they are built up by continuous extensional deformation.

A host of constitutive theories for viscoelastic fluids 
have been proposed. In particular, theories stemming from the 
generalization of the simple Maxwell model with constant charac
teristic times tend to predict an infinite extensional viscosity 
at some finite extension : rate. Such behavior is also charac
teristic of the Lodge (20,21),Macdonald and Bird (22), Bird and 
Garreau (12), Meister (23), WJFLMB (2^), Bird and Spriggs (25), 
Fredrickson (26), Walters(2?), and Ward and Jenkin(28) theories.

In contrast, a network rupture model by Tanner (29,30) 
predicts the extensional viscosity increasing to a maximum 
and then decreasing indefinitely. Essentially, this theory is 
based on the idea that a maximum possible strain exists, above 
which the network is broken and the memory function collapses 
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to zero. In other words, such materials have finite memories. 

In addition to the diverse prediction of the above 
theories, there are a number of theories such as Bogue (31), 
Lodge (20), BKZ (32), and Yamamoto (33) which can exhibit both 
types of response, Astarita (5) classifies such theories as 
"The first type of complex phenomenological theories," Basically, 
this type of theory is one where the memory function is assumed 
to depend on the deformation rate as well as on elapsed time. 
Since the extensional viscosity is determined by the long time 
behavior of the memory function, these theories may not predict 
an infinite extensional viscosity at some critical extension 
rate, 

Comparison of the predictions of several other models 
have been published by Tanner (3^)» Astarita and Nicodemo (5), 
Dealy (35)» and by Bird et.al. (36). A list of models for which 

extensional viscosity predictions have been published is given 
in Table 2-1, 
2-3. Previous Experimental Works and Techniques

Over the past ten years, there has been considerable 
interest in the material response of polymer melts and solu
tions in extensional flow. Since the early work of Trouton (^2), 
Ballman (1) in 1965 conducted a series of extensional tests with 

molten polystyrene. This fluid is, in a sense, rather solid- 
o 

like, possessing a zero shear viscosity of approximately 10 poise 
and, indeed, the tensile testing machine Ballman used to extend
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Table 2-1 Constitutive Equations for Viscoelastic 
Fluids Which Have Been Used to Predict 
the Extensional Viscosity(from Dealy(35))

Constitutive 
Equation

Predicts Bounded. 'I 
at All Finite

Reference for
Application to
Extensional Flow

2nd-order fluid Yes 37
3rd-order fluid Yes 38
Williams-Bird No 25
Spriggs No 25
Lodge No 20
Macdonald-Bird No 34
Bird-Carreau No 39
Meister No 23
Bogue Yes 40
Tanner-Simmons Yes 30,34
Yamamoto yes 36
Carreau Yes 39
BKZ Yes 40
Bead spring solution No 36
Bead-rod solution yes 36
Non-linear bead-spring No 41
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the specimen of a circular rod is normally used with solid 
materials. By programming the instrument to accelerate one 
end of the specimen exponentially, constant extension . rate 
was achieved. Ballman’s experiments showed that the experi-

-2mental extension rates are less than 10 sec , and the 
extensional viscosity obtained is nearly constant at these 
extension rates.

In similar experiments, Cogswell(2) measured the exten
sional viscosity of low density polyethylene and polymethyl
methacrylate under the condition of constant extensional stress. 
The experimental results indicated that the extensional viscosity 
for polymethylmethacrylate is constant up to extensional stresses 
equal in magnitude to shear stresses for which the shear viscosity 
is decreasing. For low density polyethylene, Cogswell reported 
that the extensional viscosity increases with increasing extensional 
stress at stresses which are comparable in magnitude to shear 
stresses at which the shear viscosity is decreasing.

Vinogradov et.al. (3,^3-^5) have measured the extensional 

viscosity along with recoverable and irrecoverable components 
of the extensional strain for polyisobutylene and atactic 
polystyrene. In their experiments the specimen, an extruded 
rod which floated on a liquid bath, was extended by a tensile 
testing machine controlled by an electronic programming 
device to produce either constant extension. rate or 

constant extensional stress. The experimental results showed



11

a gradual increase in the extensional viscosity with exten- 
—1 —1 —3 —1sion. rate above 10 sec for polyisobutylene and 10 J sec 

for polystyrene. The recoverable strain for polyisobutylene 
increased with time to a steady state value at all extension 
rates investigated, while the recoverable strain for polystyrene 
reached a steady state value only at low extension rate.

Using an experimental technique similar to Ballman’s, 
Stevenson (^6) carried out a series of constant extension rate 
experiments with an elastomeric copolymer of isobutylene and 
isoprene. The extensional viscosity was found to be q*.  •

. . -4 -1 -1constant at extension rates ranging from 10 to 10 sec ",
Meisser (4?*48,^9)  has developed a novel extensional 

rheometer and studied low density polyethylene. In Meisser’s 
experiments, each end of a rod-shaped sample was clamped by 
a pair of gears rotating at a constant angular velocity. The 
portion of the sample remaining between the two pairs of gears 

-3 was then stretched at a constant extension rate from 10 J to 
1 sec”1:. Meisser’s data and the subsequent fit (50) from the 

Lodge’s rubberlike liquid strongly suggest that the extensional 
viscosity increases with increasing extension rate.

Recently, Baily (51) studied Vistanex L-100 in a tensile 
testing machine at extension rate in the range of 10”^ sec”1 to 

-1 -1 10 sec . The data showed that the extensional viscosity 
decreases with increasing extension rate.
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Another major class of experiments successfully used 
to measure the extensional viscosity is the bubble inflation 
technique of Denson and Gallo (52) for equal biaxial extensional 
flow. A sheet of the testing material is clamped in such a way 
that the inflated sheet will result in a hemispherical bubble. 
Near the pole of the bubble, the material experiences a uniform 
biaxial extensional flow. This bubble inflation technique has 
been used to study the biaxial extensional flow behavior of 
different grades of Vistanex polyisobutylene. Joye (53) has 
found that, for Vistanex L-80,the biaxial extensional viscosity 
is a decreasing function of extension rate. Maerker and Scho- 
water (5^) observed a slight decrease in the-biaxial extensional 

viscosity first and then an increase for two lower molecular 
weight grades of Vistanex.

A final technique which could be used to measure the 
extensional flow properties of a viscoelastic fluid is the 
bubble collapse method of Glearson and Middleman (55). A near
ly spherical gas bubble supported by a steel tube is suspended 
in a fluid to be studied. An uniaxial extensional flow is 
created while the bubble is forced to collapse by decreasing 
the pressure inside the bubble. This technique has been used 
to study Newtonian fluids successfully. The data for two po
lymer solutions (Hydroxypropylcellulose in water (HPC) and 
Polyacrylamide in water and glycerine (PA)) showed a decrease
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in the extensional viscosity with increasing extension rate 
-11—1 . .in the range from 10 to 10 sec . However, it is doubtful 

that steady state conditions were reached during the experiments. 
Thus the trend of the extensional viscosity versus extension 
rate in the data shown is subject to question.

A number of experimental techniques have been used to 
measure the extensional viscosity with less success than those 
mentioned above. The main difficulty is associated with creating 
extensional flow fields which have controllable extension rate 
and extension rate histories, and in which the resulting stress 
can be measured. Methods such as fibre spinning methods (7, 56- 
6^), tubeless siphon method (5»65)» converging flow through aper
tures (4,56), and triple jet method (66) do not present well de
fined and easily controlled steady or unsteady experiments. In 
many cases the flow field is only approximately elongational and 
the results are often only of semi-quantitative and qualitative 
value.

Obviously, a reliable technique for experimentally study
ing extensional flow behavior for more liquid-like materials over 
a wider range of extension rate is needed. 
2-4. Theory of Elongating Drop Method

Recently in a paper by Hsu and Flumerfelt (8), a promising 
technique for measuring the extensional flow properties of visco
elastic fluids has been proposed. The details of the analysis of 
drop dynamics along with the possible rheological applications of 
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this technique have been presented elsewhere (8). A diagram 
of the system is shown in Fig. 2-1. An immiscible drop is 
placed in a fluid of higher density which is contained in a 
cylinder. When the cylinder is rotated, the centrifugal forces 
resulting from the density differences caused the drop to 
elongate as shown.

The time dependent response of this system is analyzed
subject to the following conditionsi

1) The fluids are incompressible and can be classified 
under the simple fluid theory of Coleman and Noll (6?), where 

the total stress 'rrtj = at a material point at time t
is given byt

-PSa + Hq C Cmn «-s>) (2-4-1)
J J S=oJ

That is, the stress is related to the "history” of strain 
measured in terms of Cauchy-Green strain tensor Cmn through 
a tensor functional H...

J. J

2) The fluids are sufficiently viscous and the angular 
acceleration o^= is sufficiently small that the fluids 
rotate in a rigid body manner.

• 3) The drop and the fluid immediately surrounding it 
experience uniaxial extensional flow. The r and z components 
in the region < £+6 being small) are given by:

(2-4-2)

where "V = -is the extension rate.» rdt. Edt
The assumptions (2) and (3) have been proved to be valid
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Necessary condition for elongation:

Figure 2-1 Schematic Represention of Drop Elongation Experiment
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(8), and do not appear to "be serious limitations of the method. 
Since the off-diagonal elements in the stress matrix 

are zero for extensional flow, the stress field is completely 
specified by the normal stress (15,17). Also, asymmetry consi
derations require"' that "^rr ' =0,

If inertial effects other than the centrifugal force 
term are neglected, as well as the body force term, the r com
ponent of the equation of motion can be integrated to give:

lTrr f f (^,t) (2-^-3)

the function f(z,t) can be determined from Laplace’s equation 
for conditions at the interface at r=R; i.e,

TTfr^)- TTrr (2-^)
_/ . . where 71rr represents the stress component m the surrounding 

fluid and <7^ the interfacial tension between the two phases. 
This of course assumes that surface viscosity coefficients and 
gradients of the interfacial tension are negligibly small (68). 
The normal stress component Ifrr inside the drop then takes the 

form
iTg.Cr^ = )+TT^^) - (2-4-5)

For negligible inertial and body force terms, the z 
component of the equation of motion can be integrated to give

s s U-^-6)

The form of g(r,t) is restricted by the assumption of ex
tensional flow and the simple fluid assumption of Equation 
(2-2-1). Since the Cauchy-Green strain tensor for this flow
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is a function of time only (17)
"TTm-TT^ = h (2-4-7)

311,1 3 <_w= S(t) (2"‘t"8)
The function ^6)is evaluated from the boundary condition 
at r=0 and z=-Lj i.e.

- 1TZ2(o) = Tr/Z (o) - H CT (2-4-9)

where H is the curvature at r=0 and z=iL.
From Equations (2-4-6), (2-4-8), and (2-4-9). it 

follows that»
y(ti)r)"+ TT^(o) - HT (2-lt-10)

The above expressions for the normal stress com
ponents become clearly defined in terms of measurable
quantities when it is assumed that the fluid surrounding 
the drop is Newtonian. In this case,

TTrr <K> = - 57 f- -LX - P« ( 2-4-11)

ir^<o)= (2-4-12)
where 'Q,., is the shear viscosity of the Newtonian fluid, 
and Po is the pressure at r=0 outside the drop.

Combination of (2-4-5), (2-4-10), (2-4-11) and 
(2-4-12) then gives the normal stress difference (in the 
drop)i

(oL-H-K) (2-4-13) 
where o<= t^and/A=H^.

For steady extension the extensional viscosity is
given by
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V + . (2-4-14)

when and o<»<^-/), the above results become:

n^-lTrr- (2-4-15)

and

V. - (2-4-16)* o
The last four equations are the key expressions in the 
elongating drop method.
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CHAPTER III

THE DROP ELONGATION APPARATUS

3-1. Type of Instrument Needed
A relatively crude rotating drop apparatus was built 

in a previous study (8), Uncontrolled extension experiments 
where the extensional stress and the extension rate are both 
functions of time were carried out. However, the use of such 
data in the evaluation of viscoelastic theories involves quite 
tedious numerical calculations, and the use of data from un
controlled experiments is to be avoided if possible. Meaningful 
extensional flow data can be obtained only through experiments 
in which either the extension rate or the extensional stress is 
constant.

For constant extension rate experiments using the 
elongating drop technique, the diameter of the drop must 
decrease with time according to , and for constant
extensional stress experiments, the resulting normal stress 
difference IT^-TTrr must be held constant. If Equation (2-4-15) 
is applicable, the latter involves holding tdR. constant through
out the experiment. To achieve this, it is necessary to have 
an experimental apparatus which will instantaneously sense the 
diameter of the drop, compare it with the desired instantaneous 
diameter (say for the constant extension rate experiment), and 
then appropriately control the rotational speed.

An apparatus with such characteristics was built in the 
present work and will be described in the following sections.
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3-2. General Description of Apparatus
The drop elongation apparatus is shown schematically 

in Fig. 3-1♦ Its primary components arei the rotating cylinder 
assembly, the control system, and the measurement apparatus.

During a typical experiment, the liquid drop of interest 
is located in the center of the rotating glass cylinder as shown 
in Fig. 3-1• The light sensing assembly in the control system 
produces a thin collimated light source which passes perpendicular 
through the glass cylinder and the drop, and is picked up on a 
photomultiplier tube. The drop is made opaque by the addition of 
a dye. Hence,' the larger the diameter of the drop the more inter
ference with the light from the collimated light source, and the 
smaller the signal (electric current) generated from the photo
multiplier tube. This signal from the photomultiplier tube can 
be related to the drop diameter by two calibrations. These 
includei (1) calibration in which several different cylindrical 
rods with known diameters (ranging from 0,3^ cm to 1.12 cm) were 
inserted into the rotating cylinder and observed with a catheto
meter; and (2) calibration in which the diameter of a liquid drop 
was measured both by the cathetometer and the photomultiplier 
tube under equilibrium conditions (constant speed of rotation and 
drop not extending). From the calibration data, the electric 

signal which corresponds to the desired extension rate can be 
determined and produced by the function generator. For constant 
extension rate experiments, this will be one of the inputs to the



Figure 3-1 Schematic Diagram of the Drop Elongation Apparatus

THE 
CONTROL 
SYSTEM
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comparators the other input being from the photomultiplier tube. 
Through the use of a multiplier, the to signal from the tachometer 
along with the D signal from the photomultiplier tube can give a 
<2)9 signal. This u)D signal is one of the inputs to the comparator 
for the constant stress experiments. The other input to the 
comparator is a constant signal from the function generator. The 
function of the comparator is to amplify the difference of these 
two inputs. The controller responds to signal from the comparator 
and changes the speed of the drive system accordingly. With 
appropriate control, the difference between the two signals fed 
into the comparator should be minimized. In that case, based on 
the signals from the tachometer and from the photomultiplier tube, 
the extensional flow properties of the drop then can be calculated.

3-3• The Rotating Cylinder Assembly
The rotating cylinder assembly includes a precision glass 

cylinder, a drop injection system, and a constant temperature 
chamber. A diagram of the rotating cylinder assembly is shown in 
Fig. 3-2. The freely rotating glass cylinder is 2^" long and 2,, 
I.D. (Wilmad Glass Co., Buena, New Jersey). At each end of the 
glass cylinder there is a 2" long aluminum end cap. One of the 
end caps connected to the drive motor is closed. The other end 
cap is open and has four screw holes designed to fit a head cap. 

With the bearings on the head cap and the closed end cap, the 
glass cylinder is mounted in two vertical bearings mounts attached



Figure 3-2 Rotating Cylinder’Assembly
1-? rotating glass cylinder 2- drop injection system
3- drop 4- temperature sensor
5- heating elements 6- chamber
7- temperature controller 8- double glass window
9- motor 10- hinges

hj
LJ



24 . 
to firm horizontal base. The drop injection system consists of 
a piston in an injection tube (1/2" I.D., 6 1/8" long). The 

configuration of the drop injection system along with the head 
cap is shown in Fig. 3~3« k L-shaped steel wire (the cutter) 
is mounted on the head cap, and its function is to sever the 
drop from the injection tube after the drop has been pressed 
into the cylinder by the piston. The injection tube is made of 
brass and is fitted into a hole at the center of the head cap 
with four screws and an O-ring. To eliminate the chance of 
introducing air bubble into the rotating cylinder, the injection 
tube remains in place with the glass cylinder after the drop has 
been injected. In addition, two check valves are designed in 
the head cap for the continuous phase fluid which is displaced 
during the injection process.

A (9"xl2"x31 1/2") chamber with a temperature control 

system is used for the purpose of carrying out the drop elongation 
experiments under constant temperature conditions. The chamber 
with double glass windows is made of asbestos and has a blower 
circulation system to eliminate the temperature variation inside 
the chamber. The temperature controller (controller Model 400, 
Victory Engineering Go.) with five strip heating elements as heat 
sources can control the temperature inside the chamber at any 

. o desired temperature with the accuracy of I 0.1 C. However, 
because no cooling source except air is available, the drop elon
gation experiments can be carried out only at temperatures at or
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Figure 3-3 Drop Injection System
1- head cap 2- bearings
3- injection tube 4- piston
5- check valve ■ 6- cutter
7- 0 ring 8- screw hole designed for

the head cap to fit into 
the cylinder
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above the room temperature (about 22 C).

3-^. The Control System
The control system which includes most of the electronic 

devices in the drop elongation apparatus consists of a function 
generator, a light sensing assembly, a servo controller, and a 
drive system.
3-^-1• The Function Generator

It is well known that a regular potentiometer with its 
pole connected to a constant de voltage source will produce a 
linearly increasing voltage signal when the shaft connected to 
the wiper is rotated at a constant speed. This is the basic idea 
behind the function generator built here. The function generator 
which is made of a +15 volt de power supply, three potentiometers 
with different functional characteristics (exponential, linear, 
and sinusoidal) and a de stepper motor, can generate signals ranging 
from 0 to 10 volts of different functions (exponential, linear, and 
sinusoidal) with respect to time depending on which of the poten
tiometers is used. The frequency of the sinusoidal function, the

—
£ in the exponential function € , and the slope of the linear 
function are dependent upon the rotational speed level of de 
stepper motor. The amplitude of the sinusoidal function and the 
initial voltage of both the exponential and linear functions are 
controlled by separate attenuators. Details on the components of 
the function generator are described in Appendix I.
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3-4-2. The Light Sensing Assembly

The light sensing assembly includes a collimated light 
source and a sensing device. The light source was that from a 
regular slide projector system. This was followed by a slit 
arrangement and a ground glass diffuser. A thin (about 1/8") 
collimated light source was produced with this system. The , 
sensing device has four parts: a focusing lens(Cannon FL 50mm), 
a diffuser, a photomultiplier tube, and a photomultiplier tube 
power supply. The focusing lens, the diffuser, and the photo
multiplier tube are mounted together on a 3"x42"x6^" aluminum 

box. The configuration of the box is shown in Fig. 3-4. The 
functions of each part of the sensing device are as follows:

The focusing lens receives the light passing through 
the drop and rotating cylinder, and projects it on the diffuser. 
The color filter in front of the diffuser filters out the wave
lengths of light corresponding to the color of the dyed droplet. 
Hence the light reaching the diffuser is only that which did not 
intersect the droplet. The photomultiplier; tube receives the 

light passing through the diffuser and generates the corresponding 
level of electrical output. The amount of electric current 
generated in the photomultiplier tube also depends on the voltage 
level imposed by the photomultiplier tube power supply. The 
higher the voltage level imposed on the photomultiplier tube, 
the greater the amount of electric current generated. However, 
it was found that an increase in the voltage level imposed on the



Figure 3-4 Configuration of the Light Sensing Box
1- Cannon Focusing Lens 2- diffuser
3- RCA photomultiplier tube 4- color filter
5- wire connected to the photomultiplier tube 

power supply
6- output wire of the photomultiplier tube

00
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photomultiplier tube will increase the percentage of the noise 
level in the generated electric current, and in general, will 
affect the performance of the feedback control system. Thus, 
in all of the experiments performed, the voltage imposed on 
the photomultiplier tube was set as low as possible. The 
geneal characteristics of the photomultiplier tube and the 
photomultiplier tube power supply can be found in Appendix I.

