
THEORETICAL INVESTIGATION AND CORRELATION OF MOLECULAR

PARAMETERS OF POLYCYCLIC AROMATIC HYDROCARBONS

A Dissertation

Presented to the

Faculty of the Department of Biophysical Sciences

College of Arts and Sciences

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy 

by

Henry Adolph Germer, Jr.

August, 1968



i

To my Family



ii

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Professor Ralph S. 

Becker for the helpful discussions which led to the research reported 

in this dissertation. Also, the author deeply appreciates the willing 

sharing of their knowledge in particular scientific areas and the helpful 

encouragement by the other members of his dissertation committee. 

Professors Allen H. Bartel, R. Eugene Collins, Robert L. Hazelwood, and 

David C. Rich, and by other members of the science faculty, especially 

Professor Wayne E. Wentworth. The author joins with other students 

in acknowledging the efforts put forth by Professor Bartel in making the 

Biophysical Sciences program a reality.

A special debt of gratitude is felt for the author's wife, Nancy, 

without whose patience and encouragement this adventure would not have 

been possible. Also appreciated is the humorous optimism afforded by 

the author's contemporary. Dr. Dale M. Hornish, which made many things 

tolerable.

The author wishes to acknowledge his support by a National Defense 

Education Act Fellowship and a Public Health Service Predoctoral Fellow

ship and deeply appreciates the freedom of research offered by these 

fellowships.



THEORETICAL INVESTIGATION AND CORRELATION OF MOLECULAR

PARAMETERS OF POLYCYCLIC AROMATIC HYDROCARBONS

An Abstract of

A Dissertation

Presented to the

Faculty of the Department of Biophysical Sciences

College of Arts and Sciences

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy 

by

Henry Adolph Germer, Jr.

August, 1968



iii

ABSTRACT

The first part of the theoretical investigation is an interpreta

tion of the calculated singlet electronic transitions of five 

pentacyclic aromatic hydrocarbon molecules in terms of composite system 

approximations to these molecules. This study is motivated by the 

experimental observation that the electronic transitions of some 

pentacyclic aromatic hydrocarbons may be,on the basis of extinction 

coefficients, vibrational structure, and general band shape, correlated 

with the transitions of tetracyclic aromatic hydrocarbons contained 

within the structure of the pentacyclic. The molecules studied are 

benz(a)napthacene, benzo(b)chrysene, dibenzo(b,g)phenanthrene, dibenz(a,c)- 

anthracene, and 3,4-benzopyrene.

In this "molecules in molecule" investigation, the electronic 

transitions of the five pentacyclic aromatic hydrocarbons are first 

calculated using the semi-empirical SCFMO method with limited configura

tion interaction. Composite system models or approximations are formed 

for each pentacyclic hydrocarbon by conceptually breaking certain 

pairs of bonds in the subject molecule. The electronic transitions 

of these composite systems are then calculated. The electronic transi

tions of each subject pentacyclic hydrocarbon are next correlated to 

the transitions of the composite system model whose transitions most 

closely approximate those of the subject molecule.

The electronic transitions of the composite system are resolved 

into local excitations of either of the two composite system moi eties 
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or as electron-transfer excitations from one moiety to the other. 

From this analysis, interpretations are made concerning the composite 

system origins of the pentacyclic transitions and predictions made 

concerning the observable characteristics of experimental pentacyclic 

transitions corresponding to the calculated transitions. A comparison 

of the theoretically predicted pentacyclic aromatic hydrocarbon transi

tion characteristics with an available interpretation of the actual 

experimentally observed transitions indicate only fair agreement between 

experiment and the proposed theoretical interpretation.

In the second part, the theoretically calculated and experimental 

values of the ionization potential and electron affinity of the polyacene 

series of molecules, as well as other quantities derived from these 

parameters, are compared as a function of molecular size. The calculated 

values are determined for all molecules of the series from benzene through 

nonacene using the semi-empirical SCFMO method. Experimental data are 

available for benzene through pentacene. As has been frequently noted, 

the semi-empirical SCFMO theory cannot correctly predict the absolute 

values of the ionization potential and electron affinity when using 

theoretical parameters which give the best fit of spectroscopic data. 

However, the results of this investigation indicate that the theory can 

predict quite well the behavior of these molecular parameters as a 

function of a systematic change in molecular size.
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INTRODUCTION

A. Statement of Research Problems

The large polynuclear condensed ring aromatic hydrocarbons are 

a class of compounds which are of great interest to both biologists 

and chemists. The biological interest in these molecules stems pri

marily from the fact that many of these large benzenoid hydrocarbons 

are powerful carcinogens while some have little or no carcinogenic 

effects. As a consequence of this fact, much biological research 

has been done with these compounds in an attempt to find the mechanism 

whereby these compounds initiate cancerous growth and, hopefully, 

to thereby also gain an understanding of the cancer process itself.

To the chemist, the large benzenoid hydrocarbons have been a 

beautiful class of compounds in which to test the application of quantum 

mechanical theories to large molecules. From the early 1930‘s up to the 

present time, these molecules have been the subject of extensive study 

by theoretical chemists and physicists.

Since this class of compounds is of interest to both biologists 

and theoretical chemists, it was natural that attempts would be made 

to explain the biological effects in terms of theoretical chemistry. 

Probably the most famous of these attempts is the work of the 

Pullmans J in which they have sought to correlate the carcinogenic 

action of these molecules with various theoretical parameters.
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The work to be described in this dissertation, however, will not 

attempt to explain any of the biological effects of the benzenoid 

hydrocarbons but will rather address itself to two problems of 

interest primarily from a chemical point of view. This is not to say 

that the results may not have biological implications but rather that 

these implications will not be of primarily concern in this work.

The first problem is based upon the following experimental obser

vation. In examining the absorption spectra of the large polycyclic 

condensed ring aromatic hydrocarbons, one may, on the basis of extinc

tion coefficient, vibrational structure, and general appearance, find 

transitions in the large molecule which appear to be quite similar 

to transitions which appear in the absorption spectra of smaller 

moi eties contained within the larger. For example, one may correlate 

transitions in the spectra of a pentacyclic aromatic hydrocarbon with 

those of a tetracyclic aromatic hydrocarbon which is contained within 

the structure of the pentacyclic. It must be noted that generally 

the transitions of the pentacyclic aromatic hydrocarbons which can 

apparently be correlated to those of a tetracyclic are considerably 

red or blue shifted relative to the actual transitions of the tetra

cyclic aromatic hydrocarbon.

In the first part of this work, an attempt has been made to gain 

a better understanding of the origin of such similar transitions by 

means of a theoretical study of the electronic transitions of five 

representative pentacyclic aromatic hydrocarbons. In this study, 

the transitions for the subject molecule treated as a single quantum 
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mechanical system and the transitions of various composite systems 

formed from the subject molecules are first calculated. The proper 

composite system is then chosen and the transitions of the molecule 

treated as a single system are interpreted in terms of the transitions 

of the composite system. On the basis of these interpretations, some 

observable predictions concerning the transitions are made which are 

then compared to the experimental data.

The second part of this work consists of a correlation of 

experimental and theoretical quantities and some general observations 

for the linear polyacenes, that is, anthracene, napthacene, pentacene, 

etc. Specifically, electron affinity and ionization potential data 

will be correlated with theoretical quantities.

Before beginning a discussion of the specific problems studied, 

it will be informative to first generally discuss quantum chemistry, 

that is, the application of quantum mechanics to chemical problems.

B. Summary of Theoretical Chemistry

1. Quantum Mechanics

The appropriate physical theory for dealing with atomic and 

molecular phenomena is quantum mechanics. The objective of quantum 

chemistry, therefore, is the successful solution of the time indepen

dent Schrodinger equation,

Hy = Ey

where H is the quantum mechanical Hamiltonian operator of the system 
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obtained by use of the quantum mechanical postulates and ? is the wave 

function of the stationary state of energy E. Unfortunately, the 

exact solution of the Schrodinger equation is impossible for all but 

the simplest systems, for example, the hydrogen atom and harmonic 

oscillator.

The basic problem of quantum chemistry has, therefore, become the 

determination of the best possible approximate solutions of the Schro

dinger equation for systems of chemical interest. At the same time, 

it is desirable to find a systematic means of obtaining the approximate 

solutions which will give a physical insight into the fundamental chemi

cal processes.

2. Approximate Methods

In general, there are two principle methods of obtaining 

approximate solutions to the Schrodinger equation, the perturbation 

method and the variational method. In the perturbation method, the 

complex system is treated as a soluble simple system which is per

turbed by the formation of the complex system. This method has been 

used fairly extensively in studying very small molecules, for example, 

diatomics, small atoms such as helium, and intermolecular forces and 

interactions. However, with few exceptions, the perturbation method 

has not been used in the theoretical study of the electronic structure 

of large molecules. One exception was the Method of Spinvalence 

developed by a group of German mathematicians and physicists in the
2 

early 1930's. The method is presented as, or at least in terms of, 

a perturbation problem. In this method, one begins conceptually with 
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a collection of atoms which are perturbed upon forming bonds to become 

a molecule. However, this method is virtually unknown today as a means 

of studying large molecules. This is probably due to criticism of a 

basic assumption that the energy involved in molecular binding is 

small compared with that involved in the atomic multiplet structure of 

the atoms which compose the molecule so that all but the lowest energy 

atomic levels can be neglected in discussing molecular formation. In 

this approximation, the directional properties of the bonds do not
3

appear. A probable contributing factor to the disappearance of this 

method was the apparent breakup of the German group which had developed 

this approach.

The second principle method for determining approximate solutions 

to the Schrodinger equation is the variational method based on the 

variational theorem. The most common form of this theorem states 

that if one chooses a trial function $ and computes the quantity

W = f$*H$d V
J$*$dV ’

this W will be greater than or equal to the ground state energy, EQ. 

The quantity W will be equal to the ground state energy, EQ, only if 

the assumed wave function, $, is the exact solution or eigenfunction, 

c>, of the Schrodinger equation for the system.

For all practical purposes, the variational method is the only 

method of approximation used in the theoretical study of larger mole

cules. Of the different forms of the variational method, the linear 
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variational method is by far the most important. In this method the 

trial function, $, is a linear combination of a finite set of known 

starting functions, , written as

M 
$ = 

i=l

M
- SijW) - 0

and the energy, W, is minimized with respect to the coefficients Cj.

This produces a set of M simultaneous linear equations for the M unknown 

coefficients Cj,

where

and

S.. = S*. = ff.^.dV. 
ij ji J i j

and can be computed from the known Hamiltonian and the starting 

functions. The condition that a nontrivial solution of these simul

taneous equations exist is that the determinant of the coefficients 

vanish, that is

This is the secular equation for the problem and the M roots of this 

equation give M possible energy levels, , for the system. As the 
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number, M, of independent functions, 'Pp is increased, the M energy 

levels, Wp converge from above, that is, higher energy, to the true 

energy levels. Ep which would be obtained from an exact solution of 

Schrodinger's equation for the system.

Once the linear variational method was generally accepted as the 

best formal method of obtaining approximate solutions to the quantum 

mechanical problems of chemistry, because of mathematical convenience 

and/or accuracy of results, the next great problem was how to best 

choose the set of known starting functions used to form the trial 

functions

M
$ = ^C.Yp 

i=l

Two major method which have been developed in response to this problem 

are the Valence Bond Method and the Molecular Orbital Method. Most 

surveys of the field of quantum chemistry begin with discussions of 

these two methods.

3. Pi-electron Approximation

Before continuing, it must be noted that although the 

general methods discussed are applicable to all molecular problems, 

the emphasis is on those theoretical methods which are applicable to 

larger organic molecules, in particular, the unsaturated conjugated 

hydrocarbons. Such hydrocarbons are those whose structures may be 

formally written as having alternating single and double bonds between 

the carbon atoms, for example, benzene, anthracene, and butadiene. The 

primary reason that this class of molecules has been so extensively and 
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reasonably successfully treated theoretically is because of the validity 

of the pi-electron or sigma-pi separability approximation. Basically, 

this approximation states that the electrons in the Is levels of carbon 

and those localized in the sigma bonds directly along the carbon-carbon 

axes do not appreciably interact with the 2p electrons involved in the 

pi bonds and consequently, the two sets of electrons may be treated 

separately. More precisely, this means that in considering the total 

Hamiltonian of the system, the interaction between any pi-electron and 

all of the sigma-electrons may be accounted for by an average potential 

field independent of the exact coordinates of the sigma-electrons and 

the interaction of a sigma-electron with all the pi-electrons may be 

accounted for in a similar manner. Assuming the total wave function 

to be a product of the wave functions for the sigma-electrons and 

the pi-electrons, the Schrodinger equation for the system becomes 

separable under the foregoing approximation. The pi-electrons give 

rise to the more readily observable spectroscopic phenomena. There

fore, the pi-electron approximation has allowed the reduction of the 

quantum mechanical problem from, for example, in benzene a 36 electron 

problem to a 6 electron problem, while still giving results which may 

be directly correlated with experiment. This approximation is used in 

the theoretical study of unsaturated conjugated hydrocarbons, regard

less of the method used for building trial wave functions.
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4. The Valence Bond Method

The valence bond method of constructing approximate wave func

tions for chemical systems is essentially a generalization of the 

method used by Heitler and London^ in the first successful treatment 

of the H2 molecule. In considering the formation of a bond in the 

two electron system composed of atoms a and b, the trial wave function 

is built up in the following manner. First one considers the product 

of atomic wave functions, excluding spin,

Ya(l)Yb(2).

^(1) denotes the atomic wave function of atom a with electron 1, having 

space coordinates Xp yp assigned to it and ’1'|)(2) denotes the atomic

wave function of atom b with electron 2, having space coordinates x2, 

y2, z2 assigned to it. However, since the electrons are indistinguish

able, the following product

^(2)^(1)

will be an equally good wave function. Therefore, the general form

NL’i'a(l)Yb(2) ± ^(2)^(1)],

where N is a normalizing constant, is chosen for the space part of 

the trial wave function. However, the spin coordinates of the electrons 

must also be considered in the total wave function.
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The following spin functions can be written for a system of two 

electrons:

=>(D«(2) , B(1)B(2)

1 [a(l)B(2) + «(2)B(1)]
-ft

1[«(1)B(2) - t.(2)B(l)].

a denotes the spin eigenfunction with eigenvalues (+1/2) and g the 

spin eigenfunction with eigenvalue (-1/2).

To combine the two space functions and four spin functions correctly, 

the Pauli principle must be satisfied. The Pauli principle states that 

the total spin-orbital wave function of a system must be antisymmetric 

with respect to the exchange of the coordinates of two of the electrons. 

In accordance with this principle, the following total wave functions 

may be written:

Ts = - [*a(Dvb(2) + Va(2)»b(l)][«(l)B(2) - a(2)6(l)]

a(l)a(2)

= N[Ya(l)Yb(2) - ^(2)^(1)]/ B(l)f(2) > 

1[«(1)B(2) + a(2)B(l)]

where w is for a singlet state and the three possible forms of Yy 

describe a triplet state. Writing the total wave function as a simple 

product amounts to neglecting the interaction between the magnetic 

moments of the orbital motion and spin.
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It is instructive to rewrite $$ in the form of the Slater 

determinants:

^(Had) vb(l)6(l)

?a(2)a(2) Yb(2)g(2)

^(1)8(1)

Y (2)g(2) a

^(Dad)

Yb(2)a(2)

The first determinant is an antisymmetric wave function with spin function 

a associated with atom a and g with b and the second determinant is an 

antisymmetric wave function with spin function 8 fixed at atom a and 

a at b. That is to say, the wave function may be considered as a 

linear combination of the wave functions of the two possible structures 

formed by the pairing of unlike spins to form a bond. The triplet 

state functions, ’I'y, describe a non-bonding situation for this system.

The original generalization and application of this method to 

systems with more than one bond was done primarily by Slater and 
5 

Pauling. Excellent examples of the application of this method to poly- 

atomic molecules can be found in books by Sandorfy and Eyring, Walter, 

and Kimball.Very briefly, the forming of trial wave functions for 

polyatomic systems by the valence bond method is as follows. First the 

system to be described must be defined, for example, a system of four 

atoms with two bonds. There are three "structures" which may be 

drawn that are compatible with this system.

a b a
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The total trial wave function will be taken as a linear combination 

of the wave functions for the above "structures", that is,

* = cp’p + cq’q + Yr-

and the energy of the system minimized with respect to the constants 

Cp, Cq, and cR by application of the linear variational method.

By proper combination of the determinant space function of a "struc

ture" with the various spin functions compatible with a particular 

"structure", one may derive the "structure" wave functions as linear 

combinations of Slater determinants. One finds that only a certain 

set of "structure" wave functions are linearly independent and that 

all others may be expressed in terms of these. The "structures" 

corresponding to the linearly independent "structure" wave functions 

are called the canonical structures and the number of canonical struc

tures is given by the expression

(2N) 1
N ! (N+l) I

for a system of 2N atoms, each contributing one electron, and in 

which N bonds are formed.

The reason for treating the valence bond method with such extreme 

brevity is that this method is virtually unused today in forming trial 

wave functions for large unsaturated conjugated hydrocarbons even 

though this method does have some advantages. One advantage is that 

the "structures" corresponding to the "structure" wave functions from 
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which the total wave function is built, resemble conventional structural 

formulas and thus, allow the chemist to interpret the molecular state 

as a superposition of acceptable structural formulas. Another advan

tage of this method is that it allows the use of directed atomic
8 9 orbitals ’ and introduces the concept of directed valence. This is 

done by combining (hybridizing) the atomic orbitals in such a manner as 

to produce equivalent orbitals directed in the direction of the bond. 

Also, in dealing with small molecules, such as the di atomics, it is 

the method of choice, since with little or no additional sophistication, 

it will give good quantitative results.

For larger systems, however, this method, in its present form, 

is mathematically unworkable. For example, anthracene, a molecule with 

three condensed aromatic rings (14 carbon atoms) will have 429 canonical 

structures. This means that the secular determinant that must be solved 

for the energy is 429 x 429. The Slater determinants from which the 

"structure" wave functions are built will be 14 x 14 and proper normali

zation of these wave functions will necessitate expansion of these 

determinants. The method has also been criticized on theoretical 

grounds because it does not account for any polar structures, i.e, the 

wave functions contain no terms of the form

Ya(l)Ya(2) d a 

which may be interpreted as two electrons on one atomic center.
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5. Molecular Orbital Method

The second main method used to form the trial wave functions, 

which are used to obtain the approximate solutions to the Schrodinger 

equation for chemical systems, is the molecular orbital method. In 

this method the electrons conceptually belong to the whole molecule 

and each electron is assigned a one-electron wave function, or molecular 

orbital, which spans the entire molecule. The molecular framework 

consists of a certain geometrical arrangement of the nuclei and also, 

in general, electrons in certain localized orbitals consistent with the 

arrangement of the nuclei. For example, electrons localized in the 

Is atomic orbitals of carbon in a hydrocarbon molecule. Hund^ and 

Mulliken^ are generally credited with the early development of the 

molecular orbital concept.

This method has marked advantages in dealing with the energy states 

of certain molecules, particularly unsaturated conjugated hydrocarbons 

because it determines the sequence of energy levels of the individual 

electrons just as in atoms and thus, indicates the sequence of closed 

shells of electrons in molecules. In a manner consistent with the Pauli 

principle, the lower energy orbitals are filled with the electrons to 

give the state of lowest energy.

The energy content of the molecule can then be calculated relative 

to any convenient standard. Also, in some cases, the spectroscopic 

properties of molecules have been quite successfully interpreted in 

terms of the individual orbitals to which the electrons in a molecule 

have been assigned. Selection rules have been obtained in an elegant 
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way from the symmetry properties of the electronic orbitals. All 

of these advantages, plus the fact that by approximating the molecular 

orbitals as a linear combination of atomic orbitals the mathematical 

problem is still tenable for quite large systems, have made the molecular 

orbital method the most extensively used technique for the theoretical 

study of large molecules.

6. Huckel Molecular Orbital Theory

In discussing the molecular orbital method, at least as applied 

to conjugated systems, it is convenient to divide its development into 

five stages. The first and simplest form of the molecular orbital 

theory to be developed is commonly known as the Huckel Molecular Orbital 

Theory (HMO) since Huckel was the first to introduce the set of
12 approximations used in this form of the theory. First, the molecular 

orbitals are approximated as a linear combination of atomic orbitals 

(ICAO) and the Hamiltonian is of the form

H = E^eff(i),

that is, a sum of terms, each of which depends only on the coordinates 

of one electron. The total wave function for the system is assumed 

to be a simple product of the occupied ICAO molecular orbitals, and 

this together with the form assumed for the Hamiltonian allows the 

total energy of the system to be taken as a simple sum of the orbital 

energies of the electrons. The Pauli principle is accounted for rather 

unsatisfactorily by distributing the electrons in pairs to each of 
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the lower molecular energy levels, the assumption being that one electron 

has spin function a and the other g.

The energy of the system is, of course, minimized with respect to 

the coefficients of the atomic orbitals in the assumed form for the 

molecular orbitals.

The linear variational problem produces the set of equations

Zcj (H - Si E) = 0
J 1J 1J 1J

which has nontrivial solutions when the orbital energies, 

are roots of the secular equation

IH1d - sijEI ■ °-

The matrix elements and S^j are given by the following integrals 

over the atomic orbitals:

Hii = Hii = Hpff(l)r(l)dv(l)
* J JI I Cll J

sid = Sjj = h/d) TjiDdvO)

The Huckel MO method is then made into essentially an empirical theory 

by the following approximations for the matrix elements and S^:

(1) The coulomb integral = aQ

(2) The resonance integral, if |i-j| = 1

H.j = 0 if li-jl > 1
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(i.e., finite only if y. and y. are atomic orbitals 

centered on neighboring nuclei)

(3) The overlap integral, S^. = 5^.

The parameters aQ and are chosen for the best fit of the theoretical 

quantities to experimental data.

Considering the drastic approximations used in this form of 

molecular orbital theory an amazing amount of reasonably successful 

interpretation of physical and chemical phenomena has been done and 
13is being done with it. Probably its chief advantage is simplicity. 

However, the complete neglect of electron-electron interactions 

makes it impossible for this method to account for the proper relative 

location and separation of many molecular states, in particular, the 

singlet and triplet states. These factors together with theoretical 

errors such as the use of a simple product wave function and the heavy 

use of empiricism made further sophistication of the Huckel molecular 

orbital method inevitable.

7. Antisymmetric Molecular Orbital Theory

The second stage of molecular orbital development is due 

largely to the work of Goeppert-Mayer and Sklar]4 This stage of 

molecular orbital theory development is often called the antisymmetric 

molecular orbital theory (ASMO) because the Pauli principle is correctly 

satisfied by assuming the total wave function of the system to be an 

antisymmetric Slater determinant.
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$ =_ 1 ...
✓CMT

^(Dad) ^(Dsd) ^(Dad) . . . ^(Dad) ^(Dsd) 

4>1(2)a(2) ^(2)5(2)

4>-j(2n) <x(2n) (2n) e(2n) . . . <|>n(2n)a(2n) <t>n(2n) B(2n)

In forming the molecular orbitals, <!>i(k)a(k), each space orbital, ^(k), 

is used twice, once with spin function « and once with spin function 3. 

Further, these space molecular orbitals are assumed to be the same 

LCAO molecular orbitals found as solutions when treating the system 

in terms of the simple HMO theory. The Hamiltonian used is of the 

form: 

HdHc"re(i)+H j

17 j

1

ij

where Hcore(i) contains the kinetic energy operator of the ith electron 

and the potential field for the ith electron resulting from the nuclei 

(and sigma electrons in conjugated systems). The term accounts 

for the coulombic electron-electron interaction. Goeppert-Mayer and 
14Sklar applied this method to the benzene molecule using essentially 

no empirical information except the experimental bond length. The 

coulomb, resonance, and overlap integrals (all identified above) as 

well as exchange integrals,

(ij|kl) = /h*d)^(2)(7^-)^(l)^1(2)dv(l)dv(2) ,

arising from the electron interaction terms of the Hamiltonian, were 
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analytically evaluated using proper theoretical functions as far as 

possible. Unfortunately, the calculations are extremely difficult, 

being impractical beyond molecules the size of naphthalene, and the 

results are not good. Consequently efforts to improve the molecular 

orbital method were continued.

8. Configuration Interaction

The third stage of development of the molecular orbital method 

was the addition of configuration interaction (CI) to the ASMO method. 

In the molecular problem, as in the case of atoms, the electrons are 

placed in the allowed orbitals to form particular configurations. It 

is found that different configurations of the same symmetry regarding 

both space and spin parts are not mutually independent but the presence 

of electron repulsion alters the energy of each configuration and also 

introduces a resonance between different configurations. In the ASMO 

method describe above, the form of the wave functions of the molecular 

states was restricted to be either a single or the sum or difference 

of two Slater determinants. To account for the effects of configurational 

interaction the state wave functions are assumed to have the more general 

form of a linear combination of Slater determinants representing the 

various electron configurations. The coefficients of the determinants 

are then determined from energy minimization by the variational method. 

Substantial improvement in the approximate solution of the quantum 

mechanical problem for molecular systems can be achieved in this manner. 

An excellent discussion of the various aspects and results of the 

application of configuration interactions to simple unsaturated 
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conjugated hydrocarbon systems is given in a series of papers by Craig, 

Coulson and Jacobs.15,16,17

9. Self-Consistent Field Molecular Orbital Theory

The first three stages in the development of the Molecular 

Orbital Method all had one feature in common and this was the molecular 

orbital functions used in the calculations. The molecular orbitals 

used were always those obtained from the solution of the problem by 

the simple HMO method. That is, when using the ASMO or ASMO-CI methods, 

one would always obtain a solution to the quantum mechanical problem 

for the molecular system first by the HMO method and then take these 

ICAO orbital solutions and form the properly antisymmetric determinant 

type state wave functions from them. Finally the energy of the system 

is determined by use of the correct or full Hamiltonian of the system. 

An obvious improvement in this method would be to develop a more 

satisfactory means for determining the basic molecular orbitals.

The fourth stage in the development of the molecular orbital 

method was the application of the Hartree-Fock self-consistent field 

method, normally used for solving the quantum mechanical problem for 

atoms, to the molecular orbital problem. This development is usually 

called the self-consistent field molecular orbital theory (SCFMO).
18The detailed formulation of this theory was given by Roothaan, 

but Lennard-Jones^ and Coulson^’^ also contributed to the develop

ment of this theory.

The following discussion of the self-consistent field molecular
18 orbital theory will parallel the development given by Roothaan but 
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will be considerably abbreviated. The system to be considered is one which 

has a closed-shell ground state. An electron shell is defined as a set of 

molecular orbitals in which (1) every space orbital occurs twice, 

that is, once with each spin function, and (2) if there is degeneracy 

on account of molecular symmetry, the molecular orbitals in the shell 

form a complete degenerate set. Unlike atoms most molecules have a 

closed-shell structure, that is, two electrons per shell, in the ground 

(lowest energy) state. Consequently, the wave function for the ground 

state of the system will be assumed to be reasonably approximated by 

a single Slater determinant made up of complete electron shells, that 

is,
•] ^(Dad) ^(Dgd). . . yiMDyDem

$ - —
/[W <f>1(2)a(2) ^(2)6(2). . . <|>n(2)(x(2)<t>n(2)6(2) (1.1)

4>1(2n)a(2n) (2n) g(2n). . . <j>n(2n)a(2n) <t>n(2n) s(2n)

Further, we assume that $ is normalized, that is,

j5*$dT = 1 (J *2)

and that the molecular orbitals are orthonormal, that is,

/^(jjjdT = 6^.. (1.3)

The Hamiltonian of the system is assumed to be of the form
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J FT- 11 •4)
i^j

where Hcore(i) is the Hamiltonian operator for the ith electron moving

in the field of the nuclei alone, that is,

HnnvoCi) = ~ v2 - V Vk(r.. ) (1.5)
core 2 k K

where the summation k is over all the nuclei. From the expression

E = /^d-T d.e)
■T $ <E>dT

the following expression for the energy of the system is obtained.

E = 2ZH. + 1 1 (2J-. - K..), (1-7)
1 i j J J

where

H. = H.* = J^H^dv

* 
ij " Jji ~ ” Jji

Kij * Kji = Kid = K3i

4-j (1) (2) <{)j (1) <|>j (2)
^12

♦i(l)*<(2)*, (1)^(2) __ J____J____ 1
r12

(1.8)

dv(l)dv(2)

Cl.9)

dv(l)dv(2)

(1.10)

The H.j are the nuclear-field orbital energies, the are the molecular 

coulomb integrals, and the K^. are the molecular exchange integrals.

In order to obtain the best wave function, $, that is, the Slater

determinant for which the energy is a minimum,the expression for the 

energy, equation (7), is varied by varying each molecular orbital, 4> -,
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by an infinitesimal amount , subject to the restriction that the 

molecular orbitals form an orthonormal set. From this variation one 

obtains the following equations:

6E = 2H(^{H + I(2J. - KjR.dv
i j J J

+ + Z(2J* - K*)}<i>.*dv O-11)
i j J J

J(6<l>*)<l>.dv + /(4>*dv = 0 (1.12)

where the coulomb operator and exchange operator are defined by

= /4>* dv (1.13)

Kid • Kj#idv ■ (LU)

In order that E may reach its absolute minimum, it is necessary, 

although not sufficient, that 6E = 0 for any choice of the 6<|>. *s in 

(1.11) which is compatible with the restrictions of (1.12). This problem is 

solved by the method of Lagrangian multipliers.
18After considerable mathematical manipulation, it may be derived 

that the set of "best" molecular orbitals satisfy the set of equations

= ^4)., (].15)

which are known as Fock's equations, and the Hartree-Fock Hamiltonian 

operator F is given by

F = H + £ (2J. - K.), (1.16) 
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Fock's equations (115) state that the molecular orbitals, <|>^, which give 

the best determinant wave function, $, are all eigenfunctions of the 

same Hermitian operator, F, which in turn is defined in terms of these 

molecular orbitals.

Since F is defined in terms of the molecular orbitals which are 

themselves the solutions of Fock's equations (1.15), Fock's equations 

are solved by trial and error. One assumes a set of n functions, , 

from which the Hermitian operator F is first calculated. The eigen

value problem for the operator, F,

F<j) = £<f> (1.17)

is then solved. In general there will be more than n solutions and 

<l>., i = 1, 2, . . ., m (m > n), of the eigenvalue problem (1.17). Of these 

solutions, the set of n functions, <l>., will be chosen which correspond 

to the n lowest eigenvalues, ^,and this set of functions compared to 

the functions originally used to calculate the operator F. Guided 

by this comparison, a new set of n functions is chosen and the procedure 

is repeated. This process is repeated until the assumed and calcu

lated 4*^'s agree. This method for solving Fock's equations is 

called the Hartree-Fock self-consistent field method. The set of m 

ej‘s determined in the final solution of the eigenvalue problem (1.17) 

are known as Hartree-Fock orbital energies. The set of n ^'s corres

ponding to the n lowest are called ground-state orbitals and the 

remaining <|)^ are known as excited orbitals.
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For atoms, the solution of Fock's equations 0-15) by the above 

procedure is greatly simplified by the central symmetry, unfortunately, 

most molecules lack such symmetry and the solution of Fock's equations 

for molecules, using completely general functions, , for the molecu

lar orbitals is out of the question except in extremely simple cases. 

Therefore, the next step is to pick a particular form for the molecular 

orbitals, <i> p and re-derive Fock's equations using these approximations 

to the "best" molecular orbitals, which would be obtained from 

the Hartree-Fock SCF Method. In particular, the molecular orbitals 

will be approximated by a linear combination of atomic orbitals (LCAO), 

that is

1 j J J1

where the are normalized atomic orbitals, that is.

jZ^dv = 1.

(1.18)

(1.19)

It is then useful to introduce the following matrix notation:

I- (ViV-V

(1.20)
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Equation (18) may then be rewritten as

4-i =1^

= I £

(1.18')

(1.18")

Note that the total number of molecular orbitals and atomic orbitals 

are n and m, respectively, and since n linearly independent molecular 

orbitals must be constructed from m atomic orbitals, it must hold that 

m - n.

It is also useful to define a matrix for each one electron opera

tor of the form

M11 M12 *

M21 M22 ’

Mml Mm2 •

(1.21)

where

*= jT^M'P.dv.

It can be shown that M_ is Hermitian if M is Hermitian, that is, 

M* = M (M* denotes the Hermitian conjugate of the matrix M). The 

following matrices may then be written:
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M = H if M = H

M = J. if M = J.

M = i f M = Ki

M = F if M = F

M = S if M = 1.

(1.22)

S_ is the overlap matrix and its diagonal elements are unity by equation 

(19).

The usefulness of the matrix notation is shown by the fact that 

all integrals over the molecular orbitals, may be written as

J^.M^dv = 5j M 5j* (1-23)

The orthonormality condition of the molecular orbitals, still assumed

to hold under the ICAO approximation, becomes

b^jdv = c|S Cj. = Sij. . (1.24)

In view of equation 0.23), equations(l.S) ,(1.13), and(1.14) become

= ctH Cj

Jij • 4 JjC, - Ct J, Cj (1.25)

Kij * £* Kj C, - c* Kj cj

and the expression for the energy of the system0.7), may be rewritten

as

E = 2 1 c* H r- + H fc*(2J. - K.) c.
i 1 i a J J 1

+ £*(2J. - K.) £.] (1.26)
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In order to determine the “best" ICAO molecular orbitals, that is, 

those orbitals which will minimize the energy of the system, a varia

tional treatment analogous to that described previously is carried out. 

This time, however, the variation is restricted to the coefficients, 

c^j, of the ICAO molecular orbitals, that is, the energy is varied 

by varying the matrices by an infinitesimal amount, £.. The 

variation of equations(126) and(124) yields

6E = 2£(6C*){H + ^(20. - K.)}c 
i j 1 J 1

+ 2l(6c.+){ H + I(2J. - K-)} c. (1.27)
i j J J

and

(£c*) S c_j + c* s (6_g) = 0. (1.28)

(R denotes the complex conjugate and M-+ the transpose of matrix M). 

As before, a necessary condition for the energy to be a minimum is that 

6E = 0 for any choice of which is compatible with the restrictions 

of (1.28).

Using an argument analogous to that used in deriving Pock's 
18 equations, one may derive an analogous set of matrix equations

f £i = ei S c. (1.29)

which the ICAO molecular orbital coefficients must satisfy in order 

that the energy of the system, E, be a minimum. The matrix

F = H + .£(2^. - Kj.) (1.30)
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is defined in terms of the matrices, , so the equations(1.29) must 

be solved by trial and error.

To solve the set of equations0-29), a set of n matrices, , is 

assumed and used to calculate £ and £. These matrices are then used to 

formulate the fol Tawing problem:

£ £ = e £ or (£- e£) £ = 0 (1.31)

Equation(1.31) is a generalization of the eigenvalue problem for a Hermi

tian matrix and it can be shown that the important properties of the 

eigenvalues and eigenvectors of a Hermitian matrix still hold, namely, 

the eigenvalues of equationO-31) are the roots of the secular deter

minant,

|F - ES| = 0, (U2)

and the eigenvectors belonging to different eigenvalues are mutually 

orthogonal in the sense that

c* S £j = 0. (1.33)

Since £ and £ are mxm matrices, there will be m solutions, and 

£., of equation (131). Of these m solutions, the set of n matrices £. 

corresponding to the n lowest eigenvalues, £p is chosen and compared 

with the set of n matrices, £p used to originally calculate £ and £. 

Based on this comparison a new set of n matrices, £., is chosen and 

the process is repeated until the assumed values of £. and the solu

tions of equation(1.31) coincide. These self-consistent solutions are 
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now solutions of equation 0-29) which in turn are the conditions for 

minimization of the energy, E, of the system. This method of obtaining 

the coefficnets of the ICAO molecular orbitals, together with the use 

of the determinantal type wavefunction, equation 0.1), and correct 

Hamiltonian, equation0.2), for the calculation of the energy of the 

system, constitute what is generally called the self-consistent field 

molecular orbital theory.

The eigenvalues, , obtained in the final solution of equationO-31) 

are called the ICAO orbital energies. The set of n molecular orbitals, 

<f>p determined from the set of n matrices, , corresponding to the n 

lowest values of are used to form the ground state wave function 

and are called ground state orbitals. The m-n set of molecular orbitals 

obtained from the remaining m-n solutions of equation 0.31) are referred 

to as excited state orbitals. These excited state orbitals obtained from 

the ground state solution for a molecular problem are used as a basis 

for forming the excited state wave functions. Basically, to do this 

one conceptually promotes an electron from a ground state orbital to an 

excited state orbital by replacing a ground state orbital in the Slater 

determinant describing that electron configuration with an excited 

state orbital. However, consideration of the spin functions a and g 

will produce four possible wave functions for the excitation of an 

electron from orbital, to excited orbital, <[> . Using an obvious 

notation for the determinant, the following determinantal wave functions 

are formed:
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A-i = | (<t>-i<x) (<t>-| B) . . . (tL-iOt) (<|). 1 g) (4>.a) (<|> ct). . . (<1> a)(<j> a) |
• II I I I I I II II

= |(<t>-|o)(<l>-]3). • • U-t-jOt) (<!>. 1B)(<j).a)(<|> g). . . (<j> a) (4> B) |
II I I I I I 11 II

(1.34)
Ag - I (4>^0i) (4>1 B). . . (4>1-_-|Ct)(<l>l-_iB)(<l>l-B)(<l)eot). . . (<f>na) (4>nB) |

Ad = | (<!>!«) (^.B). . . (*1._1a)(<|). 1B)(4>_. B)(4>_e). . . Ua) (4>B) I .
” I I 11 II 1 C Illi

These four wave functions must be considered to be equally probable 

so a linear combination is taken of all four and the energy minimized 

by a variational treatment. This gives rise to a singlet state

1$ie (a2 " a3^ (1.35)

and a triplet state with three wave functions

3»iei = = (a2 + A3) 
iel /2 Z J

3$ie2 = A1 (1.36)

3$. = A.
ie3 4

each of which have the same energy since spin-orbit coupling is neglected. 

Also, the triplet energy is normally lower than that of the singlet 

state.

The wave functions obtained in the manner described above will 

not, in general, produce the minimum energy for that state since the 

excited orbital, 4> , was determined from the minimization of the 

ground state energy and not that of the excited state. Actually 
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the excited state energy should be minimized with respect to the coef

ficients of the ICAO molecular orbitals used to form that particular 

excited state electron configuration; however, in practice this is 

rarely done, the feeling evidently being that the amount of improve

ment in energy values would not be worth the additional computational 

difficulties.

Unfortunately, the rigorous application of the SCFMO method, 

that is, the analytical solution of all integrals and the use of no 

empirical data except bond length, does not give very satisfactory
1 6results. For example, Coulson and Jacobs calculated the state energy 

levels for butadiene by the ASMO method, ASMO-CI method, and SCFMO method 

and found the SCFMO levels to be better than the ASMO levels but not 

as good as the ASMO-CI levels. This difficulty is, of course, readily 

overcome by generalizing our state wave functions in the SCFMO method 

to a linear combination of Slater determinants to allow for configura

tion interaction in this method. Another example of the rigorous 

application of the SCFMO method is the calculation of the energy levels 
20of butadiene by Parr and Mulliken. The SCFMO-CI method was used by

21 Parr, Craig, and Ross to calculate the lower excited levels of benzene.

The SCFMO method also shares the computational difficulties of 

the ASMO method which prevent its application to molecules much larger
4

than naphthalene. This is the so-called "n difficulty." For a large 

unsaturated conjugated molecule containing n pi-orbitals, the total 

number of integrals, when reduced to integrals over atomic orbitals, 

will total on the order of n^/8, although this number is usually divided 
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into a smaller number of groups of similar integrals. Also, these inte

grals are quite difficult to compute, many of them being of a multi- 

center form.

The generally poor results for the energy levels obtained by the 

rigorous application of even the relatively sophisticated SCFMO method 

is usually attributed to two shortcomings in the theory. The first 

is the orbital approximation or one-electron approximation. In solving 

for the molecular orbitals, they are treated as single electron orbitals; 

however, in forming the determinant wave function, each space orbital 

is considered to contain two electrons with antiparallel spins. The 

molecular orbitals, therefore, contain no coordinates associated with 

the distance between these electrons and thus no account is taken of 

the correlation energy of these electrons.

The second criticism of the molecular orbital method is that it over

estimates the polar character of the chemical bond. This is best illus

trated by the simple product wave function of a two-electron system

$ = 4)1(1)<!>1(2) (1.37)

where the molecular orbital, <t>],is given by

♦1 = i + ',b)- <1-38)
yZ

Substituting into $ and multiplying out one obtains

$ = I + ’i'b{l)][^a(2) + Yb(2)]

= [^(1)^(2) + ^(1)^(2) + Yb(l)Ya(2) + ^(1)^(2)] (1.39) 
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where the polar terms, ^(1)^(2) and ^(l )'Fb(2), constitute one-half 

of the terms of $.

10. The Semi-empirical or Pariser-Parr-Pople (P-P-P) ICAO Self- 

Consistent Field Molecular Orbital Theory

The computational difficulties and poor results of the 

rigorous application of the SCFMO theory led to the fifth and latest 

stage of development of the molecular orbital method. This development 

consisted of the application of a series of mathematical simplifications 

or approximations to the SCFMO theory along with the introduction of a 

limited amount of empirical data. The need for mathematical approxi

mations was obvious since one desires a theoretical method which could 

be applied to a wide range of chemical systems and not just a few 

simple ones. The use of empirical data was viewed as a means of partially 

compensating for the errors introduced by the theoretical weaknesses 

discussed above. To do this, some of the integrals which appear in the 

SCFMO theory were given a physical interpretation and their computed 

values replaced by experimental values. This introduction of experimental 

data was said to "calibrate" the theory. The basic work in the develop

ment of the semi-empirical self-consistent-field molecular orbital
22 23 24theory was done by Pariser and Parr ’ and Pople . 

The following discussion of the approximations made in formula

ting the semi-empirical SCFMO theory will concentrate primarily on 

those applicable to an unsaturated conjugated hydrocarbon in which 

only the pi-electrons are considered, that is, the pi-electron 

approximation is made. These results can, of course, be extended to 
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other classes of molecules; however, most of the theoretical work has 

concentrated on this class of molecules, as does the present work.

It will be useful to first write the expressions for the elements 

of the F. and ^matrices which appear in the set of equations [equation 

1,29)]

£ =i = =i $ =i>

18 derived by Roothaan. These equations are the conditions imposed on 

the coefficients of the linear combination of atomic orbitals (ICAO) 

molecular orbitals [equation (1.18)]

♦i= J ’Jcji

in order that the energy, E, of the system be minimized. These 

matrix elements are

Fii = + H P ki{ (i k |G| jl) - 1 (1 k |G| lj)} (1.40)
IJ IJ -|^ Y K I L

where

H.. = /Z(l) {-lv2m - ^Vk(T)} v.(l) dV(l) 
। j । l* k (L.41)

Z(l)v*(2) ^.(1)^(2)
(i k |G| j 1 ) = Jp---------------- J------- !----- dV(l)dV(2)

r12
(1.42)

Pkl = 2 lcikcil (1.43)

and

sij = I** ’j dv (1.44)
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The approximations amount to a simplification of the matrix elements,

Fij and sij-

The first approximation is that the sigma electron system may be 

treated as a non-polarizable core and its effects included in the 

term H.. (1.41). This means that 7^(1) no longer represents the potential IJ K
felt by electron (1) due to the nuclear charge of the kth atom, but 

rather the potential due to the core formed by the kth nucleus and 

all the sigma electrons associated with it.

The second approximation is to neglect all overlap integrals 

Sij (44) unless i = j, that is

= Jv* yjdV = 6^. (1.45)

This means that the overlap matrix S_ is now equal to the identity 

matrix I_. The condition that the molecular orbitals, <|>., be normalized 

is now

(1.46)

This approximation is not quantitatively correct, but it simplifies 

the computation considerably and is considered to be worth the loss 

of accuracy incurred by it.

The third approximation is to neglect all two-electron integrals (1.42) 

which depend on the overlapping of charge distributions of different 

orbitals. This means that the integrals (ik |g| jl) are neglected unless 

1 = j and k = 1. The second approximation of setting S^j = 8^. and 

this approximation are really consistent with one another because if 
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the magnitude, S^j, of the charge distribution, , is neglected, 

its interaction with other charge distributions should also be neglected.

If the second approximation were made without the third, it would be 

equivalent to counting the interactions of more electrons than are 

actually present.

The fourth approximation is based upon the following argument given 
22by Pariser and Parr concerning that part of the Hamiltonian which 

appears in equation (41)

hn = " ? 72(1) " £vk(1) (1*47)

where the summation k is over all cores of the molecule. Equation (1.47) 

is rewritten in the form

Hn= -^(1) -Vl(1) - y Vk(l) - I v' (1) d.48)
k(/i) j(/i) J
(/j) (/k)

I

where Vj is the potential due to uncharged cores in the molecule.

(e.g., a hydrogen atom in the unsaturated hydrocarbon). Further the 

may be written as

vk(1) - v^l) -/ M2).5(.21 dv(2) (1.49)

r12

I 
where V^(l) again denotes the potential due to the kth core if it were 

neutral. Using equations (1.48) and(l.49), equation (1.41) for may be 

rewritten as

Hi-- = -L. - I (i k |G| i k) - P.
11 1 k 1 

(1.50)
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where

i, = Jv-diCz- ^d) + v^Di^didvd) d.5i)

Pf = h-mmdij^didvd) d-sz)

and (i k |G | i k) is defined in equation (1.42). The fourth approximation 

is to interpret 1^ as the atomic valence state ionization potential and 

to assume that it is a constant for all carbon atoms in unsaturated 

hydrocarbons. The integral for 1^ is thus replaced by a constant based 

upon experimental data. The integral, Pp called the neutral penetration 

integral, is the total attraction of an electron in for all (carbon 

and hydrogen) cores of the molecule in a neutral state. This quan

tity is either approximated as a small positive value or, more often, 

set equal to zero.
24It should be noted that Pople treats the approximations dealing 

with Hp. somewhat differently. His argument, however, depends upon 

specifically setting the integrals (i j |G| i j ) = This is 

quite restrictive and consequently is not given here.

