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Abstract

This much is certain: neurons are coupled, and they exhibit covariations in their out-

put. The extent of each does not have a single answer. Moreover, the strength of neu-

ronal correlations, in particular, has been a subject of hot debate within the neuroscience

community over the past decade, as advancing recording techniques have made avail-

able a lot of new, sometimes seemingly conflicting, datasets. The impact of connectivity

and the resulting correlations on the ability of animals to perform necessary tasks is even

less well understood. In order to answer relevant questions in these categories, novel

approaches must be developed. This work focuses on three somewhat distinct, but in-

separably coupled, crucial avenues of research within the broader field of computational

neuroscience. First, there is a need for tools which can be applied, both by experimen-

talists and theorists, to understand how networks transform their inputs. In turn, these

tools will allow neuroscientists to tease apart the structure which underlies network ac-

tivity. The Generalized Thinning and Shift framework, presented in Chapter 4, addresses

this need. Next, taking for granted a general understanding of network architecture as

well as some grasp of the behavior of its individual units, we must be able to reverse the

activity to structure relationship, and understand instead how network structure deter-

mines dynamics. We achieve this in Chapters 5 through 7 where we present an application

of linear response theory yielding an explicit approximation of correlations in integrate–

and–fire neuronal networks. This approximation reveals the explicit relationship between

correlations, structure, and marginal dynamics. Finally, we must strive to understand the

functional impact of network dynamics and architecture on the tasks that a neural net-

work performs. This need motivates our analysis of a biophysically detailed model of the

blow fly visual system in Chapter 8. Our hope is that the work presented here represents

significant advances in multiple directions within the field of computational neuroscience.
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Ãw
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are weighted by the position of the LMD with respect to the VS cell recep-
tive fields (see C). Resistor symbols indicate electrical coupling of compart-
ments, and ξAx, resp. ξDe, are independent, intrinsic noise sources to the
axons, resp. dendrites, of VS cells. (E) Steady-state membrane potential of
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narrow, 10◦ wide strip centered at angle θ. The responses were obtained by
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8.3 Assessing the copula fit for the transient response distribution (A) Blue
points give a P-P plot of the fit copula (horizontal axis) against the true,
empirical copula for a randomly-selected subset of three left-side VS neu-
rons, at a random stimulus angle. We computed the copula probabilities at
1,000 points which divided the unit cube into 1,000 equal sized sub-cubes
as described in the text. The black dashed line indicates the diagonal, with
agreement between the true and fit models being indicated by the points
lying on or near the diagonal. Optic flow presented to the system was gen-
erated by the rotation of random bar images, and the copula was fit to the
transient response distribution. (B) Histogram of relative errors for copula
probabilities. Vertical axis represents fractions of points which lie in the
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8.4 The effect of coupling on VS neuronal dynamics. (A) (Left) Typical axonal
response of the left-side VS10 cell in the uncoupled network (ggap = 0 µS)
to rotations of bar images about θstim = 90◦. Different line types indicate
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Chapter 1
Introduction

Recordings across the brain suggest that neural populations spike collectively – the statis-

tics of their activity as a group are distinct from that expected in assembling the spikes

from one cell at a time [11, 14, 17, 87, 106, 108, 173, 207, 239, 241, 252]. Advances in elec-

trode and imaging technology allow us to explore the dynamics of neural populations

by simultaneously recording the activity of hundreds of cells. This is revealing patterns

of collective spiking that extend across multiple cells. The underlying structure is in-

triguing: For example, higher-order interactions among cell groups have been observed

widely [7, 87, 173, 194, 241, 251, 252, 287]. A number of recent studies point to mechanisms

that generate such higher-order correlations from common input processes, including un-

observed neurons. This suggests that, in a given recording or given set of neurons pro-

jecting downstream, higher-order correlations may be quite ubiquitous [16, 151, 177, 308].

Moreover, these higher-order correlations may impact the firing statistics of downstream

neurons [156], the information capacity of their output [43, 87, 187], and could be essential

in learning through spike-time-dependent synaptic plasticity [91, 206].
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What exactly is the impact of such collective spiking on the encoding and transmis-

sion of information in the brain? This question has been studied extensively, but much re-

mains unknown. Results to date show that the answers will be varied and rich. Patterned

spiking can impact responses at the level of single cells [156, 239, 304] and neural popu-

lations [8, 232, 233, 271]. Neurons with even the simplest of nonlinearities can be highly

sensitive to correlations in their inputs. Moreover, such nonlinearities are sufficient to

accurately decode signals from the input to correlated neural populations [246].

An essential tool in understanding the impact of collective spiking is the ability to gen-

erate artificial spike trains with a predetermined structure across cells and across time [35,

96, 155, 176]. Such synthetic spike trains are the grist for testing hypotheses about spa-

tiotemporal patterns in coding and dynamics. In experimental studies, such spike trains

can be used to provide structured stimulation of single cells across their dendritic trees

via glutamate uncaging [32, 33, 89, 214]. In addition, entire populations of neurons can be

activated via optical stimulation of microbial opsins [47, 103]. Computationally, they are

used to examine the response of nonlinear models of downstream cells [44, 156, 239].

Therefore, much effort has been devoted to developing statistical models of popula-

tion activity. A number of flexible, yet tractable probabilistic models of joint neuronal ac-

tivity have been proposed. Pairwise correlations are the most common type of interactions

obtained from multi-unit recordings. Accordingly, many earlier models were designed to

generate samples of neural activity patterns with predetermined first- and second-order

statistics [35, 96, 155, 176]. In these models, higher-order correlations are not explicitly and

separately controlled.

A number of different models have been used to analyze higher-order interactions.
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However, most of these models assume that interactions between different cells are instan-

taneous (or near-instantaneous) [137, 156, 263]. A notable exception is the work of Bäuerle

and Grübel [19], in which methods for generating spike trains with temporal structure

were developed for use in financial applications. In these previous efforts, correlations at

all orders were characterized by the increase, or decrease, in the probability that groups

of cells spike together at the same time, or have a common temporal correlation structure

regardless of the group.

In Chapter 4, we introduce a statistical method for generating spike trains with more

general correlation structures across cells and time. Specifically, we allow distinct tempo-

ral structure for correlations at second, third, and all higher orders, and do so separately

for different groups of cells in the neural population. Our aim is to describe a model that

can be applied in neuroscience, and can potentially be fit to emerging datasets.

A sample realization of a multivariate generalized thinning and shift (GTaS) process

is shown in Fig. 1.1. The multivariate spike train consists of six marginally Poisson pro-

cesses. Each event was either uncorrelated with all other events across the population, or

correlated in time with an event in all other spike trains. This model was configured to

exhibit activity that cascades through a sequence of neurons. Specifically, neurons with

larger index tend to fire later in a population wide event (this is similar to a synfire chain

[2], but with variable timing of spikes within the cascade). In Figure 1.1B, we plot the

“population cross-cumulant density” for three chosen neurons – the summed activity of

the population triggered by a spike in a chosen cell. The center of mass of this function

measures the average latency by which spikes of the neuron in question precede those of

the rest of the population [173]. Finally, Figure 1.1C shows the third-order cross-cumulant

density for the three neurons. The triangular support of this function is a reflection of
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a synfire-like cascade structure of the spiking shown in the raster plot of panel A: when

firing events are correlated between trains, they tend to proceed in order of increasing

index.
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Figure 1.1: Example of a GTaS process exhibiting “synfire-like” firing patterns (A)
Raster plot of event times for an example multivariate Poisson process X = (X1, . . . , X6)
generated using the methods presented in Chapter 4. This model exhibits independent
marginal events (blue) and population-level, chain-like events (red). (B) Some second-
order population cumulant densities (i.e., second-order correlation between individual
unit activities and population activity) for this model [173]. Greater mass to the right
(resp. left) of τ = 0 indicates that the cell tends to lead (resp. follow) in pairwise-
correlated events. (C) Third-order cross-cumulant density for processes X1, X2, X3. The
quantity κX

123(τ1, τ2) yields the probability of observing spikes in cells 2 and 3 at an offset
τ1, τ2 from a spike in cell 1, respectively, in excess of what would be predicted from the
first- and second-order cumulant structure. All statistical quantities are precisely defined
in Chapter 2.

Beyond important and rich challenges for statistical modeling [37], the emerging data

promise new perspectives on the neural encoding of information [11]. The structure of

correlations in the activity of neuronal populations is of central importance in under-

standing the neural code [1, 20, 202, 203, 245, 259, 310]. However, theoretical [1, 139, 160,

242, 259, 310], and empirical studies [50, 191, 230] do not provide a consistent set of gen-

eral principles about the impact of correlated activity. This is largely because the presence
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of correlations can either strongly increase or decrease the fidelity of encoded information

depending on both the structure of correlations across a population and how their impact

is assessed.

A basic mechanistic question underlies the investigation of the role of collective activ-

ity in coding and signal transmission: How do single-cell dynamics, connection architec-

ture, and synaptic dynamics combine to determine patterns of network activity? System-

atic answers to this question would allow us to predict how empirical data from one class

of stimuli will generalize to other stimulus classes and recording sites. Moreover, a mech-

anistic understanding of the origin of correlations, and knowledge of the patterns we can

expect to see under different assumptions about the underlying networks, will help re-

solve recent controversies about the strength and pattern of correlations in mammalian

cortex [51, 64, 217]. Finally, understanding the origin of correlations will inform the more

ambitious aim of inferring properties of network architecture from observed patterns of

activity [193, 198, 201].

In Chapters 5 through 7, we examine the link between network properties and cor-

related activity. First, in Chapter 5, we develop a theoretical framework that accurately

predicts the structure of correlated spiking that emerges in a widely used model — recur-

rent networks of general integrate and fire cells. The theory naturally captures the role

of single cell and synaptic dynamics in shaping the magnitude and timescale of spiking

correlations. We focus on the exponential integrate and fire model, which has been shown

to capture membrane and spike responses of cortical neurons [81]; however, the general

approach we take can be applied to a much broader class of neurons.

Our approach is based on an extension of linear response theory to networks [167, 198].
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Figure 1.2: Linear response theory admits an expansion of correlations in terms of mo-
tifs within the network (A) Linear response theory can serve as an important tool for
understanding how architecture in dynamics shape the statistics of responses in large,
complex networks. This is enacted via an expansion of correlations by contributions due
to different motifs embedded within the network architecture. We highlight some second-
order motifs — motifs which involve a pair of connections and up to three cells. (B) Some
second-order motifs involving cells of two distinct populations, with edge color indicat-
ing whether the motifs connect cells of a single population (red, blue) or both populations
(purple).

We start with a linear approximation of a neuron’s response to an input. This approxi-

mation can be obtained explicitly for many neuron models [38, 168, 221], and is directly

related to the spike triggered average [85]. The correlation structure of the network is then

estimated using an iterative approach.

In Chapter 6, we first demonstrate how the linear response approximation of correla-

tions admits an expansion of the correlation in terms of submotifs embedded within the

network architecture [205, 211, 212]. In order to gain intuition for the nature of the de-

composition, we first apply the theory to the analysis of correlations for a pair of simple
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microcircuits.

Next, we consider applications to large networks, beginning with those featuring pre-

cisely balanced inhibition and excitation in the inputs to individual cells. In this state

individual cells receive a combination of excitatory and inhibitory inputs with mean val-

ues that largely cancel. We show that, when timescales and strengths of excitatory and

inhibitory connections are matched, only local interactions between cells contribute to

correlations. Moreover, our theory allows us to explain how correlations are altered when

precise balance is broken. In particular, we show how strengthening inhibition can syn-

chronize the spiking activity in the network. Using the linear response theory allows us

to derive results which lend an intuitive understanding of the factors shaping average

correlation structure in randomly connected networks of neurons. Finally, we conduct a

brief exploration of the structure of correlations within a pair of distance-dependent net-

works. These examples also demonstrate that linear response theory can be used as a tool

for computationally efficient analysis of correlations within large networks.

At the end of Chapter 6, we carry out a thorough error analysis of the linear re-

sponse theory, examining the correlation approximation across a variety of network con-

ditions. We also briefly exhibit the failure of the linear response theory of correlations for

integrate–and–fire networks when applied to the estimation of third-order dependencies.

Whether there exists a consistent correction to the linear response theory in this case is an

open question of great import.

The global statistics of networks can depend sensitively on the local features of their ar-

chitecture, as shown in Figure 1.3. In Chapter 7, we introduce a novel statistical measure

of network connectivity, motif cumulants, in order to better understand this relationship.
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Whereas motif moments define the true probability of observing one of the motifs appear-

ing in the correlation decomposition of Chapter 6, a motif cumulant is a measure which,

analogous to the relationship between moments and cumulants of random variables, cap-

tures the probability of seeing these same motifs in excess of the “best” guess given only

knowledge of lower-order motif cumulants. By an algebraic resumming argument, we

rewrite the expansion of correlations in terms of motif cumulants. Doing so reveals an

explicit link between micro-scale features of the synaptic structure — motif cumulants —

and a universal feature of the dynamics this structure supports — average output corre-

lations for the integrate–and–fire networks.

In Chapter 8, we present an analysis of part of the blow fly visual system. To motivate

this study, flying organisms require fast, reliable feedback regarding ego-motion to make

rapid course corrections. This information is primarily extracted from the optic flow – the

motion of the external world as perceived by the organism [26, 148, 163]. In the visual sys-

tem of the fly, neurons of the lobula plate receive as input a two-dimensional retinotopic

representation of the optic flow, allowing them to encode the parameters of ego-motion

(i.e., rotational and translational velocities) [27, 30, 142, 298]. The lobula plate serves as a

primary relay between early vision and downstream motor centers [100, 268, 296, 297].

Approximately sixty large tangential cells responsive to wide-field motion have been

identified within the lobula plate of each hemisphere of the blow fly [110, 115]. Ten of

these neurons comprise part of the vertical system (VS) and are thought to encode the

azimuthal direction of rotations in the horizontal plane [152, 153]. These cells were the

focus of our study.

The visual information available to the fly is very rich, but only part of it is essen-

tial to control flight. Irrelevant information can be regarded as external noise, and neural
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Figure 1.3: Local features of network architecture can strongly influence global behav-
ior The black line indicates the relation between the density of connections and average
output correlation in truly random (i.e., Erdös-Rényi), excitatory-only integrate–and–fire
neuronal networks, as predicted by the cumulant resumming theory of Chapter 7. The
dark gray dots indicate simulations of integrate–and–fire networks. Fluctuations about
the line are due essentially to finite-size effects — in particular, finite networks are gener-
ally not perfectly regular, and thereby exhibit residual higher-order structure within their
architecture. The light gray dots indicate output correlation in networks designed to be
non-Erdös-Rényi. The adjacency graphs associated with these networks featured depen-
dent edges — i.e., pairs of connections were not present or absent independently. This
yielded, in turn, significant deviations in the dynamics of the corresponding networks
from what is expected in the case of underlying Erdös-Rényi graphs.

processing within the fly visual system produces additional, internal variability. Rele-

vant information about the world is probabilistically represented in the resulting neural

signals. The VS cells encode an essential parameter from this complex input – the hori-

zontal axis of ego-rotation. Estimating this parameter is a problem of marginalization (see

Figure 1.4C and [175]), as the quantity of interest must be disentangled from irrelevant

components of the response.
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Electrical coupling between adjacent VS cells significantly shapes their responses (See

Figure 1.4A) [75, 97]. Our goal was to examine the role of this coupling in achieving an

efficient representation of the azimuthal angle of rotation in the VS population response.

We extended previous studies which made generally qualitative observations about the

role of coupling [56, 68, 292].

In contrast to most previous studies, we considered transient responses. Random ro-

tating images (Figure 1.4B) were presented as input to a biophysically-plausible model

of the VS cell network [30]. Instead of using heuristic or suboptimal estimators, we ap-

plied probabilistic modeling methods to compute optimal Bayesian estimators from the

responses. Surprisingly, we found that the quality of optimal estimates of the azimuthal

angle from the collective response of VS cells is independent of coupling in both transient

and steady-state situations.

On the other hand, anatomical and electrophysiological characterizations of lobula

plate neurons have identified a pair of pre-motor neurons at the next stage of processing

of the fly’s nervous system. The strongest projections of the VS population onto these

descending neurons originate from a subset of the VS population [297]. We found that

under a partial readout, coupling-induced changes in tuning and reliability were crucial

for an efficient representation of the angle of rotation. We provide an intuitive explanation

of these observations. These ideas are quite general, and can offer insights into the role of

coupling between neurons in other species and modalities.

Over the course of this work, we hope to address three important needs within the

field of computational neuroscience: First, the Generalized Thinning and Shift framework

presented in Chapter 4 addresses the need for tools which can be applied, by both exper-

imentalists and theorists, to understand how networks transform their inputs. Next, the
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linear response theory of correlations for integrate–and–fire networks presented in Chap-

ters 5 through 7 can serve as an invaluable tool for understanding explicitly the relation-

ship between structure and dynamics. Finally, our analysis of the fly visual system in

Chapter 8 exhibits a general methodology for assessing task performance of neural net-

works; our hope is that our analysis will serve as a blueprint for future research, both in

the fly visual system and elsewhere.
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Figure 1.4: The VS network extracts motion parameters from optic flow-related infor-
mation. (A) (Left) The ten VS cells in one lobula plate (LP) as reconstructed from two-
photon image stacks. Each neuron is T-shaped, with an elongated dendrite sampling a
thin vertical stripe in the retinotopically organized LP (VS 1 to 10 arranged from distal to
proximal in the LP, [117]). Inset indicates approximate orientation (a: anterior, p: poste-
rior, l: lateral, m: medial, d: dorsal, v: ventral). Adapted from [56]. (Right) Connectivity
scheme of the VS network. VS cell axons are electrically coupled to nearest neighbors.
There is a functionally mutually inhibitory (or “repulsive”) interaction between VS1 and
VS10. Receptive field (RF) centers indicate azimuthal position in the horizontal equato-
rial plane of right side VS neurons, taking 0◦ to represent the anteroposterior axis of the
fly. Left side VS neuron receptive field centers are given by reflection across 0◦ [30]. (B)
Examples of images used to generate the optic flow stimuli presented to the VS network
model. Details of image generation are given in the Methods, along with parameters and
procedure for generation of rotational optic flow stimuli. (C) The marginalization prob-
lem: Parameters of ego-motion (such as the axis of rotation,θstim) are first probabilistically
embedded in the external world (Image), and additional layers of variability (noise) are
imposed by the processing in VS cells at the dendritic (De) and axonal (Ax) stages (V̄
denotes time-averaged membrane potential; see Methods). Reading-out the azimuthal
rotation axis from the VS population response amounts to marginalization — extract a
notion of the posterior distribution of the stimulus from the axonal responses.
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Chapter 2
Correlations and stochastic processes

We will consider models of neuronal activity given by stochastic processes. The neu-

ronal networks we model explicitly will have membrane potentials governed by Langevin

equations, and we will model their inputs and outputs as spike trains. In this chapter,

we will first cover fundamental measures of covariability amongst general numerically-

valued stochastic processes, and then amongst spike trains, which we interpret as gener-

alized functions. To conclude the chapter, we discuss copulas, a useful way of imposing a

certain correlation structure onto a set of independent random variables.

Throughout most of this work (with analysis of transient responses in Chapter 8 as

the lone exception), we assume the stochastic processes we consider are jointly stationary.

In particular, if X(t) = (X1(t), . . . , XN(t)) is a vector stochastic process, then the joint

distribution of Y(t) = (Xi1(t+ t1), Xi2(t+ t2), . . . , XiM(t+ tM)) is independent of t for any

finite sequence of times {t j}M
j=1 and indices {i j}M

j=1 ⊂ {1, 2, . . . , N}. We further assume

these stationary processes to be ergodic; that is, for any Borel measurable f : RM → R, we

13



2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

have

lim
T→∞ 1

T

∫ T

0
f (Y(t))dt = E [ f (Y)] ,

whenever the expectation on the right-hand side exists. Finally, we assume that the

stochastic processes we consider have finite cumulants (equivalently, finite moments) up

to the order we consider.