3-3• The Servo Controller
The servo controller used in the drop elongation apparatus 

is a "proportional" type controller and involves a comparator 
connected to a de servo motor controller (Model NC102F, made by 
Control System Research Inc.). The comparator is basically a 
variable gain amplifier and its function is to amplify the dif
ference of the two input signals. The output signal of the com
parator will be fed into the de servo motor controller which 
essentially consists of a preamplifier and a power amplifier. 
The function of the de servo motor controller is to impose a 
proper time dependent voltage on the drive motor so that the 
rotational speed generated and the corresponding effect on the 
drop diameter due to the change in the rotational speed will force 
the two input signals to the comparator to be nearly equal. Details 
of the de servo motor controller are described in the Technical 
Manual of Model NC102 Solid State D.C. Servo Controller.



30

3-4—U-. The Drive System
Micro Switch D.C. Control motor with built-in tachometer 

(Model No. 6VM-1-C172) is used as a driving system in the drop 
elongation apparatus. The range of the motor speed can vary 
from 80 rpm to 5000 rpm. The general characteristics of the 
motor is listed in Table 3-1• An air cooling system in which 
a blower blows clean air through the coil inside the motor was 
attached to reduce the heat generated by the motor at high 
rotational speed.

Some vibration is generated while the motor rotates. 
For eliminating the phase difference of the vibration between 
the drop and the light sensing assembly, the rotating cylinder 
assembly, the drive motor, and the light sensing assembly were 
mounted on a 4-Bux5O"xl^" aluminum table. With a hydraulic jack, 

the height of the table is adjustable so that the axial position 
of the drop inside the glass cylinder can be controlled,

3-5« Measurements of Diameter and Speed 
3-5-1*  Data Needed and Necessary Calibrations 

The behavior of the drop diameter and the corresponding 
rotational speed during the course of experiment is the basic 
data required to calculate the extensional flow properties of 
the liquid drop. The rotational speed is obtained directly from 
the voltage signal of tachometer using a calibration factor of 
2.5 volt/ 1000 RPM. However, because of the optical distortion 

of the glass cylinder and the inverse nonlinear relationship
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Table 3-1 General Characteristics of the Motor

Torque Constant: 11.3 oz-in/amp 
2 Rotor Inertia: 0.00375 oz-in-sec

Power Rating: 0.3 kw
Terminal Resistance: 0.42 ohms
Voltage Constant of Tachometer: 2.5 volts/krpm
Voltage Ripple of Tachometer: 1.5% peak to peak(Max)



32

between the actual diameter (D) and the voltage signal(Sy) of the 
photomultiplier tube, converting the voltage signal (Sy) of the 
photomultiplier tube to the actual drop diameter (D) is not as 
easy as converting the tachometer signal to the rotational speed. 
Two calibrations are required to relate the actual drop diameter 
(D) to the voltage signal (Sy) of the photomultiplier tube. 
These includet (1) calibration in which several different cylin
drical rods with known diameters (ranging from 0.34 cm to 1,12 
cm) were inserted into the rotating cylinder and observed with a 
cathetometer; and (2) calibration in which the diameter of a 
liquid drop was measured both by the cathetometer and the photo
multiplier tube under equilibrium condition ( constant rotational 
speed and drop not extending). The purpose of the first calibration 
was to relate the actual diameter (D) to the visual diameter (Sy), 

while that of the latter calibration is to relate the visual drop 
diameter (Sy) to the voltage signal (Sy) of the photomultiplier 

tube. Combining the results of these calibrations, a quadratic 
relationship between the actual diameter (D) and the voltage 
signal of the photomultiplier tube (Sy) was established:

Sp= UD-i-C (3-5-D

where a^.b^ and c are constants. The units of Sy and D are volts 
and cm respectively. After rearranging Equation (3-5-1), 
we fted, tbSptC

x >—D— / 
where and .

In both constant extension rate experiments and constant 
stress experiments, the voltage signal S^ which is quantitatively
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proportional to the drop diameter (D) was used rather than the 
voltage signal from the photomultiplier tube S^, To this end, 
an analog quadratic inverter with three adjustable potentiometers 
a,b,and c was built. For a given set of a,b,c, and input S^, the 
quadratic inverter is able to produce an output of according 
to Equation (3-5-2)• The procedures of setting values for the 
potentiometers, as well as the electric diagram of the quadratic 
inverter are given in Appendix I.

3-5-2. The Measuring Instrument
An Omni Scribe two pen recorder (made by Houston Instru

ment Co.) is used for recording the output signals from the 
tachometer and the quadratic inverter. The recorder can record 
any signal with voltage level ranging from 0,01 volt to 100 volt 
in five different scales: 0.01 volt, 0.1 volt, 1 volt, 10 volt, 
and 100 volt. However, depending upon the input voltage level, 
only certain scales can be used, for example,! volt, 10 volt and 
100 volt scales for signals with voltage >0.5 volt and 100 volt 
scale for signals with voltage >^5 volt, etc. The disadvatage 
associated with this characteristic of the recorder is that for 
signals with large absolute voltage level, but relatively small 
voltage change with respect to time, the recorder is not able to 
record it with much sensitivity. To correct this, a .subtractor 
is used along with the recorder. The function of the subtractor 
is to .subtract a constant amount of voltage from the recorded
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input so that the recorder can use the scale with maximum 
sensitivity to record the input signal. An example of 
increasing recording sensitivity of the recorder with the help 
of the subtractor is given as follows: A time dependent signal 
with voltage changing from 5.8 volt to ^.8 volt in the experiment 
is the input signal to the recorder. Yfithout the ^subtractor, 
the recorder will record this signal in 10 volt scale and the 
recording sensitivity is about 10% ( " ) • However, using
the ^subtractor to subtract 4,8 volt from the input signal, the 
recorder is able to record the signal in 1 volt scale, and in 
that case, the resulting recording sensitivity is 100%

In addition, depending upon the type of extensional flow 
experiment, several analog electronic components are used in the 
experiments, particularly a multiplier for constant extensional 
stress experiment and a logarithmic amplifier for constant exten
sion rate experiment. Details on those analog electronic circuits 
are described in Appendix I. An overall view of the drop elon
gation apparatus is given in Figures 3-5 to'3-9 *•.
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Figure 3~5 Drop Elongation Apparatus
<b

Figure 3-6 Rotating Glass Cylinder
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4

Figure 3-7 The Control System 

and the Photomultiplier tube
Figure 3-8 The Temperature Controller



Figure 3-9 The Drive System

37



CHAPTER IV 38
DESIGN OF EXPERIMENTS 

AND SPECIFICATION OF OPERATING RANGE

4—1. Type of Experiments Possible
With the drop elongation apparatus described previously, 

both kinematic and stress controlled experiments are possible. 
The kinematics controlled experiments involve experiments in 
which the drop diameter D, and the extensional strain (defined 
as 2, loa ^<'0- ) vary with time in some prescribed manner. In the 

stress controlled experiments, a specific extensional stress 
history is imposed on the drop and the extensional strain y is 
measured. Possible kinematically controlled experiments include 
stress growth, stress relaxation and oscillatory, while possible 
stress controlled experiments are creep and recoil. Details on 
these experiments using the drop elongation apparatus are now 
described.
(1) Stress growth experiment: This experiment is also termed a. 
"startup experiment". As indicated in Fig. 4—1(a), the experiment 
is characterized by a step change in extension rate. As a result 
of this kinematic change, the drop is extended from an equilibrium 
configuration at a constant extension rate ft . The drop diameter 
and the extensional strain are controlled to change with time 
in the following manner:

when t<0 D = Do (equilibrium diameter atA)=u)0)
— (4-1-1)
8 = o _

attiO o - Do € * ; = X t.

The stress is determined as a function of time from measurements



Figure 4-1 Kinematics Controlled Experiments
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of drop diameter, rotational speed, and use of Equation (2-4—13) 
or (2-4'-15)$ the equation to be used depends on the conditions 
and fluids involved.
(2) Stress relaxation experimentt Stress relaxation at:a constant 
extensional strain^ is possible by abruptly ceasing the steady 
extension v/hich the drop has experienced for a period 
determining the resulting extensional stress required 
the final state of extension. In this case, the time 
the extension rate is given by

where c is a constant.
(3) Superimposed oscillatory: This experiment is similar to the 
common superimposed oscillatory shear experiments carried out in 
viscometric flows. In the case of extensional flow, small 
amplitude oscillatory extension is superposed on a constant ex
tension rate by forcing the drop diameter and the extension strain 

to behave as: o-n

t = tc + (lt-1-3)
where andcD are the amplitude and frequency of the

oscillation respectively, and are restricted by the condition 
that So , or >ao .

The latter Constraint is necessary in light of the fact

of time and 
to maintain 
response of

(4-1-2)

that the extension can be controlled only when the drop is 
extending ; contraction of the drop is a result of uncontrolled 
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interfacial and elastic forces. In this experiment, the corres
ponding extensional stress is determined from Equation (2-4-13) 
or (2-4-15), depending on the range of conditions and the fluid 
systems involved. Typical relations between the extensional 
stress and the extension rate for stress growth, stress relaxation 
and superimposed oscillatory are outlined in Fig. 4-1, (a),(b), 
and(c), respectively.
(4) Creept Complementary to the condition of a constant extension 
rate's is the condition of a constant extensional stress which de
fines the creep experiment. The condition TT^- TU = constant is 
maintained throughout the course of experiment. If Equation (2- 
4-15) is applicable, this is equivalent to holding lor. constant. 
Once the condition of constant extensional stress is fulfilled, 
both the time-dependent drop diameter and extensional strain are 
monitored and measured,
(5) Recoil: The final possible stress controlled experiment is 
recoil, termed by Lodge (20) as instantaneous recovery from 
steady extensional flow. In this experiment, the whole rotating 
system is instantaneously braked to a rotational speed just 
sufficient to keep the drop in the center of the glass cylinder. 
The subsequent behavior of the drop diameter and the extensional 
strain due to the resulting contraction are measured as a function 
of time. This experiment is possible only if the elastic stresses 
causing the contraction are much greater than the interfacial forces.
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Typical relations between the extensional stress and 
the extension rate for creep and recoil are shown in Fig.4-2(a) 
and (b) respectively.

It should be noted that in addition to the transient 
extensional flow data*  the extensional viscosity can be obatined 
from the steady state data of stress growth and creep experiments. 
The drop is extended at a constant extension rate (or constant 
extensional stress) until the initial startup effect diminishes 
and the resulting extensional stress (or extension rate) reaches 
a constant value. Equation (2-4-14) or (2-4-16) is used, de

pending upon the operating conditions and the physical properties 
of fluids involved.

All the experiments except the superimposed oscillatory 
are tested in the drop elongation apparatus with a Newtonian 
silicone oil. The experimental feasibilities along with the 
difficulties associated for each experiment are discussed in 
Section 4-4.

4-2. Correction for Interfacial Tension Effects
The use of Equation (2-4-13) and (2-4-14) requires the 

knowledge of the curvature at v^o , £= + l (that is, A is required). 
To this end, two analyses have been carried out to obtain this 
information: an analytical approximation and a numerical analysis. 
In the former, an expression for the drop shape during extension



Figure 4-2 Stress Controlled Experiments

(a) (b)
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is obtained (and therefore }A. ) by assuming the liquid particles 
near » Z = ±L experience uniaxial extensional flow. In the 
numerical analysis, the quasisteady state drop elongation 
phenomena is simulated using approximate methods such as least 
square and orthogonal collocation. Details on these two analyses 
are presented in this section. This is followed by a comparison 
with experimental results.

4— 2-1. Analytical Estimation of K

When a fluid drop is placed in a liquid of high density 
contained in a rotating horizontal cylinder, the drop becomes 
elongated along the axis of rotation until an equilibrium 
configuration of the drop is reached which results from the 
balancing of the centrifugal and interfacial forces. The 
equilibrium shape of the drop is described elsewhere (11).

A diagram of the system considered here is shown in Fig. 
4-3. Cylindrical coordinates (r,2 ) are chosen with origin at 
the left hand end of the drop. The semiaxes are and l^> ,• the 
densities of the drop and the outer phase are and JI ()1>Z) 

and the interfacial tension iso* , For the system rotating at 
constant speedzO , the equilibrium shape of the drop is given



Figure 4-3 Coordinate System to Describe the Shape 
of a Drop Rotating about a Horizontal Axis

U1
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where Ho is the curvature of the drop phase at the origin and 

oCis defined as . By making the assumption that the 
liquid particles at the end of the drop surface experience
uniaxial extensional flow, then a

connected by

(4-2-2)

of the drop surface occupying the 
find itself at the place (^,z) at

liquid particle at the end 
coordinate (r,2.) at t=0 will 
time t, with (^,2) and (r,z) 
t . ,

£ frctldt

where "^(t) is the extension rate at time t. Combination of 
Equation (4-2-1) and (4-2-2) gives the drop shape in the 
neighborhood of 2=0 and^,ze, at time- t:

Z = z.(i-& J+e J (V2-3)

The curvature of the drop surface H is calculated by

where -^r and are the principal curvatures and defined as
oi i

J_ d r1- . I dr
= Cn-(arTf ' "" (Zt-2-5)

Substituting Equation (4-2-3) into Equation (4-2-4) and (4-2-5)» 
the curvature at b=o is A - , /

2.)  T«)dt
H = H= e ° (4-2-6)

Since the dimensionless curvature is ^defined as
P\ = H H = H t; e^‘ !rtodt'
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Combination of Equation (^-2-7) and (4-2-6) yields
(4-2-8)

t-sy

If the drop is extended from an equilibrium configuration with 
large , then the value for K is K = 3> (4-2-9)

io 1=0 t.=0

and it follows that  
1-5 V

h - 3e (4-2-io)
__  /t .

where , the extensional strain, is equal to j Tct'jdt .

Equation (4-2-10) allows the estimation of|\ for any
given during the course of the drop elongation experiment.

4-2-2, Numerical Prediction of K

The dynamics of the drop elongation phenomena, 
particularly, the resulting shape, internal flow patterns, 
etc., are analyzed here. 
Formulation

Consider a system in which a Newtonian liquid drop 
with density J3 and viscosity A is suspended in another Newtonian 
continuous phase liquid with densityand viscosity^ , all 

contained in a horizontal rotating cylinder. Initially the whole 
system (drop*  continuous phase + cylinder) Is-rotating around-the 
axis of the cylinder at a constant speed 4>0 and the drop con
figuration is that associated with equilibrium, i.e., the drop 
shape is described by Equation (4-2-1), At t=0, a special 
history of rotational speed is applied to the whole system.
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We wish to describe the resulting dynamics of the drop caused 
by these changes in cdc^J.

A spherical coordinate system (r,<9,^) is used (Fig. 
and the response of this system is analyzed subject to the 
following assumptions:

(1) The rate of deformation of the drop is sufficiently 
small that the transient behavior of the drop elongation phen
omena can be treated as quasisteady state (Reynolds numder.RE = 
1.0 x 10"3«l ).

(2) The drop particles at the center of the drop (6 = <?o’) 

experience extensional flow.
(3) The viscosity of the continuous phase is small

compared to that of the drop and hence, on the drop surface the 
extra stress components of the continuous phase are negligible 
compared to those of the drop phase.

(4) The whole system rotates in a rigid body manner.
If inertial effects other than the centrifugal force term 

are neglected, as well as the body force terms, the "F and 6 com

ponents of equation of motion for the drop phase can be reduced to
 = - ip. l^V,

; r dr' r j <s> r _
, o I ap . . / w*!/  4 _ Vs \anl -r -^—=" ? T*  JS

(4-2-11)

where Va- r-slneu) , V=. 4^ 7= ^.(^^and u) is the rotational
r r 5-r j r \ »«)

speed.



Figure 4-4 Coordinate System Used in the Numerical 
Simulation of the Drop Elongation Phenomena.

>u
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follows.
* 5=

(4-2-12)

r

where 

In - the
leads

(4-2-14)

(4-2-15)
automatically.

The dimensionless "boundary conditions on the drop

(4-2-16)

of the drop and the continuous phase respectively, 71 is the 
direction normal to the drop surface, t is the direction tan

surface for a quasisteady
*

state solution are 
jfz-

TT.t

present case of axisymmetric flow. Equation (4-2-13) 

to a fourth-order partial differential equation for the
stream function:

and_ rsin^Cot^S2"__ L^t—-

The equations are nondimensionalized by using the 
initial drop radius Ro at , the initial rotational speed

then Equation (4-2-11) becomes 
^Sin1® S* „ 3. +------

R£

Trhn ■+ (r /a 
components of the total stress tensor 

a. 2 v
In spherical coordinate,h where ^coss and the

velocity components are given by

of the drop phase/x., and the density dif- 
between the two phases as 
Vr x/6— 
^cDo . Vq ” R»u)o

and 7f * - 
'1 nn

TT*  -r#/
where Th,- and TE-.- are the

6J6, the viscosity 
ference, = f « 
Ta* r*
Let ,'=t; , Vr =

2  Vs*

_  d2L_ v*-  IVr ' bsme d© . ve' <9r*
by which the equation of continuity is satisfied
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gential to the drop surface in a meridional plane,A is the 

dimensionless mean curvature, expressed by
R = R0H = Ro (-^7 + (*-2-17)

where and are the principal radii of curvature.
Finally, S'is a dimensionless interfacial tension 

3~ (4-2-18)
Substituting the relation 7T£j = into Equation
(4-2-16), the boundary conditions can be expressed in terms 

/V*of components of the extra stress tensorL refered to spherical 
coordinates through the transformation equations,

<< (cz)5l^-2>in^>o

(4-2-19)

If the surface of the drop enclosing the origin is described 
by specifying the radius as a function Rte) , then

(^-=-20)

where
In terms of RjLs) the expression for becomes

(4-2-21)

Using the assumption (3), 7*-
be simplified to

Equation (4-2-19) can

(. -P 7^9 (.^OS<K- 5) h £.) = o (4-2-22(a))
Cp'-p*)  sinotes'o(tad\=o (4-2-22(b))



52
Solution 

The general solution of equation (4-2-14) is given 
elsewhere (75) 

+^r*tD wr*  ) (4-2-23)
, |r«»<

where » Pm’^D "the LeSendre Polynomial of

degree m, and , £>m , <2^ , and are arbitrary constants.
Combination of equation (4-2-23) and (4-2-15) gives

the velocity components
i.ao, mti -m m-l -m-2 _ *

Vr=-X(Amr*t8„r'»C nr'^£>„r*

Due to the finiteness condition of V*  and Ve* as r*goes  to

and « mn -m 22'i -m-i -(4-2-24)■ -Z Cn6ntl)r*-m£) mr*  )Pm<£)

zero and the symmetry requirement that V*(f,  »

Equation (4-2-24) is reduced to
V*='X.  (Amr5Ht^/3'')^<^)

311(1 * Si Pm<i) (4-2-25)
\Zs - __________________

c/-r^

After rearranging Equation (4-2-25)» it follows that
* u ** z ,ntlCAmpm(j}j>+ £»„£»>/£)) r*

and »   (4-2-26)
V*-  3^^) 

From the assumption (2) that at k%o )» pr=- . where 

is the instantaneous extension rate, the following
relations among the coefficients can be obtained

/^,n= (.rntti) <'wx > <"1‘* ' (14—2-27) 
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mti (4-2-28)

Substituting Equation (4-2-28) into (4-2-13)» the dimensionless 

at g-o

(4-2-22) at g = o
m

(4-2-31)
V1

(4-2-31) into (4-2-22) yields a linear equation for coefficients

2-5iho<

F-P*--  —
16 r<> REs. ' h-iA-e,...

Substitution of Equations (4-2-28), (4-2-29)» (4-2-30) and 

and Equation (4-2-26) is further simplified to
> » 60 , . 2^1

Vr = -c^Ch) r-E, t <tqX Y*

*- on the drop surface RDcy.
Equation (4-2-32) is used to determine Cm(rn=2,4,6,.,..,.) once 
the drop surface specified.

