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Abstract

Complex fluids of particles and polymers can be found a wide range of industrial

applications including enhanced oil recovery, drug delivery, and consumer goods. Poly-

electrolytes are polymers with charged functional groups on their backbone. The charged

groups allow polyelectrolytes to maintain high stability and good biocompatibility in aque-

ous solutions. The induced electrostatic repulsion, however, result in highly extended di-

rected random walk conformations inside their correlation volumes. The size, strength,

and recurrence of these charged groups between the monomers leads to conformations

ranging from rigid rod to semiflexible chain. These unique electrostatically-induced struc-

tural properties likely affect the transport of objects within their geometries as well as their

chain relaxations in solutions. In this work, we investigated the dynamics of particles and

polyelectrolyte chains in semidilute aqueous polyelectrolyte solutions. First, we explored

the effect of chain conformation on the transport of spherical particles across an order of

magnitude in size using fluorescence microscopy. We tuned the chain conformation by

varying solution ionic strength. We found that large particles follow predictions according

to bulk viscoelasticity. Smaller particles on the order of magnitude of chains, however,

experience non-monotonic deviations from predictions. These deviations arise from the

structural properties of polyelectrolytes in the form of confinements despite the absence of

entanglements. We then studied the effects of chain flexibility on the dynamics of nanopar-

ticles using dynamic x-ray scattering. The chain flexibility was altered by changing the

degree of polymerization of the chains. We observed three unique behaviors at each chain

size. In solutions with small chains, particles couple to the predictions according to the

bulk viscoelasticity. Intermediate size polymer solutions showed signs of confinement ef-

fects with signature non-monotonic deviations from expectations. Solutions with largest

chains, however, linearly deviated from Stokes-Einstein predictions at all concentrations.

These observations confirmed the important role of chain flexibility on the dynamics of

nanoparticles in solutions. Next, we studied the segmental dynamics of charged chains in
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solutions using neutron scattering techniques. We independently vary the geometry and

electrostatics by changing polymer concentration and chain ionic strength. We found that

the relaxations are slower than predictions with signatures of de Gennes’ narrowing phe-

nomenon. Moreover, the structure factor of the chains tracks the observed dynamics. These

observations suggested that we have a direct correlation between the structure and dynam-

ics in these systems. Finally, we explore the structure, rheology, and dynamics of colloid-

polymer suspensions using in situ x-ray scattering, rheo-XPCS, that allows rheological and

scattering measurements simultaneously. We find that suspensions without and with small

and dispersed depletants remain as fluids whereas particles in the presence of large de-

pletants experience gelation. This observation suggests that suspensions with smaller size

depletants require a stronger attraction potential compared to suspensions with larger ones.
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Chapter 1

Introduction

Complex fluids of nanoparticles and polymers experience both thermal energy1,2 and

hydrodynamics.3,4 Understanding the interactions between particles and polymers is key to

understanding their transport properties in solutions. There are three regimes of interest

according to particle to polymer size ratios for framing particle transport in polymer solu-

tions. When particles are much smaller than polymer chains, particles hardly interact with

surrounding chains and diffuse according to the solvent viscosity. In the opposite regime

when particles are much larger than surround chains, the heterogeneities average out across

the particle surface and their transport couples to the bulk viscoelasticity of solutions. In the

intermediate regime, the nature of interactions between particles and polymer chains be-

come much more important as both components are on similar length scales. Dynamics of

polymer chains in unentangled solutions, however, are governed by two pictures depend-

ing on the length scales of interest. Inside the correlation blob of chains, hydrodynamic

interactions persist and chains move in a Zimm nondraining behavior.3 At length scales

beyond the correlation volume, frictional interactions dominate over hydrodynamics and

collective chain dynamics follow a free draining behavior according to the Rouse model.5

All existing theories focus on understanding the dynamics of particles and polymers in a

simple Gaussian chain system. The effects of chain structure on the dynamics of particles

and polymers remains an open question.
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1.1 Particle dynamics in polymer solutions

Nanoparticles diffuse according to Brownian motion due to thermal vibrations. These

vibrations result in collisions between the fluid molecules and nanoparticles which are seen

as random displacements. The random nature of such collisions allows us to predict that

any displacement of one particle will simultaneously occur with another’s displacement

in an opposite direction. This makes the overall displacement of particles equal to zero.6

The probability distribution function of particle displacements is expressed as a Gaussian

distribution

P (∆x,∆t) =
1√

4πD∆t
exp[

−∆x2

4D∆t
], (1.1)

where D is diffusivity, ∆t is time, and ∆x is displacement. This distribution widens as a

function of time and diffusivity could be expressed as the second moment of the displace-

ment. Mean-squared displacement is always positive and greater than zero and evolves

linearly with time in one dimensional analysis

⟨∆x2(∆t)⟩ = 2D(∆t). (1.2)

By tracking the particle displacements, we can get a mean-squared displacement and

extract a diffusivity from it.7 This empirical diffusivity can be compared to theoretical

predictions of particle diffusivity known as the Stokes-Einstein (SE) equation.

Einstein showed that diffusivity in homogeneous solutions is proportional to the ratio of

thermal fluctuations expressed by Boltzmann constant and temperature, kBT , and the vis-

cous dissipation ζ . In Stokes regime where the Reynolds number Re≪1, the viscous drag

on the particle could be expressed as ζ = 6πηRNP , where η is the solvent viscosity, and

RNP is the nanoparticle hydrodynamic radius. As a result, one can predict the diffusivity

of the particle when viscosity and size of the particle are known as follows
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D =
kBT

ζ
=

kBT

6πηRNP

. (1.3)

The main assumption underlying the Stokes-Einstein behavior is the particle experienc-

ing constant fluid properties across its surface. While this is true in homogeneous solutions,

it is not the case for complex fluids which exhibit local physical structures that introduce

heterogeneities across the solution. In polymer solutions, these physical structures are in

the form of polymer coils of which their characteristic size represents the inhomogeneity.8

In dilute solutions, the random coil is characterized by radius of gyration Rg. As concen-

tration increases, these coils will start to overlap one another. The concentration at which

the coils become space-filling is known as the overlap concentration

c∗ =
Mw

4
3
πRg

3NA

, (1.4)

where Mw is the polymer molecular weight, and NA is the avogadro’s number. The overlap

concentration marks the boundary between dilute and semidilute regimes. As concentration

further increases, polymer coils further pack and overlap. This packing behavior introduces

another length scale at which heterogeneities occur known as correlation length ξ which is

a measure of the distance between polymer chains. At length scales much greater than ξ,

each coil can be treated as independent and assumed to only be surrounded by solvent. On

the opposite regime, where the length scale is much smaller than ξ, the fluid can be treated

as homogeneous.

Multiple models have attempted to describe how particle diffusivity changes as a func-

tion of polymer concentrations. Generally, these models fall within two categories. The

first one is referred to as the obstruction model.9,10,11,12,13,14 Obstruction models treat poly-

mer coils as rigid and static objects that form a polymer mesh similar to the geometry of an

air filter. As polymer concentration increases, the volume occupied by the polymer mesh

increases resulting in a decrease in accessible space for particle to diffuse through. The
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available medium will require particles to move through a tortuous path. The path tortu-

osity is then predicted to be the reason for the reduction in particle diffusivity. Since the

model assumes no interaction between particles and polymer chains, the particle diffusiv-

ity should only be related to polymer concentration. A variety of recently studies have

focused on using hydrodynamic models,15,16,17,18,19,20,21 the second broad category of diffu-

sivity models. These models assume that the dominant effect of polymer solutions is seen

as an increase in viscous drag on the particle surface. Since hydrodynamic drag does not

only depend on solution properties but also on particle size, these models have been suc-

cessful in describing diffusivities of specific particle sizes in various concentrated solutions

of neutral polymers.

1.2 Polyelectrolytes

Polyelectrolytes are polymer chains with charged functional groups on their backbone.

The presence of long range electrostatic interactions results in these systems being highly

correlation.22,23,24,25 The size and recurrence of charged groups within monomers mod-

ifies the structure and chain flexibility. Electrostatic repulsion in charged polymers re-

sults in a highly extended conformation of electrostatic blobs inside the correlation vol-

ume.26,27,23,28,29 On length scales beyond the correlation blob, polyelectrolytes transition to a

random walk conformation of correlation blobs as the repulsive interactions are screened.27,23,28

As a result of these structural differences, polyelectrolytes exhibit different disentangle-

ment, relaxations, and rheological properties than neutral chains. Moreover, polyelec-

trolytes exhibit unique ionic strength-dependent viscoelastivity compared to their neu-

tral counterparts.30,31 As ionic strength increases, charges on the polymer backbone are

screened and the chain retains more flexibility until approaching a Gaussian conformation

at the fully screened limit. The pronounced charge-induced differences in structure and re-

laxations in polyelectrolytes likely affect their dynamics and the transport of nanoparticles
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within their matrices.

1.3 Objective and organization of dissertation

Despite studies of nanoparticle diffusion in charged polymers and polyelectrolyte prop-

erties in solutions, the effects of electrostatically-induced structural differences have not

been thoroughly investigated. In this work, we systematically study the effects of chain

structure on the dynamics of polyelectrolytes and nanoparticles in aqueous solutions.

First, we investigate the effects of chain conformation on the long time dynamics of

nanoparticles in semidilute polyelectrolyte solutions using fluoresence microscopy (Chap-

ter 2). We alter the chain conformation by changing the ionic strength of solutions. We

discuss the unique deviations of nanoparticle dynamics from predictions and their origins

in charged polymer solutions. This study shows that structure of polyelectrolytes modifies

the interaction between particles and polymers in semidilute solutions.

Second, we study the dynamics of nanoparticles in polyelectrolyte solutions with dif-

ferent chain flexibility using x-ray scattering (Chapter 3). We tune the chain flexibility

by changing the number of repeat units on the backbone, while keeping the same chem-

istry. We report different trends in particle dynamics at each chain flexibility. This study

emphasizes how flexibility changes the nature of particle-polymer physical interactions.

Next, we examine the effects of chain geometry and electrostatics on the segmental re-

laxations of polymer chains using neutron scattering (Chapter 4). We tune these parameters

using polymer concentration and solution ionic strength. We discuss the coupling mecha-

nism between structure and dynamics in polyelectrolyte systems. This study emphasizes on

the importance of incorporating structure for understanding the behavior of polyelectrolyte

systems.

Then, we use in situ x-ray scattering to explore the structure, rheology, and dynamics

of colloid-polymer suspensions (Chapter 5). We vary the attraction potential in the suspen-
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sions by changing the size of the depletants. We find that large depletants induce gelation

whereas suspensions without or with small and dispersed depletants remain as fluids. This

study shows the importance of considering depletant size to tune the interaction properties

in colloid-polymer suspensions.

Finally, chapter 6 provides a summary of this work and discusses open questions for

future directions.
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Chapter 2

Local Confinement Controls Diffusive

Nanoparticle Dynamics in Semidilute

Polyelectrolyte Solutions

2.1 Introduction

Nanoparticle transport in concentrated complex fluids is important for enhanced oil re-

covery32,33,34, nanocomposite materials35,36,37, and targeted drug delivery.38,39 Understand-

ing the mechanisms controlling particle diffusion is necessary to enhance the efficacy of

particle transport in these applications. The diffusion of a particle of radius RNP in a

homogeneous medium with viscosity η is given by the Stokes-Einstein (SE) equation,

DSE = kBT/6πηRNP. The assumptions underlying the SE model do not hold as the par-

ticle size becomes comparable to the length scales of inhomogeneities in the medium, and

deviations from SE predictions appear40,41,42,17. In this size regime, particle dynamics de-

pend on length scales present in solution.

In entangled solutions, the length scale controlling particle dynamics is the tube diam-

eter a, the distance between entanglement strands. The entanglement mesh cages large

particles until the time scale of reptation, after which SE behavior is recovered43,44,45,46.

Conversely, particles that are much smaller than the entanglement mesh diffuse through

the mesh and are unaffected by the polymer network. In unentangled polymer solutions,

however, particle dynamics are controlled by the correlation length ξ, the distance between

neighboring chains. Hydrodynamic models assume polymer solutions to be a homoge-
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neous medium in which hydrodynamic interactions decay over ξ17,15,16 and in which parti-

cle dynamics are dictated by polymer length scales, such as radius of gyration Rg and corre-

lation length ξ45,47,48. These pictures have been developed for neutral polymers. In charged

polymers, by contrast, electrostatic repulsion between monomers alters structure and chain

flexibility49,50. The size of the charged group and its recurrence within the monomers re-

sults in conformations ranging from rigid rod to semiflexible chain. In turn, the local

conformation determines the mesh geometry. As a result of these structural differences, the

onset of entanglements in charged polymers is shifted to much higher concentrations than

for neutral chains51,26. The pronounced differences in structure and relaxations in charged

polymers likely affect the length scales controlling diffusive transport of nanoparticles. De-

spite recent studies of nanoparticle diffusion in charged polymer solutions and melts52,53,

the effect of charge-induced conformation on nanoparticle transport remains incompletely

understood.

Here, we probe the dynamics of nanoparticles in dilute and semidilute unentangled so-

lutions of a model polyelectrolyte. The polymer conformation is tuned by varying the solu-

tion ionic strength. The particle dynamics are diffusive across all experimental time scales.

We find that the diffusivity of large particles (RNP/Rg > 1) follows bulk predictions at all

ionic strengths. For smaller particles (RNP/Rg < 1), however, we observe surprising dy-

namics with non-monotonic deviations from SE within the unentangled semidilute regime.

The size-dependent dynamics do not collapse onto a master curve according to physical

arguments derived for Gaussian chains. We find that the non-Gaussian parameter maps

onto the same concentration dependence as scaled particle diffusivity D/DSE, suggesting

the rise of confinement effects despite the absence of entanglements.
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2.2 Materials and methods

2.2.1 Solution Preparation

Glass vials were cleaned overnight in a solution of 6.5 wt% potassium hydroxide in

isopropanol, ensuring near salt-free conditions. Vials were thoroughly rinsed 10 times

using Millipore water to remove any residual salt, then dried in an oven at 105◦C degrees for

2 hours. Fluorescent polystyrene particles with diameters dNP ranging from 100 to 790 nm

(Fluoro-Max, Thermo Fisher Scientific) were dispersed in aqueous solutions of NaPSS with

a weight-averaged molecular weight Mw = 2 200 000 Da (Scientific Polymer Products) at

three different ionic strengths. A constant particle volume fraction ϕ = 1.5×10−6 was used

across all samples to minimize interparticle interactions and avoid aggregation (observed

for ϕ ≥ 5× 10−5) while maintaining good statistics for particle tracking. Deionized water

was assumed to have an ionic strength of 10−6 M54, whereas the other two sets of samples

were prepared using sodium chloride to achieve ionic strengths of 10−3 M and 10−1 M.

The overlap concentration c∗ of NaPSS was estimated at each ionic strength from intrinsic

viscosity measurements, and the radius of gyration Rg,0 in each ionic strength solution was

determined via Rg,0 = (Mw[η]/(4/3πNav))
1/355,56. The resulting Rg,0 in dilute solutions

were 190, 130, and 75 nm at ionic strengths of 10−6, 10−3, and 10−1 M, respectively.