2.1 Statistical measures of stochastic processes

Much of this work is concerned with the quantification and study of dependencies be-

tween stochastic processes representing the activity of neurons. In this section, we first

review cross-cumulants, a useful measure of correlation amongst collections of random

variables. We then briefly discuss the Wiener-Khinchin theorem and its higher-order gen-

eralizations. Following this, we provide an overview of application of these statistical

measures to point process, and define some additional measures which are useful in this

context.

2.1.1 General measures of correlation

Cross-cumulants Consider a random vector X = (X1, . . . , XN) ∈ RN . The cumulant

generating function [88, 102, 144, 267] of X is given by

g(t1, . . . , tN) = log

(
E

[
exp

(
N

∑
j=1

t jX j

)])
.

The r-cross-cumulant (or r-joint cumulant) is then given by

κr(X) =
∂|r|

∂tr1
1 · · · ∂trN

N
g(t1, . . . , tN)

∣∣∣∣∣
t1=···=tN=0

,
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

where r = (r1, . . . , rN) is an N-vector of positive integers, and |r| = ∑
N
i=1 ri. We will often

refer to the cumulant κ(X) of the collection of random variables without reference to an

index vector r; in this case, it is to be assumed that every variable is considered at first

order:

κ(X) := κ1(X) =
∂N

∂t1 · · · ∂tN
g(t1, . . . , tN)

∣∣∣∣
t1=···=tN=0

, where 1 = (1, . . . , 1).

The cross-cumulant of X can be expressed combinatorially in terms of moments as

κ(X) = ∑
π

(|π | − 1)!(−1)|π |−1
∏
S∈π

E

[
∏
i∈S

Xi

]
, (2.1)

where π runs through all partitions of D = {1, . . . , N}, and S through all blocks of the

partitions of π . We note that the cumulant of a set of random variables is invariant to

permutations of their ordering. Equation 2.1 is derived by first noting that an r-cross-

cumulant can be expressed in terms of moments by expanding the cumulant generating

function as a Taylor series,

g(t1, . . . , tN) = ∑
r

κr(X1, . . . , XN)

r!
tr1
1 · · · t

rN
d with r! =

N

∏
i=1

(ri!).

Next, the moment generating function M(t) is similarly expanded,

M(t) = ∑
r

E
[
Xr1

1 · · ·X
rN
N
]

r!
tr1
1 · · · t

rN
d .

Finally, by expanding g(t) = log M(t) in terms of the moment coefficients, we arrive at

Eq. (2.1) by matching the polynomial coefficients for the term r = 1. We also define the

nth cumulant of a single random variable X by

κn(X) = κ(X, . . . , X︸ ︷︷ ︸
n copies

).

In Chapter 4, we will make extensive use of the following two principal characteristics

of cross-cumulants [36, 185, 263, 267]:
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

(C1) Multilinearity - for any random variables X, Y, {Zi}N
i=2 and constantsα,β, we have

κ(αX +βY, Z2, . . . , ZN) = ακ(X, Z2, . . . , ZN) +βκ(Y, Z2, . . . , ZN).

This is a general form of the bilinearity which holds for covariances at second order.

Property (C1) holds regardless of dependencies amongst the random variables.

(C2) If any subset of the random variables in the cumulant argument is independent from

the remaining variables, the cross-cumulant is zero - i.e., if X = (X1, . . . , XN1) and

Y = (Y1, . . . , YN2) are two sets of random variables such that each Xi is independent

from every Yj, then

κ(rX ,rY)(X1, . . . , XN1 , Y1, . . . , YN2) = 0 for all rX ∈ NN1
+ , rY ∈ NN2

+ ,

where (rX , rY) is the length N1 + N2 concatenation of the vectors rX , rY.

To exhibit another central property of cumulants, we consider a 4-vector

X = (X1, X2, X3, X4)

with non-zero fourth cumulant and a random variable Z independent of each Xi. Define

Y = (X1 + Z, X2 + Z, X3 + Z, X4). Using properties (C1), (C2) above, it is elementary to

show that, for example,

κ(Y1, Y2, Y3) = κ(X1, X2, X3) +κ3(Z).

On the other hand, it is also true that

κ(Y) = κ(Y1, Y2, Y3, Y4) = κ(X1, X2, X3, X4) = κ(X).

That is, adding the variable Z to only a subset of the variables in X results in changes to cu-

mulants involving only the variables within that subset and no others. Cross-cumulants
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

for supersets of the modified variables (such as for the entire vector X in the present

example) are unchanged. In this sense, cross-cumulants are “pure”: an rth-order cross-

cumulant of a collection of random variables captures exclusively dependencies amongst

the collection which cannot be described by cumulants of lower order [263]. In the exam-

ple above, we affected only the joint statistical properties of a subset of X, and as a result,

the total cumulant κ(X) remained fixed.

From Eq. (2.1), it can be seen that κ(Xi) = E [Xi], κ(Xi, X j) = cov
[
Xi, X j

]
, and

κ(Xi, X j, Xk) = E
[
(Xi − E [Xi])(X j − E

[
X j
]
)(Xk − E [Xk])

]
.

That is, up to third order, cumulants and central moments agree, and thus, central mo-

ments share the properties (C1) and (C2) at these orders. However, at fourth order, we

have

κ(Xi,X j, Xk, Xl) = E
[
(Xi − E [Xi])(X j − E

[
X j
]
)(Xk − E [Xk])(Xl − E [Xl ])

]
− cov

[
Xi, X j

]
cov [Xk, Xl ]− cov [Xi, Xk] cov

[
X j, Xl

]
− cov [Xi, Xl ] cov

[
X j, Xk

]
,

(2.2)

with similar (but more complex) expressions holding at orders higher than four. As a

result, central moments of fourth- and higher-order do not exhibit the attractive property

of characterizing exclusively higher-order dependencies.

Temporal statistics In this work, we will utilize cross-cumulant densities as a standard

measure of the temporal dependence structure of a stochastic process. Given a vector

stochastic process X(t) = (X1(t), . . . , XN(t)) ∈ RN , the cross-cumulant density of X(t)

is [36, 267]

κX(τ1, . . . , τN−1) = κ(X1(t), X2(t + τ1), . . . , XN(t + τN−1)), (2.3)
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

where we remind the reader that these definitions are for strongly stationary stochastic

processes as described in the opening of this chapter. Thus, the value of t used in the

definition Eq (2.3) is not relevant. When we are interested in the cumulant function of

a subset of the processes X, we will indicate this by a subscript — i.e., the second-order

cross-cumulant density of the ith and jth processes of X is denoted

κX
i j(τ) = κ

(Xi ,X j)(τ). (2.4)

We also define the central moment density of the processes X by

cX(τ1, . . . , τN−1) = E [(X1(t)− E [X1])(X2(t + τ1)− E [X2]) · · · (XN(t + τN−1)− E [XN ])] .

For a pair of processes (i.e., N = 2), the cross-cumulant density is often referred to as

the cross-correlation function or cross-covariance density. In addition, up to third order, the

central moment density is equivalent to the cross-cumulant density.

A general cross-cumulant density can be expressed as

κX(τ1, . . . , τN−1) = E [ f (X1(t), X2(t + τ1), . . . , XN(t + τN−1))]

for some polynomial function f which can be derived from the combinatorial form of

cross-cumulants given in Eq. (2.1). Estimation of the cross-cumulant density from data

typically relies on the joint ergodicity of the processes [267],

κX(τ1, . . . , τN−1) = lim
T→∞ 1

T

∫ T

0
f (X1,T(t), X2,T(t + τ1), . . . , XN,T(t + τN−1))dt.

Here, Xi,T(t) = Xi(t)1[0,T](t) is the mean-subtracted process Xi restricted to the time win-

dow [0, T], and we remind the reader that all considered processes are assumed to be

stationary, unless otherwise noted. All convergence results regarding stochastic processes

contained in this chapter are in mean-square [306].
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

In many applications (such as those of Chapters 5 through 7), it is convenient to cal-

culate spectral rather than temporal statistics of the stochastic processes under considera-

tion. A common measure of spectral correlation is the polyspectrum [36], defined as

SX(ω1, . . . ,ωN−1) = lim
T→∞ 1

T
E
[
X̃∗1,T(ω1 + . . . +ωN−1)X̃2,T(ω1) · · · X̃N,T(ωN−1)

]
, (2.5)

where X∗ indicates the scalar complex conjugate of X. The Fourier transform convention

throughout this work is

X̃T(ω) = F [XT(t)] ≡
∫ ∞
−∞ e−2π iωtXT(t)dt.

The process X̃T is known as the spectrum of X [267]. When N = 2 in Eq. (2.5), the polyspec-

trum is often referred to as the cross spectrum or cross spectral density of X when X consists

of two distinct processes. If X consists of two identical processes, the second-order quan-

tity is referred to instead as the power spectrum. Likewise, the N = 3 case is referred to

as the bispectrum, and the N = 4 case the trispectrum [36]. As for the cross-cumulant

density, we will denote power spectra of subsets of the vector process X with subscripts.

For example, the cross-spectrum of Xi and X j is

SX
i j(ω) = S(Xi ,X j)(ω).

The classical Wiener-Khinchin theorem relates the cross-cumulant density and the

power spectrum at second order [46, 267]. Generalized directly to higher orders, the the-

orem states that the spectral decomposition of the central moment density is given by the

polyspectrum of corresponding order, i.e.,

SX(ω1, . . . ,ωN−1) =
∫
· · ·

∫
e−2π i(ω1τ1+···ωN−1τN−1)cX(τ1, . . . , τN−1)dτN−1 · · · τ1. (2.6)

A spectral decomposition of the cross-cumulant density can be established likewise.
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2.1.2 Point processes

2.1.2.1 Spike trains as point processes

Neurons communicate primarily through spikes (or action potentials) — rapid hyperpolar-

izations of the membrane potential followed by rapid depolarizations which create trav-

eling waves in the membrane potential gradient which move through the body of the

neuron. These spikes typically travel down the axon of the neuron. Upon reaching the

site of a synapse with another neuron, the synapses is activated, initiating a sequence of

molecular events. This process is described in somewhat more detail in the next chapter.

Mathematical modeling of neuronal activity involves an important choice of how to

model spike trains (i.e., sequences of action potentials). One approach is to discretize time

into bins, and represent the spike train by a binary word, where a 1 in a bin indicates a

spike in the corresponding time interval. As the discretization of time is accommodat-

ing to computations, this is often done in practice. However, analysis of the output of a

spiking neuronal system can be sensitive to this bin size [62], which should be neither too

large nor too small (in which case the timescale of an action potential will not be correctly

characterized by the binary sequence). Furthermore, discretization often is inconvenient

for mathematical analysis of a spiking neuronal system.

A more tractable (and convenient) approach is to represent spike trains by sequences

of time points {ty
i }, each of which represents the time of an action potential. As a stochas-

tic process, a spike train y(t) takes the form

y(t) =
∞
∑
i=1
δ(t− ty

i ), (2.7)

where δ(t) is the Dirac delta function, and 0 < ty
i ∈ R is the time of the ith spike of the

neuron (a random variable). For theoretical considerations, this is essentially equivalent
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to the representation of the spike train by a random measure Ny on the Borel sets B(R) of

R [57]. In particular,

Ny(A) = #{ty
i ∈ A}, A ∈ B(R).

In addition, the random measure Ny can expressed in terms of the spike train y via

Ny(A) =
∫

A
y(t)dt, A ∈ B(R).

In some of what follows, it will be convenient to slightly abuse notation and write Ny(t)

as a random function on R:

Ny(t) ≡ Ny([0, t]) = #{ty
i ∈ [0, t]}, t ∈ R.

The random measure Ny can itself be viewed as a stochastic process. In this context, we

would call Ny the counting process associated with the point process y. Throughout this

work, we generally choose to perform our analysis in terms of spike trains, though in

Chapter 4, it will be convenient to deal primarily with the counting processes.

We will say that a vector point process y(t) = (y1(t), . . . , yN(t)) with the representa-

tion in Eq. (2.7) is jointly stationary if the associated counting process Ny = (Ny1 , . . . , NyN )

satisfies the stationarity condition given in the introduction to this chapter; that is, y is said

to be jointly stationary if the distributions of the random vectors

(Nyi1
(A1), . . . , NyiM

(AM)) and (Nyi1
(A1 + s), . . . , NyiM

(AM + s))

agree for all finite sets of indices {i j}M
j=1 ⊂ {1, . . . , N}, collections of subsets {Ai}M

i=1 ⊂

B(R) and s ∈ R, where we define a set translation as

A + s = {a + s : a ∈ A}.

Some popular, general references on the properties of point processes are [54, 57].
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2.1.2.2 Statistical measures for point processes

Spike count cumulants Statistics of spike trains, like the stationarity condition above,

are properly stated in terms of their counting processes. We define general r-spike count

cumulants of a vector y of spike trains over windows of length T by

γ
y
r (T) =

1
T
κr(Ny1(T), . . . , NyN (T)). (2.8)

Asymptotic spike count cumulants are defined by taking the limit of large T:

γ
y
r (∞) ≡ lim

T→∞γy
r (T). (2.9)

At first order, the spike count cumulant equals the firing rate ri(T) of the process,

ri(T) ≡
1
T
γ

y
i (T) =

1
T

E
[
Nyi(T)

]
. (2.10)

Adopting the subscript notation defined in Eq. (2.4) for the cross-cumulant density, we

write the spike count variances and covariances over windows of length T as

γ
y
ii(T) =

1
T

var
[
Nyi(T)

]
, γ

y
i j(T) =

1
T

cov
[

Nyi(T), Ny j(T)
]

.

General spike count cross-cumulants are denoted

γ
y
i1i2···ik

(T) =
1
T
κ(Nyi1

(T), Nyi2
(T), . . . , Nyik

(T)). (2.11)

Lastly, we will make use of the second-order spike count correlation coefficient ρy
i j(T).

This is given by the Pearson correlation of the spike counts:

ρ
y
i j(T) =

γ
y
i j(T)√

γ
y
ii(T)γ

y
j j(T)

. (2.12)

The asymptotic quantity ρy
i j(∞) is defined by

ρ
y
i j(∞) =

γ
y
i j(∞)√

γ
y
ii(∞)γ

y
j j(∞)

.
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Cross-cumulant densities The cross-cumulant density of a vector of spiking processes

y can be expressed as a limit of cumulants of the associated counting processes,

κy(τ1, . . . , τN−1) = lim
∆t→0

κ(Ny1 [0, ∆t], Ny2 [τ1, τ1 + ∆t], . . . , NyN [τN−1, τN−1 + ∆t])
∆tN .

(2.13)

When dealing with point processes, the cross-cumulant density can be interpreted as the

probability of observing spikes from the processes y in the arrangement indicated by the

intervals in the definition Eq. (2.13) (i.e., a spike at time t in y1, at time t + τ1 in y2, and so

on) beyond what can be inferred from lower-order cumulants. For instance, consider the

conditional intensity h12(τ) of a pair of spiking processes (y1, y2), a second-order quantity

given by [54, 55]

hy
i j(τ) = lim

∆t→0

P(Ny j [τ , τ + ∆t] > 0|Nyi [0, ∆t] > 0)
∆t

.

It is not difficult to show using the law of total expectation that

κ
y
i j(τ) = rihi j(τ)− rir j. (2.14)

Thus, the second-order cross-cumulant density gives the probability that a spike in yi is

followed by one in y j at a lag τ (namely, rihi j(τ)) above what would be expected to occur

by random chance (rir j).

We note that there is nothing particular about the order of conditioning considered in

the argument above. For instance, we could have defined instead the intensity function

hy
ji(τ), then expressed the cross-cumulant density as

κ
y
i j(τ) = r jh

y
ji(−τ)− rir j.

In addition, this method of expressing the cross-cumulant density in terms of conditional

firing intensities can be extended directly to third and higher orders. In all cases, the order
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of conditioning is not important — only the relative arrangement of the time lags for the

collection of processes under consideration matter.

Another statistic useful in the study of a correlated vector point process y is the popula-

tion cumulant density. At second order, the population cumulant density for the ith process

takes the form [173]

κ
y
i,pop(τ) = ∑

j 6=i
κ

y
i j(τ).

More generally, the kth-order population cumulant density corresponding to the processes

yi1 , . . . , yik−1 is given by

κ
y
i1···ik−1 ,pop(τ1, . . . , τk−1) = ∑

j 6=i1 ,...,ik

κ
y
i1···ik−1 j(τ1, . . . , τk−1). (2.15)

The population cumulant density measures the propensity of the set of neurons under

consideration to spike in a certain arrangement relative to other neurons in the popula-

tion.

Cross-cumulant densities with repeated spiking processes Consider the auto-cumulant

density κy
ii(τ). It is known that, for a general stationary point process, this function takes

the form

κ
y
ii(τ) = riδ(τ) + “non-singular contributions”,

where ri is the constant intensity (rate) of yi [54].

Similar singular contributions can appear in higher-order cross-cumulant densities

when processes are repeated. As an example, consider the third-order cross-cumulant

density of the triplet (i, i, j). From Eq. (2.13), using that the third-order cross-cumulant is
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equal to the central moment, we can write

κ
y
ii j(0, τ2) = lim

∆t→0

E
[(

Nyi [0, ∆t]− ri∆t
)2

(Ny j [τ2, τ2 + ∆t]− r j∆t)
]

∆t3

= lim
∆t→0

E
[

Nyi [0, ∆t]2(Ny j [τ2, τ2 + ∆t]− r j∆t)
]

∆t3

− 2ri

E
[

Nyi [0, ∆t](Ny j [τ2, τ2 + ∆t]− r j∆t)
]

∆t2 + r2
i

E
[

Ny j [0, ∆t]− r j∆t
]

∆t

= lim
∆t→0

E
[

Ny j [τ2, τ2 + ∆t]− r j∆t
∣∣∣Nyi [0, ∆t] > 0

]
P(Nyi [0, ∆t] > 0)

∆t3 − 2riκ
y
i j(τ2)

= lim
∆t→0

κ
y
i j(τ2)

∆t
− 2riκ

y
i j(τ2),

where the final equality follows from Eq. (2.14). Since the joint firing probabilities will

generally remain bounded at all pairs of lags for which τ1 6= 0, we have established that

κ
y
ii j(τ1, τ2) = δ(τ1)κ

y
i j(τ2) + “non-singular contributions”. (2.16)

A similar argument establishes that, for example,

κ
y
i j j(τ1, τ2) = δ(τ2 − τ1)κ

y
i j(τ1) + “non-singular contributions”.

Comparable expressions hold in the general case of arbitrary-order cross-cumulant

densities. In short, cross-cumulant densities involving multiple copies of a spiking pro-

cess will necessarily contain singular contributions proportional to lower-order cross-

cumulant densities of the same set of processes. These singular contributions are anal-

ogous to the delta contribution proportional to the firing rate (i.e., the first-order cumu-

lant) which appears in the second-order auto-cumulant density of a spiking process. In

the third-order case, for example, these singular contributions can appear along “ridges”

centered on the τ1, τ2 axes, as well as the diagonal τ1 = τ2.
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Relating spike count cumulants and cross-cumulant densities The spike count covari-

ance can be related directly to the second-order cross-cumulant density by [54, 55, 232, 271]

γ
y
i j(T) =

∫ T

−T
p(τ ; T)κy

i j(τ)dτ with p(τ ; T) = 1− |τ |
T

, (2.17)

where the prefactor accounts for edge effects of the finite window. A similar relation holds

which relates the spike count variance γy
ii(T). to the second-order auto-cumulant density

κ
y
ii(τ). The integral in Eq. (2.17) can also be evaluated in the frequency domain, relating

spike count covariance to the cross-spectral density by

γ
y
i j(T) =

∫ ∞
−∞ p̃(ω; T)Sy

i j(ω)dω,

where p̃(ω; T) ≡ F [p(τ ; T)] = 4
Tω2 sin2(ωT/2).