SXld ▲ co
V*='TT^-?

s I — ’Q y 'rex.u.t,,..

(m=2,4,6.eee
a a/ <io5 o<

v. , v ,ccael-Sinol L <- y rn»x,*,..

" _ ^-2-32)

pressure inside the drop is obtained as

i (<?-/) RE mc2.,4,6,.. ',/n* '
where P*  and P€ are the dimensionless drop pressure and radius 
at ©so k'^js-\ ), respectively. Since /is small compared to/t , 

?' can be directly obtained from the equation of motion.

+ (4-2-30)
where is the dimensionless pressure of the continuous phase 

The constant,^-p* , is determined using Equation 

(2=i • 'k-o)
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(I) Special case- For the purpose of obtaining a simple
form of , it is assumed in this case that two coefficients
and are enough to describe the velocity flow field.
Equation (4-2-28) then becomes

(4-2-33)

The corresponding stress components 'T*  , 2^ » and 2r*  a1*6 

obtained from the Newton's law of viscosity.
7*  = — (stcas-i)
t-rr I

He 0
Z"r*  = - C3C2 (^^-tzae-sm©-

Near the end of the drop surface, the following approximations 
are valid.

=G ~o and Rp (^-2-35)
Substituting Equations (4-2-34) and (4-2-35) into (4-2-22(a)), 

(4-2-36)4 7^
The corresponding velocity components in cylindrical coordinates 

it follows that

which implies

(r,z) can be obtained from combination of Equation (4-2-33) and 
(4-2-36) through the transformation equations

^ = -4: (4_2-37)
and

V^^r^-Ltr-
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where is the relation given in Equation (4-2-27).

If the drop elongation is initiated from a shape 
described by Equation (4-2-1) with the velocities given in 
Equation (4-2-37), through the same procedures as that in 
Section 4-2-1, the curvature p\ is obtained as

/A (4-2-38)

(II) Numerical simulation— In this case, the dynamics 
of the drop elongation phenomena is simulated under the con
dition that the product of the rotational speed u) and the 
drop radius R, at ^=0. is constant through the course of simu

lation. If Equation (2-4-15) is applicable, simulation of 
this kind is equivalent to that of creep experiment described 
in Section 4-1. An iterative technique is used which is 

similar to that developed for the free stream line problems 
(70). In the-present-case, an initial shape is given, the 
corresponding velocity field is found under the condition of 
6D R. =constant. These velocities along with a given dimension
less time interval At, (zst=u)0^t. , At is the dimensional time) 
are used to compute a new shape (and therfore K), for which 
a new solution for the velocity field is computed. This po- 
cedure is continued until the time response of the drop 
elongation is aquired.

It should be noted that at each step of the solution, 
the problem is one of finding the velocity field for a given 
instantaneous drop shape. For this purpose, two boundary
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methods are used: the least square and the orthogonal collocation 
methods (71»?2). With the least square method, the boundary- 
condition, Equation (4—2-32), is considered at a finite set of 
boundary points. The number of equations is greater than the 
number of unknown coefficients and at each point Equation (4-2-32) 
is satisfied approximately. The approximation is such that the 
errors in the entire set of equations are minimized in the least 
square sense. With the orthogonal collocation method, Equation 
(4-2-32) is satisfied exactly at a set of special chosen collo
cation points. The number of equations in this case is equal to 
the number of unknown coefficients. Details on how to choose the 
collocation points is described in Appendix II. In performing 
the numerical calculations, the drop surface is specified by 
giving p.D , the dimensionless drop radius at a set of 9 values 
which are selected in the following manner. 

o » . °O < 6 < 20 AS = I
•os=2-‘' (4-2-39)

6 * i O
4.0 < 6 < Cfo ID

The values of at these positions are determined from the 
shape given by Princen,et. al. (11). The first and second 
derivatives of with respect to 6 are then calculated by using 
three point approximations. These derivatives are used in com
puting^ andM. When coefficients ^(m= 2,4-,...) have been 

determined, the change in the drop shape in a dimensionless time
is computed as
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(^-2-40)
* ixp Q fcr /

The drop elongation has been simulated at At, intervals over a 
time period T. An optimal value of At is chosen when the 
successive calculated values of A , after the simulation for 
different values of^t , are within 95% of one another.

For the sake of comparing the least square method with 
the orthogonal collocation method, Equation (^-2-32) is solved 
using both methods for different number of coefficients on a 
given drop shape. The degree to which Equation (4-2-32) is 
satisfied is indicated in X which is defined as

X - errors in Equation (4-2-32)
number of points used (4-2-41)

The results ofX versus number of coefficients used,in these 
two methods are shown in Fig. 4-5 for one iteration. Two 
conclusions can be drawn from Fig, 4-5: First » the ortho

gonal collocation method works better than the least square 
method except in the case of four coefficients; and second, 
two coefficients are enough to describe the velocity field.

Three simulations of drop elongation under the con
ditions that is equal to 1.7» 2 and 3 are carried out using WO Ro
the orthogonal collocation method for two coefficients Cz and
The time dependent drop shapes along with the stream lines for

ti)Rdifferent values of-rr are shown in Fig. 4-6 to 4-8, It is tvo Ko
noteworthy that the shapes computed are very similar to the
shapes observed in the elongation experiment. The resulting
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10*

o

I o’
102

NUMBER OF COEFFICIENTS

s ORTHOGONAL
COLLOCATION

© LEAST
SQUARE

Figure 4-5 Comparison of the Orthogonal Collocation 
Method with the Least Square MAthnd..



Figure 4-6 The Resulting Shape and Internal Flow Pattern of the Dron 
under Condition of -1.7 ( t=iO,l, t. is the dimensional time )





t=5IO

Ch

Figure 4-8 The Resulting Shape and Internal Flow Pattern of the Drop 
under condition of^/j<l/i<,= 3 ( 1=^1, "E is the dimensional time )
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curvature K for three different values of is correlated
* UJoRo

as a function of the extensional strain ^(t?) in Fig. ^-9. ^Ct) 
I .is defined as 2 loaiz, ■ - in this

at 8 = , It is interesting to
curves of P\ versus for three

case and is the drop radius 
note that in Fig. ^-9 the
,. „ „ , _ „ u)R „ ,,different values of fall

on the same line. This is in agreement with the trend predicted 
both by Equation (^-2-38) and (4-2-10) that is only function 

of .

4-2-3. Comparison with the Experimental Results 
Equations (4-2-10), (4-2-38) and the numerical simulations 

in Section 4-2-2 give various predictions of/^as a function of 
the extensional strain ft . It is important to know which of those 
predictions gives a close estimate of jA while a liquid drop is 

experimentally extended. To this end, experiments are carried out 
in which a Newtonian drop with known viscosity/X(and hence, ex
tensional viscosity ^) is extended at constant extension rate 
in the drop elongation apparatus. With the experimental data of 
the instantaneous rotational speed <a) and drop diameter, 
Equation (2-4-14) is used to calculate A as-' a function of the 
extensional strain ft which in this case, is equal toTt . The 
experimental results of lA versus for various extension rate 

experiments are shown in Fig. 4-9• along with the predictions of 
Equations (4-2-10), (4-2-38) and the numerical simulations. As 
a comparison, it appears that in spite of the experimental scatter.
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9

2
0.1 0.2

7 (THE EXTENSIONAL STRAIN)

Figure 4-9 Comparison of the Experimental Data of A vs. (T with 
the Predictions from Equations (4-2-10), (4—2—38), 

V 0.0043
□ O 0.00 86
A 0.0091
*0" 0.0104
e 0.0140
B 0.0170

0.0190
O 0.0193
V 0.0214

and Numerical Simulations 
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Equation (4-2-10) which resulted, from an anlysis based on the 
assumption that the liquid particles near the end of the drop 
surface experience extensional flow can describe the data of 
reasonably well. Therefore, for all the experiments performed 
in the present work, Equation (2-4-14) is used along with 
Equation (4-2-10).

4-3. Optimal Operating Range Subject to Operational Constraints
While a drop is extended in the drop elongation apparatus, 

the maximum possible extension rate which can be achieved is 
dependent on several factors. These are
(1) The buoyancy force which causes the drop to move off of the 
axis of rotation.
(2) The fluid properties such as density differenceAf, interfacial 
tensioner, etc.
(3) The time period of the experiment.
(4) The maximum speed of the drive motor
In this section, an analysis in which the maximum extension rate 
is related to these four factors is described,

A necessary condition in the experiment is that the ratio 
of the centrifugal force to the buoyancy force must be greater 
than one. In that case, the drop will stay on the axis of rotation. 
Thus, |

or ^/oo° (^-3-D
where and Ro are the initial drop rotational speed and radius 
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respectively.
Since the drop elongation is initiated from a long 

equilibrium configuration, it follows from Princen et. al.(11) 

that = z
<20- " (4-3-2)

Substitution of Equation (4-3-1) into (4-3-2) yields
Rc < o.ofc3i5 (-^-f (i>-3-3)

Equation (4-3-3) indicates that the maximum possible starting 
radius in the drop elongation experiment is dependent solely 
on the physical properties of fluid systems involved. Com
bination of Equations (2-4-14) and (4-2-10) gives

where is taken as 3/L»
The time dependent response of the drop radius in a constant 
extension rate experiment is

fL-RoC (4-3-5)
Taking t=T, , and 60= , Equation (4-3-4) becomes

Um&x ""

Substituting Equation (4-3-3) into Equation (4-3-6), it follows 
that . 2. "^uxt , „ /apA

1 V (ry j (4-3-7)

The effects of each of the variables » T«
and in Equation (4-3-7) on were investigated by changing 
one of those variables and calculating the resulting from
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Equation (^-3-7) while the other four variables were held 
constant. It was found that the maximum possible extension 
rate will increase by increasing (T and or de
creasing * and T.

It appears that for the purpose of enlarging the 
operating range of extension rate, the only physically fea
sible way is to increase in the drop elongation
apparatus.

The maximum extension rates for the fluid systems 
used in the present work are listed in Table 4-1.

4-4. Experimental Difficulties
Several experimental difficulties in using the drop 

elongation apparatus are discussed in this section, par
ticularly those associated with the response of the feedback 
control system.

An unwanted response of the feedback controller is 
created both by the continuous decay in the light intensity of 
the collimated light source and by the noise signal inherently 
existing in the voltage signal generated from the photomultiplier 
tube. The decay in the light intensity of the collimated light 
source is the general characteristics of the light bulb used and 
can not be avoided. But its effect on the response of the con
troller is decreased to a minimum by readjusting the light 
intensity to the original level through increasing the voltages 
imposed on the photomultiplier tube between experiments. The noise



Table 4-1 Maximum Possible Extension Rate for Fluid Systems Used

3000 RPM , T = 10 seconds

Fluid Systems Density Difference Interfacial Tension Maximum Possible 
Af (g/cm3) CT*  (dyne/cm) Extension Rate (seel)

Cannon ASTM 
Standard oil 
in glycerol
water solution

0.307 21 0.07

PIB*in  glycerol
-water solution 0.329 11 0.051

** , ***PAA m PS-TCE 0.433 9 0.0365

PIB*  - 10% polyisobutylene in Decahydronaphthalene( Decalin ) 
PAA**-  2.8% polyacrylamide (Separan AP 30) in 50:50 glycerol-water 
PS-TCE***-  4% polystyrene in tetrachloroethylene
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level in the voltage signal from the photomultiplier tube can be 

eliminated by using a lowpass filter of low cutoff frequency. 
However, the use of such a filter imposes a significant time 
delay on the response of the feedback control system, and is 
to be avoided if possible. In the present work a notch filter 
which filters part of the noise signal out and imposes no time 
lag is used. Additional difficulties associated with the 
response of the servo controller are the adjustment of the 
controller gain and the axial movement of the liquid drop in 
the rotating cylinder. It is clear that the value of the con
troller gain is very critical to the drop response. If the 
gain is too large, it will cause the whole rotating system to 
oscillate because of the noise existing in the signal of the 
photomultiplier tube, and if the gain is too small, very 
little agreement between the response of the drop and the 
signal from the functional generator is achieved. As a com
promise, moderate values in the controller gain are selected 
for the different fluid systems used and experiments performed.

The reasons for leaving the drop injection system in 
place during the experiments has already been discussed in 
Section 3-3» However, the existence of the drop injection tube 
inside the rotating cylinder creates an unsymmetric flow field 
during the rotation of the cylinder and hence, results an axial 
movement of the drop. If the drop shape is not a cylinder with 
uniform radius, a false response of the feedback control system
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will result from the axial movement of the drop. Nevertheless, 
this effect can be diminished if the drop elongation is initiated 
from an equilibrium configuration with large ^(L and D are the 

drop length and diameter respectively).
Under the conditions suggested above, all of the ex

periments mentioned in Section 4-1 except the superimposed 
oscillatory are performed in the drop elongation apparatus with 
a Newtonian silicone oil. It is found experimentally that the 
stress relaxation and recoil experiments can not be carried out 
successfully. The reasons for the failure of those experiments 
are described as follows.

In a stress relaxation experiment, the steady extension 
needs to cease abruptly after the drop is extended at constant 
extension rate for a period of time. However, due to the time 
lag which the system takes in transmitting the speed of rotation 
to the response of the drop, and the type of controller used by 
which the speed of rotation is proportional to the difference 
between the diameter signal and the signal (Sp) from the 
function generator, the steady extension is impossible to stop 
instantaneously and thus a poor stress relaxation experiment is 
achieved.

The difficulties with the recoil experiment is quite 
different from those for the stress relaxation experiment. 
After the drop is extended either at constant extension rate 
or at constant extensional stress over quite a period of time, 
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the system is braked to a rotational speed just sufficient to 
hold the drop along the axis of rotation and the resulting 
contraction of the drop is measured as a function of time. The 
reason for the difficulty of this experiment is that during the 
time that the system is braked from a high rotational speed to 
a low rotational speed, the drop experiences both radial vibration 
and axial movement. Under such conditions, very poor results are 
obtained.

It is concluded then that unless certain revisions of the 
servo controller and the collimated light source are made, the 
present drop elongation apparatus can be used in the stress growth 
and creep experiments only. The results of the Newtonian silicone 
oil in the creep and stress growth experiments are described in 
next chapter.
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CHAPTER V 

OBSERVED RESPONSE OF 
NEWTONIAN'FLUID IN VARIOUS EXPERIMENT

Because of the experimental difficulties and limitations 
as discussed in Section only stress growth and creep ex
periments were carried out in the drop elongation apparatus. A 
silicone fluid was used as the drop phase in these experiments. 
Results for this fluid serve primarily to validate both the 
experimental techniques and the mode of analysis, since this 
fluid is Newtonian in the range of deformation rates studied and 
its behavior can be predicted.

5-1. Fluids
A glycerol-water solution was used as the continuous 

phase and a viscosity standard silicone oil (Cannon ASTM Vise, 
no. N190000) was used as the disperse phase. The material 

properties are summarized in Table 5-1. The viscosity of the 
silicone oil was measured on the Weissenberg Rheogoniometer with 
the temperature controlled at 25 C. The Newtonian behavior of 
the silicone fluid reflected by a constant shear viscosity is 
clearly evident in Fig. 5-1. It should be noted that as the 
shear rate Y is greater than sec”1, small first normal stress 

difference was exhibited by the silicone oil as shown
in Fig. 5-1. This small elastic effect was also found in the 
properties of silicone oil used by Leider (73). The viscosity



Table 5-1 Properties of the Materials Used in the Newtonian Studies 
at 25 °C.

Continuous
Phase

Disperse
Phase

Density 
Continuous 
Phase

Disperse 
Phase

Interfacial 
Tension

Zero Shear 
Continuous 
Phase

Viscosity 
Disperse 
Phase(g/cm3) (g/cm^) (dyne/cm) (poise) (poise)

Glycerol Cannon ASTM
water so Standard oil 1.21
lution (vise. no.

N190000)
0.915 21.0*

20.6
1.01 5750

* - Rotating Drop Method
**- Pendant Drop Method



Figure 5-1 Viscosity and Normal Stress Difference Data for Cannon ASTM
Viscosity Standard Oil at 25°C
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data checked very well with data obtained from separate 
measurements using the falling ball method (79). The 
interfacial tension was measured by the rotating drop 
method (11,69). However, the pendant drop method (7^) was 
also used to measure the interfacial tension and the data 
were in good agreement with that from the rotating drop method. 
The densities of the fluid systems were obtained by weighing 
the samples in a 10 c.c, pycnometer on an electrical balance.

5-2. Stress Growth Experiment 
5-2-1. Experimental Procedures 

The stress growth experiment with the drop elongation 
apparatus was carried out as follows«

The cylinder was filled with the continuous phase, fluid 
(glycerol-water solution). A liquid drop (about 6.5 cm^) of 

the disperse phase was introduced by pressing the piston in the 
injection tube while the whole system (drop + continuous phase 
+ glass cylinder) rotated at a low speed. The L-shaped steel 
wire was used to sever the liquid drop from the injection tube. 
The system was then turned on at speed and the drop was allowed 
to reach its equilibrium shape. The temperature in the constant 
temperature chamber was controlled at 25°C. The rotational speed IaJo 

was selected so that the speed 4^ and its corresponding equilibrium 
drop diameter D (=2z^o ) satisfy Equations (^-3-1) and (4-3-3).
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to6Ro "2.1000

W-3-3)

The photomultiplier tube, the quadratic inverter and a logarithmic 
amplifier were connected in series.

While the photomultiplier tube received the light passing 
through the drop and the rotating cylinder, the logarithmic 
amplifier generated an output voltage signal equal to (10 log10S^, 

where was the output signal of the quadratic inverter and was 
quantitatively proportional to the drop diameter D, In addition, 
the quadratic inverter and the tachometer were connected to a 
multiplier. By this arrangement, the multiplier generated an 
output signal which was a measure of the extensional stress. 
Since, in the stress growth experiment, the drop needs to be 
extended at a constant extension rate which requires the output 
signal from the logarithmic amplifier to vary linearly with 
time. Therefore, after the drop reached its equilibrium shape, 
the output signal from the logarithmic amplifier was fed back 
into the comparator along with a linear signal from the function 
generator. The slope of the linear signal produced by the 
function generator was prescribed according to the desired ex
tension rate. With this feedback loop, the drop was able to be 
extended under the condition of constant extension rate. Typical 
sequences of drop elongation are shown in Fig.5-2. Throughout 
the course of the experiments, the output signals of the logarithmic 
amplifier and the multiplier were recorded as a function of time.



76

Figure 5-2 Sequences of Droja Elongation
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5-2-2. Experimental Results
From the calibrations described in Section 3-5-1 , the

following relations were obtained.
D= Sv (5-2-1)

• Sp= 3-4-5 Sv (5-2-2)

and CU - (5-2-3)
where D is the actual drop diameter (cm), Sv is the visual drop 
diameter observed from a cathetometer, 0)7 is the output signal 

(volts) from the tachometer and tO is the actual rotational speed 
(radian/sec), Combination of Equation (5-2-1) and (5-2-2) yields

SD - 5.1 D (5-2-^)

Fig. 5-30 shows the curves of Sy versus D and S^ versus D obtained 
from the calibrations mentioned in Section 3-5-1. For the purpose 
of checking the accuracy of the calibration S^ versus D, stress 
growth experiments were performed. The drop was extended at a 
constant extension rate. The resulting responses in drop diameter 
were filmed by a Beaulieu R-16 movie camera and also measured with 
the light sensing assembly. The output signal S^ from the qua
dratic inverter was recorded as a function of time. The drop 
diameters during the experiment were then obtained both from the 
film and the signal S^. In the latter regard, Equation (5-2-4) 
was used. Based on,those data of drop diameter, the extensional 
strain Y can be calculated according to the following equation:

(5-2-5) 
where 0(0) and D(t) are the drop diameters at time=0, and t



Figure 5-3 Calibration Curves for the Output 
Signal Sp from the Quadratic Inverter 
vs. Drop Diameter - Silicone Oil
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respectively. The values of the extensional strain obtained 
both from the signal and the film for two stress growth" 
experiments are compared in Fig. 5-^« In general, the exten
sional strains obtained from the signal for two stress 
growth experiments are in good agreement with those obtained 
from the movie films. It should be worthwhile to note that 
the extension rates for those two stress growth experiments 
are constant as expected. Typical experimentally recorded 
signals from the logarithmic amplifier and the multiplier in 
the stress growth experiment are shown in Fig. 5-5*  The out

put signals of the logarithmic amplifier and the multiplier 
are equal to(10 log^S^and respectively. Because of

the noise generated by the photomultiplier tube, the output 
signal from the logarithmic amplifier wiggles. As discussed 
in Section that elimination of the noise will impose a 
time lag on the response of the feedback system, some noise 
was allowed to exist as a compromise.