The sixth approximation concerns equation 0.41) for H^., that 

is,

H..,  = v2(1) - IVdlll^dldVd). (1.41)
i J IJ i C- r lx J

24These resonance integrals represent, according to Pople, the fact 

that electrons can move in levels of lower energy by virtue of being 

in the field of two cores simultaneously. By theoretical elucidation. 
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these integrals may be shown to depend on the atoms i and j and the 

type and length of the bond between adjoining atoms i and j, but not 
22sensibly on neighboring bonds or atoms. Consequently, the resonance 

integrals, g^., are approximated as basic empirical parameters, the 

value of which depends on the atoms i and j and the length and type 

of bond, but the value of which remains constant between different 

molecules. The most common way of handling this approximation in 

unsaturated conjugated hydrocarbons is to set equal to a constant 

g for bonds between nearest-neighbor atoms and zero otherwise. The 

g is used as an adjustable parameter with which to fit the calculated 

values of quantities, for example, electronic transitions,to the observed 

values of the transitions for a number of similar molecules. There are

other ways of approximating g^j but they will be discussed under

Recent Developments.

With the incorporation of the above six approximations, equation

(1.40)may be rewritten as 

(1.54)

Fii = _Ii " Pi + 7Pii (1i lF G *l i1) + I (Pii " l)(1j lGl (L53)
11 1 1 Z 11 11 j -j) JJ 11 

and

Fii = Bii ~ 7 PilGl for 1 + J*1J * J IJ

The final stage in formulating the semi-empirical SCFMO theory is the 

development of approximations for the integrals of the form (ii |G| ii) 

and (ij |G[ ij). Although this discussion does not exhaust the
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approximations which have been tried, it does include the most successful, 

and, therefore, most commonly used ones.
25The approximation for (ii |G | ii) was developed by Pariser and 

is based on the energetics of a simple atomic charge-transfer process 

which takes an electron from a 2p orbital of one carbon atom to another 

carbon atom to form a positive and a negative ion. Based on this 

process, (ii |G| ii) may be interpreted as

(ii |G| ii) = Ii - Ai (1-55)

where 1^ is the valence state ionization potential of neutral carbon 

and A.j is the electron affinity. The integral (ii |G| ii) is then 

approximated by the experimental values for 1^ and A^. This develop

ment, of course, is for carbon atoms in an unsaturated conjugated 

hydrocarbon, but the same argument has been extended to other types 

of atoms.

The development of an approximation for the two-center coulomb 

integral, (ij |G| ij), has produced considerable activity in the field 

of quantum chemistry. The cause of this activity is apparently the 

failure to develop a really good single approximation which is appli

cable to more than one or two general classes of molecules. Four of 

the most common approximations for this integral in unsaturated 

conjugated hydrocarbons are as follows:

(i) Theoretical Slater: For r^. 2 2.80 A, the values are computed 

by performing the actual integration using Slater-type orbital

functions (for example, see Ref. 27) for the atomic orbitals and using
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the interpolation formula

(1J |G| 1j) = g- [(ii |G| 11) + (jj |G| jj)] -

, 2 (1.56)
= ? [Ii " Ai + 'j " Aj] " Arij " prij

o
for 0 - r^j < 2.80 A where p and x are parameters used to fit the 

values at r^. = 2.80 A and 3.70 X to the values obtained from the 

actual integration.
OO po Q

(ii) Pariser-Parr: ’ For . - 2.80 A, the values are 

computed by performing the actual integration after replacing the 

2p atomic orbitals of carbon by a pair of tangent uniformly charged 

nonconducting spheres of diameter

di = ^17" -57)

where is the Slater effective nuclear charge of the 2p atomic 
o

orbitals replaced. For 0 - r^. < 2.80 A, values are again determined 

by the interpolation formula (1.56).

(iii) Pople:^

(ij |G| ij) = 1^3986 ev (1>58)
ij

where r^. is in angstroms.

(iv) Mataga:2^

(ij |G| ij) = ev (1.59)
ij

where
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14.3986
« *1

7 * Ai + ’j " Ajl
(1.60)

and r^j is in angstroms. Very good results for singlet state energy 

differences can be obtained using the Matage approximation, especially 

for the condensed ring aromatic hydrocarbons.

If one further restricts the class of molecules to the so-called 

even alternant unsaturated conjugated hydrocarbons, two further sim

plifications may be deduced. In these hydrocarbons, the carbon centers 

may be divided into two equal sets in which one member of a set is 

not bound to any other member of that set. For example, in anthracene.

* * *

the "starred" carbons form one set and the unstarred another. The first 

simplification for this class of molecules is that, subject to all 

the above approximations,

pii= 2 pij cij - ’• f1-6')

24This was first proven by Pople. P.^ is interpreted as the pi-electron 

charge density on the ith carbon atom. The second simplification for 

this class of molecules is the so-called pairing theorem which states 

that the orbital energies or eigenvalues of the matrix £ are symmetri

cally arranged about the value for F^-. That is, if F^- + e is an 

eigenvalue, so is F^. - e. This is, of course, subject to all the above 
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approximations which ensure that is a constant, that is, all the 

diagonal elements of are equal to the same constant value. This 

theorem was first proven for even alternant hydrocarbons in the HMO 
30 theory by Coulson and Rushbrooke and extended to the semi-empirical 

SCFMO theory by Pople.^’^l

By incorporating all the above approximations, and restricting 

the applicability to the even alternant unsaturated conjugated hydro

carbons, the £ and S_matrix elements in the semi-empirical SCFMO 

theory may finally be written as

Fii - -z-l'i +Ai) -p1

Fij " 6ij " 2 0 •62>

S1j " 6ij

where is one of the approximations for the integral (ij |G | ij) 

discussed above. As stated earlier, the penetration integral is 

usually neglected.

It should be noted that these same semi-empirical approximations 

can and are applied equally well to the ASMO and ASMO-CI theories. 

Since the same Hamiltonian and LCAO type molecular orbitals are used 

in these theoretical methods, the same basic integrals, over the 

atomic orbitals, (ii |G| ii), (ij |G| ij), H^., and H^., will appear 

as in the SCFMO theory with LCAO molecular orbitals.

11. Recent Developments

The recent developments in the application of quantum mechanics 

to larger molecular systems have not produced any fundamental improvements 
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in the theory. Rather it has concentrated on the further development
18 of a semi-empirical theory based on Rcothaan's formalism for a

SCFMO theory using molecular orbitals approximated by a linear combi

nation of atomic orbitals (ICAO). This work may be roughly divided 

into two categories. The first category is that motivated by the 

same one which led to the original development of the semi-empirical 

SCFMO theory, that is, a desire to overcome the poor results caused 

by the theoretical deficiencies of the ICAO molecular orbital theory. 

These deficiencies are over-estimation of the polar character of the 

bonds and the one-electron approximation. This work consists, primarily, 

of the improvement of the approximations used for the basic integrals 

over atomic orbitals and the improvement of the wave functions. The 

second category consists of developing techniques which may be thought 

of as lessening the severity of approximations made in the interest of 

computational simplicity.

Under the first category, improvements in integral approximations 

and wave functions, the large amount of research activity devoted to 

developing a good approximation for the integral (ij |G| ij) has been 

mentioned in the proceeding section and four examples given. Some 

work has been done on the integral (ii |G| ii) but molecular calcula- 
25 tions in the literature almost invariably use the Pariser approxi

mation, which was also described in the proceeding section.

A number of different approaches have been taken to improve the 

wave functions. The most common way is to allow for the effects of 

configuration interaction, which was discussed in a previous section.
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Almost all molecular calculations in the recent literature allow for 

configuration interaction, at least on a limited basis,

Another approach is to use orthogonalized atomic orbitals to form 
32the molecular orbitals. The effect of this is to set the overlap 

matrix equal to the identity matrix, 1^, exactly and not by 

approximation.

Dewar has introduced what he calls the "split-p" method in which 

the pi-electrons are alternantly assigned to the upper and lower lobes 

of the 2p orbitals of carbon, for example, in the upper lobes of carbon 
33 atoms 1,3, and 5 and lower lobes of carbons 2, 3, and 6 in benzene. 

This scheme will give computed values for the integral (ij |G | ij) in 

remarkable agreement with empirical values; however, wave functions 

built from the split-P functions are no longer orthogonal to the sigma 

orbitals, thus invalidating the pi-electron approximation. Proper 
34 consideration of the nonorthogonality weakens Dewar s results.

A final method to improve the wave functions is the alternant 
35 35molecular orbital method of Lbwdin. In this method. Lbwdin puts 

one electron on one atom when the other is on a neighboring atom. The 

basic idea may be illustrated with a two-electron case, where instead 

of the usual molecular orbital wave function (excluding spin), 

$ = ^(l )’i'(2), the wave function has the form

$(1,2) = 4>(1 J*})' (2) + <l,-(.n$(2).

That is, instead of the usual choice for the molecular orbital, 

ij; = where y and are atomic orbitals, two orbitals are formed
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<i> - ^ + , 4>1 = Yb +

where A is a parameter. This method apparently gives good results, 

and although mathematically difficult, it is being extended to larger 

unsaturated conjugated hydrocarbons.

There are certainly other schemes for improving the wave functions, 

but these are probably the most significant in terms of applicability 

to the unsaturated conjugated hydrocarbons.

Under the second rather arbitraty category of improvements, that is, 

removing approximations made in the interest of computational simplicity, 

two will be considered. They are inclusion of overlap and the effects 

of bond length. It should be noted that before the advent of the large 

electronic computers, these considerations would have involved a prohi

bitive amount of labor for all but the smallest molecules.

Ever since the original formulation of the semi-empirical SCFMO 

theory, many workers felt that the neglect of the overlap of the atomic 

orbitals, that is, setting [equation (1.45)]

s1d=/’hdv = 61j

altered the results considerably and it was only natural that the 

exact overlap matrix would be used more often when the means of 

computation were sufficiently advanced. An added advantage of including 

overlap is that one may make use of the remarkably accurate Mulliken
. +. 37 approximation

S..
= 41 b.-Ohid) + $<(1)^(1) d-63)

* J fc- t I J J
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in evaluating other integrals in which the term (1) Tj(1) occurs.

The true complete wave function of a molecule actually depends upon 

both the coordinates of the nuclei and the electrons; however. Born 
38and Oppenheimer have shown that, owing to the smallness of the ratio 

of the mass of an electron to that of any nucleus, the total wave function 

Vj may be approximated quite well as a product of the nuclear wave 

function, 'i'n, and the electronic wave function, *P and the quantum 

mechanical problem essentially becomes uncoupled to form two separate 

problems

= EN',n
(1.64)

H v = E 'Fe e e e .

Most of the theoretical work of chemistry is directed toward the solu

tion of the problem for the electronic wave function, Y , and this is 

what has been referred to, somewhat incorrectly, as the wave function 

in the previous discussions. In the approximate solution of the quantum 

mechanical problem for the electronic wave function discussed previously, 

the nuclei have been assumed to be fixed in a certain geometrical 

arrangement, usually based upon experimental evidence. The electronic 

energy of a molecule, however, does depend on the distances between 

nuclei and there are certain equilibrium distances or bond lengths 

at which the electronic energy is a minimum.

Quite early in the development of the molecular orbital method, 
39Coulson interpreted the quantity
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p.. = 2 yC,*Cr. (1.43)
ij kiukj k

as the bond order and derived a formula, within the restrictions of the 

HMO theory by which the bond length of an unsaturated conjugated hydro

carbon could be calculated from P — . That is, the bond order, P^-, 

found from the solution of the quantum mechanical problem with a fixed 

assumed bond length, could in turn be used to calculate the correct 

bond length. More recently, Nishimoto and Forster^ and Longuet-Higgins 

41 and Salem have derived relations within the SCFMO formalism of 

the form

= r(s) - [r(s) - r(d)JP1j. (1.65)

where r.^ is the bond length, r(s) is the bond length of a single carbon

carbon bond as in ethane and r(d) is the length of a "pure" double 

carbon-carbon bond as in ethylene. With the new electronic computers, 

it is no longer necessary to restrict the bond length to a fixed value 

but rather it may be allowed to vary in a manner consistent with a 

relation such as (65) and the energy minimized with respect to bond 

length simultaneously during the iterative solution for the self- 

consistent ICAO molecular orbitals. This additional technique of 

allowing the bond length to vary (within limits) represents about 

the highest level of development of the semi-empirical SCFMO theory.

Another problem related to the effects of the molecular geometry 

on the solution of the quantum mechanical problem is how to refine the 

manner in which the resonance integral, is approximated. As was 

pointed out earlier, is a function of bond length and it is usually 
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approximated as a constant parameter. However, may be taken as

a function of the overlap, S^j, or the bond order, P^., and its effects 

on the quantum mechanical problem enters more realistically. If the 

bond length is allowed to vary, may be written as a function of the 

overlap integrals, S^j, and since these integrals will change with 

varying bond lengths, g^j is thus a function of bond length. If the 

quantum mechanical problem is solved with an assumed fixed molecular 

geometry, g^. may still be made a function of the bond order, P —, 

since P^ is related to bond length through equation 0.65). Examples 

of these approximations for g^. are the "variable g approximation"
40of Nishimoto and Forster

gij = klPij + k2 ; (1-66)

43 the approximation used by Bloor, et al.

g = .Jj.+. -b? 51- . (1.67)
J 2 1+S..

ij

and the approximation introduced by Fischer-Hjalmars 2̂*'

= - S.j {^[(ii |G| ii) + (jj |G| jj)] + k2(ij |G| ij)}. (1.68) 

k-] and k2 in equations 0.66)ard (1.68) are parameters for correlating 

theoretical and experimental quantities.

This concludes a very brief summary of the development of the 

quantum mechanical treatment of chemical systems with particular 

emphasis on those methods applicable to large unsaturated conjugated 



50

hydrocarbon molecules. No attempt has been made to cover the large 

amount of work being done to extend these theoretical methods to 

conjugated systems containing atoms other than carbon and hydrogen 

or to saturated hydrocarbons. Also untouched is the vast amount of 

very rigorous and precise work done on very small organic and 

inorganic systems.

From the point of view of desiring a rigorous theory in which 

accurate quantities may be calculated from first principles, one must 

say that the theory in its present stage of development falls short 

and that improvements must be made. As will be seen in the next section, 

the chief redeeming quality is that the semi-empirical SCFMO theory 

with LCAO molecular orbitals presently used can give fairly quantita

tive results with a reasonable amount of effort.

12. Applications of Theory

The following examples of the calculated energies of elec

tronic transitions (singlet-singlet) and oscillator strengths for various 

molecules taken from the recent literature are meant to serve two pur

poses. First, they should illustrate the merits of some of the more 

recent theoretical methods relative both to each other and relative 

to experimental values. Secondly, the subject molecules for this 

comparison are some which are involved in the present work and, there

fore, may be used as a check on the methods used in this work.

The oscillator strength, f, is a measure of the intensity of 

electronic transitions. The term originated in classical electromag

netic theory in which it represents a measure of the effective number of 
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electrons whose oscillations produce a given line or band in the spec

trum. The oscillator strength was reinterpreted in terms of quantum 

mechanics and for transitions between nondegenerate states and Y., 

it is determined from the expression

2
8 it m e o ii o

f. . = -----U) 1 Qt = 1.085 x 10*1 U) y Qt (1.69)
J She i=x,y,z i=x,y,z

where me is the mass of the electron, e is the electronic charge, c is 

the speed of light, h is Planck's constant, co is the frequency of 

the transition in cm“^ (wave numbers) and the transition moment

integral, Qp is given by

Qi = h'* T YjdV (i = x,y,z) (1.70)

where T is the algebraic sum of the 1 th coordinates of the several elec

trons. The experimental expression for the oscillator strength is given 

by

7
,1028c m q

fn-n. = --------9----- /e(o))du) = 4.32 x 10"y /e(co)dw (1.71)
J NnTTe^

-19 3where it is assumed that Nn = 2.69 x 10 molecules per cm and e is 

the molar extinction coefficient in units of liter-mole"^-cm-\ The 

methods for the calculation of the intensities of electronic transitions
45 are summarized in the work of Mulliken and Rieke.

In the following tables of transitions for various molecules, the 

methods of calculation cited are as follows:
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43Method 1: This method was developed by Bloor and the calculations 

done by him. The general method is the semi-empirical SCFMO method 

with LCAO molecular orbitals and configuration interaction. The 

atomic orbital functions used are 2p Slater functions with an effective 

nuclear charge of 3.18. Overlap is included and the bond length allowed 

to change according to equation(1.65) with numerical value

r.j = 1.517 - 0.18 P... (1.72)

The resonance integral, , was set equal to zero for nonadjacent 

atomic centers and calculated from equation (67) for nearest neighbors. 

The one-center repulsion integral,(ii |G| ii), was calculated from 

the Pariser approximation, equation 0-55),and the two center integrals, 

(ij |G| ij), from the Mataga29 approximation, equation (1.59).

42Method 2: These calculations were performed by Nishimoto and the 

method is also an example of the semi-empirical SCFMO theory with LCAO 

molecular orbitals; however, in these calculations the molecular geometry 

is fixed, that is, the bond length is a constant. Also, the resonance 

integral, is calculated from equation(L-66) and the two-center 

integral, (ij jG| ij), is approximated by a complicated expression derived 
46in an earlier work which incorporates Dewar's idea of electrons in 

33opposite 2p lobes and an effective refractive index of the electrons' 

environment. He also assumes A^ is zero in the Pariser approximation 

for (ii |G| ii).
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40 Method 3: These calculations were done by Nishimoto and Forster and 

the method is identical to Method 2 except that the Mataga approxima

tion, equation(1.59) is used for (ij |G | ij).

Method 4: This method was proposed by Fischer-Hjalmars^ and first

47applied to aromatic molecules by Skancke; however, these particular 
43calculations were performed by Bloor. This method differs from

Method 1 only in the form of the resonance integral, , the form 

used was equation (1.68), and atomic spectroscopic data was used 

directly for the repulsion integral, (ii |G| ii), rather than first 

calculating the valence state ionization potential. Ip for use in 

the Pariser approximation, equation(l .55).

Method 5: These calculations are but a few of the large number done 
48by Hummel and Ruedenberg. The general method used was a semi-empiri

cal version of the ASMO-CI theory, that is, the molecular orbitals were 

determined from the HMO theory and the complete Hamiltonian and antisym

metric wave functions used for energy calculations. The effects of 

overlap were taken into account, but the molecular geometry was fixed. 

The resonance integral was taken as a constant for nearest neighbors and 

zero otherwise. The precise approximations used for the various inte

grals are those developed by Ruedenberg in a series of six papers on
49 the quantum mechanics of unsaturated conjugated molecules.

Other examples of calculations for these molecules exist; however, 

it is felt that most are too limited in scope or do not differ signi

ficantly from the examples given. Also, molecular calculations such as 
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those presented here have been made during each stage of development 

of theoretical chemistry but the examples given have been limited to 

those employing the more recent theoretical developments.

Figure 1.1 gives the conventional chemical structures of the mole

cules whose electronic transitions are tabulated in Tables 1.1 through

1.12.
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Anthracene

Tri phenylene Di benz(a,c)anthracene Di benzo(b,g)phenanthrene

1,2-Benzanthracene 3,4-Benzophenan- Chrysene 
threne

Styrene

ch2=ch2

Ethylene cis-Butadiene

FIGURE 1.1 CHEMICAL STRUCTURES OF MOLECULES REFERRED TO

IN TABLES 1.1 - 1.12



TABLE 1.1 - ELECTRONIC TRANSITIONS FOR ANTHRACENE

Method 1 Method 2 Method 3

Energy (ev) f Energy (ev) f Energy (ev) f

3.578 0.274 3.58 0.000 3.484 0.317
3.634 0.000 3.59 0.313 3.604 0.000
4.968 2.745 4.50 0.000 4.656 0.000
5.903 0.087 4.79 0.000 4.677 0.000
6.001 0.297 4.81 0.000 4.814 0.000
6.083 0.000 4.84 2.523 4.831 2.522

5.19 0.044 5.264 0.000
5.36 0.000 5.850 0.221
5.87 0.604 5.916 0.560
6.21 0.000 6.059 0.000

6.206 0.000
6.574 0.000

U1 
cn



a See reference 50

TABLE 1.1 - ELECTRONIC TRANSITIONS FOR ANTHRACENE (CONTINUED)

Method 4 Method 5 Experimental3

Energy (ev) f Energy (ev) f Energy (ev) f

3.685 0.000 3.231 0.359 3.34 0.10
3.842 0.200 3.507 0.162 4.83 2.28
5.543 0.001 4.738 0.018 5.61 0.28
5.613 3.230 5.351 2.818
6.170 0.540 5.760 0.348
7.940 1.180 6.263 0.222

6.540 0.026
6.721 0.670
7.517 0.089
7.580 0.614
7.781 0.035
8.092 0.023

U1



TABLE 1.2 - ELECTRONIC TRANSITIONS FOR PYRENE

Method 1 Method 2 Method 3

Energy (ev) f Energy (ev) f Energy (ev) f

3.470 0.000 3.49 0.000 3.470 0.000
3.685 0.701 3.64 0.675 3.556 0.680
4.839 0.956 4.10 0.000 4.271 0.000
5.376 1.616 4.27 0.000 4.306 0.000

4.77 0.954 4.703 0.948
4.90 0.000 4.832 0.000
5.00 0.000 4.946 0.000
5.08 0.000 5.199 0.000
5.25 1.485 5.207 1.468
5.33 0.000 5.266 0.000
5.98 0.000 5.939 0.000
6.47 1.046 5.985 0.000

5.997 0.000
6.040 0.000
6.319 0.940

cn 
co



TABLE 1.2 - ELECTRONIC TRANSITIONS FOR PYRENE

(CONTINUED)

a See reference 51

Method 5 Experimental9

Energy (ev) f Energy (ev) f

3.325 0.034 3.33 0.002
3.398 0.796 3.71 0.330
4.838 0.909 4.55 0.350
5.440 0.183 5.14 0.850
5.655 1.170 6.26
5.717 0.002
6.564 0.161
6.687 2.135
7.051 0.209
7.252 0.000
7.457 0.039
7.650 1.855
7.965 0.013
8.393 0.042



TABLE 1.3 - ELECTRONIC TRANSITIONS FOR NAPTHACENE

a See reference 52

Method 1 Method 5 Experimental3

Energy (ev) f Energy (ev) f Energy (ev) f

2.951 0.293 2.659 0.366 2.951
3.294 0.000 3.229 0.312 4.463
4.464 3.331 4.140 0.036
4.847 0.000 4.961 3.285
4.889 0.050 5.169 0.512

5.272 0.079
5.723 0.057
6.144 0.067
6.625 0.952
6.785 0.488
7.091 0.169
7.714 0.030
7.795 0.021
8.076 0.017

o 
o



TABLE 1.4 - ELECTRONIC TRANSITIONS FOR TRIPHENYLENE

a See reference 52

Method 1 Method 5 Experimental9

Energy (ev) f Energy (ev) f Energy (ev) f

3.944 0.000 3.897 0.000 3.633
4.296 0.000 4.084 0.000 4.339
4.484 0.000 4.855 0.008 4.773
4.901 1.697 5.016 0.428
5.383 0.045 5.063 2.085

5.107 1.780
5.317 0.098
5.568 0.000
5.586 0.013
5.777 0.027
6.161 0.013
6.162 0.010
6.193 0.000
7.006 0.047

cn



TABLE 1.5 - ELECTRONIC TABLE 1.6 - ELECTRONIC

TRANSITIONS FOR TRANSITIONS FOR

DIBENZ(a,c)ANTHRACENE DIBENZO(b,g)PHENANTHRENE

Method 5 Method 5

Energy (ev) f Energy (ev) f

3.583 0.193 3.330 0.258
3.705 0.100 3.598 0.280
4.339 0.001 3.999 0.543
4.647 2.744 4.338 1.233
4.820 0.126 4.633 0.099
4.840 0.027 4.731 0.205
4.899 0.344 4.947 0.948
5.046 1.067 5.273 0.160
5.318 0.265 5.368 0.385
5.474 0.001 5.810 0.037
5.690 0.282 6.223 0.017
5.795 0.000 6.365 0.003
6.003 0.024 6.954 0.003
6.271 0.109 —



TABLE 1.7 - ELECTRONIC TABLE 1.8 - ELECTRONIC

TRANSITIONS FOR

1.2-BENZANTHRACENE

TRANSITIONS FOR

3.4-BENZOPHENANTHRENE

Method 5 Method 5

Energy (ev) f Energy (ev) f

3.449 0.423 3.546 0.005
3.652 0.199 3.879 0.022
4.276 0.475 4.427 1.392
4.598 1.465 4.693 0.408
4.795 0.106 4.819 0.052
4.931 0.258 4.955 1.274
4.993 0.284 5.224 0.169
5.919 0.287 5.451 0.336
5.863 0.311 5.573 0.003
5.969 0.091 5.780 0.002

6.172 0.121 5.918 0.486

6.284 0.049 5.866 0.000
6.834 0.003 6.362 0.002

CT) 
GO



TABLE 1.9 - ELECTRONIC TRANSITIONS FOR CHRYSENE

Method 5

Energy (ev) f

3.750 0.291
3.795 0.495
5.070 0.651
5.178 1.511
5.329 1.222
5.797 0.038
6.567 0.304



a See reference 53

TABLE 1.10 - ELECTRONIC TRANSITIONS FOR STYRENE

Method 1 Method 5 Experimental9

Energy (ev) f Energy (ev) f Energy (ev) f

4.432 0.000 4.495 0.015 4.42 0.02
4.970 0.641 4.783 0.743 5.21 0.24
6.058 0.449 5.824 0.068 (6.20) "
6.307 0.649 6.149 0.781 6.32
6.347 0.000 6.544 0.537 (6.57) 2.40

6.929 0.263 6.88
7.111 0.109 7.60
7.844 0.018
8.212 0.212
8.536 0.572

(Ti
(JI



TABLE 1.11 - ELECTRONIC TRANSITION FOR ETHYLENE

Method 1 Method 2 Experimental9

Energy (ev) f Energy (ev) f Energy (ev) f

7.700 7.25 7.28

a See reference 54

TABLE 1.12 = ELECTRONIC TRANSITION FOR cis-BUTADIENE

Method 2

Energy (ev) f 

5.22

cn



II.

INTERPRETATION OF PENTACYCLIC AROMATIC HYDROCARBON

TRANSITIONS IN TERMS OF COMPOSITE SYSTEM APPROXIMATIONS
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INTERPRETATION OF PENTACYCLIC AROMATIC HYDROCARBON 

TRANSITIONS IN TERMS OF COMPOSITE SYSTEM APPROXIMATIONS

A. Classification of Polycyclic Aromatic Hydrocarbon Spectra

Ever since chemists have begun determining the ultraviolet and 

visible absorption spectra of large groups of the polycyclic condensed 

ring aromatic hydrocarbons, they have been aware of striking similari

ties in the spectra of various molecules of this class. These spectral 

similarities have led to attempts to formulate classification systems 

whereby the bands in the spectra of the various molecules could be 

classified according to a given set of transitions common to all mole

cules of this class. The first classifications were naturally empirical 

in nature; however, attempts were soon made to develop a theoretical 

justification for these classifications.

The strictly empirical classification system which is almost uni- 
55versally used was developed by Cl ar during his many years of extensive 

chemical study of the polycyclic aromatic hydrocarbons. In this system, 

bands in the various molecules which show similar intensities and 

vibrational fine structure, and which react, that is, shift in wavelength 

in a similar fashion upon substitution or enlargement of the pi-elec

tron system by condensation of additional benzene rings,are given the 

same label. These band labels are a-band, p-band, g-band, and g'-band 

and, generally, the bands appear in this order with the a-band at the
55 longest wavelength and g'-band at the shortest. Cl ar and his associates 

have been able to deduce rules for the behavior of these bands as a 
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function of the number and arrangement of the condensed benzene rings 

so that these spectral bands could in turn be used to predict the 

gross structure and shape of unknown pi-electron systems. However, 
55Clar's empirical classification system in no way attempts to corre

late these spectral bands with the quantum mechanical description of the 

molecules.

One of the first and certainly most well-known theoretical classi- 
56fication systems is the one introduced by Platt. This system is 

limited to the cata-condensed polycyclic aromatic hydrocarbons, which 

are those compounds of empirical formula ^+2^+4» having no carbon 

atom belonging to more than two rings and thus, each carbon atom is 

on the periphery of the conjugated system. Samples of these compounds 

are anthracene, benz(a)anthracene, and naphthacene.

Platt's classification system is theoretical, not in the sense that 

one may calculate electronic transitions from it, but rather in that 

it attempts to correlate the experimentally observed transitions with 

the transitions of a very simple quantum mechanical model of the 

molecule. His treatment is based on the assumption that, to a crude 

approximation, the one-electron molecular orbitals of a cata-condensed 

aromatic hydrocarbon may be treated as analogous to the wave function 

of an electron moving in a circle whose circumference is equal 

to the length of the perimeter of the molecule. With the further 

assumption that the potential energy is a constant all around the 

circle, the problem is reduced to that of a plane rotator with wave 

functions
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Y = J-e (2.1)
/27 

and energy values 

2 2
E = —? (2.2)2mel2

where m = 0, ±1, ±2, . . . , Hs the polar angle about the center of 

the circle, 1 is the circumference at the circle, me is the mass of 

the electron, and h is Planck's constant. The quantum number m 

in this case is also a measure of the angular momentum about the 

axis of rotation posessed by the rotator.

The ground state description of the molecule is formed by placing 

two electrons in each of the molecular orbitals beginning with the 

orbitals of lowest energy, that is, m= o, m = +1, m = -1, etc., until 

all of the electrons of the molecule have been assigned. Note that the 

orbitals corresponding to m = +i and m = -1 are degenerate. Excited 

state descriptions may be formed by promoting an electron from a 

molecular orbital of lower energy to one of higher energy. The molecu

lar states are then characterized by the total angular momentum of all 

the electrons, that is, the algebraic sum of the quantum numbers, m, 

of all the electrons. From these simple quantum mechanical descrip

tions, Platt then formed his classification system by characterizing or 

labeling electronic transitions according to the change in the total 

angular momentum which occurs upon excitation from one molecular state 

to another. The transition labels derived in this way for the 
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simple model are then extended to the transitions which occur in the 

actual molecule. The Platt labels may generally be matched to the 
111 1Clar labels as follows: -> a, La p, Bb g, and Ba -> g*.

55 56While both Clar and Platt's classification systems have been 

attempts to essentially develop a uniform labeling system for the 

electronic transitions of large numbers of the polycyclic aromatic 

hydrocarbons, the later more sophisticated studies have concentrated 

on interpreting the electronic transitions of particular molecules 

in terms of the various parts of the molecule. This type of
57 approach is best exemplified by the works of Simpson and of Longuet-

r o

Higgins and Murrel. In this “independent systems" or "molecules in 

molecules" approach, it is assumed that the molecule is a composite 

system,R-S,and that the electronic transitions may be described in 

terms of local excitations in the two parts, R and S, and electron 

transfer transitions arising from excitation of an electron from a 

molecular orbital in one part to a molecular orbital in the other part.
58 Longuet-Higgins and Murrell gave a theoretical development for such 

composite systems and discussed the electronic transitions of biphenyl, 

butadiene, and styrene in terms of it.

The latest attempt to analyze the electronic spectra by 

assuming the molecule to be a composite two part system is the study 

of acenaphthylene and fluoranthene (see Figure 2.1) by Heilbronner, 

et al
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Acenaphthylene Fluoranthene

Figure 2.1

They characterized these two molecules as “weakly" non-alternant 

which means that they consist of alternant subunits linked by 

non-essential double bonds in such a way that although alternancy 

is lost for the compound system, the subunits retaim much of their 

individuality. The component parts of these two molecules are thought 

to be quite loosely coupled and this led Heilbronner, et al. to 

attempt to describe the lower energy electronic transitions of the 

two subject molecules in terms of the lower energy transitions of 

naphthalene, benzene, and ethylene alone. They declared the approach 

a failure when it was found that higher energy local excitations and 

electron-transfer excitations mixed considerably with the lower 

energy local excitations to produce the lower energy transitions of the 

compound molecules. Their method of correlating the orbital energy 

levels of the subject molecules with the orbital energy levels of the 

component parts was rather unique. They first divided the coefficients 

of each of the ICAO molecular orbitals for the subject molecule into 

two sets, each set corresponding to the carbon centers of one of the 

two assumed parts of the molecule. On the basis of a "resemblance" 

between the coefficients for a part of the complete molecule and the 
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coefficients of the molecular orbitals of that part when treated as a 

separate molecule, the molecular orbital of the subject molecule was 

interpreted as being a combination of the molecular orbitals of the 

two parts. The orbital energy of the complete molecule was then 

interpreted as arising from the combination of the orbital energies of 

the two molecular orbitals of the two parts forming the complete 

molecule. From this correlation, the excitations of electrons from 

one orbital to another in the subject molecule could be interpreted 

in terms of excitations among the various orbitals of the component 

parts. A composite systems approach, essentially identical to that of 

Longuet-Higgins and Murrell, was used by Mori^’^ to calculate the 

electronic transitions of benzyl radical. He first calculated the 

transitions neglecting the effects of the electron-transfer configure- 
60tions and then recalculated the transitions allowing for the effects 

Alof the electron-transfer configurations; He concluded that the 

consideration of the electron-transfer configurations did not materially 
62 alter the results. Recent experimental work by Johnson and Albrecht 

on the benzyl radical indicates that the composite systems approach 

of Mori predicts the transitions of this radical much better than the 

conventional molecular orbital treatment.

The research to be described in this work was prompted by the 

observation that many of the electronic transitions of the pentacyclic 

aromatic hydrocarbons, on the basis of extinction coefficient, vibra

tional structure, and general appearance, appear to be quite similar 

to some of the electronic transitions observed in the tetracyclic 
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aromatic hydrocarbons. These similar transitions appear, however, to be 

shifted considerably in wavelength in going from the smaller molecule 

to the pentacyclic. In order to theoretically interpret a phenomenon 

such as this, the obvious theoretical approach is the "molecules in 

molecule" approach in which these compounds are treated as a composite 

two-part system.

This theoretical study, utilizing a "molecules in molecule" approach, 

has been performed on a representative group of five pentacyclic 

hydrocarbons. These compounds are benz(a)napthacene (I), benzo(b) 

chrysene(II), dibenzo(b,g)phenanthrene(III), dibenz(a,c)anthracene(IV), 

and 3,4-benzopyrene(V). (See Figures 2.2 through 2.6). In essence 

the theoretical study consists of first dividing the pentacyclic into 

a two-component system and calculating the electronic transitions for 

this system when the two components are first, non-bonded, second, weakly 

bonded, and third, when the two components are completely bonded to 

form the molecule as it is assumed to actually exist. In this manner 

the origin of the electronic transitions of the pentacyclic aromatic 

hydrocarbon may be interpreted in terms of local excitations of the 

component parts and electron-transfer transitions between the component 

parts. It must be emphasized that it is not desired to be able to 

classify all the transitions in terms of the transitions of the components, 

but rather to see if there are certain transitions which can conceivably 

be interpreted in terms of the local excitations in a composite system 

model of the complete molecule. The existence of such electronic transi

tions offer a theoretical interpretation for the observed transitions of 
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the pentacyclic aromatic hydrocarbons which appear similar to the tran

sitions of smaller polycyclic aromatic hydrocarbons. Implicit in 

all this work is the assumption that the treatment of the molecule as 

a single quantum mechanical system is essentially best.

In applying the "molecules in molecule" approach to these polycyclic 

aromatic hydrocarbons, a unique problem arises. This is the fact that 

on the basis of structure or chemical evidence there is no obvious 

way to determine how the larger molecule should be divided into its 

two component parts. Even when the component parts are limited, as in 

this study, to even alternant conjugated hydrocarbons, one of which 

must be a tricyclic or tetracyclic aromatic hydrocarbon, there are 

generally two or three ways to divide the pentacyclic molecule which are, 

on the surface at least, equally suitable. Consequently, the calcula

tion of the electronic transitions discussed above has to be repeated 

for each assumed two-component system corresponding to a given penta

cyclic molecule, and the problem of which system is the best represen

tative must be resolved. Unfortunately, no rigorous theoretical answer 

has been found; however, this problem can be somewhat resolved on the 

basis of some semi-quantitative arguments as well as examination of the 

calculated absorption spectra.

B. Theory: The Interaction of Excited Electronic Configurations in a_ 

Composite System

The quantum chemical problem presented in this work is treated 

within the theoretical formalism of the semi-empirical SCFMO theory 
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with configuration interaction and ICAO molecular orbitals. The 

general aspects of this theory were discussed earlier in the section 

entitled Summary of Theoretical Chemistry and will not be discussed 

here. However, in dealing with a composite system it is important 

to understand how the states arising from the local excitations of 

electrons in the component parts of the system and the states arising 

from the transfer of electrons from one part to the other interact with 

one another. The first part of this discussion will be devoted to the 

theory of these interactions and will closely follow the development 
58given by Longuet-Higgins and Murrell. Although their theoretical 

development was for a composite system consisting of two parts joined 

by a single bond, no inconsistency could be found in our work by 

applying it to a composite system joined by two identical bonds. This 

theory has been found to correctly predict the behavior of a composite 

system formed by setting the resonance integrals of two bonds to zero. 

Before proceeding it is convenient to introduce the following 

notation for the singlet excited configurational wave functions.

^i^k represent the configurational wave function in which one 

electron is excited from an occupied molecular orbital to an unoccu

pied orbital (j^. In the case of singlet excited configurations, to which 

this discussion is limited, is thus an abbreviated symbol repre

senting the difference of two Slater determinants. [See equations (1.34) and 

(1.35) in Summary of Theoretical Chemistry].
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To begin let R-S be an alternant unsaturated conjugated hydro

carbon made up of two unsaturated hydrocarbon residues joined by 

two identical bonds. If the two component parts»R and S,are initially 

regarded as separate, or non-bonded, the self-consistent molecular orbi

tals for the composite system, R-S, are just those for the separate 

subsystems, R and S. The molecular orbitals of R will be designated 

and those of S as .

The first question is: how are these molecular orbitals modified 

when R and S are joined together? Suppose the bonds are formed between 
24 atoms p and x in R and v and o in S. Then, Pople has shown that 

if Y , Y , Y,, and y are the 2p atomic orbital functions of these 

atoms, the changes in the molecular orbitals are entirely determined 

by the value of the resonance integrals [equation (1.41)]

(2.3)
0Aa = M(l)Hcore(l)» (l)dV(l)

where  is the one electron core Hamiltonian core

Hcore(1) = " (2'4)

In this development it will always be assumed that It is

convenient to first ignore the change in Hcore(l) as the subsystems, 

R and S, are brought together and to introduce it later as a perturba

tion which leads to a finite value for the resonance integrals s and• pv

3^. That is to say, the combination of the excited states of the 
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component parts, R and S, to form the excited state of the composite 

system, R-S, will be examined first for g = g, = 0 and then the effects pv Xa 

of finite resonance integrals examined.

If g = g, = 0, there will be two kinds of excited electronic pv Aa 

configurations for the system R-S. First there are the excited configura

tional wave functions,^ and (^.arising from the local excitations 

in the component parts, R and S,and second, there will be the configura

tional wave functions, <|>^ and arising from the transfer of an 

electron from an occupied molecular orbital of one part to an unoccu

pied molecular orbital of the other part. However, these individual 

excited configurational wave functions cannot, in general, be assumed 

to be independent. Therefore, in a manner analogous to that used to 

account for the interaction of excited electronic configurations in 

the usual theoretical treatment of molecules, the excited state wave 

function of the composite system, R-S, is taken as a linear combination 

of the various configurational wave functions of the form 

(^u) , , and uC\|_. The "best" excited state wave functions of

R-S, that is, the wave functions which minimize the energy, are found 

by means of the linear variational method discussed under Approximate 

Methods in the Summary of Theoretical Chemistry. The excited state 

energies of the composite system,R-S, are the roots. Ep of the secular 

determinant

|H - LE| = Q (2.5)

where the matrix H is formed from the interactions of the various excited 

configurations
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/N6a16bH6cl9ddvN- (2'6)

and H is the total Hamiltonian of the system. in this case is the iden

tity matrix and 6^ is a general molecular orbital. Thus, in discussing 

the interaction of the various excited electronic configurations the 

matrix element (2.6) is the quantitative expression which must be examined.

For the composite system, R-S, in which 6^^ = = 0, the general

expression for the interaction between two different singly excited 
-1 -1 31configurations,ea and ec e^,which is applicable is

/N6a\H6cleddvN = 2//%<U6b(l)(Vr12)ec(2)9d(2)dV(l)dV(2)

(2.7)
‘ //6a(l)oc(l)(l/r12)0b(2)ed(2)dV(l)dV(2)

where

H^Hcore(i)4H_L (2.8)

is the total Hamiltonian for this system and Hcore(i) 1S given by 

equation (2.4). From the expression (2.7), the following deductions 

may be made concerning the interaction of the excited configurations: 
-1 -1(i) If ea eb and ec 0d are locally excited configurations in 

the same component part, that is, if both configurations are of the 

form or both of the form then the interaction between them 

will be independent of whether or not the subsystems, R and S, are joined. 

This means that configuration interaction occurs among the excited 

configurations of each component part to produce local excited state 
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wave functions for each of the subsystems R and S just as if the 

subsystems had been treated as conventional molecular problems. 

Furthermore, the interactions of the local excited configurations 

which determine the local excited states of each subsystem will not 

be altered when the other subsystem is joined to it to form the com

posite system R-S.

(ii) If and are locally excited configurations in 

different component parts, that is, if they are of the form

and w”^a)n, they will interact by virtue of the first integral of 

equation (2.7), but the second integral will be zero if the molecular 

orbitals of the different component parts do not overlap. Thus, in 

general, there will be interactions between the excited electronic 

configurations of the two component parts, and therefore, between the 

local excited state wave functions of the component parts, although 

this interaction may vanish for other reasons in some cases.

(iii) If and e^6d represent configurations in which electrons 

are transferred in the same direction, that is, if they are both of

the form or both of the form then they will interact by 

virtue of the second integral in equation (2.7), the first integral 

being zero.
-1 -1(iv) If 0a Ofc and e. represent configurations one of which is a 

locally excited configuration and the other is an electron transfer 

configuration, for example, and or if they represent 

configurations in which electrons are transferred in opposite directions.
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that is, of the form and then there will be no interaction 

between the excited electronic configurations. These interactions will 

be finite only if the resonance integrals between the two component 

parts is allowed to be finite. It may be concluded from this that if 

the resonance integrals, g = = 0, as it has been assumed to so far,

the electron transfer configurations may be ignored since transitions 

to excited states formed by them from the ground state will be forbidden, 

that is, the oscillator strength will be zero.

The affects of permitting finite resonance integrals, and 

[equation(2.3)]to exist between the two subsystems must now be examined. 

As noted earlier, the self-consistant fiSld molecular orbitals and orbital 

energies of the composite system are dependent on the values of the 

resonance integrals between the subsystems. In fact, in the presence 

of finite resonance integrals between the subsystems, the self-consistent 

field molecular orbitals will no longer simply be the self-consistent 

field molecular orbitals, <|>. and to., of the two subsystems R and S 

which would be found if both were treated as single quantum mechanical 

systems. Rather, each of the set of molecular orbitals will now span 

the entire molecule. As long as self-consistent field molecular
31 orbitals are employed, Pople has shown that the interaction of the 

various excited electronicconfigurations to form the excited state 

wave functions is completely determined by equation (2.7). From this, 

it can be seen that the finite resonance integrals do not directly 

inter the interactions of the various configurations in the case 

when self-consistent molecular orbitals are used. Longuet-Higgins and
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58Murrell , however, in their treatment of a molecule as a composite 

system made the assumption that the molecular orbitals of the 

composite system did not change upon introducing finite resonance inte

grals between the two subsystems but are the molecular orbitals, <)>. 

and u)^ of the subsystems R and S. Since the molecular orbitals and 

io. are no longer the self-consistent field orbitals of the composite 

system, equation (2.7) is no longer valid for the interaction of the 

excited electronic configurations of the system but will contain an 

additional finite term arising from the finite resonance integrals. 

The following theoretical development for this situation, given by 

Longuet-Higgins and Murrel 1^®, is presented primarily as an aid in 

understanding their work since it will not be directly applicable 

in the present study.

According to Longuet-Higgins and Murrell58, the resonance integrals 

g and g, , being one-electron elements, will have the effect of 

allowing the interaction of excited configurations which differ by 

the position of just one electron. The relevant formulas for these 

interactions are:

/M0nH.Av.Q6=16hdVN = V2 /o (1)H (1)6. (l)dV(l) (2.9)
o core a b ■'a core' ' b' ' '

where 6 is the ground state wave function of the system, and

/M6Z16aHr.AV.oeZ16hdvN = /eJDH^dJeJDdVd) (2.10)
c a core c b 1 a core b

A, e^e H e^e dVN = - fe (1)H (1) . (l)dV(l). (2.11)
■'N a c core b c •' a' * core ' bx ' x ' x *
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These three expressions will be zero unless belongs to one subsystem d
and 6^ to the other, since the change in Hcore(i) as the subsystems 

are brought together affects only the resonance integrals, and 

From equation (2.9) one sees that all of the electron-transfer 

configurations, that is, of the form and will interact 

with the ground state configuration. The interaction of locally 

excited configurations with electron-transfer configurations is 

given by equations (2.10) and (2.11). That is, configurations 

and 4>^o)n or and interact by virtue of equation (2.10)

-1 til -1 -1while configurations <j>. and w <j) or to a)n and <j>. a>n interact 

by virtue of equation (2.11).