Eq. (2.17) can be generalized to relate higher-order spike count cumulants to the cor-

responding densities. For example, if we define

p(τ1, τ2; T) =


1− max{|τ1|,|τ2|}

T , τ1 · τ2 ≥ 0,

1− |τ1|+|τ2|
T , τ1 · τ2 < 0,

we then have that

γ
y
i jk(T) =

∫ 0

−T

∫ T−τ1

−T
p(τ1, τ2)κ

y
i jk(τ1, τ2)dτ2dτ1 +

∫ T

0

∫ T

τ1−T
p(τ1, τ2)κ

y
i jk(τ1, τ2)dτ2dτ1.

Similar expressions can be derived at higher orders. In general, the asymptotic spike

count cumulants (defined in Eq. (2.9)) equal the total integral under the corresponding

cross-cumulant density:

γy(∞) =
∫ ∞
−∞ · · ·

∫ ∞
−∞κy(τ1, . . . , τN−1)dτN−1 · · · dτ1. (2.18)

Using Eqs. (2.1, 2.6), the asymptotic spike count cumulant can also be evaluated in terms
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of the cross-spectral density. For instance, owing to the equivalence of second- and third-

order cross-cumulants and central moments, we have at these orders

γ
y
i j(∞) = Sy

i j(0) and γ
y
i jk(∞) = Sy

i jk(0).

Our ergodicity assumptions guarantee the existence of all cumulant quantities considered,

and the integrability of the cross-cumulant densities.

2.2 Copulas

Consider a random vector X = (X1, . . . , XN) with joint distribution function

F(x1, . . . , xN) = P [X1 ≤ x1, . . . , XN ≤ xn] , (x1, . . . , xN) ∈ RN ,

and marginal distribution functions

Fi(xi) =
∫
· · ·

∫
F(x1, . . . , xN)dxn · · · dxi+1dxi−1 · · · dx1.

The copula C of X — which can also be identified with the distribution F and marginals

{Fi}N
i=1 — is a function which satisfies the equality [189, 256]

F(x1, . . . , xN) = C(F1(x1), . . . , FN(xN)) ∀ (x1, . . . , xN) ∈ RN . (2.19)

By the probability integral transform, each of Fi(Xi) is a uniformly distributed random

variable. The function C can also be defined as the joint distribution of the random vec-

tor (F1(X1), . . . , FN(XN)). Sklar’s Theorem [256] provides uniqueness of the copula as-

sociated with a random vector on ∏
N
i=1 Ran(Fi), the Cartesian product of the ranges of

the marginal distribution function, also implying that the copula is unique under the as-

sumption of absolutely continuous distributions. A copula can be equivalently viewed as

a distribution function on the N-dimensional unit hypercube with U[0, 1] marginals.
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The copula density c is defined as the density corresponding to the copula distribution

C and is given by

c(u) =
∂

∂u1
· · · ∂

∂uN
C(u), u ∈ [0, 1]N . (2.20)

Using the copula density, we can express the joint density f for the distribution F as

f (x1, . . . , xN) = c(F1(x1), . . . , FN(xN))
N

∏
i=1

fi(xi), (2.21)

where

fi(xi) =
∂

∂xi
F(xi)

is the marginal density for the ith component of X.

As is clear from Eq. (2.19), the copula encapsulates completely the dependence struc-

ture of the random vector X, and knowledge of the joint distribution F is equivalent

to knowledge of the marginal distributions {Fi}N
i=1 and the copula function C. Thus,

methods which approximate the copula associated with a distribution provide an avenue

for approximation of the joint distribution itself, when coupled with estimations of the

marginal distributions. To this end, many parametric copula models exist which can be

fit to data by the usual maximum likelihood methods. Before introducing some of these

parametric models, we quickly note that if the components of the vector X are indepen-

dent, then

F(x1, . . . , xN) =
N

∏
i=1

Fi(Xi),

leading to the definition of the independence copula,

Cind(u) =
N

∏
i=1

ui, u ∈ [0, 1]N .

Clearly, if C = Cind in Eq. (2.19), then the components of the vector X are independent.
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2.2.1 Archimedian copulas

One common parametric class of copulas is the Archimedean copulas which are defined in

terms of parametric generator functions ψ. The copula Cψ associated with a generator ψ

is defined by

Cψ(u) = ψ
(
ψ−1(u1) + . . . +ψ−1(uN)

)
, u ∈ [0, 1]N ,

where it is additionally required that the functionψ be N-monotone for Cψ to be a proper

copula [183]. In other words, ψ must satisfy the conditions

• (−1)kψ(k)(x) ≥ 0 ∀ x ≥ 0, k = 1, . . . , N − 2,

• (−1)N−2ψ(N−2)(x) is non-increasing and convex.

For example, the Gumbel copula, which exhibits strong correlation in the positive tails of

the distribution — i.e., events in the positive tails of the joint distribution tend to occur

together at a level well above chance — is an Archimedean copula with generator

ψ(t;θ) = exp
[
−t1/θ

]
, θ ∈ [1, ∞).

More generally, the Archimedean copula generators can be parameterized by a vector θ.

Given sample data, maximum likelihood methods can be applied to determine the most

likely value of the parameter vectorθ.

2.2.2 The Gaussian copula

Another commonly used copula model is the Gaussian copula [305], parameterized by a

correlation matrix Σ, assumed to be a positive definite matrix with Σii = 1 and Σi j ∈
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[−1, 1]. The Gaussian copula distribution function is given by

CGauss
Σ (u) = ΦΣ

(
Φ−1(u1), . . . , Φ−1(uN)

)
, (2.22)

where Φ is the standard, univariate normal CDF, and ΦΣ is the N-dimensional CDF for

the Gaussian distribution with zero mean and correlation matrix Σ. In the applications

of Chapter 8, it will be useful to note that the Gaussian copula density can be written in

closed form as

cGauss
Σ (u1, . . . , uN) =

1
det(Σ)

exp
[
wT(Σ−1 − I)w

]
, w =

[
Φ−1(u1), . . . , Φ−1(uN)

]T
.

(2.23)

The Gaussian copula is advantageous to apply in that, given a collection of observa-

tions {X j}D
j=1 of the random vector X, the maximum likelihood value of Σ̂i j of Σi j can be

determined without the need to apply a gradient descent method or other optimization

techniques. In particular, the maximum likelihood value for the correlation parameter in

the Gaussian copula is given by [305]

Σ̂i j = corr
(
Φ−1(Fi(Xi)), Φ−1(Fj(X j))

)
.

The correlation computed in the previous expression is the empirically observed correla-

tion from the samples {X j}D
j=1. In Chapter 8, we apply Gaussian copulas in order to obtain

an estimate of a joint distribution which is both continuous and has twenty dimensions.

It is not feasible to tackle this problem directly, even with modern computational power

and storage capabilities.

We conclude by noting that, in certain applications the Gaussian distribution is found

to be unsuitable for fitting to the true copula as it predicts very low probabilities for joint

events involving multiple marginally rare events. In many cases, however, so-called “ex-

treme” events tend to occur in a correlated fashion (such as during a period of elevated
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activity within a neuronal network, or the collective behavior of securities during finan-

cial booms or crises). In this case, one can achieve a better fit by applying the t-copula. The

t-copula is a direct generalization of the Gaussian copula, and includes an additional de-

gree of freedom with which to better capture the dependence structure [60]. The t-copula

is defined similarly to the Gaussian copula in Eq. (2.22), replacing the joint distribution

with the joint t distribution with correlation matrix Σ and ν degrees of freedom, and the

marginal distributions with standard t distributions with ν degrees of freedom. The t-

copula converges in distribution to the Gaussian copula as ν → ∞.
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Chapter 3
Modeling of neurons and their

interactions

Neuronal models can vary greatly in their complexity [58, 79, 81, 84, 105, 120, 147, 159, 188,

291]. At one end, highly detailed models can consist of hundreds of coupled differen-

tial equations modeling “electrical compartments” of the neuron, and attempt to capture

changes in membrane potential induced by molecular-level kinetics of ions traversing

membrane channels [84, 243, 279]. These neuron models provide near-complete descrip-

tions of responses to biophysically realistic stimulation.

On the other end of this spectrum, reduced models aim to capture salient features of

neuronal activity, favoring tractability over completeness [39, 131, 182]. The models which

we will primarily employ herein, the so-called integrate–and–fire (IF) model neurons [40,

41, 81], are of the latter type. When a neuron spikes, its membrane potential undergoes a

rapid depolarization followed by a comparably rapid hyper-polarization back towards a

resting potential [79, 120]. Integrate–and–fire neuron models exhibit a firing threshold on
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the membrane potential which is meant to approximate realistic spiking dynamics.

In this chapter, we introduce and briefly explore the properties of integrate–and–fire

neuron models. Following this, define and discuss the manner in which these neuron

models are typically coupled to each other. We conclude the chapter by introducing the

diffusion approximation in Section 3.3, motivating the consideration of white noise-driven

neurons throughout most of the rest of this work. Before doing so, however, we introduce

a useful change of coordinates for the parametrization of the sub-threshold dynamics of

conductance-driven neurons. This effective time constant form helps to elucidate the func-

tional significance of differences between current- and conductance-based input modes.

3.1 Integrate–and–fire neuron models

A general integrate–and–fire model neuron receiving current input I(t) neuron has a

membrane potential which evolves according to the differential equation [41]

CmV̇(t) = F(V(t)) + I(t), V0 = v0.

Upon crossing the threshold Vth, the membrane potential of the neuron is reset to Vr,

where it is held fixed for an absolute refractory period of length τref, after which normal

voltage dynamics resume. We denote by y(t), the spiking output of the neuron given by

y(t) = ∑
j

y(t− t j),

with t j equal to the time of the jth crossing of the membrane potential across the threshold

Vth. The nature of the function F(V) determines the sub-threshold dynamics of the neuron

model. We next discuss a few canonical integrate–and–fire neuron models.
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3.1.1 The leaky integrate–and–fire neuron

One of the simplest variants of the integrate–and–fire family is the leaky integrate–and–

fire (LIF) model [39, 41, 147, 159, 264]. In this model, the voltage-dependent dynamics are

given by

FLIF(V) = gL(VL −V),

where gL is the membrane conductance, and VL < Vth is the rest potential in the absence

of input (I(t) ≡ 0). In this case, the membrane potential will relax to the leak (or resting)

potential VL exponentially, with a time constant given by τm = Cm/gL - this is the mem-

brane time constant of the neuron. In Figure 3.1A, we exhibit the evolution of the membrane

potential of an LIF neuron receiving Poisson input I(t), where we write

I(t) = w
∞
∑
k=1
δ(t− tk

in) for t1
in < t2

in < . . . ,

and depict the resulting output spike train y(t) at the top of the panel.

A B

V (mV)

-52

t (ms)50
-55

-50

-55

V (mV)

t (ms)50

t1 t2 t3 t1 t2 t3... ...

Figure 3.1: Illustrating the membrane potential and spiking dynamics of integrate–
and–fire model neurons. (A) The time evolution of the membrane potential of an LIF
neuron receiving excitatory Poisson current inputs. The corresponding output spike train
is displayed at the top of the panel. (B) Same as panel A, but for the EIF neuron model.
Unlike the LIF, the EIF neuron features a spike initiation phase in its sub-threshold dy-
namics in which the membrane potential exhibits a smooth but rapid escape.

34



3.1. INTEGRATE–AND–FIRE NEURON MODELS

3.1.2 The exponential integrate–and–fire neuron

An important generalization of the LIF neuron presented above is the exponential integrate–

and–fire (EIF) model neuron [41, 81]. The voltage-dependent dynamics of the EIF contain

the same leak term as the LIF, but also an exponential term which models membrane

potential spike dynamics induced by fast sodium currents [81]. In particular,

FEIF(V) = gL(VL −V +ψ(V)), where ψ(V) = ∆T exp
[

V −VT

∆T

]
.

Typically, the parameters of the model are such that the exponential non-linearity ψ has

only a minor effect on the voltage dynamics around the rest potential EL. The parameter

VT is referred to as the “soft threshold” of the EIF model, as it solves the equation

F′EIF(VT) ≡ 0.

If set initially above this value, the membrane potential can be shown to diverge to +∞
in finite time, assuming the absence of input (I(t) ≡ 0). Such a divergence indicates a

“spike” of the EIF model. The exponential integrate–and–fire neuron has been shown

to match well both sub-threshold and spiking neuronal dynamics in certain cortical ar-

eas [13, 81].

In practice, one still sets a hard threshold Vth, but as long as the hard threshold is suffi-

ciently high relative to the soft threshold, the spiking dynamics of the EIF are not sensitive

to this value owing to the exponential escape of the potential [81], in sharp contrast to the

LIF model. The paramter ∆T shapes the spiking dynamics of the membrane potential

— higher ∆T induces a more rapid onset of spiking (i.e., depolarizations of higher slope,

implying narrower spikes). In the limit that ∆T → 0, the EIF converges to the LIF with

threshold VT. In Figure 3.1B, we exhibit the evolution of the membrane potential of an

EIF neuron receiving Poisson input and depict the resulting output spike train y(t) above
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the trace. Note the smooth initiation of the action potentials in contrast to the LIF in panel

A.

3.1.3 The general integrate–and–fire neuron

Other canonical models of the integrate–and–fire family have been considered extensively

in the literature [41, 132]. Although we will not cover them in detail, much of what fol-

lows can be applied to these models as well. One particularly important example is the

quadratic integrate–and–fire (QIF) model [69, 72, 161]. For this model, the sub-threshold

dynamics are given by

F(V) ∝ (V −VL)(V −Vth).

For initial values V0 < Vth, the membrane potential will relax to the leak potential VL,

and for V0 > Vth, the membrane potential again diverges to +∞ in finite time. This

model can be fit so that its dynamics mimic well those of the Morris-Lecar model (a two-

dimensional neuron model exhibiting realistic spike-reset dynamics) in certain cases [69],

and is equivalent to the canonical theta model after a change of variable.

Another important set of examples is the class of adaptive integrate–and–fire neu-

rons [34, 131], which seem to achieve a nexus of simplicity (low dimensionality) and flex-

ibility. Whether the methods herein can be applied (particularly those of Chapters 5, 6) to

such models in a useful manner is an interesting topic for future research.

3.2 Models of synaptic interaction

In this section, we will review some common approximations to neuronal interactions.

Briefly, chemical interactions between neurons take place when the membrane potential
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of one neuron (the pre-synaptic neuron) is rapidly depolarized. This rapid depolarization

creates a traveling wave (also called an action potential or spike) which moves rapidly along

the length of the axon of the neuron.

When this action potential reaches a synaptic terminal, it causes a small quantity of

a neurotransmitter to be released into the synaptic cleft, a small gap between the pre-

synaptic and post-synaptic terminals at the site of the interaction. These neurotransmitter

molecules bind with receptors in the membrane of the post-synaptic cell, opening ion

channels and eliciting a transient change in the membrane potential of the post-synaptic

neuron. Typically, chemical synapses link the axon of the pre-synaptic cell to the dendrite

of the post-synaptic cell, though this needn’t always be the case. The change in mem-

brane potential in the post-synaptic neuron elicited by synaptic input can be either hyper-

polarizing (inhibitory) or depolarizing (excitatory) depending on the type of synapse, it-

self characterized by the identity of the neurotransmitter released.

3.2.1 Current-based synapses

Throughout this work, we employ reduced integrate–and–fire models of neuronal ac-

tivity. In adopting these models, we choose to neglect detailed modeling of membrane

potential modulations through the operation of ion channels, and other such details, and

accordingly, much of the detail of chemical synaptic interactions briefly described in the

opening to this section. One simple way to approximate chemical synaptic kinetics is

through so-called “current-based synapses”.

One of the simplest reductions of these chemical synaptic kinetics is the approximation

of such exchanges is through current-based interactions.
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Considering an example leaky integrate–and–fire neuron model receiving the spiking

output x(t) of another neuron, the membrane potential evolves according to

CmV̇(t) = gL(VL −V(t)) + (α ∗ x)(t).

The filterα(t) is known as the synaptic filter or post-synaptic current (PSC). Upon the recep-

tion of a spike in the process x(t), the current across the membrane of the post-synaptic

neuron exhibits a transient change with a time-course matching that of the filter α(t).

Synapses vary not only in polarity, but also strength and timescale, depending on many

factors, such as the particular neurotransmitter involved and the number of post-synaptic

binding sites available for neurotransmitter binding. The filterα(t) sets both the strength

as well as the time-scale of the interaction. In Figure 3.2A, we show the time-evolution

of the membrane potential of an LIF neuron receiving excitatory, current-based Poisson

input. The synaptic filter was instantaneous (i.e., α(t) = wδ(t)), resulting in a fixed-size

jump followed by an exponential decay in the membrane potential upon the arrival of an

input pulse.

3.2.2 Conductance-based synapses

Chemical synaptic kinetics at the molecular level involve the opening and closing of ion

channels in the membrane of neurons, and these channels are often themselves controlled

or affected by the membrane potential of the neuron involved. In short, this imposes a

membrane potential dependence on synaptic interactions which can, in many cases, be

more accurately captured by considering synaptic interactions through membrane con-

ductances [61], as opposed to the current-based synapses covered in Section 3.2.1.

Thus, consider again a leaky integrate–and–fire neuron receiving a spike train input

x(t) representing the output of a distinct neuron. The membrane potential of this neuron
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Figure 3.2: Implementing coupling amongst integrate–and–fire model neurons. (A)
Time evolution of the membrane potential of a LIF neuron (with spiking dynamics — i.e.,
the threshold and reset — neglected) receiving current-based excitatory Poisson input.
(B) Same as panel A for conductance-based input. The input spike train was precisely
that used for panel A. Note that the jump size now depends on the membrane potential
at the time of arrival for the input pulse. (C) Time evolution of the membrane potentials
(bottom) and resulting spike trains (top) for a pair of electrically coupled LIF neurons.
(D) Same as panel C, except for EIF neurons. The nature of the spiking dynamics strongly
modulates the effect of gap junction coupling on output spiking correlations. The strength
of the gap-junction synapses was set to ggap = 10gL.

evolves according to

CmV̇(t) = gL(VL −V(t)) + (α ∗ x)(t)(Vsyn −V(t)).

Here Vsyn sets the synaptic reversal potential (as well as the polarity of the synapse), and
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the synaptic filter α(t) now gives the transient increase in the post-synaptic conductance

induced by an input spike from x(t).

The net effect of considering conductance-based synapses rather than current-based

ones is that the closer the membrane potential of a neuron is to the synaptic reversal po-

tential for a given synapse at the time of reception of an input, the weaker the correspond-

ing induced post-synaptic current will be. Synapses with Vsyn > VL are called excitatory,

and others inhibitory. In Figure 3.2B, we exhibit the membrane potential evolution of

an LIF neuron (with spiking dynamics removed) receiving excitatory, conductance-based

Poisson input. The synaptic filter again was instantaneous, however, due to the inputs be-

ing through conductances as opposed to currents (see Figure 3.2A), there is a strong state-

dependence of the jump size upon arrival of an input pulse. The input spike train in

Figure 3.2B precisely matched that used in Figure 3.2A.

An important difference between the current- and conductance-based models of synap-

tic interaction is that a neuron receiving conductance-based inputs does not have a single

membrane filter in the classical sense - rather, the timescale at which the neuron responds

to inputs changes (decreases) with increasing synaptic conductance, as greater synaptic

conductance has the side-effect of inducing an increase in the effective membrane con-

ductance. This in turn leads to interesting effects such as shunting inhibition, in which a

neuron can become effectively silent despite the reception of large amounts of both exci-

tatory and inhibitory synaptic input.