After the drop was extended at a constant extension 
rate, the output signal(y^^of the multiplier immediately 

experienced an approximate "step change" and then increased 
slowly as shown in Fig. 5-5. This slow increase, after the 
"step change" inf^J-^ is due to the balancing of the inter- 

i-s Y „
facial tension effect 3 €. since y" increased with respect 
to time.

Using Equations (5-2-3) and (5-2-4), D and cdD were
calculated from those recorded signals of (10 log SD) and(^^.
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With the data of drop diameter D, the extensional strain Y 
and the dimensionless curvature A were obtained from Equation 
(5-2-5) and (4-2-10) respectively. Then from the data of lDD 
and , coupled with the physical properties of the fluid 
systems used, the extensional stress ( TTzz-1T^ ) was determined 

by the use of Equation (2-4-13). The experimental extension 
rate Y was calculated according to the following equation:

Y = o.46o6 J (5-2-6)

where J is the slope of the output signal from the logarithmic
amplifier with respect to time.

An apparent extensional viscosity is defined as the

(5-2-7)
In Fig. 5-6,
experiments.
as the value

ratio of instantaneous extensional stress 
extension rate .

2^ is plotted versus t for different stress growth

The steady extensional viscosity was obtained
—+ — +of when was independent of time. As shown in

Fig. 5-6, in all the stress growth experiments, the steady 

extensional viscosities were reached in a time period on the 
order of one second. Because the silicone oil is a Newtonian 
fluid as indicated in Fig, 5-1, the steady extensional viscosity 
should be reached immediately after the extension rate was im
posed. In this connection, numerous efforts have been devoted 
to shortening the response time-of the servo controller. However,
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considering the inertial effects present and the questionable 
validity of rigid body assumption in the initial period of 
drop elongation, operating with a response time of about one’ 

second was found to be "optimal" for the apparatus used. 
The steady extensional viscosities obtained from 

several stress growth experiments are plotted versusT in Fig, 

5-7, Subject to the constraints discussed in Section 4—3, the 
maximum possible extension rate used is 0,03 sec-"*".  As shown 

in Fig. 5-7» the agreement between the experimental data of 
the extensional viscosity and the Trouton’s Law is within 10%, 

5-3*  Creep Experiment
In a creep experiment, ("n^z-7Trr) needs to be held con

stant throughout the course of experiment. Experimentally, 
this requires the generation of a signal which is proportional 
to (TT«- Xr) and to feed such a signal back into the comparator 

along with a constant signal from the function generator. 
According to Equation (2-4—13), to generate a signal which is 
proportional to 0TK' requires the knowledges of the instan- 

taneous rotational speed Lu, drop diameter D and 3 S’ ). The 
knowledges of instantaneous tD and D can be obtained handily 
from the output signals of the tachometer and the quadratic 

^2.inverter. However, to obtain a signal like 3e requires a 
more sophisticated electronic device, particularly, a device 
which can perform the function of division, logarithm and anti-
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Figure 5-7 Steady Extensional Viscosity Data for Cannon
ASTM Standard Oil at 25°C
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logarithm together.
Considering the difficulty of finding an electronic 

device for generating the signal^^ ), it would appear that 

an exact creep experiment is not possible if Equation (2-4-13) 
is used for(Trzz-7Trr) • To this end, only approximate creep 

experiments in which(n)£) was held fixed were carried out in the 
present work. It is believed that an approximate constant 
extensional stress can be obtained when(u)D)is sufficiently 
large so that the percentage of variation in the extensional 
stress due to the interfacial tension effect is small. The 
experimental procedures for such an approximate creep experi
ment are described in the following section.

5-3-1. Experimental Procedures
The experimental procedures of the approximate creep 

experiment are very similar to those of the stress growth 
experiment. A drop (about 6.5 cm^) of the silicone oil was 

introduced into the glass cylinder filled with continuous 
phase fluid.

The quadratic inverter and the tachometer were con
nected to a multiplier. Initially, the rotating cylinder system 
was turned on at .a speed u) and the drop was allowed to reach its 
equilibrium shape. The temperature was controlled at 25°C.

After t=0, the signal from the multiplier was fed back 
into the comparator along with a prescribed constant signal from 
the function generator, the drop was then extended under the
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condition of (too)= constant. In this experiment, the quadratic 
inverter was connected to a logarithmic amplifier. Both the 
signals from the logarithmic amplifier and the multiplier were 
recorded as a function of time throughout the course of experi
ment.

5-3-2. Experimental Results
Typical recorded signals of the logarithmic amplifier 

and the multiplier are shown in Fig.5-8. Similar to those of 
the stress growth experiment, the output signal-from the 
logarithmic amplifier wiggles because of the noise existing 
in the signal generated from the photomultiplier tube. The 
percentage of the amplitude of oscillation is about 1.5%.
A linear portion of the signal from the logarithmic amplifier 
versus time was observed approximately one second.after the 
voltage signal of the multiplier was controlled to change 
from 0.6 volt to 1.325 volt (96.8 dyne/cm^ to 4?2 dyne/cm2). 

This one second delay is probably due to the inertial effects 
being important in the initial period of drop elongation.

With the recorded signals from the logarithmic amp
lifier and the multiplier, the corresponding extensional 
strain# , the resulting stress ) and the extension
rate"# were obtained using the same procedures described in 

the stress growth experiment. The time-dependent response of 
the extensional stress ( 7Tzz-71xr ) and. the extensional strain 

# are shown in Fig, 5-9. Because of the inertial effects 
being important in the initial few seconds and the approximate
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nature of the creep experiment performed, one notes an initial 
nonlinear portion followed by linear behavior in the curves of 
the extensional strain Y versus time. In general, the linear 
behavior of the extensional strainlversus time is reached in 
a time period less than one second, 

rrAs shown in Fig. 5-9> due to the variation in K.(l-3e' ) 
throughout the course of experiment, the resulting extensional 
stress in the constant (u)D) experiment is only approximately 
constant. The percentage of the maximum variation in the ex
tensional stress is 17%. The instantaneous viscositywas 
calculated according to Equation (5-2-7). The extension rate 
was taken as the slope of the linear portion in the curve of the

—+ extensional strain versus time. The results of several
constant(iDD) experiments are shown in Fig. 5-10. Because the 
extensional stress in constant^tOb) experiment decreased with 

respect to time, decreased throughout the course of experiment. 
The steady extensional viscosity was taken as the average value 
of after the first second of the approximate creep experiment. 
As shown in Fig. 5-7» the results of the extensional viscosity 
satisfy the Trouton’s law within 10%.

5-^. Comments on the Drop Elongation Apparatus
From the experimental experiences in testing the drop 

elongation apparatus, several conclusions about the versatilities
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of the present drop elongation apparatus can be drawn,
(1) Because of the experimental difficulties described 

in Section 4-4, only stress growth and creep experiments are 
possible with the apparatus,

(2) Due to the difficulties of generating an instan- 
taneous curvature signaled £ ) , only approximate creep expe
riment in which(iDD) is held constant can be carried out.

(3) The prescribed response of(n)D) in approximate creep 

experiment and D in the stress growth experiment were reached 
in a time period less than one second using the present control 
system. As a comparison, the behavior of(tDD)in approximate 
creep experiment was better controlled than that of D in the 
stress growth experiment,

(^) The results for the extensional viscosity obtained 
both from approximate creep experiments and the stress growth 
experiments are in good agreement with Trouton's Law. This, 
again, validates the analysis in Section 2-4-.

Additional experiments such as the drop diameter de
creasing linearly with time ('^= constant), the rotational 

speed iD of the system following a prescribed manner,iD(t), etc. 
are also possible with the drop elongation apparatus. However, 
the extension rate and the extensional stress are both functions 
of time in those experiments. The use of such data in evalua
ting viscoelastic theories involves tedius numerical calculations 
and is to be avoided if possible. Hence, unless some revisions 



are made on the drop elongation apparatus; particularly, the 
control system, the present apparatus can be used in the 
stress growth and approximate creep experiments only.

93
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CHAPTER VI
EXTENSIONAL FLOW MEASUREMENTS

ON VISCOELASTIC POLYMER SOLUTIONS 
6-1. Fluids

Table 6-1 shows the properties of the fluid systems 
used in the extensional flow studies. A 10% polyisobutylene 
in Decalin (PIB) and a 2.8% polyacrylamide (marketed by Dow 
Chemical Co. as Separan AP 30) in 1:1 mixture by weight of 
glycerol-water solutions (PAA) were used as the drop phases. 
The polyisobutylene was manufactured by Exxon Chemical Co. 
under the trade name Vistanex MM;.L-100, and had a viscosity 
average molecular weight of 1.2 x 10^ (Flory). The molecular 

weight of polyacrylamide is unknown. Glycerol-water solutions 
and a ^% by weight polystyrene in tetrachloroethylene were 
used as the continuous phases. The addition of polystyrene 
into tetrachloroethylene was for the purpose of increasing the 
viscosity of this continuous phase while maintaining the high 
density characteristics of tetrachloroethylene solvent. The 
resulting viscosity of 4% by weight polystyrene in tetrachloro
ethylene solutions at 25°±0.1°C was 1.27 poise which is required 

for validating the rigid body rotation assumption (8) made in 
Section 2-4. The densities of the fluids were measured by 
weighting the samples in a 10 c.c, pycnometer on an electrical 
balance. The interfacial tensions were obtained using the 
rotating drop method. (11).



Properties of the Polymer Solutions Used in the Experimental 
Studies ( at 25°C )

Table 6-1

Continuous
Phase

Disperse 
Phase

1 Density
Continuous Disperse
Phase Phase

Interfacial 
Tension

Zero Shear 
Continuous 
Phase

Vise.
Disperse
Phase

Glycerol
water so
lution

10% poly-
■ isobutylene 
.in Decalin
(PIB)

(g/cm-5)

1.21

(g/cm-5)

0.901

(dyne/cm)

11

(poise)

1.01

(poise)

7000

4% polystyrene 
in tetra PAA* 1.573 1.137 7.5 1.27 9700
chloroethylene

PAA*-  2.8% polyacrylamide(Separan AP 30) in 50:50 glycerol-water
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6-2. Characterization
In order to characterize the rheological properties 

of the disperse phase fluids, viscosity, normal force, and 
small amplitude oscillatory measurements were performed using 
the Weissenberg Rheogoniometer with the temperture controlled 
at 25°C. The details of those measurements are described 

elsewhere (76). In the oscillatory testing, a simple harmonic 
input of shear rate, with a certain frequency, amplitude, and 
phase, produces a simple harmonic output of shear stress with 
the same frequency, but different amplitude and phase. The 
dynamic viscosity and dynamic rigidity G*  (18), which 
characterize the material response under these conditions are 
obtained in terms of the amplitude ratio A and the phase 
difference^ between the shear stress (output) and shear rate 

(input). The measurements of viscosity2 and normal force 
—different shear rates K , and and G' at 
different frequencies provide the basis for evaluating the 
rheological parameters in various viscoelastic models.

The viscoelastic properties of the polymer solutions 
PIB and PAA were characterized both by the truncated Goddard 
expansion (13) and Bird-Garreau model (12). The truncated 

Goddard expansion is a special case of the corotating memory 
integral expansion developed by Goddard (82). For assuring 
there is no unwanted dependence on local rigid body rotation. 



this corotating rheological model is developed by using a y/ 
reference frame which is moving with the fluid and rotating 
with the local angular velocity. By further assuming that 
the stress for any isotropic viscoelastic fluid at a parti
cular particle depends only on the deformation history of that 
particle and not on that of adjacent particle, Goddard ob
tained the stress tensor as a memory integral expansion of 
the following form:

in which and is1 defined as the corotating rate
of deformation tensor . The kernel function G^-Ct-t’ ) is 
identical to the relaxation modulus in linear viscoelasticity 
(18,20) and can be obtained from the linear viscoelastic pro
perties of the fluid. However, there has been no experimental 
program to determine Gjj 8X1 Giv» To 'this end, based
on the information available from kinetic theory (77), Bird et. 
al. (13) set Gjj, Gjjj, and GIV as

<2^ (’fc-tV-t'') — bg (-tyt/) C-L-t') (6-2-2)

o (6-2-3)
<3^ (6-2-4)

where b and c are constant characteristics of the fluid, and
g(t* ,t”,t"’) is defined as

3 (6-2-5)

o otherwise
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Combination of Equation (6-2-1) to (6-2-5) yields the 

truncated Goddard expansion

- CC t" r- (6-2-6)
*#■7 J- t *-  “ t.Mt

For steady state shearing flow and small amplitude oscillatory 
motion, Equation (6-2-6) gives

y^ = J^£M(ti)$y5+lc^55iny5] ds (6-2-7)

' ) = 2 + (5lnt5 ' 6 16-2-8

(s) 6OSC05 d5 (6-2-9)
T £(^C5)u3S>ntd5<iS (6-2-10)

The constant b in the steady state shearing flow is approxi
mately equal to

b=^|- + l (6-2-11)

where G and are the first and second normal stress coefficients, 
respectively.

For the purpose of characterizing the polymer solutions 
used in the present work, ^(s) was selected as

Gr CS) = (3t^L(£ (6-2-12)
1 <.=•! 

which is the form used by Chang and Lodge (50) and Bird et. al. 
(13).

Substituting Equation (6-2-12) into Equations(6-2-7) to 
(6-2-10), it follows that

) (6-2-13)



3 . i ,

ci+'xrx) (6-2-U)

'L 
and r / 

Equation (6-2-13)

£_51^L— 
l=.| /•f'X^’cO3'

(6-2-15)
 £ (6-2-16)

— 2-i /r ’Xi^cD1"
to (6-2-16) are the key equations for 
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characterizing the viscometric flow properties of the drop 
phase fluids by the truncated Goddard expansion.

The Bird-Garreau model involves 5 parametersi a zero 
shear viscosity time constant and 'Xi, and two

slope parameters andcXi • The form of the constitutive 
equation in the Bird-Garreau theory is

where T^kV) = -jlJCx) + 3 (x-^ (6-2-18)

(6-2-19)

Here x and x*  are the positions in space occupied by an element 
of fluid at times t and t*  respectively, 
respectively covariant and contravariant 

are the
components of metric

tensor. E is a constant defined as
E = Z T""T“ (6-2-20)

C|| • Cz3L

The memory function . /n(t-t’ , | X(.-u\ ) is

\ . (6-2-21)
p^i Y(ti)

in which (ftI is equal to ryyyyr and n. , /x.. , and are
~ 0,Mr' Cr r r

defined in terms of the model parameters <A, , <XZ , , and

; ^'P*  P-h (6-2-22)
p=i 'P

For steady state shearing flow and small amplitude oscillatory
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(6-2-26)

where

(6-2-23)
(6-2-2^-)
(6-2-25)

0» 
X 
f*=l

p=l /+(^j
<D 

^rd U5e S^fc-tien (6-2-aa.) (Z<jx,)-i) n\
 ^'Xjs n-t?1

ll-f'XpiO)1
3l^_ 
l-t ('XipUll1- 

) 1s
With the experimental data of 7.*

G* , Equation (6-2-13) to(6-2-16) and Equation (6-2-23) to

motion, the predictions of Bird-Garreau model for ■*( /2xx~7^^)» 
hz , and G*  are given elsewhere (12, 78). Iriu 
L .. (2 l'Xlr) *  L-fc M (z(c<jH) ^sin^J^L-TT) 

y t. Viir%v"(z'?sy) “1
U3€ Ey<xhon(6-1-»X) 

«•«)*>  io TT7,  (z^ioySL* 1"

!■<*>-»-  -lot

ArvJ use €^«6t.on ^6-2-21) (zti,)-!) . (z^S/n 
the Riemann Zeta function.

(6-2-26) were used to evaluate the corresponding parameters 
in the truncated Goddard expansion and Bird-Garreau model.
It should he noted that the shear rates obtainable on the
Rheogoniometer were not sufficiently low to determine . As 
a result, the zero shear viscosities of the polymer solutions 
were obtained by the falling ball technique (79)• The para
meters <Xi , /Xn. , cki , and 0(1. in the Bird-Garreau model and c and

(i=l,...5) in the truncated Goddard expansion were then 
determined by a computer program commonly refered to as BSOLVE 
(80). This is a combined least squares and method of steepest 
descent analysis for determining parameters for nonlinear 
mathematical models.

Using BSOLVE , the , -(7^-T^ ), / , and G*  
/ 

fitted simultaneously. Because the data of and
data were
are

relatively more accurate and reliable compared to the data of 
G*  and )» "the data of -('Zxx-T^ ), , and G*  were

weighed according to the ratios 10:1:10:2 for both PIB and PAA.
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In the case of determining the parameters in the 
truncated Goddard expansion, a set of values were specified 
for^i. (i=l,...5)» Then, the corresponding c and aj, (i=1..5) 

were obtained subject to the constraint
(6-2-27)

It is possible to determine all 'Xi(i=l,«..5)» (i=l,,..5)
and c by fitting the experimental data of y, -(Txx-T^ ), »

and G* . However, the parameters Xj. (i=l,... 5) > a^(i=l,... 5)» 

and c obtained from this kind of fit would be somewhat 
insensitive to the )» 7, ,ani^ G' cia'ta» i* e«» many
sets of parameter values would give approximately the same 
accuracy of fit. "Hence the specification of 'Xl values does 
not appear to be a serious limitation. It should be noted 
that the values for ^(1=1,... 5) were picked in the same way 

as used by Chang and Lodge (50).
The parameters in the Bird-Carreau model and truncated

Goddard expansion for PIB and PAA are listed in Table 6-2. The 
values of and —- are in good agreement with those obtained
by Garreau et. al. (?8), The experimental data of 
7_y, and G*  along with the corresponding model predictions were 

plotted in Fig. 6-1 for PIB and Fig. 6-2 for PAA. Except for 
) and G*  data, it seems that both models describe

the experimental data quite well. Since' the data of )
and G*  were placed low weight in the fitting, it is not a

the -(

surprise that both models describe the -(7-xx-^) and G’ data



Table 6-2 Model Parameters Determined with Viscometric Flow Data

Solutions
Bird-Carreau Model Truncated Goddard Expansion

X) A. /\ , ''Xl/ ^1/0^1 D<z K /o(t ^Xi 'Xj 'Xs al a2 a3 a4 a5 c

PIB* 7000 12.2 12.4 1.35 1.1 0.98 0.8 10 1 0.1 0.01 0.001 31 1990 112000 6.1xl06 l.OxlO8 1.22

PAA** )700 47.4 70.7 3.45 2.98 0.7 0.86 50 5 0.5 0.05 0.005 3.4 41 7000 13000 3.9xl05 2.28

PIB*  - 10 % polyisobutylene in Decalin
PAA**  - 2.8% polyacrylamide in 1:1 mixture by weight of glycerol-water solutions

o 
to
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poorly as shown in Figs. 6-1 and 6-2. A better agreement be- . 
tween the data of -( 311(1 G* 311(1 tIie corresponding
model predictions can be achieved by placing more weight on 
the G' data in the computer fitting. However,
such a fitting would result a poor fit of theanddata, and 
hence was avoided in the present work.