A final equation which is relevant to a discussion of the theory 

of a composite system, R-S, is the one for the energy of an electron

transfer configuration. This energy is given by the expression

Vi1ti)nH i1(1,ndvN = Ei"En " 7/^(1 )<!>i(1 )(1/r12)a)n(2)a,n(2)dV(1 )dV(2) (2*12) 

where and En are the orbital energies of the self-consistent 

molecular orbitals and con respectively and are determined from 

the general expression

c* Fc. = E. . (2.13)

(See discussion in Summary of Theoretical Chemistry for further details.) 

Also it must be noted that only those configurations in which one 

electron has been excited have been considered. This approximation 

is usually made since to include multiple excitations would complicate 
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the theory and calculations considerably. The justification for 

this approximation is that since these multiply excited configurations 

are of higher energy, it is unlikely that they will appreciably effect 

the lower energy states.

C. Theory: Selection of Proper Composite System

This discussion deals with the problem mentioned earlier of how 

to choose the component parts R and S when approximating a given 

molecule by a composite system R-S. In other words, what is the "best" 

way to divide a molecule when treating it as a composite system and 

there are, within certain limitations, more than one way to divide 

the molecule? The problem is actually not unique to the present 

treatment of the polycyclic aromatic hydrocarbons but occurs in all 

cases where the molecule is treated as a composite system. However, for 

the molecules previously studied, the choice of the component parts 

was always rather obvious on the basis of experimental evidence or 

intuition. For example, the two alternant hydrocarbon parts of the non- 
59 alternant hydrocarbons studied by Heilbronner, et al. were rather 

obvious choices for the component parts. In Longuet-Higgins and 
CO

Murrell's work, the two benzene rings of biphenyl, the two ethylene 

residues in butadiene, and the benzene ring and ethylene residue of 

styrene were also rather obvious choices for the component parts. 

It should also be noted that the viewpoint of these previous studies 

was that the composite system with relatively little interaction 

between the component parts was, or should have been at least, a truer 
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representation of the molecule than the usual assumed picture of the 

molecule being a single quantum mechanical system.

The theoretical formalism apparently does not provide a direct answer 

to the problem of choosing the proper composite system. Thus, in this 

present study it will be necessary, as in the previous work, to rather 

arbitrarily base the choice of a proper composite system on the par

ticular objective of the study.

To develop the criteria for choosing the proper composite system 

to approximate a given molecule, one may proceed as follows. One 

may conceptually break various bonds in the given molecule to form 

the various pairs of component parts which form the different possible 

composite systems, determine the locally excited electronic configura

tions and electron-transfer configurations for the various composite 

systems, allow the excited electronic configurations to interact with 

the resonance integrals between the component parts set to zero, and 

then determine the resulting excited states and electronic transitions 

for the various composite systems. Since the experimental observations 

indicate that the pentacyclic aromatic hydrocarbons may, to a certain 

extent, act as a weakly interacting composite system and since the 

objective of this study is to try to explain the similarity of some of 

the electronic transitions of the pentacyclics to the electronic transi

tions of smaller molecules contained within the larger, one is naturally 

led to choose that composite system whose electronic transitions most 

closely approximate those determined by treating the subject molecule 

as a single quantum mechanical system.
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Now that the criterion for the selection of the preferred composite 

system has been defined, the problem is how to determine which of the 

possible composite systems meets this criterion. The most obvious 

approach is to compare the calculated transitions of all the composite 

systems, with zero resonance integrals between the component parts, 

to the calculated transitions of the subject molecule treated as a 

single quantum mechanical system. The preferred composite system 

would, of course, be the one whose transitions most closely "resemble11 

that of the subject molecule. Unfortunately, the calculated results 

of the various composite systems may not always be so different as to 

allow unambiguous judgements to be made concerning the preferred 

composite system. One would generally like, if possible, a more quan

titative means of comparing the possible composite systems.

A possible quantitative approach, which will be examined in this 

work, to the problem of comparing the possible composite systems and 

the subject molecule is to define a quantity ae as follows. Let 

Ep t-2- • • En be the n self-consistent field molecular orbital energy 

levels for the molecule when treated as a single quantum mechanical 

system with E-j E£ , . . - En. Let Ap n se^~

consistent field molecular orbital energy levels for the Ath possible 

composite system which is an approximation to the subject molecule. 

Then one may define a quantity aE, as follows

n 9
1EA = J, (Ef - Ai> ■ (2.14)
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Since this study deals only with even alternant conjugated hydrocarbons, 

the energy levels will all occur in pairs symmetrically placed about a 

certain median value. That is, if a + e is an energy level, so is 

a - e. (See Semi-empirical SCFMO Theory in Summary of Theoretical 

Chemistry). This fact is sufficient to ensure that aE^ is a minimum 

for the given sets of energy levels, {Ep and {Ap with respect to some 

constant shift of the Eps or Aps. That is, aE^ cannot be minimized 

further by adding a constant value 6 to each energy level A^. (See 

Appendix 1).

The justification for using the quantity E^ as a means for deter

mining the proper composite system approximation to the subject mole

cule is as follows. Since the lower energy electronic transitions of 

both the composite systems and the subject molecule are derived from 

the interaction of the one-electron excitations from an occupied molecu

lar orbital to an unoccupied molecular orbital to form the singly 

excited electronic configurations, it is quite reasonable to 

assume that the particular composite system whose one-electron molecular 

orbital excitations match the one-electronic molecular orbital exci

tations of the subject molecule most closely will also have the elec

tronic transitions which would match those of the subject molecule

most closely. The excitation energy from the ith molecular orbital 

Ei-*j Ej " Ei •• i12

fp*(l)p(2)p(l)<|> ..(2) 
+ 2 J------- 1----- dV(l)dV(2)

r12

to the jth molecular orbital is given by

^(D<i>*(2)*1(l)<!).(2)
-- -------]j--------------- dV(l)dV(2) 

(2.15)
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where and Ej are the energies of the ith and jth SCF molecular
43 63 64 orbitals respectively. It has been shown by numerous authors 1 ’ 

that the value of the combined integral terms of equation (2.15) is 

approximately constant within a class of structurally related compounds, 

for example, the pentacyclic aromatic hydrocarbons. Since the 

one-electron molecular orbital excitation energies may be considered 

proportional to the energy values of the orbitals involved, the degree 

of correspondence of these excitations in the composite systems and 

the subject molecule may be determined by a measure of the corres

pondence of the molecular orbital energy levels, a E^,as defined in 

equation (2.14), is a measure of the overall correspondence of the 

molecular orbital energy levels of a composite system and the subject 

molecule when treated as a single quantum mechanical system.

The quantity AE^, as defined, does not take into account the 

symmetry of the molecular orbitals which determines the oscillator 

strength or intensity of the transition. Thus the quantity, AE^, 

in unaffected by the changes in the oscillator strength of the elec

tronic transitions as one passes from the composite system to the single 

component representation of the molecule. Also, the theoretical signi

ficance of aE^, if any, is not obvious from its definition.

One may, perhaps, by the following approach, be able to attach 

some theoretical meaning to the problem of which composite system is 

the correct approximation to the subject molecule, that is, the one 

whose electronic transitions correspond most closely to those of the 

subject molecule. Recall from the discussion of the SCFMO theory with
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LCAO molecular orbitals (see The Self- Consistent Field Molecular 

Orbital Theory in the Summary of Theoretical Chemistry) that the 

coefficients and energies of the molecular orbitals satisfy the 

set of matrix equations

L£i = ei^i (2J6)

where the elements F^. of the matrix F_ are the integrals of the Hartree- 

Fock Hamiltonian operator F over the atomic orbital functions and

’j’

Fij = I’i F',jdV ; (2J7)

S^ is the overlap matrix with elements

Sij = (2-18>

and c^ and are the coefficients and the energy respectively of the 

ith LCAO molecular orbital. Recall also that F_ is defined in terms 

of the matrices, c^.

Consider first the case where the subject molecule is treated as 

a single quantum mechanical system. For this situation, one will have 

a particular £ matrix, F°, and a particular set of LCAO molecular orbi

tal coefficients and energy values, c^0 and e^°, which satisfy the set 

of equations

F° c.0 = ei° S c/. (2.19)

Consider next the kth possible composite system, R-S, with the resonance 
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integrals between the two component parts equal to zero. For this
!/

situation, one will have a particular F_matrix, £ , and a particular
b

set of ICAO molecular orbital coefficients and energy levels, £. and 
b

e.j , which satisfy the set of equations

e.£k £> = e/s c/ (2.20)

k kIn this case the set of and will be composed of the self-consis

tent field molecular orbitals and orbital energies of the two component 

parts R and S which would have been obtained if R and S had each been 

treated as a single quantum mechanical system. Next consider the set 

of matrix equations

(F° - AF) £. = Ei S Cp (2.21)

It can readily be seen that if AF = £, then £. = £.0 and = e^°, 
k k k k

but if AF = AF = F° - then c^ = and . This would indi-
b

cate that a study of the elements of the matrices, aF , for the 

various possible composite systems may make it possible to find a 

theoretical reason for a particular composite system being the best 

approximation to the subject molecule treated as a single system. An
b 

overall general comparison of the various matrices, aF , is rather

difficult. One possible way may be to calculate the spherical norms, 

| IaJF^I | , of the matrices. This norm of a matrix is defined by

Il«f.klI -Je X kF,/!2' = (2.22)
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65and discussed at length by Faddeev and Faddeeva. Just as for the 

vector norms, the condition | [A1 - A 11 G is necessary and sufficient 

in order that AJ ->■ A; likewise from A'-> A it follows that | |A'| | -> 

||A||. Unfortunately, nothing can be said about how | |A‘ 11 approaches 

l|A||.

It should be noted that the concept of a composite system with 

varying degrees of interaction between the components as developed by 

Longuet-Higgins and Murrel 1^^ is not really the same as that implied 

by equation (2.21). In the treatment of Longuet-Higgins and Murrell, 

they begin with aF = F° - F^ in equation (2.21), which yields c^ = 

k k k kc^ and where, as noted earlier, £3- and are the same

self-consistent field molecular orbitals and energies of the two compo

nent subsystems obtained when each is treated as a single quantum 

mechanical problem. The various excited electronic configurations 

for the composite system were then determined and first allowed to 

interact in a configuration interaction procedure with zero resonance 

integrals between the component parts, to produce the excited states 

of the composite system. To this point nothing is different from the 

approach of the present study; however, the difference occurs in what 

is meant by increased interaction between the component parts. In 

passing to a more strongly interacting composite system,Longuet-Higgins 
58and Murrell still conceive of the composite system as essentially two 

parts having the same molecular orbitals, orbital energies, and excited 

electronic configurations, but the various excited electronic configura

tions are allowed to undergo further interactions under the influence of 
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finite resonance integrals and consequently, changing the excited state 

wave functions for the composite system. Thus, Longuet-Higgins and 

Murrell's concept of the degree of interaction in a composite system 

is essentially only the degree to which the excited electronic configura

tions of the composite system interact in forming the excited state 

wave functions of the composite molecule. In other words, the limit 

of the strongly interacting composite system is not the subject molecule 

treated conventionally as a single quantum mechanical system. The 

reason for this is that the conventional treatment of the molecules 

they studied was considered not to be appropriate for those molecules.

For the purposes of this present study, the passing from a weakly 

interacting composite system to a completely interacting system is best 

conceived of as allowing the matrix aF in equation (2.21) to change 
k kfrom AF = AF = F° - £ to AF = 0,. The self-consistent molecular 

orbitals and energies will change as AF changes in addition to changes 

in the interactions between the excited electronic configurations. The 

degree of change in the molecular orbitals, orbital energies, and 
1/ 

configuration interactions which occur when passing from aF = aF to 

aF = 2 depends on how well the kth possible composite system approximates 

the actual molecule. This concept of the limit of the composite system 

is compatible with the viewpoint that the single system treatment is 

essentially best but that there exists a composite system which is a 

close approximation to the subject molecule. This is apparently the 
59 same viewpoint as that taken by Heilbronner, et al♦ in their work.



92

A final remark may be made concerning the relationship of the 
k k

quantity z£k,defined in equation (2.14), and aF = F° - F/. The 

complete set of ICAO molecular orbital coefficients for a given system

may be written as a square matrix, given by

C - (^ c (2.22)

where the are the usual 1 x n column matrices of the coefficients 

of the individual molecular orbitals. If the c^ are the self-consistent 

field molecular orbitals then we have the following relationship:

£*LC = D (2.23)

where is a diagonal matrix with the orbital energies of the molecular 

orbitals appearing on the diagonal. Thus,for the subject molecule 

treated as a single quantum mechanical system and for the kth possible 

composite system with zero resonance integrals between the component 

parts, one has, respectively.

(2.24) 
^k* pk ^k  pk

where 0.° and D_ contain the molecular orbital energies of the subject 

molecule and the kth possible composite system respectively. One 

may define a matrix AD as follows:

ADk = D° - Dk = C°* F° C° Ck* Fk Ck (2.25)
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The quantity AE^ defined in equation (2.14) is simply the square of the 
Iz

norm of the matrix aD , that is,

AEk = l|ADkH2. (2-26)

b
One may carry this a step further by defining a matrix AC by

A£k = C° - Ck (2.27)

and substituting £° - AC for £ in equation (2.25). A small amount 

of algebraic manipulation will yield

A_Dk = Co*AFk_C° - LACk*F.kACk - C°*FkACk - ACk*F.kC°]. (2.28)

k k kIf AC - 0_, then AD - C°AF C°, and from the properties of the norm, 

one may derive the inequality

||ADk|| = At;- II^Fk||-||C°||2. (2.29)

k kIf AC is not negligible, then any relationship between AE^ and AF 

will be considerably more complicated and the limited value of 

expressions such as equation (2.29) do not justify further developments 

along these lines.

D. Calculation of Spectra

The electronic transitions for the systems studied in this work 

were calculated by means of a computer program based on the semi-empi

rical SCFMO theory with LCAO molecular orbitals with inclusion of 

configuration interaction. The £ and matrix elements used are 
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those given by equation(1.62) in the Summary of Theoretical Chemistry.

That is.

Ffi • -z-di +Ai) -pi

Fij " eij " 2" Pij Yij

Sij = 6ij

where I. is the valence state ionization potential of carbon, is 

the electron affinity of carbon, is the penetration integral, 

B-jj is the resonance integral, is an approximate form of the 

integral (ij |G [ ij), and P^- is the bond order given by [equation (1.43) 

in the Summary of Theoretical Chemistry]

Pij = 2 £Cki Ckj*

The following values were used for I - and An. in the calculations: 3 ii

li = 11-42 ev (2.30)

A^ = 0.58 ev.

The Mataga approximation [see equation(1.59) in the Summary of Theoretical 

Chemistry) was used for the integral (ij |G| ij), that is,

Yij
_ 14.3986 _

i r.. + a
14.3986 (2.31)r.j + 1.3283

where

n----------------  = 1 .3283 (2.32)
Z- [If - Ai + Ij - Ajl 
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and q. is the distance between the ith and jth carbon centers. The 

penetration integral, Pp was set to zero in these calculations as 

is usually done. All of these values and approximations are quite 

standard in calculations for polycyclic aromatic hydrocarbons (for 

example, see Ref. 59), and no attempts were made to improve them 

since the primary objective was not to fit experimental spectra 

but to examine the "molecules in mol ecu!concept. The calculated 

spectra are, however, reasonably comparable to the experimental

spectra.

The value of the resonance integrals, , between the carbon centers 

depends on the quantum mechanical model being treated. In calculating 

the electronic transitions for the molecule treated as a single quantum 

mechanical system, is given the value -2.318 ev for all nearest 

neighbor carbon centers and zero for all non-neighboring carbon centers.

In calculating the electronic transitions for the various composite 

systems with zero resonance integrals between the subsystems, is 

again given the value -2.318 ev for all nearest neighbor carbon 

centers and zero otherwise with the exception that is also set to 

zero for the two pairs of nearest neighbor carbon centers between which 

the bonds would be conceptually broken to form the two component parts 

of the composite system. For the case of weak bonding between the 

component parts of the various possible composite systems, is 

set to -1.000 ev for the two pairs of nearest neighbor carbon centers 

between which the component parts of the composite system are bonded 

and the other are set to -2.318 ev for all other nearest neighbor 
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carbon centers and zero for non-neighboring carbon centers. The value 

-2.318 ev for the resonance integral, B , between nearest neighbor 

carbon centers is again a standard empirical value used for this class 

of compounds and no attempt was made to obtain a better value.

These calculations were made for a fixed molecular geometry, that 

is, the bond length was not allowed to vary. The sigma bond framework 

of the molecules studied was assumed to be planar, with the bond 
o 

length between all bonded carbon centers assumed to be 1.40 A and the 

three sigma bonds terminating at each carbon center were considered 

to be in the plane of the molecule with equal bond angles of 120° 

between the bonds.

The configuration interaction calculations from which the excited 

state wave functions and energies are determined is limited by computer 

time and capacity when the molecules are as large as the pentacyclic 

aromatic hydrocarbons. In these calculations an upper limit was placed 

upon both the energies of the excited electronic configurations and 

the number of configurations considered in forming the excited state 

wave functions. That is, all the singly excited electronic configura

tions having an energy within 8.00 ev of the ground state configuration 

up to a maximum of 50 configurations were used to form the excited state 

wave functions. This limited configuration interaction procedure means, 

of course, that the excited state wave functions of lower energy are 

the most accurate since the neglected high energy configurations do 

not affect these states very much,but the state functions of the system 

generally become less accurate as the state energy increases since the 
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neglected configurations would contribute increasingly to the higher 

energy states.
|z

The quantities aE^ and matrices, aF, were calculated by hand 

from the SCF molecular orbital energy levels and the £ matrices 

obtained from the computer calculations.

It must be noted that calculations of some of the five pentacyclic 

molecules, which are the subject of the present investigation, have been 
zr zr

done by others also. In 1954, Moffitt ° calculated values of the 
r r

a, p, and g bands (Clar's classification) of benz(a)napthacene, 

benzo(b)chrysene, and dibenz(a,c)anthracene by means of a rather unusual 

and simple theoretical method. This method was based on the perimeter 
56model of the polycyclic aromatic hydrocarbons, used by Platt for 

the classification of spectra, in which the cross-linkages of the actual 

molecule were treated as perturbations. The object of Moffitt's ° 

study was not to calculate precise values for the transitions of these 

molecules but rather to demonstrate that his simplified theoretical 

method could successfully predict the relative locations of the three 

prominent low energy bands of the various pentacyclic aromatic hydro-
Z2ZT

carbon isomers. Consequently, Moffitt ° made no particular effort 

to fit the experimental values for the transition energies of the 

molecules, but rather presented his results as a set of relative 

values which demonstrated his method's ability to predict band changes 

in the pentacyclic isomers. Koutecky, et a]_. ' calculated the value 

of the p band for twenty polycyclic aromatic hydrocarbons including 

3,4-benzopyrene. The basic method used was the semi-empirical ASMO 
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method and the object of these rather limited calculations for 

individual molecules was to study the effect of varying degrees of 

configuration interaction on the value of this particular band. The 

values obtained for this band agreed well with experiment. Hummel 
48and Ruedenberg calculated the absorption spectra of a large number 

of polycyclic aromatic hydrocarbons including di benz (a,c)anthracene 

and dibenzo(b,g)phenanthrene. Their calculated values for the allowed 

transitions, that is, transitions with finite oscillator strengths, 

of these two molecules were given previously in Tables 1.5 and 1.6 

of the section entitled Summary of Theoretical Chemistry. The basic
48 method employed by Hummel and Ruedenberg was a semi-empirical ASMO 

method with configuration interaction and the inclusion of overlap.

A comparison of the transition energies of dibenz (a,c)anthracene 

and dibenzo(b,g)phenanthrene calculated in the present investigation 
48and those calculated by Hummel and Ruedenberg shows a fair corres

pondence at best. It is possible that their calculations may fit the 

experimental data somewhat better; however, they made no detailed com

parison of their calculated transition energies with experimental values 

and merely stated that there was reasonable agreement with the 

experimental spectra of these molecules.

As stated earlier, no particular effort was made in the present 

investigation to calculate precise values for the transition energies, 

since the object of this investigation was to find suitable composite 

system approximations to the subject molecules by means of internally 

consistent theoretical calculations. The fact that the values of the 



99

transition energies calculated in this investigation do correspond 

fairly well to experimental values will be demonstrated in a later 

section.

E. Results

Figures 2.2 through 2.6 give the structures and names of the 

pentacyclic aromatic hydrocarbons which are the subject of this 

theoretical investigation. Also, introduced in these figures are 

the structural diagrams representing the various possible composite 

systems considered in this study as well as the Roman numeral 

designations for the molecules and composite systems which will 

be used in the later discussions.

Figures 2.7 through 2.11, each consisting of many parts, give 

a graphical representation of the calculated electronic transitions 

of the subject molecules and the composite systems. These figures 

are essentially the theoretically determined absorption spectra, 

each line representing the transition occurring at that energy while 

the length of the line is proportional to the oscillator strength 

of the transition. The transitions represented by dots on the 

energy axis are forbidden transitions having zero oscillator strength.

The numerical values for the electronic transitions and oscillator 

strengths for the subject molecules and composite systems are given in 

Tables 2.1 through 2.5. Also shown in these tables are the leading 

terms of the excited state wave functions given in the form of a linear 

combination of singly excited electronic configurational wave functions. 
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The symbol (i-j) used for the configurational wave functions represents 

the two-determinant singlet wave function formed by exciting a single 

electron from the ith ground state molecular orbital to the jth excited 

molecular orbital. A maximum of six contributing configurations are 

given for each excited state wave function and also those configura

tions which have coefficients less than Q.15 in magnitude are excluded. 

The reasons for these limitations are that, first, it will probably 

be impossible to make any interpretation of the sort desired for 

excited states which have a large number of excited configurations 

contributing substantially to them, and second, since the weight of any 

given configuration in the total excited state wave function is given 

by the square of the coefficients, those configurations with a coeffi

cient less than 0.15 will represent less than 2.25% of the excited 

state wave functions.

The orbital energies for the self-consistent field molecular 

orbitals of the molecules and composite systems are given in Tables 2.6 

through 2.10. In the orbital energies given for the composite systems 

with the resonance integral between the component parts, equal 

to zero, the energies of the SCF molecular orbitals of the smaller 

component part are marked with an asterisk (*) while the unmarked 

orbital energies are those of the SCF molecular orbitals of the larger 

component part. By convention, the orbital with the lowest energy is 

designated as the number one molecular orbital, the orbital with the 

next lowest energy as number two, etc. From this information, one 

may then determine the origin of the excited configurations which form 
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the Configurational Interaction Excited State Wave Functions given for 

the composite systems in Tables 2.1 through 2.5. That is, one may 

identify the configurations as local excitation configurations for 

either of the two component parts or electron-transfer configurations. 

From the molecular orbital energies in Tables 2.6 through 2.10, the 

values of aE, for the various composite systems appearing in 

Table 2.11, are calculated.

The aF matrices for the composite systems of benz(a)napthacene(I), 

benzo(b)chrysene(II), and dibenzo(b,g)phenanthrene(III) were calcu

lated; however, only the matrices for benz(a)napthacene(I) are given 

in Table 2.12. Since these matrices are symmetric, only half of 

each matrix is actually shown.

The various possible composite systems, for which the above 

calculated results were obtained, were formed by conceptually breaking 

two bonds in the complete molecules subject to the restrictions that 

both of the component parts should be an even alternant conjugated 

hydrocarbon, and that the larger component part should be a tetra

cyclic or tricyclic aromatic hydrocarbon. These restrictions in the 

choice of the composite systems were imposed for several reasons. 

First, and most important, was the fact that the experimental phenomena 

which this theoretical investigation attempts to elucidate indicates 

that the electronic transitions of some pentacyclic aromatic hydrocarbons 

may be related to those of a tetracyclic or perhaps a tricyclic aroma

tic hydrocarbon. Second, the restriction of the component parts to 
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being even alternant hydrocarbons was primarily to ensure that the 

theoretical methods, with the various approximations and assumptions, 

would be applicable and consistent throughout the theoretical treat

ment. Also, this seemed justified by the fact that the pentacyclics 

were even alternant hydrocarbons and the experimental spectra are 

apparently interpretable in terms of even alternant polycyclic 

aromatic hydrocarbons. The final reason for restricting the number of 

composite systems was economic since the five molecules with the 

limited number of composite systems treated in this work already 

required 33 long calculations on an electronic computer.
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= 0.0 ev

= 0.0 ev

FIGURE 2.2. BENZ(a)NAPTHACENE AND COMPOSITE SYSTEMS
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Composite System (Ila)

Composite System (lib)

FIGURE 2.3. BENZO(b)CHRYSENE AND COMPOSITE SYSTEMS



105

Dibenzo(b,g)phenanthrene (III)

Composite System (Illa)

FIGURE 2.4. DIBENZO(b,g)PHENANTHRENE AND COMPOSITE SYSTEMS



106

Dibenz(a,c)anthracene (IV)

Composite System (IVa)

Composite System (IVb)

FIGURE 2.5. DIBENZ(a,c)ANTHRACENE AND COMPOSITE SYSTEMS
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3.4-Benzopyrene

Composite System (Va)

Composite System (Vb)

Composite System (Vc)

FIGURE 2.6. 3,4-BENZOPYRENE AND COMPOSITE SYSTEMS



O
sc

illa
to

r S
tre

ng
th

 (f)

FIGURE 2.7a. CALCULATED ABSORPTION SPECTRA OF BENZ(a)NAPTHACENE (I)
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FIGURE 2.7b. CALCULATED ABSORPTION SPECTRA OF BENZ(a)NAPTHACENE 
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FIGURE 2.7g. CALCULATED ABSORPTION SPECTRA OF BENZ(a)NAPTHACENE
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FIGURE 2.10a. CALCULATED ABSORPTION SPECTRA OF

DIBENZ(a,c)ANTHRACENE (IV)
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TABLE 2.1a - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ( a)NAPTHACENE(I)

Excitation
Energy (ev) f CI Excited State Wave Functions

2.978 0.371
3.289 0.000
3.843 0.892
3.985 0.000
4.101 0.000
4.211 1.815
4.732 0.119
4.774 0.000
4.960 0.000
4.979 0.634
5.165 0.000
5.246 0.327
5.411 0.000
5.711 0.554
5.721 0.000
5.732 0.182
5.935 0.157
5.989 0.000
6.051 0.309
6.101 0.179
6.168 0.000
6.455 0.000
6.472 0.026

+983(11-12)
-.572(11-13)+.572(10-12)+.288(11-14)+.288(9-12)-.215(11-15)+.215(8-12)
+ .647(11013)+.647(10-12)+.248(11-14)-.248(9-12)
+ .526(11-14)+.526(9-12)+.321(11-13)-.321(10-12)-.197(10-14)-. 197(9-13)
+.439(11-15)-.439(8-12)+.370(10-14)+.370(9-13)+.310(11-14)+.310(9-12)

-12)+.234(11-13)+.234(10-12)

468(11-16)+.468(7-12)-.394(11-15)+.394(8-12)+.238(10-14)+.238(9-13)
-.397(9-15)-.397(8-14)-.357(10-16)+.357(7-13)-.352(11-17)+.352(6-12) 
-.584(10-13)-.427(11-15)-.427(8-12)+.235(10-14)-.235(9-13)-.166(11-16) 
-.384(11-17)+.384(6-12)-.287(11-16)+.287(7-12)-.283(10-14)-.283(9-13) 
+ .428(11-16)+.428(7-12)-.427(11-15)-.427(8-12)-.252(10-14)+.252(9-13) 
-.458(11-18)+.458(5-12)+.314(11-16)-.314(7-12)+.287(10-14)+.287(9-13) 
-.345(9-14)-.385(10-14)+.385(9-13)-.298(11-17)-.298(6-12)-.246(11-18) 
-.269(11-19)-.269(4-12)-.266(10-15)+.266(8-13) + .260(11-17)-.260(6-12) 
-.365(10-15)+.365(8-13)+.341(10-14)-.341(9-13)+.335(11-16)+.335(7-12) 
-.512(9-14)+.398(11-18)+.398(5-12)+.246(10-15)+.246(8-13)+.239(11-17) 
+.317(9-17)+.317(6-14)-.281(10-15)+.281(8-13)+.270(8-16)-.270(7-15) 
-.432(9-14)-.407(10-15)-.407(8-13)-.269(11-17)-.269(6-12)+.221(11-16) 
+.403(11-17)+.403(6-12)-.378(9-14)-.341(11-18)-.341(5-12)+.193(10-14) 
-.433(10-15)+.433(8-13)-.271(11-17)+.271(6-12)-.223(10-18)+.223(5-13) 
+.465(11-19)+.465(4-12)-.279(10-17)+.279(6-13)-.200(8-16)+.200(7-15) 
-.448(10-16)-.448(7-13)+.293(8-15)-.266(11-19)+.266(4-12)+.204(7-15)



TABLE 0.1b - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (la) WITH g = 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

2.826
3.425
3.761
3.761
3.830
3.865
4.462
4.504
4.471
4.760
4.984
5.241
5.426
5.426
5.560
5.560
5.615
5.776
5.815
5.851
5.861
6.136
6.309
6.418

0.357 -.986(11-12)
0.000 +.685(11-15)-.685(8-12)
0.000 +.903(10-12)-.385(10-14)
0.000 -.903(11-13)-.385(9-13)
0.000 +.690(11-14)+.690(9-12)
0.004 +.689(11-14)-.689(9-12)-.184(10-13)
2.487 -.651(11-15)-.651(8-12)+.309(10-13)
0.000 +.516(11-17)-.516(6-12)-.473(9-15)-.473(8-14)
0.795 -.585(10-13)+.428(9-14)+.406(11-16)+.406(7-12)-.212(11-15)-.212(8-12)
0.000 -.688(11-16)+.688(7-12)-.165(9-18)-.165(5-14)
0.604 +.644(10-18)+.429(11-16)+.429(7-12)+.303(9-14)
0.000 -.689(11-18)+.689(5-12)-.159(9-16)-.159(7-14)
0.000 +.738(10-14)+.419(10-12)+.401(10-16)+.260(10 15)-.169(10-17)
0.000 -.738(9-13)+.419(11-13)+.401(7-13)+.260(8-137-.169(6-13)
0.000 +.841(10-15)-.431(10-17)-.285(10-14)
0.000 -.841(8-13)+.431(6-13)-.285(9-13)
0.000 -.445(8-16)+.445(7-15)+.411(9-17)+.411(6014)-.364(11-20 +.364(3-12)
0.088 +.722(9-14)-.406(8-15)-.351(11-16)-.351(7-12)
0.001 +.568(11-18)+.568(5-12)+.330(11-17)+.330(6-12)+.248(9-16)-.248(7-14)
0.027 -.571(11-17)-.571(6-12)+.315(11-18)+.315(5-12)+.194(10-13)-.150(9-15)
0.000 -.519(9-15)-.519(8-14)-.475(11-17)+.475(6-12)
0.000 -.707(10-19)+.707(4-13)
0.024 -.674(9-15)+.674(8-14)
0.944 -.855(8-15)-.342(9-14)-.172(7-16)+.164(9-18)-.164(5-14)

ro



TABLE 2.1c - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (la) WITH B = -1.000 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

2.857
3.332
3.776
3.798
3.909
3.994
4.577
4.594
4.793
4.801
5.002
5.173
5.289
5.497
5.567
5.590
5.691
5.818
5.847
5.886
5.925
6.368
6.487

0.368 +.986(11-12)
0.000 +.487(11-13)-.487(10-12)-.420(11-15)+.420(8-12)+.209(11-14)-.209(9-12)
0.486 -.628(11-13)-.628(10-12)+.270(11014)+.270(9-12)+.161(10-13)
0.000 -.411(11-13)+.411(10-12)-.384(11-15)+.384(8-12)+.311 (11-14)-.311(9-12)
0.000 -.567(11-14)+.567(9-12)-.331(11-15)+.331(8-12)+.176(10-14)-.176(9-13)
0.653 +.625(11-14)+.625(9-12)+.238(11-13)+.238(10-12)  + .181 (10-14)+.181 (9-13)
0.000 +.452(11-17)+.452(6-12)-.386(9-15)+.386(8-14)-.208(11-16)+.208(7-12)
1.151 +.574(11-15)+.574(8-12)-.440(10-13)-.197(9-14)+.183(11-16)+.183(7-12)
0.000 -.630(11-16)+.630(7-12)-.236(11-17)-.236(6-12)
1.184 -.516(10-13)-.382(11-15)-.382(8-12)-.371(9-14)+.358(11-16)+.358(7-12)
0.368 -.530(10-13)-.415(11-16)-.415(7-12)-.272(10-14)-.272(9-13)+.198(9-14)
0.000 +.353(10-14)-.353(9-13)-.318(11-18)+.318(5-12)-.310(10-16)+.310(7-13)
0.000 +.595(11-18)-.595(5-12)+.191(10-14)-.191(9-13)-.161(9-16)+.161(7-14)
0.279 -.514(10-14)-.514(9-12)+.310(10-13)-.302(9-14)+.251(10-16)+.251(7-13)
0.164 -.563(10-15)-.563(8-13)+.261(10-17)-.261(6-13)+.206(9-14)
0.000 -.439(10-15)+.429(8-13)-.298(10-14)+.298(9-13)+.292(10-17)+.292(6-13)
0.000 +.383(9-17)+.383(8-14)-.347(8-16)+.347(7-15)-.279(10-15)+.279(8-13)
0.103 -.469(11-18)-.469(5-12)+.363(9-14)+.233(11-16)+.233(7-12)+.190(9-16)
0.067 -.445(9-14)-.434(11-18)-.434(5-12)+.264(11-17)-.264(6-12)-.235(11-16)
0.045 -.569(11-17)+.569(6-12)-.376(9-14)-.212(8015)
0.000 +.420(11-17)+.420(1-12)+.393(9-15)-.393(8-14)-.239(10-15)+.289(8-13)
0.019 -.618(9-15)-.618(8-14)+.165(10-16)+.165(7-13)
0.354 -.710(8-15)+.242(10-17)-.252(6012)+.184(9-14)-.175(7-16)-.167(10-15)

co



TABLE 2.Id - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (lb) WITH g = 0.0 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.481 0.000 -.654(11-13)+.648(10-12)+.185(11-15) + .179(8-12)
3.567 0.397 -.969(11-12)+.194(10-13)
4.212 0.000 +.906(9-12)+.306(9-15)+.221(9-13)
4.212 0.000 +.906(11-14)-.306(8-14)+.221(10-14)
4.289 1.437 -.671(10-12)-.665(11013)+.197(8-12)-.193(11-15)
4.397 0.000 +.471(8-13)+.470(10-15)+.446(11-16)-.442(7-12)+.197(8-12)+.92(11-15)
4.732 0.035 +.729(11-15)+.499(8-12)-.196(10-12)-.165(8-13)
4.746 0.576 -.583(8-12)-.546(10-13)+.407(9-14)+.287(11-15)-.157(11-13)
4.860 0.401 -.837(9-14)-.330(8-12)+.320(11-15)
4.989 0.444 + .760(10-13)-.336(8-12)+.315(11-15)+.236(9-14)
5.215 0.000 -.753(9-13)+.512(9-16)+.287(9-15)-.175(9-18)
5.215 0.000 -.753(10-14)+.512(7-14)-.287(8-14)-.175(5-14)
5.299 0.000 +.439(11-16)+.418(11-17)-.409(7012)+.400(6-12)-.346(10-15)-.337(8-13)
5.510 0.000 -.462(5-12)+.450(11-18)+.393(8-16)+.392(7-15)+.346(10-17)+.324(6-13)
5.621 0.515 -.670(7-12)-.646(11-16)
5.732 0.001 +.472(11-17)+.446(6.12)-.284(11-18)+.277(8-13)+.267(10-15)+.264(5-12)
5.849 0.770 + .479(6-12)-.446(11-17)+.446(10-15)-.438(8-13)-.196)8-15)+.164(11-18)
6.032 0.346 -.509(10-16)-.470(7-13)+.307(11-18)+.279(5-12)+.265(8013)-.238(10-15)
6.097 0.000 +.772(9-15)-.408(9-17)-.399(9-12)+.260(9-12)
6.097 0.000 -.772(8-14)+.408(6-14)-.399(11-14)+.260(10-14)
6.102 0.002 + .489(7-13)-.425(10-16)-.289(5-12)-.276(6-13)-.275(10-17)+.269(11-17)
6.136 0.000 -.707(9-19)+.707(4-14)
6.256 0.434 + .430(10-15)-.430(8-13)-.401(7013)-.388(10-16)+.304(11017)-.309(6-12)
6.294 0.002 +.409(10-16)+.393(10-18)-.377(5-13)-.354(7-13)-.251(5-12)+.234(11-18)



TABLE 2.1e - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (lb) WITH g = -1.000 EV 
RS

Excitation
CI Excited State Wave FunctionsEnergy (ev) f

3.387 0.377 -.970(11-12)
3.437 0.002 -.557(11-13)+.557(10-12)+.325(11-14)+.319(9-12)-.162(11-15)-. 158(8-12)
3.997 0.491 -.609(11-13)-.608(10-12)-.321(11014)+.321(9-12)
4.179 0.000 +.575(11-14)+.572(9-12)+.317(11-13)-.319(10-12)-.159(9-15)+.160(8-14)
4.300 1.523 -.589(9-12)+.567(11-14)-.318(10-12)-.308(11-13)+.202(10-14)
4.311 0.018 -.416(7-12)-.402(11-16)+.346(8-13)+.334(10-15)-304(9-13)+.267(11-15)
4.698 0.166 +.774(11-15)+.355(10-13)+.205(11-16)-.188(9-14)+.173(10-12)+.173(8-12)
4.702 0.278 +.749(8-12)-.465(10-13)+.240(9-14)+.179(7-12)-.155(11-13)
4.981 0.424 +.596(10-13)+.365(8-12)-.360(11-15)+.359(9-13)-.342(10-14)
5.037 0.000 +.341(10-14)+.329(9-13)+.316(9-15)-.314(8-14)-.304(9-16)+.307(7-14)
5.252 0.000 -.381(11-17)-.382(6-12)+.375(7-12)+.358(11-16)+.326(10-15)+.328(8-13)
5.269 0.142 -.365(9-14)+.225(11-16)-.224(11-15)+.218(8-12)-.213(8-14)-.212(9-13)
5.415 0.250 +.479(11-16)-.443(7-12)-.334(10-14)+.282(9-13)-.257(10-13)+.236(8-13)
5.580 0.150 -.380(7-12)+.307(7-15)+.305(9-14)+.294(10-14)+.265(11-18)-.225(8-16)
5.585 0.162 -.364(9-13)+.343(11-16)+.340(9-14)+.289(8-16)+.261(10-13)+.246(5-12)
5.634 0.000 -.385(5-12)+.379(11-18)+.361(11-17)+.343(6-12)+.306(7012)+.252(11-16)
5.835 0.551 + .508(6-12)-.459(11-17)-.292(8-13)+.283(10-15)+.248(9-14)+.228(10-14)
5.987 0.482 +.490(10-16)-.360(8-14)-.319(9-15)-.289(11-18)-.283(10-17)-.269(10-15)
6.016 0.060 -.467(7-13)+.346(6-13)+.265(10-14)+.255(9-17)-.243(10-16)-.237(5-12)
6.157 0.046 + .317(9-15) + .318(8-14)-.249(11-17)+.244(6012)-.231(10-15)-.233(6-14)
6.249 0.000 +.366(8-13)+.350(10-15)+.284(8-14)-.282(9-15)-.262(10-17)-.251(6-13)
6.293 0.230 +.469(7-13)+.324(8-13)-.310(7-14)-.306(11-17)-.301(10-15)-.278(5-13)
6.321 0.109 +.489(10-16)-.305(5-12)+.300(10-18)-.268(6-12)+.251(9-16)+.245(8-14)
6.432 0.055 + .509(5-12)+.495(11-18)+.335(9-16)+.328(7-14)+.196(6-12)

O1



TABLE 2.If - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (Ic) WITH g » 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.434
3.531
4.310
4.310
4.410
4.593
4.642
4.694
4.971
5.051
5.420
5.425
5.425
5.618
5.618
5.860
5.921
6.124
6.192
6.234
6.234
6.253
6.286
6.341
6.420

0.324 -.985(11-12)-.169(9-14)
0.000 +.692(11-14)-.692(9-12)
0.000 +.944(11-13)-.295(7-13)
0.000 -.944(10-12)-.295(10-16)
0.000 +.678(10-15)+.678(8-12)-.200(8-19)+.200(4-15)
0.000 -.693(11-16)-.693(7-12)
0.813 +.637(10-13)+.484(11-16)-.484(7-12)-.236(11-14)-.261(9-12)
0.852 +.568(10-13)-.504(11-16)+.504(7-12)-.261(11-14)-.261(9-12)
2.052 +.585(11-14)+.585(9-12)+.461(10-13)-.162(8-15)+.161(10-15)-.161(8-13)
0.000 +.511(9-16)+.511(7-14)+.489(11-17)+.489(11-17)+.489(6-12)
0.000 -.707(11-18)+.707(5-12)
0.000 -.958(11-15)+.243(7-15)
0.000 +.958(8-12)+.243(8-16)
0.000 +.904(9-13)+.403(6-13)
0.000 -.904(10-14)+.403(10-17)
0.137 -.616(10-15)+.616(8-13)-.193(8-15)-.177(11-18)-.177(5-12)+.163(9-14)
0.006 -.615(11-18)-.615(5-12)+.365(7-16)+.154(10-15)-.154(8-13)
0.000 -.560(9-18)+.560(5-14)+.355(7-17)-.355(6-16)-.244(10-20)
0.015 -.637(8-15)+.479(9-14)-.294(11-17)+.294(6-12)-.206(10-19)
0.000 +.892(7-13)-.314(5-13)+.307(11-13)
0.000 +.892(10-16)+.314(10-18)-.307(10-12)
0.732 +.721(9-14)+.409(8-15)-.250(7-16)+.222(11-17)-.222(6-12)-.207(11-18)
0.000 -.511(11-17)-.511(6-12)+.489(9-16)+.489(7-14)
0.000 -.707(10-19)-.707(4-13)
0.114 -.532(11-17)+.532(6-12)+.365(8-15)-.336(9-16)+.336(7-14)



TABLE 2.1g - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZ(a)NAPTHACENE

COMPOSITE SYSTEM (Ic) WITH g = -1.000 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.327 0.349 +.983(11-12)
3.642 0.000 +.552(11-14)+.543(9-12)+.290(11-15)+.287(8-12)-.262(11-13)+.261(10-12)
4.074 0.339 +.670(10-12)+.656(11-13)+.244(10-13)
4.195 0.000 -.583(11-13)+.561(10-12)+.228(10-14)+.227(9-13)-.211(9-12)-.208(11-14)
4.393 0.001 -.391(10-14)-.387(9-13)+.329(11-15)-.325(10-16)-.319(7-13)+.315(8-12)
4.562 1.566 -.576(9-12)+.549(11-14)-.368(10-13)+.251(7-12)-.251(11-16)+.214(8-12)
4.689 0.000 -.461(11-16)-.457(11-15)-.455(7-12)-.454(8-12)
4.778 1.173 -.459(8-12)+.457(11-15)-.362(9-12)+.347(11-14)-.308(7-12)+.305(11-16)
4.952 0.000 -.373(8-14)+.369(9-15)-.317(11-17)-.316(6-12)+.256(10-16)+.247(7-13)
5.029 0.135 -.768(10-13)-.242(8-12)+.240(11-15)+.188(9-14)+.176(7-13)+.174(11-13)
5.343 0.000 +.424(11-18)+.422(5-12)-.309(11-16)-.289(7-12)+.268(9-13)+.265(10-14)
5.410 0.284 -.544(11-16)+.513(7-12)+.394(11-15)-.381(8-12)+.187(10-13)
5.433 0.001 +.493(11-18)+.484(5-12)+.306(7-12)=.280(10-14)-.274(9-13)+.237(11-16)
5.713 0.151 -.578(9-13)+.576(10-14)+.216(10-15)-.211(8-13)
5.735 0.000 +.399(10-15)+.339(8-13)+.291(10-17)+.274(8-16)+.258(6-13)-.254(7-15)
5.863 0.206 -.423(8-13)+.363(10-15)+.320(7-13)-.294(10-16)-.260(9-14)-.236(6-16)
5.900 0.048 -.474(5-12)+.465(11-18)-.275(10-14)+.264(9-13)+.261(9-14)-.216(8-13)
6.064 0.675 +.745(9-14)-.252(11-18)+.243(5-12)+.212(6-12)+.212(10-15)-.194(11-17)
6.122 0.000 504(11-17)-.475(6-12)+.251(8-14)-»238(9-15)-.216(7-13)+.208(10-19)
6.213 0.208 +.447(7-13)-.421(10-16)+.340(9-14)+.278(10-13)-.266(6-12)+.226(5-13)
6.220 0.004 +.382(10-15)+.369(8-13)+.269(11-19)+.255(10-16)+.239(10-18)+.198(5-13)
6.279 0.060 +.489(11-17)-.488(6-12)+.295(5-12)-.283(11-18)-.259(7-13)+.235(10-16)
6.367 0.000 + .371 (11-19)+.342(4-12)+.298(10-19)-.280(10-17)+.279(4-13)-.260(6-13)
6.448 0.028 513(9-15)-.448(8-14)+.265(10-15)+.268(7-14)+.227(9-16)-.221(8-13)
6.466 0.000 +.434(8-14)+.379(10-16)+.362(7-13)-.348(9-15)-.253(11-19)-.232(4-12)



TABLE 2.2a - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE (II)

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.305
3.433
4.035
4.089
4.243
4.484
4.881
4.934
5.143
5.180
5.432
5.460
5.474
5.528
5.710
5.803
5.926
6.130
6.142
6.209
6.292