2.2.2 Rheology

Steady-shear measurements of the rate-dependent viscosity were performed on Dis-

covery Hybrid Rheometer (TA Instruments, HR-2). Polymer solutions were loaded into

a single gap Couette cell with a cup diameter of 15 mm, a bob diameter of 14 mm, and

a bob length of 42 mm. The inertia and torque of the instrument were calibrated prior to

measurements. Samples were pre-sheared for one minute to reach equilibrium, after which

the viscosity was determined as the average value over one minute. Dynamic frequency

sweep measurements were collected using a single-gap Couette cell on a Discovery Hybrid

9



Rheometer (TA Instruments, HR-2). The cell has a diameter of 15 mm, a bob diameter

of 14 mm, and a bob length of 42 mm. We performed a dynamic strain sweep at angular

frequencies ω = 1, 10, and 100 rad/s. The linear viscoelastic regime extended up to strains

γ = 20%. Storage (G′) and loss (G′′) moduli were measured at 10% strain as a function

of angular frequency for NaPSS solutions. We eliminate any data points with generated

torque values below 0.1 µN·m or raw phase angle values above 175◦ to meet the instru-

ment’s minimum criterion while minimizing the contribution of inertia to data collection.

2.2.3 Imaging Sample Preparation

To create a sample chamber for imaging, two cover slips (22 mm × 22 mm × 0.2 mm,

Fisherbrand cover glass) were adhered on Gold Seal cover glass (48 mm × 65 mm × 0.15

mm) using UV epoxy-based adhesive to form two sides of a chamber. Another cover slip

was attached on top of the two cover glass slips using UV epoxy. The particle-polymer

solutions were then pipetted through one of the two open sides. Finally, the two remaining

open sides were sealed with UV epoxy.

2.2.4 Imaging and Particle Tracking

A Leica DM4000 inverted fluorescent microscope equipped with 63x and 100x oil im-

mersion lenses was used to acquire series of images of quiescent samples over time. For

each image series, 4100 images were captured at a frame rate of 32 fps. At least five image

series per sample were recorded at different locations. Particle centroids were located with

a spatial resolution 25 and 35 nm for 200 and 790 nm particles, respectively, and tracked

over time using particle-tracking algorithms7. From the particle trajectories, we calculated

the one-dimensional ensemble-averaged mean-squared displacement (MSD) ⟨∆x2(∆t)⟩ as

a function of lag time ∆t. At least 104 time steps were averaged for each MSD data point.

To extract the diffusivity D, we fitted each MSD to ⟨∆x2(∆t)⟩ = 2D(∆t).
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2.3 Results and discussion

2.3.1 Intrinsic Viscosity

Dilute aqueous sodium polystyrene sulfonate (NaPSS) solutions were prepared by di-

luting a concentrated stock solution. Samples were introduced into a glass capillary vis-

cometer (Cannon Instrument Company, 0C), which was submerged into a water bath for

better temperature control. Although the capillary viscometer operates at a high shear rate

of approximately 300 s−1, we observe excellent agreement between the viscosities deter-

mined using the viscometer and the rheometer (Figure 1 in manuscript), as evident by the

consistent crossover between dilute and semidilute regimes at the overlap concentration

calculated using capillary viscometer. These observations suggest that the viscometer ac-

curately captures NaPSS contribution in dilute solutions. Figure 2.1 shows the sample

viscosity as a function of NaPSS concentration. We fitted the data to the two term virial

expansion of viscosity η = η0(1 + [η]CNaPSS), where [η] is the intrinsic viscosity, and η0

is the solvent viscosity. Using the fitting equation, we determined the intrinsic viscosity

[η]. We then calculated the overlap concentration (c∗ = 1/[η]) 0.13, 0.41, and 2.1 g/L and

determined the radius of gyration (Rg,0 = (Mw/(4/3πNavc
∗))1/3) 190, 130, and 75 nm

for 2200 kDa polymer at 10−6, 10−3, 10−1M ionic strength, respectively. Flory exponent

ν at each ionic strength was determined from the scaling of polymer size as a function of

molecular weight (Figure 2.2) according to the Flory theory of fractal chains57.

2.3.2 Rheology

We examine the oscillatory rheology of the polyelectrolyte solutions at all ionic strengths.

We find that terminal crossover is not reached within the experimented angular frequency

range for all samples, suggesting that relaxations occur at very short time scales < 10 ms

and an absence of entanglements in our solutions. In Figure 2.4, we present the viscosity

as a function of shear rate for NaPSS solutions at 10−3 and 10−1 M ionic strength. The vis-
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cosity is independent of shear rate, indicating that chains relax quickly in solutions. These

results are consistent with the 10−6 M solutions.
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We characterize the rheological properties of the polyelectrolyte solutions at three solu-

tion ionic strengths. The viscosity increases concomitant with polymer concentration c/c∗

and is approximately independent of shear rate across two orders of magnitude in concen-

tration (inset to Figure 2.5), indicating that the chains relax quickly in solution.

The viscosity of charged polymer solutions exhibits a dependence on ionic strength

that is not observed for their neutral counterparts26,58. We examine the changes in spe-

cific viscosity ηSP = (η − η0)/η0 because it offers a direct measurement of the poly-

mer contribution to solution viscosity. The specific viscosity of the polyelectrolyte so-

lutions increases as a function of both polymer and ionic strength. In the dilute regime,

the specific viscosity scales with concentration as ηsp ∼ (c/c∗)1 following the theoreti-

cal prediction23. The specific viscosity is independent of ionic strength for concentrations

c/c∗ < 1 due to the dominance of hydrodynamic interactions3,4. In the semidilute regime

(c/c∗ > 1), the specific viscosity scales according to predictions23 for polyelectrolyte so-

lutions at low (ηsp ∼ (c/c∗)1/2) and high (ηsp ∼ (c/c∗)5/4) ionic strength23,51,26. When the

ionic strength is intermediate between these limits, however, the specific viscosity in the

semidilute regime scales with concentration as ηsp ∼ (c/c∗)α with α = 0.8 ± 0.1. The

specific viscosity increases with ionic strength for constant c/c∗ in the semidilute regime,
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consistent with an increase in chain-chain interactions as the salt screens monomeric repul-

sion26. We observe a sharp upturn in ηsp at high polymer concentrations only in solutions

of high ionic strength, suggesting that these solutions are entangled. Such a crossover,

however, is not observed at low and intermediate ionic strength, suggesting the absence of

chain entanglements. These observations are consistent with the expectations for entan-

glements in charged polymer solutions occurring at high concentrations that are ≫ 10c∗26.

Thus, these polyelectrolyte solutions have rheological properties that agree well with exist-

ing theories51,23,54 and serve as a model system to investigate how particle dynamics depend

on polymer conformations.
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Figure 2.5: Specific viscosity ηsp = (η − η0)/η0 as a function of normalized NaPSS con-
centration c/c∗ for solutions of various ionic strength. Inset: Viscosity η for
10−6 M ionic strength solutions as a function of shear rate γ̇.

2.3.3 Dynamic Light Scattering

Dynamic light scattering measurements were conducted using a Brookhaven Instru-

ments goniometer (BI-200SM, Brookhaven Instruments Corporation) equipped with an

Avalanche photodiode detector (Brookhaven, BI-APD) and a digital correlator (Brookhaven,

TurboCarr) and a laser (Mini-L30 Laser Source) with an excitation wavelength λ = 637.6

nm. Glass vials were cleaned using acetone, water, and lens paper to minimize the scat-

tering from contaminants on the surface. Dilute polymer solutions were prepared with a
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particle volume fraction of 10−5 for all samples. Scattered light was collected at angles θ

= 60◦, 75◦, 90◦, 105◦, and 120◦, corresponding to wavevectors q from 14 to 23 µm−1, and

for 60 seconds at 200 delay times ranging from 1 µs to 20 s. From this data, the intensity-

intensity autocorrelation g(2)(τ, q) = ⟨I(t+τ)I(t)⟩/⟨I(t)⟩2 functions were calculated. The

field-field autocorrelation function g(1)(τ, q) was obtained from the intensity-intensity au-

tocorrelation function using the Siegert relation g(2)(τ, q) = 1 + β[g(1)(τ, q)]
2 + ε, where

ε is noise, g(1)(τ, q) = exp(−t/τ), and τ is the decay rate that represents the characteristic

relaxation time of the system.
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Figure 2.6: Hydrodynamic radius RH as a function of normalized polymer concentration
c/c∗ for 200 nm particles in solutions with (a) 10−6 and (b) 10−1 M ionic
strength.

Nanoparticle diffusivity was calculated using the relation D = 1/τq2 and hydrody-

namic radii of particles was estimated using Stokes-Einstein relationship DSE = kBT/6πηRNP,

where the viscosity η for each polymer concentration was determined using a capillary vis-

cometer. We find that hydrodynamic radius of particles remains constant as polymer con-

centration increases (Figure 2.6), suggesting no adsorption of chains onto particle surfaces.

2.3.4 Particle Dynamics

The mobility of nanoparticles in polyelectrolyte solutions decreases with increasing

nanoparticle size (Figure 2.7(a)) and polymer concentration (Figure 2.7(b)). The mean-
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square displacement (MSD) scales linearly with lag time ⟨∆x2⟩ = 2D∆t across all time

scales, indicating diffusive dynamics with a diffusivity D as expected for Newtonian solu-

tions with fast relaxations. We remove explicit size dependence by normalizing D by the

diffusivity of the particle in pure solvent D0.
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Figure 2.7: Mean-square displacement ⟨∆x2⟩ as a function of lag time ∆t for (a) particles
of various sizes in a solution of polymer concentration 10c* and (b) for 200 nm
particles in 10−6 M ionic strength solutions of various polymer concentrations.

Particles diffuse according to solvent viscosity at low polymer concentrations across

all ionic strengths D/D0 = 1 (Figure 2.8). The dynamics slow as concentration increases

into the semidilute regime. At a given concentration c/c∗ within the semidilute regime, the

particle dynamics are faster as ionic strength decreases, consistent with the lower viscosity

of the solutions (Fig. 2.5). The normalized diffusivities are approximately independent of

particle size in solutions of ionic strength 10−1 M and 10−3 M, consistent with the idea that
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the particle diffusion probes the bulk solution viscosity. In solutions with the lowest ionic

strength (10−6 M), however, the dynamics of small particles deviate from those of large

particles, indicating that the dynamics of small particles decouple from the bulk solution

viscosity.
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Figure 2.8: Normalized particle diffusivity D/D0 as a function of polymer concentration
c/c∗ in solutions of different ionic strength. Error bars represent the standard
deviation of five measurements per sample.

To quantify the extent to which dynamics deviate from the predictions using bulk so-

lution viscosity, we examine the particle diffusivity normalized by the Stokes-Einstein dif-

fusivity D/DSE as a function of polymer concentration. We use the dynamics of the large

particles to quantify bulk solution viscosity so that DSE/D0 = D790/D790,0 to overcome

torque limitations of the rheometer at low solution viscosity. Particles in solutions of high

(10−1 M) and intermediate (10−3 M) ionic strength exhibit diffusivities that approximately

conform to the Stokes-Einstein prediction using the measured bulk viscosities (Figures 2.9

a and b). We attribute systematic deviations in D/DSE from the predicted value of 1 to the

use of the largest particles as bulk probes. In these solutions, the particles are larger than

the radii of gyration of the polymers at infinite dilution, which we calculate to be 130 and

75 nm for solutions of intermediate (10−3 M) and high (10−1 M) ionic strength. Thus the

near-Stokes-Einstein diffusivities measured for these systems, for which RNP > Rg, are

consistent with earlier studies that show that the dynamics of large particles (RNP > Rg)
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couple to bulk viscosity behavior according to the SE prediction59.

By contrast, the dynamics in solutions at low ionic strengths (10−6 M) depend on par-

ticle size. The diffusivities of 600 nm particles follow the predicted SE behavior at all

polymer concentrations (Fig. 2.9(c)). The dynamics of smaller particles, however, agree

with SE predictions at low polymer concentrations (c/c∗ < 1) but exhibit a striking depar-

ture from SE predictions at higher polymer concentrations. This deviation increases with

increasing polymer concentration until c/c∗ ≈ 10, at which point the particle dynamics

begin to approach SE predictions again. In these low ionic strength solutions, the particles

are comparable in size to the radius of gyration of the polymer (RNP ∼ Rg) and hence

the solutions cannot be treated as homogeneous continua. In this limit, interactions be-

tween particles and polymer chains become more important and lead to deviations from

predictions based on the bulk solution rheology.45,20
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Figure 2.9: Diffusivity normalized to SE predictions D/DSE as a function of polymer con-
centration c/c∗ at (a) 10−1 M, (b) 10−3 M, and (c) 10−6 M ionic strength. Error
bars represent the standard deviation of five measurements per sample.

2.3.5 Particle Dynamics Models

A number of models and scaling theories attempt to explain particle dynamics in poly-

mer solutions.
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Empirical Models

Empirical models generally fall into one of two categories: obstruction9,10,11,12,13,14 or

hydrodynamic15,16,17,18,19,20,21. Obstruction models assume that the polymer mesh is effec-

tively immobile on time scales of particle diffusion and serve as geometric barriers to parti-

cle diffusion, but this assumption does not hold in our system because chains relax on time

scales of the same order of magnitude as those characterizing the particle dynamics. We

examined the normalized diffusivities D/D0 for 10−6 M ionic strength solutions according

to the proposed scaling for obstruction pictures9,10,11. Here, we plot the data only for those

particles for which the assumption for an immobile mesh is valid (i.e. τR > τD). We find

that the model is not able to capture the observed dynamics.
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Figure 2.10: Relative diffusivity D/D0 as a function of (1−ϕ
1+ϕ

)2.

Hydrodynamic models assume that hydrodynamic interactions are screened over ξ so

that viscous drag increases as ξ decreases. Hydrodynamic models, however, predict mono-

tonic deviations from Stokes-Einstein behavior because ξ decreases monotonically with

increasing polymer concentration. We examined the scaled diffusivities D/D0 or D0/D

for 10−6 M ionic strength samples as a function of the proposed length scales of various

hydrodynamic models17,18,19,21, particle-polymer coupling theory45, and depletion layer the-

ory20. None of the models cleanly collapse the dynamics across all particle sizes or polymer

concentrations.
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Figure 2.11: Relative diffusivity D0/D as a function of RCheng/ξ, where RCheng = RNP.
This model does not collapse the data at any particle or polymer size.17
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Figure 2.12: Relative diffusivity D0/D as a function of Rg/ξ. The success of this model
decreases as particles become smaller. The model successfully collapsed large
(RNP > Rg) particles data that follow SE behavior.18

Importantly, these empirical models cannot describe the non-monotonic behavior of

D/DSE in our system.

Particle-Polymer Interactions Models

A second category of models incorporate how the particle interacts with the polymer.