3.2.3 Electrical synapses

In the early 20th century, there was a great debate within the budding neuroscientific

community regarding the predominant nature of neuronal interactions. Camillo Golgi
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and others supported the reticular hypothesis [92], in which it was believed that neurons

(and elements of the nervous system in general) formed a continuum through which in-

formation passed smoothly. Based on the work of Golgi himself, Santiago Ramón y Cajal

presented an alternative theory known as the neuron doctrine [210], in which it was hy-

pothesized that neurons were distinct anatomical units which communicated exclusively

through “discrete” (chemical) events. An extended debate over which was the valid hy-

pothesis ensued [281]. Ramón y Cajal’s neuron doctrine was dominant until the presence

of electrical synapses was first concretely exhibited in crayfish in 1959 [83], thereby indi-

cating there were two distinct modes for neuronal communication (chemical and electri-

cal), and that there were elements of truth to each theory. It should be noted that chemical

interactions are still believed to be the primary mode of communication for cortical neu-

rons.

In more recent studies, electrical synapses between neurons which lie very close to

each other have been shown to be much more common than was previously believed in

the mammalian brain [53]. In Chapter 8, we will study a system of neurons in the brain of

the blowfly Calliphora vicina which utilize these so-called gap junction synapses for robust

encoding of behaviorally relevant stimuli values.

A gap junction synapse between two neurons results in the direct coupling between

their membrane potentials of neurons, allowing for coupling and communication at a

much shorter timescale than generally possible through chemical synapses. We will con-

sider only bi-directional gap junction synapses, though examples of unidirectional gap

junction coupling do exist [229]. We consider a pair of gap junction-coupled LIF neurons
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with membrane potentials V1(t), V2(t) evolving according to

CmV̇1(t) = gL(VL −V1(t)) + ggap(V2(t)−V1(t)) + Iin,1(t),

CmV̇2(t) = gL(VL −V2(t)) + ggap(V1(t)−V2(t)) + Iin,2(t).

Here, Iin, j(t) consists of exponentially-filtered, current-based Poisson input in Sections

3.2.1 and 3.2.2. Considering the evolution of V1, the terms of the form ggap(V2(t)−V1(t))

has the effect of continuously pulling the membrane potential of the first cell towards that

of the second, and the corresponding term in the equation for the evolution of V2 has the

same effect.

The effect gap junction coupling can have on neuronal activity is exhibited in Figs. 3.2C,

D. In Figure 3.2C, we show the membrane potentials and output spike trains of a pair of

electrically-coupled LIF neurons receiving independent, excitatory Poisson input. Due

to the sharp threshold involved in the LIF spiking dynamics, electrical coupling (though

attractive in nature) can actually lead to anti-correlation in the output spiking of the two

neurons. Compare this to Figure 3.2D, where we exhibit the activity of two electrically-

coupled EIF neurons. The more realistic spiking dynamics (which involve a rapid es-

cape towards a very high threshold) lead to the two neurons tending to pull each other

along upon initiation of a spike, resulting in nearly-synchronous output spiking [166].

This is an example of a situation in which it is crucial to include more realistic spiking

dynamics in the sub-threshold description of neuronal activity. The role of gap junc-

tion coupling in regulating spiking dynamics has been studied extensively in the liter-

ature [48, 104, 150, 165, 166, 277, 290].
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3.3 The diffusion approximation

When considering the behavior of a model neuron, or a network of such neurons, it is

common to include in the input to the neuron a noisy component which represents this

signal extraneous to the explicitly modeled circuit or network. Cortical neurons have

been shown to exhibit highly irregular firing patterns characterized by inter-spike inter-

vals with elevated coefficients of variation under a variety of conditions [237, 257, 265].

This induces a common simplifying assumption in neuronal modeling, namely, that this

noisy signal consists of Poisson spike trains of both polarities (excitatory and inhibitory).

The Poisson variability of the noisy inputs reflects the variability commonly exhibited by

cortical neurons.

Modern estimates put the number of neurons and synapses in the human brain at

about 100 billion (1011) and 100 trillion (1014), respectively [301]. Many neurons in vivo re-

ceive synaptic input from thousands of afferents, many of which can be relatively weak. In

this section, we begin with an integrate–and–fire neuron receiving Poisson, conductance-

based (i.e., multiplicative) input, and present the so-called diffusion approximation [41, 88,

107, 216, 218, 227] to the input, which allows us to treat the sub-threshold dynamics of the

neuron as a simple drift-diffusion process [88].

Preceding our presentation of the diffusion approximation, we introduce the effective

time constant form and a related approximation [41, 136, 225] of sub-threshold neuronal dy-

namics which motivates the consideration of additive noise. The effective time constant

form elucidates the true nature of sub-threshold neuronal dynamics in the presence of

multiplicative, conductance-based inputs. The diffusion approximation, in turn, signifi-

cantly increases tractability of the neuron models we consider, allowing for the analysis

43



3.3. THE DIFFUSION APPROXIMATION

we will present in the sequel. These approximations have been shown to be valid in bio-

logically significant parameter regimes. [220, 221]

3.3.1 The effective time constant form

We will again consider the leaky integrate–and–fire neuron for concreteness. Letting

gE(t), gI(t) be the time-varying excitatory and inhibitory synaptic conductances, respec-

tively, the membrane potential evolves according to

CmV̇(t) = gL(VL −V(t)) + gE(t)(VE −V(t)) + gI(t)(VI −V(t)). (3.1)

After some simple algebraic manipulation, we can write the previous equation

CmV̇(t) = geff(VL,eff −V(t)) + δgE(t)(VE −V(t)) + δgI(t)(VI −V(t)), (3.2)

where the variation δ f (t) of a stochastic process f (t) is defined as

δ f (t) = f (t)− Et[ f (t)] ,

and the effective membrane conductance and rest potential are

geff = Et[gL + gE(t) + gI(t)] , VL,eff =
gLVL + Et[gE(t)] EE + Et[gI(t)] EI

geff
.

In this effective time constant form [41, 225], the membrane potential is seen to have an effec-

tive filter with time constant

τeff =
Cm

geff
.

Often, the synaptic conductances gE(t), gI(t) include noise terms, and the consideration of

multiplicative noise systems is generally more complicated than consideration of additive

noise systems. In situations where it benefits tractability, it is common to replace the V(t)
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in these multiplicative noise terms with its temporal average, giving membrane potential

dynamics

CmV̇(t) = geff(VL,eff −V(t)) + δgE(t)(VE − Et[V(t)]) + δgI(t)(VI − Et[V(t)]). (3.3)

This approximation is known as the effective time constant approximation [41, 136, 225], and

has been shown to match well the neuronal dynamics of the full model in Eq. (3.1) in

biologically relevant parameter regimes [220, 221], a point we return to below.

3.3.2 The diffusion approximation for multiplicative Poisson noise

Now, consider a neuron receiving Poisson synaptic conductance drive. Assuming instan-

taneous synapses, we have that

gE(t) = CmwExE(t), gI(t) = CmwI xI(t),

where xE(t), xI(t) are Poisson processes of intensity RE, RI , respectively. The constants

wE, wI set the input weights, though there is a choice to be made in how to handle terms

of the form δ(t)V(t) when integrating Eq. (3.2). In neuroscience applications, “instan-

taneous” synapses are a convenient interpretation of the physical limit of “very fast”

synapses, and so the Stratonovich interpretation is appropriate [227, 267]. In this case,

arrival of an excitatory spike at time t, for example, yields an instantaneous increase in

the membrane potential of amplitude uE(EE −V(t)), where uE = 1− e−wE .

An integrate–and–fire neuron receiving Poisson input (either current- or conductance-

based) is generally intractable when it comes to solving for essentially any firing statistic

(including the firing rate) [41, 226]. Often, in order to gain some tractability, the diffu-

sion approximation [41, 88, 216, 218, 227] is utilized. Under the diffusion approximation, the
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Poisson drive is replaced by an appropriately scaled white noise signal. In the present

case, we set

gE(t) = Cm(µE +σEξE(t)),

where ξ(t) is a standard white noise process, and the mean µE and intensity σE are given

by

µE = uERE, σE = uE
√

RE.

The inhibitory input is approximated similarly.

Thus, under the diffusion approximation, the effective time constant form of the mem-

brane potential dynamics is

τeffV̇(t) = VL,eff −V(t) +
√

2τeffσ
2
eff(V(t))ξ(t), (3.4)

where the effective time constant, rest potential and noise intensity are given (in terms of

diffusion approximation parameters) as

geff = gL + Cm(µE +µI), τeff =
Cm

geff
, VL,eff =

gLEL + Cm(µEEE +µI EI)

geff
,

and the voltage-dependent effective noise intensity is

σ2
eff(V) = τeff

[
σ2

E(EE −V)2 +σ2
I (EI −V)2

]
. (3.5)

In Figure 3.3, we depict the time-evolution of the membrane potential of an LIF neuron

receiving excitatory and inhibitory Poisson noise as parameters are moved towards the

region of validity for the diffusion approximation. This approximation is valid in the

limit where wE, wI � 1 and rE, rI � 1 (becoming exact as the weights tend to zero and

the rates to infinity), i.e., in the case where we have many inputs which are individually

weak. For the remainder of this work, we will consider exclusively neurons with noisy

driving signals which are white, as opposed to Poisson.
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Figure 3.3: The diffusion approximation. Left to right: input parameters of an LIF neu-
ron receiving excitatory and inhibitory Poisson noise are moved towards the region of
validity for the diffusion approximation (i.e., input weights are decreased and input rates
are increased).

3.3.3 Consideration of additive noise sources

Throughout this work, we will generally consider model neurons receiving additive white

noise. As mentioned in the preceding section, the additive noise approximation has been

shown as valid in biologically significant parameter regimes [220, 221], and a neuron

driven by additive fluctuations is generally simpler to analyze. If one wishes to make

a consistent additive noise approximation to a Poisson-driven neuron, then the average

membrane potential must be determined beforehand — for integrate-and-fire neurons,

this problem is not generally analytically tractable. An alternative approach is to assume

a fixed noise intensity (implicitly fixing an average membrane potential), taking the model

as determined by a diffusion approximation to a Poisson-driven neuron for some ratio of

input rates and weights. In the latter case, the rates and weights which yielded the ap-

proximating system are typically not of particular interest, so long as they can be assumed

to be biophysically plausible. We elect the latter approach.
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Chapter 4
A generative spike train model with

time-structured higher-order

correlations

Emerging technologies are revealing the spiking activity in ever larger neural ensembles.

Frequently, this spiking is far from independent, with correlations in the spike times of

different cells. Understanding how such correlations impact the dynamics and function

of neural ensembles remains an important open problem. Here we describe a new, gen-

erative model for correlated spike trains that can exhibit many of the features observed

in data. Extending prior work in mathematical finance [19], this Generalized Thinning and

Shift (GTaS) model creates marginally Poisson spike trains with diverse temporal corre-

lation structures. We give several examples which highlight the model’s flexibility and

utility.
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We begin by describing the algorithm for sampling from the GTaS model. This con-

structive approach provides an intuitive understanding of the model’s properties. We

then present a pair of examples, the first of which highlights the utility of the GTaS frame-

work. The second example demonstrates how sample point processes from the GTaS

model can be used to study population dynamics. Next, we present the analysis which

yields the explicit forms for the cross-cumulant densities derived in the context of the ex-

amples. We do so by first establishing a useful distributional representation for the GTaS

process, paralleling [19]. Using this representation, we derive cross-cumulants of a GTaS

counting process, as well as explicit expressions for the cross-cumulant densities. After

explaining the derivation at lower orders, we present a theorem which describes cross-

cumulant densities at all orders.

4.1 Defining the Generalized Thinning and Shift model

We will describe a flexible multivariate point process capable of generating a range of

high-order correlation structures. To do so we extend the TaS (Thinning and Shift) model

of temporally- and spatially-correlated, marginally Poisson counting processes [19]. The

TaS model itself generalizes the SIP and MIP models [156] which have been used in the-

oretical neuroscience [43, 232, 272]. However the TaS model has not been used as widely.

The original TaS model is too rigid to generate a number of interesting activity patterns

observed in multi-unit recordings [130, 173, 174]. We therefore developed the General-

ized Thinning and Shift model (GTaS) which allows for a more diverse temporal correlation

structure.
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4.1.1 GTaS model simulation

The GTaS model is parameterized first by a rate λ which determines the intensity of a

“mother process” - a Poisson process on R. The events of the mother process are marked,

and the markings determine how each event is distributed among a collection of N daugh-

ter processes. The daughter processes are indexed by the set D = {1, . . . , N}, and the set

of possible markings is the power set 2D, the set of all subsets D. We define a probability

distribution p = (pD)D⊂D, assigning a probability to each possible marking, D. As we will

see, pD determines the probability of a joint event in all daughter processes with indices

in the set D. Finally, to each marking, D, we assign a probability distribution QD, giving

a family of shift (jitter) distributions (QD)D⊂D. Each (QD) is a distribution over RN .

The rate λ, the distribution p over the markings, and the family of jitter distributions

(QD)D⊂D, define a vector X = (X1, . . . , XN) of dependent daughter Poisson processes

described by the following algorithm, which yields a single realization (see Figure 4.1):

1. Simulate the mother Poisson process of rate λ on R, generating a sequence of event

times {t j}. (Figure 4.1A).

2. With probability pD j assign the subset D j ⊂ D to the event of the mother process

at time t j. This event will be assigned only to processes with indices in D j. (Fig-

ure 4.1B).

3. Sample a vector (Y j
1, . . . , Y j

N) = Y j from the distribution QD j . For each i ∈ D,

the time t j + Y j
i is set as an event time for the marginal counting process Xi. (Fig-

ure 4.1C).

Hence, copies of each point of the mother process are placed into daughter processes
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after a shift in time. A primary difference between the GTaS model and the TaS model

presented in [19] is the dependence of the shift distributions QD on the chosen marking.

This allows for greater flexibility in setting the temporal cumulant structure.

t1 t2 t3 ...
A

B

C

X1

X2

X3

X1

X2

X3

Figure 4.1: The GTaS simulation protocol. (A) Step 1: Simulate the mother process - a
time-homogeneous Poisson process with event times {t j}. (B) Step 2: For each t j in step
1, select a set D j ⊂ D according to the distribution pD, and project the event at time t j to
the subsets with indices in D j. The legend indicates the colors assigned to three possible
markings in this example. (C) Step 3: For each pair (t j, D j) generated in the previous
two steps, draw random vectors Y j from QD j , and shift the event times in the daughter
processes by the corresponding values Y j

i .

4.2 Examples of applications of the GTaS framework

4.2.1 Relationto SIP/MIP processes

Two simple models of correlated, jointly Poisson processes were defined in [156]. The

resulting spike trains exhibit spatial correlations, but only instantaneous temporal depen-

dencies. Each model was constructed by starting with independent Poisson processes,
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and applying one of two elementary point process operations: superposition and thin-

ning [54]. We show that both models are special cases of the GTaS model.

In the single interaction process (SIP), each marginal process Xi is obtained by merging

an independent Poisson process with a common, global Poisson process. That is,

Xi(·) = Zi(·) + Zc(·), i = 1, . . . , N,

where Zc and each Zi are independent Poisson counting processes on R with rates λc, λi,

respectively. An SIP model is equivalent to a GTaS model with mother process rate λ =

λc + ∑
N
i=1 λi, and marking probabilities

pD =



λi
λ , D = {i},

λc
λ , D = D,

0, otherwise.

Note that if λc = 0, each spike will be assigned to a different process Xi, resulting in N

independent Poisson processes. Lastly, each shift distribution is equal to a delta distribu-

tion at zero in every coordinate (i.e., qD(y1, . . . , yN) ≡ ∏
N
i=1 δ(yi) for every D ⊂ D). Thus,

all joint cumulants (among distinct marginal processes) of orders 2 through d are delta

functions of equal magnitude, λpD.

The multiple interaction process (MIP) consists of N Poisson processes obtained from a

common mother process with rate λm by thinning [54]. The ith daughter process is formed

by independent (across coordinates and events) deletion of events from the mother pro-

cess with probability p = (1 − ε). Hence, an event is common to k daughter processes

with probability εk. Therefore, if we take the perspective of retaining, rather than delet-

ing events, the MIP model is equivalent to a GTaS process with λ = λm, and pD =

ε|D|(1−ε)d−|D|. As in the SIP case, the shift distributions are singular in every coordinate.
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In Theorem 4.3.3, we present a general result which immediately yields as a corollary

that the MIP model has cross-cumulant functions which are δ functions in all dimensions,

scaled by εk, where k is the order of the cross-cumulant.

4.2.2 Generation of synfire-like cascade activity

The GTaS framework provides a simple, tractable way of generating cascading activity

where cells fire in a preferred order across the population – as in a synfire chain, but (in

general) with variable timing of spikes [2–4, 12, 130]. More generally, it can be used to

simulate the activity of cell assemblies [17, 42, 108, 113], in which the firing of groups of

neurons is likely to follow a particular order.

In the Introduction, we briefly presented one example in which the GTaS framework

was used to generate synfire-like cascade activity (see Figure 1.1), and we present another

in Figure 4.2. In what follows, we will present the explicit definition of this second model,

and then derive explicit expressions for its cumulant structure. Our aim is to illustrate

the diverse range of possible correlation structures that can be generated using the GTaS

model.

Consider an N-dimensional counting process X = (X1, . . . , XN) of GTaS type, where

N ≥ 4. We restrict the marking distribution so that pD ≡ 0 unless |D| ≤ 2 or D = D. That

is, events are either assigned to a single, a pair, or all daughter processes. For sets D with

|D| = 2, we set QD ∼ N (0, Σ) - a Gaussian distributions of zero mean and some specified

covariance. The choice of the precise pairwise shift distributions is not important. Shifts

of events attributed to a single process have no effect on the statistics of the multivariate

process — this will become clear in Section 4.3, where we exhibit that a GTaS process is

equivalent in distribution to a sum of independent Poisson processes. In that context,
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the shifts of marginal events are applied to the event times of only one of these Poisson

processes, which does not impact its statistics.

It remains to define the jitter distribution for events common to the entire population

of daughter processes, i.e., events marked by D. We will show that we can generate cas-

cading activity, and analytically describe the resulting correlation structure. We generate

random vectors Y ∼ QD according to the following rule, for each i = 1, . . . , N:

1. Generate independent random variablesϕi ∼ Exp(αi) whereαi > 0.

2. Set Yi = ∑
i
j=1ϕ j.

In particular, note that these shift times satisfy YN ≥ . . . ≥ Y2 ≥ Y1 ≥ 0, indicating the

chain-like structure of these joint events.

From the definition of the model and our general result given below (see Theorem

4.3.3), we immediately have that κX
i j(τ), the second-order cross-cumulant density for the

pair of processes (i, j), is given by1

κX
i j(τ) = c2

i j(τ) + cN
i j (τ), (4.1)

where

c2
i j(τ) = λp{i, j}

∫
q{i, j}
{i, j}(t, t + τ)dt, cN

i j (τ) = λpD
∫

q{i, j}
D (t, t + τ)dt (4.2)

define the contributions to the second-order cross-cumulant density by the second-order,

Gaussian-jittered events and the population-level events, respectively. Therefore, correla-

tions between spike trains in this case reflect distinct contributions from second-order and

1In the present chapter, we slightly abuse notation — when we reference the cross-cumulant densities κX,
we are actually referring to the cross-cumulant densities of the point processes associated with the counting
processes of X.
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higher-order events. The functions qD′
D indicate the densities associated with the distribu-

tion QD, projected to the dimensions of D′. All statistical quantities are precisely defined

in Chapter 2.
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Figure 4.2: An example of a six dimensional GTaS model exhibiting synfire-like cascad-
ing firing patterns. (A) A raster-plot of spiking activity over a 100ms window. Blue spikes
indicate either marginal or pairwise events (i.e., events corresponding to markings for sets
D ⊂ D with |D| ≤ 2. Red spikes indicate population-wide events which have shift-times
given by cumulative sums of independent exponentials, as described in the text. Arrows
indicate the location of the first spike in the cascade. (B) A second-order cross-cumulant
κX

13 (black line) of this model is composed of contributions from two sources: correlations
due to second-order markings, which have Gaussian shifts (c2

13 – dashed red line), and
correlations due to the the occurrence of population wide events (cN

13 – dashed blue line).
(C) Density plots of the third-order cross-cumulant density for triplets i) (1, 2, 3) and ii)
(1, 2, 4) — the latter is given explicitly in Eq. (4.6).