0.565 +.971(11-12)
0.000 -.478(11-13)-.478(10-12)+.472(11-14)+.472(9-12)
0.560 -.676(11-13)+.676(10-12)
0.000 +.442(10-14)-.442(9-13)-.322(11-16)+.322(7-12)-.291(11-15)-.291(8-12)
0.000 +.431(11-13)+.431(10-12)+.429(11-14)+.429(9-12)-.262(10-14)+.262(9-13)
2.343 +.648(11-14)-.648(9-12)-.187(9-14)-.151(10-13)
0.188 +.667(10-13)+.336(11-15)-.336(8-12)-.287(11-16)-.287(7-12)+.265(9-14)
0.000 -.511(11-15)-.511(8-12)+.348(11-16)-.348(7-12)+.153(9-15)-.153(8-14)
0.000 +.402(9-15)-.402(8-14)+.370(10-16)+.370(7-13)+.266(11-18)-.266(5-12)
0.393 -.492(10-13)+.418(10-14)+.418(9-13)+.298(11-15)-.298(8-12)-.212(9-14)
0.000 +.449(11-16)-.449(7-12)+.332(10-14)-.332(9-13)+.269(11-17)+.269(6-12)
0.399 -.497(9-14)-.394(11-15)+.392(8-12)+.367(10-13)+.282(10-14)+.282(9-13)
0.000 533(11-17)-!533(6-12)+.210(11-19)-.210(4-12)+.207(10-14)-.207(9-13)
0.027 +.640(9-14)-.332(11-16)-.332(7-12)-.301(11-15)+.301(8-12)-.266(10-13)
0.065 +.393(11-16)+.393(7-12)-.314(10-15)-.314(8-13)+.291(10-14)+.291(9-13)
0.000 -.369(9-17)+.369(6-14)-.345(11-18)+.345(5-12)-.269(8-16)-.269(7-15)
0.342 +.432(11-17)-.432(6-12)+.291(10-14)+.291(9-13)+.259(11-16)+.259(7-12)
0.000 -.329(10-17)+.329(6-13)+.322(11-19)-.322(4-12)-.294(11-18)+.298(5-12)
0.140 +.449(10-15)+.449(8-13)-.317(11-17)+.317(6-12)+.219(10-16)-.219(7-13)
0.000 -.595(10-15)+.595(8-13)-.259(11-19)+.259(4-12)
0.012 -.442(11-18)-.442(5-12)-.256(10-16)+.256(7-13)+.248(11-19)+.248(4-12)

-4^
00



TABLE 2.2b - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (Ila) WITH B = 0.0 EV
RS

Excitati on 
Energy (ev) f CI Excited State Wave Functions

3.481
3.567
4.290
4.397
4.428
4.431
4.584
4.732
4.764
4.764
4.821
5.149
5.299
5.510
5.623
5.732
5.852
6.000
6.000
6.024
6.102
6.293
6.297

0.000 -.654(11-13)-.648(10-12)-.185(11-15)+.179(8-12)
0.418 -.968(11-12)+.199(10-13)
1.404 -.671(10-12)+.664(11-13)-.197(8-12)-.195(11-15)
0.000 +.471(10-15)+.470(8-13)+.446(11-16)+.442(7-12)-.198(8-12)+.192(11-15)
0.000 -.680(11-14)+.667(10-14)-.231(7-14)+.180(8-14)
0.000 -.680(9-12)-.667(9-13)+.232(9-16)+.180(9-15)
0.081 +.712(9-14)-.616(10-13)
0.001 +.656(11h15)-.606(8-12)-.175(10-12)-.168(11-13)-.152(11-16)
0.000 +.616(10-14)+.616(11-14)-.347(8-14)-.301(7-14)+.170(6-14)
0.000 -.616(9-12)+.615(9-13)+.347(9-15)-.301(9-16)
0.868 +.644(8-12)+.599(11-15)+.305(9-14)+.177(11-13)-.175(10-12)
0.401 -.702(10-13)-.553(9-14)+.162(6-12)+.160(8-15)
0.000 +.441(11-16)+.423(11-17)+.406(7-12)+.394(6-12)-.350(10-15)-.332(8-13)
0.000 -.462(5-12)-.450(11-18)-.393(8-16)-.393(7-15)+.346(10-17)-.325(6-13)
0.461 -.668(7-12)+.643(11-16)
0.001 -.470(11-17)-.448(6-12)-.284(11-18)-.276(8-13)-.268(10-15)-.264(5-12)
0.855 +.459(10-15)-.454(8-13)+.438(6-12)-.412(11-17)+.165(7-13)-.150(11-18)
0.000 +.805(8-14)-.404(6-14)+.385(11-14)
0.000 +.805(9-15)+.404(9-17)+.386(9-12)
0.222 +.455(10-16)+.426(7-13)+.339(11-18)-.309(6-12)-.300(5-12)-.245(8-13)
0.001 -.480(7-13)+.434(10-16)+.287(5-12)+.276(10-17)-.276(6-13)-.273(11-17)
0.097 -.500(7-13)+.366)5-13)-.329(10-18)+.256(11-17)-.242(11-18)+.232(10-15)
0.460 -.522(10-16)-.400(8-13)+.361(10-15)-.321(6-12)+.218(10-18)-.217(7-13)

4^ 
<0



TABLE 2.2c - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (Ila) WITH g = -1.000 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

o

3.454 0.001 +.528(11-13)+.523(10-12)+.404(11-14)+.399(9-12)
3.491 0.493 +.965(11-12)+.178(10-13)
4.123 0.846 +.670(10-12)-.665(11-13)
4.224 0.000 -.511(10-14)+.503(9-13)-.393(11-16)-.390(7-12)-.193(10-15)+.192(8-13)
4.390 0.002 -.483(11-14)-.435(9-12)+.410(10-12)+.404(11-13)-.215(10-15)+.208(8-13)
4.443 1.215 -.602(9-12)+.561(11-14)+.350(10-13)+.338(9-14)
4.752 0.402 -.609(11-15)+.438(10-13)-.340(10-14)+.319(8-12)+.204(11-16)+.158(7-14)
4.761 0.097 +.551(8-12)-.308(9-13)-.284(7-12)-.260(10-15)+.260(8-13)+.228(10-13)
4.860 0.005 +.528(11-15)+.515(8-12)-.287(9-12)+.254(9-15)-.217(8-14)-.206(10-14)
4.888 0.112 +.674(9-14)-.333(11-14)+.312(10-13)+.294(9-13)+.261(9-12)+.209(10-14)
5.037 0.111 -.632(10-13)+.496(9-14)+.315(8-12)-.311(11-15)
5.288 0.011 + .451(6-12)-.407(7-12)-.376(8-13)-.363(11-17)-.358(11-16)+.249(10-14)
5.308 0.191 +.482(9-13)+.406(10-14)-.365(10-15)+.291(11-17)+.233(11-16)+.227(8-14)
5.521 0.003 -.495(11-18)-.491(5-12)+.321(8-16)-.319(7-15)+.195(10-17)+ .193(9-17)
5.610 0.297 -.680(7-12)+.618(11-16)+.160(10-15)
5.685 0.001 -.434(11-17)+.404(6-12)+.298(11-16)-.236(10-17)-.235(6-13)-.230(9-15)
5.812 0.504 +.407(6-12)+.394(11-17)-.357(10-15)-.342(8-13)-.293(9-13)-.283(10-14)
6.030 0.053 +.457(9-15)-.366(6-12)-.292(11-17)-.289(10-17)+.279(8-14)-.270(11-18)
6.043 0.012 -.463(8-14)-.348(6-13)-.288(10-17)-.275(11-18)-.270(5-12)-.242(10-16)
6.056 0.295 +.473(7-13)+.432(10-16)-.308(5-12)+.272(7-14)+.269(9-15)+.252(8-13)
6.143 0.000 -.407(7-13)+.377(10-16)+.334(8-13)-.324(10-15)+.231(9-17)+.222(6-14)
6.288 0.715 +.410(10-15)+.384(8-14)+.366(8-13)-.319(7-13)+.309(9-15)+.284(11-17)
6.333 0.013 + .395(10-16)-.312(7-13)-.276(10-18)+.259(5-13)-.226(7-14)+.221(5-14)
6.422 0.001 +.366(7-14)-.350(9-16)+.295(9-18)-.294(5-14)-.256(9-15)+.234(10-16) cn



TABLE 2.2d - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (lib) WITH g = 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.594
3.772
4.447
4.494
4.494
4.775
4.775
4.783
4.798
5.089
5.089
5.223
5.488
5.620
5.690
5.719
5.774
5.924
5.978
5.978
6.136
6.305
6.319
6.444

0.000 -.685(11-14)+.685(9-12)+.159(8-16)-.159(7-15)
0.635 -.962(11-12)-.227(9-14)
0.000 +.525(9-15)-.525(8-14)+.435(11-16)-.435(7-12)
0.000 +.860(11-13)-.460(8-13)+.173(6-13)
0.000 +.860(10-12)-.460(10-15)-.173(10-17)
0.637 -.753(10-13)-.408(11-14)-.408(9-12)+.187(11-15)+.187(8-12)
0.000 +.668(11-15)-.668(8-12)-.156(9-15)+.156(8-14)
1.695 -.541(9-14)-.469(11-14)-.469(9-12)+.391(10-13)-.194(11-15)-.194(8-12)
0.033 -.621(11-15)-.621(8-12)-.309)10-13)+.214(9-16)+.214(7-14)
0.000 +.878(10-14)+.451(10-16)-.152(10-12)
0.000 +.878(9-13)+.451(7-13)-.152(11-13)
1.023 -.761 (9-14)-.345(10-13)+.313(11-14)+.313(9-12)+.214(11-12)
0.000 +.492(9-17)+.492(6-14)-.362(8-16)+.362(7-15)-.270(11-17)-.270(6-12)
0.000 +.638(11-17) .638(6-12)+.215(9-17)+.215(6-14)
0.000 =.513(11-16)+.513(7-12)+.362(9-15)-.362(8-14)+.246(11-18)+.246(5-12)
0.012 +.665(9-15)+.665(8-14)-.167(11-16)-.167(7-12)
0.376 -.572(8-15)+.557(11-17)-.557(6-12)
0.003 +.659(11-16) .659(7-12)+.185(9-15)+.185(8-14)
0.000 -.794(8-13)-.486(11-13)+.353(6-13)
0.000 -.794(10-15)-.486(10-12)-.353(10-17)
0.000 -.707(10-19)+.707(4-13)
0.210 -.780(8-15)-.388(11-17)+.388(6-12)-.152(8-16)-.152(7-15)
0.000 +.549(11-18)+.549(5t12)-.219(9-16)+.219(7-14)+.214(9-18)+.214(5-14)
0.000 -.453(9-16)+.453(7-14)+.391(9-18)+.391 (5-14)-.308(11-18)-.308(5-12)

CH



TABLE 2.2e - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (lib) WITH B = -1.000 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.569
3.643
4.204
4.303
4,430
4.617
4.767
4.813
5,018
5.099
5.341
5.422
5.534
5.581
5.630
5.666
5.851
5.890
6.017
6.099
6.224
6.357
6.429
6.464

0.000 +.533(11-14)-.533(9-12)+.411(11-13)+.411(10-12)
0.646 -.954(11-12)-.171(9-14)
0.186 -.636(11-13)+.636(10-12)+.214(11-14)-.208(10-13)
0.000 +.450(10-14)+.450(9-13)-.413(11-16)+.413(7-12)-.238(9-15)+.238(8-14)
0.000 -.502(11-13)-.502(10-12)+.392(11-14)-.392(9-12)-.221(10-15)-.221(8-13)
2.187 -.598(11-14)-.598(9-12)-.204(10-13)-.194(10-14)+.194(9-13)-.190(9-14)
0.000 +.631(11-15)-.631(8-12)-.198(10-14)-.198(9-13)
0.086 -.535(11-15)-.535(8-12)+.223(9-14)+.158(10-14)-,158(9-13)
0.000 +.389(9-15)-.389(8-14)-.321(10-16)-.321(7013)+.258(10-14)+.258(9-13)
0.235 -.521(10-13)-.325(10-14)+.325(9-13)+.294(9-14)+.255(11-15)+.255(8-12)
0.207 -.814(9-14)-.419(10-13)+.175(11-16)+.175(7-12)
0.622 -.491(10-15)+.491 (8-13)+.320(10-14)-.320(9-13)-. 180(11-17)+.180(6-12)
0.000 -.571(11-17)-.571(6-12)-.184(10-15)-.184(8-13)-.171(9-18)-.171  (6-14)
0.000 -.362(9-17)-.362(6-14)-.312(8-16)+.312(7-15)+.300(11-17)+.300(6-12)
0.000 -.429(11-16)+.429(7-12)-.227(10-15)-.227(8-13)+.208(9-15)-.208(8-14)
0.336 +.363(10-13)-.305(10-14)+.305(9-13)+.303(11-16)+.303(7-12)-.270(11-15)
0.106 +.421(9-15)+.421(8-14)+.369(11-16)+.369(7-12)+.295(11-17)-.295(6-12)
0.028 -.422(11-16)-.422(7-12)+.368(9-15)+.368(8-14)+.239(10-16)-.239(7-13)
0.069 -.421(11-17)+.421(6-12)-.302(8-15)+.252(9-15)+.252(8-14)+.232(10-17)
0.000 -.356(11-18)+.356(5-12)-.294(10-15)-.294(11-14)+.217(10-14)+.217(9-13)
0.000 +.415(11-18)-.415(5-12)-.353(10-.5)-.353(8-13)-.199(9-15)+.199(8-14)
0.121 -.555(8-15)+.290(11-17)-.290(6-12)+.278(10-17)+.278(6-13)-.166(9-15)
0.000 -.447(10-16)-.447(7-13)+.255(9-16)-.255(7-14)+.250(9-18)-.250(5-14)
0.035 +.415(10-16)-.415(7-13)-.338(11-18)-.338(5-12)-.327(9-16)-.327(7-14) cn ro



TABLE 2.2f - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (lie) WITH B = 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.408 0.347 +.976(11-12)+.164(9-14)
3.631 0.000 -.692(11-14)+.692(9-12)
4.123 0.000 +.943(10-12)+.265(10-16)
4.123 0.000 +.943(11-13)-.265(7-13)
4.410 0.000 +.678(10-15)+.678(8-13)+.200(8-19)-.200(11-14)
4.550 0.172 -.594(10-13)-.550(11-16)+.550(7-12)
4.593 0.000 +.693(11-16)+.693(7-12)
4.845 0.061 +.655(10-13)-.403(11-16)+.403(7-12)-.284(11-14)-.284(9-12)
4.909 3.515 +.620(11-14)+.620(9-12)+.371(10-13)-.151(11-16)+.151(7-12)
5.051 0.000 +.511(9-16)+.511(7-14)+.489(11-17)+.489(6-12)
5.420 0.000 -.707(11-18)+.707(5-12)
5.438 0.000 +.960(11-15)-.245(7-15)
5.438 0.000 +.960(8-12)+.245(8-16)
5.711 0.000 -.937(9-13)-.319(6-13)
5.711 0.000 -.937(10-14)+.319(10-17)
5.874 0.301 -.622(10-15)+.622(8-13)-.183(8-15)
5.922 0.057 +.632(11-18)+.632(5-12)-.354(7-16)
6.051 0.000 +.899(10-16)+.332(10-18)-.256(10-12)
6.051 0.000 +,899(7-13)-.332(5-13)+.256(11-13)
6.124 0.000 +.560(9-18)-.560(5-14)-.355(7-17)+.355(6-16)+.244(11-20)
6.134 0.331 +.741(9-14)-.568(8-15)+.171(10-19)-.171(4-13)-.156(7-16)
6.286 0.000 -.511 (11-17)-.511 (6-12)+.489(9-16)+.489(7-14)
6.335 0.254 -.619(8-15)-.506(9-14)+.269(7-16)+.210(10-19)-.210(4-13)+.202(11-18)
6.341 0.000 +.707(10-19)+.707(4-13)
6.387 0.050 -.625(11-17)+.625(6-12)=.275(9-16)+.275(7-14)

GO



TABLE 2.2g - WAVE FUNCTIONS AND EXCITATION ENERGIES OF BENZO(b)CHRYSENE

COMPOSITE SYSTEM (lie) WITH g = -1.000 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.369 0.415 -.974(11-12)
3.620 0.000 +.505(11-14)+.502(9-12)-.385(11-13)-.374(10-12)+.241(11-15)-.235(8-12)
4.056 0.017 +.589(10-12)+.379(11-13)+.284(10-14)-.252(9-13)+.249(9-12)+.245(11-14)
4.077 0.566 +.731(11-13)-.582(10-12)-.158(8-12)
4.490 0.000 -.374(10-14)+.360(9-13)-.319(10-16)+.317(7-13)+.316(8-12)-.304(11-15)
4.639 0.487 +.483(11-14)-.465(8-12)-.406(10-13)-.308(11-15)-.237(8-12)-.226(11-16)
4.713 0.003 +.506(8-12)-.476(11-15)-.318(7-12)-.292(11-16)+.242(10-16)-.235(7-13)
4.881 0.047 -.682(10-13)+.393(11-15)+.385(8-12)+.275(11-16)-.268(7-12)
4.964 0.001 -.355(9-15)-.354(8-14)-.327(11-18)-.327(5-12)+.271(11-16)+.267(7-12)
4.993 2.421 +.462(10-13)-.461(9-12)+.451(11-14)+.391(8-12)+.377(11-15)
5.336 0.146 -.525(11-16)+.498(7-12)+.280(9-13)+.264(11-15)+.250(8-12)+.250(10-14)
5.385 0.001 +.381(5-12)+.375(11-18)+.336(7-12)-.311(11-17)-.304(6-12)+.288(11-16)
5.495 0.001 -.402(6-12)-.398(11-17)-.383(11-16)-.382(7-12)-.223(10-14)+.208(11-19)
5.592 0.281 -.591(9-13)-.528(10-14)+.281(9-14)+.235(8-13)-.220(10-15)+,209(7-12)
5.763 0.000 -.395(10-14)+.348(9-13)-.300(10-15)+.260(10-16)-.255(8-13)-.238(7-13)
5.835 0.130 -.400(11-17)+.398(6-12)-.352(8-13)+.340(10-15)-.199(4-12)+.196(9-16)
5.960 0.089 +.694(9-14)+.233(7-16)+.231(8-13)-.209(7-12)+.200(11-16)+.196(10-14)
5.985 0.000 +.538(8-13)+.537(10-15)+.257(10-16)-.253(7-13)-.224(6-13)+.223(10-17)
6.020 0.098 -.438(10-15)+.428(8-13)-.339(9-14)-.327(11-17)+.321(6-12)+.225(10-13)
6.130 0.082 +.465(7-13)+.445(10-16)-.359(11-18)+.336(5-12)+.190(6-13)
6.197 0.000 -.336(11-18)-.332(5-12)-.316(11-17)-.299(6-12)+.284(8-14)+.282(9-15)
6.408 0.087 +.488(5-12)-.374(11-17)-.337(11-18)+.316(6-12)-.289(9-16)-.281(7-14)
6.437 0.368 +.477(7-14) .423(9-16)-.339(l1-19)-.330(9-15)-.231(10-16)+.221(8-15)
6.452 0.059 -.403(8-14)-.400(4-12)+.398(11-18)-.284(11-19)-.272(4-13)-.240(9-16)

2



TABLE 2.3a - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE (III)

Excitation
Energy(ev) f CI Excited State Wave Functions

3.343
3.349
4.041
4.085
4.235
4.336
4.706
4.950
5.056
5.086
5.236
5.385
5.634
5.654
5.716
5.787 
5.901 
5.909
6.025
6.058
6.214
6.360
6.371
6.496

0.000 +.624(11-13)-.624(10-12)-.194(11-14)-.194(9-12)+.171(11-15)-.171(8-12)
0.228 -.968(11-12)-.186(10-13)
1.606 +.659(11-13)+.659(10-12)-.284(10-13)+.107(10-15)+.107(8-13)
0.000 -.501(11-15)+.501(8-12)+.438(10-14)+.438(9-13)
0.177 +.684(11-14)-.684(9-12)-.131(10-13)
0.000 -.647(11-14)-.647(9-12)-.206(11-13)+.206(10-12)+.112(9-16)-.112(7-14)
0.505 -.880(10-13)-.198(11-13)-.198(10-12)+.172(11-12)+.160(9-14)
0.000 -.382(11-15)+.382(8-12)-.368(10-14)-.368(9-13)-.284(11-16)
0.000 +.373(11-17)+.373(6-12)+.370(9-15)+.370(8-14)+.248(10-14)+.248(9-13)
0.144 +.481(11-15)+.481(8-12)+.378(11-16)-.378(7-12)
0.000 -.558(11-16)-.558(7-12)+.258(11-18)+.258(5-12)-.173(11-17)-.173(6-12)
1.052 +.497(10-14)-.497(9-13)-.408(11-15)-.408(8-12)+.202(11-16)-.202(7-12)
0.000 -.571(10-15)+.581(8-13)-.218(10-17)-.218(6-13)-.163(10-18)-.173(5-13)
0.816 -.411(9-14)+.366(11-16)-.366(7-12)-.323(10-14)+.323(9-13)
0.000 -.512(11-18)-.512(5-12)-.220(9-17)-.215(6-12)+.183(8-16)+.183(7-15)
0.266 -.557(10-15)-.557(8-13)+.288(9-14)+.221(9-13)-.221(10-14)
0.000 +.319(10-18)+.319(5-13)-.267(11-18)-.267(5-12)-.252(8-16)-.252(7-15)
0.405 -.704(9-14)-.312(11-16)+.312(7-12)-.232(10-15)-.232(8-13)
0.000 +.406(10-16)+.406(7-13)-.382(11-17)-.382(6-12)+.251(11-18)+.251(5-12)
0.146 -.596(11-17)+.596(6-12)-.182(9-15)+.182)9-14)+.152(10-17)-.162(6-13)
0.352 +.541(11-18)-.541(5-12)-.271(10-16)+.271(7-13)-.185(11-17)+.185(6-12)
0.000 +.491(9-15)+.491(8-14)+.292(10-16)-.292(7-13)-.247(11-17)-.247(6-12)
0.117 -.459(10-16)+.459(7-13)-.265(11-18)+.265(5-12)+.222(9-15)-.222(8-14)
0.426 +.462(9-15)-.462(8-14)+.357(10-16)-.357(7-13)+.261(8-15)



TABLE 2.3b - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (Illa) WITH S = 0.0 EV 
RS

Excitation 
Energy (ev) CI Excited State Wave Functions

3.481 0.000 -.655(11-13)+.647(10-12)+.!85(11-15)+.179(8-12)-.114(7-12)+.!12(11-16)
3.566 0.420 -.969(11-12)-.191(10-13)
4.204 0.746 -.628(10-12)-.617(11-13)+.358(9-14)+.192(8-12)-.182(11-15)
4.353 0.000 -.928(11-14)-.265(9-14)+.193(10-14)-.140(6-14)
4.353 0.000 + .926(9-12)-.265(9-15)-.199(9-13)-.141 (9-17)
4.397 0.001 +.471(8-13)+.470(10-15)+.445(11-16)-.443(7-12)+.194(11-15)+.196(8-12)
4.553 0.000 +.914(10-14)+.311(7-14)+.222(11-14)
4.560 0.000 +.913(9-13)+.314(9-16)+.228(9-12)
4.726 1.382 -.678(10-13)-.510(9-14)-.298(8-12)-.254(11-13)-.211(10-12)
4.732 0.032 -.697(11-15)-.550(8-12)+.201(10-12)+.148(11-16)+.148(8-13)-.147(7-12)
4.814 0.060 +.603(8-12)-.509(11-15)-.477(9-14)+.171(7-12)-.159(10-15)+.145(11-16)
5.086 0.751 +.653(10-13)+.525(9-14)-.249(8-12)+.247(11-15)-.206(11-13)-.207(10-12)
5.299 0.000 -.440(11-16)-.418(11-17)+.408(7-12)-.400(6-12)+.347(10-15)+.337(8-13)
5.510 0.000 -.462(5-12)+.450(11-18)+.393(7-15)+.393(8-16)+.346(10-17)+.324(6-13)
5.633 0.328 -1664(7-12)-.636(11-16)-.144(10-15)+.124(8-13)
5.732 0.001 +.473(11-17)+.445(6-12)-.284(11-18)+.281(8-13)+.262(10-15)+.263(5-12)
5.748 0.000 -.881(8-14)-.352(6-14)+.273(11-14)-.127(10-14)
5.748 0.000 +.881(9-15)+.352(9-17)+.274(9-12)-.127(9-13)
5.863 0.713 +.515(6-12)-.472(11-17)+.400(10-15)-.389(8-13)-.219(8-15)+.183(11-18)
6.033 0.396 +.553(10-16)+.516(7-13)-.294(11-18)-.262(5-12)-.253(8-13)+.229(10-15)
6.102 0.002 +.488(7-13)-.426(10-16)-.286(5-12)-.277(10-17)-.274(6-13)+.268(11-17)
6.290 0.592 + .466(10-15)-.460(8-13)-.372(7-13)-.328(10-16)+.297(11-17)-.279(6-12)
6.294 0.003 -.416(10-16)-.393(10-18)-.378(5-13)+.345(7-13)+.243)5-12)-.240(11-18)
6.427 0.000 -.889(7-14)+.323(10-14)-.295(5-14)
6.437 0.000 -.890(9-16)+.331(9-13)-.295(9-18)



TABLE 2.3c - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (Illa) WITH p = -1.000 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.428
3.512
4.164
4.165
4.222
4.414
4.549
4.680
4.825
4.873
5.158
5.257
5.274
5.448
5.592
5.613
5.789
5.886
5.922
6.029
6.058
6.179
6.318
6.434

0.000 +.595(11-13)-.593(10-12)-.273(11-14)+.261(9-12)-.185(11-15)-.181(8-12)
0.361 -.968(11-12)-.152(10-13)
0.001 +.397(9-13)-.390(10-14)+.322(11-14)-.279(9-12)+.267(8-12)+.266(11-16)
0.729 +.573(9-12)+.562(11-14)-.357(10-12)-.349(11-13)+.179(9-14)
0.639 +.502(10-13)+.492(11013)+.498(10-12)+.312(9-12)+.291(11-14)
0.000 -.547(9-12)+.545(11-14)-.271(9-13)+.269(10-14)+.212(11-13)-.197(10-12)
0.430 -.798(10-13)+.326(10-12)+.324(11-13)+.192(9-12)+.180(11-14)
0.001 -.414(10-14)+.398(9-13)-.274(11-15)+.272(9-15)+.269(8-14)-.267(8-12)
0.001 +.555(11-15)+.452(8-12)-.329(11-16)+.294(7-12)+.237(8-14)+.228(9-15)
0.076 -.594(8-12)+.508(11-15) .284(9-14)+.257(9-13)+.241(10-14)-.240(7-12)
0.041 +.585(9-14)-.501(9-13)-.477(10-14)+.178(8-13)-.154(10-15)
1.468 -.603(9-14)+.334(11-15)-.326(8-12)-.306(9-13)-.258(10-14)+.219(11-16)
0.086 -.442(7-12)+.408(11-16)-.381(11-17)-.371(6-12)-.233(8-13)+.224(9-15)
0.000 -.349(10-15)-.328(8-13)+.326(10-17)+.309(6-13)-.287(8-16)-.285(7-15)
0.291 +.517(7-12)+.510(11-16)-.339(8-13)+.290(10-15)+.198(9-14)-.172(8-14)
0.003 -.454(11-16)+.452(5-12)+.340(10-15)+.302(8-13)-.298(11-17)-.255(6-12)
0.046 +.459(8-13)-.433(10-15)+.355(7-12)+.338(11-16)+.224(9-13)+.216(10-14)
0.617 -.536(6-12)-.434(9-15)+.367(11-17)+.256(8-14)+.220(7-12)+.215(5-12)
0.034 -.436(8-14)-.411(11-17)+.261(9-17)-.257(9-15)+.245(6-14)-.238(11-16)
0.057 +.693(10-16)-.389(11-18)+.265(6-12)-.228(9-16)+.179(9-17)+.174(10-18)
0.162 +.688(7-13)-.381(5-12)+.274(8-14)-.260(7-14)-.205(6-14)-.172(11-17)
0.001 -.316(11-17)-.299(5-12)+.297(10-18)-.292(6-12)-.291(5-13)+.274(11-18)
0.688 +.412(10-16)+.413(7-18)+.380(9-15)-.379(8-14)-.237(10-15)+.232(8-13)
0.158 +.454(11-18)+.452(5-12)-.414(11-17)+.410(6-12)-.239(9-15)+.204(8-14)

____ _ CH



TABLE 2.3d - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (Illb) WITH B = 0.0 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.540 0.000 -.673(10-12)+.668(11-13)
3.951 0.039 +.878(11-12)+.450(10-13)
4.384 1.442 -.686(11-13)-.682(10-12)
4.396 0.000 +.522(11-16)-.522(7-12)-.444(10-15)+.444(8-13)
4.487 0.000 +.854(11-14)+.345(8014)+.332(10-14)
4.487 0.000 +.855(9-12)+.346(9-15)+.332(9-13)
4.722 0.410 -.647(9-14)+.626(10-13)-.349(11-12)
4.918 0.705 -.647(9-14)-.584(10-13)+.278(11-12)+.185(8-12)+.176(11-15)
4.941 0.000 -.799(10-14)-.396(7-14)+.267(8-14)+.266(11-14)-.235(5-14)
4.942 0.000 +.395(9-16)-.266(9-12)-.266(9-15)+.235(9-18)
5.006 0.152 -.674(11-15)-.678(8-12)-.253(9-14)
5.094 0.000 -.668(8-12)+.640(11-15)-.168(6-13)-.164(10-17)
5.374 0.000 +.512(10-15)-.466(8-13)-.445(7-12)+.440(11-16)+.171(10-18)-.168(7-17)
5.459 0.000 -.394(8-16)+.393(7-15)-.371(6-13)-.360(10-17)-.352(11-18)+.341(5-12)
5.687 0.000 +.658(10-16)-.619(7-13)-.174(5-12)+.167(11-18)-.157(11-13)+.151(10-12)
5.765 0.717 +.579(11-16)+.561(7-12)-.385(8-13)-.364(10-15)
5.819 0.225 + .537(8-13)+.497(10-15)+.326(6-12) + .309(7-12)+.274(11-16)-.222(11-17)
5.900 0.468 -.656(7-13)-.598(10-16)-.184(9-1 4)
6.002 0.001 -.704(11-17)-.635(6-12)-.162(5-15)+.151(8-18)
6.017 0.000 -.817(8-14)+.432(11-14)-.248(10-14)-.211(6-14)
6.022 0.000 -.821(9-15)+.433(9-12)-.242(9-13)+.213(9-T7)+.186(9-16)
6.375 0.000 -.807(7-14)+.426(10-14)-.295(5-14)-.249(8-14)
6.377 0.000 -.811(9-16)+.428(9-13)-.294(9-18)-.240(9-15)
6.391 0.000 -.545(11-18)+.466(10-17)+.455(5-12)+.452(6-13)
6.481 0.921 + .663)8-15)-.334(11-17)+.311(6-12)-.239(11-16)+.232(10-18)-.231 (7-12)



TABLE 2.3e - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (Illb) WITH S = -1.000 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.499 0.000 + .624(11-13)+.628(10-12)-. 178(9-13)-.177(10-14)+.172(11-14)-.169(9-12)
3.769 0.107 +.919(11-12)-.334(10-13)
4.206 1.227 -.630(11-13)+.623(10-12)+.256(10-13)+.196(9-12)+.194(11-14)
4.294 0.000 -.428(11-16)-.425(7-12)+.362(10-14)+.356(9-13)-.264(8-13)+.256(10-15)
4.338 0.370 -.654(11-14)-.641(9-12)+.218(10-12)-.205(11-13)
4.481 0.000 -.638(9-12)+.627(11-14)
4.710 0.651 -.842(10-13)-.318(11-12)+.202(9-14)+.192(10-12)-.160(11-13)
4.925 0.001 +.401(10-14)+.338(9-13)+.328(9-15)+.327(8-14)-.271(7-14)-.271(9-16)
4.998 0.083 + .795(11-15)-.325(10-14)-.209(9-14)+.188(9-13)-.175(8-12)-.156(10-13)
5.009 0.036 -.816(8-12)+.243(9-13)-.231(11-15)-.182(7-12)+.169(10-12)
5.273 0.419 -.674(9-14)-.381 (9-13)+.331 (10-14)-.254(7-12)-.203(7-14)+.215(9-16)
5.334 0.003 +.462(11-16)+.407(7-12)+.390(10-15)-.358(8-13)+.225(10-14)-.182(11-18)
5.422 0.024 -.367(9-13)+.353(10-14)-.327(10-15)-.325(8-13)-.313(9-15)+.312(8-14)
5.574 0.044 +.353(7-15)-.344(8-16)-.318(5-13)+.305(10-18)-.285(10-16)-.250(6-12)
5.602 0.901 -.474(7-12)+.468(11-16)-.367(10-15)+.327(9-13)+.249(8-12)-.244(10-14)
5.633 0.060 +.552(10-16)-.480(7-13) .389(8-13)-.263(10-15)+.188(7-12)+.181(10-12)
5.862 0.024 -.341(8-13)-.334(10-15)+.292(7-12)-.284(9-14)-.276(11-16)-.262(5-12)
5.922 0.459 +.596(7-13)+.544(10-16)-.303(9-14)+.170(8-12)-.159(11-15)
5.941 0.005 + .537(11-18)+.498(5-12)+.348(11-17)-.266(9-15)-.248(6-12)-.160(8-14)
6.038 0.212 +.485(9-15)-.456(8-14)-.282(7-14)-.270(8-13)+.250(9-14)-.215(10-15)
6.109 0.001 +.356(8-14)-.297(7-13)+.291(11-18)-.273(10-14)+.258(9-15)+.243(5-12)
6.317 0.318 -.516(11-17)-.382(8-14)-.281(9-16)+.275(7-14)-.267(6-12)-.250(10-15)
6.359 0.062 -.509(6-12)+.430(9-15)+.259(7-14)+.227(8-14)-.224(10-18)-.223(6-13)
6.470 0.166 +.509(11-18)+.409(9-16)+.384(7-14)-.225(9-18)-.198(5-12)+.200(6-12)
6.490 0.237 -.592(5-12)-.365(9-16)+.333(11-18)-.277(7-14)+.222(11-17)+.217(10-15) m



TABLE 2.3f - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (IIIc) WITH B = 0.0 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.414 0.336 +.979(11-12)-.168(9-14)
3.631 0.000 -.692(11-14)-.692(9-12)-.126(7-17)+.126(6-16)
4.146 0.000 -.950(10-12)-.256(10-16)
4.146 0.000 +.950(11-13)-.256(7-13)
4.410 0.000 +.678(10-15)+.678(8-13)-.200(8-19)+.200(4-15)
4.540 0.443 +.757(10-13)+.355(11-14)-.355(9-12)-.256(11-16)+.256(7-12)
4.593 0.000 +.693(11-16)+.693(7-12)
4.666 0.181 +.642(11-16)-.642(7-12)+.248(10-13)+.209(11-14)-.209(9-12)
5.051 0.000 +.511(9-16)-.511(7-14)-.489(11-17)-.489(6-12)
5.097 2.661 -.551(11-14)+.551(9-12)+.356(10-13)-.181(8-15)
5.123 0.000 -.973(8-12)-.164(8-16)
5.123 0.000 +.973(11-15)-.164(7-15)
5.420 0.000 -.707(11-18)-.707(5-12)
5.663 0.000 -.934(10-14)+.308(10-17)
5.663 0.000 +.934(9-13)-.318(6-13)
5.828 0.540 -.602(10-15)+.602(8-13)-.235(11-18)+.235(5-12)-.181(7-16)
5.902 0.101 +.579(11-18)-.579(5-12)+.315(7-16)-.275(8-15)+.219(9-14)-.200(10-15)
6.002 0.000 +.865(10-16)-.302(10-18)-.280(4-12)-.244(10-12)
6.002 0.000 +.865(7-13)-.302(5-13)-.280(11-19)+.244(11-13)
6.124 0.000 +.560(9-18)-.560(5-14)-.355(7-;7)+.355(6-16)-.244(11-20)+.244(3-12)
6.197 0.680 -.794(9-14)-.404(8-15)-.262)7-16)+.155(11-17)-.155(6-12)
6.285 0.215 +.569(8-15)-.400(9-14)-.297(11-17)+.297(6-12)+.233(11-18)-.233(5-12)
6.286 0.000 -.511(11-17)-.511(6-12)-.489(9-16)+.489)7-14)
6.341 0.000 +.707(10-19)+.707(4-13)
6.419 0.223 +.532(11-17)+.532(6-12)-.389(8-15)+.339(9-16)+.339(7-14)

o



TABLE 2.3g - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZO(b,g)PHENANTHRENE

COMPOSITE SYSTEM (IIIc) WITH g = -1.000 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.401 0.306 +976(11-12)
3.569 0.000 -.506(11-13)+.505(10-12)+.465(11-15)-.452(8-12)
4.090 0.742 +.683(10-12)+.613(11-13)-.279(10-13)
4.109 0.007 +.480(8-12)-.474(11-15)-.419(11-13)-.347(9-13)-.331(10-14)+.286(10-12)
4.486 0.030 +.621(11-14)-.602(9-12)-.381(10-13)-.156(11-16)-.153(7-12)
4.543 0.000 -.647(9-12)-.639(11-14)+.215(11-16)-.217(7-12)
4.640 0.010 +.404(10-16)-.400(7-13)+.396(10-14)+.378(9-13)-.262(11-13)-.232(11-15)
4.708 0.228 -.699(10-13)-.344(8-12)-.275(11-15)-.263(11-14)-.238(10-12)+.239(9-12)
5.040 0.000 +.329(9-15)+.328(8-14)+.322(6-12)-.321(11-17)-.304(11-16)+.285(7-12)
5.059 0.951 +.494(11-16)+.463(8-12)+.457(11-15)+.401(7-12)-.266(10-13)+.231(9-14)
5.122 0.005 -.592(7-12)+.499(11-16)-.252(5-12)+.245(11-18)+.182(9-12)+.181(9-15)
5.256 1.533 + .448(11-16)+.432(7-12)-.401(8-12)-.386(11-15) + .344(10-13)
5.5-6 0.000 -.638(11-18)+.632(5-12)-.162(7-12)+.158(11-16)
5.625 0.000 -.629(10-15)+.598(8-13)+.233(10-17)-.227(6-13)
5.631 0.318 +.615(8-13)+.584(10-15)-.222(10-14)+.228(9-13)
5.741 0.221 -.568(9-13)+.564(10-14)+.210(10-15)+.206(8-13)+.160(11-18)+.143(5-12)
5.909 0.003 +.365(10-16)-.353(7-13)-.350(10-14)-.328(9-13)-.269(10-18)-.265(11-19)
5.920 0.109 +.538(5-12)+.534(11-18)+.422(9-14)+.222(9-13)-.215(7-16)+.169(6-12)
6.053 0.146 -.465(10-16)-.446(7-13)+.325(9-14)-.279(11-17)-.247(6-12)+.181(6-13)
6.178 0.003 -.485(11-17)+.461(6-12)+.236(8-16)-.237(7-15)+.224(8-18)-.211(5-15)
6.246 0.112 -.468(11-18)+.428(10-16)+.382(7-13)-.374(6-12)+.311(9-14)-. 158(8-15)
6.266 0.174 -.442(9-14)-.394(6-12)-.394(11-17)+.346(5-12)+.344(11-18)+.303(8-15)
6.323 0.011 + .429(8-14)+.419(9-15)-.316(6-12)+.256(10-19)+.256(7-13)+.249(10-17)
6.406 0.671 -.725(8-15)+.335(7-14)-.279(11-19)-.274(9-16)-.210(4-13)-.194(9-14)
6.454 0.079 +.370(4-12)-.328(9-18)+.321(5-15)-.302(6-13)-.274(11-19)+.247(8-15)



TABLE 2.4a - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZ(a,c)ANTHRACENE (IV)

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.532 0.000 +.666(11-13)+.666(10-12)
3.737 0.168 +.930(11-12)-.327(10-13)
4.242 0.000 +.579(10-14)+.579(9-13)-.355(11-16)+.355(7-12)
4.373 2.285 +.689(11-13)-.689(10-12)
4.373 0.000 +.598(11-14)-.598(9-12)+.266(9-15)+.266(8-14)+.191(10-17)-.191(6-13)
4.444 0.022 -.643(11-14)-.643(9-12)-.210(10-13)+.181(9-14)-.172(11-15)+172(8-12)
4.844 1.263 -.882(10-13)-.314(11-12)+.205(11-14)+.205(9-12)
5.061 0.000 + .605(11015) + .605(8-12)+.251(11-14)-.251 (9-12)+.178(9-18)+.178(5-14)
5.335 0.000 -.429(11-16)+.429(7-12)+.274(10-15)-.274(8-13)-.234(10-14)-.234(9-13)
5.345 0.364 +.622(9-14)+.532(11-15)-.532(8-12)
5.408 0.307 -.647(10-14)+.647(9-13)+.183(10-15)+.183(8-13)
5.579 0.075 +.715(9-14)-.381(11-15)+.381(8-12)+.203(10-13)+.180(11-14)+.180(9-12)
5.625 0.000 -.562(11-18)-.562(5-12)-.290(9-15)-.290(8-14)+.208(11-14)-.208(9-12)
5.721 0.000 +.374(11-16)-.374(7-12)-.337(11-17)-.337(6-12)+.328(10-15)-.328(8-13)
5.924 0.268 -.590(11-16)-.590(7-12)+.326(10-15)+.326(8-13)+.152(11-17)-.152(6-12)
6.023 0.000 -.516(10-15)+.516(8-13)-.408(11-17)-.408(6-12)
6.043 0.144 +.352(11-17)-.352(6-12)+.322(10-15)+.322(8-13)+.319(11-16)+.319(7-12)
6.069 0.029 -.567(11-18)+.567(5-12)-.334(9-15)+.334(8-14)-,156(10-16)+.156(7-13)
6.089 0.000 -.379(11-18)-.379(5-12)+.371 (10-17)-.371(6-13)+.267(11-15)+.267(8-12)
6.184 0.031 -.612(10-16)+.612(7-13)+.254(11-18)-.254(5-12)-.151(9-14)
6.285 0.000 -.487(10-18)+.487(5-13)-.349(11-17)-.349(6-12)-.186(8-16)-.186(7-15)
6.310 0.000 +.564(10-16)+.564(7-13)+.321(9-15)+.321(8-14)-.164(10-17)+.164(6-13)
6.480 0.151 +.515(11-17)-.515(6-12)-.427(10-15)-.427(8-13)-.167(10-18)-.167(5-13)

CT) 
no



cy>
GO

TABLE 2.4b - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZ(a,c)ANTHRACENE

COMPOSITE SYSTEM (IVa) WITH B = 0.0 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.480
3.509
3.833
3.834
4.192
4.397
4.732
4.765
4.920
5.001
5.120
5.121
5.299
5.511
5.622
5.732
5.833
5.886
5.886
6.023
6.102
6.291
6.294

0.003 +.650(10-12)+.646(11-13)+.186(11-15)+.176(8-12)
0.313 +.940(11-12)+.209(9-14)-.197(10-13)
0.000 -.886(11-14)+.174(5-14)-.167(8-14)
0.000 -.886(9-12)-.368(9-13)-.175(9-18)+.167(9-15)
0.686 +.616(10-12)-.613(11-13)-.343(9-14)+.190(11-15)-.186(8-12)
0.000 +.472(8-13)-.469(10-15)+.447(11-16)-.441(7-12)-.199(8-12)-.190(11-15)
0.029 +.691(11-15)+.561(8-12)-.204(10-12)+.154(11-16)
1.206 +.566(10-13)-.566(8-12)+.401(11-15)+.216(11=13)-.180(10-12)-.154(9-14)
0.406 -.704(9-14)-.365(11-15)+.344(8-12)+.330(10-13)+.184)11-12)-.151(10-15)
0.685 -.676(10-13)-.467(9-14)-.246(8-12)+.230(11-13)-.226(10-12)+.212(11-15)
0.000 -.903(10-14)-.387(11-14)
0.000 -.903(9-13)+.387(9-12)
0.001 +.439(11-16)+.422(11-17)-.408(7-12)+.385(6-12)-.343(8-13)+.340(10-15)
0.000 +.453(11-18)+.459(5-12)-.393(8-16)-.392(7-15)-.346(10-17)+.323(6-13)
0.542 -.673(7-12)-.644(11-16)
0.001 -.473(11-17)-.446(6-12)-.281 (11-18)-.273(8-13)+.270(10-15)-.265(5-12)
0.772 -.464(6-12)-.462(10-15)-.457(8-13)-.440(11-17)+.184(8-15)
0.000 -.954(8-14)+.205(6-14)+.176(11-14)
0.000 -.954(9-15)+.205(9-17)-.177(9-12)
0.293 -.517(10-16)+.485(7-13)-.326(11-18)+.288(5-12)+.243(6-12)+.233(8-13)
0.002 +.488(7-13)+.427(10-16)+.288(5-12)+.277(10-17)-.275(6-13)-.266(11-17)
0.528 +.489(10-16)+.396(8-13)+.379(10-15)-.352(7-13)+.271(6-12)-.220(11-17)
0.018 +.428(7-13)+.381(5-13)-.380(10-18)+.322(10-16)-.276(5-12)-.206(7-17)



TABLE 2.4c - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZ(a,c)ANTHRACENE