As shown in Fig. 6-1 and 6-2, the predictions of ,
* 321(1 G' from ■fche truncated Goddard expansion 

oscillate. The oscillatory behavior in the predictions of the 
truncated Goddard expansion is due to the truncated characteristic 
in the form used for G^-.

6-3. Experiments Conducted
Both PIB and PAA were tested in the stress growth and 

approximate creep experiments. The experimental procedures of 
the stress growth and approximate creep experiments with PIB 
and PAA are the same as those for silicone oil described in 
Section 5-2 and 5-3.

A fluid drop of interest (PIB and PAA) was introduced 
into the rotating glass cylinder filled with the corresponding 
continuous phase (glycerol-water solutions for PIB and 4-% by 
weight polystyrene in tetrachloroethylene solutions for PAA). 
The system was then activated to a speeded and the drop was 
allowed to reach its equilibrium shape. The temperature inside

0 the chamber was controlled at 25 C.
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In the case of stress growth experiment, the output 
signal (10 log^Sp) of the logarithmic 'amplifier was '.instantaneously 
fed. back into the comparator along with a linear signal from the 
function generator. For the case of approximate creep experiment, 
the output signalf^^F) from the multiplier was fed back to the 

comparator along with a constant signal from the function 
generator. For both stress growth and approximate creep ex
periments, the signals from the multiplier and the logarithmic 

amplifier were recorded as a function of time throughout the 
course of experiment.

It should be noted that in order to minimize effects of 
changes in material properties of PIB and PAA, both the visco
metric and extensional flow experiments for each of the polymer 
solutions PIB and PAA were conducted within a two week period.

6-M-. Experimental Results 
6-^-1. Observed Behavior

Fig. 6-3 to Fig. 6-6 show typical experimentally recorded 
signals of the logarithmic amplifier and multiplier for PAA and 
PIB in both stress growth and approximate creep experiments. 

Due to the same reasons explained in the silicone oil case, the 
noise generated in the photomultiplier tube caused the signal of 
the logarithmic amplifier to wiggle throughout the period of 
experiments. The percentage of the amplitude of oscillation 
to the changes due to drop elongation is 3% for PIB and 4-% for PAA.
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STRESS GROWTH EXPERIMENT

From the multiplier 1.5 VOLT

1.0 VOLT

0.5 VOLT

0.0 VOLT

Figure 6-3 The output Signals from the Logarithmic Amplifier 
and the Multiplier in the Stress Growth Experiment 
with PAA
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Figure 6-4 The Output Signals from the Logarithmic Amplifier 
and the Multiplier in the Approximate Creep Ex- 
periment with PAA
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From the logarithmic amplifier 4.8 VOLT

4.9 VOLT

5.0 VOLT

5.1 VOLT

52 VOLT
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5.4 VOLT

5.5 VOLT

2.0 VOLT

_ 1.5 VOLT

1.0 VOLT

0.5 VOLT

0.0 VOLT

Figure 6-5 The Output Signals from the Logarithmic Amplifier 
and the Multiplier in the Stress Growth Experiment 
with PIB
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From the multiplier
1.5 VOLT

— 1.0 VOLT

0.5 VOLT

0.0 VOLT

Figure 6-6 The Output Signals from the Logarithmic Amplifier 
and the Multiplier in the Approximate Creeps 
Experiment with PIB
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The calibration curves of vs D and. Sv vs D for PAA 
and PIB are shown in Fig. 6-7 and 6-8 respectively. Using the 
linear relation between and D, the signals from the logari
thmic amplifier and multiplier were converted to D and^Ci).

Based on the data of D and(l*>D),  the extensional strain 
, the dimensionless curvature JA and the extensional stress 

(ny,-TTn} were calculated from the respective Equations (5-2-5)» 
(4-2-10) and (2-1)—13). The extension rate T in both stress 

growth and approximate creep experiments was obtained from the 
slope of the recorded logarithmic amplifier signal according to 
Equation (5-2-6). Then, was calculated from Equation (5-2-7).

The data of for PAA and PIB in the stress growth 
experiment are shown in Fig. 6-9 and 6-10 respectively while the 
experimental results of the extensional stress and the corres
ponding extensional strain in the approximate creep experiment 
are plotted in Fig. 6-11 for PAA and Fig. 6-12 for PIB, As 
indicated in Table 6-2, PAA has a larger relaxation time (Xz. in 
the Bird-Garreau model than PIB. Hence, in the stress growth 
experiment, the steady extensional viscosity for PIB was reached 
within a shorter period of time (about 10 seconds) than that for 
PAA (about 16 seconds) at the same extension rate. Also, as 
shown in Fig. 6-11 and 6-12- for the approximate creep experiment 
the extensional strain of PIB reaches steady state (strain rate 
is constant or strain increases linearly with time) earlier than 

does PAA at the same imposed stress level.



D (cm)

D (cm)

Figure 6-7 Calibration Curves for the Output Signal Sp
from the Quadratic Inverter vs. Drop Diameter
-PAA



Figure 6-8 Calibration Curves for the Output 
Signal S from the Quadratic Inverter 
vs. Drop Diameter- FIB 113
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Figure 6-10 Comparison of the Instantaneous Extensional

Viscosity Data of PIB with the Model Predictions;
Model Parameters Determined from Viscometric
Flow Data
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Figure 6-11 Strain and Corresponding Stress vs. Time for 
Approximate Creep Experiments with PAA
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Figure 6-12 Strain and Corresponding Stress vs. Time 
for Approximate Creep Experiments with PIB
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The experimental range of extension rate covered in 
the stress growth experiment were from 0.008 sec”'1’ to 0,035 sec”^ 
for PIB and from 0.006 sec”’1’ to o.ol6 sec”’1’ for PAA. At extension 
rates smaller than 0.035 sec”1 for PIB and 0.016 sec”1 for PAA, 

the steady extensional viscosities were reached within the course 
of the experiments (about 15 seconds). However, due to the limitation 
imposed on maximum speed of the drive motor, the steady extensional 
viscosities were not reached for extension rates Si 0.035 sec”1 for 
PIB and Z. 0.016 sec”1 for PAA. In the case of approximate creep 

experiment, the maximum possible extensional stress employed were 
800 dyne/cm and 1200 dyne/cm for PIB and PAA respectively.
Again, the values of this maximum possible extensional stress were 
limited by the operating constraints discussed in Section 4-3.
Since the creep experiment conducted was approximate in nature, 
as shown in Figs. 6-11 and 6-12 the extensional stress was appro
ximately constant and the percentage of maximum variation in stress 
is 10% for PIB and 12.5% for PAA.

Steady extensional viscosities obtained from both stress 
growth and approximate creep experiments are plotted versus the 
extension rates in Fig, 6-13 and 6-1^. In the latter regard, 
an extensional stress, which is defined as the average between the 
stress at t=0 and the stress at the end of the experiment was used. 
As shown in Figs. 6-13 and 6-1^, the steady extensional viscosity 
for bothPIB and PAA increase with increasing extension rate. In 
addition, at low extension rates ("6 0,001 sec 1 for PIB,'5’<-
0.006 sec”1 for PAA ) the steady extensional viscosity obtained is in
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Figure 6-14 Comparison of the Steady Extensional Viscosity 
Data of PAA with the Model Predictions; Model 
Parameters Determined from Viscometric Flow Data 
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good agreement with Trouton's Law. It is important to note 
that the steady extensional viscosity obtained from two 
different experimentst stress growth and approximate creep 
fall on the same line (see Fig. 6-13 and 6-1^). This provides 
a good check on the consistency of the experiments performed 
in the present drop elongation apparatus.

6-^-2. Com-parison With Theories
The extensional viscosity data shown in Fig. 6-13 and 

6-1U- indicate that the extensional viscosities for two visco
elastic fluids PIB and PAA increase with increasing extension 
rate. Thus models which predict that the extensional viscosity 
decrease with increasing extension rate were discriminated. 
In the present work, the extensional flow data obtained were 
used to evaluate two viscoelastic models which have the capa
bilities of predicting the extensional viscosity increasing 
with increasing extension rate. These are the truncated 
Goddard expansion and Bird-Carreau model.

According to the previously described truncated Goddard 
expansion, the corotating rate of deformation tensorsF(t, t'), 
p , and k for tmiaxial extensional flow, i.e.,

ivr=-l.ri (6-4-1)

take the forms:

= f vya. VTr ^6\-lo -t o j (6-2^-2) 
tz Ter TU ° ° -X /

= r' = t" = t"
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where y is a constant extension rate defined » and
D is the drop diameter. The imposed past history of extension 
ratey in the stress growth experiment is

at t^ 0 V =0 // ।
t > 0 US = const ant

Combination of Equation (6-2-6), (6-4-2) and (6-4-3) yields 
e * A. .

U^-TTrr = 3Jo ^SJS tS btj 5^ (s)c)S )

or

If ^ts) is selected as
a ~5/^l

(6-2-12)

Equation (6-4-5becomes -
<tA)= 'xCG-eV^)+qAv X^Q-e^)
- +-2.c.^1^aiAiC^t36-Z}'~6)

when t-*-oo  , the steady extensional viscosity is obtained
•_ y_ a *_  5 j * A />>■>7 (T)-3Xdli9vL +3U^:^Al (6-^7)

C i=t l'1 £-1
Equations (6-4-6) and (6-4-7) are the key equations in the
truncated Goddard model to describe the extensional flow 
behavior of polymer solutions.

For the Bird-Garreau model, the strain tensor pV 
(defined in Equation (6-2-18)), Tij (defined in Equation 
(6-2-19)), and the memory function m (defined in Equation 
(6-2-21)) for extensional flow with the viscosity flow field 

given in Equation (6-4-1) take the forms



T^-t) 'TJe Ct') 
T-j (t)= ( Tri T'rett')

Tei (."t) Tsr^-l

1'2 ° II-- \

o -^(6-^-9)1-2 /
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and
hn C-L't', if) = 21-kr 

p=l
e
l + 3<K.^1 (6-4-10)

By combining Equations (6-2-17)# (6-4-8), (6-4-9) and (6-4-10),
• — * *"  • •the apparent extensional viscosity ^^’is obtained as^

b f /-e^L - (6"Z1"11)

Again, as

^<T)

where ,
Since both viscometric and extensional flow data of

[_ I + 2 "y" ^ap I ~

t^-co, the steady extensional viscosity is obtained
°O - - z- I j. fe— 22—57p I -___________ (/ h

L<'+^)6-2t^) (^2t^p)(i-^i)J k
CX.k , and are defined by Equation (6-2-22).

PIB and PAA were available in the present work, the model 
parameters in both Bird-Garreau model and truncated Goddard 
expansion were determined in two different ways: by using the 
viscometric data only and by using both viscometric and exten
sional flow data. The procedures of determining the model 
parameters using the viscometric data were described in Section 
6-2. The model parameters obtained from a computer fitting of 

the "Y )» Z. » 311(1 G’ data are listed in Table 6-2. With

these parameters, Equations (6-4-6) to (6-4-7) and Equations 
(6-4-11) to (6-4-12) give the predictions of^+ and for the 

truncated Goddard expansion and Bird-Garreau model respectively. 
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Both E (in Equations(6-4-11) and (6-4—12)) and b (in Equations 
6-4-6) and (6-4-?)) are arbitrarily given values between 0 and 
1. Fig. 6-9 and Fig, 6-10 give the comparison of the data 
and the model predictions while the data and the corresponding 
predictions from both models are plotted in Figs. 6-13 and 6-14-, 
For the case of determining the model parameters by using both 
viscometric and extensional flow data, the data of, and 
were used. The data of were given the same weight as the com
bination of the and data. Then, the 7,» 'I « and7, data were 
fitted simultaneously using BSOLVE computer program. The para
meters E in Equation (6-4—12) and b in Equation (6-4—7) were 
arbitrarily given a value between 0 and 1 in the computer 
fitting. The fitted model parameters in both truncated Goddard 
expansion and Bird-Garreau model are listed in Table 6-3. With

— t 
the parameters in Table 6-3, the predictions of from the 
truncated Goddard expansion and Bird-Garreau model were obtained 
from Equations (6-4—6) and (6-4—11) respectively. Figs. (6-15) 
to (6-20) give the comparison of the experimental data:£,£Z, and 

7^and the corresponding model predictions, while the 
along with the predictions from both truncated Goddard expansion 
and Bird-Garreau model are shown in Figs. 6-21 and 6-22.

Several observations can be made about the results in 
Figs. 6-9 to 6-22.

(1) With the model parameters determined from the visco
metric flow data, the Bird-Garreau model describes the data

7_ data



Table 6-3 Model Parameters Determined with Both Viscometric and Extensional 
Flow Data.

Solutions Bird--Garreau Model Truncatec Goodarc Expansion
E ^2. 0(1 b <X| 9vz ^5 al a2 a3 a 4 . a5 fl c1 7000 14. 14.6 1.24 0.83 0.96 0.67 1 10 1 0.1 0.01 0.001 30 2500 67000 7.2X106 1.0xl0y 3.2

PIB* 0 7000 10. 13.7 1.28 1.04 o.78 0.81 0 10 1 0.1 0.01 0.001 32 2400 39000 69.1x10 l.OxlC? 4.4

1 9700 39 . 24.6 3.68 2.67 1.6 0.73 1 50 5 0.5 0.05 0.005 3 73 1080 16000 9.3x10^ 0.
PAA**

0 9700 40. 20.4 3.62 2.47 1.96 0.68 0 50 5 0.5 0.05 0.005 3.2 61 932 14000 8.1xl(f 0.5

PIB*  - 10% polyisobutylene in Decalin
PAA**  - 2.8% polyacrylamide in 1:1 mixture by weight of glycerol-water solutions
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Figure 6-18 Comparison of -the Shear Viscosity Data o'f PAA with the Model Predictions;
- Model Parameters Determined from Both Viscometric and Extensional Flow Data
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Figure 6-20 Comparison of the Steady Extensional Viscosity
Data of PAA with the Model Predictions; Model
Parameters Determined from Both Viscometric and
Extensional Flow Data
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Figure 6-21 Comparison of the Instantaneous Extensional
Viscosity Data of PAA, with the Model Predictions; 
Model Parameters Determined from"Both Viscometric 
and Extensional Flow Data
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of PIB better than the truncated Goddard expansion as shown 
in Fig. 6-13. However, as it can be seen in Fig. 6-14, both 
models describe the data of PAA only qualitatively and in 
fact, the truncated Goddard expansion predicts the data 
quantitatively better than the Bird-Carreau model. It should 
be noted that according to the definitions of E (defined in 
Equation (6-2-20)) and b (defined in Equation (6-2-11)), both 

models predict qualitatively the same effect on the steady 
extensional viscosity due to the changes in the ratio of 
second to first normal stress difference in steady shearing 
flow. Also, from Fig. 6-13 and 6-14, we may conclude that 
b and E are not critical parameters in the respective 
truncated Goddard expansion and Bird-Garreau model.

(2) From Figs, 6-9, 6-10, 6-21, and 6-22, it appears 

that no matter how the model parameters were determined, the 
observed 2,  immediately after the step change in extension 
rate was larger and more rapid than the predictions from both 
models. As a comparison, after a step change was made on the 
extension rate the predictions of from the truncated Goddard 
expansion rose and approached the steady extensional viscosity 
much faster than the predictions from Bird-Carreau model. But, 
in general, both models describe the transient extensional flow

*

data poorly for both PIB and PAA.

(3) In the case of determining the model parameters 
with both viscometric and extensional flow data, the data are 
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described pretty well by both models as shown in Fig, 6-17 and 
6-20. This good agreement between the data and model pre
dictions shown in Fig. 6-1? and 6-20 is expected since the 
data is used in the process of determining the parameters in 
both Bird-Carreau model and truncated Goddard expansion.
Similar to the predicted behavior of and from the trun
cated Goddard expansion as shown in Fig.6-1 and Fig. 6-2, the 
predictions of and from the truncated Goddard expansion in 
Figs. 6-15, 6-16, 6-18, and 6-19 show oscillatory behavior. 
As the reasons discussed in Section 6-2, the oscillation in 

/ the predictions of and from the truncated Goddard -expansion 
is due to the truncated characteristics of the form used for
Gj. It should be noted that in order to obtain the model 
predictions of vs , the values of E in the Bird-Garreau 
model and b in the truncated Goddard expansion are required 
in addition to the model parameters. Since b and E are not 
involved in the predicted equations of . V > and

G*  in the respective truncated Goddard expansion and Bird- 
Carreau model, b and E thus were not obtainable in the case 
of fitting the model parameters with viscometric flow data. 
The model predictions ofshown in Figs. 6-13 and 6-14 were 
obtained from Equation (6-4-7) (or (6-4-12)) by arbitrarily 
assigning b (or E) a value between 0 and 1. However, in the case 
of fitting the model parameters with the^,, , anddata, the 
values of b and E were prescribed and the model parameters were 
then determined by using BSOLVE. Because of different fitting
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prcedures in the two cases discussed above, the effect of b 
on the resulting predictions of from the truncated Goddard 
expansion in Figs, 6-13 and 6-1^ is different from that in Figs. 
6-1? and 6-20, However, the effect of E on predicted by the 
Bird-Carreau model is the same for the two cases as it can be 
seen in Figs, 6-13, 6-17,and 6-20, It should be noted
that to date, few experimental data of second normal stress 
difference are available. Based on the existing second normal 
stress difference data (2^,81), the values for b and E are 
ranging from 0 to 2 and -1 to 1 respectively. As it can be seen 
in Figs, 6-13 to 6-20, b (or E) is not a critical parameter 
in the truncated Goddard expansion (or Bird-Carreau model). Hence, 
assigning a value between 0 and 1 for b (or E) in the computer 
fitting does not seem to be a serious limitation.

In summarizing the above discussions, it appears that 
for the two polymer solutions tested in the present work, the Bird- 
Carreau model described both the viscometric and the steady ex
tensional flow data quantitatively better than did the truncated 
Goddard expansion. It has been indicated(78) that the Bird-Carreau 
model can not describe the transient behavior in steady shearing 
flow. The present work shows that the Bird-Carreau model also 
describe transient extensional flow data poorly.
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CHAPTER VII

CONCLUSIONS AND RECOOIENDATIONS

In the present work, an experimental apparatus 
employing a drop elongation motion to achieve extensional 
flow has been designed, constructed, and tested. With 
this instrument, the extensional flow behavior of one 
Newtonian fluid and two viscoelastic polymer solutions 
were studied. The extensional flow data obtained with 
the viscoelastic polymer solutions were compared with the 
predictions of two viscoelastic constitutive equations— 
the Bird-Carreau model and the truncated Goddard expansion. 
The major results are summarized as follows $

(1) For incorporating the interfacial effect into 
the analysis of the drop elongation technique, 
the knowledge of the drop shape, particularly 
the curvature at the end of the drop surface 
is required. Two analyses were made to obtain 
these information: an analytic approximation 
and a numerical analysis. In the former, the 
drop shape during extension were obtained by 
making the assumption that the fluid experience 
uniaxial extension flow. In the numerical 
analysis, the drop elongation phenomena in the 
approximate creep experiment was simulated by 
employing the orthogonal collocation method, 
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and hence the instantaneous drop shape was 
obtained. After comparing the experimental 
data of the curvature at the end of the drop 
shape with the corresponding predictions from 
all these analyses, the analysis based on the 
assumption that the fluid experiences uniaxial 
extensional flow was found to estimate the 
curvature at the end of the drop surface rea
sonably well.

(2) Tests with the Newtonian fluid verify the 
capabilities of the drop elongation apparatus. 
Both stress growth and approximate creep ex
periments can be performed in the drop elongation 
apparatus. With the present control system in 
the apparatus, the prescribed responses in the 
stress growth experiments and the approximate 
creep experiments were achieved in a time period 
less than one second. In general, the controlled 
response in the approximate creep experiments was 
better than that in the stress growth experiments. 
The results for the extensional viscosity obtained 
both from the stress growth and the approximate 
creep experiments are in good agreement with Trouton’s 
law.