For neutral polymer systems, the polymer may develop a depletion layer around the par-

ticle, whereas for attractive polymer systems, the surrounding polymer will form a bound
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fails to collapse the dynamics of small particles onto the same curve.19
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Figure 2.14: Relative diffusivity D0/D as a function of RKohli. The effective radius RKohli

is defined as RKohli = RNP if RNP < Rg and RKohli = Rg if RNP > Rg. The
model does not capture the behavior of the 100 nm particles.21

layer covering the particle. In the depletion layer picture, the particle diffuses quickly

through the depletion layer and then slowly through the polymer mesh20. Our data, how-

ever, does not collapse according to the scaling suggested by this picture, suggesting the

absence of a depletion layer surrounding the particles. In the bound-layer picture, the poly-

mer binds to the surface of the particle and increases the viscous drag acting on the particle

so that the particle diffusion is slower than expected60. Dynamic light scattering (DLS)

on our particles in NaPSS solutions in the low and high ionic strength limits and in dilute
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conditions reveal that polymer chains do not significantly adsorb on the particle. Moreover,

we expect that particles with a bound layer would exhibit slower-than-expected diffusion,

whereas in our experiments D/DSE approaches 1 for solutions with high polymer concen-

trations and low ionic strength.
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Figure 2.15: Relative diffusivity D/D0 as a function of 2Reff/2ξ. The effective radius Reff

is defined as Reff =
√

R2
g(2R+2d)2

R2
g+(2R+2d)2

, where d is the depletion layer thickness.20

Electric Double Layer Model

A third class of pictures, developed for particles in dielectric media, predict a non-

monotonic decrease in the diffusion coefficient when a particle is surrounded by an electric

double layer of comparable size61 or when the particle dielectric constant increases62. The

former case61 results in slowing of particle diffusion when the particle size is on the order

of the inverse of the Debye length (i.e. dNPκ = 1, where κ−1 is the Debye length). Our ex-

periments, however, span size ratios that are orders of magnitude larger than 2RNPκ = 1.

Furthermore, this picture predicts that particle dynamics are slower at intermediate elec-

trolyte concentrations (−2 <log(2RNPκ) < 1) before recovering SE behavior at higher

electrolyte concentrations (log(2RNPκ) > 1) and hence trend in the opposite direction of

our data. Finally, the predicted deviations from SE behavior are of order ∼ 10%61, which

are much smaller than our observed deviations (Figure 2.9). The latter picture62 predicts an
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enhanced polymer-particle affinity as chain length or nanoparticle size increases when the

dielectric constant of the particle increases beyond that of the surrounding medium. The

polystyrene particles in our experiments, however, have a dielectric constant (ϵ = 2.5) that

is significantly lower than the solvent, water (ϵ = 80). Additionally, we expect the nega-

tively charged polystyrene particles and polyelectrolyte chains to further reduce the affinity

of chains to adsorb on the particle surface. Thus, these models are also not able to describe

the non-monotonic deviations from SE dynamics in our low-ionic-strength samples.

Particle-Polymer Coupling

A final model predicts that, within certain size ranges, the particle dynamics are coupled

to the relaxations of polymer segments of similar size.45 In this theory, particle-polymer

coupling results in diffusion according to an effective solution viscosity that is lower than

the bulk viscosity45. In our earlier experiments on partially hydrolyzed polyacrylamide, the

coupling theory scaling prediction D/D0 ∼ (RNP/ξ)
−2 was able to collapse the diffusivi-

ties of systems with similar particle-polymer size ratios (RNP/Rg)63. This scaling, however,

is not able to collapse the diffusivities measured in NaPSS solutions onto a master curve.

This result suggests that different physics must control particle dynamics in these solutions

as compared to solution of fully flexible Gaussian chains, likely arising from effects due to

the charge on the polymers in the semidilute regime.

2.3.6 Polymer Length Scales

Sodium polystyrene sulfonate is a polyelectrolyte with one charged functional group

per repeat unit. Charge repulsion leads to persistence length values larger than those of

neutral polymers. The chains, however, remain flexible at length scales larger than persis-

tence length due to their large length. This causes chains to adopt a semiflexible confor-

mation. Therefore, the scaling behavior of the physical properties of sodium polystyrene

sulfonate in salt free conditions is between neutral polymers in good solvent and polyelec-
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trolytes with no salt. We calculated the contour length l = Na, where N is the number of

repeat units, and a is the length of a carbon bond (1.54 Å). Polymer end-to-end distance

was determined using Re =
√
Na. Persistence length lp was estimated to be equal to the

Debye screening length kD = 1/
√
4πi, where i is the ion density. We calculated the Kuhn

length to be twice the persistence length. Correlation length ξ and polymer size Rg beyond

the dilute regime were calculated via ξ = Rg,0(c/c
∗)

−ν
3ν−1 and Rg = Rg,0(c/c

∗)−
ν−0.5
3ν−1 .

Table 2.1: Estimations of relevant length scales for 2200 kDa NaPSS in dilute solutions.

Polymer Property 10−6 M Solution 10−3 M Solution 10−1 M Solution
Radius of gyration Rg 190 nm 130 nm 75 nm

Contour length l 1890 nm 1890 nm 1890 nm
End-to-end distance Re 170 nm 170 nm 170 nm

Persistence length lp 21 nm 4 nm 1 nm
Kuhn length 2lp 42 nm 8 nm 2 nm

To identify the controlling physics, we examine the differences between polyelec-

trolytes and uncharged polymers. Both the radius of gyration Rg ∼ c−1/4 and the cor-

relation length ξ ∼ c−1/2 of polyelectrolytes decrease as concentration is increased (Table

2.2), similar to those for neutral chains but with different scaling exponents.23,26,4 Surpris-

ingly, we observe non-monotonic behavior in D/DSE when RNP/Rg < 1 for all polymer
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concentrations (100, 200 nm diameter particles), when RNP/Rg > 1 for all polymer con-

centrations (380 nm), and when RNP/Rg transitions from > 1 to < 1 as concentration is

increased (300 nm). Likewise, we observe non-monotonic behavior when RNP/ξ > 1 for

all concentrations (380 nm) and when RNP/ξ transitions from > 1 to < 1 as concentration

is increased (100, 200, 300 nm). Thus structural length scales do not directly control the

non-monotonic behavior of D/DSE in the semidilute regime.

Table 2.2: Calculated correlation length ξ and radius of gyration Rg as a function of poly-
mer concentration for solutions of varying ionic strength using scaling the-
ory26,51,23

c/c∗ 1.5 2 5 10 20 30

10−6 M
ξ [nm] 164 121 68 44 28 22
Rg [nm] 174 165 140 123 108 101

10−3 M
ξ [nm] 98 80 43 26 16 12
Rg [nm] 122 117 102 91 82 77

10−1 M
ξ [nm] 94 43 21 12 7 -
Rg [nm] 72 70 63 59 55 -.

2.3.7 Polymer Time Scales

In semidilute unentangled solutions, polymer chains undergo a crossover between two

dynamic modes that occur at different time scales. The relaxations at length scales shorter

than the correlation length ξ are well-described by the Zimm model, up to the relaxation

time of correlation blobs τξ ∼ ηsξ
3/kBT

26,3,4. At time scales larger than the relaxation

time of a correlation blob (t > τξ), polymers relax according to the Rouse model as a

chain of correlation blobs. Chains move subdiffusively until the terminal relaxation time

τR ∼ τξ(N/g)2ν+14,26, where N/g represents the number of correlation blobs per chain

and ν is the Flory exponent. We calculated particle diffusion times τD = R2
NP/D, where

D is the particle diffusivity at a given polymer concentration. Here, we summarize the

characteristic relaxation time of a correlation blob, terminal relaxation time (Table 2.3),

and particle diffusion times (Table 2.4).
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Table 2.3: Estimations of correlation blob and terminal relaxation times for 2200 kDa
NaPSS solutions at 10−6 M ionic strength.

Polymer conc. c/c∗ τξ [ms] τR [sec]
1.5 0.957 0.342
3 0.178 0.246
5 0.067 0.203
8 0.028 0.170

12 0.013 0.146
25 0.003 0.111
60 0.001 0.080

Table 2.4: Estimations of particle diffusion times for various particle sizes as a function of
2200 kDa sodium polystyrene sulfonate concentrations at 10−6 M ionic strength.

τD [sec]
Polymer conc. c/c∗ 100 nm 200 nm 300 nm 380 nm 600 nm 790 nm

2 0.001 0.011 0.043 0.088 0.354 0.757
5 0.002 0.018 0.067 0.144 0.592 1.53
10 0.003 0.040 0.113 0.194 1.20 2.84
20 0.008 0.075 0.262 0.612 2.05 4.59
30 0.013 0.137 0.363 0.840 2.90 6.00
60 0.025 0.244 0.833 1.44 5.00 11.1

Prior studies on NaPSS revealed that chain relaxation times exhibit a local maximum at

the overlap concentration51, first increasing with concentration in the dilute regime and sub-

sequently decreasing with concentration in the semidilute regime58,64. The non-monotonic

deviations from SE in our study do not occur at the crossover between dilute and semidi-

lute regimes, but rather well-within the semidilute regime c/c∗ ∼ 10. This result suggests

that the non-monotonic behavior in D/DSE in the semidilute regime does not arise from

non-monotonicity in the chain relaxation time.

2.3.8 Confinement Effects

We hypothesize that the non-monotonic dynamics may be associated with particles

experiencing local heterogeneity in solution. The distributions of particle displacements

Gs(∆x,∆t) = 1
N

〈∑N
i=1 δ (xi(t)− xi(t+∆t)−∆x)

〉
are Gaussian on all accessible

26



time scales for some particle sizes and polymer concentrations (e.g., 100 nm particles

and 2c/c∗ Figure 2.17 (a), all data is at 10−6 M ionic strength.). For 100 nm particles

at 20c∗, however, Gs(∆x,∆t) is non-Gaussian for all accessible lag times (Figure 2.17

(b), all data is at 10−6 M ionic strength.). For all samples, the non-Gaussian parameter

α2 = <∆r4>
3<∆r2>2 − 1, which characterizes the extent to which the distributions deviate from

the Gaussian prediction for Fickian diffusion, is approximately independent of time. Sur-

prisingly, we find that α2 for the 100 nm particles is also a non-monotonic function of c/c∗

and exhibits a local maximum (Fig. 2.17(c), all data is at 10−6 M ionic strength.). Moreover,

the concentration at which it attains its local maximum, 20c/c∗, is close to that at which

D/DSE attains its local maximum, providing additional evidence that the non-monotonic

deviations from SE may be related to particles experiencing different heterogeneous envi-

ronments.
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Figure 2.17: Normalized distribution of displacements Gs for 100 nm particles in (a) 2c∗

and (b) 20c∗ solutions. (c) Scaled diffusivity D/DSE and non-Gaussian pa-
rameter α2 as a function of concentration c/c∗ for 100 nm particles.

Non-Gaussian distributions of particle displacements can arise from temporal65,66 or
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spatial67,68 heterogeneities in the environment or from multiple dynamic modes69,70. In

these solutions, chain relaxations occur on time scales faster than those characterizing par-

ticle diffusion (inset to Figure 2.5), indicating that the solution dynamics are not temporally

heterogeneous on timescales relevant for particle diffusion. Anomalously large displace-

ments are often attributed to hopping of particles between cages in a mesh or network71,72,73.

A recent theory proposes that particles whose size is comparable to or slightly larger than

ξ in entangled solutions experience intermittent hopping within the mesh at long time

scales.45,48 Recent experiments attribute the non-Gaussian behavior in entangled solutions

to a competition between three time scales: the short-time relaxation of an entanglement

strand, the time scale for activated hopping of nanoparticles, and the long-time reptation

of the polymers.72,74 In our experiments, however, the solutions are not entangled. Instead,

we propose that the return to SE diffusion arises due to increasing confinement from the

polymers. These confinements behave similarly to a tube diameter in an entangled system

and become more prominent as the polymer concentration is increased. Because the non-

monotonic deviations from SE are not observed in the salted solutions, our results suggest

that the anomalous diffusion in Fig. 2.9 arises from the distinctive structural properties of

polyelectrolytes.

Displacement Autocorrelation

To explore the confinement picture, we calculate displacement autocorrelation func-

tions Cd(t) =< ∆x(t + τ)∆x(t) > at all polymer concentrations in 10−6 M solutions.

The displacements of 100 nm particles become anticorrelated at t = 32 ms, which cor-

responds to the first time interval in our movies, in solutions with c > 10c∗ (Figure 2.18

& 2.19(a)). The degree of anticorrelation increases with increasing polymer concentration

but decreases for larger particles. The larger anticorrelation in 100 nm particles suggests

that they experience caging-like effects, in which the particle rebounds after encountering

an elastic polymer network as polymer concentration increases. Additionally, the appear-
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ance of anticorrelated displacements occurs close to the onset of non-Gaussian particle

displacements and the maximum in the D/DSE deviation. Together, these factors suggest

that the observed anomalous diffusion is a result from the unique structural properties of

polyelectrolytes.
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Figure 2.18: Normalized coefficient of displacement autocorrelation Cd(t) as a function of
elapsed time τ for 100 nm particles in 10−6 M ionic strength solutions. Dashed
line represents the displacement autocorrelation of a Gaussian process.

We calculate displacement autocorrelation functions to quantify the correlation between

two successive displacements. The calculations are conducted according to

∆x(t) = x(t+∆tint)− x(t) (2.1)

and

C∗
d(τ) =< ∆x(t+ τ)∆x(t) >, (2.2)

where x(t) represents the particle position at a time t, ∆tint is the real time step for change

of displacement, and τ is the correlation displacement step. Angular brackets denote the

ensemble-average at multiple time origins. To compare sample to sample data more easily,

we normalize the autocorrelation coefficient via

Cd(τ) =
C∗

d(τ)

C∗
d(0)

, (2.3)
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Figure 2.19: Normalized coefficient of displacement autocorrelation Cd(t) as a function of
elapsed time τ for (a) 100, (b) 200, (c) 300, (d) 380, (e) 600, and (f) 790 nm
particles in NaPSS solutions at 10−6 M ionic strength. Dashed line represents
a Gaussian process.

where C∗
d(0) represents the displacement autocorrelation value of the first displacement

step. This choice normalizes the function such that at t = 0 it has the value 1 for all

samples. We observe more pronounced anticorrelation for small particles compared to

large ones, suggesting that small particles experience caging-like effects with increasing
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polymer concentrations (Figure 2.19).

2.4 Conclusions

We probe the mobility of nanoparticles of diameter 100− 790 nm in dilute and semidi-

lute solutions of a model flexible polyelectrolyte, sodium polystyrene sulfonate, at three

different ionic strengths (10−6, 10−3, and 10−1 M). We find that nanoparticles exhibit Fick-

ian diffusion on experimental time scales with dynamics that become slower as particle

size and polymer concentration are increased. Large particles (RNP > Rg) diffuse ac-

cording to Stokes-Einstein predictions at all ionic strengths. The diffusivities of small

particles (RNP < Rg) in polyelectrolyte solutions of low ionic strength, however, exhibit

a non-monotonic deviation from the SE prediction that depends on polymer concentration,

including a return to SE behavior at high polymer concentrations. Available models for

diffusion of particles in solutions of fully flexible Gaussian chains are unable to explain the

observed dynamics. In analogy with a physical picture developed for particle diffusion in

entangled systems, we suggest that increasing constraints on particle motion due to con-

finement by the polyelectrolyte chains are responsible for the return to SE diffusion at high

concentrations.