COMPOSITE SYSTEM (IVa) WITH g = -1.000 EV
RS

Excitation 
Energy (ev) CI Excited State Wave Functions

3.442 0.000 +.658(11-13)+.657(10-12)
3.559 0.288 +.943(11-12)-.263(10-13)
3.890 0.000 -.569(11-14)+.563(9-12)-.272(10-14)-.270(9-13)-.184(11-15)+.177(8-12)
4.099 0.809 -.514(10-12)+.508(11-13)-.416(9-13)-.410(11-14)+.190(9-14)+.173(10-13)
4.245 0.585 +.511(9-12)+.502(11-14)+.394(11-13)-.390(10-12)-.209(9-14)-.168(11-15)
4.338 0.000 +.398(11-16)-.395(7-12)-.332(10-14)-.322(9-13)+.298(8-13)+.297(10-15)
4.744 1.206 -.804(10-13)+.323(11-15)+.266(8-12)-.224(11-12)-.166(10-12)+.160(11-13)
4.809 0.002 -.617(8-12)+.612(11-15)+.208(9-12)-.202(11-14)
5.012 0.047 +.529(8-12)+.505(11-15)-.490(9-14)+.344(10-13)
5.094 0.701 -.570(9-13)+.535(10-14)+.235(9-14)+.189(6-12)-.181(10-12)+.178(10-15)
5.178 0.000 -.509(10-14)-.494(9-13)-.299(11-16)+.289(7-12)-.199(10-15)-.191 (8-13)
5.256 0.075 -.730(9-14)-.288(10-13)+.276(10-14)-.259(9-13)-.215(11-15)-.211(8-12)
5.379 0.001 -.438(11-17)+.400(6-12)-.390(11-16)+.345(7-12)+.310(8-13)+.295(10-15)
5.513 0.000 +.422(5-12)-.420(11-18)-.314(8-16)+.313(5-15)+.283(10-17)+.281(6-13)
5.665 0.481 -.649(7-12)-.604(11-16)-.218(10-15)+.163(8-13)
5.751 0.004 -. 459(10-15)-.394(8-13)-.358(11-17)+.340(6-12)+.267(11-18)+.259(11-16)
5.865 0.134 -.533(9-15)-.340(10-15)-.329(8-14)+.324(8-13)+.264(7-12)-.236(6-12)
5.909 0.191 +.493(8-14)-.405(11-18)+.397(11-17)-.371(10-15)+.302(6-12)-.159(7-13)
5.928 0.157 -.519(8-13)-.374(9-15)+.344(5-12)-.298(6-12)+.277(8-14)-.259(10-16)
6.066 0.233 +.469(10-16)-.448(7-13)+.330(5-12)+.312(11-18)-.305(9-16)-.279(7-14)
6.107 0.004 -.432(7-13)-.376(10-16)-.332(11-17)+.331(6-12)-.250(8-14)+.248(9-15)
6.240 0.009 -.405(10-18)-.404(10-16)-.395(5-13)-.359(7-13)+.214(11-18)-.198(5-12)
6.318 0.653 -.398(8-14)-.333(9-15)+.318(10-15)-.297(8-13)-.256(5-12)-.253(7-13)
6.442 0.070 +.406(7-14)-.348(11-18)+.339(5-14)-.308(11-17)+.295(10-16)+.223(9-15)
6.478 0.084 + .413(5-12)-.402(9-16)+.337(7-13)+.333(6-12)-.278(9-18)+.264(7-14) g



TABLE 2.4d - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZ(a,c)ANTHRACENE

COMPOSITE SYSTEM (IVb) WITH B = 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.714 0.000 -.690(11-13)+.680(10-12)+.167(8-18)-.167(5-15)
4.244 0.002 +.720(11-12)+.669(10-13)
4.640 0.000 -.593(11-15)-.593(8-12)-.215(11-16)+.215(7-12)+.214(10-17)-.214(6-13)
4.640 0.000 -.593(10-15)-.593(8-13)+.215(11-17)-.215(6-12)+.215(10-16)-.215(7-13)
4.727 0.178 +.720(9-14)+.557(10-13)-.379(11-12)
4.733 0.000 +.914(11-14)+.306(5-14)+.267(6-14)
4.733 0.000 +.914(9-12)-.306(9-18)+.267(9-17)
4.777 0.000 +.817(9-13)+.506(9-15)+.278(9-16)
4.777 0.000 -.817(10-14)+.506(8-14)-.278(7-14)
4.881 1.895 -.659(11-13)-.659(10-12)-.241(11-15)+.241(8-12)
5.023 1.894 -.616(9-14)=.497(11-12)+.404(10-13)-.297(10-15)+.297(8-13)
5.357 0.044 -.644(11-15)+.644(8-12)+.234(11-13)+.234(10-12)
5.372 0.154 -.615(10-15)+.615(8-13)+.266(11-12)-.250(10-13)+.164(9-14)
5.926 0.000 +.432(11-16)-.432(7-12)-.429(10-17)+.429(6-13)-.348(11-15)-.348(8-12)
5.926 0.000 -.431 (11-17)+.431 (6-12)-.430(10-16)+.430(7-13)-.348(10-15)-.348(8-13)
6.001 0.006 -.934(8-15)+.176(10-16)+.176(7-13)
6.019 0.000 -.487(10-17)+.487(6-13)-.485(11-16)+.485(7-12)
6.097 0.000 +.791(9-15)-.568(9-13)+.229(9-16)
6.097 0.000 +.791(8-14)+.568(10-14)-.229(7-14)
6.136 0.000 +707(9-19)-.707(4-14)
6.212 0.000 + .500(10-16)-.500(7-13)-.500(11-17)+.500(6-12)
6.251 0.059 -.455(11-16)-.455(7-12)+.452(10-17)+.452(6-13)+.197(10-18)-.197(5-13)
6.271 0.016 +.495(10-16)+.495(7-13)+.418(11-17)+.418(6-12)-.160(8-16)+.160(7-15)
6.452 0.005 +.518(11-17)+.518(6-12)-.418(10-16)-.418(7-13)-.302(8-15)

o -------------------------------------------------------------------------------------------------------------------------------- <n



TABLE 2.4e - WAVE FUNCTIONS AND EXCITATION ENERGIES OF DIBENZ(a,c)ANTHRACENE

COMPOSITE SYSTEM (IVb) WITH B = -1.000 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.673
4.073
4.374
4.510
4.534
4.573
4.844
4.846
5.014
5.168
5.290
5.472
5.659
5.716
5.822
5.876
6.030
6.158
6.210
6.211
6.226
6.322
6.341
6.357

0.000 -.638(11-13)-.638(10-12)-.229(10-14)+.229(9-13)
0.047 -.807(11-12)+.543(10-13)
0.000 +.572(10-14)-.572(9-13)-.281(11016)+.281(7-12)
1.697 -.666(11-13)+.666(10-12)
0.007 +.643(11-14)-.643(9-12)-.270(10-13)-.198(11-12)
0.000 -.434(11-14)-.434(9-12)+.321(11-15)-.321(8-12)-.319(9-15)-.319(8-14)
1.295 -.759(10-13)-.492(11-12)-.257(11-14)+.257(9-12)
0.000 +.535(11-15)-.535(8-12)+.382(9-12)+.195(9-17)+.195(6-14)
0.000 +.565(10-15)+.565(8-13)-.203(9-16)-.203(7-14)+.201(8-16)-.201(7-15)
0.528 -.597(9-14)-.542(11-15)-.542(8-12)
0.385 +.670(10-14)+.670(9-13)-.168(11-13)+.168(10-12)
0.002 -.662(10-15)+.662(8-13)-.161(11-18)+.161(5-12)
0.107 -.610(9-15)+.610(8-14)-.197(10-16)+.197(7-13)
0.000 +.447(11-17)-.447(6-12)-.336(11-14)-.336(9-12)+.213(11-15)-.213(8-12)
0.186 +.664(9-14)-.396(8-15)-.394(11-15)-.394(8-12)-.164(10-13)
0.000 -.573(11-16)+.572(7-12)+.234(10-15)+.234(8-13)-.219(10-14)+.219(9-13)
0.000 +.621(10-17)+.621(6-13)-.227(11-16)+.227(7-12)-.205(10-15)-.205(8-13)
0.000 +.571(10-16)+.571(7-13)+.280(11-17)-.280(6-12)-.204(10-18)+.204(5-13)
0.041 +.555(11-16)+.555(7-12)+.390(10-17)-.390(6-13)
0.044 -.499(11-17)-.499(6-12)+.430(10-16)-.430(7-13)-.165(8-17)-.165(6-15)
0.000 -.492(11-18)-.492(5-12)-.371(9-16)-.371(7-14)+.175(11-13)+.175(10-12)
0.031 -.652(8-13)+.344(9-17)-.344(6-14)-.273(10-16)+.273(7-13)-.211(9-14)
0.000 +.398(11-17)-.398(6-12)-.396(9-15)-.396(8-14)-.248(10-18)+.248(5-13)
0.309 +.475(11-18)-.475(5-12)+.265(9-16)-.265(7-14)+.228(11-16)+.228(7-12)

CTj 
cn



TABLE 2.5a - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE (V)

Excitation
Energy (ev) f CI Excited State Wave Functions

3.120 0.997 +.978(10-11)
3.312 0.000 +.671(10-12)+.671(9-11)-.160(10-13)-.160(8-11)
4.199 0.000 +.608(10-14)-.608(7-11)-.254(10-15)-.254(6-11)-.169(9-13)+.169(8-12)
4.225 0.048 -.638(10-14)-.638(7-11)+.210(10-13)-.210(8-11)+.185(10-12)-.185(9-11)
4.419 0.871 -.631 (10-12)+.631(9-11)-.242(10-14)-.242(7-11)-.154(10-13)+.154(8011)
4.424 0.000 -.648(10-13)-.648(8-11)-.177(10-14)+.177(7-11)
4.671 0.000 -.498(10-15)-.498(6-11)-.372(9-13)+.372(8-12)-.294(10-14)+.294(7-11)
4.719 0.662 -.626(10-13)+.626(8-11)+.218(10-12)-.218(9-11)
5.141 1.055 +.915(9-12)
5.263 0.000 +.478(10-16)-.478(5-11)+.440(9-14)+.440(7-12)
5.432 0.000 -.445(9-14)-.445(7-12)+.430(10-16)-.430(5-11)+.188(10-15)+.188(6-11)
5.542 0.046 -.623(10-15)+.623(6-11)-.286(10-16)-.286(5-11)
5.638 0.000 -.300(9-13)+.300(8-12)-.299(9-16)-.299(5-12)+.261(8-15)-.261(6-13)
5.782 0.334 -.521 (10-16)-.521(5-11 )+.323(9-13) + .323(8-13) + .292(10-15)-.292(6-11)
5.973 0.000 -.414(9-13)+.414(8-12)+.296(8-14)+.296(7-13)+.291(10-15)+.291(6-11)
6.031 0.044 -.531(9-14)+.531(7-12)-.314(9-13)-.314(8-12)-.234(10-16)-.234(5-11)
6.146 0.000 -.494(8-14)-.494(7-13)+.312(9-16)+.312(5-12)+.241(7-16)-.241(5-14)
6.244 0.324 +.460(9-13)+.460(8-12)-.415(9-14)+.415(7-12)+.317(7-14)
6.401 0.450 +.516(7014)+.448(9-15)+.448(6-12)-.221(9-13)-.221(8-12)+.178(8-16)
6.448 0.000 +.561(10-18)+.561(3-11)-.343(10-17)+.343(4-11)+.189(9-16)+.189(5-12)



TABLE 2.5b - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Va) WITH 6 = 0.0 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.471
3.533
4.081
4.081
4.398
4.417
4.587
4.996
4.996
5.019
5.070
5.179
5.466
5.516
5.585
6.136
6.141
6.205
6.218
6.259
6.259
6.366

0.000 -.693(10-13)-.693(8-11)
0.919 +.969(10-11)-.222(8-13)
0.000 -.965(9-11)-.215(9-15)
0.000 -.965(10-12)-.215(6-12)
0.000 +.700(10-14)+.700(7-11)
0.000 +.658(10-14)-.658(7-11)+.227(10-16)-.227(5-11)
0.134 +.682(9-12)-.494(10-13)+.494(8-11)
0.000 -.903(9-13)-.403(9-16)
0.000 -.903(8-12)+.403(5-12)
1.109 +.649(9-12)+.478(10-13)-.478(8-11)-.184(8-13)
0.000 -.593(10-15)+.593(6-11)-.384(8-14)-.384(7-13)
0.000 +.526(11-16)-.526(5-11)+.396(8-15)+.396(6-13)-.257(10-14)+.257(7-11)
0.000 +.593(8-14)+.593(7-13)-.382(10-15)+.382(6-11)
0.033 +.674(10-15)+.674(6-11)-.150(8-16)+.150(5-13)
1.603 -.927(8-13)-.201(9-12)-.188(10-11)+.172(7-14)
0.000 -.707(9-17)+.707(4-12)
0.000 -.628(7-15)+.628(6-14)+.233(10-19)+.233(2-11)-.180(8-18)+.180(3-13)
0.004 -.489(8-14)+.489(7-13)-.468(10-16)-.468(5-ll)
0.010 -.488(8-14)+.488(7-13)+.466(10-16)+.466(5-11)+.163(8-15)-. 163(6-13)
0.000 +.987(9-14)
0.000 +;987(7-12)
0.000 -.572(8-15)-.572(6-13)+.415(10-16)-.415(5-11)



TABLE 2.5c - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Va) WITH B = -1.000 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.357
3.419
4.125
4.237
4.376
4.387
4.678
4.809
4.835
5.081
5.260
5.442
5.447
5.542
5.760
6.059
6.061
6.133
6.234
6.417
6.445
6.478

0.966 +.970(10-11)
0.000 -.523(10-12)+.523(9-11)-.454(10-13)+.454(8-11)
0.000 -.488(10-13)+.488(8-11)+.422(10-12)-.422(9-11)-.164(9-13)+.164(8-12)
0.057 -.570(10-12)-.570(9-11)+.323(10-13)+.323(8-11)+.219(10-14)+.219(7-11)
0.003 +.659(10-14)+.659(7-11)+.189(9-11)
0.000 +.642(10-14)-.642(7-11)-.197(10-16)-.197(5-11)
0.595 +.542(10-13)+.542(8-11)+.364(9-12)+.320(10-12)+.320(9-11)
0.710 +.877(9-12)-.214(10-13)-.214(8-11)
0.000 -.506(9-13)+.506(8-12)+.232(10-16)+.232(5-11)-.227(10-15)+.227(6-11)
0.000 +.549(10-15)-.549(6-11)-.280(8-14)+.280(7-13)-.226(9-14)+.226(7-12)
0.000 +.410(10-16)+.410(5-11)+.307(8-15)+.257(9-16)+.257(5-12)
0.000 -.432(9-14)+.432(7-12)-.408(8-14)+.408(7-13)-.335(10-15)+.335(6-11)
0.704 +.505(9-13)+.505(8-12)-.306(10-15)-.306(6-11)-.226(10-16)+.226(5-11)
0.236 -.599(10-15)-.599(6-11)-.266(9-13)-.266(8-12)+.159(8-16)-.159(5-13)
0.571 +.847(8-13)+.252(9-13)+.252(8-12)+.218(7-14)
0.000 -.405(7-15)+.405(6-14)-.365(8-14)+.365(7-13)+.300(9-14)-.300(7-12)
0.004 +.544(10-16)-.544(5-11)-.345(9-14)-.345(7-12)-.209(8-13)+.165(9-15)
0.122 -1535(9-14)-.535(7-12)-.279(10-16)+.279(5-11)-.267(8-14)-.267(7-13)
0.000 -.383(10-16)-.383(5-11)+.366(8-15)-.366(6-13)+.292(9-15)-.292(6-12)
0.173 +.598(8-14)+.598(7-13)-.224(9-14)-.224(7-12)-.223(9-15)-.223(6-12)
0.000 +.437(9-15)-.437(6-12)-.321(10-17)+.321(4-11)+.267(10-18)+.267(3-11)
0.998 -.725(7-14)-.271(9-15)-.271(6-12)-.193(6-15)-.179(10-18)+.179(3-11)



TABLE 2.5d - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Vb) WITH B = 0.0 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.470
3.557
4.247
4.394
4.726
4.754
4.893
4.893
4.970
5.286
5.477
5.558
5.558
5.611
5.713
5.828
5.934
6.096
6.245
6.277

0.000 -.650(10-12)+.650(9-11)-.185(10-13)-.185(8-11)
0.402 -.966(10-11)-.204(9-12)
1.208 +.663(10-12)+.663(9-11)-.188(10-13)+.188(8-11)
0.000 -.468(9-13)-.468(8-12)+.444(10-15)+.444(6-11)-.198(10-13)-.198(8-11)
0.000 +.629(10-13)+.629(8-11)-.175(10-12)+.175(9-11)+.151(10-15)+.151(6-11)
0.640 +.571(9-12)+.521(10-13)-.521(8-11)
0.000 -.921(10-14)-.332(9-14)+.151(6-14)
0.000 +.921(7-11)+.332(7-12)+.151(7-15)
0.439 -.741(9-12)+.380(10-13)-.380(8-ll)+.162(10-12)+.162(9-ll)
0.000 -.418(10-16)-.418(5-11)-.411(10-15)-.411(6-11)-.334(9-13)-.334(8-12)
0.000 +.417(10-17)+.417(4-11)+.391(8-15)-.391(6-13)-.368(9-16)-.358(5-12)
0.000 +.913(7-12)-.347(7-11)
0.000 -.913(9-14)+.347(10-14)
0.536 +.653(10-15)-.653(6-11)+.151(10-16)-.  151(5-11)
0.000 +.432(10-16)+.432(5-11)+.332(10-17)+.332(4-11)-.299(9-13)-.279(8-12)
0.540 +.455(10-16)-.455(5-11)+.446(9-13)-.446(8-!12)+.195(8-13)+.182(10-17)
0.638 +.540(9-15)-.540(6-12)+.261(10-17)-.261(4-11)-.239(9-13)+.239(8-12)
0.000 +.437(9-15)+.437(6-12)-.280(10-16)-.280(5-11)+.279(10-17)+.279(4-11)
0.403 +.445(9-13)-.445(8-12)-.346(10-16)+.346(5-11)+.314(9-15)-.314(6-12)
0.000 -.394(9-12)-.394(4-12)  + .392(9-15) + .392(6-12)-.216(10-17)-.216(4-11)

o



TABLE 2.5e - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Vb) WITH B = -1.000 EV
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.421
3.449
4.276
4.366
4.651
4.759
4.783
4.842
4.934
5.276
5.347
5.457
5.616
5.688
5.817
5.827
6.081
6.123
6.239
6.272
6.488

0.000 -.656(10-12)-.656(9-11)-.183(10-13)+.183(8-11)
0.543 +.970(10-12)-.189(9-12)
1.072 +.632(10-12)-.632(9-11)-.226(10-13)-.226(8-11)+.157(10-14)-.157(7-11)
0.000 +.437(9-13)+.437(8-12)+.413(10-15)-.413(6-11)-.304(10-14)-.304(7-11)
0.000 +.655(10-13)-.655(8-11)-.183)10-12)-.183(9-11)
0.972 +.523(10-13)+.523(8-11)-.391(9-12)-.272(10-14)+.273(7-11)+.214(10-12)
0.000 +.591(10-14)+.591(7-11)+.235(9-13)+.235(8-12)+.186(10-15)-.186(6-11)
0.098 -.536(9-12)+.528(10-14)-.528(7-11)-.150(10-12)+.150(9-11)
0.302 +.651(9-12)+.342(10-13)+.342(8-11)+.285(10-14)-.285(7-11)+.154(10-15)
0.000 -.363(10-16)+.363(5-11)-.362(10-15)+.362(6-11)-.360(9-14)+.360(7-12)
0.000 -.453(9-14)+.453(7-12)+.296(10-16)-.296(5-11)+.198(10-15)-.198(6-11)
0.038 -.490(9-14)-.490(7-12)+.441(10-15)+.441(6-11)-.173(9-12)
0.000 -.384(9-16)-.384(5-12)+.332(8-15)-.332(6-13)+.308(9-14)-.308(7-12)
0.504 +.457(10-15)+.457(6-11)+.433(9-14)+.433(7-12)+.164(10-16)+.164(5-11)
0.000 +.458(10-16)-.458(5-11)+.339(9-13)+.339(8-12)-.298(10-15)+.298(6-11)
0.633 +.461(10-16)+.461(5-11)-.458(9-13)+.457(8-12)-.151(8-13)
0.000 +.421(10-17)-.421(4-11)-.278(9-16)-.278(5-12)-.271(9-15)-.271(6-12)
0.339 -.474(9-15)+.474(6-12)+.268(10-16)+.268(5-11)+.246(9-13)-.246(8-12)
0.365 +.413(9-13)-.413(8-12)+.385(9-15)-.385(6-12)+.276(10-16)+.276(5-11)
0.000 +.475(8-14)+.475(7-13)-.236(9-17)-.236(4-12)-.228(10-17)+.228(4-11)
0.000 -.584(9-15)-.584(6-12)-.265(10-17)+.265(4-11)+.191(10-18)-.191(3-11)



TABLE 2.5f - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Vc) WITH B = 0.0 EV 
RS

Excitation
Energy (ev) f CI Excited State Wave Functions

3.594 0.000 -.685(10-12)-.685(9-11)-.160(8-15)-.160(6-13)
3.773 0.615 -.962(10-11)+.227(9-12)
4.447 0.000 -.525(9-13)-.525(8-12)-.435(10-15)-.435(6-11)
4.774 1.989 +.594(10-12)-.594(9-ll)+.491(9-12)
4.776 0.000 -.667(10-13)+.667(8-11)+.156(9-13)+.156(8-12)
4.797 0.005 -.676(10-13)-.676(8-11)+.193(9-15)+.193(6-12)
5.152 0.687 -.800(9-12)+.362(10-12)-.362(9-11)-.225(10-11)
5.212 0.000 +.990(7-11)
5.212 0.000 +.990(10-14)
5.489 0.000 -.492(9-16)-.492(5-12)-.363(8-15)-.363(6-13)+.269(10-16)-.216(5-11)
5.600 0.235 +.585(9-13)-.585(8-12)-.244(7-14)-.236(10-15)+.236(6-11)+.166(8-13)
5.621 0.000 -.638(10-16) + .638(5-11)-.214(9-16)-.214(5-12)
5.690 0.000 -.513(10-15)-.513(6-11)+.362(9-13)+.362(8-12)+.246(10-17)-.246(4-11)
5.730 0.000 +.813(7-12)-.538(7-13)-.202(7-16)
5.730 0.000 +.813(9-14)+.538(8-14)+.202(5-14)
5.766 0.371 +.546(8-13)+.53)(10-16)+.530(5-11)-.220(9-13)+.220(8-12)
5.914 0.001 +.628(10-15)-.628(6-11)+.270(9-13)-.270(8-12)
6.306 0.210 +.779(8-13)-.390(10-16)-.390(5-11)
6.319 0.000 -.549(10-17)+.549(4-11)+.219(9-15)-.219(6-12)-.214(9-17)-.214(4-12)
6.444 0.000 -.453(9-15)+.453(6-12)+.391(9-17)+.391(4-12)-.308(10-17)+.308(4-11)
6.460 0.000 -.740(7-13)-.549(7-12)-.315(7-16)-. 197(7-15)
6.460 0.000 -.740(8-14)+.549(9-14)-.315(5-14)+.197(6-14)
6.490 0.003 +.615(9-15)+.615(6-12)-.254(8-16)-.254(5-13)+.183(10-13)+.183(8-11)



TABLE 2.5g - WAVE FUNCTIONS AND EXCITATION ENERGIES OF 3.4-BENZOPYRENE

COMPOSITE SYSTEM (Vc) WITH B = -1.000 EV 
RS

Excitation 
Energy (ev) f CI Excited State Wave Functions

3.536
3.615
4.438
4.689
4.712
4.727
4.899
4.955
5.115
5.447
5.576
5.653
5.696
5.793
5.818
5.878
5.967
6.141
6.342
6.360
6.402
6.483

0.000 -.683(10-12)+.683(9-11)+.153(8-15)+.153(6-13)
0.690 -.968(10-11)-.210(9-12)
0.000 -.494(9-13)+.494(8-12)-.412(10-15)-.412(6-11)+.255(10-14)-.255(7-11)
0.000 -.673(10-13)+.673(8-11)
0.104 -.595(10-13)-.595(8-11)+.324(10-14)+.324(7-11)
1.583 +.608(10-12)+.608(9-11)+.193(10-13)+.193(8-11)+,153(10-14)+.153(7-11)
0.330 -.571(10-14)-.571(7-11)-.263(10-13)-.263(8-11)+.247(10-12)+.247(9-11)
0.000 +.645(10-14)-.645(7-11)+.196(9-13)-.196(8-12)
0.828 +.894(9-12)-.211(10-11)+.209(10-12)+.209(9-11)
0.000 +.391 (9-14)-.391(7-12)-.340(10-16)+.340(5-11)-.319(9-16)+.319(5-12)
0.000 -.472(10-16)+.472(5-11 )+.306(9-16)-.306(5-12)+.252(10-15)+. 252(6-11)
0.000 +.460(9-14)-.460(7-12)-.347(8-14)+.347(7-13)+.279(10-16)-.279(5-11)
0.121 +.446(9-13)+.446(8-12)+.328(10-16)+.328(5-11)-.267(10-15)+.267(6-11)
0.000 -.452(10-15)-.452(6-11)+.345(9-13)-.345(8-12)-.254(10-16)+.254(5-11)
0.148 +.413(9-13)+.413(8-12)-.408(8-13)-.399(10-16)-.399(5-11)-.181(7-14)
0.121 -.600(10-15)+.600(6-11)-.239(10-16)-.239(5-11)-.230(8-13)-.157(7-14)
0.014 -.485(9-14)-.485(7-12)+.348(8-14)+.348(7-13)+.236(9-13)+.236(8-12)
0.000 -.451(8-14)+.451(7-13)-.262(9-14)+.262(7-12)+.222(7-16)-.222(5-14)
0.245 +.671(8-13)+.351(8-14)+.351(7-13)-.293(10-16)-.293(5-11)+.194(9-14)
0.000 +.648(10-17)-.648(4-11)-.157(8-16)+.157(5-13)
0.277 +.414(8-13)-.371(8-14)-.371(7-13)-.322(9-14)-.322(7-12)-.221(10-16)
0.040 -.596(9-15)+.596(6-12)+.265(8-16)+.265(5-13)+.184(7-14)-.156(10-13)



TABLE 2.6 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR BENZ(a)NAPTHACENE

AND ITS COMPOSITE SYSTEMS

(I)
Composite System Composite System Composite System

(la), gRS = 0.0 ev (la), gRS = -1.000 ev (lb), gRS = 0.0 ev

-14.812 -14.709 -14.721 -14.750
-14.273 -13.986 -14.032 -13.951
-13.387 -12.848 -13.024 -12.822
-12.463 -12.491* -12.475 -12.491*
-12.021 -12.035 -12.009 -12.049
-11.661 -11.460 -11.468 -11.586
-11.118 -11.245 -11.219 -11.063
-10.776 -10.391 -10.497 -10.546
-10.116 -10.009 -10.052 - 9.823*
- 9.682 - 9.823* - 9.741 - 9.756
- 8.581 - 8.490 - 8.507 - 8.982

—• ■ ■ * — — «—
- 3.419 - 3.510 - 3.493 - 3.018
- 2.318 - 2.177* - 2.259 - 2.244
- 1.884 - 1.991 - 1.948 - 2.177*
- 1.224 - 1.609 - 1.503 - 1.454
- 0.882 - 0.755 - 0.781 - 0.937
- 0.339 - 0.540 - 0.532 - 0.414
+ 0.021 + 0.035 + 0.009 + 0.049
+ 0.463 + 0.491* + 0.475 + 0.491*
+ 1.387 + 0.848 + 1.024 + 0.822
+ 2.273 + 1.986 + 2.032 + 1.951
+ 2.812 + 2.709 + 2.721 + 2.750



TABLE 2.6 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR BENZ (a)NAPTHACENE

AND ITS COMPOSITE SYSTEMS (CONTINUED)

Composite System Composite System Composite System
(lb), gRS = -1.000 ev (Ic), gRS = 0.0 ev (Ic), gRS = -1.000 ev

-14.756 -14.579 -14.603
-13.998 -13.879* -13.991
-13.011 -13.482 -13.446
-12.473 -11.887* -12.112
-12.004 -11.878 -11.897
-11.580 -11.861 -11.716
-11.043 -10.675 -10.858
-10.629 -10.666* -10.657
- 9.962 -10.438 -10.300
- 9.692 - 9.770* - 9.779
- 8.864 - 8.891 - 8.812

- 3.137 - 3.109 - 3.188
- 2.308 - 2.230* - 2.221
- 2.038 - 1.562 - 1.700
- 1.371 - 1.334* - 1.343
- 0.957 - 1.325 - 1.142
- 0.420 - 0.139 - 0.284
+ 0.004 - 0.122 - 0.103
+ 0.473 - 0.113* + 0.112
+ 1.011 + 1.482 + 1.446
+ 1.998 + 1.879* + 1.991
+ 2.756 + 2.579 + 2.603



TABLE 2.7 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR BENZO(b)CHRYSENE

AND ITS COMPOSITE SYSTEMS

(II)
Composite System 

(Ila), gRS = 0.0 ev
Composite System 

(Ila), gRS = -1.000 ev
Composite System 

(lib), brs = 0.0 ev

-14.850 -14.750 -14.762 -14.785
-14.247 -13.951 -13.997 -13.931
-13.382 -12.822 -13.017 -12.688
-12.379 -12.491* -12.431 -12.491*
-12.065 -12.049 -12.034 -12.230
-11.703 -11.586 -11.596 -11.460
-11.025 -11.063 -11.028 -11.189
-10.884 -10.546 -10.649 -10.307
- 9.997 - 9.824* - 9.884 - 9.904
- 0.750 - 91756 - 9.723 - 9.823*
- 8.809 - 8.982 - 8.929 - 9.162

------ - ----- - -----
- 3.191 - 3.018 - 3.071 - 2.838
- 2.250 - 2.244 - 2.277 - 2.177*
- 2.003 - 2.176* - 2.116 2.096
- 1.116 - 1.454 - 1.351 - 1.693
- 0.975 - 0.937 - 0.972 - 0.811
- 0.297 - 0.414 - 0.404 - 0.540
+ 0.065 + 0.049 + 0.034 + 0.230
+ 0.379 + 0.491* + 0.431 + 0.491*
+ 1.382 + 0.822 + 1.017 + 0.688
+ 2.247 + 1.951 + 1.997 + 1.931
+ 2.850 + 2.750 + 2.762 + 2.785



TABLE 2.7 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR BENZO(b)CHRYSENE

AND ITS COMPOSITE SYSTEMS (CONTINUED)

Composite System Composite System Composite System
(lib), bd<: = -1.000 ev Ko (lie), gRS = 0.0 ev (lie), = -1.000 ev

-14.792 -14.579 -14.611
-13.975 -13.879* -13.987
-12.963 -13.482 -13.444
-12.389 -11.888* -12.074
-12.173 -11.878 -11.897
-11.486 -11.861 -11.760
-11.140 -10.675 -10.844
-10.481 -10.666* -10.670
- 9.955 -10.438 -10.292
- 9.761 - 9.770* - 9.758
- 9.056 - 8.891 - 8.867

- 2.944 - 3.109 - 3.133
- 2.239 - 2.230* - 2.242
- 2.045 - 1.562 - 1.708
- 1.519 - 1.334 - 1.330
- 0.860 - 1.325 - 1.156
- 0.514 - 0.139 - 0.240
+ 0.173 - 0.122 - 0.103
+ 0.389 - 0.112* + 0.074
+ 0.963 + 1.482 + 1.444
+ 1.975 + 1.879* + 1.987
+ 2.792 + 2.579 + 2.611



TABLE 2.8 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR DIBENZO(b,g)PHENANTHRENE

AND ITS COMPOSITE SYSTEMS

Composite System Composite System Composite System
(III) (Illa), brs = 0.0 ev (Illa), BDc = -1.00 ev KD (Illb), gRS = 0.0 ev

-14.868 -14.750 -14.765 -14.803
-14.209 -13.951 -13.991 -13.861
-13.388 -12.822 -13.001 -12.870
-12.489 -12.491* -12.489 -12.491*
-11.994 -12.049 -12.005 -11.883
-11.610 -11.586 -11.552 -11.818
-11.218 -11.063 -11.091 -10.882
-10.733 -10.546 -10.605 -10.646
=10.152 - 9.823* - 9.985 - 9.823*
- 9.567 - 9.756 - 9.615 - 9.576
- 8.867 - 8.982 - 8.952 - 9.317

- 3.133 - 3.018 - 3.048 - 2.683
- 2.433 - 2.244 - 2.385 - 2.424
- 1.848 - 2.177* - 2.015 - 2.177*
- 1.267 - 1.454 - 1.395 - 1.354
- 0.782 - 0.937 - 0.809 - 1.118
- 0.390 - 0.414 - 0.448 - 0.182
- 0.006 + 0.049 + 0.005 - 0.117
+ 0.489 + 0.491* + 0.489 + 0.491*
+ 1.383 + 0.822 + 1.001 + 0.870
+ 2.209 + 1.951 + 1.991 + 1.861
+ 2.868 + 2.750 + 2.764 + 2.803



TABLE 2.8 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR DIBENZO(b,g)PHENANTHRENE

AND ITS COMPOSITE SYSTEMS (CONTINUED)

Composite System 
(Illb), 6D<: = -1.000 ev Ku

Composite System 
(IIIc), gRS = 0.0 ev

Composite System 
(IIIc), gDC. = -1.000 ev Ku

-14.810 -14.579 -14.616
-13.909 -13.879* -13.977
-13.042 -13.483 -13.446
-12.490 -11.888* -12.117
-11.853 -11.878 -11.894
-11.775 -11.861 -11.708
-10.878 -10.675 -10.926
-10.731 -10.666* -10.519
- 9.969 -10.438 -10.411
- 9.550 - 9.770* - 9.709
- 9.163 - 8.891 - 8.882

- 2.837 - 3.109 - 3.118
- 2.450 - 2.230* - 2.291
- 2.031 - 1.562 - 1.589
- 1.269 - 1.334* - 1.481
- 1.122 - 1.325 - 1.074
- 0.225 - 0.139 - 0.292
- 0.147 - 0.122 - 0.106
+ 0.490 - 0.112* + 0.117
+ 1.042 + 1.482 + 1.446
+ 1.909 + 1.879* + 1.977
+ 2.810 + 2.579 + 2.616



TABLE 2.9 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR DIBENZ(a,c)ANTHRACENE

AND ITS COMPOSITE SYSTEMS

Composite System Composite System Composite System
(IV) (IVa), gRS = 0.0 ev (IVa), = -1.00 evKo (IVb), f3RS = 0.0 ev

-14.923 -14.750 -14.774 -14.856
-14.073 -13.951 -13.969 -13.436
-13.442 -12.822 -12.979 -13.436
-12.711 -12.491* -12.613 -12.491*
-11.751 -12.049 -11.887 -11.637
-11.526 -11.586 -11.569 -11.428
-11.145 -11.063 -11.066 -11.428
-10.901 -10.546 -10.637 -10.348
-10.029 - 9.823* - 9.902 - 9.823*
- 9.686 - 9.756 - 9.689 - 9.625
- 9.115 - 8.982 - 9.008 - 9.625

— — — — - — — — - — — --

- 2.885 - 3.018 - 2.992 - 2.375
- 2.314 - 2.244 - 2.311 - 2.375
- 1.971 - 2.177* - 2.098 - 2.177*
- 1.099 - 1.454 - 1.363 - 1.652
- 0.855 - 0.937 - 0.934 - 0.572
- 0.474 - 0.414 - 0.431 - 0.572
- 0.249 + 0.049 - 0.113 - 0.363
+ 0.711 + 0.491* + 0.613 + 0.491*
+ 1.442 + 0.822 + 0.979 + 1.436
+ 2/-73 + 1.951 + 1.969 + 1.436
+ 2.923 + 2.750 + 2.774 + 2.856

co 
o



TABLE 2.9 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR DIBENZ(a,c)ANTHRACENE

AND ITS COMPOSITE SYSTEMS (CONTINUED)

Composite System 
(IVb), = -I.OOO ev KO

-14.864
-13.567
-13.437
-12.580
-11.573
-11.471
-11.365
-10.500
- 9.949
- 9.633
- 9.406

- 2.594
- 2.367
- 2.051
- 1.500
- 0.635
- 0.529
- 0.427 
+ 0.580 
+ 1.437 
+ 1.567
+ 2.864

00



TABLE 2.10 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR 3.4-BENZOPYRENE

AND ITS COMPOSITE SYSTEMS

Composite System Composite System Composite System
(V) (Va), gRS = 0.0 ev (Va), gRS = -1.000 ev (Vb), brs = 0.0 ev

-14.976 -14.872 -14.886 -14.750
-14.015 -13.478 -13.582 -13.951
-13.017 -12.942 -12.961 -12.822
-12.750 -12.491* -12.593 -12.049
-11.669 -11.681 -11.589 -11.586
-11.257 -11.262 -11.289 -11.063
-10.700 -10.706 -10.705 -10.957*
-10.551 -10.122 -10.231 -10.546
- 9.931 - 9.823* - 9.848 - 9.756
- 8.634 - 8.889 - 8.807 - 8.982
— —— — —- — — — — — - — — — —
- 3.366 - 3.111 - 3.193 - 3.018
- 2.069 - 2.177* - 2.152 - 2.244
- 1.449 - 1.878 - 1.769 - 1.454
- 1.300 - 1.294 - 1.295 - 1.043*
- 0.743 - 0.728 - 0.711 - 0.937
- 0.331 - 0.319 - 0.411 - 0.414
+ 0.750 + 0.491* + 0.593 + 0.049
+ 1.017 + 0.942 + 0.961 + 0.822
+ 2.015 + 1.478 + 1.582 + 1.951
+ 2.976 + 2.872 + 2.886 + 2.750

00 
ro



TABLE 2.10 - ENERGIES (ev) OF SCF MOLECULAR ORBITALS FOR 3.4-BENZOPYRENE

AND ITS COMPOSITE SYSTEMS (CONTINUED)

Composite System Composite System Composite System
(Vb), eDC = -1.000 ev KD (Vc), gRS = 0.0 ev (Vc), bdc = -1.000 ev Ku

-14.786 -14.785 -14.815
-13.962 -13.931 -13.945
-12.838 -12.688 -12.702
-12.272 -12.231 -12.423
-11.597 -11.460 -11.523
-11.126 -11.189 -11.222
-10.835 -10.956* -10.839
-10.547 -10.307 -10.348
- 9.771 - 9.904 - 9.912
- 9.914 - 9.163 - 9.045

- 3.086 - 2.837 - 2.955
- 2.229 - 2.096 - 2.088
- 1.453 - 1.693 - 1.652
- 1.165 - 1.044* - 1.161
- 0.874 - 0.811 - 0.778
- 0.403 - 0.540 - 0.477
+ 0.272 + 0.231 + 0.423
+ 0.838 + 0.688 + 0.702
+ 1.962 + 1.931 + 1.945
+ 2.786 + 2.785 + 2.815

co
CO



TABLE 2.11 - AE VALUES FOR VARIOUS COMPOSITE SYSTEMS

Molecules Divided by 2 Bonds Molecules Divided by 2 Bonds

With |3r$=0.000 ev With Br$=-1.000 ev

Molecule AE Molecule AE

(la) 1 .2356 (la) 0.6744
(lb) 1.4830 (lb) 0.7166
(Ic) 2.0536 (Ic) 0.8950

(Ha) 1.2288 (Ha) 0.6046
(lib) 2.3690 (Hb) 1.1008
(He) 1.7830 (He) 0.8438

(Ilia) 1.2304 (Ilia) 0.5564
(IHb) 1.7514 (IHb) 0.9878
(Hie) 2.1288 (Hie) 0.9964

(IVa) 1.5372 (IVa) 0.7624
(IVb) 2.3488 (IVb) 1.2302

(Va) 1.2642 (Va) 0.7392
(Vb) 1.6948 (Vb) 0.8880
(Vc) 1.7502 (Vc) 0.9794

co



TABLE 2.12a - AP FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (la) WITH = 0.0 ev
Ko

0.0000 -0.0380 0.0000 -0.0063 0.0000 -0.0054 0.0000 +0.0126 0.0000 -0.0274
0.0000 +0.0185 0.0000 -0.0607 0.0000 +0.0396 0.0000 +0.0395 0.0000 -0.0432
0.0000

+0.0183

+0.0665
0.0000
0.0000

-0.0259
-0.0224

0.0000
0.0000

-0.0077
-0.0216

0.0000
0.0000

+0.0040
+0.0292

0.0000
0.0000

-0.0112
-0.0114

0.0000
0.0000

+0.0192

0.0000

0.0000

-0.0088
0.0000
0.0000

-0.0121
+0.0284

0.0000
0.0000

+0.0080
-0.0188

0.0000
0.0000

-0.0179
-0.0160

0.0000
0.0000

+0.0133
+0.0169

0.0000

-0.0048

-0.0183

0.0000 +0.0062
0.0000
0.0000

+0.0084
+0.0063

0.0000
0.0000

-0.0014
-0.0084

0.0000
0.0000

+0.0037
+0.0031

0.0000
0.0000

-0.0045

0.0000

0.0000

+0.0044 0.0000 -0.0147
0.0000
0.0000

-o.oin
+0.0099

0.0000
0.0000

+0.0088
+0.0079

0.0000
0.0000

-0.0059
-0.0082

0.0000

+0.0076

+0.0076

0.0000 -0.0083 0.0000 -0.0086
0.0000
0.0000

+0.0084
+0.0089

0.0000
0.0000

-0.0080
-0.0022

0.0000
0.0000

+0.0040

0.0000

0.0000

-0.0054 0.0000 +0.0162 0.0000 -0.0096
0.0000
0.0000

-0.0132
-0.0073

0.0000
0.0000

+0.0074
+0.0073

0.0000

-0.0197

-0.0056

0.0000 +0.0184 0.0000 +0.0174 0.0000 -0.0162
0.0000
0.0000

+0.0285
+0.0033

0.0000
0.0000

-0.0075

0.0000

0.0000

+0.0243 0.0000 -0.0646 0.0000 +0.0346 0.0000 +0.0271
0.0000
0.0000

-0.0438
-0.0260

0.0000

+0.0792

+0.0203

0.0000 -0.0544 0.0000 -0.0418 0.0000 +0.0317 0.0000 -0.0020
0.0000
0.0000

+0.0160

0.0000

0.0000

-0.0937 0.0000 +0.2700 0.0000 -0.1176 0.0000 -0.0998 0.0000 +0.0821 CO

0.0000

-0.0206

-0.0492

0.0000
0.0000

+0.2412 0.0000 +0.1176 0.0000 -0.0409 0.0000 -0.0276 0.0000

(JI



TABLE 2.12a - AP FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (la) WITH = 0.0 ev (CONTINUED)

+0.1164 0.0000
0.0000 +0.5810 0.0000 -0.0935 0.0000 -0.0392 0.0000

0.0000 -0.6212 0.0000 +0.4922 0.0000 -0.1743
0.0000 +0.0632

0.0000 +0.5696 0.0000 +0.1356 0.0000
-0.0851 0.0000

0.0000 -3.8655 0.0000 +0.2655
0.0000 -0.0885

0.0000 +0.2750 0.0000
-0.1155 0.0000

0.0000 -0.1425
0.0000 +0.0386

0.0000
+0.1436 0.0000

0.0000 -0.0918

0.0000

CO 
Ch



TABLE 2.12b - aF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (la) WITH = -1.000 ev
— Ko

0.0000 -0.0285 0.0000 +0.0049 0.0000 -0.0041 0.0000 +0.0094 0.0000 -0.0206
0.0000 +0.0140 0.0000 -0.0289 0.0000 +0.0157 0.0000 +0.0305 0.0000 -0.0329
0.0000 +0.0507

0.0000 +0.0195 0.0000 -0.0060 0.0000 +0.0031 0.0000 -0.0028 0.0000
+0.0137 0.0000 -0.0170 0.0000 -0.0077 0.0000 +0.0134 0.0000 -0.0085 0.0000
+0.0146

0.0000

0.0000

-0.0068
0.0000
0.0000

-0.0095
+0.0251

0.0000
0.0000

+0.0063
-0.0074

0.0000
0.0000

-0.0132
-0.0124

0.0000
0.0000

+0.0101
+0.0130

0.0000

-0.0037

-0.0137

0.0000 +0.0046
0.0000
0.0000

+0.0069
+0.0022

0.0000
0.0000

-0.0010
-0.0038

0.0000
0.0000

+0.0029
+0.0023

0.0000
0.0000

-0.0033

0.0000

0.0000

+0.0033 0.0000 -0.0069
0.0000
0.0000

-0.0084
+0.0038

0.0000
0.0000

+0.0063
+0.0062

0.0000
0.0000

-0.0045
-0.0063

0.0000

+0.0058

+0.0058

0.0000 -0.0063 0.0000 -0.0030
0.0000
0.0000

+0.0063
+0.0040

0.0000
0.0000

-0.0060
-0.0017

0.0000
0.0000

+0.0030

0.0000

0.0000

-0.0041 0.0000 +0.0076 0.0000 -0.0038
0.0000
0.0000

-0.0100
-0.0057

0.0000
0.0000

+0.0057
+0.0055

0.0000

-0.0252

-0.0044

0.0000 +0.0141 0.0000 +0.0063 0.0000 -0.0073
0.0000
0.0000

+0.0216
+0.0025

0.0000
0.0000

-0.0056

0.0000

0.0000

+0.0183 0.0000 -0.0303 0.0000 +0.0138 0.0000 +0.0209
0.0000
0.0000

-0.0333
-0.0199

0.0000

+0.0602

+0.0155

0.0000 -0.0415 0.0000 -0.0154 0.0000 +0.0141 0.0000 -0.0014
0.0000
0.0000

+0.0119

0.0000

0.0000

-0.0950 0.0000 +0.1305 0.0000 -0.0483 0.0000 -0.0775 0.0000 +0.0632



0.0000

TABLE 2.12b - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (la) WITH eRS = -1.000 ev (CONTINUED)

0.0000 -0.0380

-0.0153
0.0000
0.0000

+0.1858 0.0000 +0.0461 0.0000 -0.0177 0.0000 -0.0213 0.0000

0.0000 +0.0569
0.0000 -2.1335 0.0000 +0.2142 0.0000 +0.4005 0.0000 -0.1674

+0.0558 0.0000
0.0000 +0.4517 0.0000 -0.0802 0.0000 -0.0172 0.0000

0.0000 +0.0236
0.0000 -0.4692 0.0000 +0.2138 0.0000 -0.0693

-0.0334 0.0000
0.0000 +0.4444 0.0000 +0.0535 0.0000

0.0000 +0.0414
0.0000 -2.1255 0.0000 +0.1287

-0.0889 0.0000
0.0000 +0.2127 0.0000

0.0000 +0.0292
0.0000 -0.1082

+0.1093 0.0000
0.0000

0.0000 -0.0691
00 
co



TABLE 2.12c - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (lb) WITH = 0.0 evKu