By exploiting the hierarchical construction of the shift times, we can find an expres-

sion for the joint density qD, necessary to explicitly evaluate Eq. (4.1). For a general N-

dimensional distribution,

f (y1, . . . , yN) = f (yN |y1, . . . , yN−1) f (yN−1|y1, . . . , yN−2) · · · f (y2|y1) f (y1). (4.3)

Since Y1 ∼ Exp(α1), we have f (y1) = e−α1 y1Θ(y1), where Θ(y) is the Heaviside step

function. Further, as Yi|(Y1, . . . , Yi−1) ∼ Yi−1 + Exp(αi) for i ≥ 2, the conditional densities
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of the yi’s take the form

f (yi|y1, . . . , yi−1) = f (yi|yi−1) = αie−αi(yi−yi−1)Θ(yi − yi−1), i ≥ 2.

Substituting this into the identity Eq. (4.3), we have

qD(y1, . . . , yN) =


α1e−α1 y1 ∏

N
i=2αie−αi(yi−yi−1), yN ≥ . . . ≥ y1 ≥ 0,

0, otherwise.
(4.4)

Applying Theorem 4.3.3, we obtain the Nth-order cross-cumulant density,

κX
1···N(τ1, . . . , τN−1) = λpD

∫
qD(t, t + τ1, . . . , t + τN−1)

= λpD ·


∏

N−1
i=1 αi+1e−αi+1(τi−τi−1), τi ≥ τi−1 ∀ i,

0, otherwise,

(4.5)

where, for notational convenience, we define τ0 = 0. A raster plot of a realization of

this model is shown in Figure 4.2A. We note that the cross-cumulant densities of arbitrary

sub-collections of the counting processes X can be obtained by finding the appropriate

marginalization of qD via integration of Eq. (4.4).

As a particular example, we consider the cross-cumulant density of the marginal pro-

cesses X1, X3. Using Eqs. (4.2, 4.4), we find

cN
13(τ) = λpDΘ(τ) ·


α2α3
α3−α2

[e−α2τ − e−α3τ ] , α2 6= α3,

α2α3τe−α2τ α2 = α3.

An expression for c2
13(τ) can be obtained similarly using Eq. (4.2) and recalling that Q{i, j} ≡

N (0, Σ) for all i, j. In Figure 4.2B, we plot these contributions, as well as the full covari-

ance density.

56



4.2. EXAMPLES OF APPLICATIONS OF THE GTAS FRAMEWORK

Similar calculations at third order yield, as an example,

κX
124(τ1, τ2) = λpD ·


α2α3α4
α4−α3

e−α2τ1

[
e−α3(τ2−τ1) − e−α4(τ2−τ1)

]
, α3 6= α4,

α2α3α4(τ2 − τ1)e−α2τ1−α3(τ2−τ1), α3 = α4,
(4.6)

where the cross-cumulant density κX
124(τ1, τ2) is supported only on τ2 ≥ τ1 ≥ 0. Plots of

the third-order cross-cumulants for triplets (1, 2, 3) and (1, 2, 4) in this model are shown

in Figure 4.2C. Note that, for the specified parameters, the conditional distribution of Y4

— the shift applied to the events of X4 in a joint population event — given Y2 follows

a gamma distribution, whereas Y3|Y2 follows an exponential distribution, explaining the

differences in the shapes of these two cross-cumulant densities.

General cross-cumulant densities of at least third order for the cascading model will

have a form similar to that given in Eq. (4.6), and will contain no signature of the cor-

relation of strictly second order events. This highlights a key benefit of cumulants as a

measure of dependence: although they agree with central moments up to third order, we

know from Eq. (2.2) (or Eq. (2.1) in the general case) that central moments necessarily ex-

hibit a dependence on lower-order statistics. On the other hand, cumulants are “pure”

and quantify only dependencies at the given order which cannot be inferred from lower-

order statistics [94].

One useful statistic for analyzing population activity through correlations is the pop-

ulation cumulant density [173]. The second-order population cumulant density for cell i is

defined by (see Eq. (2.15))

κX
i,pop(τ) = ∑

j 6=i
κX

i j(τ).

This function is linearly related to the spike-triggered average of the population activity
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conditioned on that of cell i. In Figure 4.3 we show three different second-order popula-

tion cumulant functions for the cascading GTaS model of Figure 4.2A. When the second-

order population cumulant for a neuron is skewed to the right of τ = 0 (as is κX
1,pop —

blue line), a neuron tends to precede other cells in the population in pairwise spiking

events. Similarly, skewness to the left of τ = 0 (κX
6,pop — orange line) indicates a neuron

which tends to trail other cells in the population in such events. A symmetric population

cumulant density indicates a neuron is a follower and a leader. Taken together, these three

second-order population cumulants hint at the chain structure of the process.

Greater understanding of the joint temporal statistics in a multivariate counting pro-

cess can be obtained by considering higher-order population cumulant densities. From

Eq. (2.15), we define the third-order population cumulant density for the pair (i, j) to be

κX
i j,pop(τ1, τ2) = ∑

k 6=i, j
κX

i jk(τ1, τ2).

The third-order population cumulant density is linearly related to the spike-triggered

population activity, conditioned on spikes in cells i and j separated by a delay τ1. In

Figure 4.3B,C,D, we present three distinct third-order population cumulant densities. Ex-

amining κX
12,pop(τ1, τ2) (panel B), we see only contributions in the region τ2 > τ1 > 0,

indicating that the pairwise event 1 → 2 often precedes a third spike elsewhere in the

population. The population cumulant κX
34,pop(τ1, τ2) has contributions in two sections of

the plane (panel C). Contributions in the region τ2 > τ1 > 0 can be understood following

the preceding example, while contributions in the region τ2 < 0 < τ1 imply that the firing

of other neurons tends to precede the joint firing event 3 → 4. Lastly, contributions to

κX
16,pop(τ1, τ2) (panel D) are limited to 0 < τ2 < τ1, indicating an above chance probability

of joint firing events of the form 1→ i→ 6, where i indicates a distinct neuron within the

population.
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Figure 4.3: Population cumulants for the synfire-like cascading GTaS process of Fig-
ure 4.2. (A) Second-order population cumulant densities for processes 1,3 and 6. Greater
mass to the right (resp. left) of τ = 0 indicates that a cell tends to lead (resp. follow) in
pairwise-correlated events. (B) Third order population cumulant for processes X1, X2 in
the cascading GTaS process. Concentration of the mass in different regions of the plane
indicates temporal structure of events correlated between X1, X2 relative to the remainder
of the population (see the text). (C) Same as (B), but for processes X3, X4. (D) Same as (B),
but for processes X1, X6. Population cumulants are defined in Eq. (2.15).

A distinct advantage of the study of population cumulant densities as opposed to in-

dividual cross-cumulant functions in practical applications is related to data (i.e., sample

size) limitations. In many practical applications, where the temporal structure of a collec-

tion of observed point processes is of interest, we often deal with a small, noisy samples.
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As a result, it can be difficult to estimate third- or higher-order cumulants. Population cu-

mulants partially circumvent this issue by pooling [232, 233, 271] (or summing) responses,

to amplify existing correlations and average out the noise in measurements.

We conclude this section by noting that even cascading GTaS examples can be much

more general. For instance, we can include more complex shift patterns, overlapping

sub-assemblies within the population, different temporal processions of the cascade, and

more.

4.2.3 Timing-selective network

The responses of single neurons and neuronal networks in experimental [17, 184, 254] and

theoretical studies [95, 125, 135, 138, 274] can reflect the temporal structure of their inputs.

Here, we present a simple example that shows how a network can be selective to fine tem-

poral features of its input, and how the GTaS model can be used to explore such examples.

4.2.3.1 Model definition

As a general network model, we consider N leaky integrate-and-fire (LIF) neurons with

membrane potentials Vi obeying (see Section 3.1)

dVi

dt
= −Vi +

N

∑
j=1

wi j(α ∗ z j)(t) + winxi(t), i = 1, . . . , N. (4.7)

When the membrane potential of cell i reaches a threshold Vth, an output spike is recorded

and the membrane potential is reset to zero, after which evolution of Vi resumes the dy-

namics in Eq. (4.7). Here wi j is the synaptic weight of the connection from cell j to i, win

is the input weight, and we assume time to be measured in units of membrane time con-

stants. The function α(t) = τ−1
syne−(t−τd)/τsynΘ(t− τd) is a delayed, unit-area exponential
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synaptic kernel with time-constant τsyn and delay τd. The output of the ith neuron is

zi(t) = ∑
j
δ(t− t j

i ),

where t j
i is the time of the jth spike of neuron i. In addition, the input {xi}N

i=1 is

xi(t) = ∑
j
δ(t− s j

i ),

where the event times {s j
i} correspond to those of a GTaS counting process X. Thus, each

input spike results in a jump in the membrane potential of the corresponding LIF neuron

of amplitude win. The particular network we consider will have a ring topology (nearest

neighbor-only connectivity) — specifically, for i, j = 1, . . . , N, we let

wi j =


wsyn, i− j mod N ≡ 1 or N − 1,

0, otherwise.

We further assume that all neurons are excitatory, so that wsyn > 0.

A network of LIF neurons with synaptic delay is a minimal model which can exhibit

fine-scale discrimination of temporal patterns of inputs without precise tuning [133] (that

is, without being carefully designed to do so, with great sensitivity to modification of

network parameters). To exhibit this dependence we generate inputs from two GTaS pro-

cesses. The first (the cascading model) was described in the preceding example. To indepen-

dently control the mean and variance of relative shifts we replace the sum of exponential

shifts with sums of gamma variates. We also consider a model featuring population-level

events without shifts (the synchronous model), where the distribution QD is a δ distribution

at zero in all coordinates.

The only difference between the two input models is in the temporal structure of joint

events. In particular, the rates, and all long timescale spike count cross-cumulants (equiv-

alent to the total “area” under the cross-cumulant density, see Eq. (2.18)) of order two and
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higher are identical for the two processes. We focus on the sensitivity of the network to

the temporal cumulant structure of its inputs.

In Figure 4.4A,B, we present two example rasters of the nearest-neighbor LIF network

receiving synchronous (left) and cascading (right) input. In the second case, there is an

obvious pattern in the outputs, but the firing rate is also increased. This is quantified in

Figure 4.4C, where we compare the number of output spikes fired by a network receiving

synchronous input (horizontal axis) with the same for a network receiving cascading in-

put (vertical axis), over a large number of trials. On average, the cascading input increases

the output rate by a factor of 1.5 over the synchronous inputs — we refer to this quantity

as the cascade amplification factor (CAF).

Finally, in Figure 4.4D, we illustrate how the the cascade amplification factor depends

on the parameters that define the timing of spikes for the cascading inputs. First, we

study the dependence on the standard deviationσshift of the gamma variates determining

the shift distribution. We note that amplification factors above 1.5 hold robustly (i.e., for

a range of shift σshift values). The amplification factors decrease with shift variance. In

the inset to panel D, we show how the gain depends on the mean of the shift distribution

µshift. On an individual trial, the response intensity will depend strongly on the total

number of input spikes. Thus, in order to enforce a fair comparison, the mother process

and markings used were identical in each trial of every panel of Figure 4.4. We note

that network properties, such as the membrane properties of individual cells or synaptic

timescales, can have an equally large impact on the cascade amplification factor — indeed,

as we explain below, the observed behavior of the CAF is a result of synergy between the

timescales of input and interactions within the network.

These observations have simple explanations in terms of the network dynamics and
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Figure 4.4: Using the GTaS model to probe a timing-selective network. (A) Example
input (left) and output (right) for the nearest neighbor LIF network receiving input with
synchronous input. (B) Same as (A), but for cascading input. (C) Scatter plot of the output
spike count of the network receiving synchronous (horizontal axis) and cascading input
(vertical axis) with µshift = 2,σshift = 0.3. The red line is the diagonal. (D) Average gain
(rate in response to cascading input divided by rate in response to synchronous input)
as a function of the standard deviation of the gamma variates which compose the shift
vectors for population-level events (µshift was fixed at 2). The red dot indicates the value
of σshift used in panel C. Inset shows the same gain as panel D, but for varying the mean
of the shift distribution (σshift = 0.3). Spike counts in panels C and D were obtained for
trials of length T = 100.

input statistics. Neglecting, for a moment, population-level events, the network is config-

ured so that correlations in activity decrease with topographic distance. Accordingly, the

probability of finding neurons that are simultaneously close to threshold also decreases

with distance. Under the synchronous input model, a population-level event results in a

simultaneous increase of the membrane potentials of all neurons by an amount win, but

unless the input is very strong (in which case every, or almost every, neuron will fire re-

gardless of fine-scale input structure), the set of neurons sufficiently close to threshold to
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“capitalize” on the input and fire will typically be restricted to a topographically adjacent

subset. Neurons which do not fire almost immediately will soon have forgotten about this

population-level input. As a result, the output does not significantly reflect the chain-like

structure of the inputs (Figure 4.4A, right).

On the other hand, in the case of the cascading input, the temporal structure of the in-

put and the timescale of synapses can operate synergistically. Consider a pair of adjacent

neurons in the ring network, called cells 1 and 2, arranged so that cell 2 is downstream

from cell 1 in the direction of the population-level chain events. When cell 1 spikes, it

is likely that cell 2 will also have an elevated membrane potential. The potential is fur-

ther elevated by the delayed synaptic input from cell 1. If cell 1 spikes in response to a

population-level chain event, then cell 2 imminently receives an input spike as well. If the

synaptic filter and time-shift of the input spikes to each cell align, then the firing proba-

bility of cell 2 will be large relative to chance. This reasoning can be carried on across the

network. Hence, synergy between the temporal structure of inputs and network archi-

tecture allows the network to selectively respond to the temporal structure of the inputs

(Figure 4.4B, right).

In [156], the effect of higher-order correlations on the firing rate gain of an integrate–

and–fire neuron was studied by driving single cells using sums of SIP or MIP processes

with equivalent firing rates (first-order cumulants) and pairwise correlations (second-

order cumulants). In contrast, in the preceding example, the two inputs have equal long

time spike count cumulants, and differ only in temporal correlation structure. An increase

in firing rate was due to network interactions, and is, therefore, a population-level effect.

We return to this comparison in the Discussion.

These examples demonstrate how the GTaS model can be used to explore the impact of
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spatio-temporal structure in population activity on network dynamics. We next proceed

with a formal derivation of the cumulant structure for a general GTaS process.

4.3 Cumulant structure of a GTaS process

The GTaS model defines an N-dimensional counting process. Following the standard

description for a counting process, X = (X1, . . . , XN) on RN , given a collection of Borel

subsets Ai ∈ B(R), i = 1, . . . , N, then X(A1 × · · · × AN) = (X1(A1), . . . , XN(AN)) ∈ NN

is a random vector where the value of each coordinate i indicates the (random) number of

points which fall inside the set Ai.

Note that the GTaS model defines processes that are marginally Poisson: For each

D ⊂ D = {1, . . . , N}, define the tail probability p̄D by

p̄D = ∑
D⊂D′⊂D

pD′ . (4.8)

Since pD is the probability that exactly the processes in D are marked, p̄D is the probability

that all processes in D, as well as possibly other processes, are marked. An event from the

mother process is assigned to daughter process Xi with probability p̄{i}. As noted in the

presentation of the simulation protocol for the GTaS process (see Section 4.1.1), an event

attributed to process i following a marking D 3 i will be marginally shifted by a random

amount determined by the distribution Q{i}D which represents the projection of QD onto

dimension i. Thus, the events in the marginal process Xi are shifted in an independent

and identically distributed (IID) manner according to the mixture distribution Qi given

by

Qi =
∑D3i pDQ{i}D

∑D3i pD
.

Note that IID shifting of the event times of a Poisson process generates another Poisson
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process of identical rate [234]. As a result, the process Xi is marginally Poisson with rate

λ p̄{i}.

In deriving the statistics of the GTaS counting process X, it will be useful to express

the distribution of X as
X1(A1)

...

XN(AN)

 =distr


∑D31ξ(D; A1, . . . , AN)

...

∑D3N ξ(D; A1, . . . , AN)

 . (4.9)

Here, each ξ(D; A1, . . . , AN) is an independent Poisson process. This process counts the

number of points which are marked by a set D′ ⊃ D, but (after shifting) only the points

with indices i ∈ D lie in the corresponding set Ai. Precise definitions of the processes ξ

and a proof of Eq. (4.9) are the subject of Theorem 4.3.1. We emphasize that the Poisson

processesξ(D) do not directly count points marked for the set D, but instead points which

are marked for a set containing D that, after shifting, only have their D-components lying

in the corresponding sets Ai.

Suppose we are interested in calculating dependencies among a subset of daughter

processes, {Xi j}i j∈D̄ for some set D̄ ⊂ D, consisting of |D̄| = k distinct members of the

collection of counting processes X. The random vector consisting of the processes in this

subset can be decomposed via an equality in distribution as
Xi1(Ai1)

...

Xik(Aik)

 =distr


∑i1∈D⊂D̄ ζD(A1, . . . , AN)

...

∑ik∈D⊂D̄ ζD(A1, . . . , AN)

 , (4.10)

where

ζD(A1, . . . , AN) = ∑
D′⊃D

(D̄\D)∩D′=∅

ξ(D′; A1, . . . , AN).
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We illustrate this decomposition in the cases k = 2, 3 in Figure 4.5. The sums in Eq. (4.10)

run over all sets D ⊂ D containing the indicated indices i j and contained within D̄.

The processes ζD are comprised of a sum of all of the processes ξ(D′) (described below

Eq. (4.9) and precisely defined in Theorem 4.3.1) such that D′ contains all of the indices D,

but no other indices which are part of the subset D̄ under consideration. These sums are

non-overlapping, implying that the ζD are also independent and Poisson.

The following examples elucidate the meaning and significance of Eq. (4.10). We em-

phasize that the GTaS process is a completely characterized, joint Poisson process, and we

use Eq. (4.10) to calculate cumulants of a GTaS process. In principle, any other statistics

can be obtained similarly.

A
Second order decomposition Third order decomposition

B

Figure 4.5: Illustrating the representation given by Eq. (4.10) . (A) Performing the de-
composition at second-order (D̄ = {1, 2}, see Eq. (4.11) and the surrounding discussion)
with N = 4. (B) Same as panel A, but for three processes with D̄ = {1, 2, 3} (see Eq. (4.16)
and the surrounding discussion).

4.3.1 Second-order cumulants (covariance)

We first generalize a well-known result about the dependence structure of temporally

jittered pairs of Poisson processes, X1, X2. Assume that events from a mother process
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with rate λ, are assigned to two daughter processes with probability p. Each event time

is subsequently shifted independently according to a univariate distribution f . The cross-

cumulant density then has the form [35]

κX
12(τ) = λp

∫
f (t) f (t + τ)dt = λp( f ? f )(τ).

We generalize this result within the GTaS framework. At second-order, Eq. (4.10) has a

particularly nice form. Following [19] we write for i 6= j (see Figure 4.5A)Xi(Ai)

X j(A j)

 =distr

ζ{i, j}(Ai, A j) +ζ{i}(Ai)

ζ{i, j}(Ai, A j) +ζ{ j}(A j)

 . (4.11)

The process ζ{i, j} sums all ξ(D′) for which {1, 2} ⊂ D′, while the process ζ{i} sums all

ξ(D′) such that i ∈ D′, j /∈ D′, and ζ{ j} is defined likewise.

Using the representation in Eq. (4.11), we can derive the second-order cumulant (co-

variance) structure of a GTaS process. First, we have

cov
[
Xi(Ai), X j(A j)

]
= κ[Xi(Ai), X j(A j)]

= κ[ζ{i, j}(Ai, A j),ζ{i, j}(Ai, A j)] +κ[ζ{i}(Ai),ζ{i, j}(Ai, A j)]

+κ[ζ{i, j}(Ai, A j),ζ{ j}(A j)] +κ[ζ{i}(Ai),ζ{ j}(A j)]

= κ2[ζ{i, j}(Ai, A j)] + 0

= E
[
ζ{i, j}(Ai, A j)

]
.