The length scale driving this confinement is still unknown. Polymer structure on short

length scales may need to be considered to develop models that are capable of capturing

particle dynamics in charged polymer solutions. To probe the dynamics of different size

particles at the relevant size limit (RNP ≪ Rg), different dynamic techniques (such as

but not limited to X-ray photon correlation spectroscopy, XPCS, or superresolution mi-

croscopy) are required to extend the dynamic range beyond the resolution limit of opti-

cal microscopy (dNP ∼ 100 nm). A better understanding of the length scales controlling

particle dynamics has interesting implications for a wide range of applications requiring

diffusion in complex media, including rigid rods75, emulsions76, and cellular cytoplasm19.
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Chapter 3

Chain Flexibility Effects on Nanoparticle

Dynamics in Semidilute Polyelectrolyte Solutions

3.1 Introduction

Nnoparticle transport through complex media is ubiquitous in various applications in-

cluding targeted drug delivery,38,39 enhanced oil recovery,32,33 and nanocomposite mate-

rials.35,36 Understanding the transport of particles in complex fluids is key to effectively

utilize them in applications. The Stokes-Einstein (SE) model gives an accurate description

of the diffusion of a nanoparticle with radius RNP through a homogeneous medium ac-

cording to the equation DSE = kBT/6πηRNP. When inhomogeneities in the medium are

comparably sized as particles, however, the underlying assumptions from SE theory do not

hold and particles deviate from predicted dynamics.40,41,42,17 In these solutions, the interac-

tions between the particles and heterogeneities define the relevant length scales for particle

transport.

In neutral polymer solutions, the length scales are defined according to the properties

of the polymer mesh. The length scale in entangled solutions is the tube diameter a, the

distance between entanglement strands. Large particles are locally caged within the entan-

glement mesh until the reptation time scale, after which SE behavior is recovered.43,44,45,46

Conversely, smaller particles (RNP ≪ a) diffuse within the entanglement mesh. While

particle dynamics in entangled solutions are well understood, a complete physical picture

for the transport of particles in charged unentangled solutions is still lacking.

In unentangled neutral polymer solutions, the distance between the two nearest neigh-
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boring chains, correlation length ξ, represents the important length scale in unentangled so-

lutions. In these systems, particle dynamics depend on hydrodynamic interactions, which

decay over ξ. Empirical models assume a homogeneous medium where particle dynamics

depend on polymer length scales including ξ and radius of gyration Rg. Studies probing the

diffusion of particles and tracers in polymer solutions show that particle dynamics can be

predicted using the particle and polymer length scales.21,59,63,52,53 In charged unentangled

polymer solutions, however, recent studies show that the unique structural properties, in

the form of highly extended conformation within correlation volumes,26,27,23,28,29 introduce

confinement effects resulting in non-monotonic deviations from SE.77 Polyelectrolytes ex-

hibit higher backbone stiffness (i.e. persistence length lB),49 compared to their neutral

counterparts due to the electrostatic repulsion on their backbones.22,23,24,25 The larger lB

values allow polyelectrolytes to acquire a multitude of conformations ranging from rigid

rod to semiflexible chain depending on the chain size or degree of polymerization. De-

spite recent studies exploring tracer transport and chain structure on particle dynamics in

polymer solutions,52,53,77,78 chain flexibility effects remain incompletely understood.

In this chapter, we examine the dynamics of spherical nanoparticles in unentangled

semidilute polyelectrolyte solutions using dynamic x-ray scattering. We tune the chain

flexibility by changing the molecular weight of the polyelectrolyte chains, effectively vary-

ing the size of the chain with respect to its persistence length. The particle relaxation rates

scale diffusively as a function of wavevector Γ ∼ Q2 in all solutions examined. We find that

particles in stiffest chain solutions follow the predictions according to SE, consistent with

the relative particle to polymer size regime. In solutions of intermediate chain stiffness,

particles exhibit non-monotonic deviations from predictions with signatures of confine-

ment effects. Particles in solutions of least stiff chains, however, linearly deviate from bulk

predictions as concentration increases. The observed dynamics do not scale according to

predictions of existing models. Together, these observations suggest that chain flexibility

and stiffness plays a significant role on the dynamics of particles in polyelectrolyte systems.
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3.2 Materials and methods

3.2.1 Solutions preparation

Glass vials were cleaned overnight in a solution of 6.5 wt% potassium hydroxide in

isopropanol, ensuring near salt-free conditions. Residual salt was removed by rinsing vials

ten times using Millipore water. The vials were then dried in an oven for two hours at

105 ◦C. Silica particles with diameter dNP = 60 nm (Polydispersity < 12% and zeta po-

tential −25 to −80 mV, nanoComposix) and silanol surface modification were dispersed

in separate aqueous solutions of NaPSS with a weight-averaged molecular weights Mw =

22000, 200, 68 kDa (Scientific Polymer Products) at salt free conditions. Deionized water

was assumed to have an ionic strength of 10−6 M.54 A constant particle volume fraction

ϕ = 0.4 × 10−2 was used across all samples to ensure enough scattering intensity signal

while minimizing interparticle interactions and avoid aggregation. The overlap concentra-

tion c∗ of NaPSS was estimated at each ionic strength from intrinsic viscosity measure-

ments, and the radius of gyration Rg,0 in each ionic strength solution was determined via

Rg,0 = (Mw[η]/(4/3πNav))
1/3.55,56 The resulting Rg,0 in dilute solutions were 190, 41, and

13 nm at Mw values of 2200, 200, and 68 kDa, respectively.

3.2.2 Rheology

Steady-shear measurements of the rate-dependent viscosity and dynamic frequency

sweep measurements were performed on Discovery Hybrid Rheometer (TA Instruments,

HR-2). Polymer solutions were loaded into a single gap Couette cell with a cup diameter

of 15 mm, a bob diameter of 14 mm, and a bob length of 42 mm. The inertia and torque

of the instrument were calibrated prior to measurements. Samples were pre-sheared for

one minute to reach equilibrium, after which the viscosity was determined as the average

value over one minute. All data points with a generated torque value below 0.1 µN·m or

raw phase angle values above 175◦ were eliminated to ensure torque was above instrument
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sensitivity and to avoid effects of inertia, respectively.

3.2.3 X-ray photon correlation spectroscopy

Experiments were carried out at the x-ray photon correlation spectroscopy (XPCS)

setup at sector 8-ID of the Advanced Photon Source at Argonne National Laboratory. We

estimated the scattering length densities (SLDs) in 10−6 Å−2 to be 18.831 for particles,

7.131 for NaPSS, and 9.469 for water. Solutions were pipetted into thin-walled quartz

capillary tubes (2 mm thickness, Charles Supper), which was then sealed to prevent any

evaporation. Finally, the samples were attached to a copper block with an attached Peltier

plate to control the temperature. An area detector (X-spectrum LAMBDA 750 K)79,80 was

located 8 m away from the sample, allowing the capture of scattering intensity across a

wavevector range 0.001 Å−1 < Q < 0.051 Å−1 that is equivalent to a length scale range

0.21 < L/dNP < 10.5. All measurements were carried out at 25 ◦C. We measured autocor-

relation curves at five different positions across the sample then averaged the data together

while propagating error throughout the fitting protocol. All rheo-XPCS data was analyzed

using the Gui Matlab scripts provided by sector 8-ID.

3.3 Results and discussion

3.3.1 Rheology

We confirm that the rheology of these solutions follows established predictions for poly-

electrolyte solutions (Figure 3.2).23,51,54,26,77 The specific viscosity of the polyelectrolyte

solutions increases as a function of polymer concentration (Figure 3.1). We examine the

changes in specific viscosity ηSP = (η − η0)/η0 (Figure 3.2), where η and ηs are the so-

lution and solvent viscosities, respectively, because it offers a direct measurement of the

polymer contribution to solution viscosity. At dilute concentrations (c/c∗ < 1), the specific
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viscosity ηsp of solutions at all molecular weights collapse onto a single curve due to the

dominance of hydrodynamic interactions81,3,4 with a concentration scaling ηsp ∼ (c/c∗)1.

In the semidilute regime (c/c∗ > 1), the specific viscosity scales according to predictions

for polyelectrolyte solutions at low (ηsp ∼ (c/c∗)1/2).23,51,26 We report the shear-dependent

viscosity for aqueous NaPSS solutions at all ionic strengths and find that viscosity remains

constant at all shear rates for all solutions (Figure 3.1). This observation suggests that

chains relax at time scales < 10 ms and are not entangled in our solutions. Thus, these

solutions serve as a model system to investigate the effects of chain flexibility on particle

dynamics.
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Figure 3.1: Viscosity η for (a) 68, (b) 200, and 2200 kDa NaPSS solutions as a function of
shear rate γ̇.
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Figure 3.2: Specific viscosity ηsp = (η − η0)/η0 as a function of normalized NaPSS con-
centration c/c∗ for solutions with different chain molecular weights.
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3.3.2 Polymer Length Scales

NaPSS is a model polyelectrolyte that exhibits a unique structural dependence on so-

lution ionic strength. The electrostatic interactions along its backbone results in a larger

persistence length lB compared to its neutral counterparts. As molecular weight increases,

the chain becomes larger than lB and chains retain more flexibility. We calculate contour

length l = Na, where N is the number of monomers and a represents the length of a

carbon bond (1.54 Å). Polymer end-to-end distance was determined using Re =
√
Na.

Kuhn length is estimated as b =
√
6R2

g,0/N . We calculated correlation length ξ and

polymer size Rg within the semidilute regime via ξ = Rg,0(c/c
∗)−ν/(3ν−1) and Rg =

Rg,0(c/c
∗)−(ν−0.5)/(3ν−1), where ν is the Flory exponent.

Table 3.1: Estimations of relevant length scales for 68, 200, and 2200 kDa NaPSS in dilute
aqueous solutions.

Polymer Property 68 kDa 200 kDa 2200 kDa
Number of monomers N 373 1283 12251

Contour length l [nm] 58 198 1890
Radius of gyration Rg [nm] 13 41 190

End-to-end distance Re [nm] 32 55 170
Kuhn length b [nm] 1.7 2.8 4.2

3.3.3 Particle Dynamics

After confirming that our solutions follow expected polyelectrolyte rheology in the di-

lute and semidilute regimes, we investigate the dynamics of silica particles in polyelec-

trolyte solutions using XPCS. The probed dynamics represent the center of mass dynam-

ics of silica particles since x-ray scattering is dominated by the silica particles. The in-

tensity autocorrelation curves G2 decay faster with time at smaller wavevectors Q. We

fit the autocorrelation curves using a stretched exponential function G2(Q,∆t) = 1 +

B exp
[
− (Γ∆t)β

]2
+ ε where B is the Siegert factor that depends on experimental geom-

etry, and β ≈ 0.93 is a stretching exponent that is globally fit, and ε represents the residual
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noise (Figure 3.3). Relaxation rates of silica particles scale diffusively as Γ = DQ2, where

D is the particle diffusivity (Figure 3.4), consistent with the observed stretching exponent

values β ≈ 0.93. The particle diffusivity slows down with polymer concentration c/c∗,

reflecting the increase in bulk viscosity of the solutions. To quantify the particle dynamics

with respect to their size, we normalize the measured diffusivities D by the diffusivity of

the silica particles in pure solvent D0.
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Figure 3.3: Intensity autocorrelation function G2 as a function of lag time for 0.0015 Å−1

≤ Q ≤ 0.0063 Å−1 for a 60c∗ solution of 2200 kDa NaPSS chains. Solid
curves are stretched exponential fits.

Particles diffuse according to solvent viscosity (i.e. D/D0 ≈ 1) at low polymer con-

centrations across all molecular weights (Figure 3.5), with an outlier at the lowest concen-

tration sample in 68 kDa NaPSS.The dynamics slow as concentration increases into the

semidilute regime in low and intermediate Mw samples. In the highest ionic strength sam-

ples, however, the particle dynamics remain coupled to the solvent viscosity until reaching

intermediate polymer concentrations within the semidilute regime 10c∗, after which par-

ticle diffusivity decreases with increasing concentration. At a given concentration c/c∗

within the semidilute regime, the particle dynamics are faster as chain flexibility increases,

consistent with the lower viscosity of the solutions (Figure 3.2). The different concentra-

tion dependencies of particle dynamics at different chain flexibilities suggests that these

systems decouple differently from bulk solution viscosity.
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Figure 3.4: Relaxation rate Γ as a function of wavevector Q for 2200 kDa NaPSS solutions
at various concentrations. Solid lines indicate Q2 scaling.

We analyze the dynamics of silica particles in the different NaPSS solutions in com-

parison to the predictions based on the bulk viscosity to investigate the difference between

nanoscale dynamics of particles and microrheological predictions. Specifically, we exam-

ine the particle diffusivity normalized by the SE diffusivity D/DSE as a function of poly-

mer concentration. We use the viscosities from shear rheology measurements to estimate

SE diffusivities.

Instead, the discrepancy in D/DSE must originate from interactions between silica par-

ticles and the surrounding polymer solution on the nano- or microscale.

Particles in solutions of lowest Mw exhibit diffusivities that approximately conform to

the Stokes-Einstein prediction using the measured bulk viscosities (Figure 3.6). For inter-

mediate and high Mw samples, the dynamics of particles follow predictions from SE then

systematically deviate with polymer concentration. The trend and extent to which the dy-

namics deviate, however, depends on the chain size. In intermediate Mw samples, D/DSE

increases with concentration until reaching a global maximum at intermediate concentra-

tions ∼ 6c∗ after which dynamics slow down. The observed dynamics in intermediate

size samples suggests that deviations are non-monotonic in nature, consistent with earlier

studies of particle dynamics at similar length scales as chains in semidilute polyelectrolyte
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Figure 3.5: Normalized particle diffusivity D/D0 as a function of NaPSS concentration
c/c∗ for various chain flexibility samples. Error bars represent a 95% confi-
dence interval.

solutions.77 The non-monotonic deviations are attributed to the unique structural properties

of polyelectrolytes that give rise to confinement effects despite the absence of entangle-

ments.
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Figure 3.6: Normalized particle diffusivity D/DSE as a function of NaPSS concentration
c/c∗ for various chain flexibility samples. Error bars represent a 95% confi-
dence interval.