0.0000 -0.1853 0.0000 +0.1648 0.0000 -0.1194 0.0000 +0.3300 0.0000 +0.0908
0.0000 -0.0387 0.0000 +0.0086 0.0000 -0.0054 0.0000 +0.0090 0.0000 -0.0092
0.0000

-0.0278

+0.0860
0.0000
0.0000

+0.3441
+0.0039

0.0000
0.0000

+0.2792
-0.0049

0.0000
0.0000

-0.1493
+0.0069

0.0000
0.0000

+0.0799
-0.0184

0.0000
0.0000

+0.0458

0.0000

0.0000

+0.0280
0.0000
0.0000

-3.6574
-0.0073

0.0000
0.0000

+0.3764
+0.0047

0.0000
0.0000

+0.2064
-0.0073

0.0000
0.0000

-0.0753
+0.0076

0.0000

+0.0382

-0.0529

0.0000 -0.0052
0.0000
0.0000

+0.4096
+0.0063

0.0000
0.0000

-0.0499
-0.0084

0.0000
0.0000

-0.1496
+0.0218

0.0000
0.0000

-0.0494

0.0000

0.0000

+0.0488 0.0000 -0.0147
0.0000
0.0000

-0.4354
+0.0099

0.0000
0.0000

+0.3764
-0.0133

0.0000
0.0000

-0.1199
+0.0105

0.0000

-0.647

-0.0647

0.0000 +0.0104 0.0000 -0.0086
0.0000
0.0000

+0.4095
+0.0089

0.0000
0.0000

+0.2789
-0.0236

0.0000
0.0000

+0.0483

0.0000

0.0000

-0.0504 0.0000 +0.0162 0.0000 -0.0096
0.0000
0.0000

-3.6486
+0.0114

0.0000
0.0000

+0.1659
-0.0041

0.0000

-0.0529

+0.0374

0.0000 +0.0070 0.0000 -0.0044 0.0000 +0.0041
0.0000
0.0000

+0.3446
-0.0124

0.0000
0.0000

+0.0278

0.0000

0.0000

+0.0466 0.0000 -0.0140 0.0000 +0.0077 0.0000 -0.0093
0.0000
0.0000

-0.1863
+0.0027

0.0000

+0.0876

-0.0272

0.0000 -0.0089 0.0000 +0.0052 0.0000 -0.0054 0.0000 +0.0154
0.0000
0.0000

-0.0384

0.0000

0.0000

-0.0570 0.0000 +0.0143 0.0000 -0.0065 0.0000 +0.0077 0.0000 -0.0003 CO



TABLE 2.12c - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (lb) WITH gDC = 0.0 ev (CONTINUED) ---  Ku

0.0000 +0.0112

0.0000 +0.0153 0.0000 -0.0072 0.0000 +0.0077 0.0000 -0.0220 0.0000
+0.0512 0.0000

0.0000 -0.0090 0.0000 +0.0035 0.0000 -0.0026 0.0000 -0.0028
0.0000 -0.0014

0.0000 +0.0079 0.0000 -0.0038 0.0000 _0.0069 0.0000
-0.0094 0.0000

0.0000 -0.0074 0.0000 +0.0038 0.0000 -0.0005
0.0000 +0.0031

0.0000 +0.0084 0.0000 -0.0066 0.0000
+0.0063 0.0000

0.0000 -0.0095 0.0000 +0.0026
0.0000 -0.0179

0.0000 +0.0164 0.0000
-0.0126 0.0000

0.0000 -0.0106
0.0000 +0.0166

0.0000
+0.0158 0.0000

0.0000 -0.0559

0.0000
LD 
O



TABLE 2.12d - AP FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (lb) WITH = -1.000 evKO

0.0000 -0.1483 0.0000 +0.0890 0.0000 -0.0509 0.0000 -0.0635 0.0000 +0.0734
0.0000 -0.0310
0.0000 +0.0691

0.0000

0.0000

+0.2749

+0.0070

0.0000

0.0000

+0.1285

-0.0043

0.0000

0.0000 +0.0072 0.0000 -0.0074

-0.0778 0.0000 +0.0628 0.0000
-0.0220 0.0000
+0.0366 0.0000

+0.0031

0.0000

0.0000

-2.0448

-0.0038

0.0000

0.0000

+0.1925

+0.0055 0.0000 -0.0145 0.0000

0.0000 +0.1673 0.0000 -0.0610
0.0000 +0.0228
0.0000 -0.0423

0.0000 -0.0059

0.0000

0.0000

+0.3288

+0.0038

0.0000

0.0000 -0.0059 0.0000 +0.0060

-0.0433 0.0000 -0.0781 0.0000
+0.0204 0.0000
-0.0267 0.0000

-0.0028 0.0000 +0.0034

0.0000

0.0000

-0.3447

-0.0045 0.0000 +0.0117 0.0000

0.0000 +0.1922 0.0000 -0.0592
0.0000 +0.0236
0.0000 -0.3000

0.0000 -0.0071 0.0000 +0.0047

0.0000

0.0000 -0.0063 0.0000 +0.0048

+0.3283 0.0000 +0.1285 0.0000
-0.0300 0.0000
+0.0234 0.0000

+0.0048 0.0000 -0.0042 0.0000 +0.0043 0.0000 -0.0114 0.0000

0.0000 -2.0453 0.0000 +0.0895
0.0000 -0.0271
0.0000 +0.0199

0.0000 +0.0087 0.0000 -0.0052 0.0000 +0.0061 0.0000 -0.0022

0.0000 +0.2755 0.0000
-0.0423 0.0000
+0.0116 0.0000

+0.0056 0.0000 -0.0036 0.0000 +0.0034 0.0000 -0.0101 0.0000

0.0000 -0.1488
0.0000 +0.0372
0.0000 -0.0215

0.0000 -0.0113 0.0000 +0.0063 0.0000 -0.0074 0.0000 +0.0021

0.0000
+0.0702 0.0000
-0.0307 0.0000

-0.0072 0.0000 +0.0042 0.0000 -0.0045 0.0000 +0.0064 0.0000

0.0000 -0.0459
0.0000 +0.0087

0.0000 +0.0115 0.0000 -0.0052 0.0000 +0.0063 0.0000 -0.0003



TABLE 2.12d - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (lb) WITH gRS = -1.000 ev (CONTINUED)

0.0000 +0.0121 0.0000 -0.0057 0.0000 +0.0063 0.0000 -0.0178 0.0000
+0.0412 0.0000

0.0000 -0.0074 0.0000 +0.0028 0.0000 -0.0021 0.0000 -0.0021
0.0000 -0.0011

0.0000 +0.0063 0.0000 -0.0031 0.0000 +0.0057 0.0000
-0.0074 0.0000

0.0000 -0.0058 0.0000 +0.0028 0.0000 -0.0002
0.0000 +0.0025

0.0000 +0.0069 0.0000 -0.0051 0.0000
+0.0052 0.0000

0.0000 -0.0079 0.0000 +0.0020
0.0000 -0.0044

0.0000 +0.0132 0.0000
-0.0101 0.0000

0.0000 -0.0084
0.0000 _0.0132

0.0000
+0.0127 0.0000

0.0000 -0.0449

0.0000 UD 
ro



TABLE 2.12e - AF FOR BENZ( a)NAPTHACENE COMPOSITE SYSTEM (Ic) WITH = 0.0Ko ev

0.0000 +0.0517 0.0000 -0.0080 0.0000 +0.0072 0.0000 -0.0188 0.0000 +0.0507
0.0000 -0.0495 0.0000 -0.0607 0.0000 +0.0396 0.0000 -0.0745 0.0000 +0.1153
0.0000 -0.1135

0.0000 -0.0311 0.0000 +0.0080 0.0000 -0.0026 0.0000 +0.0077 0.0000
-0.0152 0.0000 +0.0206 0.0000 -0.0216 0.0000 +0.0292 0.0000 -0.0837 0.0000
-0.0366 0.0000

0.0000 +0.0132 0.0000 -0.0094 0.0000 +0.0216 0.0000 -0.0181
0.0000 +0.0154 0.0000 +0.0284 0.0000 -0.0188 0.0000 +0.0283 0.0000 -0.0281
0.0000 +0.0243

0.0000 -0.0084 0.0000 +0.0007 0.0000 -0.0029 0.0000
+0.0044 0.0000 -0.0052 0.0000 +0.0063 0.0000 -0.0084 0.0000 +0.0218 0.0000
-0.0494 0.0000

0.0000 +0.0121 0.0000 -0.0094 0.0000 +0.0068
0.0000 -0.0064 0.0000 -0.0147 0.0000 +0.0099 0.0000 -0.0133 0.0000 +0.0105
0.0000 -0.0083

0.0000 -0.0084 0.0000 +0.0077 0.0000
-0.0083 0.0000 +0.0104 0.0000 -0.0086 0.0000 +0.0089 0.0000 -0.0236 0.0000
-0.0069 0.0000

0.0000 +0.0121 0.0000 -0.0069
0.0000 +0.0060 0.0000 +0.0162 0.0000 -0.0096 0.0000 +0.0114 0.0000 -0.0041
0.0000 +0.0035

0.0000 -0.0285 0.0000
+0.0229 0.0000 -0.0266 0.0000 +0.0174 0.0000 -0.0162 0.0000 +0.0476 0.0000
+0.0167 0.0000

0.0000 +0.0459
0.0000 -0.0315 0.0000 -0.0646 0.0000 +0.0346 0.0000 -0.0452 0.0000 +0.0170
0.0000 -0.0132 0.0000

-0.1008 0.0000 +0.1041 0.0000 -0.0418 0.0000 +0.0314 0.0000 -0.1161 0.0000
-0.0520 0.0000

0.0000 +0.2164 0.0000 +0.2700 0.0000 -0.1176 0.0000 +0.1871 0.0000 -0.0712
0.0000 +0.0366 co



TABLE 2.12e - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (Ic) WITH = 0.0 ev (CONTINUED)KD

+0.1742
0.0000
0.0000

-3.3942 0.0000 +0.1176 0.0000 -0.0409 0.0000 +0.3408 0.0000

0.0000 -0.0790
0.0000 +0.1979 0.0000 -0.0691 0.0000 +0.1356 0.0000 +0.0185

+0.1164 0.0000
0.0000 -0.0960 0.0000 +0.0185 0.0000 -0.0798 0.0000

0.0000 +0.0632
0.0000 +0.0876 0.0000 -0.0523 0.0000 +0.0115

-0.0851 0.0000
0.0000 -0.0713 0.0000 +0.0807 0.0000

0.0000 -0.0885
0.0000 +0.0950 0.0000 -0.0438

+0.2520
0.0000 -0.2528 0.0000

0.0000 +0.3256
0.0000 +0.2971

-3.4918 0.0000
0.0000

0.0000 +0.2496

0.0000 UD
4S.



TABLE 2.12f - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (Ic) WITH brs = -1.000 ev

0.0000 +0.0428 0.0000 -0.0066 0.0000 +0.0059 0.0000 -0.0157 0.0000 +0.0412
0.0000 -0.0401 0.0000 -0.0312 0.0000 +0.0209 0.0000 -0.0397 0.0000 +0.0641
0.0000 -0.0924

0.0000 -0.0259 0.0000 +0.0066 0.0000 -0.0023 0.0000 +0.0063 0.0000
-0.0126 0.0000 +0.0129 0.0000 -0.0118 0.0000 +0.0151 0.0000 -0.0434 0.0000
-0.0298 0.0000

0.0000 +0.0111 0.0000 -0.0077 0.0000 +0.0179 0.0000 -0.0150
0.0000 +0.0124 0.0000 +0.0145 0.0000 -0.0099 0.0000 +0.0152 0.0000 -0.0161
0.0000 +0.0200

0.0000 -0.0069 0.0000 +0.0007 0.0000 -0.0023 0.0000
+0.0035 0.0000 -0.0033 0.0000 +0.0035 0.0000 -0.0044 0.0000 +0.0114 0.0000
+0.0058 0.0000

0.0000 +0.0100 0.0000 -0.0077 0.0000 +0.0056
0.0000 -0.0053 0.0000 -0.0075 0.0000 +0.0052 0.0000 -0.0071 0.0000 +0.0061
0.0000 -0.0068

0.0000 -0.0074 0.0000 +0.0063 0.0000
-0.0068 0.0000 +0.0061 0.0000 -0.0048 0.0000 +0.0047 0.0000 -0.0124 0.0000
-0.0056 0.0000

0.0000 +0.0100 0.0000 -0.0057
0.0000 +0.0050 0.0000 +0.0084 0.0000 -0.0050 0.0000 +0.0061 0.0000 -0.0027
0.0000 +0.0029

0.0000 -0.0238 0.0000
+0.0189 0.0000 -0.0153 0.0000 +0.0096 0.0000 -0.0086 0.0000 +0.0250 0.0000
+0.0135 0.0000

0.0000 +0.0380
0.0000 -0.0257 0.0000 -0.0332 0.0000 +0.0181 0.0000 -0.0242 0.0000 +0.0110
0.0000 -0.0112

-0.0823 0.0000 +0.0589 0.0000 -0.0233 0.0000 +0.0167 0.0000 -0.0610 0.0000
-0.0419 0.0000

0.0000 +0.1725 0.0000 +0.1371 0.0000 -0.0607 0.0000 +0.0987 0.0000 -0.0438 _
0.0000 +0.0307 LOCH



TABLE 2.12f - AF FOR BENZ(a)NAPTHACENE COMPOSITE SYSTEM (Ic) WITH gRS = -1.000 ev (CONTINUED)

0.0000 -1.9149 0.0000 +0.0655 0.0000 -0.0226 0.0000 +0.1803 0.0000
+0.1393 0.0000

0.0000 +0.1594 0.0000 -0.0562 0.0000 +0.1103 0.0000 +0.0129
0.0000 -0.0478

0.0000 -0.0776 0.0000 +0.0146 0.0000 -0.0149 0.0000
+0.0595 0.0000

0.0000 +0.0713 0.0000 -0.0426 0.0000 +0.0097
0.0000 +0.0341

0.0000 -0.0575 0.0000 +0.0647 0.0000
-0.0449 0.0000

0.0000 +0.0771 0.0000 -0.0355
0.0000 -0.0451

0.0000 -0.2032 0.0000
+0.1346

0.0000 +0.2390
0.0000 +0.1657

0.0000
-1.9635 0.0000

0.0000 +0.2011

0.0000
CTi
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F. Analysis of Results

1. General

In this analysis the choice of the composite system model 

for the molecule will be noted and an interpretation of the molecular 

electronic transitions will be given in terms of the transitions of 

the appropriate composite system with no bonds between the component 

parts, that is, with zero value resonance integrals between the compo

nent parts. Basically, the proper composite system model of the 

subject molecule is chosen by means of a systematic comparison of 

the calculated absorption spectra of all the various possible composite 

systems with the calculated absorption spectra of the molecule treated 

conventionally as a single component quantum mechanical system. In 

this comparison, the energy and oscillator strength of all the transitions, 

including the formally forbidden transitions, is considered. The com

posite system whose absorption spectrum most closely approximates that 

of the complete molecule is considered to be the appropriate composite 

system model or approximation to the original molecule. This is the 

only method of choosing a composite system model which is compatable 

with the objective of this study, that is, the interpretation of the 

electronic transitions of a pentacyclic aromatic hydrocarbon in terms 

of the electronic transitions of a smaller polycyclic aromatic hydro

carbon contained within the structure of the pentacyclic.

The importance of the calculated absorption spectra of the composite 

systems with weak bonding, that is, the value of the resonance integrals 
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between the component parts equal to -1.000 ev, must be emphasized. 

First it is by means of these calculated spectra that one may determine 

with confidence which transitions of the complete molecule correspond 

to those of the composite system with no bonds between the component 

parts. This can be somewhat of a problem when the transitions are 

considerably shifted in energy, and/or undergo significant changes 

in oscillator strength when passing from the composite system model 

to the molecule treated as a single component system. Second, the 

calculated absorption spectra of the weakly bonded composite systems 

are a distinct aid in determining the appropriate composite system 

model for the molecule. This happens because, for the best composite 

system approximation to the molecule, one finds the spectra of the 

weakly bonded composite system to be remarkably close to that of the 

subject molecule.

Once the appropriate composite system model of the molecule has 

been chosen and the transitions of the molecule correlated to those 

of the composite system with no bonding between the parts, the next 

step is to determine the origins of the electronic transitions of the 

composite system. To do this, the wave functions of the non-bonded 

composite system excited states, to which the transitions occur, are 

examined to determine the types of excited electronic configurations from 

which the various excited states are formed (see Tables 1.1 through 

1.5). That is, the wave function is examined to determine its composi

tion in terms of local excited configurations, formed by local excita

tions between the molecular orbitals of one or the other of the 

component parts of the composite system,and electron-transfer 
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configurations,formed by the excitation of an electron from a molecular 

orbital of one component part to a molecular orbital of the other part. 

By this analysis of the non-bonded composite system excited states, the 

transitions of the composite system may be interpreted as (1) local 

transitions belonging to one of the two component parts, (2) transitions 

to states formed by combinations of local excitation configurations 

of the two parts, or (3) transitions to states formed from the electron

transfer configurations.

The final step is to extend the analysis of the non-bonded com

posite system transitions to the transitions of the molecule treated 

conventially as a single component quantum mechanical system. That 

is to say, a transition of the complete molecule is then interpreted 

or predicted to have the characteristics of the transition of the 

non-bonded composite system to which it is correlated. For example, 

consider an allowed transition of the complete molecule which is 

correlated to a particular allowed transition of the appropriate 

composite system. Next, suppose this particular transition of the 

non-bonded composite system was found, on the basis of the configura

tions of the excited state to which the transition occurred, to be 

essentially a local electronic transition of one of the component 

parts. Then, the electronic transition of the complete molecule 

is interpreted as being derived from this same local transition of 

the component part which produces the particular transition of the 

non-bonded composite system. From this, one may then predict that the 
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experimentally observed transition corresponding to the calculated 

transition of the complete molecule and the experimentally observed 

transition corresponding to the local transition of the component 

part should have similar characteristics. That is to say, character

istics such as extinction coefficient, vibrational structure, and 

general shape should be similar. To verify such predictions, it is, 

of course, necessary to first correctly assign the experimentally 

observed transitions to the calculated transitions. Unfortunately, 

this is by no means an easy task in many cases.

The above example is, of course, the ideal case in which the 

transition of the complete molecule can be correlated with a transition 

in one of the component parts of the composite system. It is much 

more difficult to interpret the transitions of the complete molecule 

in the case where the transitions are correlated with transitions in 

the non-bonded composite system which are to excited states formed by 

combinations of local excited configurations of both component parts. 

Generally, in this situation, an excited state from each of the two 

component parts to which allowed transitions occur when the component 

parts are isolated interact by virtue of the electron repulsion terms 

alone to form a pair of "mixed states" in the composite system. The 

transitions to these "mixed states" of the non-bonded composite system 

may then reasonably be predicted as having some combination of the 

characteristics of the two transitions which occur to the unaltered 

states of the isolated component parts. The predominant characteristics 
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may perhaps be predictable by means of the relative weights with which 

the configurations of the two component parts contribute to the excited 

state of the composite system.

There are also some transitions of the complete molecules which 

can be correlated with transitions to the excited states of the non

bonded composite system formed from the electron-transfer configurations. 

In the composite systems with zero value resonance integrals between 

the component parts, these electron transfer states occur in degenerate 

pairs, transitions to each of which are forbidden. As soon as a finite 

resonance integral is introduced between the component parts, this 

degeneracy is destroyed and the transition to one of these states becomes 

allowed while the transition to the other remains forbidden. Thus, 

there are some allowed transitions of the complete molecule which can 

be correlated with the forbidden transition to an electron-transfer 

state in the composite system with zero value resonance integrals 

between the component parts. Unfortunately,it does not seem possible 

to make any predictions concerning the characteristics of allowed 

transitions in the complete molecule derived from transitions to 

forbidden electron-transfer states of the non-bonded composite system. 

It would seem unreasonable to predict that a transition of the complete 

molecule correlated to an electron-transfer transition in the non

bonded composite system should appear similar to a local transition 

of eifher of the two component parts or some combination of transitions 

of the two parts. This is because the electron-transfer states exist 
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only by virtue of the two component parts forming a composite system 

and in the absence of a composite system those states do not exist. 

Consequently, it is difficult to argue that transitions to states 

derived from the electron-transfer states of the non-bonded composite 

system should have any particular characteristic other than perhaps 

those unique to that particular composite system.

The only transitions of the subject molecules which will be 

discussed are those which are allowed, that is, have a finite oscillator 

strength, and are,therefore,potentially observable. The calculated 

oscillator strengths of the transitions are given only for electric 

dipole transitions from the ground state to the excited states. It 

is entirely possible that those calculated transitions which are 

forbidden may be allowed as a multipole transition or perhaps a magnetic 

dipole transition. Hov/ever, these other types of transitions are 

generally very weak relative to the electric dipole transitions and 

thus, very difficult to observe experimentally. It would seem even 

more unlikely that should such a weak electric dipole forbidden 

transition actually be observable in the complete or actual molecule, 

that the weak corresponding transition of a component part of the com

posite system would also be experimentally observable. Thus, even 

though the forbidden transitions of the complete molecule could be 

correlated to the transitions of the non-bonded composite systems, 

they will not since any interpretations or predictions concerning 

these transitions most probably could not be verified by experimental 

observations and would also tend to be rather confusing.
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The correlation of the calculated electronic transitions of the 

five subject molecules with the electronic transitions of the appro

priate non-bonded composite system will now be discussed. As stated 

earlier, the proper composite system is chosen essentially by a com

parison of all the electronic transitions of the complete molecule, 

including formally forbidden transitions, with those of the various 

composite system models. The non-bonded composite system whose 

transitions are the best approximation to the complete molecule and 

undergo the least alteration upon the formation of bonds between the 

component parts is considered to be the proper model for the subject 

molecule. After the correlation of the complete molecule transitions 

with the transitions of a particular non-bonded composite system 

approximation, predictions will be made concerning the characteristics 

of the experimentally observable transition equivalent to the calculated 

transitions of the complete molecule. The details of those predictions 

will be considerably abbreviated since the method and rational have 

been discussed quite thoroughly above.

2. Benz(a)napthacene (Figure 2.2)

On the basis of a comparison of the calculated electronic 

transitions, presented graphically in Figures 2.7a through 2.7g and 

numerically in Tables 2.1a through 2.1g, of benz(a)napthacene (I) 

and its possible composite system models, the composite system 

denoted by (la) is chosen as the best approximation to the benz(a)- 

napthacene molecule. The component parts of this composite system 
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are a napthacene molecule and a cis-butadiene molecule. Throughout 

the following discussion the benz(a)napthacene molecule treated as 

a complete molecule or a single component system will be denoted by 

(I) while the non-bonded composite system model will be denoted by 

(la).

The first allowed transition of (I) is correlated to the first 

allowed transition of (la). This transition of (la) is found to be 

a local transition of the napthacene part. Consequently, the first 

transition of (I) may be predicted to have the characteristics of the 

first transition of napthacene. Note that this transition is blue 

shifted about O.lS.ev while the oscillator strength remains relatively 

unchanged in passing from the non-bonded composite system to the 

complete molecule.

The second allowed transition of (I) corresponds to one of the 

degenerate transitions to the third and fourth electron-transfer 

states of (la). As noted earlier, the electron-transfer transitions 

of the non-bonded composite system are forbidden. For reasons given 

earlier in the general discussion of the analysis, no predictions will 

be made concerning the characteristics of these transitions.

The third allowed transition of (I), which has the largest value 

oscillator strength of all the transitions of (I), corresponds to the 

very weak (f = 0.004) second allowed transition of (la). This second 

allowed transition of (la) is essentially an unaltered local transition 

of napthacene. Thus one may correlate the strong third transition of 

(I) with the weak second transition of napthacene. The predicted 
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similarity or correspondence between these two transitions may not be 

obvious because of the large change in oscillator strength of this 

transition in passing from the non-bonded composite system (la) to the 

complete molecule (I). Also, the third transition of (I) is blue 

shifted about 0.35 ev relative to the corresponding napthacene transition 

of the non-bonded composite system.

The fourth relatively weak transition of (I) corresponds to the 

third allowed transition of (la). The third transition of (la) is 

the strongest and corresponds to a local transition of the napthacene 

moiety. In other words, the relatively weak fourth transition of (I) 

should be similar in appearance to the third very intense transition 

of napthacene which in turn is the basis of the third transition of 

the composite system. Not only is there a considerable change in 

the oscillator strength of this transition when passing from (I) to 

(la) but these is also a blue shift of about 0.27 ev.

The fifth and sixth allowed transitions of (I) correspond to the 

fourth and fifth allowed transitions of (la) respectively. The fourth 

and fifth allowed transitions^of (la), however, are to excited states 

formed by the combination of local excited configurations of both 

component parts of (la). The leading four configurations of each of 

these excited states is the same, although their coefficients differ. 

Further, the leading configuration of each of these states is the 

lowest energy excited configuration of cis-butadiene; however, in the 

excited state to which the fourth transition of (la) occurs it 
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contributes about 41%. The remaining contributing configurations 

of these excited states are local excited configurations of napthacene, 

and particularly the same three configurations. One may thus interpret 

the fifth and sixth transitions of (la) as being formed from the inter

action of the fourth allowed transition of napthacene and the first 

allowed transition of cis-butadiene. From this, one may predict that 

the fifth and sixth transitions of (I) should be quite similar to 

each other and should both perhaps appear to have characteristics 

similar to the fourth allowed transition of napthacene,although 

considerably altered by the characteristics of the first transition 

of cis-butadiene.

The discussion of benz(a)napthacene (I) transitions will be limited 

to the above six primarily because transitions higher than these in 

energy are not readily observable by the conventional techniques of 

solution molecular spectroscopy. Also, as mentioned earlier, the 

calculated transitions become progressively less accurate with 

increasing energy because of the exclusion of higher energy excited 

configurations in the limited configuration interaction procedure 

employed in these calculations.

3. Benzo(b)chrysene (figure 2.3)

A comparison of the calculated electronic transitions of 

benzo(b)chrysene (II) and its possible composite system models is 

presented graphically in Figures 2.8a through 2.8g and numerically 

in Tables 2.2a through 2.2g. These show that the non-bonded composite 
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system denoted by (lib) is the best approximation to the benzo(b)- 

chrysene molecule. The component parts of this composite system 

are a chrysene molecule and a cis-butadiene molecule. In the following 

discussion the complete molecule or single component system will be 

denoted by (II) while the non-bonded composite system will be denoted 

by (lib).

The first allowed transition of (II) is correlated to the first 

allowed transition of (lib). This transition of (lib) is found to be 

a local transition of the chrysene moiety of the composite system. 

Consequently one may predict that the first allowed transition of (II) 

will resemble the first allowed transition of chrysene quite closely. 

Note that this transition is red shifted about 0.47 ev in passing from 

the non-bonded composite system to the complete molecule, although 

the oscillator strength does not change materially.

The second allowed transition of (II) corresponds to one of the 

degenerate and forbidden transitions to the fourth and fifth electron

transfer states of (lib). Consequently, no predictions or interpretations 

are made concerning this transition.

The third allowed transition of (II), which has the greatest 

oscillator strength of all the transitions of (II), corresponds to 

the third allowed transition of (lib). The third transition of (lib) 

is found to be the second, and strongest, allowed local transition of 

the chrysene part of (lib). From this, one may predict that the 

third allowed transition of (II) should be quite similar to the 

second allowed, and most intense,transition of chrysene. This transition 
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is red shifted about 0.30 ev when passing from the non-bonded composite 

system (lib) to the complete molecule (II) and the oscillator strength 

increases about 0.65.

The fourth allowed transition of (II) is correlated to the very 

weakly allowed fourth transition of (lib). This fourth transition of 

(lib) is predominantly a local transition of the chrysene moiety. Thus 

the fourth allowed transition of (II) may be predicted to resemble a 

weak third transition of chrysene. As a matter of fact, the calculated 

oscillator strength of this transition of chrysene when treated 

separately and not as part of the composite system would probably be 

zero. This transition is blue shifted about 0.08 ev when going from 

the non-bonded composite system (lib) to the complete molecule (II) 

and the oscillator strength is approximately doubled.

The fifth allowed transition of (II) arises from a pair of 

degenerate and forbidden transitions to the tenth and eleventh electron

transfer states of (lib). As before, no prediction is given for this 

type transition.

The sixth allowed transition of (II) corresponds to the fifth allowed 

transition of (lib). This transition is blue shifted about 0.24 ev 

in going from the non-bonded composite system (lib) to the complete 

molecule (II) and the oscillator strength decreases substantially. 

The fifth transition of (lib) is to an excited state to which the 

lowest energy excited configuration of cis-butadiene contributes about 

12% weight while the remaining 88% weight is contributed by chrysene 
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excited configurations. From this one may predict that the sixth 

transition of (II) should appear as the slightly perturbed or modified 

fourth allowed transition of chrysene.

The seventh, eighth, and ninth allowed transitions of (II) are 

very difficult to correlate to transition of (lib). This difficulty 

is caused by the lack of a reasonably systematic change in these 

transitions as one goes from the composite system with no bonding 

between the component parts, to the composite system with weak bonding 

and finally to the complete molecule. This may be caused by a break

down of this particular composite system model for the higher energy 

transitions or perhaps is due to the decreased accuracy of the 

higher-energy transitions caused by the exclusion of excited config

urations above 8.00 ev in energy.

The following interpretations are given for the seventh, eighth, 

and ninth transitions of (II), although not with'the same confidence 

as those for the first six transitions. The seventh allowed transition 

of (II) is correlated to the third allowed transition of (lib). This 

interpretation is made essentially by a process of elimination. If 

this interpretation is correct, the transition is blue shifted approxi

mately 0.75 ev and the oscillator strength decreased by almost a 

factor of 30 in going from the non-bonded composite system (lib) to 

the complete molecule (II). Also, the third allowed transition of 

(lib) is to a state to which the low energy excited configuration of 

cis-butadiene contributes about 55%, the other contributing configu
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rations being these of local excitations in the chrysene moiety. Thus, 

one may predict the seventh allowed transition of (II) to appear as an 

extremely altered first transition of cis-butadiene or perhaps be 

unrecognizable in terms of the transitions of other molecules.

The best correlation of the eighth and ninth allowed transitions 

of (II) appears to be, respectively, to the extremely weak sixth and 

eighth allowed transitions of (lib). Both the sixth and eighth 

transitions of (lib) are local transitions of the chrysene part; 

however, these chrysene transitions are essentially forbidden. Since 

these two chrysene transitions are most likely unobservable, the best 

one may do is predict that the eighth and ninth transitions of (II) 

should not appear similar to any observed chrysene transition, although 

these transitions do arise from the chrysene moiety.

4. Di benzo(b,g)phenanthrene (Figure 2.4)

From the examination of the calculated electronic transitions 

of dibenzo(b,g)phenanthrene (III) and its possible composite system 

approximations, shown graphically in Figures 2.9a through 2.9g and 

numerically in Tables 2.3a through 2.3g, it is concluded that the 

composite system denoted by (Illb) is the best model for this molecule. 

This composite system consists of a benzo(c)phenanthrene molecule 

and a cis-butadiene molecule. In the following discussion, the non

bonded composite system model will be denoted by (Illb) and the complete 

dibenzo(b,g)phenanthrene molecule will be denoted by (III).
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The lowest energy transition of (III), which is forbidden, is 

correlated to the lowest energy transition of (Illb), which is also 

forbidden. This is an exception to the general rule of only discussing 

the allowed transitions; however, this transition is experimentally 

observable as will be seen later. The lowest energy forbidden 

transition of (Illb) corresponds to the lowest energy forbidden transi

tion of benzo(c)phenanthrene, which is also experimentally observable. 

Thus, one may predict that the lowest energy observable transition of 

(III) should appear similar to the lowest energy observable transition 

of benzo(c)phenanthrene. Both of these transitions, being forbidden 

as electric dipole transitions, are extremely weak. This transition is 

red shifted approximately 0.20 ev in going from (Illb) to (III).

The first allowed transition of (III) corresponds to the first 

allowed transition of (Illb). The first allowed transition of (Illb) 

corresponds to the first allowed local transition of the benzo(c)- 

phenanthrene moiety and, consequently, one may predict that the first 

allowed transition of (III) should be similar to the first allowed 

transition of benzo(c)phenanthrene. This transition is red shifted 

about 0.60 ev in passing from (Illb) to (III) and the oscillator 

strength increases by about a factor of 8.

The second allowed transition of (III), which has the largest 

oscillator strength of all the transitions of (III), is correlated 

with the second allowed transition and most intense transition of (Illb). 

This transition of (Illb), in turn corresponds to the second and most 

intense transition of the benzo(c)phenanthrene part of the composite 



212

system. From this, one may predict that the second allowed transition 

of (III) should have the characteristics of the second allowed transi

tion of benzo(c)phenanthrene. This transition is red shifted about 

0.34 ev in passing from (Illb) to (III), but the oscillator strength 

is changed by very little.

The third allowed transition of (III) is derived from two forbidden 

and degenerate transitions to the fifth and sixth electron-transfer 

states of (Illb). No prediction is given concerning the appearance 

of this transition.

The fourth allowed transition of (III) and the third allowed 

transition of (Illb) correspond. The third allowed transition of 

(Illb) is to an excited state to which the lowest energy excited 

configuration of cis-butadiene contributes about 42% and the remaining 

weight is contributed by the excited configurations of the benzo(c)- 

phenanthrene moiety. From this, one would probably have to predict 

that the fourth allowed transition of (III) should appear to be a 

highly modified third allowed transition of benzo(c)phenanthrene. 

This transition is very slightly blue shifted in going from (Illb) to 

(III) and the oscillator strength is increased about 20%.

The fifth allowed transition of (III) is interpreted as another 

transition arising from a pair of degenerate, forbidden electron

transfer transitions in (Illb). In this case, the transitions are to 

the ninth and tenth electron-transfer states of (Illb). No prediction 

is made concerning the characteristic of the fifth allowed transition 

of (III).
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The sixth allowed transition of (III) is correlated to the fifth 

allowed transition of (Illb). This particular transition of (Illb) 

arises from the essentially unaltered fourth transition of benzo(c)- 

phenanthrene. This transition is blue shifted about 0.38 ev and the 

oscillator strength increases about seven times in passing from (Illb) 

to (III). One may thus predict that the sixth allowed transition of 

(III) can be correlated to the fourth allowed transition of benzo(c)- 

phenanthrene; however, such a correlation may be rather tenuous if 

the actual differenct in oscillator strength is similar to the 

calculated difference.

No interpretation will be given for the allowed transition of (III) 

higher in energy than the sixth. This approach is taken because, as 

in the case of benz(a)napthacene, the questionable accuracy of the 

calculated transitions and the small possibility of readily observing 

these transitions do not appear to justify an interpretation.

5. Dibenz(a,c)anthracene (Figure 2.5)

The comparison of the calculated electronic transitions for 

dibenz(a,c)anthracene (IV) and its possible composite systems, presented 

graphically in Figures 2.10a through 2.1Oe and numerically in Tables 

2.4a through 2.4e, shows that the composite system denoted by (IVb) 

is the best approximation to the complete molecule (IV).

This composite system consists of a tri phenylene molecule and a 

cis-butadiene molecule. That this composite system is the best model 

of the complete molecule is rather obvious from the fact that the 
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absorption spectra of the composite system with weak bonding between 

the component parts duplicates the absorption spectra of the complete 

molecule extremely well. In the following discussion,the dibenz(a,c)- 

anthracene molecule considered as a single component system will be 

denoted by (IV) and the non-bonded composite system model will be 

denoted by (IVb).

Once again, an exception will be made to the general rule of only 

discussing the origins of the allowed transitions. The lowest energy 

transition of (IV) which, although it is forbidden, can be experimen

tally observed corresponds to the forbidden lowest energy transition 

of (IVb). In (IVb), this transition is found to be a local transition 

corresponding to the lowest energy forbidden, but experimentally 

observable, transition of triphenylene. Thus, one may predict that the 

lowest energy transition of (IV) should be very similar to the lowest 

energy transition of triphenylene. This transition is red shifted 

about 0.23 ev in passing from the composite system to the complete 

molecule.

The first allowed transition of (IV) is correlated to the first 

allowed transition of (IVb). This transition is red shifted by 

approximately 0.27 ev in going from (IVb) to (IV) and the oscillator 

strength increased from 0.002 to 0.313. The first allowed transition 

of (IVb) corresponds to a second formally forbidden transition of 

the tri phenylene component which, because of configurational mixing, 

has a finite oscillator strength in the non-bonded composite system.
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This formally forbidden tri phenylene transition is experimentally 

observable, consequently, one may predict that the first allowed 

transition of (IV) should have the characteristics of the second 

extremely weak observable transition of tri phenylene.

The second allowed transition of (IV) is interpreted as arising 

from the degenerate, forbidden transitions to the sixth and seventh 

electron transfer states of (IVb). No prediction will be given regarding 

the appearance of this transition.

The third allowed transition of (IV) is correlated to the second 

allowed transition of (IVb). The second transition of (IVb) is to 

a state to which the lowest energy local excited configuration of cis- 

butadiene contributes about 52% weight. The remaining weight is 

contributed by local excited configurations which form an excited state 

for the second allowed transition of an isolated triphenylene molecule. 

From this, one concludes that the third allowed transition of (IV) 

should appear either as an extremely modified first allowed transition 

of cis-butadiene or be unrecognizable in terms of other molecular 

transitions. It is also doubtful if this transition will be observable 

since the oscillator strength decreases from 0.178 to 0.022 in going 

from (IVb) to (IV). The transition is red shifted about 0.28 ev in 

(IV) relative to (IVb).

The fourth allowed transition of (IV) is also interpreted as 

arising from electron-transfer states in (IVb). In this case it is 

the transitions to the eighth and ninth electron-transfer states 

of (IVb).



216

The fifth allowed transition of (IV) corresponds to the third allowed 

transition of (IVb). The third allowed transition of (IVb) in turn is 

the first allowed local transition of the triphenylene moiety. Consequently, 

the fifth allowed transition of (IV) should have characteristics quite 

similar to that of the first allowed transition of triphenylene. However, 

this transition is blue shifted about 0.66 ev in passing from the non

bonded composite system (IVb) to the complete molecule (IV) and the 

oscillator strength decreased by a factor of five.

The sixth allowed transition of (IV) is correlated with the fourth 

allowed transition of (IVb). This transition of (IVb) is to an excited 

state formed from the same combination of local excited cis-butadiene 

and tri phenylene configurations which form the state to which the 

third allowed transitionnof (IVb) occurs. However, in this case the 

local excited configuration of cis-butadiene only contributes about 

39% to the state. From this, one would conclude that the sixth allowed 

transition of (IV) should appear to be a highly modified second allowed 

transition of triphenylene. This transition is blue shifted by 

approximately 0.39 ev in passing from the non-bonded composite system 

(IVb) to the complete molecule (IV) and the oscillator strength 

decreased by about a factor of six.

If should be noted here that due to the symmetry of the tri phenylene 

molecule, the first and second allowed transitions of the isolated 

molecule are normally degenerate. However, upon forming a non-bonded 

composite system with cis-butadiene, the interaction through the electron 

repulsion type terms alone is apparently sufficient to shift one of 
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these intense tri phenylene transitions, assumed to be the second,to a 

higher energy where it becomes the fourth allowed transition of (IVb). 

The other intense transition of triphenylene, assumed to be the first, 

remains relatively unchanged and is the third allowed transition of 

(IVb). Finally the second allowed transition of (IVb) is the highly 

altered first transition of cis-butadiene which is red shifted by the 

interaction with the tri phenylene moiety in the non-bonded composite 

system.

The highest energy transitions of (IV) which will be discussed 

are the seventh and eighth allowed transitions which are correlated 

to the fifth and sixth allowed transition of (IVb) respectively. 

These two transitions are considered together because the fifth and 

sixth allowed transitions of (IVb) also correspond to a pair of local 

transitions of tri phenylene which would normally be degenerate in the 

isolated molecule due to molecular symmetry. These two degenerate tran

sitions are the third and fourth allowed transitions of triphenylene. 

From this, one may predict that the seventh and eighth allowed 

transitions of (IV) should appear similar to the degenerate third and 

fourth transitions of triphenylene. The seventh transition of (IV) is 

blue shifted by about 0.22 ev and oscillator strength increased about 

70% in passing from (IVb) to (IV) while the eighth transition is blue 

shifted about 0.55 ev and oscillator strength increased about 74%.
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6. 3,4-Benzopyrene (Figure 2.6)

From the comparison of the calculated electronic transitions 

of 3,4-benzopyrene (V) and its possible composite system models, shown 

in Figures 2.11a through 2.11g and Tables 2.5a through 2.5g, it is 

evident that the composite system denoted by (Va) is the best approxi

mation to the 3,4-benzopyrene molecule. This composite system model 

consists of a pyrene molecule and a cis-butadiene molecule. The 3,4- 

benzopyrene molecule presents a slightly different situation since 

it is what is termed a peri-condensed aromatic hydrocarbon. That is, 

not all of the carbon atoms are located on the outer perimeter of the 

molecule as is the case for the cata-condensed aromatic hydrocarbons. 

All the previously considered molecules are examples of cata-condensed 

hydrocarbons. In the following discussion the complete 3,4-benzopyrene 

molecule, or single component system, will be noted by (V) and the 

non-bonded composite system model by (Va).

The first strong allowed transition of (V) corresponds quite well 

to the strong allowed first transition of (Va). The oscillator strength 

of this transition remains almost unchanged in going from the non-bonded 

composite system (Va) to the complete molecule (V) and it is red 

shifted approximately 0.35 ev. The first allowed transition of (Va) 

is the first allowed local transition of the pyrene moiety and from this one 

may predict that the first allowed transition of (V) should be quite 

similar to the first allowed transition of pyrene.

The next transition of (V) to be discussed is the lowest energy 

forbidden transition. This exception to the rule of discussing only 
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the theoretically allowed transitions is made for the same reasons 

as in the previously discussed molecules; that is, the transition is, 

generally,experimentally observable as a very weak transition. This 

transition is correlated to the lowest energy forbidden transition of 

(Va) which in turn arises from the lowest energy forbidden local 

transition of the pyrene moiety. From this, one may predict that 

the lowest energy forbidden transition of 3,4-benzopyrene should have 

characteristics similar to the lowest energy forbidden transition of 

pyrene. This transition is red shifted about 0.25 ev in passing from 

(Va) to (V). Note also that the relative positions of the first 

allowed transition and the lowest energy forbidden transition are 

changed in passing from the composite system (Va) to the complete 

molecule (V).

The second allowed transition of (V), which has an oscillator 

strength of only 0.048 and may not be experimentally observable, is 

interpreted as arising from the transitions to the third and fourth 

electron-transfer states of (Va). Since these transitions are for

bidden and degenerate in (Va) no prediction is made concerning the 

characteristics of the second allowed transition of (V).

The third allowed transition of (V) corresponds to the second 

allowed transition of (Va). The second transition of (Va) is to an 

excited state to which the lowest energy local excited configuration 

of the cis-butadiene component contributes about 45% while the remaining 

configurations are local excited configurations of the pyrene moiety. 

These local excited configurations of pyrene are the ones which would 
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normally form the excited state to which the second allowed transition 

of pyrene would occur. Consequently, the third allowed transition of 

(V) may be interpreted as having the characteristics or appearance of a 

highly modified second allowed transition of pyrene. This transition 

is red shifted approximately 0.17 ev in going from (Va) to (V) and 

the oscillator strength increases by a factor of almost seven.

The fourth allowed transition of (V) is also interpreted as 

being derived from forbidden transitions to electron-transfer states 

in (Va). In this case, the two degenerate electron-transfer states of 

(Va) are the eighth and ninth excited states.

The fifth allowed transition of (V) is correlated to the third 

allowed transition of (Va). This transition of (Va) is to an excited 

state composed of the same combination of local excited cis-butadiene 

configurations and local excited pyrene configurations as the excited 

state to which the second transition of (Va) occurs. That is to say, 

when the cis-butadiene and pyrene molecules are combined to form a 

non-bonding composite system (Va), the excited state of pyrene to 

which the second allowed transition of pyrene occurs and the excited 

state to which the first allowed transition of cis-butadiene occurs 

interact to form a pair of states. The second and third transitions 

of (Va) occur to these states. In the case of the third transition of 

(Va), which becomes the fifth transition of (V), the cis-butadiene 

configuration contributes about 42%. Consequently, one may predict 

that the fifth allowed transition of (V) should appear as a highly 
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modified second allowed pyrene transition, as was the case for the 

third allowed transition of (V). This transition is blue shifted 

approximately 0.12 ev is passing from (Va) to (V) and the oscillator 

strength remains relatively unchanged.

The sixth allowed transition of (V), which is very weak, corresponds 

to the fourth allowed transition of (Va), which is also very weak. 

This fourth transition of (Va) is a weak local transition of the 

pyrene component corresponding to a,theoretically, at least, very 

weak or perhaps forbidden transition of the pyrene molecule. Thus, 

one may predict that the sixth transition of (V) should resemble a 

very weak third transition of pyrene. The fourth transition of the 

non-bonded composite system (Va) remains relatively unchanged in both 

energy and oscillator strength in passing to the complete molecule (V).