The third equality follows from the construction of the processes ζD: if D 6= D′, then the

processes ζD,ζD′ are independent. The final equality follows from the observation that

every cumulant of a Poisson random variable equals its mean.

The covariance can be further expressed in terms of model parameters (see Theo-

rem 4.3.3 for a generalization of this result to arbitrary cumulant orders):

cov
[
Xi(Ai), X j(A j)

]
= λ ∑

D′⊃{i, j}
pD′

∫
P
(
t + Yi ∈ Ai, t + Yj ∈ A j | Y ∼ QD′

)
dt. (4.12)
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In other words, the covariance of the counting processes is given by the weighted sum

of the probabilities that the (i, j) marginal of the shift distributions yield values in the ap-

propriate sets. The weights are the intensities of each corresponding component processes

ξ(D) which contribute events to both of the processes i and j.

In the case that QD ≡ Q, Eq. (4.12) reduces to the solution given in [19]. Using the tail

probabilities defined in Eq. (4.8), if QD ≡ Q for all D, the integral in Eq. (4.12) no longer

depends on the subset D′, and the equation can be written as

cov
[
Xi(Ai), X j(A j)

]
= λ p̄{i, j}

∫
P
(
t + Yi ∈ Ai, t + Yj ∈ A j | Y ∼ Q

)
dt.

Using Eq. (4.12), we can also compute the second-order cross-cumulant density of the

processes. From the definition of the cross-cumulant density (see Eq. (2.13)), this is given

by

κX
i j(τ) = lim

∆t→0

cov
[
Xi([0, ∆t)), X j([τ , τ + ∆t))

]
∆t2

= λ ∑
D′⊃{i, j}

pD′

∫
lim
∆t→0

P
(
t + Yi ∈ [0, ∆t), t + Yj ∈ [τ , τ + ∆t) | Y ∼ QD′

)
∆t2 dt.

(4.13)

Before continuing, we note that given a random vector Y = (Y1, . . . , YN) ∼ Q, where Q

has density q(y1, . . . , yN), the vector Z = (Y2 −Y1, . . . , YN −Y1) has density qZ given by

qZ(τ1, . . . , τN−1) =
∫

q(t, t + τ1, . . . , t + τN−1)dt. (4.14)

Assuming that the distributions QD′ have densities qD′ , and denoting by q{i, j}
D′ the bivariate

marginal density of the variables Yi, Yj under QD′ , we have that

κX
i j (τ) = λ ∑

D′⊃{i, j}
pD′

∫
q{i, j}

D′ (t, t + τ)dt. (4.15)

According to Eq. (4.14), the integrals present in Eq. (4.15) are simply the densities of the

variables Yj −Yi, where Y ∼ QD′ .
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Thus, the cross-cumulant density κX
i j(τ), which captures the additional probability for

events in the marginal processes Xi and X j separated by τ units of time beyond what

can be predicted from lower-order statistics is given by a weighted sum (in this case, the

lower-order statistics are marginal intensities — see Eq. (2.14) and the surrounding discus-

sion). The weights are the “marking rates” λpD′ for markings contributing events to both

component processes, while the summands are the probabilities that the corresponding

shift distributions yield a pair of shifts in the proper arrangement - specifically, the shift

applied to the event as attributed to Xi precedes that applied to the event mapped to X j

by τ units of time. This interpretation of the cross-cumulant density is quite natural, and

will carry over to higher-order cross-cumulants of a GTaS process. However, as we show

next, this extension is not trivial at higher cumulant orders.

4.3.2 Third-order cumulants

To determine the higher-order cumulants for a GTaS process, one can again use the rep-

resentation given in Eq. (4.10). The distribution of a subset of three processes can be

expressed in the form (see Figure 4.5B)
Xi(Ai)

X j(A j)

Xk(Ak)

 =distr


ζ{i, j,k} +ζ{i, j} +ζ{i,k} +ζ{i}

ζ{i, j,k} +ζ{i, j} +ζ{ j,k} +ζ{ j}

ζ{i, j,k} +ζ{i,k} +ζ{ j,k} +ζ{k},

 , (4.16)

where, for simplicity, we suppressed the arguments of the different ζD on the right hand

side. Again, the processes in the representation are independent and Poisson distributed.

The variable ζ{i, j,k} is the sum of all random variables ξ(D) (see Eq. (4.9)) with D ⊃

{i, j, k}, while the variable ζ{i, j} is now the sum of all ξ(D) with D ⊃ {i, j}, but k /∈ D.

The rest of the variables are defined likewise. Using properties (C1) and (C2) of cumulants
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given in Chapter 2, and assuming that i, j, k are distinct indices, we have

κ(Xi(Ai), X j(A j), Xk(Ak)) = κ3(ζ{i, j,k}) = E
[
ζ{i, j,k}

]
.

The second equality follows from the fact that all cumulants of a Poisson distributed ran-

dom variable equal its mean. Similar to Eq. (4.12), we can write

κ(Xi(Ai), X j(A j), Xk(Ak)) =

λ ∑
D′⊃{i, j,k}

pD′

∫
P
(
t + Yi ∈ Ai, t + Yj ∈ A j, t + Yk ∈ Ak | Y ∼ QD′

)
dt.

The third cross-cumulant density is then given similarly to the second-order function by

κX
i jk(τ1, τ2) = λ ∑

D′⊃{i, j,k}
pD′

∫
q{i, j,k}

D′ (t, t + τ1, t + τ2)dt.

Here, we have again assumed the existence of densities qD′ , and denoted by q{i, j,k}
D′ the

joint marginal density of the variables Yi, Yj, Yk under qD′ . The integrals appearing in the

expression for the third-order cross-cumulant density are the probability densities of the

vectors (Yj −Yi, Yk −Yi), where Y ∼ QD′ .

4.3.3 General cumulants

In Theorem 4.3.3 below, we will establish the general form of a cross-cumulant for a GTaS

process in terms of model parameters. Before this, however, we need to establish an

extension of the distributional representation result given by [19]. This is the subject of

Theorem 4.3.1.

Some definitions are required: first, for subsets A1, . . . , AN ∈ B(R) and D, D′ ⊂ D
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with D ⊂ D′, let

M(D, D′; A1, . . . , AN) := B1 × · · · × BN with Bi :=



Ai, for i ∈ D,

Ac
i , for i ∈ D′\D,

R, otherwise.

In addition, setting 1 = (1, . . . , 1) to be the N-dimensional vector with all components

equal to unity, and if QD is a measure on RN , then we define the measure ν(QD) by

ν(QD)(A) :=
∫

QD(A− t1)dt for A ∈ B(RN)

=
∫

P(Y + t1 ∈ A|Y ∼ QD)dt.
(4.17)

The measure ν(QD) can be interpreted as giving the expected Lebesgue measure of the

subset L of R for which uniform shifts by the elements of L translate a random vector

Y ∼ QD into A. Heuristically, one can imagine sliding the vector Y over the whole real

line, and counting the number of times every coordinate ends up in the “right” set — the

projection of A onto that dimension. In equation form, this means that the measure ν(QD)

can be written

ν(QD)(A) = EY[`({t ∈ R : Y + t1 ∈ A})|Y ∼ QD] ,

where the subscript Y indicates that we take the average over the distribution of Y ∼ QD.

Theorem 4.3.1. Let X be an N-dimensional counting process of GTaS type with base rate λ,

thinning mechanism p = (pD)D⊂D, and family of shift distributions (QD)D⊂D. Then, for any

Borel subsets A1, . . . , AN of the real line, we have the following distributional representation:


X1(A1)

...

XN(AN)

 =distr


∑D31ξ(D; A1, . . . , AN)

...

∑D3dξ(D; A1, . . . , AN)

 , (4.18)
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where the random variables ξ(D; A1, . . . , AN), ∅ 6= D ⊂ D, are independent and Poisson dis-

tributed with

E [ξ(D; A1, . . . , AN)] = λ ∑
D′⊃D

pD′ν(QD′)(M(D, D′; A1, . . . , AN)).

Before providing the proof of Theorem 4.3.1, we give Theorem 1 of [19], necessary for

what follows, as Lemma 4.3.2.

Lemma 4.3.2. Let X be an N-dimensional counting process of TaS type with base rate λ, thinning

mechanism p = (pD)D⊂D, and shift distribution Q. Then, for any Borel subsets A1, . . . , AN of

the real line, we have the following distributional representation:
X1(A1)

...

XN(AN)

 =distr


∑D31ξ(D; A1, . . . , AN)

...

∑D3N ξ(D; A1, . . . , AN)

 ,

where the random variables ξ(D; A1, . . . , AN), ∅ 6= D ⊂ D, are independent and Poisson dis-

tributed with

E [ξ(D; A1, . . . , AN)] = λ ∑
D′⊃D

pD′ν(Q)(M(D, D′; A1, . . . , AN)).

Proof. For each marking D′ ⊂ D, define XD′ to be an independent TaS [19] counting pro-

cess with mother process rate λpD′ , shift distribution QD′ , and markings (pD′
D )D⊂D where

pD′
D = 1 if D = D′ and is zero otherwise (i.e., the only possible marking for XD′ is D′). We

first claim that

X =distr ∑
D′

XD′ . (4.19)

To see this, note that spikes in the mother process of the GTaS process of X marked for a

set D′ occur at a rate λpD′ , which is the rate of the process XD′ . In addition, these event
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times are then shifted by QD′ , exactly as they are for XD′ . Thus, the distribution of event

times (and hence, the counting process distributions) are equivalent.

Let A1, . . . , AN be any Borel subsets of the real line. Applying Lemma 4.3.2 to each XD′

gives the following distributional representation:
XD′

1 (A1)

...

XD′
N (AN)

 =distr


∑D31ξ

D′(D; A1, . . . , AN)

...

∑D3N ξ
D′(D; A1, . . . , AN)

 , (4.20)

where the random variables ξD′(D; , A1, . . . , AN) are taken to be identically zero unless

D ⊂ D′. In the latter case, they are independent and Poisson distributed with

E
[
ξD′(D; A1, . . . , AN)

]
= λpD′ ∑

D′′⊃D
pD′

D′′ν(QD′)(M(D, D′′; A1, . . . , AN))

= λpD′ν(QD′)(M(D, D′; A1, . . . , AN)).

The second equality above follows from the fact that pD′
D′′ = 1 if D′′ = D′ and is zero

otherwise. Next, define

ξ(D; A1, . . . , AN) = ∑
D′
ξD′(D; A1, . . . , AN) = ∑

D′⊃D
ξD′(D; A1, . . . , AN).

As the sum of independent Poisson variables is again Poisson with rate equal to the sum

of the rates, we have that ξ(D; A1, . . . , AN) is Poisson with mean

E [ξ(D; A1, . . . , AN)] = λ ∑
D′⊃D

pD′ν(QD′)(M(D, D′; A1, . . . , AN)). (4.21)

74



4.3. CUMULANT STRUCTURE OF A GTAS PROCESS

Finally, combining Eqs. (4.19, 4.20), we can write
X1(A1)

...

XN(AN)

 =distr


∑D′ ∑D31ξ

D′(D; A1, . . . , AN)

...

∑D′ ∑D3N ξ
D′(D; A1, . . . , AN)



=


∑D31 ∑D′ ξ

D′(D; A1, . . . , AN)

...

∑D3N ∑D′ ξ
D′(D; A1, . . . , AN)



=


∑D31ξ(D; A1, . . . , AN)

...

∑D3N ξ(D; A1, . . . , AN)

 ,

which, along with Eq. (4.21), establishes the theorem.

Finally, consider a general subset of k distinct members of the vector counting process

X as in Eq. (4.10). The following theorem provides expressions for the cross-cumulants

of these counting processes, as well as their cross-cumulant densities, in terms of model

parameters. It is worth noting that the result Theorem 4.3.3 is quite natural in its final

form. Further, the simplicity of the final expression hinges crucially on our utilization of

cumulants, and not moments, as a measure of co-dependence. The equivalent expression,

given in terms of central moment functions, would be of enormous complexity at higher-

orders.

Theorem 4.3.3. Let X be a joint counting process of GTaS type with total intensity λ, marking

distribution (pD)D⊂D, and family of shift distributions (QD)D⊂D. Let A1, . . . , Ak be arbitrary

sets in B(R), and D̄ = {i1, . . . , ik} ⊂ D with |D̄| = k. The cross-cumulant of the counting
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processes can be written

κ(Xi1(A1), . . . , Xik(Ak)) = λ ∑
D′⊃D̄

pD′

∫
P(t1 + YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′)dt, (4.22)

where YD̄ represents the projection of the random vector Y onto the dimensions indicated by

the members of the set D̄. Furthermore, assuming that the shift distributions possess densities

(qD)D⊂D, the cross-cumulant density is given by

κX
i1···ik

(τ1, . . . , τk−1) = λ ∑
D′⊃D̄

pD′

∫
qD̄

D′(t, t + τ1, · · · , t + τk−1)dt, (4.23)

where qD̄
D′ indicates the kth-order joint marginal density of qD′ in the dimensions of D̄.

Proof. First, as noted in Eq. (4.10), we can rewrite the distributional representation of The-

orem 4.3.1 (Eq. (4.18)) as
Xi1(Ai1)

...

Xik(Aik)

 =distr


∑i1∈D⊂D̄ ζD(A1, . . . , AN)

...

∑ik∈D⊂D̄ ζD(A1, . . . , AN)

 , (4.24)

where

ζD(A1, . . . , AN) = ∑
D′⊃D

(D̄\D)∩D′=∅

ξ(D′; A1, . . . , AN). (4.25)

The processes ζD are comprised of a sum of all of the processesξ(D′) (defined in Theorem

0) such that D′ contains all of the indices D, but no other indices which are part of the

subset D̄ under consideration. These sums are non-overlapping, implying that the ζD are

also independent and Poisson.

Using the representation of Eq. (4.24), we first find that

κ(Xi1(A1), . . . , Xik(Ak)) = κ

[
∑

i1∈D1⊂D̄
ζD1 , . . . , ∑

ik∈Dk⊂D̄
ζDk

]

= ∑
i1∈D1⊂D̄

· · · ∑
ik∈Dk⊂D̄

κ[ζD1 , . . . ,ζDk ].
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where we suppressed the dependence of the variables ζD on the subsets Ai. The first

equality in the previous equation is simply the representation defined in Eq. (4.25), and the

second is from the multilinear property of cumulants (property (C1) of cumulants from

Chapter 2). Note that the sums are over the sets D1, . . . , Dk satisfying the given conditions.

Recall that, by construction, the Poisson processes ζD (see Eq. (4.25)) are independent for

distinct marking sets. Accordingly, the cumulant κ[ζD1 , . . . ,ζDk ] is zero unless D1 = . . . =

Dk, by property (C2) of cumulants given in Chapter 2 — that is,

κ[ζD1(A1, . . . , AN), . . . ,ζDk(A1, . . . , AN)] =


κk(ζD̄(A1, . . . , AN)), D j = D̄ for each j,

0, otherwise.

Hence,

κ(Xi1(A1), . . . , Xik(Ak)) = κk(ζD̄(A1, . . . , AN)) = E [ζD̄(A1, . . . , AN)] , (4.26)

where we have again used that all cumulants of a Poisson-distributed random variable

are equal to its mean.

For what follows, taking D0, D′ ⊂ D fixed with D0 ⊂ D′, the sets M(D, D′; A1, . . . , AN)

with D0 ⊂ D ⊂ D′ are disjoint, and

∪D0⊂D⊂D′M(D, D′; A1, . . . , AN) = B1 × · · · × BN with Bi =


Ai, i ∈ D0,

R, i /∈ D0.
(4.27)

In particular, note the independence of the above union from D′.
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Substituting Eq. (4.25) into Eq. (4.26), we have

κ(Xi1(A1), . . . , Xik(Ak)) = ∑
D⊃D̄

E [ξ(D; A1, . . . , Ak]

= λ ∑
D⊃D̄

∑
D′⊃D

pD′ν(QD′)(M(D, D′; A1, . . . , AN))

= λ ∑
D′⊃D̄

pD′ ∑
D̄⊂D⊂D′

ν(QD′)(M(D, D′; A1, . . . , AN))

= λ ∑
D′⊃D̄

pD′ν(QD′)(∪D̄⊂D⊂D′M(D, D′; A1, . . . , AN))

= λ ∑
D′⊃D̄

pD′

∫
P(t + YD̄ ∈ A1 × · · · × Ak|Y ∼ QD′)dt,

where the third equality above is a simple exchange of the order of summation, and the

fourth equality follows from the additivity of the measure ν(QD′) over the disjoint sets

M(D, D′; A1, . . . , AN). Finally, the fifth equality makes use of the independence of the set

union on the fourth line from the set D′ as indicated by Eq. (4.27), the definition of the

measure ν(QD′) in Eq. (4.17) and the value of the set union given in Eq. (4.27).

This completes the proof of Eq. (4.22), and Eq. (4.23) follows from the definition of the

cross-cumulant density in Eq. (2.13).

An immediate corollary of Theorem 4.3.3 is a simple expression for the infinite-time-

window cumulants, obtained by integrating the cumulant density across all time lags τi.

From Eq. (4.23), we have

γX
i1···ik

(∞) =
∫
· · ·

∫
κX

i1···ik
(τ1, . . . , τk−1)dτk−1 · · · dτ1 = λ ∑

D′⊃D̄
pD′ · 1 = λ p̄D̄. (4.28)

This shows that the infinite window spike count cumulants γX
i1···ik

(∞) for a GTaS process

should be non-increasing with respect to the ordering of sets D̄, i.e.,

γX
i1···ikik+1

(∞) ≤ γX
i1···ik

(∞).
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We have shown that the cumulant structure of the GTaS model is fully solvable in

terms of model parameters, and exhibited its utility in generating spike trains with pre-

determined joint temporal correlation structures. As exhibited in Section 4.2.3, the GTaS

framework can be used to explore the properties of the input-output transfer for com-

plex networks. The GTaS framework presented in this chapter will hopefully serve as an

invaluable tool for researchers in this capacity.
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Chapter 5
Introduction to linear response theory

Analysis of coupled neuronal networks is generally quite difficult [70–72, 123, 124, 182,

217, 284, 285]. For example, in networks of integrate–and–fire neurons, only first moments

(firing rates) can be determined analytically [169, 219, 280]. Doing so requires one to solve

for fixed points of the F-I function which relates output firing rate to mean input cur-

rent [167]. The problem of solving for second moments of the spiking output of integrate–

and–fire neurons is known to be intractable. Precise determination of even second-order

dependencies requires novel application of partial differential equation methodologies to

the Fokker-Planck equations describing the system [180, 231].

In this chapter, we exhibit a linear response method in which single cell properties

can be utilized in order to develop an accurate approximation of second-order statistics of

spiking neuron models. We appeal to the diffusion approximation (Section 3.3) in order

to render tractable the determination of marginal statistics [167, 169]. We first review con-

cepts of firing rate linear response theory, which yields an analytical approximation of the

time-dependent firing rate (or PSTH) of a neuron receiving noisy input. We then introduce
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a linear approximation of neuronal activity which supplies directly an analytical approxi-

mation of correlations in a general recurrent, noisy neuronal network [278]. We next gen-

eralize previous work [221, 222] to derive the necessary quantities to allow application of

our approximation to neuronal networks with both current-based and conductance-based

synapses. More general applications of this theory, and a more detailed examination of its

accuracy are relegated to subsequent chapters.

In what follows, we will consider model neurons of the exponential integrate–and–

fire variety (defined in Section 3.1.2) as a proxy for the ideas we present, though many

of the principles are more general. In particular, the approximation of correlations in a

general spiking neuronal network which we present depends explicitly on knowledge of

the shape and strength of interactions, in addition to the firing rate linear response func-

tion and the covariance structure in the absence of interactions. For any system in which

these quantities are known, either exactly (such as in the case of Ornstein-Uhlenbeck sys-

tems of linear stochastic differential equations [88]) or approximately (either via experi-

mentation [9, 146, 149] or simulation [197]), the concepts we present may be applicable.