(3) Two viscoelastic polymer solutions: a 10% polyiso
butylene in Decalin (PIB) and a 2.8% polyacrylamide 
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in 50150 glycerol-water solution (PAA) were tested 
in both the Weissenberg Rheogoniometer and the 
drop elongation apparatus. In shear flow, both PIB 
and PAA exhibit significant shear-thinning and 
elastic effects. The elastic effects are noted by 
performing oscillatory experiments on the Rheo
goniometer. With the drop elongation apparatus, 
both stress growth and approximate creep experiments 
were carried out. The steady extensional viscosity 
of PIB in the stress growth experiment is reached 
within a shorter period of time than that of PAA for 
the same steady state extension rate. Also, for 
the approximate creep experiment, the extensional 
strain of PIB reaches steady state (extension rate 
is constant or strain increases linearly with time) 

earlier than does PAA at the same' imposed steady state 
stress level. The steady extensional viscosity for 
both polymer solutions was found to increase with 
increasing extension rate over a range of extension 
rates from 0.003 sec”’5’ to 0,016 sec”1 for PAA and 
from 0.003 sec”1 to 0.035 sec”1 for PIB.

(^) Both the truncated Goddard expansion and the Bird- 
Garreau model were used to characterize PIB and PAA 
in two different ways. In the first case, the 
parameters in both models were determined by simul- 
tantaneously fitting the steady and transient shear 



data. The extensional flow data were then 
compared with the corresponding model pre-
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dictions. In the second case, the model 
parameters were obtained by fitting both 
the shear and the extensional flow data, 
with the extensional and shear being weighted 
equally. With the model parameters determined 
from the viscometric flow data, the Bird-Carreau 
model predicted the steady extensional viscosity 
data of PIB better than the truncated Goddard 
expansion,*  both models predicted the steady 
extensional viscosity data of PAA poorly.' When 
the model parameters were determined from both 
viscometric and steady extensional flow data, 
the viscometric and steady extensional flow data 
for both PIB and PAA were in better agreement 
with the corresponding predictions from the Bird- 
Garreau model than with the predictions from the 
truncated Goddard expansion. However, in spite 
of how the model parameters were determined, both 
models were found to predict the transient ex
tensional flow data poorly. It was also found 
that in both the Bird-Garreau model and the truncated 
Goddard expansion, the predictions of the steady ex
tensional viscosity are insensitive to the value of 
the ratio of second normal stress coefficient to



the first normal stress coefficient.
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These studies suggest a number of extensions and 
recommendations for the future work:

(1) It is strongly suggested that the size of the 
glass cylinder be scaled down and that air 
bearings be used. With a smaller glass cy
linder and with air bearings, the maximum 
rotational speed of the glass cylinder can be 
increased and consequently, the operating 
range of the extension rates can be enlarged.

(2) Another suggestion for future research is to 
employ a more uniform light source (say a laser). 
This would reduce the noise generated in the 
photomultiplier tube and hence, the response of 
the control system could be improved.

(3) There is a definite need for making a more complete 
appraisal of some representative rheological models 
by use of both shear and extensional flow data. 
Such work can evaluate the usefulness of these 
models in predicting the flow behavior of polymeric 
materials, and also can provide a direction for the 
future development of the viscoelastic theories.
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APPENDIX I
EQUIPMENT SPECIFICATIONS AND CALIBRATIONS

1-1. Instruments
I-1-1. The Function Generator

(a) exponential potentiometer—Helipot Model NL5611- 
2054-0, from Beckman Instruments, Inc., Fullerton, 
California

(b) linear potentiometer—Helipot Model 5611 series 
from Beckman Instruments, Inc., Fullerton, 
California

(c) sinusoidal potentiometer—Helipot Model NL5713 
R20k C50 SIN/COS, from Beckman Instruments, Inc., 
Fullerton, California

(d) stepper motors—Part Number KR4-5132-P2-S6-F3 and 
K145132-P2.-S-6-F1, from A.W. Haydon Company,

' - -Waterbury, Connecticut
(e) stepper board (for controlling the rotational 

speed of the stepper motors)—Part Number 5OOO-77»  
from Houston Instrument, Bellaire, Texas

*

I-1-2. The Light Sensing Assembly
(a) photomultiplier tube—RCA 931A (9-stage, side-on 

type having S-4 spectral response), from RCA/ 
Electronic Components, Harrison, New Jersey

(b) focus lens—Part Number 823575 Cannon Lens FL 50mm 
1:1.8
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(c) photomultiplier tube power supply—Model Number
4?2R (voltage ranging from 10 volts to 2110 volts), 
from Brandenburg, England

(d) light source—Kodak Carousel slide projector 600H 
with ELH Quartz lamp from Eastman Kodak Company, 
Rochester, New York

(e) blue filter—Part Number 26-5611, from Ealing 
Optics, Cambridge, Massachusetts

I-1-3• Controller and Drive System
(a) servo controller—Model NC 102F solid state de 

servo controller from Control Systems Research, 
Inc., Pittsburgh, P.A.

(b) drive motor—Model Number 6VM-1-C172 from Micro 
Switch, Freeport, Illinois

I-1-4. The Rotating Cylinder Assembly
(a) glass cylinder—Precision bore pyrex tube (2" 

0,001 I.D., 3/16" heavy wall, O.D. ground & 
polished, 24" long) from V/ilmad Glass Co,, Inc., 
Buena, New Jersey

(b) bearings—NDH Bearings Number 8506 (Bore dia
meter 1 3/16", O.D.=2 7/16"), from New Departure 
Hyatt Bearings, Division of General Motors Cor
poration, Sandusky, Ohio

(c) temperature controller—Model 400, from Victory 
Engineering Co,, Perkasie, P.A.
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I-1-5• The Measurement Apparatus
(a) recorder 1—Omniscribe two-pens recorder, from 

Houston Instrument, Bellaire, Texas
(b) recorder 2—Model 320 Sanborn dual channels de 

amplifier recorder, from Sanborn Division, 
Hewlett Packard, Waltham, Massachusetts

(c) digital voltmeter—Series CX-2, from Non-linear 
System, Inc., Del Mar, California

(d) logarithmic amplifier—Model 4-350  from Teledyne 
Philbrick, Burlington, Massachusetts

*

1-2. The Electronic Diagrams of the Analog Devices
1-2-1. The Function Generator—The electronic diagram is 

shown in Fig.I-1, By adjusting the positions of 
Switches FA and FB in Fig.I-1, a signal ranging from 
0 to 10 volts with specific functional characteristics 
(exponential, linear, and sinusoidal) can be produced 
at point P,

Since the rotational speed of the stepper motor 
is controlled by the stepper board, the frequency of 
the sinusoidal function, the in the exponential 
function , and the slope of the linear function are 
dependent upon the speed settings in the stepper board. 

1-2-2. The Controller—Fig.1-2 shows the electronic diagram of 
the controller. The gain of the controller is adjustable 
by changing the resistance in the variable resistor 
in Fig.1-2. Terminals / and g are the inputs to the con-
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Figure 1-1 Electronic Diagram of the Function

Generator.
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Figure 1-2 The Circuit of the Controller
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troller while Terminals and Id are the outputs and 
are connected to the drive motor.

1-2-3*  The Multiplier—The electronic diagram and the electronic 
components of the multiplier are shown in Fig.1-3. Both 
the input and the output of the multiplier are limited 
between 0 and 10 volts. It should be noted that the 
output of the multiplier is equal to 1/10 of the expected 
value. For example, with input 1=1 volt and input 2=2 
volts, the output of the multiplier is equal to 

io 
— 0-2. volts.

If input 1 is equal to input 2, the multiplier then 
becomes a square device.

1-2-4. The Quadratic Inverter—Based on the calibrations described 
in Section 3-5-1, the quadratic inverter was used for 
converting the signal Sg from the photomultiplier tube to 
the signal which is quantitatively proportional to the 
drop diameter D. The electronic diagram of the quadratic 
inverter is shown in Fig 1-4, Block T is a square device 
as described in Section 1-2-3*  Switch S-l is a 5 poles- 
5 position switch. The positions of the Switch S-l and 
the resulting electronic connections are listed in Table 
1-1.

1-2-5*  The amplifier—For a given input voltage x, the output 
voltage of an amplifier with gain R is Rx. The electronic 
diagram of the amplifier is shown in Fig. 1-5*  The values



Figure 1-3 The Circuit of the Multiplier
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Figure 1-4 The Circuit of the Quadratic Inverter
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'\Position

Connectioit^ 1 2 3 4 5

C1 "do" " up " 'up" "up" " up "

C2 "do" "up" 'up" "up" "up"

C3 "up " "up " 'do" "up " "do"

C4 "up " "up " 'up " "do" "do"

Q 
tn

" up " "up" ’do" "do" "up"

Table 1-1 The Positions of Switch S-l in the Quadratic
Inverter and the Resulting Connections



The Circuit of the AmplifierFigure 1-5

Rl+R2
Table 1-2 The Values of the Resistors in the Amplifier 

and the Resulting Gain

Gain R1 R2

1 ' 1 kIL 9 k IL
100 100 JT- 9.9 kit

1000 100 JI. 99.9 kJTL

input

Ox
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of resistor R-^ and R^ and the resulting gain 3276 
listed in Table 1-2.

1-2-6. Inverter—Fig.1-6 shows the electronic diagram of the 
inverter. The function of the inverter is to generate 
an output signal having the same voltage level as the 
input but with opposite polarity.

Figure 1-6. The Circuit of the Inverter

1-3• Calibrations of the Analog Devices
1-3-1• Calibration of the Multiplier

To obtain the maximum accuracy of the output signal, 
the multiplier must be frequently calibrated. The calibrating 
procedures for the multiplier are as follows:

Step 1. For the X input offset
(a) Connect Oscillator (1 KHZ» 5 sinewave) 

to the "Y" input (pin ^).
(b) Connect "X" input (pin 9) to ground.
(c) Adjust X offset potentiometer ?£ for an ac 

null at the output.
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Step 2. For the Y input offset
(a) Connect Oscillator (1 KH , 5 V sinewave)z pp 

to the "X" input (pin 9)
(b) Connect "Y" input (pin to ground.
(c) Adjust "Y" offset potentiometer for an 

ac null at the output.
Step 3. For the output offset

(a) Connect both "X" and ”Y” input to ground.
(b) Adjust output potentiometer P^, until the 

output voltage is zero volts de.
Step M-. For the scale factor

(a) Apply 4- 10 volt de to both the "X" and "Y" 
inputs.

(b) Adjust P^ to achieve +10.0 volt at the 
output.

Step 5» Repeat steps 1 through as necessary.
I-3-2. Calibration of the Amplifier

The amplifier with gain k is calibrated as follows: 
Step 1. Connect the input to ground.
Step 2. Adjust the offset potentiometer until the 

output voltage is zero volts de.
Step 3« Apply +1 volt de to the input.
Step 4. Adjust the gain potentiometer to achieve

the expected output value, i.e. input=l volt 
and k=^, then the expected output is kx=2lxl 
=4 volts.
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Step 5« Repeat steps 1 through 4- as necessary.
I-3-3. Calibration of the Quadratic Inverter

For a given set of a, b, and c values and the input 
voltage Xj, the quadratic inverter with three adjustable 
potentiometers can produce an output signal xQ according to 
the following equation:

p
xI= axQ — bx0+ c (1-3-1)

The procedures for setting the values of a>b, and c 
in the quadratic inverter are as follows:
(i) Setting the value of a

Step l.Set the Switch S-l in position "3".
Step 2.Set the Switch S-2 in . position "CAL".
Step 3.Set the Switch S-3 in position '’OPR" ,
Step 4.Turn the potentiometer P5 until the output of 

the quadratic inverter is -2 volts.
Step 5.Set the Switch S-3 in position "CAL*'.
Step 6.Turn the potentiometer A until the output of the 

quadratic inverter reachs the expected value of 
(-0.4a), i.e. if a=2,then the expected value is 
-0.8 volts.

(ii) Setting the value of b
Step l.Set the Switch S-l in position ”4".
Step 2.Set the Switch S-2 in position "CAL”.
Step 3.Set the Switch S-3 in position "OPR".
Step 4.Turn the potentiometer P5 until the output of the 

quadratic inverter is -2 volts.
Step 5»Set the Switch S-3 in position "CAL".
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Step 6.Turn the potentiometer B until the output of the 
quadratic inverter reachs the expected value of 
(-2b),i.e., if b=2,then the expected value is 
-h volts.

(iii) Setting the value of c
Step l.Set the Switch S-l in position "5".
Step 2.Set the Switch S-3 in position "CAL".
Step 3•Turn the potentionmeter C until the output of the 

quadratic inverter is equal to the value of c.
It should be noted that after completing the procedures for setting 
the values of a,b,and c. Switches S-l, S-2, and S-3 should be 
turned to positions ”1", "OPR", and "OPR" respectively. In that 
case, for a given input x^ the quadratic inverter will generate 
an output xQ according to Equation (1-3-1).

I-4-. Theory of Control
Two different types of experiments- stress growth and 

approximate creep were performed in the drop elongation apparatus. 
In the stress growth experiments, the drop diameter is required to 
decrease exponentially with time while in the approximate creep 
experiments, the product of the rotational speedtO and the drop 
diameterD is held constant throughout the course of experiments.

To achieve the desired behavior of the drop diameter and u)D 
in respective stress growth and approximate creep experiments, two 
feedback control loops were used in the drop elongation apparatus. 
The block diagrams of the feedback loops are shown in Fig. 1-7 for



controller motorcomparator

Figure 1-7 The Closed-Loop Block Diagrams in the Stress Growth Experiment

161
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the stress growth and. in Fig. 1-8 for the approximate creep 
experiments where

Sp= signal from the function generator
5^= controlled signal
A = gain of the comparator
Kc= gain of the controller

^l’^2:= sca-^e factors
K = gain of the motor m
c = characteristic constant of the motor
Kmn= the tachometer constantJ. u

G(s)= the transfer function of a lumped, device including 
the rotating cylinder, the light sensing assembly, 
the drop response, the amplifier, the quadratic in
verter, and the logarithmic amplifier.

L(s)= the transfer function of a lumped device including 
the rotating cylinder, the light sensing assembly, 
the drop device, the amplifier, and the quadratic 
inverter.

The closed loop block diagrams in Figs. 1-7 and 1-8 can be re
duced to the open loop diagrams in Figs 1-9 and 1-10 respectively.

To achieve the desired control response without knowing
L(s) and G(s), the following relations must be satisfied

AK,K K L(S) »> (s+c+K K K„r) for the stress ’ (I-4.-1)
' growth experiment

AKlKcKm Pss+c+KTCK2KcKm^ f°r the aPPr0“ U-^-2') 
’ v F ximate creep experiment

Both equations can be satisfied by employing a large gain A of 
the comparator.
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Figure 1-8 The Closed-Loop Block Diagrams in the Approximate Creep Experiment
o\
LO



Figure 1-9 The Open-Loop Block Diagrams in the Stress Growth Experiment
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Figure 1-10 The Open-Loop Block Diagrams in the Approximate Creep
Experiment

SD

" ^(s+c+KTCK2KmKc)

M!lKcKm g<s>ktc

U(s)

tr9
T



165

APPENDIX II
SELECTION OF COLLOCATION POINTS

IN USING ORTHOGONAL COLLOCATION METHOD

In Section 4-2-2, the unknown coefficients C_ (m=2,4,6..) m
in Equation (4-2-32) were determined at any instant of time by 
using two approximate method: the least square and the orthogonal 
collocation. In the latter regard, a set of collocation points 
must be selected at which Equation (4-2-32) is satisfied. In 
this appendix the way of selecting the collocation points is 
described.

Since Trr * , and can be related to the stream
function'll through the Newton’s law of viscosity, Equation (4-2 

-14) and (4-2-22) can be generalized as
('V-) =0 in V (II-l)

and £_s = ° on S (II-2)
respectively, where S is the drop surface, V is the drop domain

V s(volume), and L and L are the respective partial differential
equation and boundary-condition operator.

As shown in Section 4-2-2, a function is found to 
satisfy Equation (II-l) as , , />„ si—

(II-3)

where Legendre Polynomial of degree
m, p is defined as cosS, and Cm (m=2,4,6...) are undetermined 
constants.

By substituting Equation (II-3) into Equation (II-2), 
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the boundary residual is obtained,
Rn=:L(^) (II-1O

Analogous to Galerkin's method, the boundary residual was made 
to be orthogonal to a set of orthogonal polynomials with 
degree i<n on the drop surface S.

jLS(^PAdS=o (U-5)
s

where P^ is yet to be specified.
Noting that ds is equal to and s are defined

in the coordinate system shown in Fig. 4—M-) and x= coss1, 
Equation (II-5) becomes

Pa (^) (/-xfc/x = O II_6 )

Hence, once has been adjusted to satisfy Ro =0 at n 
collocation points, x^, ‘the function /?PL(V7 ) either
vanishes everywhere or contains a polynomial factor Gn(x) of 
degree n in x whose zeroes are the collocation points. Thus, 
the collocation points are chosen by specifying that Rj-A Vy ) 

is orthogonal to all the functions Pj-(x) with respect to the 
weight function x""2(l-x) 2 on the interval (^O,1J, This speci- 
fication is automatically satisfied by taking RDL( r-r ) and P^ 
(x) from the orthogonal polynomial set defined by

J’ Pa (X) pn (X) do (II-?)

for all positive integers i,n and i^n.
The polynomials defined by Equation (II-7) are Jacobi 

Polynomials. Hence, the n collocation points used in the 



numerical simulation in Section ^-2-2 are the zeroes of the 
Jacobi Polynomials of degree n.