The last allowed transition of 3,4-benzopyrene (V) to be considered 

here is the seventh. This transition corresponds to the fifth allowed 

transition of the non-bonded composite system (Va). The fifth transi

tion of (Va) in turn is a very strong local transition corresponding 

to the fourth allowed transition of pyrene. From this, one may predict 

that the seventh transition of (V) should have the characteristics of 

the fourth allowed transition of pyrene, although the oscillator 

strength decreases from 1.603 to 0.334 in going from (Va) to (V). Also, 

this transition is blue shifted slightly by about 0.20 ev in going from 

the non-bonded composite system (Va) to the complete molecule (V).
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G. Discussion

Unfortunately, no relationship could be found between the values 

of aE» for the various composite system models (Table 2.11) and the 

composite system whose electronic transitions were the best approxi

mation to those of the subject molecule. Evidently the quantity ^E., 

defined in equation (2.14), was too naive an approach to the problem of 

determining which composite system approximates the subject molecule 

best. There are three reasons why the use of this quantity probably 

fails as a means of comparison. The first reason was already mentioned 

in the previous discussion of AE^. This concerned the fact the aE^ 

does not take into account the symmetry of the molecular orbitals 

when comparing the composite systems to the subject molecule. Since 

the oscillator strength or intensity of the various transitions is a 

function of the symmetry of the molecular orbitals, aE^ in no way 

compares the oscillator strengths of transitions in the composite 

systems and the subject molecule. Second, AE^ is a measurement of 

the degree to which equivalent energy levels of the composite system 

and the complete molecule correspond. However, the energy of the 

transition between two molecular orbitals is actually proportioned to 

the difference between the two orbital energy levels (see equation 2.15). 

Consequently, it is quite possible that the orbital energy levels of 

the composite system may differ considerably in magnitude when compared 

to the corresponding energy levels of the complete molecule and yet 

the difference of the energy levels in the complete molecule could be 
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quite close to the difference of the energy levels in the composite 

system. Third, the quantity aE^ is a measurement of the correspondence 

of all the equivalent energy levels. However, the electronic transitions 

of the complete molecule which are being approximated in this investigation 

are the lower energy transitions formed predominantly by excitations 

from the higher energy filled molecular orbitals to the lower energy 

unfilled molecular orbitals. Thus, a measure of the correspondence of 

a certain limited number of orbital energy levels may be superior to a 

measure of the correspondence of all the levels. However, it would be 

rather difficult to determine in a nonarbitrary manner the weight 

with which each energy level should enter the comparison.

The AF1 matrices, discussed previously in conjunction with equa

tion (2.21), also failed to provide a quantity which could be correlated 

with the composite system which was the best approximation to the subject 

molecule. The aF1 matrices were calculated for benz(a)napthacene, 

benzo(b)chrysene, and dibenzo(b,g)phenanthrene, however, only the matrices 

for benz(a)napthacene are given in Table 2.12a through 2.12f since 

this is sufficient for illustrative purposes. The relative values for 

the norms of these matrices are determined completely by the values 

of the aF1 matrix elements between two pairs of carbon centers. These 

pairs of carbon centers are the ones between which the bond is 

conceptually broken, or weakened, in forming the composite system 

from the complex molecule. The relative values of these particular 

matrix elements for the various composite systems are, in turn, deter

mined by the values of the bond order, P^j, of the bonds which are 
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broken to form the composite system. Unfortunately, as reasonable as 

the correlation of bond orders and the composite systems may seem, since 

the bond order is indicative of bond length and pi-bond character, no 

correlation can be found between the bond order values of the bonds 

broken to form a particular composite system and the suitability of 

that composite system as an approximation to the complete molecule.

In addition to the above approaches, attempts were made to divide 

the ICAO molecular orbitals of the subject pentacyclic aromatic 

hydrocarbons into the ICAO molecular orbitals of the component parts 

of a composite system. This was done by comparing the atomic orbital 

coefficients of the molecular orbitals for the complete molecule to 

the atomic orbital coefficients of the molecular orbitals of the 

component parts. This was analogous to the procedure reported by 
59 Heilbronner, et al. and which was described earlier. This procedure 

proved to have little merit, since in the polycyclic aromatic hydro

carbons, there were some molecular orbitals which could not be 

resolved at all and others which could be resolved in terms of more 

than one composite system approximation. In other words, the form 

of the molecular orbitals of the pentacyclic aromatic hydrocarbons 

do not seem to indicate the composite system which may be the best 

approximation to the molecule.

Two general observations may be made concerning the composite systems 

which apparently are the best approximations to the subject molecules. 

First, the component parts of the best composite system approximations 
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in all five cases studied are a tetracyclic aromatic hydrocarbon 

molecule and a cis-butadiene molecule. Dibenz(a,c)anthracene should, 

of course, be excluded from this observation since those were the 

only type composite systems considered as possible approximations 

for this molecule. However, composite systems consisting of an anthracene 

molecule and a styrene molecule were considered as approximations to 

benz(a)napthacene, benzo(b)chrysene, and dibenzo(b,g)phenanthrene and 

composite systems consisting of a tetracyclic aromatic hydrocarbon 

molecule and an ethylene molecule were considered as approximations to 

3,4-benzopyrene. The composite systems consisting of component 

parts other than a tetracyclic aromatic hydrocarbon molecule and a 

cis-butadiene molecule in no case produced a set of electronic transitions 

which were the best approximation to those of the complete molecule.

The second observation is that in every case, the composite system 

which is the best approximation to the complete molecule is the one which 

contains the tetracyclic aromatic hydrocarbon molecule of highest 

symmetry. For example, the composite system containing napthacene, which 

belongs to the symmetry point group is a better approximation 

to benz(a)napthacene than the composite system containing benz(a)- 

anthracene, which belongs to the symmetry poing group Cs. Thus, one 

is inclined to believe that the most symmetrical tetracyclic sub

structure may be the dominant factor in determining the spectroscopic 

characteristics of the pentacyclic molecules.
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H. Comparison with Experiment

1. General

The only interpretations available of the experimental pentacyclic 

aromatic hydrocarbon transitions in terms of the transitions of tetra

cyclic moi eties contained within the structure of the pentacyclic were 
86made by Becker. In the following discussions, the analyses of the 

various experimentally observed transitions will be briefly given and 

the analyses compared to the predictions made for the transitions in 

the section entitled Analysis of Results. The observed and calculated 

transitions for the five subject molecules are correlated in Tables 

2.13 through 2.17. In these tables the energy and extinction coefficient 

of the 0-0 transitions of the various observed bands will be given 

along with the theoretically calculated value of the transition energy 

and oscillator strength. The experimental transition energies and 

extinction coefficients were determined from the room temperature 

absorption spectra of the hydrocarbon dissolved in p-dioxane. The 

analysis of the experimental tetracyclic aromatic hydrocarbon spectra 
87was done by Becker, Singh, and Jackson.

2. Benz(a)napthacene

The experimental transition energies and the corresponding 

calculated values for benz(a)napthacene are given in Table 2.13. 

The correspondence of the calculated and observed values are relatively 

good but certainly not excellent.



TABLE 2.13. EXPERIMENTALLY OBSERVED 0-0 TRANSITIONS OF BENZ(a)NAPTHACENE

AND CORRESPONDING CALCULATED TRANSITIONS

Transition 
Number

Observed Transition 
Energy (ev)

Extinction Coefficient 
of Observed Transition 

(1/mole-cm)

Calculated Tran
sition Energy 

(ev)

Calculated Oscil
lator Strength

I 2.75 36,095 2.98 0.371

II 3.92 61,657 3.84 0.892

III 4.09 117,057 4.21 1.815

IV 4.81 61,657 4.98 0.634

V 5.55 36,095 5.25 0.327

ro 
ro



TABLE 2.14. EXPERIMENTALLY OBSERVED 0-0 TRANSITIONS OF BENZO(b)CHRYSENE

AND CORRESPONDING CALCULATED TRANSITIONS

Transition 
Number

Observed Transition 
Energy (ev)a

Extinction Coefficient 
of Observed Transition 

(1/mole-cm)

Calculated Tran
sition Energy 

(ev)

Calculated Os
cillator Strength

I 3.16 3,599 3.31 0.565

II 4.08 45,136 4.04 0.560

III 4.26 76,967 4.48 2.343

IV 4.65 (?) 27,237 4.88 0.188

V 4.98 29,961 5.18 0.393

a (?) signifies uncertainty in assignment of this transition as a separate transition

ro 
ro 
oo



TABLE 2.15. EXPERIMENTALLY OBSERVED 0-0 TRANSITIONS OF DIBENZO(b,g)-

PHENANTHRENE AND CORRESPONDING CALCULATED TRANSITIONS

Transition 
Number

Observed Transition 
Energy (ev)

Extinction Coefficient 
of Observed Transition 

(l/mole-cm)

Calculated Tran
sition Energy 

(ev)

Calculated Oscil
lator Strength

I 3.09 2,716 3.34 0.000

II 3.16 5,028 3.38 0.228

III 3.84 7,989 __a ---

IV 4.01 99,812 4.04 1.606

V 4.51 22,180 4.24 0.177

VI 4.66 16,635 4.71 0.505

VII 4.98 53,571 5.09 0.144

VIII 5.47 79,793 5.39 1.052

a Observed transition apparently does not correspond to any <allowed calculated transition

no 
no 
kD



TABLE 2.16. EXPERIMENTALLY OBSERVED 0-0 TRANSITIONS OF DIBENZ(a,c)ANTHRACENE

AND- CORRESPONDING CALCULATED TRANSITIONS

Transition 
Number

Observed Transition 
Energy (ev)

Extinction Coefficient 
of Observed Transition 

(l/mole»sec)

Calculated Tran
sition Energy 

(ev)

Calculated Oscil
lator Strength

I 3.29 697 3.53 0.000

II 3.52 3,465 3.74 0.168

III 4.31 146,315 4.37 2.285

IV 4.98 52,255 4.84 1.263

V 5.68 40,264 5.35 0.364

VI 6.00 -- — 5.92 0.268

ro 
co 
o



TABLE 2.17. EXPERIMENTALLY OBSERVED 0-0 TRANSITIONS OF 3,4-BENZOPYRENE

AND CORRESPONDING CALCULATED TRANSITIONS

Transition 
Number

Observed Transition 
Energy (ev)

Extinction Coefficient 
of Observed Transition 

(1/mole‘sec)

Calculated Tran
sition Energy 

(ev)

Calculated Oscil
lator Strength

I 3.07 4,029 3.31 0.000

II 3.22 27,637 3.12 0.997

III 4.18 57,871 4.42 0.871

IV 4.67 43,889 4.72 0.662

V 5.47 24,352 5.14 1.055

VI 5.93 — 5.78 0.334

no
GJ
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The most important point, of course, is whether or not the composite 

system chosen as the best approximation to the complete molecule on 

the basis of the theoretical investigation agrees with the composite 

system implied by the interpretation of the experimental transitions. 

Becker has interpreted the transitions of benz(a)napthacene as 

being napthacene-like transitions which implies that the composite 

system model of this molecule would be a napthacene molecule and a 

cis-butadiene molecule. These are the component parts of the composite 

system model chosen in the theoretical study as the best approximation 

to benz(a)napthacene. The individual transitions will now be discussed.

Transition I: Becker has interpreted this transition as being 

equivalent to the first observed transition of napthacene. This 

benz(a)napthacene transition is blue shifted approximately 0.124 ev 

relative to its position in napthacene. Transition I has two vibrational 

sequences with vibrational spacings of 260 cm~^ and 1430 cm~\ These 

correspond to two vibrational sequences of the equivalent transition 

in napthacene, however, two additional vibrational sequences exist 

in the napthacene transition. Transition I corresponds to the first 

allowed calculated transition of benz(a)napthacene. On the basis 

of the theoretical analysis, this transition was predicted to be 

similar to the first transition of napthacene and blue shifted about 

0.15 ev relative to its position in the composite system (la). The 

theoretical prediction and experimental compare quite well in this 

case.
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Transition II: In the experimental interpretation, this tran

sition is correlated to the second observed transition of napthacene. 

The benz(a)napthacene transition is red shifted about 0.285 ev and 

its intensity increased considerably relative to the second transi

tion of napthacene. Transition II corresponds to the second allowed 

calculated transition of benz(a)napthacene which was interpreted 

as arising from an electron-transfer transition at 3.761 ev in the 

non-bonded composite system (la). Consequently, no predictions 

were made concerning the appearance of Transition II. 
oc 

Transition III: Becker interprets this benz(a)napthacene 

transition as being equivalent to the third observed transition 

of napthacene. The vibrational sequence in Transition III has a 

spacing of 1345 cm~^ while the third transition of napthacene has 

a vibrational spacing of 1300 cm”\ Also the benz(a)napthacene 

transition is red shifted approximately 0.397 ev relative to the 

napthacene transition. Transition III corresponds to the third 

allowed theoretical transition. In the theoretical analysis, this 

transition was correlated to a very weak second transition of the 

napthacene moiety of the composite system (la). Thus, the experi

mentally observed third transition of benz(a)napthacene was predicted 

to have the characteristics of the weak second transition of 

napthacene, although the intensity of this transition would be 

increased by a very large factor in going from napthacene to benz(a)- 
pc 

napthacene. Becker's analysis of Transition III, however, does 

not agree with this prediction.
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Transition IV: In the experimental interpretation this transition 

is correlated to the fourth observed transition of napthacene. Two 

vibrational sequences are noted in Transition IV with vibrational 

spacings of 1098 cm~^ and 1598 cm~\ The corresponding transition 

of napthacene has a single observed vibrational sequence with a 
"1 86spacing of 900 cm" . Becker notes that Transition IV of benz(a)- 

napthacene is red shifted nearly 0.620 ev relative to the fourth 

transition of napthacene. Transition IV has been correlated to the 

fifth allowed theoretical transition of benz(a)napthacene. (No 

observed transition could be correlated to the fourth allowed theoretical 

transition.) This calculated transition was in turn correlated to 

a composite system (la) transition essentially formed by the mixing 

of the fourth allowed napthacene transition and the first allowed 

cis-butadiene transition. On the basis of the relative weights with 

which the local excited configurations of each component part con

tribute to the excited state, it was predicted that the fifth allowed 

transition of benz(a)napthacene should appear as a highly modified 

fourth transition of napthacene. This seems to agree fairly well 

with the interpretation given for Transition IV. The shift in 

the calculated transition in going from the composite system (la) 

to the complete molecule does not correspond to the shift in the 

observed transtion; however, this discrepancy may be due to the 

large error in the calculated values of Transition IV.
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Transition V: In the interpretation of the experimentally observed 

transitions. Transition V is correlated to the fifth observed transi

tion of napthacene. The vibrational spacing of the one observed 

vibrational sequence of Transition V is about 1596 cm"\ No vibrational 

structure is observed for the fifth transition of napthacene. Also, 

Transition V is red shifted approximately 0.248 ev relative to the 

fifth transition of napthacene. Transition V of benz(a)napthacene 

corresponds to the sixth allowed calculated transition. In the 

theoretical analysis, this transition was correlated to another 

composite system transition arising from the interaction of the fourth 

allowed transition of napthacene and the first allowed transition 

of cis-butadiene. Again, based on the relative weights with which 

the local excited configurations contributed to this excited state, 

it was predicted that the sixth allowed transition of benz(a)napthacene 

would appear as a highly modified fourth transition of napthacene. 

This does not agree with Becker's interpretation of Transition V.

In summary, the theoretical analysis of benz(a)napthacene has 

indicated that the composite system composed of napthacene and cis

butadiene is the best approximation to benz(a)napthacene. On this 

important point, the theoretical treatment agrees with the inter

pretation of the observed transitions. However, of the six 
86 experimentally observed transitions discussed above, Becker's inter

pretations of the transitions in terms of particular napthacene transi

tions have agreed in only two cases with the predictions made in 

the theoretical analysis.
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3. Benzo(b)chrysene

The experimental transition energies and corresponding theoretical 

values for benzo(b)chrysene are listed in Table 2.14. The overall 

correspondence of the calculated and experimental transition energies 

of benzo(b)chrysene is quite good. With the exception of Transition II, 

all of the experimentally observed transition energies are less than 

the corresponding calculated transition energies by a fairly constant 

amount.

In his examination of the five experimentally observed transitions 

of benzo(b)chrysene, Becker has interpreted the transitions in 

terms of benz(a)anthracene transitions thus implying a composite 

system composed of a benz(a)anthracene molecule and a cis-butadiene 

molecule. However, it was found in the theoretical analysis that 

the composite system model whose electronic transitions most closely 

approximated those of benzo(b)chrysene consisted of a chrysene 

molecule and a cis-butadiene molecule. The composite system composed 

of a benz(a)anthracene molecule and a cis-butadiene molecule was also 

examined in the theoretical investigation, but it was not considered 

to be the best approximation to the benzo(b)chrysene molecule. Thus, 

in this case the theoretical interpretation and the interpretation 

of the' experimentally observed transitions are in complete disagreement.
R6Becker’s interpretation of the individual experimentally observed 

transitions of benzo(b)chrysene will be presented, although in all 

instances they differ from the results of the theoretical analysis.
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86 It should be noted that Becker did find some similarities between 

certain benzo(b)chrysene transitions and those of chrysene; however, 

overall he described the benzo(b)chrysene absorption spectra as 

having the general appearance of a red shifted benz(a)anthracene 

absorption spectra with a missing first transition.
86Transition I: Becker has interpreted this observed transition 

as being equivalent to the second observed transition of benz(a)- 

anthracene. The general structure of Transition I resembles that 

of the second benz(a)anthracene transition and both transitions are 

Franck-Condon forbidden. This benzo(b)chrysene transition is red 

shifted 0.029 ev relative to the equivalent benz(a)anthracene transi

tion. Transition I corresponds to the first allowed calculated 

transition of benzo(b)chrysene. The theoretical investigation indicated 

that this calculated benzo(b)chrysene transition arises from the first 

allowed transition of chrysene.

Transition II: This observed transition is interpreted as 

corresponding to the third observed transition of benz(a)anthracene. 

The vibrational sequence of Transition II is short as it is in the 

benz(a)anthracene transition. Transition II of benzo(b)chrysene 

is red shifted 0.061 ev Relative to the equivalent benz(a)anthracene 

transition. The calculated benzo(b)chrysene transition to which 

Transition II corresponds is the second allowed transition. In 

the theoretical analysis, the second allowed transition was interpreted 

as arising from a degenerate forbidden electron-transfer transition 

in the composite system model composed of a chrysene molecule and a 

cis-butadiene molecule.
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RfiTransition III: This transition is interpreted by Becker as 

being equivalent to the fourth observed benz(a)anthracene transition. 

Transition III of benzo(b)chrysene has a long vibrational sequence 

as does the corresponding benz(a)anthracene transition; however, the 

0-0 bond is not the most intense in Transition III as it is in the 

fourth observed benz(a) anthracene transition. Transition III is 

red shifted 0.050 ev relative to the equivalent benz(a)anthracene 

transition. Transition III corresponds to the third allowed theoretical 

transition of benzo(b)chrysene. On the basis of the theoretical 

analysis, the third allowed calculated transition of benzo(b)chrysene 

was interpreted as arising from the second allowed transition of 

chrysene.

Transition IV: The actual assignment of this benzo(b)chrysene 
oc 

transition is considered questionable by Becker. Assuming that 

Transition IV does exist, it is considered to be equivalent to the 

fifth observed transition of benz(a)anthracene. This benzo(b)- 

chrysene transition is red shifted 0.191 ev relative to the corres

ponding benz(a)anthracene transition. Transition IV corresponds to 

the fourth allowed calculated transition of benzo(b)chrysene. The 

theoretical investigation indicated that this calculated transition 

was derived from an extremely weak, or perhaps forbidden, transition 

in chyrsene.
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oc
Transition V: Becker has correlated this final observed benzo- 

(b)chrysene transition with the sixth observed transition of benz(a)- 

anthracene. Transition V is blue shifted 0.046 ev relative to the 

equivalent benz(a)anthracene molecule. The theoretical transition 

to which Transition V corresponds is the fifth allowed transition. 

In the theoretical analysis of benzo(b)chrysene, the fifth allowed 

transition was interpreted as arising from a forbidden degenerate 

electron-transfer transition in the chrysene and cis-butadiene composite 

system.

In summary, the comparison of the results of the theoretical 

analysis of the calculated transitions with the interpretation of 

the experimentally observed transitions of benzo(b)chrysene indicates 

disagreement in the most basic and important point. This point is 

the particular composite system model chosen as the best approximation 

to the complete benzo(b)chrysene molecule. From the theoretical 

analysis, a composite system composed of a chrysene molecule and a 

cis-butadiene molecule was found to be the best approximation to the 

benzo(b)chrysene molecule. However, in his examination of the experimen- 

tally observed transitions of benzo(b)chrysene, Becker has interpreted 

the transitions as being similar to the observed transitions of benz- 

(a)anthracene and thus, implying that a composite system composed of 

a benz(a)anthracene molecule and a cis-butadiene molecule approximates 

benzo(b)chrysene best.
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4. Dibenzo(b,g)phenanthrene

The experimental transition energies and corresponding theoretical 

values for dibenzo(b,g)phenanthrene are listed in Table 2.15. The 

overall correspondence of the theoretical and experimental transition 

energies of dibenzo(b,g)phenanthrene is somewhat better than the 

correspondence noted in the other molecules. However, Transition III, 

observed by Becker, does not appear to correspond to any allowed 

calculated transition.

In his examination of the eight experimentally observed transitions 
86of dibenzo(b,g)phenanthrene, Becker has interpreted the transitions 

as benz(a)anthracene transitions thus, implying a composite system 

composed of a benz(a)anthracene molecule and a cis-butadiene molecule. 

However, it was found in the theoretical analysis that the composite 

system model whose electronic transitions most closely approximated 

those of dibenzo(b,g)phenanthrene consisted of a benzo(c)phenanthrene 

molecule and a cis-butadiene molecule. The composite system composed 

of a benz(a)anthracene molecule and a cis-butadiene molecule was also 

examined in the theoretical investigation, but it was not considered 

to be the best approximation to the dibenzo(b,g)phenanthrene molecule. 

Consequently, in this case the theoretical interpretation and the 

experimental interpretation are in complete disagreement. However, 

in the interest of completeness, Becker's interpretation of the 

experimentally observed transitions of dibenzo(b,g)phenanthrene will 

be discussed, although in all instances they differ from the inter

pretations given in the theoretical analysis.
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86Transition I: Becker has correlated this transition with the 

first observed transition of benz (a)anthracene. Transition I of 

dibenzo(b,g)phenanthrene is extremely weak and there is some question 

as to the assignment of this transition. If Transition I is correctly 

assigned, it is red shifted 0.143 ev relative to the weak first 

observed transition of benz(a)anthracene. No vibrational structure 

is observed in Transition I. The calculated transition to which 

Transition I corresponds is the lowest energy forbidden transition. 

The theoretical investigation indicated that this calculated dibenzo- 

(b,g)phenanthrene transition arises from the lowest energy 

forbidden transition of benzo(c)phenanthrene.

Transition II: This observed transition is interpreted as being 

equivalent to the second observed transition of benz(a)anthracene. 

One vibrational sequence is observed in Transition II with a spacing 

of 1327 cm'l compared to two vibrational sequences in the equivalent 

benz(a)anthracene with spacings of 1050 cm~^ and 1415 cm~\ This 

di benzo(b,g)phenanthracene transition is red shifted 0.298 ev relative 

to the second observed benz(a)anthracene transition. Transition II 

corresponds to the first allowed calculated transition. This calculated 

transition of dibenzo(b,g)phenanthrene was interpreted on the basis 

of the theoretical analysis as arising from the first allowed local 

transition of benzo(c)phenanthrene.
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Rfi
Transition III: Becker has correlated this transition with 

the third observed transition of benz(a)anthracene. Transition III 

is red shifted 0.310 ev relative to the third observed transition of 

benz(a)anthracene. This dibenzo(b,g)phenanthrene transition generally 

looks like the third benz(a)anthracene transition and has a single 

observable vibrational sequence with a spacing of 530 cm~^ compared 

with a spacing of 425 cm in the single observed vibrational sequence 

of the equivalent benz(a)anthracene transition. As noted earlier. 

Transition III cannot be associated with an allowed calculated transi

tion. Consequently, there is no prediction of observable transition 

characteristics in the theoretical analysis which is applicable to 

Transition III. It is interesting to note that a similar situation 

exists for the third observed transition of benz(a)anthracene, that is, 

it apparently does not correspond to an allowed calculated transition 

of benz(a)anthracene.

Transition IV: This transition is correlated with the fourth 
86 observed transition of benz(a)anthracene. Becker notes a similarity 

in the characteristics of these two transitions, for example, both 

are Franck-Condon allowed. Transition IV of dibenzo(b,g)phenanthrene 

has a single observed vibrational sequence with a spacing of 1318 cm~^ 

while the fourth transition of benz(a)anthracene has a single observed 

series with a spacing of 1350 cm“\ Transition IV is red shifted 

0.136 ev relative to the benz(a)anthracene transition. The calculated 

transition to which transition IV corresponds is the second allowed 
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calculated transition of dibenzo(b,g)phenanthrene. In the theoretical 

analysis, this calculated transition of dibenzo(b,g)phenanthrene was 

found to be derived from the second allowed transition of benz(c)- 

phenanthrene.
86Transition V: Bebker has correlated this transition with the 

fifth observed transition of benz(a)anthracene. The assignment of 

this dibenzo(b,g)phenanthrene transition is questionable and it is 

insufficiently resolved to facilitate any further description. 

Transition V corresponds to the third allowed calculated transition of 

dibenzo(b,g)phenanthrene. In the theoretical analysis, this calculated 

transition was interpreted as being derived from a forbidden transition 

to an electron-transfer state in the composite system composed of a 

benzo(c)phenanthrene molecule and a cis-butadiene molecule.

Transition VI: This transition is interpreted as corresponding 

to the sixth observed transition of benz(a)anthracene. As in the 

case of Transition V, the assignment of Transition VI of dibenzo(b,g)- 

phenanthrene is also tentative and it is insufficiently resolved for 

further description. Transition VI corresponds to the fourth allowed 

calculated transition of dibenzo(b,g)phenanthrene. On the basis of 

the theoretical analysis, the observable transition corresponding 

to the fourth allowed calculated transition was predicted to have the 

characteristics of a highly modified third allowed transition of benzo- 

(c)phenanthrene.
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pc
Transition VII: This transition is interpreted by Becker as 

being equivalent to the seventh observed transition of benz(a)anthracene 

and is red shifted 0.459 ev relative to the equivalent benz(a)anthracene 

transition. The calculated transition to which Transition VII of 

dibenzo(b,g)phenanthrene corresponds is the fifth allowed transition. 

In the theoretical analysis, this calculated dibenzo(b,g)phenanthrene 

transition was interpreted as arising from a degenerate forbidden 

transition to an electron-transfer state in the composite system 

composed of a benzo(c)phenanthrene molecule and a cis-butadiene molecule.

Transition VIII: This final observed transition is correlated 

with the eighth observed transition of benz(a)anthracene and is red 

shifted 0.149 ev relative to the benz(a)anthracene transition. Transi

tion VIII corresponds to the sixth allowed theoretical transition of 

dibenzo(b,g)phenanthrene. In the theoretical interpretation, the 

sixth allowed transition of dibenzo(b,g)phenanthrene was correlated 

with the essentially unaltered fourth allowed local transition of 

benzo(c)phenanthrene.

To surwiarize the discussion of the dibenzo(b,g)phenanthrene molecule, 

it has been found that the theoretical interpretation of the calculated 

transitions in terms of a composite system approximation and the 

composite system interpretation of the experimentally observed transitions 

disagree in the most basic point. This fundamental difference is in 

the composite system model chosen as the best approximation to the 

complete dibenzo(b,g)phenanthrene molecule. On the basis of the 
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theoretical analysis, a composite system composed of a benzo(c)- 

phenanthrene molecule and a cis-butadiene molecule is determined to 

be the best model. However, in the experimental analysis, a composite 

system composed of a benz (a) anthracene molecule

and a cis-butadiene molecule is determined to be the best approxima

tion to a dibenzo(b,g)phenanthrene molecule. The benz(a)anthracene 

and cis-butadiene composite system was also considered in the theoretical 

investigation. This difference in the composite system approximations 

is undoubtedly the most fundamental and worst discrepancy between the 

proposed theoretical composite system analysis of pentacyclic aromatic 

hydrocarbon transition and the composite system interpretation of the 

actual experimentally observed transitions of these molecules.

5. Di benz(a, c)anthracene

The experimental transition energies and corresponding 

theoretical values for dibenz(a,c)anthracene are listed in Table 2.16. 

The degree of correspondence of the calculated and observed transition 

energies is essentially the same as that noted for the other molecules. 

That is, the correspondence is not particularly good, but is about 

average for calculations of the level of sophistication used in this 

investigation.

In his examination of the six observed transitions of dibenz(a,c)- 
86 anthracene, Becker has interpreted the first three transitions as 

triphenylene transitions, however, he has interpreted the other three 
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transitions as benz(a)anthracene transitions. The interpretation of 

the first three transitions as tri phenylene transitions implies a 

composite system composed of a triphenylene molecule and a cis-butadiene 

molecule. These are the component parts of composite system (IVa) 

which was chosen as the best approximation to dibenz(a,c)anthracene 

in the theoretical investigation. However, in the theoretical inves

tigation all the transitions of dibenz(a,c)anthracene were interpreted 

in terms of the triphenylene and cis-butadiene composite system and 

not just some as has been done by Becker in the analysis of the 

observed transitions. The composite system composed of a benz(a)- 

anthracene molecule and a cis-butadiene molecule was also examined 

in the theoretical investigation but it was not considered to be the 

best approximation to the dibenz(a,c)anthracene molecule. Consequently, 

on this basic point, that is, which composite system is the best 

approximation to the dibenz(a,c)anthracene molecule there is only 

partial agreement between the theoretical and experimental analyses. 

The individual observed transitions of dibenz(a,c)anthracene will now 

be discussed.

Transition I: This transition is correlated with the first 
oc

observed triphenylene transition by Becker. Transition I is red 

shifted 0.341 ev relative to the triphenylene transition. Only 

one vibrational sequence with spacing of 760 cm"^ is observed 

in the dibenz(a,c)anthracene transition while three vibrational 

sequences with spacings of 525 cm~\ 650 cm"\ and 1375 cm"^ are 
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observed in the equivalent triphenylene transition. Also the intensity 

of the dibenz(a,c)anthracene transition is somewhat stronger. Becker 

does note a similarity in general appearance between the tri phenylene 

and dibenz(a,c)anthracene transitions. The calculated transition to 

which Transition I corresponds is the lowest energy forbidden transition. 

The theoretical investigation indicated that this transition corres

ponded to the lowest energy forbidden transition of tri phenylene which 

was red shifted approximately 0.27 ev in passing from the composite 

system (IVb) to the complete dibenz(a,c)anthracene molecule. The 

theoretical and experimental analyses apparently agree in this particular 

case.

Transition II: This observed transition is interpreted as being 

equivalent to the second observed transition of triphenylene. Three 

vibrational sequences are observed in Transition II with spacings 

of 1030 cm”\ 1170 cm~\ and 1445 cm"^ compared to two vibrational 

sequences in the equivalent triphenylene transition with vibrational 

spacings of 525 cm~^ and 1375 cm~\ Experimentally, the intensity 

of the dibenz(a,c)anthracene transition is somewhat weaker than the 

second observed triphenylene transition, and it is red shifted 0.747 ev 

relative to the second tri phenylene transition. Transition II corres

ponds to the first allowed calculated transition of dibenz(a,c)anthracene. 

On the basis of the theoretical study, this transition was interpreted 

as arising from the first allowed local transition of triphenylene which 

was red shifted about 0.27 ev and became more intense in going from 
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the composite system to the complete molecule. Thus, the theoretical 

and experimental interpretations agree as to the composite system 

origin of Transition II, although there is some difference in the 

predicted and observed behavior of this transition in passing from 

the composite system model to the complete dibenz(a,c)anthracene 

molecule.

Transition III: This transition is red shifted 0.508 ev and the 

intensity slightly diminished relative to the third observed transition 

of triphenylene with which it is correlated. A single vibrational 

sequence with spacing of 1380 cm~^ is observed in Transition III while 

a single vibrational sequence with spacing of 1325 cm"^ is observed 

in the equivalent triphenylene transition. Transition III corresponds 

to the second allowed calculated transition of dibenz(a,c)anthracene. 

In the theoretical investigation, this transition was interpreted 

as arising from an electron-transfer transition in the composite 

system and consequently, no interpretation of the observable 

characteristics of this dibenz(a,c)anthracene transition was given.
R6Transition IV: Becker interprets this transition as corresponding 

to the sixth observed transition of benz(a)anthracene. Transition IV 

is blue shifted 0.015 ev relative to the benz(a)anthracene transition. 

The dibenz(a,c)anthracene has a single vibrational sequence with a 

spacing of 1200 cm~^ and the benz(a)anthracene transition has a single 

observed vibrational sequence with a spacing of 1300 cm~\ Transition 

IV corresponds to the fourth allowed calculated transition of dibenz- 
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(a,c)anthracene. In the theoretical analysis, this transition was 

also interpreted as being derived from an electron-transfer state 

of a tri phenylene and cis-butadiene composite system and consequently 

no prediction was given for the observable characteristics of the 

fourth allowed theoretical transition. Although no prediction of 

observable characteristics was given, the theoretical and experimental 

analyses fundamentally disagree because the interpretations were 

given in terms of different composite system models, 
oc

Transition V: Becker indicates that this transition may corres- 

pond to the eighth observed transition of benz(a)anthracene, in which 

case the transition would have been blue shifted 0.064 ev relative 

to its position in benz(a)anthracene. Transition V corresponds to 

the fifth theoretical transition of dibenz(a,c)anthracene. This 

transition was also interpreted in terms of a tri phenylene and cis

butadiene composite system and thus does not agree with the analysis 

of the observed transition. In the theoretical analysis, the fifth 

allowed transition was interpreted as arising from the first allowed 

local transition of the triphenylene moiety and which was blue shifted 

about 0.66 ev in passing from the composite system model to the 

complete molecule.

Transition VI: It is indicated that this transition may be 

equivalent to the ninth observed transition of benz(a)anthracene. 

If this is the case. Transition VI is red Shifted 0.038 ev relative 

to its position in benz(a)anthracene. Transition VI is correlated 
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with the eighth allowed calculated transition. As with Transitions 

IV and V, the interpretation of the observed Transition VI does not 

agree with the predictions made on the basis of the theoretical 

investigation of dibenz(a,c)anthracene. This is because the theoretical 

interpretation were again made in terms of a composite system containing 

tri phenylene and the experimental interpretations were made on the 

basis of a composite system containing benz(a)anthracene. In the 

theoretical analysis, the sixth allowed transition of dibenz(a,c)- 

anthracene was predicted to have the observable characteristics of 

a highly modified second allowed transition of triphenylene.

To summarize this comparison, it must be concluded that the 

interpretation of the electronic transitions of dibenz (a,c) anthracene 

on the basis of theoretically calculated transitions coincides with 

the interpretation of the observed transitions only partially at best.
86Becker has interpreted the first three transitions of this molecule 

in terms of a tri phenylene and cis-butadiene composite system which 

agrees with the composite system chosen in the theoretical investiga

tion as the best approximation to dibenz(a,c)anthracene. Of these 

first three transitions, the predictions made in the theoretical study 

concerning the characteristics of two compared favorably with the 

interpretations of the corresponding observed transitions. However, 

Becker interpreted the other three observed dibenz(a,c)anthracene 

transitions in terms of a second composite system composed of a benz- 
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(a)anthracene molecule and a cis-butadiene molecule. Although two 

or more composite system models of each pentacyclic aromatic hydro

carbon molecule were examined in the theoretical analysis, the 

transitions of the subject molecule were interpreted only in terms 

of the single composite system model which was chosen to be the 

best approximation to the subject pentacyclic molecule.

It was noted during the study of the calculated transitions that 

occasionally small groups of transitions of the subject molecule 

may appear to be quite similar to a small group of transitions in 

a composite system other than the one which was chosen to be the 

best overall approximation to the molecule. However, the idea 

of interpreting the calculated transitions in terms of more than 

one composite system was rejected because of the difficulty of 

prescribing a logical set of rules or guidelines for such an inter

pretive scheme in the case of the theoretically determined transitions. 

This occurs because the calculated transitions are characterized 

only by the energy and oscillator strength of the transition and 

comparing individual transitions ofthe complete molecule to individual 

transitions in a number of composite systems only on the basis of 

two parameters could reduce the correspondence to pure coincidence. 

Consequently, it was felt that the correlation of the calculated transi

tions of a molecule in terms of many composite system approximations 

would seriously diminish any theoretical significance which could be 

attached to the interpretation of the molecular transitions in terms 

of those of a composite system model of that molecule.
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It must also be noted that Becker presented an alternative inter

pretation of the dibenz(a,c)anthracene transitions in terms of the 

transitions of benzo(c)phenanthrene. This particular tetracyclic aro

matic hydrocarbon is not contained within the structure of dibenz(a,c)- 

anthracene. The interpretation of the transitions of a molecule in 

terms of a composite system not related to the structure of the subject 

molecule is entirely incompatible with the composite system approach 

of the present theoretical investigation and no understanding of 

such observations can be gained from this investigation.

6. 3,4-Benzopyrene

The observed transition energies and corresponding theoretical 

values for 3,4-benzopyrene are listed in Table 2.17. The calculated 

and observed values generally agree as well as they have for the other 

molecules studied, with one rather important exception. The calculated 

transitions indicate that the lowest energy allowed transition is at
86 lower energy than the lowest energy forbidden transition; however, Becker 

has found that experimentally, the very weak observed transition corres

ponding to the forbidden calculated transition is at lower energy than 

the observed lowest energy intense transition corresponding to the 

calculated lowest energy allowed transition. (Recall that throughout 

this investigation the terms “forbidden" and "allowed" indicate zero 

and finite values respectively for the calculated oscillator strengths.) 

A discrepancy between theory and experiment such as this is disturbing 
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and no clue as to its cause has been discovered in this work. For the 

purposes of this comparison, however, the lowest energy allowed and 

lowest energy forbidden theoretically determined transitions will be 

correlated to their obvious experimental counterparts regardless of 

the error in the predicted relative positions. In his analysis of the 

observed transitions of 3,4-benzopyrene, Becker ° has interpreted the 

transitions in terms of pyrene transitions which imply a composite 

system composed of a pyrene molecule and a cis-butadiene molecule. 

These are the component parts of the composite system (Va) which was 

chosen as the best approximation to 3,4-benzopyrene on the basis of 

the theoretical investigation. The individual transitions of 3,4- 

benzopyrene will now be discussed.

Transition I: Becker ° has interpreted this transition as being 

equivalent to the first observed transition of pyrene. Transition I 

is red shifted approximately 0.273 ev relative to the position of the 

equivalent pyrene transition. In 3.4-benzopyrene, there is only one 

observed vibrational sequence and its vibrational spacing is about 

565 cm”l while in pyrene there are four vibrational sequences with 

spacings of 500 cm~\ 725 cm-\ 1050 cm~^ and 1550 cm"\ Transition I 

corresponds to the lowest energy forbidden calculated transition which, 

on the basis of the theoretical analysis, was predicted to have 

characteristics similar to the lowest energy forbidden transition of 

pyrene. This prediction corresponds to Becker's interpretation of 

the observed transition. Also, the theoretical transition is found to 

be red shifted about 0.25 ev going from the composite system (Va) to 

the complete molecule.
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Transition II: This transition has been interpreted as being 

equivalent to the second observed transition of pyrene. Transition II 

is red shifted about 0.484 ev relative to the corresponding pyrene 

transition. Becker notes a similar general pattern for the pyrene 

and 3,4-benzopyrene transitions. Transition II has three observed 

vibrational sequences with spacings of 220 cm"\ 375 cm"\ and 1460 

cm-l while the second transition of pyrene has two vibrational 

sequences with spacings of 375 cm"^ and 1450 cm~\ Transition II 

corresponds to the first allowed theoretical transition of 3,4-benzo

pyrene. The theoretical analysis of this transition indicated that 

it was derived from the first allowed transition of the pyrene 

component part and consequently, the observed transition corresponding 

to the first allowed transition of 3,4-benzopyrene should appear 

quite similar to the first intense transition of pyrene. This 

corresponds to the experimental interpretation.

Transition III: This transition is correlated to the third obser- 

ved transition of pyrene by Becker. Transition III is red shifted 

about 0.360 ev relative to the pyrene transition. Again, a similar 

general pattern is noted for the two transitions. One vibrational 

sequence with a spacing of 1460 cm~^ is positively observed in the

3,4-benzopyrene  transition while two sequences with spacings of 375 

cm”! and 1450 cm~^ are observed in the pyrene transition. The 

theoretical transition of 3,4-benzopyrene which corresponds to Transition 

III is the third allowed transition. The theoretical interpretation 
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of this transition was that it arose from the interaction of the first 

allowed transition of cis-butadiene and the second allowed transition 

of pyrene and, on the basis of the relative weights with which the 

local excited configurations contributed to this excited state, the 

transition should appear as a highly modified second allowed pyrene 

transition when observed. This generally corresponds to Becker's 

interpretation; however, the observed transition is apparently not 

modified very extensively relative to the pyrene transition.The 

theoretical transition is red shifted about 0.17 ev in going from the 

composite system (Va) to the complete 3,4-benzopyrene molecule.

Transition IV: The transition is red shifted 0.484 ev relative 

to the fourth observed transition of pyrene with which it is correlated 
oc 

by Becker. The vibrational pattern of Transition IV is similar 

to that in the corresponding pyrene transition. Two vibrational 

sequences are noted in the 3,4-benzopyrene transition with spacings 

of 400 cm and 1550 cm'^while the two vibrational sequences observed 

-1 -1 in the fourth pyrene transition have spacings of 400 cm and 1550 cm . 

Transition IV corresponds to the fourth allowed calculated transition. 

The theoretical analysis of this transition indicated that the transi

tion was derived from a forbidden electron-transfer transition in the 

composite system and consequently, no prediction was made concerning 

the observed characteristics of the transition.
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Transition V: Becker interprets this transition as being 

equivalent to the fifth observed transition of pyrene. Transition 

V is red shifted 0.521 ev relative to the fifth transition of pyrene. 

One vibrational sequence with spacing of 1350 cm~^ is observed in

3,4-benzopyrene  but none are observed in the pyrene transition. 

Transition V corresponds to the fifth allowed theoretical transition. 

However, the theoretical analysis of this 3,4-benzopyrene transition 

in terms of the composite system approximation indicated that the 

transition was derived from the interaction of the first allowed 

cis-butadiene transition and the second allowed pyrene transition. 

From this, it was predicted that the observed transition, that is, 

Transition V, should appear quite similar to the second allowed 

transition of pyrene. This does not correspond to Becker's inter

pretation of the observed transition.

Transition VI: This transition is correlated by Becker to 

the sixth observed transition of pyrene. The pyrene transition has 

no resolved vibrational structure while the 3,4-benzopyrene transition 

has a single poorly resolved vibration with a spacing of approximately 

1220 cm~\ Transition VI is red shifted 0.397 ev relative to the 

sixth pyrene transition. This observed transition corresponds to the 

seventh allowed calculated transition. Intthe theoretical analysis, 

the seventh allowed transition was related to the fourth allowed 

transition of pyrene. Consequently, the seventh allowed transition of

3,4-benzopyrene  was predicted to have the observable characteristics 

of the fourth allowed pyrene transition. This does not correspond to 

Becker's interpretation of Transition VI.
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In summary, the theoretical and experimental analyses of the 

electronic transitions of 3,4-benzopyrene agree on the most basic point. 

This point is that 3,4-benzopyrene is best approximated by a composite 

system composed of a pyrene molecule and a cis-butadiene molecule. 

Furthermore, in three of the six observed 3,4-benzopyrene transitions, 

the specific predictions made concerning the transitions on the basis 

of the theoretical investigation agrees with Becker's interpretation 

of the observed transitions. Also, the comparison of calculated and 

observed transitions for this molecule suggest the interesting possi

bility that in some cases the composite system model with very weak 

bonding between the component parts may be a better quantum mechanical 

picture of the molecule as it actually exists than the conventional 

picture of equal bonding between all carbon centers. This observation 

is prompted particularly by the fact that the composite system 

approximation of 3,4-benzopyrene correctly predicts the relative 

positions of the lowest energy allowed transition and the lowest 

energy forbidden transition while the conventional single component 

model of the molecule does not.

I. Conclus ion

It has been experimentally observed that many electronic transi

tions of the pentacyclic aromatic hydrocarbons have characteristics 

similar to those observed for tetracyclic aromatic hydrocarbons 

contained within the structure of the pentacyclic. In order to gain 
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an understanding of this experimentally observed phenomenon, an inter

pretive method utilizing theoretically calculated electronic transitions 

has been suggested. In this scheme, composite system models of each 

of the subject pentacyclic molecules were formed by conceptually 

breaking certain pairs of bonds in the complete molecule. The electronic 

transitions of the various composite systems were then calculated 

and compared to the transitions determined for the pentacyclic molecule 

treated conventionally as a single component system. The transitions^ 

of the pentacyclic molecule were then correlated with the transitions 

of the non-bonded composite system model whose transitions-best 

approximated those of the pentacyclic molecule. To aid in the above 

correlation, the electronic transitions were determined for the 

situation where there was "weak" or intermediate bonding between 

the component parts of the composite systems.

The transitions of the non-bonded composite systems were next 

analyzed to determine if the transitions arose as a local excitation 

in the component parts of the composite system or as an electron

transfer excitation from one component part to the other part. It 

was then suggested that the origins determined for the non-bonded 

composite system transitions may be assigned to the transitions of 

the complete pentacyclic molecule corresponding to the composite 

system transitions. From this theoretical interpretation, predictions 

were made concerning the characteristics of the experimentally
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observable transitions corresponding to the theoretically calculated 

transitions of the pentacyclic aromatic hydrocarbons. For example, 

a pentacyclic transition may be predicted to have the characteristics 

of a particular tetracyclic transition.