In addition, the material on calculation of firing statistics in Section 5.3 is general to all

integrate–and–fire neuron models which are encompassed by an appropriate choice of

the function ψ(V) present in the definition of the membrane potential dynamics.

5.1 Firing rate linear response theory

Consider an EIF neuron receiving as current input a fixed signal X(t), with a stochastically

fluctuating membrane potential evolving according to

τmV̇ = −(V − EL −ψ(V)) + Eξ +
√

2σ2
ξτmξ(t) + X(t). (5.1)
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Here, ξ(t) is a standard white noise process. The input X is taken to have a vanishing

temporal average (Et[X] = 0) and to exhibit fluctuations which are not too strong relative

to the noisy background signal
√

2σ2
ξτmξ(t). Thresholding the membrane potential V

yields an output spike train

y(t) = ∑
j
δ(t− t j),

with realizations of y being in 1− 1 correspondence with realizations of the noise ξ . See

Chapter 3 for a more complete definition and discussion of integrate–and–fire neuron

models.

Averaging over the distribution of ξ yields the time-dependent firing rate r(t). Using

firing rate linear response theory, we can achieve an approximation of the firing rate of

the form [38, 169, 197, 224]

r(t) ≈ r0 + (A ∗ X)(t). (5.2)

Here, r0 is the (constant) stationary firing rate in the absence of the fixed signal X(t), and

A(t) is the linear response function for the neuron (A(t) may alternatively be referred to

as the firing rate response function, or firing rate impulse response function). We illustrate the

firing rate approximation of Eq. (5.2) in Figure 5.1.

The function A(t) is proportional to the first-order approximation of the spike-triggered

average of the neuron with respect to the noise signal ξ(t), and is hence equivalent to the

optimal Weiner kernel is the presence of ξ(t) — this relationship can be exploited in or-

der to estimate the linear response function in experimental settings [13, 119], or through

simulation of complex neuron models [63]. The Fourier transform Ã(w) of A(t) is known

as the susceptibility.

A common method of determining the kernel A(t) is to first determine Ã(ω). For

response to a fluctuating input current, the susceptibility is determined by the amplitude
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and phase shift of the firing rate in response to a cosinusoidal variation of the current, and

can be determined thusly both in experiments and simulations of complex neuron models.

For integrate–and–fire neuron models such as those considered here, the linear response

function can be solved for numerically, to arbitrary precision, by solving a backwards

boundary-value ordinary differential equation (see Section 5.3).

We emphasize that, while the linear response function depends implicitly on the model

parameters (τm, EL, Eξ ,σξ ), it is independent of the input signal X(t). In particular, A(t)

is sensitive to the resting potential (the sum EL + Eξ ). Further, it should be noted that the

presence of the fluctuating background signal ξ is crucial to the accuracy of the approxi-

mation in Eq. (5.2), as it is the noise which linearizes the average firing response.

5.2 Linear response approximation of correlations

Except in highly simplified micro-circuits (such as a pair of cells with unidirectional synap-

tic coupling or receiving a common input [198]), the linear response approximation of fir-

ing rates in Eq. (5.2) cannot yield directly an approximation of the cross-covariance func-

tion between two neurons. In essence, there is a loss of information regarding the relative

time-courses of the neuronal activity upon taking averages — in particular, by taking the

average which yields the firing rate, we have retained only the marginal probability of

observing spikes from that neuron. The dependencies in the firing rate on, for example,

the activity of other neurons cannot be recovered.

To remedy this, we generalize the approach of [167], and instead of approximating

the time-dependent firing rate in response to a fixed signal X(t), we approximate the

time-dependent spiking activity. In particular, we postulate that the trial-by-trial firing

83



5.2. LINEAR RESPONSE APPROXIMATION OF CORRELATIONS

Figure 5.1: Depicting the firing rate linear response approximation Eq. (5.2). (A) A
spike train is generated and supplies an input current to an exponential integrate–and–
fire neuron. (B) The membrane potential of the neuron is driven by intrinsic white noise
fluctuations and the spike train in panel A. Each realization of the intrinsic noise corre-
sponds to a realization of the output spike train (red ticks). (C) Fixing the input spike
train, repeat the simulation in panel B many times for independent realizations of the in-
trinsic noise process, generating a raster plot. A dot in the raster indicates a spike in that
time bin (horizontal axis) for a specific trial (vertical axis). (D) Averaging the output spike
train across trials yields the time-dependent firing rate, or PSTH (gray indicates the Monte
Carlo estimation of the PSTH, and black is the theoretical prediction). Spikes in the fixed
input spike train shown in panel A (repeated at the bottom of panel D for ease of compar-
ison) drive deviations in the (constant) background firing rate, a quantity determined by
the mean and variance of the intrinsic noise.
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response y(t) of the neuron to the signal X(t) is given by

y(t) ≈ y0(t) + (A ∗ X)(t), (5.3)

where A(t) is again the firing rate response function, and y0(t) should be viewed as a

realization of the output of a neuron with membrane potential obeying Eq. (5.1) with

X(t) ≡ 0.

If we were to assume Eq. (5.3) holds exactly, this would be equivalent to making an

assumption of perfect linearity on the input-output transfer of the neuron in response to

the signal X(t), indicated by the superimposition of the linear filtering of X(t) on top of

the normal EIF dynamics of y0(t). We note that averaging Eq. (5.3) across realizations of

the underlying driving noise process ξ(t) returns exactly Eq. (5.2), and in this sense, the

ansatz in Eq. (5.3) can be viewed as a partial repealing of the average which yields the

time-dependent firing rate of the neuron in response to X(t).

5.2.1 Independent noise

We will first apply the linear response ansatz in Eq. (5.3) to a network of exponential

integrate–and–fire (EIF) neurons receiving independent white noise and exhibited current-

based synaptic interactions, as described in Chapter 3. Briefly, in this setting the mem-

brane potential Vi of the ith cell of the network evolves according to

τmV̇i = −(Vi − EL −ψ(Vi)) + Eξ ,i + Et[ fi] +
√

2σ2
ξ ,iτmξi(t) + ( fi(t)− Et[ fi]), (5.4)

where Et[·] indicates a temporal average, and

fi(t) = ∑
j

Wi j(α j ∗ y j)(t). (5.5)
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Here, Wi j is the synaptic weight of the connection from neuron j to neuron i, α j is the

synaptic filter applied to the output of neuron j (assumed to have unit area). Unless

otherwise specified, synaptic filters are given by delayed alpha functions. The form of

such function for a time constant τsyn and delay τd is

α(t) =
1
τsyn

exp
[
− t− τd

τsyn

]
Θ(t− τd), (5.6)

where Θ(t) is the Heaviside step function. The stochastic process y j again represents the

spiking output acquired by thresholding the membrane potential of cell j. We further

assume that the signals ξi(t) are independent (this assumption can be relaxed — see Sec-

tion 5.2.2).

Thus, in the network setting, we have replaced the fixed input signal X(t) of the pre-

vious case with the mean-subtracted, synaptically-filtered output of the network itself,

dictating that any proper approximation of the firing activity should be self-consistent.

Note that the addition and subtraction of Et[ fi] in Eq. (5.4) is to allow us to compute linear

response to the fluctuations in the synaptic input about its mean value, which can greatly

improve the accuracy of the approximation [167].

The linear response ansatz Eq. (5.3) in the network case then takes the form1

y(t) ≈ y0(t) + (K ∗ [y− r])(t), where Ki j(t) = Wi j(Ai ∗α j)(t). (5.7)

The filter Ki j, which consists of a convolution of the linear response function Ai of the

downstream cell i with the synaptic filter Wi jα j applied to output of the upstream cell j,

1If X(t), Y(t) are n×m and m× p matrices of integrable functions, respectively, we define the n× p matrix
convolution (X ∗ Y)(t) by

(X ∗ Y)i j(t) =
m

∑
k=1

(Xik ∗ Yk j)(t).
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captures the linear response of cell i to the output of cell j. At first glance, the approxima-

tion of Eq. (5.7) may seem somewhat strange, as we are approximating a vector of point

processes y(t) with a vector of “hybrid” processes, composed both of points in y0(t) as

well as a smooth component (K ∗ y)(t). Clearly the comparison is poor at the resolution of

individual realizations, but we will instead focus on the matching of statistical properties

of this approximation — particularly at second order.

We can also arrive at the approximation Eq. (5.7) by a slightly more intuitive road.

Above, we discussed Eq. (5.3), and its close relation to the more rigorous approximation

of the firing rate in Eq. (5.2). Keeping this discussion in mind, we next define a series of

approximations y(n) for n ≥ 1 by

y(n)(t) = y0(t) + (K ∗ y(n−1))(t), where y(0)(t) ≡ y0(t). (5.8)

For instance, we can regard y(1)(t) as a first approximation of the effects of coupling,

in that y(1)(t) accounts only for first-order effects of the synaptic architecture in K(t).

If we consider the cross-covariance functions of the processes y(1)(t), we would arrive at

approximations to the true cross-covariance functions for the network which are precisely

equivalent to those postulated in [198]. These approximations ignore, in particular, any

perturbation to correlations due to paths within the network architecture longer than a

single synapse.

Continuing this logic, the approximation y(n)(t) can be viewed as accounting for (via

a linear approximation) the effects of paths within the neuronal network up to length n,

and the cross-covariance functions between these processes would reflect the correlating

effects of such network motifs. This becomes further apparent if we expand the recursive
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approximation Eq. (5.8), giving

y(n)(t) = y0(t) +
n

∑
i=1

(Ki ∗ y0)(t), (5.9)

where the matrix powers in Eq. (5.9) are defined with respect to matrix convolutions. The

term in the sum on the right-hand side of Eq. (5.9) involving the power Ki(t) captures pre-

cisely those linear perturbations to activity attributable to length i directed chains through

the network architecture.

Finally, defining y∞(t) = limn y(n)(t), it is not hard to show that the paths of this

limit converge pointwise (and uniformly over finite intervals) to our approximation of

y(t) given self-consistently in Eq. (5.7) — that is,

y∞(t) = y0(t) + (K ∗ [y∞ − r])(t). (5.10)

Thus, the linear response approximation of firing activity can be viewed as a linear ap-

proximation in which we take account of linear perturbations to activity of all orders in

the synaptic architecture. We illustrate the iterative approximation approach in Figure 5.2.

The limit in Eq. (5.10) — and the approximation in Eq. (5.7) — are only valid when

|
∫

K(t)dt| < 1. This condition guarantees linear stability of the system. In the context of

spiking neurons, one can interpret this condition to mean that a spike elicited by any neu-

ron within the system does not reverberate indefinitely; rather, its impact on the network

activity will converge to zero as time proceeds.

Applying the Fourier transform to Eq. (5.7), convolutions turn to multiplication, and

we can solve the resulting linear equation for ỹ(ω):

ỹ(ω) ≈
(
I− K̃(ω)

)−1 ỹ0(ω). (5.11)

Considering the product of this approximating process with its complex conjugate, we

arrive at an approximation for the cross-spectral structure of the spiking output for the
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Figure 5.2: Equations (5.8) and (5.9) give rise to an iterative approximation of network
activity. (A) We approximate the activity y1 of cell 1, embedded in the depicted recurrent
microcircuit. (B) The first approximation y1

1 of the activity of neuron 1 reflects only the
effect of input from the uncoupled approximations y0

j of activity for its afferent partners.
(C) The second approximation y2

1 of the activity of neuron 1 now reflects the effects of
length two chains through the circuit. In particular, the output of neuron 1 now reflects
the impact of its own activity (y0

1 → y1
2 → y2

1), and the approximation of neuron 1’s
activity now also reflects the indirect input from neuron 4 through neuron 3. (D) The dif-
ference between higher-order approximations and the second-order approximation will
be improved resolution of the recurrent loop between cells 1 and 2. At each step, effects
due to a longer chain through this loop will be included, and owing to this recurrence, the
approximation does not converge in finitely many iterations.

network (see Eq. (2.5)):

Sy(ω) = E
[
y(ω)yT(ω)

]
≈
(

I− K̃(ω)
)−1

Sy
0(ω)

(
I− K̃T(ω)

)−1
, (5.12)

where

Sy
0(ω) = E

[
y0(ω)yT

0 (ω)
]

.

and the over-line in Eq. (5.12) indicates a complex conjugate without a transpose. Under
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the assumptions of independence of the noise vector ξ , Sy
0(ω) is a diagonal matrix with

entries given by

(Sy
0)ii(ω) = SEIF

(
ω; Eξ ,i + Et[ fi] ,

√
2σ2
ξ ,iτm

)
, (5.13)

where we have defined the scalar quantity SEIF(ω;µ,σ) to be the spectrum of an EIF

neuron receiving white noise input of mean µ and standard deviation σ (we omit the

many other parametric dependencies). Like the linear response function, this “unper-

turbed spectrum” can be measured through simulation or experiments, or determined

numerically for the case of general integrate–and–fire neurons [169, 222], a technique we

describe in Section 5.3.1.3.

Thus, Eq. (5.12) provides an analytical approximation of the second-order correlation

structure of a general, noisy neuronal network (a problem which has no tractable, exact

solution, for instance, in the case of integrate–and–fire neuron models). Furthermore, this

approximation is given in terms of known (or determinable) marginal properties of the

neurons (Ai, Sy
0) and the synaptic architecture (W,αi), reflecting directly the impact of

each on the second-order correlation structure of the network.

In Figure 5.3, we compare cross-covariance functions for 3 pairs of EIF neurons within

a randomly connected network of both excitatory and inhibitory cells. The three pairs of

neurons were selected randomly, with one each from the categories of excitatory-excitatory,

excitatory-inhibitory, and inhibitory-inhibitory pairs. Errors in the linear response ap-

proximations of the cross-covariance functions indicate a departure from linearity of the

input-output transfer for neurons in the network. In Section 6.4, we will more closely

examine the validity of the linear response approximation to correlations in a few situa-

tions, in hope of gaining a general notion of when we can expect the approximation to be

accurate.
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Figure 5.3: Illustrating the the accuracy of the linear response approximation of corre-
lations in a random network. Comparison of Monte Carlo estimation of second-order
cross-cumulant densities (black lines) with their linear response approximations (blue
lines, Eq. (5.12)) for nine neuron pairs from a size N = 100 random network consisting
of 80 excitatory and 20 inhibitory cells. The connection probability was 0.2. A cross-
cumulant density is exhibited for one example neuron pair from each of nine possible
pairings of neuron classes (EE, EI, II) and first-order connectivity (bidirectional, unidirec-
tional or none).
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5.2.1.1 Calculation of the linearization point

The precision of the linear response theory, both of correlations and firing rates, requres

that the value of the uncoupled spectrum (Eq. (5.13)) as well as the firing rate response

function depend on the temporal average of the synaptic input. Here, we address the

computation of this average.

Consider a network of EIF neurons receiving independent white noise input of mean

µ and intensity σ , and with some synaptic coupling, as in Eq. (5.4). As we assume the

synaptic output of the explicitly modeled network to be weighted by the matrix W and

convolved with unit-area synaptic kernels (Eq. (5.5)), it is not hard to show that

Et[ fi] = W(i)r,

where W(i) is the ith row of the matrix W and r is the vector of output firing rates of the

(coupled) network. However, the output firing rates r are not trivial to calculate, and

clearly must depend in turn on the average synaptic inputs. If rEIF(µ,σ) gives the F-

I curve for an EIF neuron receiving white noise input of mean µ and intensity σ , then

the output firing rates r of this coupled network satisfy the system of non-linear, self-

consistent equations

r = rEIF(µ + Et[f] ,σ), where Et[f] = Wr.

Generally, the convexity of the F-I curve will allow this equation to be solved most

easily by simple fixed point iteration [167]. The uncoupled firing rate runcoup = rEIF(µ,σ)

serves as an appropriate starting point for this iteration. Generally, this can be far from

the true firing rate of a neuron within a network.
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5.2.2 Correlated noise

In the preceding section, we considered linear response of correlations for networks being

driven by independent white noise fluctuations. We can relax this assumption, allowing

correlations that are not too strong in these noise sources. The equations for the membrane

potential evolution become (compare with Eq. (5.4))

τmV̇i = −(Vi − EL −ψ(Vi)) + Eξ ,i + Et[ fi] +
√

2σ2
ξ ,iτm(

√
1− cξi(t) +

√
cξc(t))

+ ( fi(t)− Et[ fi]).
(5.14)

Here, each ξi(t) and ξc(t) are independent standard white noise sources. Thus, the noise

to cell i,
√

1− cξi(t) +
√

cξc(t),

will also be a standard white noise, now pairwise correlated with correlation coefficient c

across neurons.

The linear response approximation of correlations is formulated similarly as in the

previous case, with minor adjustments made for the correlated noise sources. First, a

naive application of the linear response ansatz Eq. (5.3) to the dynamics in Eq. (5.14),

setting

Xi(t) =
√

cσ2
ξ ,iτmξc(t) + ( fi(t)− Et[ fi]),

yields an approximation of the output spiking correlations in this network which is iden-

tical schematically to Eq. (5.12). However, the matrix Sy
0(ω) is no longer diagonal, and

has entries given by

(Sy
0)i j(ω) =


SEIF

(
ω; Eξ ,i + Et[ fi] ,

√
2(1− c)σ2

ξ ,iτm

)
+ 2c|Ãi(ω)|2σ2

ξ ,iτm, i = j,

2cÃ∗i (ω)Ã j(ω)σξ ,iσξ , jτm, i 6= j.

(5.15)
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Figure 5.4: Linear response of of correlations for common input. (A) Comparison of
second-order cross-cumulant density from simulations and theory (see Eq. (5.15)) for a
pair of neurons receiving common white noise input. The input correlation was c = 0.25
and the infinite window correlation between the spiking output of the neurons was ≈
0.21. (B) Comparison of the steady-state auto-covariance density (δ-peak removed) for
the one of the neurons without (Eq. (5.15)) and with (Eq. (5.16)) the adjustment to the
power spectrum acquired via a naive linear response application.

There is an apparent correction which can be made to the linear response approx-

imation of correlations in this case: The diagonal entries of Sy
0 given in Eq. (5.15) are

approximating the power spectrum of EIF neurons receiving white noise input of mean

Eξ ,i + E [ fi] and intensity
√

2(1− c)σ2
ξ ,iτm + 2cσ2

ξ ,iτm =
√

2σ2
ξ ,iτm. Thus, we can improve

the linear response approximation of correlations for the correlated noise system by set-

ting in Eq. (5.15)

(Sy
0)ii(ω) = SEIF

(
ω; Eξ ,i + E [ fi] ,

√
2σ2
ξ ,iτm

)
. (5.16)

This adjustment of the linearization point in the linear response theory was first noted

in [167]. The linearization point of the firing rate response function should be adjusted

likewise.

The linear response theory is perturbative in the input correlations as it is in the cou-

pling, and precise only in the case that the system is uncoupled and input correlations are
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zero. It is not clear a priori at what point the linear response theory will fail as a function

of the magnitude of input correlations, and in general, the answer will be dependent on

the parameters of the system to which the theory is applied. We note only that it is clear

the approximation must fail when c = 1. Consider an example system consisting of two

symmetrically coupled neurons with identical parameters (i.e., leak potentials, etc.), un-

der the assumption of perfectly correlated intrinsic noise and identical initial conditions

the spiking output of the two cells should be identical, a prediction not matched by the

linear response theory.

5.2.3 Conductance-based synaptic interactions

The theory presented in Section 5.2.1 is valid for the application of linear response theory

to systems exhibiting current-based synaptic dynamics. When synapses are conductance-

based, a slightly different formulation is necessary. We will present the methodology for

a single neuron, and the extension to network applications will be nearly identical to the

theory presented for current synapses.