Particle dynamics in the largest chains, however, linearly deviate from SE predictions

as concentration increases. The systematic deviations are quantitatively similar to ear-

lier studies examining particle dynamics in partially functionalized polymer solutions.63 In

these systems, the dynamics of intermediate size particles (ξ < RNP < a) couple to the
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segmental relaxation of polymer chains resulting in a collapse of the observed dynamics

onto a master curve according to the particle to polymer size ratio ξ/RNP with a scaling

exponent of −2.45 When we examine our dynamics with respect to this model, however,

we find that the scaling behavior does not capture our observed dynamics (Figure 4.7),

suggesting that the particles do not couple to polymer relaxations as predicted for neutral

polymers.
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Figure 3.7: Relative diffusivity D0/D as a function of 2RNP/ξ for NaPSS solutions at dif-
ferent molecular weights. Solid line represents a scaling exponent of −2.45

The differences in particle dynamics in polymer solutions can be examined according

to the relative particle to polymer size regimes. In our solutions, the particles are twice

the size of the lowest molecular weight chains RNP ≈ 2Rg,0. Because the dynamics in

these samples couple to the bulk viscoelasticity according to SE, we confirm that particles

probe an effectively homogeneous medium with heterogeneities from chains averaging out

across the particle surface. For intermediate and large molecular weight chains, particles

are smaller than the size of chains and fall within the regime where deviations from SE

are previously observed.77 Despite finding that particles experience deviations within the

semidilute regime, these deviations trend differently at each molecular weight. These ob-

servations suggest that chain flexibility plays a significant role in influencing particle dy-

namcis in polyelectrolyte solutions.
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3.4 Conclusions

We show that the dynamics of particles in polyelectorlyte solutions are influenced by

the structural properties and size of the background chains. Specifically, we use dynamics

x-ray scattering to demonstrate how chain flexibility affects particle dynamics. We tune

chain flexibility molecular weight. Particles follow predictions according to their size rela-

tive to polymer chains in lowest molecular weight samples. The intermediate and highest

molecular weight samples exhibit deviations from SE predictions. The deviations, however,

are non-monotonic for intermediate size samples and monotonic in the highest molecular

weight solutions. We attribute the different deviations to changes in the interactions be-

tween the particles and the polymer chains as chain flexibility is altered. These observa-

tions emphasize the importance of chain structural properties to understand the underlying

physics controlling particle dynamics in solutions. This work has implications for a wide

range of applications requiring diffusion in complex media, including rigid rods75, emul-

sions76, and cellular cytoplasm19.
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Chapter 4

Electrostatic Repulsion Slows Relaxations of

Polyelectrolytes in Semidilute Solutions

4.1 Introduction

The mechanical response of polyelectrolytes is primarily determined by the chain dy-

namics,82 which in turn is dictated by the configuration of polyelectrolyte chains. Electro-

static interactions on the polyelectrolyte backbone affect the chain conformation. Addition-

ally, these interactions underpin the favorable properties (stability and compatibility) that

make polyelectrolytes an essential component of biological systems such as cartilage tis-

sues83,84,85 and good lubricants for muscle joints,86 and as thickening agents and rheological

modifiers in cosmetics,87,88 food products,89,90 and paints.91 Hence, understanding the ef-

fects of structure on the dynamics of polyelectrolyte solutions is key to identify and control

the distinct physical processes governing the mechanics of polyelectrolyte solutions.

The structure of polyelectrolytes deviates strongly from predictions for neutral chains58,27

because of the electrostatic repulsions along the polymer backbone.22,23,24,25 These interac-

tions result in a highly extended conformation of electrostatic blobs inside the correlation

blob.26,27,23,28,29 On length scales beyond the correlation volume, polyelectrolytes transi-

tion to a random walk conformation of correlation blobs as the repulsive interactions are

screened.27,23,28 Alternatively, these interactions can be screened at high ionic strengths so

that polyelectrolytes approach fully flexible chain conformations. These unique structural

properties have significant effects on chain dynamics, as reported by studies exploring the

effects of counterion valence,92 electrostatic screening length scaling,93 and entanglement
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crossover and density.54 The segmental relaxations of neutral chains are described by the

Zimm model in dilute solutions,3 by the Rouse model in semidilute solutions,5 and by the

reptation model in entangled solutions.94 Experimental measurements of viscosity, relax-

ation times, and disentanglement,95,51,96,97,98,99,100,54,101,102 however, show poor agreement

with scaling model predictions for polyelectrolytes. We expect these discrepancies are

caused by the extended structure of the polyelectolyte chains. Therefore, there is a criti-

cal need to independently measure polyelectrolyte conformation and segmental relaxations

to elucidate the relationship between structure and dynamics in semidilute polyelectrolyte

solutions.

In this study, we show that the segmental relaxations of polyelectrolytes follow de

Gennes narrowing in which the local chain structure perturbs standard Zimm relaxations.

We independently tune geometric and electrostatic length scales, measured with small-

angle neutron scattering (SANS), by varying polymer and salt concentration, respectively,

to understand the dynamic behavior of polyelectrolytes, measured with neutron spin echo

(NSE) spectroscopy. The SANS profiles of these solutions at all ionic strengths resemble

the profile expected for chains with highly extended random walk conformation and can be

fit using a model combining the form factor of a semiflexible chain with excluded volume

interactions and a PRISM structure factor. Chain dynamics across the correlation length

ξ, however, deviate from the standard Zimm model. Specifically, the polymer dynamics

are suppressed around the structure peak induced by the electrostatic interactions between

chains. Approximating the structure factor of the polyelectrolyte chains as a perturba-

tion from neutral Gaussian chains, we demonstrate that these slow relaxations are wholly

described by the structure of polyelectrolytes and follow the theoretical prediction of de

Gennes narrowing, in which dynamics are inversely related to structure due to the presence

of a free energy minimum over a characteristic structural length scale.103,104 Our findings

indicate that the unique structural properties of charged chains underpin the deviation of

polyelectrolyte dynamics from theoretical predictions.
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4.2 Materials and methods

Our experimental system consists of sodium polystyrene sulfonate (NaPSS) chains

(Mw = 68 kDa) dissolved in Millipore water or deuterium oxide for rheology and neu-

tron scattering experiments, respectively.77 The ionic strength of the solutions was tuned

by adding appropriate amounts of sodium chloride. The radius of gyration was determined

from intrinsic viscosity experiments to be Rg,0 = (13, 12, and 9.5) nm at ionic strengths of

I = (10−6, 10−2, and 10−1) M (M = mol/L, moles per liters of solution), respectively. The

polymer concentrations were chosen to obtain similar correlation lengths for samples at dif-

ferent ionic strengths according to de Gennes’ scaling predictions ξ = Rg,0(c/c
∗)−ν/(3ν−1)

(Table 4.2). Steady-shear rheology measurements were performed on a Discovery Hybrid

Rheometer (TA Instrument, HR-2) using a Couette geometry. We collected small-angle

neutron scattering (SANS) and neutron spin-echo (NSE) data on the NGB30 and NSE in-

struments, respectively, at the Center for Neutron Research, National Institute of Standards

and Technology (NIST).105,106 The raw SANS and NSE data were reduced using IgorPro107

and DAVE108 software package, respectively. All experiments were performed at room

temperature.

4.2.1 Solution preparation

Glass vials were soaked overnight in a base bath solution of 6.5% mass fraction potas-

sium hydroxide in isopropanol to ensure near salt-free conditions. Residual salt was re-

moved by rinsing vials ten times using Millipore water. The vials were then dried in

an oven for two hours at 105 ◦C. Sodium polystyrene sulfonate (NaPSS) with a weight-

averaged molecular weight Mw = 68, 000 Da (Scientific Polymer Products) was dissolved

in deuterium oxide (Sigma-Aldrich) or Millipore water at three different ionic strengths.

The ionic strength of deuterium oxide and deionized water was assumed to be 10−6 M (M

= mol/L, moles per liter of solution).54 The ionic strength of the other two sets of solutions
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was adjusted by adding sodium chloride to achieve (10−2 and 10−1) M.

4.2.2 Rheology

A single-gap Couette cell (15 mm in diameter), equipped with a bob (14 mm in di-

amter, and 42 mm in length) was used to collect dynamic frequency sweep measurements

on a Discovery Hybrid Rheometer (TA Instruments, HR-2). Dynamic strain sweep mea-

surements were performed at angular frequency frequencies ω = (1, 10, and 100) rad/s. We

observe linear viscoelastic behavior up to strain values of γ = 20%. We measured storage

(G′) and loss (G′′) moduli of aqueous NaPSS solutions as a function of angular frequency

at a fixed strain value of 10%. All data points with a generated torque value below 0.1

µN·m or raw phase angle values above 175◦ were eliminated to ensure torque was above

instrument sensitivity and to avoid effects of inertia, respectively.

4.2.3 Neutron Scattering

We prepared three sets of NaPSS solutions in deuterium oxide at three different ionic

strengths. Deuterium oxide was used as the solvent to minimize incoherent scattering con-

tribution to total scattering and enhance contrast. The polymer concentrations were chosen

to obtain similar chain structural properties (i.e., correlation length) for samples at different

ionic strengths according to de Gennes’ scaling predictions. We estimated the scattering

length densities (SLDs) in 10−6 Å−2 to be 1.140 for NaPSS, and 6.393 for deuterium ox-

ide, which provided sufficient contrast to isolate the scattering signal from polyelectrolyte

chains. Samples were loaded into 4 mm thick titanium demountable cells to ensure a trans-

mission of 60% to 70%. We collected small-angle neutron scattering (SANS) and neutron

spin-echo (NSE) on the NGB30 and NSE instruments, respectively, at the Center for Neu-

tron Research, National Institute of Standards and Technology (NIST).105,106 SANS was

performed at all available configurations including lenses and sample to detector distances

(1, 4, and 13) m to achieve a wavevector range of (0.001 to 0.5) Å−1, corresponding to
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length scales of (1.3 to 630) nm. The raw SANS data was reduced to an absolute intensity

by correcting for the blocked beam scattering, empty cell scattering, and detector sensitiv-

ity and normalizing to the incoming beam intensity using IgorPro.107 NSE was collected at

two incident wavelengths (6 and 8) Å to acquire data across a wavevector range of (0.05

to 0.26) Å−1, corresponding to length scales of (2.4 to 12.6) nm. The data were scaled

to account for the solvent dynamics and instrument resolution by measuring the echoes of

pure deuterium oxide and a charcoal standard, respectively. The DAVE software package

was used to reduce NSE data.108 All measurements were performed at room temperature.

4.3 Results and discussion

4.3.1 Intrinsic viscosity

Dilute aqueous NaPSS solutions were introduced into a glass capillary viscometer

(Cannon Instrument Company, 0C). The consistent observed crossover between the dilute

(viscometer) and semidilute (rheometer) regimes at the estimated overlap concentration

suggests that the viscometer accurately captures the polymer contribution to viscosity de-

spite operating at a high shear rate of ≈ 300 s−1. We determined intrinsic viscosity [η]

by fitting the data to the first order virial expansion of viscosity η = η0(1 + [η]CNaPSS),

where η0 is the solvent viscosity, and [η] is the intrinsic viscosity. The overlap concen-

tration (c∗ = 1/[η]) was then estimated to be (12.3, 15.7, and 31.9) g/L and radius of

gyration (Rg,0 = (Mw/(4/3πNavc
∗))1/3) was calculated to be (13, 12, and 9.5) nm for 68

kDa polymer at (10−6, 10−3, 10−1) M ionic strength, respectively. We determined the Flory

exponent ν at each ionic strength from the scaling of polymer size with molecular weight

(Figure 4.1(b)) using the Flory theory of fractal chains.57
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Figure 4.1: (a) Solution viscosity η as a function of NaPSS concentration CNaPSS for 68
kDa NaPSS in 10−6 M solutions. (b) Radius of gyration Rg as a function of
polymer molecular weight Mw. Solid lines represent theoretical scaling.

4.3.2 Rheology

We confirm that the rheology of these solutions follows established predictions for

polyelectrolyte solutions (Figure 4.2).23,51,54,26,77 Polymer solutions viscosity remains con-

stant at all shear rates. At dilute concentrations (c/c∗ < 1), the specific viscosity ηsp =

(η − ηs)/ηs, where η and ηs are the solution and solvent viscosities, respectively, of so-

lutions at all ionic strengths collapse onto a single curve due to the dominance of hydro-

dynamic interactions81,3,4 with a concentration scaling ηsp ∼ (c/c∗)1. In the semidilute

regime (c/c∗ > 1), ηsp increases as a power-law with normalized polymer concentration

(ηsp ∼ (c/c∗)α) and conforms with the scaling predictions in the limits of low (α = 1/2)

and high (α = 5/4) ionic strength. For solutions of intermediate ionic strength, however,

α = 0.9 ± 0.1 is intermediate between the low and high salt limits. The storage modu-

lus of these samples was not detected within our angular frequency range and instrument

criteria. As a result, we were not able to observe a crossover between G′ and G”, sug-

gesting the absence of entanglements and that chains relax quickly in our solutions. We

report the shear-dependent viscosity for aqueous NaPSS solutions at all ionic strengths and

find that viscosity remains constant at all experimented shear rates for all solutions (Figure

4.4). This observation suggests that chains relax at time scales < 10 ms, consistent with
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the measured oscillatory rheology (Figure 4.3).
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4.3.3 Polymer Length Scales

NaPSS is a model polyelectrolyte that exhibits a unique structural dependence on so-

lution ionic strength. The electrostatic interactions along its backbone results in a larger

persistence length compared to its neutral counterparts. As ionic strength increases, the

charges on the backbone are screened and chains retain more flexibility. We calculate con-

tour length l = Na, where N is the number of monomers and a represents the length of

a carbon bond (1.54 Å). Electrostatic blob size is estimated D∗
e = b(uf 2

∗ )
−1/3 at the ef-

fective charge fraction f∗, where u = lB/b is the interaction parameter, lB is the Bjerrum

length, and b =
√
6R2

g,0/N is the Kuhn length. We calculate the number of monomers

nb = D∗
e/a in an electrostatic blob. The stretching parameter B is determined accord-

ing to B = Na/Rg,0. We calculated correlation length ξ and polymer size Rg within the

semidilute regime via ξ = Rg,0(c/c
∗)−ν/(3ν−1) and Rg = Rg,0(c/c

∗)−(ν−0.5)/(3ν−1).

Table 4.1: Estimations of relevant length scales for 68 kDa NaPSS in dilute solutions at
different solution ionic strength. Error bars are estimated according to a 95%
confidence interval.

Polymer Property 10−6 M Solution 10−3 M Solution 10−1 M Solution
Radius of gyration Rg [nm] 13 ± 0.5 12 ± 0.3 9.5 ± 0.4

Contour length l [nm] 58 ± 0.3 58 ± 0.3 58 ± 0.3
Kuhn length b [nm] 1.7 ± 0.1 1.5 ± 0.1 1.2 ± 0.1

Electrostatic blob D∗
e [nm] 2.2 ± 0.1 2.0 ± 0.1 1.4 ± 0.1

Monomers per blob nb 14 ± 1.0 13 ± 1.0 9.0 ± 1.0
Stretching Parameter B 4.5 ± 0.2 4.8 ± 0.1 6.1 ± 0.3

4.3.4 Polyelectrolyte Chain Structure

The rheology measurements show that the properties of polyelectrolyte systems can be

tuned by screening the electrostatic interactions, which modify the polymer conformations.

To characterize these conformations, we capture the scattering profile of our solutions using

SANS to quantify their structural properties within the correlation blob. The SANS scat-

tering profiles of NaPSS solutions display a local maximum at Q∗ between (0.08 and 0.14)
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Å−1 (Figure 4.5(a)). The peak is the characteristic structural signature of polyelectrolyte

solutions and results from the high osmotic pressure due to counterion entropy, which pre-

vents the overlap of correlation volumes.23,27
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Figure 4.5: (a) SANS intensity I(Q) as a function of wavevector Q for various NaPSS
concentrations at I = 10−6 M. (b) Correlation length ξ and (c) Kuhn length b
from fits to eqn. 4.1 as a function of concentration c/c∗ at various I values.