16?
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APPEPJDIX III
SHEAR AND OSCILLATORY DATA
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Table III-l. Shear Data of PIB

Shear Rate Viscosity Normal Stress Difference
(sec-1) (poise) (dyne/cm2)
0.043 6850 —
0.054 6540 —
0.068 6421 —
0.085 6300 -
0.108 6190 —
0.136 5800 ••
0.1? 5442 —

0.215 5190 —

0.27 5000 -
0.34 4564 —
0.43 4366 -
O.54 4030 2254
0.68 3970 2772
0.85 3744 3433
1.08 3300 4283
1.36 3150 5184
1,7 2880 7018
2.15 2608 7913
2.7 2454 9860
3.^1 2302 12220
4.3 2203 15120
5.^ 1989 17440
6.8 1950 19940
8.54 1820 23510
10.8 1750 25850
13.6 1601 27830
17.1 1405 —
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Table III-2. Oscillatory Data of PIB

Frequency 
(sec--*-)

Dynamic Viscosity 
(poise)

Dynamic Rigidity 
(dyne/cm2)

0.0299 6700 —
0.037? 6650 5.13
0.0^75 6430
0.06 6400 59.33
0.075^ 6213 97.4
0.0950 6187 142.5
0.1194 5948 196.9
0.150 5500 260
0.188 5200 337 '
0.238 4600 428.3
0.299 4225 533
0.377 3750 657.3
0.4750 3652 734
0.6 3322 874
0.754 3202 1045
0.95 2899 1272
1.194 2703 1575
1.5 2480 1834
1.88 2250 2182
2.38 2050 2539
2.99 1956 3132
3.77 1745 4234
4.75 1555 4800
6.0 1467 5906
7.54 1321 5505
9.425 1361 6227
11.9 1120 5812
14.95 1002 —
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Table III-3. Shear Data of PAA

Shear Rate(sec-1)
Viscosity 
(poise)

Normal Stress Difference
(dyne/cm^)

0.0054- 9602 —
0.0068 9500 —
0.0085 9480
0.0108 9168 —
0.0136 7903 —
0.01? 6700 —
0.022 6154 —
0.027 5317 —
0.0342 4645 —

0.043 4183 —
0.054 3^39 —
0.068 3161- —
0.0855 2652 —
0.108 2308 —
0.136 1980 —
0.17 1690 —

0.215 1402 —

0.271 1210 —
0.34 900 —
0.43 780 —
0.5^ 720 —
0.68 530 ••

0.855 470 1216
1.08 390 1700
1.36 340 2000
1.7 280 2172
2.15 240 2508
2.71 195.5 2800
3.^ 172 3051
^.3 145 3427
5.^ 119 4067
6.8 100 4387
8.5^ 88 4702
10.8 73 5984
13.6 68 65^3
17.1 60.5 7642
21.5 53 8806
27.1 46 10570
3^.2 35.2 12000
5^.1 28.5 14500
85.4 20.5 20450
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Table Oscillatory Data of PAA

Frequency Dynamic Viscosity 
(sec~l) (poise)

0.006 8691
0.0075 8450
0.0095 8000
0.012 6902
0.015 5802
0.0188 5300
0.0238 4500
0.03 4005
0.0377 3200
0.0475 2650
0.06 2102
0.075 1737
0.095 1415
0.12 1261
0.15 1095
0.188 856.9
0.238 742
0.299 600
0.377 498
0.475 400.5
0.596 358
0.754 285.5
0.95 230.2
1.2 190.1
1.5 163.0
1.88 134.5
2.38 112.7
2.99 91.8
3.77 75.6
4.75 61.7
5.95 50.3
7.54' 41.3
9.43 33.6
11.9 27.7
15.0 24.4
18.85 19.0
23.81 ' 19.4

Dynamic Rigidity 
(dyne/cm^)

32.1
36.7
39.8
47.0
61.0
73.0
85.5
98.3

112.0
127.6
135.0
158.0
177.0
183.0
220
237
256,8
281.0
294.0
321.4
351.5
373.4
398.0
429.0
451.0
486.0
510.0
549.0 
579.5 
666,0 
688
710 
796 
878 
989 
1120
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APPENDIX IV
EXTENSIONAL DATA
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IV-1. Stress Growth Data

Table IV-l-rl, Stress Growth Data of 
Newtonian Silicone Oil 
at = 0.003 sec~l

Time 
(sec )

Radius 
(cm)

"^rr) 
(dyne/cm-)

Instantaneous 
Extensional Viscosity 

(poise)

0 0.^13^ 0 0

1 0.413 40 15440

2 0.4125 51 19591

3 0.412 48 187 08

14- 0.4114 47 18423

5 0.4109 39 15082

6 0.4103 38 15169

7 0.4100 45 17577

8 0.4090 47 18076

9 0.4085 46 17781

10 0.408 40 15576
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IY-1. Stress Growth Data

Table IV-1-2. Stress Growth Data of
Newtonian Silicone oil atT = 0.005 sec""'1’

Time Radius ClTzz " TTrr) Instantaneous
Extensional Viscosity

(sec ) (cm) (dyne/cm2) (poise)

0 0.396 0 0

0.5 0.396 65 13014

1 0.395 80 16016

2 0.393 87 17973

3 0.392 84 16706

ip 0.391 86 17327

5 0.390 92 18432

6 0.389 86 17136

7 0.388 84 16796

8 0.387 84 16939

9 0.386 85 17074

10 0.385 84 16722
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Table IV-1-3- Stress Growth Data of 
Newtonian Silicone Oil 
at = 0.0077 sec""'’

x InstantaneousTime Radius Q1ZIZ4214, Extensional Viscosity
(sec ' ) (cm) (dyne/cm2) (poise)

0 0.377 0 0

0.5 0. 377 113 1M55

1 0.376 136 17 621V

2 0.37^ 1^6 18913

3 0.373 1^3 18580

0.372 133 17215

5 0.370 135 17^53

6 0.369 135 17516

7 0.367 125 16297

8 0.366 12^ 16097

9 0.36^ 123 15889

10 0.363 123 15876
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Table IV-1-4. Stress Growth Data of 
Newtonian Silicone Oil 
at = O,O133sec-^

Time 
(sec )

Radius 
(cm) \dyne/cm2)

Instantaneous
Extensional Viscosity 

(poise)

0 0.368 0 0

0.5 0.367 149 11202

1 0.365 220 16555

2 0.363 249 18756

3 0.361 244 18393

4 0.358 242 18246

5 0.356 242 18247

6 0.353 244 18387

7 0.351 238 17980

8 0.349 215 16190

9 0.346 221 16672

10 0.344 228 17155
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Table IV-1-5. Stress Growth Data of Newtonian
Silicone Oil at*y'=  0.015 sec-1

^z-1Vrr)

(dyne/cm2)

Instantaneous
Time 
(sec

Radius 
) (cm)

Extensional Viscosity
(poise)

0 0.321 0 0

1 0.320 262j. 17595

2 0.318 262 17^72

3 0.315 279 18603

14. 0.313 281 16734-

5 0.311 276 18^03

6 0.308 268 17828

? 0.306 258 1724-4-

8 0.303 251 16754-

9 0.301 244 16250

10 0.299 24-5 16290
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Table IV-1-6, Stress Growth Data of 
Newtonian Silicone Oil 
at V = 0,0171 sec-1

Time Radius
(sec ) (cm)

Instantaneous
-"plrr') Extensional Viscosity

(dyne/cm2) (poise)

0 0.324 0 0

0.5 0.323 159 9277

1 0.320 292 17038

2 O.318 294 17154

3 0.316 314 18270

4 0.313 305 17831

5 0.310 304 17724

6 0.308 304 17780

7 0.305 296 17295

8 0.3024 296 17320

9 0.300 269 15744

10 0.297 260 15204
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Table IV-1-7. Stress Growth Data of 
Newtonian Silicone Oil
at = 0,,0193 sec""

Time Radius (jTsa ' ITrr) Instantaneous 
Extensional viscosity

(sec ’) (cm) (dyne/cmz) (poise)

0 0.390 0 0

0.5 0.391 142 7356

1 0.389 293 15170

2 0.38? 328 17033

3 0.382 348 18053

0.379 352 18280

5 0.375 369 19130

6 0.372 332 17223

7 0.368 325 16880

8 0.365 317 16471

9 0.361 329 17097

10 0.358 325 16856
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Table IV-1-8. Stress Growth Data of 
Newtonian Silicone Oil 
at "X = 0.03 sec"^

Time 
(sec )

1— -rr x Instantaneous Radius ( lie?" llrr J Extensional Viscosity
(cm) (dyne/cm^) (poise)

0 0.401 0 0

0.5 0.400 188 6274

1 0.397 522 17401

2 0.391 548 18247

3 0.385 541 18034

4 0.379 527 17565

5 0.374 521 17367

6 0.368 505 16811

7 0.363 496 16538

8 0.357 492 16384

9 0.352 487 16248

10 0.347 476 15887
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Table IV-1-■9. Stress
PIB at'

Growth Data of 
t = 0.0055 sec-1

Time Radius (tT?? - TThe-) 
(dyne/cm2)

Instantaneous
Extensional Viscosity

(sec ) (cm) (poise)

0 0.335 0 0

1 0.33^ 22 4-120

2 0.333 39 7003

3 0.332 61 11100

0.331 102 18502

5 0.330 105 19002

6 0.329 110 20127

7 0.329 111 2034-9

8 0.328 115 20988

9 0.327 113 20510

10 0.326 10^ 20530

11 0.325 107 1954-6
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Table IV-1-10. Stress Growth Data of
PIB at = 0.0082 sec”1

Time Radius
Instantaneous

Extensional Viscosity
(sec ) (cm) Cdyne/cm2) (poise)

0 0.309 0 0

1 0.308 41 5130

2 0.306 58 7040

3 0.306 82 10050

0.304 100 12283

5 0.303 106 13001

6 0.302 122 15400

7 0.301 152 18571

8 0.300 16? 20494

9 0.299 l?0 20778

10 0.298 165 20226

11 0,296 163 19941

12 0.295 174 21362

13 0.294 178 21856

lip 0.293 176 21588
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Table IV-1-11. Stress Growth Data of 
PIB at V = 0.0086 sec-^

Time 
sec'

Radius 
) (cm) (dyne/ cm2)

Instantaneous
Extensional Viscosity

(poise)

0 0.313 0 0

1 0.313 22 2482

2 0.310 59 6909

3 0.310 60 6971

4 0.309 82 9585

5 0.308 103 12009

6 0.307 no 12869

7 0.306 139 16144

8 0.305 154 18046

9 0.303 176 20509

10 0.303 171 19851

11 0.301 180 21011

12 0.301 169 19616

13 0.299 174 20342

14 0.298 172 20162

15 0.296 188 20854
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Table IV-1-12. Stress Growth Data of
PIB at is = 0.0107 sec"1

Instantaneous
Time Radius Extensional Viscosity

( sec) (cm) (dyne/cm2) (poise)

0 0.303 0 0

1 0.301 42 3962

2 0.300 79 7383

3 0,298 104 9738

M- 0.297 103 9671

5 0.295 117 10982

6 0.294 176 16476

7 0.292 167 15668

8 0.291 160 15000

9 0.290 185 17243

10 0.288 197 18451

11 0.28? 179 16800

12 0.286 206 19261

13 0.283 200 18699

14 0.283 210 19655

15 0.279 203 19014
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Table IV-1-•13. Stress Growth Data of
PIB at^- = 0.01307 sec"1

Time 
(sec)

Radius 
(cm) (dyne/cm2)

Instantaneous
Extensional Viscosity

(poise)

0 0.334 0 0
1 0.332 52 4001
2 0.330 105 8002
Q 0.328 130 9957
4 0.325 170 13007

5 0.323 196 15004

6 0.321 242 18502

7 0.319 268 20502

8 0.317 289 22120

9 0.315 298 22791
10 0.313 312 23831
11 0.311 309 23587

12 0.309 308 23597

13 0.307 305 233i+0



18?

Table IV-1-14. Stress Growth Data of
PIB at = 0,0156 sec"1

Time Radius
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm2) (poise)

0 0.352 0 0
1 0.351 60 3848
2 0.3^8 102 6525

3 0.3M-6 140 8967
0.3^ 174 11131.4

5 0.3^2 214 13720

6 0.339 252 16119

7 0.337 269 16236
8 0.335 380 22965

9 0.333 370 22346

10 0.331 373 22576

11 0.328 389 23939
12 O.326 408 24690

13 0.323 404 24434

1^ 0.321 408 24640
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Table IV-1-15. Stress Growth Data of 
PIB at y = 0.01564 sec-1

Time 
(sec)

Radius 
(cm) (dyne/cm^)

Instantaneous
Extensional Viscosity

(poise)

0 0.39^ 0 0
1 0.391 124 8275
2 0.388 181 12037

3 0.385 229 15272

4- O.383 28? 19124

5 O.38O 285 18913
6 0.377 327 21757

7 0.375 337 22479

8 0.372 354 23657

9 0.369 379 25302

10 0.366 384 25564

11 0.36^ 388 25881

12 0.361 386 25686
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Table IV-1-16. Stress Growth Data of
PIB at T = 0,0161 sec”1

Time Radius
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm^) (poise)

0 0.312 0 0

1 0.310 157 9829
2 0.30? 221 13761

3 0.305 260 16161

4 0.302 345 21453

5 0.300 529 26665
6 0.298 500 31089

7 0.295 496 30848 '

8 0.293 488 30343

9 0.290 448 27846

10 0.288 479 29815

11 0.286 467 29036
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Table IV-1-17J, Stress Growth Data of 
PIB at | = 0.0163 sec-1

Time Radius (it- irJ
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm2) (poise)

0 0.351 0 0

1 0.3^7 125 7668

2 0.3^5 203 12470

3 0.3^ 253 15557
lv 0.3^1 324- 19883

5 0.339 3^8 21356

6 0.336 388 23765

1 0.33^- 399 24512

8 0.332 432 26559

9 0.329 ^37 26809

10 0.327 ^9 275H
11 0.32^ 27283

12 0.322 ^50 27584
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Table IV-1--18. Stress
PIB at

Growth Data of
X = 0.018 sec"1

Time Radius (iRz-ITJ
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm^) (poise)

0 0.393 0 0
1 0.390 161 8944

2 0.38? 24-3 9003

3 0.383 321 13508
4 0.380 360 17851

5 0.376 4-01 20011
6 . 0.373 4-33 22250

7 0.370 449 24099
8 0.366 4-30 24960

9 0.363 44-5 23907
10 0.360 441 24757
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Table IV-1-19. Stress Growth Data of
PIB at 7/ = 0.020 sec”1

Time Radius (7r„-ir„) Instantaneous
Extensional Viscosity

(sec) (cm) (dyne/cm2) (poise)

0 0.386 0 0

1 0.383 131 6524

2 0.378 258 12911
3 0.375 318 15885
4- 0.372 360 18040

5 0.369 379 18960

6 0.366 434 21685

? 0.362 475 23812

8 0.359 529 26416

9 0.356 576 28770

10 0.353 571 28531

11 0.349 592 29605

12 0.346 605 30250

13 0.342 617 30841

14 0.339 612 30594
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Table IV-1-20, Stress Growth Data of
PIB at 5" = 0.0202 sec"1

(ir^-TJrr)
(dyne/ cm^)

Instantaneous
Time 
(sec)

Radius 
(cm)

Extensional Viscosity 
(poise)

0 0.322 0 0

1 0.320 133 6605
2 0.317 232 11502

3 0.31^ 303 15001

11- 0.310 426 21102

5 0.307 453 22413

6 0.304 513 25409

7 0.301 508 25003

8 0.298 503 24900

9 0.295 473 24500' ..

10 0.292 517 25873

11 0.289 519 26008 ..
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Table IV-1-21. Stress Growth Data of
PIB at = 0.0232 sec"1

Time Radius CTTsz. ' Kfr)
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm2) (poise)

0 0.319 0 0
1 0.317 130.2 5600
2 0.313 313.2 13511
3 0.310 37^ 16122

0.306 U05 17472

5 0.303 518 22324
6 0.299 598 25771
7 0.296 588 25321
8 0.2922 607 26199

9 0.289 638 27484
10 0.286 631 27182

11 0.282 624 26868
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Table IV-1-22. Stress Growth Data of
PIB at = 0.0253 sec”1

Time 
(sec)

Radius 
(cm) (dyne/cmz)

Instantaneous
Extensional Viscosity

(poise)

0 0.323 0 0

1 0.321 153 6052
2 0.317 228 903^

3 0.313 355 14-022
0.309 ^31 1703^

5 0.305 53^ 21120

6 0.301 683 26977

7 0.297 7U 28216

8 0.29^ 707 27938

9 0.290 702 27717
10 ' 0.286 696 27524-

11 0.283 698 27579
12 0.279 689 27234-

13 0.276 695 274-50
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Table IV-1-■23. Stress Growth Data of ,
PIB at ■y = 0.0279 sec"^

Instantaneous
Time Radius Extensional Viscosity
sec) (cm) (dyne/cm1") (poise)
0 0.336 0 0
1 0.329 248 8890
2 0.326 374 13421
3 0.322 579 20?61

0.318 757 27114
5 0.31^ 868 31112
6 0.310 895 32067
7 0.306 942 33623

Table IV-1-•24, Stress Growth Data of ,
PIB at ■y = 0,0283 sec-

Instantaneous
Time Radius Extensional Viscosity
(sec) (cm) (dyne/cm1" ) (poise)

0 0.353 0 0
1 0.341 657 23219
2 0.337 670 23678
3 0.333 797 28188
4 0.328 903 31913
5 0.324 897 31687
6 0.319 996 35234
7 0.314 944 33407
8 0.311 1025 36277
9 0.306 1039 36756
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Time

Table IV-1-25. Stress 
PIB at

Growth Data of_1 
= 0.029 sec”

Instantaneous
Extensional ViscosityRadius

(sec) (cm) (dyne/cm1") (poise)
0 0.356 0 • 0
1 0.3^6 233 8050
2 0.338 322 11152
3 0.33^ 536 18551
4 0.329 739 25555
5 0.323 866 30002
6 0.319 970 33558
7 0.315 1041 36001
8 0.311 1011 34980
9 0.308 1068 36937

Table IV-1-26. Stress
PIB at

Growth Data of n
5 = 0.031 sec

/--rr \ Instantaneous
Time Radius ( Hi $ " i’rr)n Extensional Viscosity
(sec) (cm) (dyne/cm^) (poise)

0 0.326 0 0
1 0.321 249 8050
2 0.317 419 13523
3 0.312 623 20080
4 0.306 812 26202
5 0.301 1005 32865
6 0.298 1032 33739
7 0.293 1080 35298
8 0.289 1088 35569
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Table IV-1-27. Stress Growth Data of 
PIB at = 0.03^5 sec”

Instantaneous
Time Radius Extensional Viscosity
sec) (cm) (dyne/cm1") (poise)
0 0.33^ 0 0
0.5 0.333 85 2455
1 0.331 254 7360
1.5 0.326 380 11018
2 0.324 547 15843
3 0.318 854 24750
tv 0.313 1074 31131
5 0.308 1207 34968

Table IV-1-28, Stress Growth Data of 
PIB at = 0.0358 sec"

Time Radius
Instantaneous 

Extensional Viscosity
(sec) (cm) (dyne/cm1') (poise)

0 0.352 0 0
0.5 0.350 124 3472
1 0.347 250 6989
1.5 0.345 481 13447
2 0.342 700 19563
2.5 0.339 882 24654
3 0.337 1078 30139
3.5 0.333 1188 33227
4 0.330 1270 35496
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Table IV-1-29. Stress Growth Data of

Time Radius

PAA at = 0.0064- sec"*"*"

( ' Tfri-) Instantaneous 
Extensional Viscosity

(sec')', c- (cm) (dyne/cm2) (poise)

0 0.277 0 0
1 0.276 84- 13129
2 0.275 88 13744

3 0.273 95 14834

0.273 98 15250

5 0.272 103 15983
6 0.272 111 17283

7 0.271 131 20473

8 0.270 136 21178

9 0.269 135 21011

10 0.269 141 21914

12 0.267 166 25878
14- 0.265 170 26467

16 0.26^ 183 28454

18 0.262 186 28989
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Table IV-1-30, Stress Growth Data of
PAA at = O.OO76 sec”

Time 
(sec)

Radius 
(cm) (dyne/cm^)

Instantaneous
Extensional Viscosity 

(poise)

0 0.331 0 0
1 0.328 99 13002
2 0.328 107 14015

3 0.326 118 15502
4 0.325 128 16721

5 0.323 128 16774
6 0.322 132 17250

7 0.321 153 20010
8 0.320 156 20512

9 0.319 166 21734
10 0.319 172 22522
12 0.315 191 25014

14 0.313 210 27532
16 0.310 146 32251
18 0.308 251 32887
20 0.305 251 32840
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Table IV-1-31. Stress Grovzth Data of
PAA at = 0.0084 sec”

Time 
(sec)

Radius 
(cm) (dyne/cm2)

Instantaneous
Extensional Viscosity

(poise)

0 0.323 0 0

1 0.321 112 13389
2 0.320 120 14312

3 0.319 110 13141

4- 0.318 127 15109

5 0.317 132 15744

6 0.316 143 17132

7 0.3U 154 18431

8 0.312 157 18686

9 0.311 172 20543

10 0.310 174 20787
12 0.307 189 22573
1^ 0.305 223 26719

16 0.302 237 28225

18 0.300 262 31302

20 0.297 266 31899
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Table IV-1-32, Stress Growth Data of
PAA at = 0.0088 sec"^

Time 
(sec)

Radius 
(cm)

-IT,J 
(dyne/cm^)

Instantaneous
Extensional Viscosity 

(poise)

0 0.310 0 0
1 0.299 95 10814
2 0.298 124 14060

3 0.296 128 14531
4- 0.296 137 15568

5 0.294 151 17176
6 0.292 170 19298

? 0.292 180 20423
8 0.289 192 21766

9 0.288 212 24063
10 0.28? 226 25750
12 0.285 248 28144

14 0.282 286 32475
16 0.279 285 32439
18 0.277 286 32491

20 0.274 286 32505
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Table IV-1-33*  Stress Growth Data of
PAA at = 0.0094 sec""

Time 
(sec)

Radius 
(cm)

CirCT.-ir,r)
(dyne/cm^)

Instantaneous
Extensional Viscosity

(poise)