The comparison of the proposed theoretical composite system 

interpretations of the pentacyclic aromatic hydrocarbon transitions 

with the available composite system interpretation of the experimentally 

observed transitions reveals fair agreement at best. In the cases 

of benz(a)napthacene and 3,4-benzopyrene, both the theoretical and 

experimental interpretations reached the same conclusion as to which 

particular composite system models were the best approximations to the 

subject molecules. Although the interpretation of individual transitions 

disagreed in some instances, overall the theoretical and experimental 

interpretations agreed quite well. However, in the two cases of benzo(b)- 

chrysene and dibenzo(b,g)phenanthrene, the theoretical and experimental 

analyses reach different conclusions as to the best composite system 

approximations to the subject molecules. In the case of dibenz(a,c)- 

anthracene there is partial agreement in that half of the experimentally 

observed transitions are interpreted in terms of the composite system 

found to be the best approximation in the theoretical analysis while 

the remaining observed transitions are interpreted in terms of a 

different composite system model. All the theoretical interpretations 

were made in terms of a single composite system model for each subject 
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molecule. It is extremely difficult to judge the merits of the proposed 

composite system interpretation of electronic transitions on the basis 

of the results found from the comparison of the theoretical and experi

mental analyses.

If one is forced to draw a conclusion from the disagreement of 

the theoretical and experimental interpretations in the present work, 

the only reasonable conclusion would be that the suggested theoretical 

interpretation is apparently too naive or simply to give an adequate 

explanation for the experimentally observed "molecules in molecule" 

phenomenon. The composite system interpretive scheme suggested in this 

theoretical investigation of the pentacyclic aromatic hydrocarbons, 

as well as the previous studies of composite system approximations 

referred to earlier, all suffer from a common limitation. This 

limitation is the fact that the composite system concept is essentially 

an ad hoc assumption made to explain certain experimentally observed 

peculiarities in the spectra of limited classes of molecules. Thus, 

the only test which can be applied to the composite system model 

is to see if it leads to the same conclusions as the experimental 

interpretations. If it does not, the only alternative is to ascribe 

the disagreement between the theoretical and experimental interpretations 

to deficiencies in the theoretical models. If on the other hand, one 

would be able to derive the composite system concept from more basic 

physical principles or to justify the composite system model rigorously 
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in terms of other physical theory, one may be inclined to use the 

theoretical composite system analysis as a guide in the interpretation 

of the experimental results. Another possible means of strengthening 

the composite system approximation would be to have more than one type 

of experimental phenomenonnwith which to test the predictions of the 

composite system approximation. Unfortunately, the molecular orbital 

theory does not appear to be the proper quantum chemical theory with 

which to rigorously study the composite system concept. In fact, at 

first glande the molecular orbital picture of electron orbitals extending 

over the entire molecule is rather at odds with the composite system 

picture of a molecule composed of two rather independent parts. The 

logical theory in which to formulate the composite system problem 

is apparently the valence bond theory. In this theory, the various 

elements of the wave functions for a molecule can be correlated 

with particular canonical structures which resemble the classical 

chemical structure of the molecule. From this, a state of the 

molecule is visualized as a resonance between the various canonical 

structures or forms of the molecule, the weight with which the 

various canonical structures contribute depending, of course, on the 

particular molecular state described. Unfortunately, as noted 

in the Summary of Theoretical Chemistry, the valence-bond method is 

mathematically untenable at the present time for molecules the size 

of the pentacyclic aromatic hydrocarbons.
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CORRELATION OF THEORETICAL AND EXPERIMENTAL VALUES FOR THE 

ELECTRON AFFINITY AND IONIZATION POTENTIAL OF THE POLYACENES

A. Testing of Chemical Theory

Scientific theories are generally developed in order to provide 

a framework of unifying principles for the observations of natural 

phenonmena, therety aiding in the understanding of these phenomena and 

providing a means of predicting the results of future observations under 

given conditions. The application of quantum mechanics to chemical systems 

and the development of theoretical chemistry was probably motivated most 

of all by a desire to understand the absorption and emission of light 

by molecules. Consequently, in the earlier days of the development of 

chemical theory, and also today, most theoretical work centers on 

trying to correctly calculate the ground state and excited state energies 

of molecules in order to explain the electronic transitions between states 

observed by means of molecular spectroscopy. The common way of "testing" 

the theory is to then use the refined theory to predict the electronic 

transitions of other molecules for which experimental data may be obtained 

for purposes of comparison.

However, in addition to the use of the spectroscopically observable 

electronic transitions as a means of testing chemical theory, that is, 

determining the adequacy and appropriateness of the quantum mechanical model 

of the chemical system, there are two other experimental quantities which may 

be compared to theoretical quantities that appear in the self-consistent field 

molecular orbital theory. These observable quantities are the ionization 
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potential and the electron affinity of a molecule. It will be of value 

to first discuss these two observables before discussing their inter

pretation in terms of theoretical parameters.

B. Ionization Potential

The ionization potential of a molecule may be defined with the 

aid of the potential energy curves shown in Figure 3.1. In this 

figure, curve M represents the electronic ground state of a given 

molecule, AB, and curve I represents the ground state of the positive 

ion, AB+, of that molecule. The ionization potential (IP) is defined 

as the energy difference, E0Q, between the zero vibration levels 

of the ground states of the neutral molecule and the positive ion. 

The ionization potential defined in this manner is more precisely 

called the adiabatic IP and corresponds to the transition shown by 

line A in Figure 3.1 In general, however, the minimum in the poten

tial energy curves for the molecule and ion will occur at different 

internuclear distances as is shown in Figure 3.1. According to the 

Franck-Condon principle the most probable transition is the vertical 

transition, indicated by line V, from the zero vibrational level of the 

neutral molecule to an excited vibrational level of the positive ion. 

In this case the energy of the transition is called the vertical IP. 

Generally speaking,the adiabatic IP is the IP of most interest and the 

one that is referred to in theoretical discussions*, unfortunately, 

the vertical IP is the quantity generally measured and this value must 

be corrected to obtain the adiabatic IP. This correction is done with
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FIGURE 3.1. POTENTIAL ENERGY CURVES OF NEUTRAL MOLECULE (M)

AND ITS SINGLY CHARGED ION (I)
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varying degrees of success, depending somewhat on the particular method 

used for the measurement.

There are four primary methods which are used for the experimental 

measurement of the IP. First is the electron impact method. This is 

a threshold technique in which the sample is irradiated with electrons 

and the energy of the incident electrons is gradually increased until 

the liberation of an electron is detected by the measurement of an 

ion current. This method has been used extensively during the last 

50 years and continues to be employed utilizing the mass spectrometer; 

however, differences and difficulties in the interpretation of electron 

impact data cause the IP's determined by this method to be probably 

the least accurate.

The spectroscopic method of IP determination consists of estab

lishing the convergence limit of one or more Rydberg series in an 

absorption spectrum. Very accurate values (0.01 to 0.001 ev) may be 

obtained by this method if a sufficient number of well defined Rydberg 

bands are found to fit a series formula. Unfortunately, this method 

is not widely applicable because the vacuum ultraviolet absorption 

spectra of most molecules are very diffuse and do not exhibit Rydberg 

series. Even the absorption spectra of some simple molecules, such as 

NO and I^, are so complex that Rydberg series have not been identified. 

The possibility also exists of using an incorrect combination of bands 

in identifying a Rydberg series.

A third method, known as the photoionization method, is also a 

threshold technique; however, in this case the sample is irradiated 
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with monoenergetic photons rather than electrons and the energy of the 

irradiating photons increased until an ion current is detected. The 

accuracy obtainable by this method is comparable with that of the 

spectroscopic method since the attainable energy band-width of monochro

matic light is as narrow as 0.001 ev. Moreover, this method can give 

results in many cases where the spectroscopic method fails. Much of the 

development and refinement of the photoionization method as a means for 

measuring the IP, as well as the actual measurement of the IP of many 

molecules, was done by Watanabe.

The fourth and most recent method to be employed in the determination 
69 of IP's is the photoelectron method suggested by Turner and Joboury.

In this method, the sample is irradiated with monochromatic light 

with energy in excess of the IP of the sample molecule. The IP is then 

determined by measuring the excess kinetic energy, E = hv - IP, of the 

ejected electrons. This excess kinetic energy can be measured by means 

of a retarding electric field of variable strength placed between the 

irradiated sample and the electron collecting circuitry. The photo

electron method is undoubtedly the most precise method for determining 

the IP, since this method is even capable of resolving energy transitions 

to the different excited vibrational levels of the ion.

C. Electron Affinity

The electron affinity (EA) of a molecule is defined in a manner 

completely analagous to the IP. Referring to Figure 3.1, curve M may 

now be considered to be the ground state potential energy curve of the 
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negative ion, AB", formed by the attachment of an electron to the neutral 

molecule, AB, the ground state potential energy curve of which is given 

by curve I. The electron affinity (EA) is then defined as the 

energy difference EQ0 between the zero vibrational levels of the ground 

states of the neutral molecule and the negative ion.

The remarks made earlier concerning the adiabatic and vertical 

transitions are also applicable to the EA. The adiabatic EA is of 

primary interest and, fortunately, in this case the experimental methods 

generally yield the adiabatic EA. However, this advantage is offset 

by the difficulty in devising suitable experiments to determine the EA.

There are only two significant methods by which experimental 

values for the EA of complex molecules have been determined. The first 

method used to obtain good estimates of this parameter is by measure

ment of the polarographic half wave reduction potential. Details of 

this method can be found in a discussion by Matsen^ and the references 

therein. However, Matsen also pointed out that in order to obtain 

the true EA of the molecule from the half wave reduction potential, 

it is necessary to evaluate the difference in the energy of solution 

of the neutral molecule and the negative ion. Unfortunately, it is 

rather difficult to evaluate this difference in the energy of solution.

The best method available for determining the electron affinities 

of complex molecules is the method first suggested by Wentworth and
72 73Becker and more fully developed later by Wentworth, et al. This

74 method utilizes a gas chromatography detector developed by Lovelock 

in which thermal energy electrons are produced and the ability of a 
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molecule in the gas phase to attach these electrons is determined by 

periodically sampling the electron concentration in the cell by means 

of a pulsed electric field. That the quantity determined is in fact 

the EA of the molecules, at least for the aromatic hydrocarbons, is 

established quite well by the successful correlation of these para

meters with the IP's and (Platt's nomenclature) electronic transitions a
75of a number of aromatic molecules by Becker and Wentworth, and 

7fiBecker and Chen. The values obtained for the EA by this method are 

apparently quite good.

D. Theoretical Interpretations and Correlations

The first point to be discussed is the interpretation of the IP and 

EA as the energies of the SCF molecular orbitals of the molecule. The 
1Rfollowing theoretical development was that given by Roothaan in his 

presentation of the formal self-consistent field molecular orbital 

theory. The ith ionization potential, IP^, of a singly ionized 

molecule is given by the expression

IP. = E(%) - E(2^) (3.1)

where E(^$ ) is the energy of the ground state of the neutral molecule, 

described by the wave function $ , and E( is the ground state

energy of the positive ion formed by the removal of an electron from 

the ith molecular orbital and which is described by the wave function 
2

Recall from the discussion of the SCF molecular orbital theory 

in the Summary of Theoretical Chemistry that the ground state wave 
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function of the neutral molecule is given by equation (1.1) of that 

section as a single Slater determinant (in an obvious shorthand nota

tion)

v I I I £» ll 11 *

and the energy of the ground state is given by equation (1.7) of that 

section as

E(,%)=2l.Hi+H(2J..-K..)
1 1 J 1J u'

where the and are given by equations (1.8), (1.9) and (1.10),

respectively in the Summary of Theoretical Chemistry.
2

To obtain the ground state wave function of the positive ion, $., 

a very important approximation is made. Rather than set up and solve 

the appropriate variational problem for the ion to determine all the 

molecular orbitals for that particular state, one instead forms the 

wave function of the ion from the molecular orbitals obtained from 

the variational problem for the ground state of the neutral molecule. 

To do this one simply deletes the molecular orbital for the electron 

removed by the ionization process from the determinant wave function 

of the neutral molecule. In spite of this rather drastic assumption
18 good results are obtained for singly ionized states, and Roothaan 

remarks that IP's calculated by this method are in closer agreement 

with experiment than those calculated by solving the variational 

problems for the energies of the ground states of the neutral molecule 

and ion separately and subtracting.
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The wave functions for the ionized state using the above approxi

mation are

2
^■j = |( <t>-| a)( <f>] g) . . •( ^_i a)( g)( a)( a)( <(>^1

2^ = |((f)-] a) (<$>-] g) - . . ( _-| a) (’t’-j _•] B) (5) (<f>j+i a) (

s). . |(3 2)
b) • • • ( a) (b) [ ,

This state is a doublet, the two wave functions (3.2) having the same 

energy

o
E( ♦,) = 2 y H, + Hi 4. y y (2j,k - K1k) + y (2j1 . - k. .) 

J7i 0 1 j?1 k?i JK JK j?i 1J 1J

= 2 | Hd + H (2Jjk - Kdk> - Hi - I ^ij - Kij)

- E(\o) -H, - K^.). (3.3)

From equations (3.1) and (3.3) one may obtain the following expression 

for the IP.j:

IP. = E(1$q) - E(2$i) = -H. - pJ.j - Kia.) C3.4)

However, recalling equations (1.30), (1.31), and (1.33) from the 

Survey of Theoretical Chemistry one finds that, for the LCAO approxi

mation,

Hi + £(2Jii - Kii> = c* + (2^ - I-)} c.

J 3 (3.5)

= 4 £ S-i = =1 4 s S-i = ci •

Or in other words equation (3.1) reduces to

IPi = - (3.6) 
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where is the energy of the 1 th molecular orbital. Thus one obtains 

the result that, subject to the approximation of using the molecular 

orbitals of the ground state of the neutral molecule, the various 

ionization potentials of a molecule are equal to the negative of the 

energy of the molecular orbital from which the electron is ejected. 

This relationship is generally known as Koopman's theorem.

In a completely analogous manner. Hush and Pople?? showed that the 

various electron affinities of a molecule were equal to the negative 

of the SCF molecular orbital energies, that is,

EAi = - e. (3.7)

with one important difference. In this case the orbital energy is 

that of an excited molecular orbital which is unoccupied when the 

neutral molecule is in the ground state while for the IP^ the orbital 

energy is that of an orbital which is occupied in the ground state 

of the neutral molecule. Since the development of equation (3.7) 

is completely analogous to that given for the IP, no further details 

will be given.

The above theoretical discussion of the ionization potential and 

electron affinity is quite general and applies to all the possible IP's 

and EA's of a given molecule. However, the experimental values of the 

IP and EA are generally the first IP and the first EA, that is, the IP 

is the energy relative to the lowest energy positive ion and the EA 

is the energy relative to the lowest energy negative ion. The lowest 

energy positive ion is that formed by removal of an electron from the 
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filled molecular orbital with highest energy while the lowest energy 

negative ion is formed by placing an electron in the unfilled molecular 

orbital with lowest energy. Consequently, for a closed shell molecule 

with 2n electrons, the IP and EA will be generally interpreted to be

IP = - En
(3.8) 

EA = - Vl

where en and are the molecular energies of the highest energy 

filled SCF molecular orbital and the lowest energy unfilled SCF 

molecule orbital respectively. This investigation will only deal 

with the first IP and EA, thus only the interpretation implied in 

equation (3.8) will be of interest.

Over the years since the introduction of the semi-empirical 

SCF molecular orbital theory, numerous comparisons have been made of 

calculated values of the SCF molecular orbital energies and experi- 
24 mental values of the IP and EA. The comparisons made by Pople 

and Hush and Pople^for a number of conjugated hydrocarbons are 

probably some of the earliest. All of these comparisons lead to the 

same results as obtained by Hush and Poplethat is, only fair 

agreement, at best, is observed between the absolute values of the 

calculated orbital energies and the experimental values of the IP and 

EA. However, generally the ordering of the calculated and experimental 

values for different molecules is the same. This failure of the semi- 

empirical SCF molecular orbital theory to correctly predict the absolute 
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values of the IP and EA when using parameters which are considered to 

be optimum for the calculation of the electronic transition energies 

is quite disturbing and is often referred to as the "ionization 
70

catastrophe."

The next quantity to be discussed is the absolute molecular 
79electronegativity defined by Mulliken, as

x = (IP + EA). (3.9)

Based on the previously discussed interpretation of the IP and EA 

as SCF molecular orbital energies, as interesting prediction may 

be made concerning x- Hush and Pople?? were the first to show that, 

subject to the approximations of the semi-empirical SCF molecular 

orbital theory, for the even alternant conjugated hydrocarbons

en + En+1 = 2Fii = constant (3.10)

where £n and n+^ are the orbital energies of the highest energy filled 

molecular orbital and the lowest energy unfilled molecular orbital 

respectively. Since F^ is independent of molecular geometry and only 

depends on the properties of the carbon atoms, the constant value of 

en + en+l is inc*ependent of a particular molecule. This in turn 

implies that the electronegativity, x, of the even alternant conju

gated hydrocarbons should be a constant independent of a particular 

molecule. That x is in fact essentially a constant for this class of 

molecules has been rather convincingly demonstrated by the work of
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75 76Becker and Wentworth and Becker and Chen in which x was determined 

from the experimental values for the IP and EA and from which an average 

value of 4.17 ev was found for x*

The real utility of knowing the constant value of x is that for 

those cases in which for one reason or another, one is unable to measure 

either the IP or EA of a molecule, a good estimate of the unmeasurable 

parameter may be obtained using the values for x and the measured 

parameter.

The final quantity to be discussed is the socalled two-electron 

term

+ ZKjj (3.11)

where is the coulomb integral given by equation (1.9) in the Survey 

of Theoretical Chemistry and is the exchange integral given by 

equation (1.10)in the same section. This term arises in the theoretical 

expression for the energy of the electronic transition from the ground 

state to the singlet excited electronic configuration formed by 

exciting an electron from the 1 th ground state molecular orbital to the 

jth excited orbital. The expression for this energy is given by 

(see Ref. 18)

- Et1^) = - 6j - e, - 1- EK^. (3.12)

where and ej are again the orbital energies. In particular, this 

discussion will be concerned with the excited electronic configuration 

formed by exciting an electron from the highest energy filled molecular 
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orbital, the nth, to the lowest energy unfilled molecular orbital, 

the (n+l)th. For the polycyclic aromatic hydrocarbons, it has been 

found that generally very little, if any, configuration interaction 

occurs between this configuration and other configurations. This 

means that this particular electronic excitation from the nth to the 

(n+l)th molecular orbital may be considered as being directly 

observable as a transition between states in the molecule.
64 The above considerations have allowed Michl and Becker to

determine an experimental value for the two-electron term

-Jn,n+1 + 2Kn,n+l t3-13’

for the excitation from the nth to the (n+l)th molecular orbital 

This is done simply by substituting experimental values of the IP 

and EA for the orbital energies and the spectroscopically determined 

energy of the (Platt's nomenclature) transition for [E(^$„ n\ - 

E(^o)] in equation (3.12). The experimental value may then be compared 

to the calculated value. The object of Michl and Becker's work was 

to show the approximately constant nature of the two-electron term 

for groups of structurally related compounds, for example, tetracyclic 

aromatic hydrocarbons; however, the usefulness of this interpretation 

need not be limited to this.

E. Proposed Correlations

Over the years considerable work has been done in the area of 

correlating and comparing the absolute values of molecular parameters.
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such as the IP and EA, with theoretical calculated values for 
24 77various molecules. ’ If one includes correlations made with 

values calculated by specialized techniques other than the SCF 

molecular orbital theory and its semi-empirical version, the 
yc yr

amount of work is much larger. * Since the SCF molecular 

orbital theory is by far the most sophisticated chemical theory 

available today and the best grounded in fundamental physical theory, 

these correlations would seem most important.

The previous correlations of experimental and theoretical molecular 

parameters have for the most part concentrated on the comparison 

of the absolute values of the parameters for various molecules.

However, perhaps a better or more meaningful test of chemical theory 

would be to compare the trends of experimental and calculated molecular 

parameters, such as the IP and EA, for a series of molecules which 

change in a certain systematic manner. Some of the reasons for the 

inability of the SCF molecular orbital theory to correctly predict 

the absolute values of molecular parameters are recognized and the 

development of the semi-empirical form of the SCF molecular orbital 

theory has provided a means whereby the calculated values can perhaps 

be forced to approach the experimental values for restricted groups 

of molecules rather closely. However, if the theory cannot correctly 

predict trends in the changes of molecular parameters caused by changes 

in molecular structure and size, it is unlikely that this defect could 

be overcome by adjustments of parameters in the semi-empirical theory. 
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but would rather necessitate a drastic modification of the basic SCF 

molecular orbital theory.

A classic group of molecules in which trends caused by a syste

matic change in molecular size are studied is the polyacenes. This 

is the series of conjugated aromatic hydrocarbons which begins with 

benzene and is formed by condensing additional rings to it in a 

linear fashion to form naphthalene (2 rings), anthracene (3 rings), 
50etc. (See Figure 3.2). For example, Klevens and Platt experimentally 

studied the trends of the electronic transitions in the polyacenes 
on

while Pariser studied the trends of the calculated transitions in 

this series.

In this work, a study will be made of the ability of the semi- 

empirical SCF molecular orbital theory to predict the trends in the IP 

and EA, the quantity (IP - EA), and the experimental value of the two- 

electron term (-Jn n+-| + 2Kn n+-|) which is determined by means of the IP, 

EA, and transition energy. By equation (3.8), the quantity (IP - a
EA) is equivalent to the theoretical quantity (en+-| - en) where en+i 

is the energy of the lowest unfilled molecular orbital and en is the 

energy of the highest filled molecular orbital. The ability of the 

theory to predict the trends in the IP and EA will be investigated 

by a straight-forward comparison of the calculated and experimental 

values of these molecular parameters as a function of the molecular 

size.
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Benzene

Napthalene Anthracene

Napthacene Pentacene

Hexacene Heptacene

Octacene Nonacene

FIGURE 3.2. THE POLYACENES
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F. Results

Table 3.1 gives the theoretical calculated values of the energy 

of the highest filled molecular orbital, en(-IP), the energy of the lowest 

energy unfilled molecular orbital, En+-|(-EA), the difference of these 

two quantities, e +i - en, the value of the two-electron term, 

"Jn n+1 + 2Kn n+1 ’ ancl the ener9y of the electronic transition, &En n+p 

from the nth molecular orbital to the (n+1)th for the polyacenes.

These values were determined by means of the computer program based 

on the semi-empirical SCF molecular orbital theory with LCAO 

molecular orbitals used in the calculations of Part II. The £ and S_ 

matrix elements were again approximated by

Fn = - s-d, * Ai> - pi
Fij eij " 2 PijYij (3.14)

S. - = 6... 
ij 1J

The valence state ionization potential. Ip and electron affinity, Ap 

of the 2pir carbon atom were assumed to have the widely used values 

of

I. = 11.42 ev
(3.15)

A.j = 0.58 ev

and the penetration integral,?^was assumed to be zero. The resonance 

integral, g^., was assumed to be -2.318 ev for nearest neighbor, or 

bonded, carbon atoms and zero between non-neighboring carbon atoms.



TABLE 3.1 - CALCULATED RESULTS FOR POLYACENES

Molecule No. of 
C Atoms (ev) =0+1 (ev) AEn,n+l (ev) -Jn,n+l+2Kn>n+1 En+ren(ev)

Benzene 6 -10.658 -1.342 6.412 -2.905 9.317

Naphthalene 10 - 9.538 -2.462 4.520 -2.557 7.077

Anthracene 14 - 8.891 -.3109 3.525 -2.257 5.782

Napthacene 18 - 8.490 -3.510 2.921 -2.059 4.979

Pentacene 22 - 8.226 -3.774 2.534 -1.918 4.452

Hexacene 26 - 8,045 -3.955 2.275 -1.815 4.090

Heptacene 30 - 7.916 -4.084 2.098 -1.734 3.832

Octacene 34 - 7.822 -4.178 1.974 -1.670 3.644

Nonacene 38 - 7.751 -4.249 1.887 -1.615 3.502
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29The Mataga approximation [equations (1.59)and (1.60) in Survey of

Theoretical Chemistry]

14.3986
Yij r + 1.3283 (3.16)

was used for the two-center integral, since this is reputed to 

give the best calculated results for the singlet transitions of 

conjugated hydrocarbons. The configuration interaction procedure 

was not used in these calculations since the transition energy deter

mined in this manner would not be equivalent to the transition energy, 

AEn n+i, which appears in equation (3.12). Furthermore, as noted 

earlier, AEn n+1 is essentially unaffected by configuration inter

action in polycyclic aromatic hydrocarbons, that is, naphthalene 

through nonacene, and thus, is actually the calculated value of the 

observable transition. In benzene, however, there are four a
excited electronic configurations with excitation energies equal 

to AEn n+-| and, consequently, AEn n+-| does not correspond to an 

observable transition but rather the observed transition will be to an 

excited state formed by the interaction of the four degenerate con

figurations. The observed transition is lower in energy than 

AEn,n+l:

The transition energies of the polyacenes have been calculated 
on

by numerous other workers. Pariser calculated the transition 

energies for the molecules benzene through pentacene by means of the 

semi-empirical ASMO method with configuration interaction. Moffitt00 

also calculated the main low energy transitions of the molecules benzene
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through pentacene using a simple method based on the perimeter model 

for polycyclic aromatic hydrocarbons with cross-linkages of the actual 

molecules treated as perturbations. The object of Moffitt's work, 

however, was not the determination of extremely accurate values for 

the transition energies but rather to show that his relatively simple 

method was capable of predicting the correct trends of the transitions 
31 in the polyacene series. Pople calculated the transition energies 

of the molecules benzene through anthracene using the semi-empirical 

SCFMO method with limited configuration interaction. Ham and 
85 48Rudenberg and Hummel and Rudenberg made calculations of the 

transition energies of the nolecules benzene through pentacene using 

methods which are essentially modifications of the standard ASMO method 
zr 7

with configuration interactions. Koutecky, et al. calculated the 
55energy of the p band (Clar's nomenclature) for a large group of 

polycyclic aromatic hydrocarbons, including the polyacene series 

through pentacene, by means of the semi-empirical ASMO method with 

configuration interaction. The p band is equivalent to the \ band 

(Platt's nomenclature) or the transition energy referred to as 

AEn n+i in the present investigation. A comparison of the values 

for AEn n+^ calculated previously and in the present work is given 

in Table 3.2. The experimentally observed values for the ^La transition 

are also shown in Table 3.2. Note that none of the prior calculations 

have been for molecules greater than pentacene in size and none have 

included calculated values of the ionization potential and electron 

affinity. An examination of Table 3.2 shows that the values calculated



TABLE 3.2 - COMPARISON OF CALCULATED VALUES OF AE n,n+l
FOR THE POLYACENES

Source of Values AEn n+1 Transitl’on Energy (ev)

Benzene Naphthalene Anthracene Napthacene Pentacene

ParisepSO 5.96 4.49 3.65 3.11 2.82

Pople31 5.33 4.65 3.72

85Ham and Ruedenberg 6.20 4.54 3.60 3.05 2.70

48Hummel and Ruedenberg 6.06 4.23 3.15 2.53 2.13

67
Koutecky, et al. 5.99 4.32 3.31 2.74 2.52

This Work 6.41 4.52 3.53 2.92 2.53

Experimental8 5.957 4.290 3.273 2.616 2.120

aSee Table 3.4 283
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in this study generally fall within the range of previously calculated 

values. The effect of neglecting configuration interaction in cal

culating the benzene transition is shown by the substantially higher 

value obtained in the present investigation. Considering all five 
48 molecules, the values calculated by Hummel and Rudenberg show the 

best correspondence to experimental values.
24Pople calculated the of the molecules benzene, naphtha

lene and anthracene by means of the semi-empirical SCF molecular orbital 

method, that is, a method equivalent to that used in this investigation. 

Hush and Pople7? later calculated the IP(-en) and EA(-en+1) of these 

same three molecules using the same method but slightly different values 
OO 0/1 

for the theoretical parameters. Hoyland and Goodman ’ also calcu

lated the IP(-en) of naphthalene and anthracene and the EA(-£n+p of 

benzene, naphthalene, and anthracene using the semi-empirical SCF 
OO

molecular orbital methods. Hedges and Matsen used the semi-empirical 

ASMO method to calculate the IP(-£n) and EA(-£n+-|) of all the polyacene 

molecules through pentacene. A comparison of the previously calculated 

values of the IP(-en) and EA(-en+p with those obtained in this 

study is given in Table 3.3. The experimental values for the IP 

and EA are also shown in Table 3.3. The wide variation between the 

various calculated values is caused by the different approximations 

for integrals and empirical values used in the respective calculations. 

Although some of the previously calculated values for the IP and EA 

are in closer agreement with the experimental values than those calcu

lated for the present investigation, later discussions will indicate 

why, in one sense, these latter values are also quite good.



TABLE 3.3 - COMPARISON OF CALCULATED VALUES OF IONIZATION

POTENTIAL AND ELECTRON AFFINITY

Source of Values Benzene Naphthalene Anthracene Napthacene Pentacene
IP(ev) EA(ev) IP(EA) EA(ev) IP(EA) EA(ev) IP(EA) EA(ev) IP(ev) EA(ev)

24Pople^4 +9.76 - +8.28 - +7.38

Hush and Pople?? +9.87 -1.40 +8.61 -0.14 +7.83 +0.64

83Hoyland and Goodman ,84 +0.51 +10.53 +1.47 +9.80 +2.20

Hedges and Matsen^ +9.37 -1.63 +8.12 -0.38 +7.25 +0.49 +6.92 +0.82 +6.73 +1.01

This Work +10.66 +1.34 +9.54 +2.46 +8.89 +3.11 +8.49 +3.51 +8.23 +3.77

Experimental9 +9.24 -0.90 +8.26 +0.15 +7.55 +0.863 +6.95 +1.39 +6.55 +1.79

aSee Table 3.4

ro co 
cn
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The experimental values for the IP, EA, IP-EA, -J ,, + 2K ,,, r n,n+l n,n+l
and 1La (&En n+1) transition energy are given in Table 3.4. All of the 

values for the IP and the transition energy are directly obtained 

experimental values, the sources of which are given in Table 3.4. Of 

the EA values only two, naphthalene and anthracene, were directly 

obtained from experiment. The other values were obtained using the 

experimental value of the electronegativity, x» obtained by Becker 
74 and Chen and the experimental value of the IP. This procedure has 

been reasonably well justified by the above authors. The experimental 

value of the two-electron term was obtained by the procedure proposed 
64 by Michl and Becker and described in an earlier Section.

It should be noted that the calculated values of £n(-IP), 

entl(-EA)- en+1 - -Jn,n+1 + 2Kn,n+1’ and 4En,n+l are determined

for the polyacene molecules through nonacene while experimental data 

is available only through pentacene. The calculations were carried out 

to this rather extreme level primarily to be able to show the trends 

in the molecular parameters as clearly as possible. Unfortunately, it 

is doubtful if experimental data will ever be available for the polyacenes 

much larger than pentacene due to the extreme instability of these large 

linear molecules.

The above molecular parameters and quantities are shown graphically 

in Figures 3.3 through 3.8 as functions of the molecular size, that is, 

the number of carbon atoms, and as functions of the aEm , or transi- 

tion energy. These various results will now be discussed.



TABLE 3.4 - EXPERIMENTAL RESULTS FOR POLYACENES

Molecule No. of C Atoms IP (ev) EA (ev) \ Transition(ev) -Jn,n+l+2l<n,n+l(ev) (IP-EA) (ev)

Benzene 6 +9.24 a -0.90 9 5.957 j -4.183 10.14

Napthalene 10 +8.26b. +0.15 h 4.290 J -3.820 8.11
+8.12 3 -3.680 7.97

Anthracene 14
+7.55 b

+0.8631 3.273 J’ -3.414 6.687
+7.66 c -3.524 6.797

Napthacene 18 +7.15 +1.19 9 2.616 j -3.344 5.96
+6.95 ° +1.39 9 -2.944 5.56
+6.88 +1.46 9 -2.804 5.42

Pentacene 22 +6.55 f +1.79 9 2.120 J" -2.640 4.76

JFrom Ref. 50
ro co

P. Stevenson values, less 0.56 ev (Private communication from R. S. Becker to F. A. Matson, 1957)
E. Wacks, J_. Chem. Phys. 41 , 1661 (1964) ^alue determined in this work by method
I. Vilesov, Dokl. Akad. Nauk SSSR, 132, 632 (1960) of Wentworth, et al. (Ref. 73)

E. Gallegos, J_. Phys. Chem. (to be published) ^rom 50

^Determined from IP and X = 4.17 ev. See Ref. 74
hFrom Ref. 74

aFrom H. Watanabe, J_. Chem. Phys., 22, 1565 (1954)
bprom M. E. Wacks and V. H. Dibeler, iL Chem. Phys., 31, 1557 (1959) 

CD.
dM.

eF.
f
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FIGURE 3.3. PLOT OF IONIZATION POTENTIAL AND ELECTRON AFFINITY

VERSUS NUMBER OF CARBON ATOMS
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FIGURE 3.4. PLOT OF IONIZATION POTENTIAL AND ELECTRON AFFINITY

VERSUS ]La TRANSITION ENERGY 
d
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FIGURE 3.5. PLOT OF IONIZATION POTENTIAL MINUS ELECTRON AFFINITY

VERSUS NUMBER OF CARBON ATOMS
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FIGURE 3.6. PLOT OF IONIZATION POTENTIAL MINUS ELECTRON AFFINITY

VERSUS 1L TRANSITION ENERGY 
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FIGURE 3.7. PLOT OF TWO-ELECTRON TERM (-Jn$n+1 + 2Kn$n+1) 
VERSUS NUMBER OF CARBON ATOMS*
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Transition Energy a
FIGURE 3.8. PLOT OF TWO-ELECTRON TERM (-Jn n+] + 21^^) 

VERSUS ]L TRANSITION ENERGY 
d
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G. Discussion of Results

Figure 3.3 illustrates the behavior of the experimental and 

calculated values of the IP and EA as a function of the number of 

carbon atoms in the polyacenes. This graph presents a striking 

demonstration of the ability of the semi-empirical SCF molecular 

orbital theory to predict the trends in the value of the IP and the 

EA caused by a systematic change in the molecular size. This also 

gives a striking illustration of the inability of the theory to 

correctly predict the absolute values of the IP and EA.

If, conceptually, the number of rings in the polycyclic aromatic 

hdyrocarbons are allowed to increase, one will obtain as a limiting 

case an infinitely long polyacene molecule mathematically equivalent 
81 to graphite vapor. In this limiting case. Peacock and McWeeny 

have shown that the value of en, generally called the work function 

of graphite, and consequently also en+p will be equal to Fp.. The 

value of Fp which the calculated values of the -IP(en) and -EA(en+-|) 

for the polyacenes approach asympotically is equal to -6.00 ev from 

equations (3.14) and (3.15). However, the measured value of the work 

function of graphite, which is supposed to be equal to -Fp, is 
82actually about 4.39 ev. This value is much nearer to the experi

mental value of 4.17 ev for x which the experimental values of the IP 

and EA approach asymptotically than to the value of Fp- obtained by 
25means of the Pariser approximation. Using this approximation, F^ 

is equal to -1/2(1 + A„) where I and A„ are the valence state p p' p p

ionization potential and electron affinity respectively of the 2p7r 
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carbon atom. The only problem is that the work function of graphite 

is determined from the solid which corresponds roughly to a stacked 

structure consisting of many layers of infinite two-dimensional carbon 

molecules. However, it is felt that the work functions of solid and 

vapor graphite should not differ very substantially.

If in Figure 3.3, instead of forcing the value of F^. (which 

en anc* en+l aPProac^ asymptotically) to be equal to -6.00 ev, one would 

allow the value of F^to be equal to -4.17 ev (the negative of the 

experimental value of x) then the correspondence of the calculated 

and the experimental values of the IP(-en) and EA(-en+p is considerably 

improved. This certainly indicates that the SCF molecular orbital 

theory can correctly predict the trends in molecular parameters 

produced by systematic structural changes, but it also points out 

the dilemma faced by theoretical chemists since the semi-empirical 

SCF molecular orbital theory was first formulated. That is, to make 

the theory fit experimental data better, one would have to abandon 

the rather rigorous argument presented by Pariser (See Summary of 

Theoretical Chemistry ) which allowed the matrix element F^ to be 

interpreted in terms of the experimental valence state atomic 

parameters of the carbon atom and instead, treat F.^ as an arbitrarily 

chosen quantity. Inclusion of the penetration integral, Pp in Fp- 

would make matters worse since it is a positive quantity preceded by 

a minus sign in the expression for F^ (equation 3.14). Rather than 

abandon Pariser's approximation, most workers have concentrated on 

obtaining new values for the valence state ionization potential and 
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electron affinity of atomic carbon in a conjugated hydrocarbon (that 

is, a 2pir carbon) either by reinterpretation of the existing experimental 

data from which these atomic parameters are determined or by attempting 

to obtain improved experimental data. For example, see Ref. 43 and 

46. However, these attempts do not appear to have even changed the 

value of F^. to -4.39 ev, the negative of the measured work function 

of graphite, much less to probably the better value of -4.17 ev, the 

negative of the measured value of x-

Figure 3.4 shows the calculated values of the IP(-en) and EA(-en+-]) 

plotted as a function of the energy, AEn n+pof the electronic transition 

from the nth to the (n+l)th molecular orbitals and the measured IP 

and EA as a function of the energy of the \ transition of the polyacenes. 

This is the type of plot generally given in correlation studies since 

these molecular parameters are related to the electronic transition 

energy by equation (3.12). However, in this particular study it does 

not reveal much more information than the plot as a function of 

molecular size since this transition energy is simply a decreasing 

function of increasing polyacene size which is equal to zero for the 

two-dimensional infinite molecule. It is of interest to note that 

the measured transition energy of these molecules is lower than a
the calculated value, AEn n+p by a fairly constant value of 0.25 

to 0.40 ev. Thus, we see again an example of a good prediction of the 

trend by the theory but some difficulty in predicting absolute values.

As mentioned earlier, if one could shift the calculated or the 

experimental values of the IP and EA so that both the calculated and 



297

experimental values would approach the same value asymptotically with 

increasing molecular size, the correlation of these two sets of data 

would be considerably improved; however, they will not coincide exactly. 

Rather the value of the measuredip is greater than the calculated 

value, ranging from a value of about 0.50 ev greater than the calculated 

value for naphthalene down to a value about 0.15 ev greater for pen

tacene. The measured EA is less than the calculated value, ranging from 

a value about 0.50 ev less than the calculated value for naphthalene 

down to a value about 0.15 ev less for pentacene. These errors are, of 

course, generally symmetric, that is, the measured IP will be greater 

than the calculated value by the same amount that the measured EA 

will be less than its calculated value. These discrepancies between 

the measured and calculated parameters become evident in the plots 

of the measured and calculated values of the quantity (IP - EA) versus 

molecular size shown in Figure 3.5. This is also shown in the plots 

of the measured values of (IP - EA) versus the ^La transition energies 

and the corresponding calculated values versus AEn n+-| transition 

energies given in Figure 3.6.

It has often been argued that the errors in the calculated absolute 

values of the IP and EA occur in such a manner that they mostly cancel 
OO 04 

when taking the difference of the two. * That is to say, the 

calculated and experimental values of (IP - EA) should coincide quite 

well, although the absolute values of the individual parameters may 

differ substantially. This argument is presented to show that these 

errors in absolute values should not affect the accuracy of the calculated 
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electronic transitions very much since only the differences of the 

molecular orbital energies enter the expression for the transition 

energy given by equation (3.12). However, Figures 3.5 and 3.6 indi

cate that this argument is only partially valid since the plots of 

the calculated and measured values of (IP - EA) obviously do not coin

cide. In fact, the only error which cancels is that caused by the 

calculated values of the IP(-En) and EA(-en+-|) approaching a different 

asymptotic value with increasing molecular size than that approached 

by the measured EA and IP. Those errors in the absolute values, 

discussed in the proceeding paragraph, which would still remain if 

the measured and calculated values approached the same asympotic value 

will, in general, not cancel and may be additive as is evidenced by 

Figures3.5 and 3.6. The fact that the calculated and measured (IP - EA) 

curves comverge with increasing molecular size indicates that both 

quantities are approaching the same value in the limit of the infinitely 

long polyacene molecule. The limiting value is, of course, zero. 

This sort of behavior again demonstrates the basic correctness in the 

molecular orbital model of molecular structure, at least for the class 

of conjugated aromatic hydrocarbon molecules. That is to say, the 

molecular orbital method apparently gives a valid picture of 

molecular structure even though the absolute accuracy of the method 

is seriously impaired by such problems as the ICAO approximation for 

the best molecular orbitals, the neglect of the correlation of elec

trons within the same orbital, etc.
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Figures 3.7 and 3.8, which show plots of the experimental and 

calculated values of the two-electron term, -Jn n+-] + 2Kn n+p versus 

molecular size and transition energy respectively, indicate what 

should have been obvious from the behavior of the previously discussed 

parameters and quantities. That is, the calculated values of the two- 

electron termare rather substantially less in magnitude than the 

experimental value of this term for the series of polyacenes. It was 

noted earlier that the transition energy was consistently less a
than the calculated transition energy, &En n+1 and from Figures 3.5 

and 3.6, it can be seen that the measured value of IP - EA is larger 

than the calculated value. The calculated value of IP - EA is, of 

course, equal to e +i - en. Thus, if in equation (3.12), the calculated 

values for the electronic transition energy, AEn n+p and en+^ - en 

were corrected in the directions dictated by the experimental values, 

it could be predicted that the two-electron term would have to have 

a larger negative value. That is, the rather small errors between 

the calculated and experimental values for the transition energy and 

the orbital energy difference have been combined in such a manner so 

as to produce a rather substantial apparent error between the calcula

ted value of the two-electron term and its experimental counterpart. 

This is called an apparent error since the experimental value of the 

two-electron term is actually not a measurement but is calculated 

by substituting the measured values of the electronic transition 

energy and the measured orbital energy difference, (IP - EA), in 

the theoretical expression given by equation (3.12). Therefore, 
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the experimental two-electron term merely reflects the already discussed 

differences between the calculated values of AEn n+^ and the observed 

transitions and the differences in the calculated and measured values a
of (IP - EA). One may wish to interpret this discrepancy between the 

calculated and experimental values of the two-electron term as 

rather substantial underestimation of the effects of electron-electron 

interaction in the molecule by the theory since this is the origin 

of the two-electron term. However, it is doubtful if one may attribute 

any additional fundamental meaning to the differences between the 

calculated and experimental two-electron terms on the basis of this 

particular study of the polyacenes.

H. Conclusions

The obvious conclusion to be drawn from this study is that the 

semi-empirical SCF molecular orbital theory is fully capable of correctly 

predicting the trend in the changes of molecular parameters, such as the 

ionization potential (IP) and electron affinity (EA), caused by a 

systematic change in molecular size (as occurs in the series of poly

acenes). This property of the theory is quite important and demonstrates 

again the soundness of the molecular orbital quantum mechanical model 

for chemical systems, particularly the conjugated hydrocarbons. 

However, the well-known inability of the theory to predict absolute 

values for the molecular parameters is quite evident and the errors do 

not all cancel when one considers the orbital energy difference, 

en+l " en’ as *ias *3een Previ°usly argued.
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It may be argued that one may be able to obtain a better corre

lation of calculated and experimental values by further experimenta

tion with the theoretical approximations and parameters. The errors 

noted may possibly be decreased by this procedure; however, it is doubtful 

if such adjustments could ever completely eliminate the amount of 

discrepancy noted between the experimental and calculated values. 

Furthermore, the correlation of the experimental values of the IP, 

EA, and related quantities with the theoretical values calculated in 

this investigation of the polyacene molecules would be considered 

significant in any case. This is because the empirical values and 

approximations used in these calculations are the ones used routinely 

by many workers for the determination of reasonably accurate theoretical 

values of electronic transitions.
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APPENDIX 1

Let E-], E2, . . . En and Ap . Afi be two sets of molecular

orbital energy levels with E-j E£ - . . . - En and A-| - A2 - . . . - An. 

It is now desired to examine the quantity aEa, defined by equation (2.14), 

n 9
6Ea = (Ei - Ai> I')

H 1=1 1 1

with respect to a constant shift, x, of all the energy levels, A^.

Let a new set of energy levels, A-|1, > . . ., An‘ be given by

A-,1 = A-| + x, A21 = A2 + x Anl = Afi + x. Then from equation (1) 

one may write

n 9
AEA,(x) = He. - (Ai+x)].2 (2)

To find the minimum of aea,(x) with respect to x, the partial deri

vative of Ea,(x) with respect to x is set to zero, that is.

9tAEAi(x)] n
——-= -2 .He, - (Ai+x)] = 0.

Solving equation (3) gives

i n
x -Ai>-

(3)

(4)

For the even alternant conjugated hydrocarbons, the energy levels are 

given by n/2 pairs of the form

E. = a + e . 1 - i - n/2, j = y + 1 - i
' J 2 (5)

E, = OL - e. £-+ 1 - i - n, j = i - n/2
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and

A. - a + a- 1 - i - n/2, j - S- + 1 - 1
J (6)

Ai = a - aj n/2 + 1 - i - n, j = i = n/2

where a is the Coulomb integral for carbon. One may rewrite (4) as

i n/2 n
X = 1 (Ei - AJ + V (Ei - AJ} , (7)

n 1=1 1 1 i=n/2+l 1 1

and substitute for E^ and A^ from equations (5) and (6) to get

_ 1 n/2
= n J1 E(a + £n/2+l-i) " (a + an/2+l-i)]

+
i=n/2+l

L(a =i-n/2> " (“ " ai-n/2>]> (8)

1 n(2 V
n iJJen/2+l-i ~ an/2+l-i^ “ ^A+j^i-n/2"3!^/2^

By defining a new summation index j = n/2+l-i in the first summation

and a new summation index j = i - n/2 in the second summation, one

obtains

x = n
n^ 

j=l J J

n/2
- ad)} = 0 (10)

That is, AE^, as defined, is a minumum with respect to a constant shift 

of the set of energy levels, (A^} in the case of an even alternant 

conjugated hydrocarbon

(9)
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