Small-Angle Neutron Scattering Fitting

The scattering profiles are well fit using an established model that combines the form

factor of a semiflexible chain with excluded volume interactions and a PRISM-based struc-

ture factor (Solid lines in Figures 4.5(a) & 4.6. Data are shifted vertically for clarity).109,110,111

The form factor assumes that chains are semiflexible on length scales greater than the per-

sistence length (lp = 0.5b, where b is the Kuhn length) and rod-like at length scales below

lp without accounting for electrostatic contributions. The effects of electrostatic interac-
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tions are incorporated by adding the form factor into the PRISM theory expression for the

scattering intensity112,113,114,115,116 to obtain an equation for the scattering intensity. We add

an empirical power law term to capture the upturn at low Q, due to large scale inhomo-

geneities.25 SANS data were fitted using the following equation

I(Q) = k
P (Q,L, b)

1 + αc(Q, ξ)P (Q,L, b)
+Q−m + Iinc, (4.1)

where c(Q, ξ) represents the Fourier transform of the direct correlation function of spheres

on chains to simulate excluded volume interactions,113 and m is the slope of I(Q) at low

Q. The components of equation 4.1 are defined as follows

c(Q, ξ) = e−Q2ξ2 , (4.2)

P (Q,L, b) =


P1(Q,L, b), Qb < 3.1

P2(Q,L, b), Qb ≥ 3.1

, (4.3)

P1(Q,L, b) = (1− w(QRg))
2

u2
1

(e−u1 + u1 − 1) + fcorr(Q)w(QRg)

[1.22(QRg)
− 1

0.585 + 0.4288(QRg)
− 2

0.585 − 1.651(QRg)
− 3

0.585 ]

+
C(nb)

nb

[
4

15
+

7

15u2

− (
11

15
+

7

15u2

e−u2 ]

, (4.4)

where

w(x) = 0.5(1 + tanh
x− 1.523

0.1477
), (4.5)

u1 =
Lb

6
(1− 3

2nb

+
3

2n2
b

− 3

4n3
b

(1− e−2nb))Q2, (4.6)

R2
g = (ϵ(nb))

2Lb

6
, (4.7)

u2 = (ϵ(nb))
2Q

2Lb

6
, (4.8)

ϵ(x) = (1 + (
x

3.12
)2 + (

x

8.67
)3)

0.176
6 , (4.9)
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nb =
L

b
, (4.10)

C(nb) =


3.06n−0.44

b , L > 10b

1, L ≤ 10b

, (4.11)

fcorr(Q) =


1, dP1

dQ
≤ 0

0, dP1

dQ
> 0

, (4.12)

and

P2(Q,L, b) =
a1(Q,L, b)

(Qb)4.95
+

a2(Q,L, b)

(Qb)5.29
+

π

QL
. (4.13)

Here, b and L are the Kuhn and contour lengths of the chain, respectively. Contour length

L = Na is fixed across all fitting protocols. The functions a1(Q,L, b) and a2(Q,L, b) are

determined by imposing the differentiability and continuity condition at Qb = 3.1. An

additional background Iinc and power law Q−m terms are added to the function to capture

incoherent scattering contribution and the low-Q upturn, respectively. The model cleanly

represents the scattering profiles at all ionic strengths and concentrations (Figure 4.6, data

are shifted vertically for clarity.).

The structural parameters obtained from SANS fits follow the expectations for poly-

electrolyte solutions (Figure 4.5(b) & Table 4.2). With increasing polymer concentration,

the electrostatic screening of backbone functional groups by counterions increases, result-

ing in a power-law decrease of ξ ∼ (c/c∗)−1/2, consistent with theoretical predictions.51,23

At all polymer and salt concentrations, the effective Kuhn length is larger than or equal to

the Kuhn length of uncharged polystyrene b ≈ 50 Å ≥ 16 Å due to the contribution of

intrachain electrostatic interactions.117 Moreover, b decreases with concentration and ap-

proaches the bare Kuhn length value of a fully flexible chain.118,100 As intended by our

experimental design, we achieve comparable correlation length values for solutions at dif-

ferent ionic strengths. Moreover, solutions with similar ξ have substantially different values

of b, indicating that the electrostatic interactions in these solutions are significantly differ-
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Figure 4.6: SANS intensity I(Q) as a function of wavevector Q for different concentrations
of NaPSS solutions at (a) 10−2 M and (b) 10−1 M ionic strength. Solid and
dashed lines represent fits from eqns. 4.1 and 4.14, respectively.

ent. From these structural measurements, we conclude that we have successfully produced

a library of solutions in which geometric and electrostatic length scales are independently

varied.

Table 4.2: Measured chain properties as a function of polymer concentration for solutions
at varying ionic strength.

Ionic Strength [M] 10−6 10−2 10−1

c/c∗ 3.6 13 3.4 11 2.0 5.4

ξ ± 3 [Å] 77 47 81 45 77 47

b± 2 [Å] 71 20 60 20 71 20.

4.3.5 Polyelectrolyte Chain Dynamics

We now use these solutions to explicitly test how segmental relaxations depend on geo-

metric and electrostatic length scales using NSE. Dynamic measurements are performed

across a wide range of time scales 0.1 ns < t < 45 ns and wavevectors 0.051 Å−1

< Q < 0.26 Å−1, equivalent to 0.45 < Qξ < 4.36. The normalized intermediate scat-
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tering functions are well-represented by a stretched exponential decay I(Q, t)/I(Q, 0) =

A exp[(−Γt)β] (Figures 4.7(a) & 4.8), where the prefactor A = 1 represents fully corre-

lated dynamics at short time scales, β is the stretching exponent, and Γ is the relaxation

rate characterizing segmental relaxations. The stretching exponent remains constant across

the experimental wavevectors with an average value β ≈ 0.83 ± 0.02, indicating that the

polymer chains follow Zimm-like relaxations. Although the limiting Zimm relaxations

predict β = 2/3, over the range of interest for these experiments, it has been found that

β ≈ 0.85.119,120
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Figure 4.7: (a) Scaled correlation curves I(Q, t)/I(Q, 0) as a function of time t at different
wavevectors Q for 6.4c∗ NaPSS solution. (b) Relaxation rate Γ as a function of
Q. Inset: Ratio of relaxation rate to length scales Γ/Q2/β as a function of Q.

For neutral polymers that relax according to the Zimm model, the relaxation rate should

scale with wavevector according to Γ ∼ Q3. For these polyelectrolyte systems, how-
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ever, there are two distinct scaling regions. At small length scales, the relaxation rates

scale close to predictions (Figure 4.7(b)), but over longer length scales (i.e., small Q)

the relaxation rates follow a weaker power law. The scaling behavior of the relaxation

rate is qualitatively similar across all samples. The transition between these two scaling

regimes occurs at length scales comparable to Q∗, suggesting that the dynamic changes

may arise from the structure of the solution. The different dynamic regimes are fur-

ther emphasized when the relaxation rates are normalized according to their expected Q-

dependence. Fundamentally, the correlation curves from NSE are related to the relative

mean-squared displacement between polymer monomers according to a Gaussian approx-

imation I(Q, t)/I(Q, 0) = exp[−⟨∆r2(t)⟩Q2/6].121 Following established methods,46,122

we set this expression equal to the stretched exponential decays observed in our experi-

ments, leading to (Γt)β = −⟨∆r2(t)⟩Q2/6. Because polymer monomers move subdiffu-

sively on these time scales (i.e. ⟨∆r2(t)⟩ ∼ tβ), the relaxation rate must scale as Γ ∼ Q2/β .

When normalized by Q2/β , Γ decreases as a function of Q until it reaches a minimum

at Q ≈ Q∗, after which it increases to a constant value at large wavevector (inset of Figure

4.7(b) and Figure 4.9). This minimum shifts to higher Q with increasing polymer concen-

tration, consistent with the shift in structure factor peak measured in SANS (Figure 4.5).

These observations suggest that the structure of polyelectrolytes, mediated by the electro-

static repulsion between charged monomers, plays a significant role in dictating the chain

dynamics.

Previous studies have reported suppressed dynamics across Q∗ in multiarm polymers,123,124

colloidal suspensions,125,126,127,128,129 and particle-polymer composites.122 In these systems,

the dynamics can be interpreted through the phenomenon of de Gennes narrowing103 in

which a peak in the structure factor S(Q) exists at Q∗ due to the presence of a free energy

minimum that slows relaxations. Under this framework, dynamics are inversely related to

structure through D(Q) ∼ 1/S(Q), where D(Q) is the wavevector-dependent diffusivity.

An earlier study found that the diffusion coefficient of polyelectrolyte chains is inversely
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Figure 4.8: Scaled correlation curves I(Q, t)/I(Q, 0) as a function of time t at different Q
for (a) 6.4c∗, (b) 8.8c∗, and (c) 13c∗ at I = 10−6 M, (d) 5.6c∗, (e) 7.6c∗, and (f)
11c∗ at I = 10−2 M, (d) 3.0c∗, (e) 3.9c∗, and (f) 5.4c∗ at I = 10−1 M.

10-1
0

10

20

30

40

50

 

Γ/
Q

2/
β

3×10-2 10-1

 

3×10-2

(a) (b)

10-1

 
3×10-2

Figure 4.9: Relaxation rate normalized to length scales Γ/Q2/β as a function of wavevector
Q for (a) 10−6 M, (b) 10−2 M, (c) 10−1 M ionic strength solutions. Error bars
are estimated according to a 95% confidence interval.

related to structure.130 In our solutions, however, we measure the segmental relaxations,

which relax subdiffusively. Thus, we define an analogous subdiffusion coefficient that sat-

isfies Γ = KQ2/β where K is a kinetic parameter that characterizes the subdiffusive Zimm
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relaxations in the system.

Lorentzian Fitting

To compare this kinetic parameter K to the structure of the solution, we must extract

a structure factor S(Q) from the measured scattering profiles. Typically, the scattering

intensity can be decomposed according to I(Q) = P (Q)S(Q), where P (Q) is the form

factor that captures the scattering from an individual component and S(Q) is the structure

factor that captures the scattering intensity between components. Without a closed-form

theoretical expression for S(Q) in a polyelectrolyte solution, we make a simplifying as-

sumption that the polyelectrolyte chain structure can be represented as a perturbation from

an ideal Gaussian chain.109,131 To explore this picture, we fit the SANS scattering profile to

a Lorentzian (Dashed lines in Figures 4.5(a) & 4.6) at high wavevectors (Q ≥ 0.3 Å−1),

where S(Q) is expected to be 1, to represent P (Q) of Gaussian chains132,133 according to

P (Q) =
Ipoly

1 + (Qξ0)2
. (4.14)

In this expression, Ipoly is the scattering intensity of the polyelectrolyte chains and ξ0 is the

effective correlation length of the ideal, unperturbed chain. Because the monomer density

is similar between solutions with the same correlation length ξ, we globally fit Ipoly and ξ0

across these samples. We then calculate S(Q) of our NaPSS chains by dividing the total

scattering I(Q) from SANS by P (Q) from eqn. 4.14. To evaluate the relationship between

structure and dynamics in these semidilute polyelectrolyte solutions, we then compare these

extracted S(Q) to the normalized kinetic parameters K0/K(Q), where K0 represents the

dynamics in the absence of structural contributions. Following the procedure established

in our earlier work122, K0 is defined per sample at the wavevector at which S(Q) is first

equal to 1 after the peak. The S(Q) curves capture the peak positions of K0/K(Q) at all

NaPSS concentrations and ionic strengths (Figure 4.10(a) and (b). Data and S(Q)s shifted
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for clarity). Moreover, S(Q) accurately predicts the trends of the dynamics before and af-

ter the structural peak. The weaker electrostatic repulsion at high ionic strength results in

a shallower structural peak and less suppressed dynamics as the perturbation from a Gaus-

sian chain becomes weaker (Figure 4.10(b)). Furthermore, S(Q) still accurately captures

the shape and decay of the dynamics as ionic strength changes. The excellent agreement

between S(Q) and K0/K demonstrates that the segmental dynamics of polyelectrolytes

are controlled in large part by their underlying structure. Furthermore, the electrostatic

repulsions that dictate the local structure in semidilute polyelectrolyte solutions also act to

perturb the expected Zimm relaxations.
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Figure 4.10: Normalized dynamic factor K0/K(Q) as a function of Q for solutions (a) with
different concentrations at I = 10−6 M and (b) with similar correlation length
ξ ∼ 79 Å at different I . Solid lines represent the structure factor S(Q).

The success of our approach in relating the structure and dynamics of polyelectrolyte

chains relies on the assumption that electrostatic interactions act as perturbations to a neu-

tral chain. To implement this approach, we use the simplest model of an ideal Gaussian

chain. This implementation is necessary due to the extremely limited Q-range (Q ≥ 0.3

Å−1) over which we can fit P (Q) in the absence of structural effects. As a result, the pa-
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rameters from the fits to eqn. 4.14 do not fully describe the physics of our system. Whereas

Ipoly increases with polymer concentration as physically expected, the values of the effec-

tive correlation length ξ0 converge to a constant irrespective of polymer concentration. We

attribute this behavior to the inability of such a simple representation of the Laplacian form

factor P (Q) to capture subtle changes to polymer structure. An improved description of

the relationship between structure and dynamics in these systems would require the devel-

opment of a separable polyelectrolyte structure factor similar to those derived for colloidal

suspensions.134,135,136 Nevertheless, the excellent agreement between the observed dynam-

ics and the calculated S(Q) conclusively demonstrates that electrostatic repulsions suppress

Zimm-like relaxations across the structural peak in semidilute polyelectrolyte solutions.
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Figure 4.11: SANS intensity I(Q) as a function of wavevector Q for (a) 6.4c∗ and (b) 3.0c∗

NaPSS in (10−6 and 10−1) M solutions, respectively. Solid lines represent fits
from eqn. 4.14. Error bars represent a 95% confidence interval.

60



80 100 120 140 160 180

0.02

0.03

0.04

 

 10-6 M
 10-2 M
 10-1 M

I po
ly
 [c

m
-1
]

cNaPSS [mg/mL]
80 100 120 140 160 180

5

6

7

8

9

ξ

cNaPSS [mg/mL]

(a) (b)

Figure 4.12: (a) Scattering intensity of NaPSS chains Ipoly and (b) fitted correlation length
ξ0 as a function of NaPSS concentration cNaPSS at different ionic strength ex-
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4.4 Conclusions

By independently varying the electrostatic and geometric length scales in semidilute

solutions, we show that the dynamics of polyelectrolytes are strongly coupled to their struc-

tural properties in solutions. The polymer dynamics follow Zimm-like relaxations that are

suppressed across the structure factor peak according to de Gennes narrowing. Although

our approach of determining the structure factor of polyelectrolytes uses the simplest model

of Gaussian chains, we still observe remarkable agreement between structure and dynam-

ics. Our work illustrates the importance of incorporating the coupling between structure

and dynamics to further understand polyelectrolyte chain properties. Developing structure-

dynamics relationships is essential to accurately describe the properties of polyelectrolyte

materials.
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Chapter 5

Effects of Depletant Size on the Recovery of

Colloid-Polymer Mixtures

5.1 Introduction

Suspensions of submicron particles with attractive interparticle interactions are con-

sumed as cheeses, jellies, and thick sauces, and found in common industrial products such

as as agrochemicals, paints and coatings, and personal care formulations.137,138 Program-

ming the performance and appeal of these materials requires understanding how the interac-

tions between the particles determines the suspension’s structure and mechanics. Mixtures

of colloids and non-adsorbing polymers serve as a convenient model system for probing

the role of attractive interactions on suspension phase behavior and mechanics. In these

systems, the Asakura-Oosawa (A-O) model139 provides a straightforward estimate of the

attraction induced by the polymers. In the A-O model, the depletant polymers are treated

as ideal spheres that generate an effective attraction via an unbalanced osmotic pressure.140

The strength and range of the resultant effective attraction are controlled by the concen-

tration cp and size of the polymer.141,142 the latter is typically parametrized by ξ = Rg/a,

where Rg is tthe polymer radius of gyration Rg and a is the colloid radius.