0 0.312 0 0
1 0.30? 119 12634
2 0.306 125 13230

3 0.304 123 13018
0.302 124 13177

5 0.301 135 14325
6 0.300 150 15982

7 0.298 162 17145
8 0.297 160 I6965

9 0.296 160 16883
10 0.294 184 19589
12 0.292 217 23108
1^ 0.289 255 27112
16 0.286 284 30176
18 0.283 298 31655
20 0.281 313 331^9
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Table IV-1-3^. Stress Growth Data of 
PAA at = 0.0105 sec”"*"

Time 
(sec)

Radius 
(cm)- (dyne/cm2)

Instantaneous
Extensional Viscosity

(poise)

0 0.292 0 0

1 0.290 190 18 07 9
2 0,288 195 18567

3 0.28? 200 19120

4- 0.285 221 21060

5 0.284 235 22408

6 0. 283 250 23766

7 0.280 271 25797
8 0.279 269 25646

9 0.278 310 29541
10 0.276 321 30605

12 0.273 377 35905
1^ 0.270 371 35345
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Table IV-1-35- Stress Growth Data of

Time 
(sec)

PAA at y = 0.012 sec-1

Radius 
(cm)

'TTio-) 
(dyne/cm^)

Instantaneous
Extensional Viscosity

(poise)

0 0.309 0 0
1 0.307 200 16697
2 0.305 259 21612

3 0.303 273 22767
0.301 284 23658

5 0.299 • 307 25648
6 0.297 322 26928

7 0.296 344 28678
8 0.294 341 28477

9 0.293 359 29948
10 0.290 411 34249
12 0,286 428 35685

14 0.283 440 36701
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Table IV-l-36. Stress Growth Data of
PAA at = 0,0136 sec""

Tlrr)
(dyne/cm^)

Instantaneous
Time 
(sec)

Radius 
(cm)

Extensional Viscosity
(poise)

0 0.369 0 0
1 0.365 380 27941
2 0.363 406 29898

3 O.36O 415 30488
4- 0.358 418 30739
5 0.356 40? 29912
6 0.355 415 30537

7 0.351 428 31424

8 0.349 436 32014

9 0.346 444 32607

10 0.344 467 34337
12 0.338 514 37874

14 0,334 527 38760
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Table IV-1-37. Stress Growth Data of
PAA at = 0,0142 sec""l

Time Radius
Instantaneous

Extensional Viscosity
(sec) (cm) (dyne/cm-^) (poise)

0 0.333 0 0
1 0.332 281 19730
2 0.329 316 22211

3 O.327 332 23362
0.324 362 25404

5 0.322 379 25915
6 0.320 400 28105

7 0.318 423 29716

8 0.316 436 30631

9 0.314 459 32257
10 0.311 487 3^259

12 0.307 526 36977
14 0.302 541 38021
16 0.298 561 39412

18 0.294 566 39777
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Table IV-1-38 . Stress
PAA at

Growth Data of
T = 0.0159 sec"1

Time 
(sec)

Radius 
(cm) (dyne/cm^

Instantaneous
Extensional Viscosity 

) (poise)

0 0.325 0 0
1 0.320 392 24669
2 0.312 444 27877

3 0.309 482 30285

4- 0.307 490 30821

5 0.304 509 32004

6 0.302 528 33197

7 0.299 541 34049
8 0.297 546 34380

9 0.295 622 39164

10 0.293 667 41274

12 0.288 777 48086

lip 0.284 895 56273
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IV-2, Approximate Creep Data

Table IV-2-1, Approximate Creep Data of
Newtonian Silicone Oil
at =215 dyne/cm^

. . Instantaneous
Time Radius Extensional Strain VT3z""'U) Extensional Viscosity
(sec) (cm) (dyne/cm^) (poise)

0 0.39^ 0 0 0
1 0,389 0. 024- 103 18100
2 0.38? 0.034- 100 18096
3 0.386 0.039 98 17807

0.385 0.04-5 97 17668
5 0.384- 0.050 95 17152
6.^ 0.382 0.059 92 16663.6
7 0.381 0.062 91 164-82.7
8 0.380 O.O67 89 16164-
9 0.379 0.073 88 . 15831

10,8 0.378 0.081 84-. 7 15330.2

Table IV-2-2. Approximate Creep Data of
Newtonian Silicone Oil n

=34-1 dyne/cm
Instantaneous

Time Radius Extensional Strain (77?z- Hri-J Extensional Viscosity
(sec) (cm) (dyne/cm^) (poise)

0 0.373 0 0 0
0.2 0.368 0.029 233 18500
0.4- 0.367 0.031 229 18153
1 0.366 0.037 227 18015
2 0.364- 0.050 224- 17738
3 0.362 0.063 219 17380
4- O.36O 0.075 215 17047
5 0.357 0.088 211 16716
6 0.355 0.101 216 16365
7 0.353 0.113 202 16012
8 0.351 0.126 197 15650
9 0.34-8 0.138 193 15277

10 0.34-6 0.151 188 14889
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Table IV-2-3. Approximate Creep Data of

Time

Newtonian Silicone Oil 
at ) =495 dyne/cm2

Radius Extensional Strain (7rz2-lTr^ Exti Instantaneous 
ensional Viscosity

(sec) (cm) (dyne/cm^) (poise)
0 0.465 0 0 0
1 0.455 0.046 440 18326
2 0.448 0. 0?7 431 17967
3 0.443 0.100 425 17692
4 0.438 0.122 418 17401
5 0.433 0.145 410 17093
6 0.429 0.166 403 16798
7 0.425 0.184 397 16529
8 0.419 0.212 386 16100
9 0.415 0.228 380 15836

10 0.409 0.258 378 15740

Table IV-2-4. Approximate Creep Data of Newtonian 
Silicone Oil at^^'* 5' j =661 dyne/cm^

Time Radius Extensional Strain (lTzz- IT,,) Instantaneous 
Extensional Viscosity

(sec). (cm) (dyne/cm2) (poise)
0 0.539 0 0 0
0.5 0.531 0.036 577 19256
0.7 0.529 0.424 576 19213
0.9 0.528 0,424 575 19166
1.5 0.522 0.064 570 I8966
2.5 0.514 0.095 560 18666
3.5 0.509 0.-115 557 I8566
4.5 0.501 0.146 548 18266
5.5 0.495 0.169 541 18033
6.5 0.489 0.196 533 17776
7.5 0.481 0.228 523 17430
8.5 0.476 0.249 516 17183
9.5 0,468 0.282 503 I6767

10.5 0.462 0.309 493 16433
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Table IV-2-5. Approximate Creep Data of
PIB at =373 dyne/cm2

Time Radius 
(sec) (cm)

Extensional Strain (TT^-TT^y
(dyne/cm2)

0 0.380 0 0
1 0.374 0.031 310
2 0.371 0.046 307
3 0.368 0.062 304
M- 0.366 0.077 302
5 0.363 0.090 299
6 0.361 0.104 296
7 0.359 0.116 294
8 0.356 0.128 292
9 0.354 0.144 288

10 0.352 0.154 286
11 0.350 0.166 283
12 0.348 0.177 281
13 0.346 0.189 278
14 0.343 0.204 275
15 0.342 0.211 273

Table IV-2-6. Approximate Creep Data of 
PIB at(^^.3?2) =433 dyne/cm2

Time Radius Extensional Strain ("n,z-7T„)
(sec) (cm) (dyne/cm^)

0 0.355 0 0
1 0.352 0.015 368
2 0.348 0.037 364
3 0.345 O.O56 361
4 0.342 0.076 357
5 0.338 0.094 353
6 0.335 0.114 349
7 0.333 0.130 346
8 0.330 0.147 341
9 0.327 0.161 338

10 0.325 0.175 335
11 0.323 0.189 331
12 0.320 0.20? 327
13 0.318 0.217 324
14 0.316 0.231 320
15 0.314 0.246 316
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Table IV-2-7.

Time Radius
(sec) (cm)

Approximate Creep Data of
PIB at =690 dyne/cm^

Extensional Strain
(dyne/cm^)

0 O.388 0 0
1 0.378 0.053 625
2 0.37^ 0.074 621
3 0.371 0.093 618

0.368 0.107 615
5 0.362 0.138 609
6 0.358 0.161 604
7 0.35^ 0.184 599
8 0.351 0.202 595
9 0.348 0.220 590

10 0.344 0.240 585
11 0.340 0.263 580
12 0.337 0.281 574

Table IV-2-8.

Time Radius
(sec) (cm)

Approximate Creep Data of
PIB ati^^l) =9^7 dyne/cm2 

\ *

Extensional Strain (7F2z-7r„)
(dyne/cm^)

0 0.392 0 0
1 0.377 0. 081 877
2 0.371 0.110 871
3 0.366 0.141 865
4 0.361 0.164 860
5 0.358 0.183 856
6 0.352 0.216 848
7 0.349 0.235 843
8 0.344 0.260 837
9 0.341 0.281 831

10 0.337 0.306 824
11 0.33^ 0.320 819
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Table IV-2-9. Approximate^Creep Data of 
PIB at =1233 dyne/cm^

Time Radius Extensional Strain ("Tfes- TTrr)

(sec) (cm) (dyne/cm^)

0 ' 0.35^ 0 0
1 0.336 0.1024- 1251
2 0.330 0.1240 1224-3
3 0.326 0.170 1236

0.321 0.198 1229
5 0.316 0.228 1221
6 0.312 0.253 12124

Table IV-2-10. Approximate Creep Data of 
PAA at I =188 dyne/cm^

Time Radius Extensional Strain (TT.z-ir,,)
(sec) (cm) (dyne/cm2)

0 0.362 0 0
1 0.360 0.016 136
2 0.359 0. 020 135
3 0.358 0.025 1324
24 0.357 0.030 1324
5 0.357 0.032 133
6 0.356 0.037 133
7 0.355 0.0240 132
8 0.35^ 0. 02424 132
9 0.35^ 0.0246 13110 0.353 0.053 130

11 0.352 0.056 129
12 0.352 0.058 129
13 0.351 0 . 0624 129



21^

Table IV-2-11. Approximate Creep Data of 
PAA at ) =265 dyne/cm2

Time Radius
(sec) (cm)

Extensional Strain ~ )
(dyne/cm2)

0 0.402 0 0
1 0.397 0.023 225
2 0.396 0.029 224
3 0.394 O.O37 223
4- 0.394 0.039 223
5 0.392 0.047 222
6 0.391 0.053 222
7 0.391 0.056 221
8 0.388 O.O67 220
9 0.38? 0.074 220

10 0.386 0.077 219
11 0.385 0.083 218
12 0.384 0.090 217
13 0.382 0.099 216

Table IV-2-12. Approximate Creep Data of
PAA at^fi-0 j =365 dyne/cm2

Time Radius
(sec) (cm)

Extensional Strain (dyne/cm^)

0 0.424 0 0
1 0.421 0.015 328
2 0.417 0.037 326
3 0.415 0.046 3254 0.412 0.060 323
5 0.409 0.074 322
6 0.406 0.087 320
7 0.405 0.096 319
8 0.402 0.107 318
9 0.401 0.115 317

10 0.399 0.126 315
12 0.395 0.137 313
14 0.391 0.145 310
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Table IV-2-13. Approximate Creep Data of
PAA \ =416 dyne/cm^

Time 
(sec)

Radius 
(cm)

Extensional Strain
(dyne/cm^)

0 0.389 0 0 '
1 0,384 0.026 374
2 0.381 0.045 372
3 0.377 0.066 369
4- 0.374 0.078 368
5 0.372 0.094 366
6 0.368 0.113 363
7 0.365 0.127 362
8 0.363 0.141 360
9 0.360 0.155 358

10 0.359 0.165 356
12 0.355 0.185 353
14 0.351 0.206 350
16 0.348 0.226 346
18 0,344 0. 247 343

Table IV-2-14. Approximate Creep Data of 
PAA at ] =458 dyne/cm^

Time Radius Extensional Strain ("TTti-TW
(dyne/cm^)(sec)' "(cm)

0 0.382 0 0
1 0.373 0.047 413
2 0.368 0.071 410
3 0.364 0. 094 407
4 . O.36I 0.111 405
5 0.356 0.138 401
6 0.354 0.152 399
7 0.351^ 0.167 397
8 0.349 0.180 395
9 0.347 0.189 394

10 0.345 0.200 392
11 0.344 0.212 390
12 0.342 0.222 388
13 0.340 0.232 386
14 0.338 0.243 384
16 0.33^ 0.264 383
18 0.331 0,286 376
20 0.329 0.299 374
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Table IV-2-15. Approximate Creep Data of 
PAA at ) =6^1 dyne/cm^

Time Radius Extensional Strain ( 1)22 )
(sec) (cm) (dyne/cm2)

0 0.^52 0 0
1 0.^7 0.023 605
2 0.U-4-0 0.052 603
3 O.W 0.078 600
4 0.14-30 0.097 598
5 0.1V25 0.120 595
6 O.M-21 0.141 593
7 O.U-15 0.168 589
8 0.1412 0.182 587
9 0.1408 0.205 584

10 0.1405 0.221 582
12 0.398 0.253 577
1^ 0.388 0.299 569
16 0.384 0.327 565
18 0.378 0.354 560
20 0.374 0.379 555
22 0.369 0.405 549
2^ 0.364 0.433 543

Table IV-2-16. Approximate Creep Data of
PAA at ^5-^) =7^8 dyne/cm2

Time Radius Extensional Strain
(sec) (cm) (dyne/cm^)

0 0.446 0 0
1 0.436 0.046 710
2 0.428 0.083 706
3 0.420 0.124 701
4 0.412 0.161 697
5 0.403 0.203 691
6 0.398 0.230 687
7 0.392 0.263 682
8 0.384 0.299 676
9 0.384 0.304 675

10 0.376 0.345 667
12 0.367 0.391 658
14 0.362 0.420 652
16 0.357 0.449 645
18 0.351 0.479 638
20 0.347 0.507 631
22 0.341 0.537 623
24 0.336 0.566 614
26 0.332 0.595 605
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Table IV-2-17. Approximate Creep Data of
PAA at^f^-j- =837 dyne/cm^

Time 
(sec)

Radius 
(cm)

Extensional Strain (TJis )
(dyne/cm^)

0 0.446 0 0
1 0.443 0.014 802
2 0.430 0.074 796
3 0.424 0.101 793

0.416 0.143 788
5 0.407 0.184 782
6 0.399 0.226 777
7 0.393 0. 256 772
8 0.387. 0.285 767
9 0.381 0.318 761

10 0.376 0.345 756
12 0.365 0.401 745
14 0.356 0.455 733
16 0.351 0.484 726
18 0.347 0.507 720
20 0.342 0.536 712
22 0.336 0.566 703
24 0.330 0.603 691
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IV-3. Steady Extensional Viscosity Data

Table IV-3-1.Steady Extensional Flow Data
of PIB

Extension Rate 
(sec-l)

Extensional Viscosity
(poise)

0,0055 20990
0.0082 20270
0.0086 20340

0.0105 22650

0.0125 22810
0.0130 23830
0.0161 26660
0.0180 25000
0.0200 29500
0.0202 26010

0.0215 27880

0.0233 29120
0.0234 33500

0.0257 32900

0.0279 33620
0.0280 36760

0,0289 36940

0.0299 37730
0.03 41800
0.0302 38600
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Table'.IV~3-2# ■ Steady Extensional Flow Data
of PAA'

Extension Rate Extensional Viscosity
(sec-1) (poise)

0.0035 29800
0.00^3 31080
0.0062 31300
0.0064-3 29500
0.00? 31500
0.0072 30550
0.0073 31800
0.0076 32800
0.0078 33100
0.0081 33300
0.0088 33510
0.009 34630

0.00911 34780
0.0094-2 33900
0.01 34830

0.0105 35910

0.0107 36030
0.0125 38400
0.0132 43490
0.0135 39840
0.0142 40000
0.0144 43940
0.0148 48710
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NOPffiNCLATURE

A (1) amplitude ratio in the superimposed shear
oscillatory

(2) • - gain of the comparator
a^ parameters in Equation (6-2-12)
a^ parameters in Equation (2-1-1)
aQ amplitude defined in Equation (4-1-3)
ag shear rate defined in Equation (2-1-5)
b parameter in Equation (6-2-2)
c . parameter in Equation (6-2-4)

A ,B ,C ,D constants in Equation (4-2-23)m m m m
Cauchy-Green Strain tensor

D drop diameter
E parameter defined in Equation (6-2-20)
E^ equal to (fp-+^ |s. )2 in spherical coordinate system 

where - coss
G density ratio of the outer phase to the drop phase

used in numerical simulations
G* '■ dynamic rigidity

Gj^Gyy^yyy kernel functions in the Goddard memory integral 
expansion

gtl'it11) function introduced in Equation (6-2-2)
g(f ,t» ’ ,t” • ) function introduced in Equation (6-2-4)

gij covariant components of the metric tensor 
(fixed components)

the metric tensorcontravariant components of 
(fixed components)

gij

H curvature at the horizontal end of the drop
H drop curvature
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Hq drop curvature defined in Section 4—2-1

Hij tensor functional
J slope of the output signal from the logarithmic

amplifier vs. time
K1,K2 scale factor in the controller
Kc gain of the controller

tachometer constant
L(t) instantaneous length of the drop
L(s),G(s) transfer function of a lumped device defined in 

Section 1-4- 
I

m(t-t’ , ) memory function in the B-C model
n direction normal to the drop surface
po pressure along the axis outside the drop
p Legendre Polynomial of degree m

defined as J,
R1 radii of the principal curvatures defined by

Equation (4-2-5)
Rc radius at the center of a horizontal drop
Rg dimensionless radius at the horizontal end of the drop
Rq starting drop radius
Rq maximum possible starting drop radius
P(s) dimensional drop surface
Rn(©) dimensionless drop surface
RE Reynolds number defined as —-*
S defined asin Section 4-2-2
Sq output signal from the quadratic inverter
Sp signal from the photomultiplier tube
Sp signal from the function generator
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3^. visual drop diameter

direction tangential to the drop surface in a 
meridonal plane

t,t’ present and past time respectively
defined as u)c&t where u)u is the initial rotational 
speed and 57. is the dimensional time interval

T time period of drop elongation simulation
<fVr;Vs,V^i) dimensional velocity in spherical coordinate system 

v^ velocity in the Cartesian coordinate system
xl’x2’x3 Cartesian coordinates 
x,x' positions occupied at time=t and t*  respectively 
Z( ) Riemann Zeta function

(Fzz) and(r,z) coordinates of the drop at time=t and 0 respectively 
r"0)2-o semiaxes of the drop shape

spherical coordinate system

GREEKS

rate of deformation tensor 
slope parameters in the Bird-Carreau model
angular
defined
defined

acceleration defined in Section 2-4-

as in Section 4-2-1
as tan )

extension rate 
extensional strain 
shear rate
defined as 4^-^- in Section 2-4 



maximum possible extension rate 
rate of deformation tensor 
defined by HR 
curvature defined by Equation (4-2-1?) 
total stress tensor 
extra stress tensor 
total stress tensor of the continuous phase 
delta function
time constants in Equation (6-2-12)
time constants in the Bird-Carreau model
parameters in Equation (6-2-22) 
zero shear viscosity
viscosity of the continuous phase in Section 2-4 
defined as cos & 
dynamic viscosity 
instantaneous (apparent) extensional viscosity 
steady extensional viscosity
(i) frequency in the superimposed shear oscillatory test
(ii) rotational speed of the drop 
output signal of the tachometer
rotational speed of the drop at time=0 
maximum speed of the drive motor 
density of the drop phase 
density of the continuous phase
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Zk drop and the continuous 
in the analysis in

viscosities of the Newtonian 
phases respectively, defined 
Section 14-2-2

6

stream function
defined by Equation (^-2-4)
phase difference in the superimposed shear oscillatory 
test
first normal stress coefficient
second normal stress coefficient 
corotating rate of deformation tensor 
strain tensors defined in Equation (6-2-18)
strain tensors defined in Equation (6-2-19) 
interfacial tension between the continuous and 
disperse phases

SUPERSCRIPTS

designates dimensionless