Exploiting this tunability, depletion mixtures have been widely employed to investigate

the phase behavior of attractive suspensions, revealing cluster fluids, gels, and attractive

glasses.139,143,141,142,144,145,146,147,148,149,150 At low to medium particle volume fractions ϕ, De-

pletioin mixtures undergo a fluid-to-solid transition as cp is increased.151 Gels become less

structurally heterogeneous as the strength of the attraction is increased.152,153 Likewise,
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clusters become increasingly tenuous as the range of the attraction is decreased151. Simi-

larly, these mixtures have been used tto probe the effects of attractions on flow properties,

including linear and nonlinear rheology as well as recovery and aging.152,147,154 For exam-

ple, bulk rheological measurements have revealed that concentrated depletion gels exhibit

multiple yielding processes, corresponding to the breaking of bonds and the fragmentation

and/or erosion of clusters.155,156,157 Dynamically, yielded depletion gels with weak attrac-

tions (low cp) exhibit fast and slow subpopulations.158

Scattering methods are convenient for probing the dynamics at the single particle scale.159,160

Scattering experiments have revealed that concentrated depletion gels form clusters161 that

are thought to control the mechanics162. They have also been used to show that the relax-

ation time of a colloidal gel increases linearly with sample age and scales inversely with

wave vector,163 consistent with elastic deformation of a strained network.164 Finally, they

have been used to detect and characterize irreversible particle rearrangements in gels under

oscillatory strain.159. What remains less explored is the role of the depletant size (i.e. at-

traction range) and size distribution on microscopic dynamics. While known to affect the

phase behavior165,166 and flow behavior167 of colloid-polymer mixtures, its role on recovery

after shear has not yet been studied.

In this paper, we use x-ray scattering to characterize the short-time recovery of colloidal

gels after cessation of shear. We formulate suspensions of colloids using three depletants

at a fixed normalized polymer concentration relative to overlap. Static x-ray scattering

measurements show that the structure of the gel near the single-particle length scale is

not strongly perturbed by shearing. Dynamic x-ray scattering measurements using x-ray

correlation spectroscopy reveal that the relaxation time increases with recovery time, and

depends both on the shear rate applied prior to recovery and on the depletant size distribu-

tion.
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5.2 Materials and methods

5.2.1 Sample preparation

2,2,2-trifluoro ethyl methacrylate (TFEMA) particles [DH = 423 nm (PDI 0.04)] were

synthesized168 to be density and refractive index matched to 80 (w/w)% glycerol/water

solvent. The density of suspensions was estimated to be ρ = 1.34 kg m−3. Electro-

static interactions between particles were screened by adding 5 mM NaCl. Solutions of

polyacrylamide (PAM) in 80 (w/w)% glycerol/water were added to particle suspensions

to induce depletion interactions.169 Three polyacrylamide depletants of different weight-

averaged molecular weight Mw and dispersity Ð were used to induce attractions between

the particles: Mw = 186 kDa and Ð = 1.4 (Polymer Source, USP), Mw = 1.14 MDa and

Ð = 1.8 (PolySciTech, ULP), and Mw = 1.97 MDa and Ð = 21 (Sigma-Aldrich, DP).

Four suspensions were prepared at constant particle fraction ϕ = 0.40: 0c∗, 1.2c∗ USP,

1.2c∗ ULP, and 1.2c∗ DP. The range of attraction for the suspensions containing polymer

was ξ/a ≈ 0.10 (USP) and 0.23 (ULP).

5.2.2 Flow curves

Prior to the in situ scattering expermients, steady-shear rheology data were collected on

a DHR-2 hybrid rheometer (TA Instruments, New Castle, DE) operated in stress-controlled

mode using a cone and plate geometry, which consisted of a 2◦ cone with hard-anodized

aluminum 40-mm diameter, and a matching 40-mm bottom plate. All measurements were

carried out at 20 ◦C and temperature was maintained via a Peltier controller. Samples were

pipetted onto the bottom plate then the cone was slowly lowered to a trim gap 62 µm at a

rate 5 µm/s, while maintaining an axial force FN < 0.5 N.170 The cone was lowered further

to a truncation gap 59 µm at a rate 5 µm/s to start the preshear protocol.

A consistent preshear protocol was performed on all samples following a previously es-

tablished protocol.169 The shear rate γ̇ was increased from 0.5 to 50 s−1 over 30 s then shear
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rate was held at 50 s−1 for 30 s. After preshear, all samples were sheared at rates between

0.1 and 2000 s−1, while splitting each decade into 6 different shear rates. At all shear rates

below 100 s−1, samples were equilibrated for 30 s and measurements were averaged for an

additional 10 s. For higher shear rate values (> 100 s−1), samples were equilibrated for

10 s and data was averaged over another 5 s. The equilibration and averaging times were

reduced to avoid a transient decrease in viscosity due to particle migration.171,172

5.2.3 Rheo-XPCS

Experiments were carried out at the rheo-XPCS setup at sector 8-ID of the Advanced

Photon Source at Argonne National Laboratory. We estimated the scattering length densi-

ties (SLDs) in 10−6 Å−2 to be 11.659 for glycerol, 10.828 for PAM, 10.306 for particles,

and 9.469 for water. Suspensions were slowly pipetted into a polycarbonate Couette cell

(inner diameter Din = 11 mm and outer diameter Dout = 11.4 mm) of a stress-controlled

rheometer (Anton Paar MCR 301), which was mounted on the beamline. The Couette

cell was oriented vertically and perpendicularly to the incident beam, which was directed

through the center of the cell and thus oriented parallel to the shear-gradient direction. This

setup allows x-ray scattering and rheological measurements to be concurrently performed.

Prior to scattering measurements, samples were presheared following a consistent pro-

tocol. The shear rate γ̇ was increased from 0.5 to 50 s−1 over 30 s and subsequently held

constant for 30 s. Samples were then left to rest without shear for approximately 120 sec-

onds. This protocol was repeated five times per sample. Following the preshear protocol,

suspensions were sheared for 60 s at eleven different shear rates γ̇ = 1, 5, 10, 50, 100, 150,

200, 250, 300, 350, and 400 s−1. After each shear interval, data were captured for 450 s

using 30 s intervals, which consisted of 15, 000 frames at 500 frames per second.

An area detector (X-spectrum LAMBDA 750 K)79,80 was located 8 m away from the

sample, allowing the capture of scattering intensity across a wavevector range 0.001 Å−1 <

q < 0.051 Å−1 that is equivalent to a length scale range 0.03 < L/DH < 1.5. We measured
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autocorrelation curves at five different positions across the sample then averaged the data

together while propagating error throughout the fitting protocol. All rheo-XPCS data was

analyzed using the Gui Matlab scripts provided by sector 8-ID.

5.3 Results and discussion

5.3.1 Sample rheology

Three polyacrylamide (PAM) solutions were prepared by dissolving appropriate amounts

of powder polymer stocks in 80 (w/w)% glycerol/water to achieve a scaled concentration

1.2c∗. The viscosity of pure 80 (w/w)% glycerol/water solvent was measured to estimate

the background viscosity of suspensions without depletants. Samples were introduced into

a 2◦ cone with hard-anodized aluminum 40-mm diameter, and a matching 40-mm bottom

plate. A consistent pre-shear protocol consisting of two steps was followed across all so-

lutions. First, an initial shear ramp between 0.5 to 50s−1 across 30s. Then, samples were

sheared for an additional 30s at a shear rate 50s−1 followed by a 300s rest period. Data

was collected between 0.1 and 1000s−1 with 5 and 6 points per decade for samples without

and with depletants, respectively. Samples were left to equilibrate for 30s at each shear

rate followed by an averaging time of 10s for each viscosity calculation. All measurements

were carried out at 20 ◦C and temperature was maintained via a Peltier controller. Figure

5.1 shows the sample viscosity η as a function of shear rate γ̇. We find that the addition

of depletants at the same scaled concentration c/c∗ causes the same increase in viscosity

from ∼ 0.06 Pa·s for pure solvent to ∼ 0.13 Pa·s due to chain contribution, resulting in a

collapse of the viscosity flow curves of all solutions with depletants.
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Figure 5.1: Viscosity η as a function of shear rate γ̇ for different solutions in 80 (w/w)%
glycerol/water.

5.3.2 Flow curves

We characterize the bulk rheology of colloid-polymer suspensions by measuring the

apparent viscosity as a function of shear rate. In the absence of depletants, a colloidal

suspension formulated at a volume fraction of ϕ = 0.40 exhibits weak shear thinning

behavior at shear rates γ̇ < 101 and a constant viscosity ηNP ≈ 0.2 Pa·s at higher shear

rates (Figure 5.2). Over the accessible range of shear rates, this suspension shows no signs

of continuous shear thickening, consistent with the behavior anticipated for a moderately

concentrated suspension of nearly hard spheres.170,173,174

In the presence of depletant polymers at a normalized concentration of 1.2c∗, the vis-

cosity increases by less than an order of magnitude at a given shear rate. Addition of USP

leads to a modest increase in viscosity at high shear rates (ηUSP ≈ 4 Pa·s). The strength of

the shear-thinning is slightly reduced, as indicated by a small decrease in the shear-thinning

exponent n (η ∼ γ̇−n) from 0.18 (NP) to 0.09 (USP), and the onset of near-constant vis-

cosity occurs at γ̇ ≈ 10−1 s−1. Addition of DP leads to rheological behavior that is very

similar to that of the sample containing USP. Finally, addition of ULP leads to a somewhat

higher increase in viscosity at all shear rates and a high-shear viscosity ηULP ≈ 5 Pa·s. The

shear-thinning behavior in ULP (n ≈ 0.30), observed for γ̇ < 102, is enhanced relative
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Figure 5.2: Viscosity η as a function of shear rate γ̇ for suspensions at volume fraction
ϕ = 0.40. Inset: Viscosity η as a function of shear stress σ. Closed and open
symbols are measurements from the DHR-2 and MCR 301, respectively.

to NP and USP. Thus, the rheological measurements indicate that the polymer size distri-

bution alters the steady-shear rheological properties. This observation is in accord with

previous measurements of depletion systems.163,154,162,161

5.3.3 Structure during and after shear

We characterize the structural properties of the TFEMA suspensions at 30 s intervals

after shear cessation for all shear rates using static x-ray scattering. Over the accessible

range of wavevectors 10−3 Å−1 < q < 10−2 Å−1 the scattering intensity I(q) resembles a

spherical form factor and is comparable to the predicted scattering intensity of spheres of

size 2RNP = 390 nm (Figure 5.4, all data are shifted vertically for clarity). The solvent

trap around the rheometer geometry contributes to the scattering intensity at q > 10−2

Å−1, resulting in excess scattering at the higher q. The characteristic structure peak at

q∗ ∼ 0.0016 Å−1 represents the particle diameter 2RNP = 2π/q∗ ∼ 390 nm (Figure 5.3),

confirming that scattering intensity is dominated by TFEMA particles.

To extract the spherical form factor, we estimate the predicted scattering intensity ac-

cording to I(q) = AS(q)P (q), where A is a scaling factor relating to the volume of scatter-

ers and SLDs, P (q) represents the spherical form factor, and S(q) is the structure factor of
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Figure 5.3: Structure peak value q∗ as a function of recovery time after 400 s−1 shear ces-
sation for for suspensions (a) without polymer, (b) in 1.2c∗ USP, (c) in 1.2c∗

DP, and (d) in 1.2c∗ ULP.

charged spheres. After calculating the ideal P (q) using particle size and volume fraction,

we then extract S(q) as the ratio of I(q) to P (q).

5.3.4 Dynamics

We first characterize the microscopic dynamics on length scales comparable to the par-

ticle size using XPCS at the lowest accessible q = 0.0012 Å−1, corresponding to a length

scale L ≈ 524 nm ≈ 1.24DH (qa = 5.08), through the wave-vector-dependent instanta-

neous intensity autocorrelation function

G2(q, t1, t2) =
⟨I(q, t1)I(q, t2)⟩
⟨I(q, t1)⟩⟨I(q, t2)⟩

, (5.1)

where I(q, t) represents the scattering intensity at time t and wave vector q, and the brackets

indicate averages of a single measurement over a range of detector pixels centered on q.

In the two-time autocorrelation function, which represents the low-q plateau behavior, a

consistent scattering intensity along the main diagonal (x = y) indicates fully correlated
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Figure 5.4: (a) Scattering intensity I(q) as a function of q for suspensions at time intervals
after 400 s−1 shear cessation. (b-e) Structure factor S(q) as a function of q at
four γ̇ for suspensions (b) NP, in 1.2c∗ (c) USP, (d) DP, and (e) ULP.

dynamic behavior. We calculate the two-time autocorrelation function at q = 0.0012 Å−1,

where our measurements have the best statistics and least noise (Figure 5.5). The black

parallelogram indicates a representative region used to calculate the partial autocorrelation

functions at t = 7 s. Arrows indicate the size of the region between 6.1 s < t1,2 < 7.89

s. Across all time scales, the maximum in the two-time signal intensity follows the main

diagonal (Figure 5.5b&c). Moreover; the two-time signal increases as lag-time increases.

This observation along with the slight broadening at long time scales suggests the onset of

a non-equilibrium process that could be a result of dynamic heterogeneity.
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Figure 5.5: Instantaneous correlation function after 400 s−1 shear cessation at a wavevector
value q = 0.0012 Å−1 for suspensions (a) without polymer, in (b) 1.2c∗ USP,
(c) 1.2c∗ DP, and (d) 1.2c∗ ULP.

To characterize the microscopic dynamics after shear cessation, we subdivide the dy-

namic range ∆t into nine equal subintervals, each representing a time interval of 1.67 s.

This protocol results in nine partial autocorrelation functions G2(q,∆t), each calculated at

t1,2 = (t1 + t2)/2 with ∆t = t2 − t1 = 1.67 s. For all samples, the G2(q,∆t)s initially

evolve with lag time and converge after ∼ 30 s (Figure 5.6), suggesting that their dynamics

at the single-particle length scale fully recover over this time scales. The G2(q,∆t)s do not

appear to evolve at longer recovery times (Figure 5.7,5.9,&5.11). Hence, we focus on the

evolution of the dynamics on time scales shorter than 30 s.

In mixtures of colloids and non-adsorbing polymers, bonds between particles driven by

depletion attractions form rapidly after mixing. Thus, the decorrelation in the dynamics at

the particle-scale arises from thermal fluctuations in the reforming network.175,176 To model

the decay, we fit the the partial intensity autocorrelation functions to a stretched exponential

function, which can be written using the Siegert relation as

G2(q,∆t) = 1 +B exp
[
− (∆t/τ)β

]
+ ε, (5.2)

where ∆t = t2 − t1 represents lag time, B is the Siegert factor, and ε captures any residual

noise from fits. From the fits to eqn. 5.2, we extract two parameters: the exponent β, which

characterizes the shape of the distribution of relaxation timescales, and the relaxation time

τ , which characterizes the timescale of thermal fluctuations at the single-particle length
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Figure 5.6: Evolution of the intensity partial autocorrelation function G2 as a function of
lag time after 400 s−1 shear cessation for suspensions (a) without polymer, (b)
in 1.2c∗ USP, (c) in 1.2c∗ DP, and (d) in 1.2c∗ ULP.

scale.

We first examine the exponents and relaxation times (eqn 5.2) as a function of the

recovery time. In the absence of polymer (sample NP), β ≈ 0.75 after shear at 1 – 200

s−1, independent of recovery time (Figure 5.8(a)). By contrast, after shear at 400 s−1 β

first increases rapidly over 10 s and then is approximately 1 thereafter in NP. In samples

containing polymer (USP, DP, ULP), β remains approximately constant as the recovery

time increases after shear at 1 s−1 (Figure 5.8(b) – (d)). For larger initial shear rates, β first
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Figure 5.7: Intensity partial autocorrelation function G2 as a function of lag time after 400
s−1 shear cessation for suspensions (a) without polymer, (b) in 1.2c∗ USP, (c)
in 1.2c∗ DP, and (d) in 1.2c∗ ULP.

increases with recovery time and then attains a plateau on longer time scales. The plateau

value is close to 1 for USP and DP. In ULP, however, β > 1 at longer recovery times,

consistent with compressed exponential dynamics often observed in aging soft solids177,178

and attributed in these studies to superdiffusive, ballistic motion.

For samples sheared at 1 s−1, β is constant as recovery time increases (Figure 5.8). In

samples sheared at higher rates, however, β evolves with recovery time. At short recovery

times, the partial autocorrelation function exhibits a stretched exponential decay with β <
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Figure 5.8: Stretching exponent β as a function of recovery time after shear cessation for
suspensions (a) NP, (b) in 1.2c∗ USP, (c) in 1.2c∗ DP, and (d) in 1.2c∗ ULP at
four γ̇. This data represents times immediately after shear cessation.

1. The exponent steadily increases as recovery time increases and reaches β ∼ 1.5 at a

recovery time ∼ 10 s. Compressed exponential decays with β ∼ 1.5 have been previously

reported in various dense colloidal systems and have been attributed to ballistic dynamics

with a broad distribution of velocities164,163 or to intermittent rearrangements.179,178 On time

scales longer than 10 s β gradually decreases to a plateau value of 1.

For comparisons across the samples during recovery, we scale the relaxation times ac-

cording to the bulk relaxation time τ0 predicted from the Stokes-Einstein (SE) relationship
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Figure 5.9: Stretching exponent β as a function of recovery time after shear cessation for
suspensions (a) without polymer, (b) in 1.2c∗ USP, (c) in 1.2c∗ DP, and (d) in
1.2c∗ ULP at four different shear rates.

using the measured solution or solvent viscosities (Figure 5.1) for samples with or without

depletants, respectively, via
1

τ0
=

kBTq
2

6πηRNP

, (5.3)

where kB is the Boltzmann constant, T is the temperature, η is the solution viscosity (Figure

5.1), and RNP is the nanoparticle radius. Large particles (i.e. those for which 2RNP ≫

2Rg) in semidilute (cp > c∗) polymer solutions couple to the bulk solution viscoelasticity.18
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Figure 5.10: Scaled relaxation time τ/τ0 as a function of recovery time for suspensions (a)
NP, in (b) 1.2c∗ USP, (c) 1.2c∗ DP, and (d) 1.2c∗ ULP at four γ̇ immediately
after shear cessation. Dashed line is the average long time relaxation.

Thus, this scaling allows us to remove any explicit depletant size contribution.

The evolution of suspension dynamics depends on the shear rate prior to cessation. Par-

ticle suspensions that do not contain depletants show no sign of dynamic recovery at low

shear rates (≤ 10 s−1) (Figure 5.10a), suggesting that samples quickly evolve and exhibit

long-time dynamics at all accessible time scales. Suspensions with depletants, however,

display recovery-like behavior at all experimented shear rates (Figure 5.10b,c,&d). Nev-

ertheless, the dynamic evolution becomes more pronounced as shear rate increases for all
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in (b) 1.2c∗ USP, (c) 1.2c∗, and (d) 1.2c∗ ULP at a time interval equivalent to
422 s after shear cessation. Dashed line is the average of represented data.

samples. At short time scales, the scaled relaxation rate τ/τ0 consistently increases as

shear rate increases for all four suspensions, indicating faster dynamics than bulk predic-

tions. As recovery time increases, particle dynamics become slower until long-time be-

havior is achieved. The onset on which dynamics fully recover increases in the presence

of depletants or as they increase in size (∼ 18 s without depletants, ∼ 30 s with small

and disperse depletants, and ∼ 35 s with large depletants). This mechanism of slow-down

in dynamics is comparable to dynamics in concentrated colloidal suspensions near glass
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The intensity partial autocorrelation functions G2 trend similarly without signatures of

evolution across all measurements beyond 35 s at all shear rates (Figure 5.6), suggesting

that dynamic equilibrium is achieved and long-time dynamics are maintained. To explore

the effects of depletants and their size on the particle dynamics, we compare the long-time

(≫ 35 s) exponents and relaxation times (Figure 5.11) of all four suspensions at long re-

covery times and all shear rates, respectively. The exponent β stays constant, within error,

at the longest experimented recovery times (> 390 s) for all four samples (Figure 5.8) with

a value ∼ 1, suggesting that the dynamics remain diffusive at long time scales. Suspensions

without (NP) depletants exhibit relaxation times that approximately conform onto bulk pre-

diction from SE, suggesting that particle dynamics are highly controlled by the background

elasticity from introduced polymer chains above c∗ rather than depletion attraction. These

dynamics persist as small (USP) and dispersed (DP) depletants are introduced to the col-

loidal suspensions with similar relaxation times as the sample without depletants. These

observations suggest that suspensions are behaving like fluids and the small and dispersed
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polymer concentration used does not provide a large enough attraction potential to induce

gelation, consistent with the idea that stronger attraction is necessary to obtain gels in small

depletant mixtures.183 In the presence of large (ULP) depletants, however, particle dynam-

ics are slower than predicted by bulk behavior with a characteristic relaxation time ∼ 10

times larger than SE predictions. We propose that the attraction potential in large depletant

samples is significantly larger than the other suspensions,183 resulting in gelation. These

observation are consistent with the flow curves from rheology (Figure 5.2).

5.4 Conclusions

By probing the dynamics of colloidal particles in colloid-polymer suspensions, we con-

firm that gelation differs depending on the depletant size. Specifically, we show that sus-

pensions with smaller depletant sizes require a stronger attraction potential compared to

suspensions with large depletants. We utilize an in situ x-ray scattering technique, rheo-

XPCS, to simultaneously probe the structure, rheology, and dynamics of colloid-polymer

suspensions. We find that suspensions without or with small size depletants exhibit relax-

ation times according to the predictions for bulk behavior, suggesting that these systems

behave like fluids. Suspensions with large depletants, however, exhibit relaxation times

that are ∼ 10 times slower than SE behavior. This observation suggests the presence of

larger clusters of particles due to enhanced depletion. This work illustrates the importance

of tuning the depletant size according to the colloids to control the interactions in colloid-

polymer suspensions.
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Chapter 6

Summary and future work

This work focused on understanding how the structure differences in polyelectrolytes

affects the dynamics of nanoparticles and polymer chains. By systematically tuning the

properties of our systems and utilizing various experimental techniques, we were able to

probe the dynamics of particles and polymers in aqueous solutions and open further ques-

tions to further understand transport of complex fluids in the future.

6.1 Summary

Complex fluids of polymers and particles are ubiquitous in a wide range of applications.

We first probed the dynamics of nanoparticles in semidilute polyelectrolyte solutions. We

tuned the conformation of polyelectrolyte chains by changing the solution ionic strength

through the addition of sodium chloride. In the presence of salt, the dynamics of par-

ticles followed theoretical predictions according to the Stokes-Einstein equation. In the

absence of salt, large probe particles diffused according to predictions within their size

limit and coupled to bulk viscoelasticity. As particle size decreased, however, we observed

non-monotonic deviations from theory. The deviations systematically increased with poly-

mer concentration until reaching a maximum at intermediate ones, after which the particle

dynamics coupled back to predictions. By examining the displacement autocorrelation

functions of our particles, we found that particles experience confinement effects on length

scales relevant to chain size despite the absence of entanglements. These results high-

lighted the importance of accounting for chain conformation to better understand transport

of particles in complex fluids.
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To measure the effect of flexibility on particle dynamics, we developed a system of

nanoparticles and polyelectrolytes for x-ray scattering experiments. We altered the chain

flexibility by changing the degree of polymerization or molecular weight of chains. We

determine the diffusivity of particles according to relaxation rates and their corresponding

wavevectors. In solutions with smallest chains, particles diffused according to Stokes-

Einstein theoretical predictions. We observed non-monotonic deviations in intermediate

polymer size solutions, suggesting the presence of confinement effects despite the absence

of entanglement in these solutions. The solution with the largest chain size, however, lin-

early deviated from predictions according to the bulk viscoelasticity. The systematic devia-

tion from theory was not captured by the coupling theory of particle and polymer segmental

dynamics despite being qualitatively similar. The presence of three different regimes of dy-

namics emphasized need to incorporate chain flexibility into the understanding of particle

dynamics to better utilize them in applications.

Then, we studied the effects of geometry and electrostatics on the segmental dynamics

of polyelectrolyte chains in unentangled solutions. We independently tuned the geometry

and electrostatics by varying polymer concentration and solution ionic strength, respec-

tively. We characterized the chain structure using a model that combines the form factor

of a semiflexible chain with excluded volume interactions and a PRISM based structure

factor; and confirmed that geometry and electrostatics are independently changed in our

solutions. The segmental chain dynamics displayed two distinct scaling behaviors with

wavevector. At small length scales, the relaxation rates scaled consistent with predictions

for Zimm-like dynamics. As length scales increased, however, we observed deviations from

theory with relaxation times that are smaller than predictions. The onset for the change in

scaling behaviors occurred at length scales equivalent to the structure peak, signature of

polyelectrolyte systems. We interpreted this observation using the de Gennes’ narrow-

ing phenomenon, which proposes the presence of a free energy minimum at characteristic

length scales that makes relaxations out of it unfavorable. As a result, the picture suggests
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a coupling between the structure and dynamics. To tested this hypothesis and found ex-

cellent agreement between the observed dynamics and the structure factor of our chains as

both polymer concentration and ionic strength changes. This observation suggested that

we have a direct correlation between structure and dynamics in polyelectrolyte systems.

Finally, we characterize the structure and dynamics of colloid-polymer suspensions.

We tune the attraction potential between the two components by changing the depletant

size. We utilize an in situ x-ray scattering technique, rheo-XPCS, that allows rheological

and dynamic measurements simultaneously. We find that suspensions with large deple-

tants relax up to ∼ 10 times slower than ones without or with small depletants, which in

return relax according to the bulk predictions from Stokes-Einstein. These observations

suggest that the suspensions with large depletant chains form gels, whereas the rest of the

suspensions behave like fluids. This study confirms that the attraction potential required

for gelation depends on the depletant size in colloid-polymer mixtures.

6.2 Future work

Through this work, we showed that changing the presence of electrostatic interactions

on the polymer backbone in a complex fluid of particles and polymers brings forth a com-

plex set of interactions that alter both the dynamics of the particles and polymer chains. As

such, there still remain a series of open questions to be further studied in the future:

6.2.1 Dynamics of anisotropic particles in polyelectrolyte solutions

This work focused on exploring the underlying physical phenomenon that control the

dynamics of spherical particles in semidilute polyelectrolyte solutions. For spherical par-

ticles, the controlling length scale is the particle’s radius and translational diffusion is the

major long time transport process. Anisotropic particles, however, possess multiple im-

portant length scales that influence both translational and rotational motion at long times.
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A systematic study of the dynamics of anisotropic particles in polyelectrolyte solutions

would give further insight into the specific controlling parameters to decouple the underly-

ing physics in these systems. A combination of fluorescence or confocal microscopy with a

dynamic scattering technique including fluorescence correlation spectroscopy or polarized

dynamic light scattering would provide sufficient displacement and dynamic information

to understand the transport of anisotropic particles.

6.2.2 Dynamics of nanoparticles in pH-responsive polymer solutions

Similar to polyelectrolytes, pH-responsive polymers can exhibit a rich array of tun-

able properties including conformation and flexibility. Although not explored in this work,

we expect pH to play a significant role in the extent to which the polymer backbone is

charged.184 Using a polymer with an appropriate pKa value, we can explore the dynamics

of nanoparticles at different functionalization rates. With changing pH conditions, particle

stability can become a challenging factor due to enhanced aggregation. Finding a suitable

particle chemistry that is compatible with the changing pHs would be key for this project’s

success. Microscopy or scattering techniques can both be used to study the dynamics of

these systems. The results of this project would advance the understanding of particle

transport for applications in biomedical applications and drug delivery.185,186

6.2.3 Counterion size effects on polyelectrolyte dynamics

In this work, we demonstrated how the unique structural properties of polyelectrolytes

due to the presence of electrostatic interactions result in deviations from theoretical predic-

tions. Furthermore, we showed how chain conformation can be tuned by changing ionic

strength through the addition of a monovalent salt. The counterion dissociation and density,

however, differs between mono, di, and trivalent salts, and thus differently alter the struc-

tural properties of chains.187,188 There remains a lack of understanding of how the different

counterion sizes impact the relaxations of polyelectrolyte chains in solutions. By fixing
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ionic strength of a set of model polyelectrolyte solutions using different size counterions,

we would be able to elucidate the effects of couterion size effects on the relaxations of

polyelectrolyte systems. This project requires dynamic neutron scattering experiments to

probe the dynamics at the time and length scales of interest.

6.2.4 Particle dynamics in sodium polystyrene sulfonate solutions with

different sulfonation levels

Controlling the degree of sulfonation of the backbone monomers can be used as an ap-

proach to alter the chain flexibility, conformation, and stiffness. The structural properties

can be tuned using the reaction time, which in return controls the sulfonation level. By

fixing the chain radius of gyration and changing degree of sulfonation, we can isolate the

contribution of chain stiffness to particle transport. The dynamics of particles in these sys-

tems can be studied using dynamic x-ray scattering techniques or microscopy depending

on the length scales of interest. This project will illustrate the physical mechanism govern-

ing the dynamics of particles in solutions and elucidate the role of chain stiffness in these

systems.
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