Beginning with a neuron modeled under the diffusion approximation (see Eq. (3.4)),

assume additionally that the neuron receives excitatory ( fE(t)) and inhibitory ( f I(t)) synap-

tic conductance inputs so that the membrane potential evolves according to

τe f f V̇(t) = −(V −VL,e f f −ψ(V)) +
√

2σ2
e f f (V)τe f fξ(t)

+
δ fE(t)

ge f f
(EE −V) +

δ f I(t)
ge f f

(EI −V).
(5.17)

The presence of the additional synaptic input requires adjustment of the effective time

constant and rest potential, essentially repeating the algebraic rearrangement of Section
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3.3.1. These constants are now given by

ge f f = gL + (CmµE + Et[ fE]) + (CmµI + Et[ f I ]), τe f f =
Cm

ge f f
,

VL,e f f =
gLEL + (CmµE + Et[ fE])EE + (CmµI + Et[ f I ])EI

ge f f
.

(5.18)

Because we assume the synaptic input is coming from the local network — the network

explicitly modeled — we assume it has finite variance (i.e., it does not include a white

component), so that the effective noise intensity σe f f (V) is unchanged. We reminder the

reader that the variation δ f (t) of a process f (t) is defined by

δ f (t) = f (t)− Et[ f ] .

Application of linear response to a system exhibiting conductance-based synapses is

slightly different in that, in this case, the response properties of a neuron are no longer

expressible in terms of a single linear response function. Instead, each neuron possesses

two response functions — one for excitatory input (AE), and one for inhibitory (AI). It

is instructive to first consider the linear response approximation to the firing rate of the

neuron to the inputs fE, f I :

r(t) ≈ r0 + (AE ∗ δ fE)(t) + (AI ∗ δ f I)(t).

As in the current-based case considered in Section 5.1, r0 is the steady-state firing rate of

the neuron in the absence of fluctuations in the synaptic inputs (i.e., δ fE = δ f I ≡ 0).

Similarly, the linear response approximations of correlations for conductance-based

systems begins by posing an approximation to the spiking activity which mimics the firing

rate approximation,

y(t) ≈ y0(t) + (AE ∗ δ fE)(t) + (AI ∗ δ f I)(t).
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Figure 5.5: Exhibiting the linear response approximation of correlations for
conductance-based synapses. Comparison of the theoretical prediction (blue) with the
Monte Carlo estimation (black) of the second-order cross-cumulant density of a pair of
excitatory neurons reciprocally coupled via conductance-based synapses.

Application in the network case is essentially identical to the current-based case presented

in Section 5.2.1, with the key difference being the form of the matrix of response filters

K(t) (see Eq. (5.7)). In the conductance-based case, this matrix is given by

Ki j(t) =


Wi j(AE,i ∗α j)(t), j ∈ E,

Wi j(AI,i ∗α j)(t), j ∈ I,

where AE,i, AI,i are the excitatory and inhibitory response kernels of cell i, and j ∈ E or j ∈

I conditions on whether the pre-synaptic cell j is excitatory or inhibitory. In Figure 5.5, we

exhibit the accuracy of the linear response approximation of the cross-cumulant density

for a pair of excitatory neurons reciprocally coupled via conductance-based synapses.
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5.3 Calculation of firing statistics for IF neurons

To this point, we have taken for granted knowledge of the firing statistics (firing rates,

susceptibility and unperturbed spectra) of the neuron models to which we apply the lin-

ear response theory of correlations. As previously mentioned, these quantities are mea-

surable, both in experiments, as well as in simulations for complex models by similar

principles. In the case of the integrate–and–fire neuron models considered herein, these

quantities can be calculated numerically.

Previous analyses derived expressions for some marginal firing statistics of the lin-

ear [38, 168, 169, 253], quadratic and exponential [80] integrate–and–fire neuron models.

Typically, these analyses lead to expressions for the marginal firing statistics in terms of er-

ror functions and parabolic cylinder functions. However, these functions can be computa-

tionally expensive to evaluate accurately, and further, these derivations were highly com-

plex and difficult to generalize across neuron models. Richardson [221, 222] introduced a

method which nearly perfectly approximates these quantities for general integrate–and–

fire models driven by white noise. The statistics are given as solutions of simple boundary

value ordinary differential equations derived directly from the Fokker-Planck equations

for the evolution of the membrane potential of the neuron model. In Section 5.3.1, we

review the results of [221, 222]. In Section 5.3.2, we present one important generalization

necessary for the calculation of correlations in neuronal networks exhibiting conductance-

based interactions.
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5.3.1 Review of existing results

5.3.1.1 Fokker-Planck formalism

Consider a single EIF neuron, evolving in response to a time-varying rest potential E(t)

with membrane dynamics

τmV̇ = −(V − EL −ψ(V)) + E(t) +
√

2σ2
ξτmξ(t), (5.19)

possessing a firing threshold Vth and an absolute refractory period τref. Fluctuations in

the rest potential can be driven by synaptic inputs, for example. The membrane potential

distribution P(V, t) quantifies the probability of finding the membrane potential of such a

neuron near the potential V at time t, and J(V, t) is the probability flux across V at time t.

The continuity equation [88, 227] relates the two quantities via

∂P
∂t

+
∂J
∂V

= δ(t− t0)Pinit(V) + r(t)δ(V −Vr)− r(t− τref)δ(V −Vth). (5.20)

Here, Pinit(V) = P(V, t0) sets the initial distribution of the membrane potential, and the

other two terms on the right-hand side account for flux due to the threshold, reset and

absolute refractory period. The firing rate r(t) = J(Vth, t) is simply the probability flux

across threshold at a given time. In addition, the distribution and flux satisfy the relation

τm J = (E(t) +ψ(V)−V)P−σ2
ξ

∂P
∂V

. (5.21)

The membrane potential V lives on the domain (−∞, Vth]. The method presented

by Richardson [221, 222] transforms this into a boundary value problem on a bounded

domain by imposing a reflecting boundary at a potential Vlb (J(Vlb, t) = 0). Placed

sufficiently low, this reflecting boundary has a negligible impact on the solution of Eqs.

(5.20, 5.21). In the presence of the lower reflecting boundary, the membrane potential is
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instead limited to the domain (Vlb, Vth], and the correct normalization of the probability

density P is given by ∫ Vth

Vlb

P(V, t)dV +
∫ t

t−τref

r(t′)dt′ = 1, (5.22)

which states that the proportion of an ensemble of neurons evolving according to the

dynamics of Eq. (5.19) which are in non-refractory (first term) and refractory (second term)

states at any time t sum to unity.

5.3.1.2 Solving for the steady-state firing rate

In the stationary state, under the assumption of a constant rest potential E(t) = E0, initial

conditions are forgotten and probability no longer flows with time (i.e., ∂P
∂t = 0). From

Eqs. (5.20, 5.21), the steady-state probability P0(V) and flux J0(V) satisfy the pair of first-

order differential equations

−∂J0

∂V
= r0δ(V −Vth)− r0δ(V −Vr),

−∂P0

∂V
=

1
σ2
ξ

[τm J0 + (V − EL − E0 −ψ(V))P0] .

The boundary conditions for the system are P0(Vth) = 0, J0(Vth) = r0, where r0 is the

stationary firing rate for the neuron. In particular, the solution to the system depends on

the firing rate, which is not known a priori. Richardson [221, 222] gets around this issue by

setting

p0 =
P0

r0
, j0 =

J0

r0
,

so that these scaled quantities satisfy the pair of differential equations

−∂ j0

∂V
= δ(V −Vth)− δ(V −Vr),

−∂p0

∂V
=

1
σ2
ξ

[τm j0 + (V − EL − E0 −ψ(V))p0] .
(5.23)

100



5.3. CALCULATION OF FIRING STATISTICS FOR IF NEURONS

A convenient scheme is suggested in [221, 222] for the backward integration of these equa-

tions from Vth to the reflecting boundary Vlb.

In steady-state, Eq. (5.22) becomes

∫ Vth

Vlb

P0(V)dV + τrefr0 = r0

(∫ Vth

Vlb

p0(V)dV + τref

)
= 1.

Therefore, once the solution to the system in Eq. (5.23) has been found numerically, the

firing rate is given by

r0 =

(∫ Vth

Vlb

p0(V)dV + τref

)−1

.

5.3.1.3 Solving for the spectrum SEIF(ω)

A similar method can be employed for the determination of the steady-state power spec-

trum of the neuron with dynamics as described by Eq. (5.19). Again assume that the rest

potential is constant (E(t) = E0). The idea will be to solve for the first-passage time den-

sity of the neuron, then utilize well-known identities for renewal point processes in order

to determine the power spectrum of the neuron.

The general first-passage time density is the distribution of times it takes the neuron

to reach the firing threshold Vth starting from some initial distribution of values at a time

t = t0. We are interested in the particular first-passage time density f (t) which we define

to be the distribution of times to reach the threshold Vth starting from the spike reset

potential Vr at time t = τref. Similar to Eqs. (5.20, 5.21), we can write [222]

− ∂J
∂V

=
∂P
∂t

+ f (t)δ(V −Vth)− δ(t− τref)δ(V −Vr),

− ∂P
∂V

=
1
σ2
ξ

[τm J + (V − EL − E0 −ψ(V))P] .

Because of the presence of the time-derivative ∂P
∂t , which cannot be neglected in this case,
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it is convenient to consider these equations in the frequency domain, where we have

− ∂ J̃
∂V

= 2π iωP̃ + f̃ (ω)δ(V −Vth)− e−2π iωτrefδ(V −Vr),

− ∂P̃
∂V

=
1
σ2
ξ

[
τm J̃ + (V − EL − E0 −ψ(V))P̃

]
.

(5.24)

The first equality above used the identity

F
[

df
dt

]
(ω) = 2π iωF [ f ] (ω).

Next, dividing each of P̃, J̃ into two parts, one of which is proportional to f̃ , and one

which is not,

P̃ = f̃ p̃ f + p̃0, J̃ = f̃ j̃ f + j̃0,

gives a decoupled pair of two-dimensional first-order ODEs: one for ( p̃ f , j̃ f ),

−
∂ j̃ f

∂V
= 2π iω p̃ f + δ(V −Vth),

−
∂ p̃ f

∂V
=

1
σ2
ξ

[
τm j̃ f + (V − EL − E0 −ψ(V)) p̃ f

]
,

with initial conditions p̃ f (Vth) = 0, j̃ f (Vth) = 1 (since f (t) = J(Vth, t)), and another for

( p̃0, j̃0),

−∂ j̃0

∂V
= 2π iω p̃0 − e2π iωτrefδ(V −Vr),

−∂ p̃0

∂V
=

1
σ2
ξ

[
τm j̃0 + (V − EL − E0 −ψ(V)) p̃0

]
,

with initial conditions p̃0(Vth) = j̃0(Vth) = 0. These two allied systems can be solved by

the same numerical scheme utilized in the steady-state case of Section 5.3.1.2. Once the

solution is obtained, the zero-flux condition at Vlb implies J̃(Vlb,ω) = 0 for every ω, so

that

f̃ (ω) = − j̃0(Vlb,ω)

j̃ f (Vlb,ω)
.
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Having obtained the Fourier-transformed first-passage time density, identities for re-

newal point processes [90] (such as the presently considered integrate–and–fire neuron)

give that

SEIF

(
ω; EL + E0,

√
2σ2
ξ ,iτm

)
=


πr0δ(ω), ω = 0,

r0

(
1 + 2R

[
f̃ (ω)

1− f̃ (ω)

])
, ω 6= 0,

(5.25)

whereR [·] indicates the real part of the argument. To obtain the auto-correlation function

(the cross-cumulant density between a process with itself — see Chapter 2), the spectrum

should be solved for at a range of frequency values. The Fourier transform then yields the

auto-correlation by the Wiener-Khinchin theorem (Eq. (2.6)).

5.3.1.4 Susceptibility to current modulation

Richardson [221, 222] exhibited how to apply the method utilized above for determina-

tion of the firing rate and spectra to obtain the linear response to periodic modulation of

system parameters, including the noise potential and amplitude. As we are interested in

linear response approximations of coupling between neurons, it is the latter on which we

focus.

In particular, suppose that the parameter E(t) now undergoes periodic (complex) os-

cillations about a mean value E0, i.e.,

E(t) = E0 + E1e2π iωt.

Then, expanding the time-dependent firing rate r(t) = J(Vth, t) to first order in the ampli-

tude of modulation E1, we write

r(t) = r0 + r̂Ee2π iωt,
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where r0 is the stationary firing rate for for constant E(t) = E0 as determined in Sec-

tion 5.3.1.2, and the amplitude and phase shift of the firing rate modulation is captured in

the quantity r̂E(ω) = E1 Ã(ω). The susceptibility Ã(ω) is the same one appearing in the

linear response ansatz Eq. (5.3) and the subsequent analysis.

Note that the periodic fluctuations in the firing rate are complex (i.e., they have both

real and imaginary components), owing to the complex nature of the fluctuations in the

parameter E. This turns out to be a convenient assumption for the derivation of the firing

statistics — one should think of it as simultaneous consideration of two systems, one of

which is driven cosinusoidally, and the other driven sinusoidally.

The probability density and flux can likewise be expressed to first order in the strength

of resting potential fluctuation E1 as

P = P0 + P̂Ee2π iωt, J = J0 + ĴEe2π iωt.

Substituting these first-order approximations of P and J into Eqs. (5.20, 5.21) and collecting

the first-order terms (i.e., those proportional to e2π iωt) gives that the first-order responses

P̃E, J̃E satisfy the equations

−∂ ĴE

∂V
= 2π iωP̂E + r̂Eδ(V −Vth)− r̂Ee−2π iωτrefδ(V −Vr),

−∂P̂E

∂V
=

1
σ2
ξ

[
τm ĴE + (V − EL − E0 −ψ(V))P̂E − E1P0

]
,

(5.26)

with boundary conditions P̃E(Vth) = 0 and J̃E(Vth) = r̃E.

We can perform a separation similar to that of Section 5.3.1.3 by writing

P̂E = r̂E p̂r + E1 p̂E, ĴE = r̂E ĵr + E1 ĵE.

Substituting these values into Eq. (5.26) and collecting terms proportional to r̂E and E1
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yields a pair of two-dimensional ODEs, one for ( p̂r, ĵr),

−∂ ĵr

∂V
= 2π iω p̂r + δ(V −Vth)− e−2π iωτrefδ(V −Vr),

−∂ p̂r

∂V
=

1
σ2
ξ

[
τm ĵr + (V − EL − E0 −ψ(V)) p̂r

]
,

with boundary conditions p̂r(Vth) = 0, ĵr(Vth) = 1, and another for ( p̂E, ĵE),

−∂ ĵE

∂V
= 2π iω p̂E,

−∂ p̂E

∂V
=

1
σ2
ξ

[
τm ĵE + (V − EL − E0 −ψ(V)) p̂E − P0

]
.

with boundary conditions p̂E(Vth) = ĵE(Vth) = 0. Once again applying the zero-flux

condition at Vlb gives

Ã(ω) = − ĵE(Vlb, w)

ĵr(Vlb, w)
.

As in the case of the power spectrum, the linear response kernel A(t) can be acquired

by solving the system of ODEs determining Ã(ω) for a range of ω values and taking an

inverse Fourier transform.

5.3.2 Derivation of firing statistics for conductance synapses

As discussed in Section 5.2.3, application of linear response theory to the approximation

of correlations in systems which exhibit conductance-based synapses requires the deter-

mination of two linear response functions per neuron — one each for excitatory and in-

hibitory inputs. In particular, the necessary linear response functions are those for re-

sponse to fluctuations in the steady-state conductance (just as the application for current-

based synapses necessitated the determination of the linear response function to varia-

tions in the resting potential which, up to a scaling factor, is equivalent to the response

function to variations in the steady-state input current).
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For convenience, we restate here the dynamics of the conductance-based neuron under

the diffusion approximation (given in Eq. (5.17)):

τe f f V̇(t) = VL,e f f −V +
√

2σ2
e f f (V)τe f fξ(t) +

δ fE(t)
ge f f

(EE −V) +
δ f I(t)
ge f f

(EI −V).

The values of the effective time constant and rest potential are given in Eq. (5.18), and the

effective noise intensity is given in Eq. (3.5).

The corresponding continuity equation is identical to Eq. (5.20), and the flux is given

by [88, 227]

τe f f J =
[

VL,e f f −V +
δ fE(t)

ge f f
(EE −V) +

δ f I(t)
ge f f

(EI −V)

]
P− ∂

∂V

[
σ2

e f f (V)P
]

. (5.27)

Differentiating the product in Eq. (5.27) and collecting terms, we have

τe f f J =
[

V −VL,e f f +

(
δ fE(t)

ge f f
+ 2τe f fσ

2
E

)
(EE −V)

+

(
δ f I(t)
ge f f

+ 2τe f fσ
2
I

)
(EI −V)

]
P−σ2

e f f (V)
∂P
∂V

.
(5.28)

5.3.2.1 Solving for the steady-state firing rate and spectrum

The determination of the stationary firing rate of the neuron proceeds exactly as in the

current-based case (Section 5.3.1.2). First, assume the excitatory and inhibitory synaptic

conductances are constant — fE(t) = Et[ fE] = fE0 and similarly for f I(t) — so that the

variations δ fE(t) and δ f I(t) are identically zero. The equations for the steady-state flux J0

and probability density P0 are then

−∂J0

∂V
= r0δ(V −Vth)− r0δ(V −Vr),

−∂P0

∂V
=

1
σ2

e f f (V)

{
τe f f J0 +

[
V −VL,e f f + 2τe f fσ

2
E(V − EE) + 2τe f fσ

2
I (V − EI)

]
P0

}
.

(5.29)
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This system of ODEs can be solved for the stationary firing rate r0 exactly as in Sec-

tion 5.3.1.2.

Likewise, the spectrum is determined by first computing the Fourier-transformed

first-passage time density with a method identical to that exhibited in Section 5.3.1.3. The

pertinent flux and probability density differential equations are (compare with Eq. (5.24))

− ∂ J̃
∂V

= 2π iωP̃ + f̃ (ω)δ(V −Vth)− e−2π iωτrefδ(V −Vr),

− ∂P̃
∂V

=
1

σ2
e f f (V)

{
τe f f J̃ +

[
V −VL,e f f −ψ(V) + 2τe f fσ

2
E(V − EE) + 2τe f fσ

2
I (V − EI)

]
P̃
}

.

5.3.2.2 Linear response to mean conductance modulation

The general methodology for derivation of the excitatory and inhibitory conductance lin-

ear response kernels is again similar to that exhibited for current-based synapses (see Sec-

tion 5.3.1.4). The excitatory and inhibitory kernels are determined separately by posing

harmonic modulation of the excitatory and inhibitory conductances separately. We will

exhibit the method for the excitatory kernel, and the derivation of the inhibitory kernel is

identical.

Suppose that the excitatory conductance is given a periodic variation of the form

fE(t) = fE0 + fE1e2π iωt

while the inhibitory conductance is constant in time ( f I(t) = Et[ f I ] = f I0). Note that

Et[ fE] = fE0 and δ fE(t) = fE1e2π iωt. We expand the firing rate, probability density and

flux to first order in fE1, giving, similar to the current-based case considered above,

r(t) = r0 + r̂ fE e2π iωt,

with similar expansions for P and J. Substituting these first-order expansions into the

continuity and flux equations (Eqs. (5.20 and 5.28)) and collecting first-order terms (again,
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those proportional to e2π iωt gives the following system for the linear responses of the firing

rate, density and flux:

−
∂ Ĵ fE

∂V
= 2π iωP̂fE + r̂ fEδ(V −Vth)− r̂ fE e−2π iωτrefδ(V −Vr),

−
∂P̂fE

∂V
=

1
σ2

e f f (V)

{
τe f f Ĵ fE +

[
V −VL,e f f −ψ(V) + 2τe f fσ

2
E(V − EE)

+2τe f fσ
2
I (V − EI)

]
P̂fE +

gE1

ge f f
(V − EE)P0

}
.

(5.30)

Here, P0 is the solution to the ODE in Eq. (5.29). Employing the same technique as Sec-

tion 5.3.1.4, we write

P̂fE = r̂ fE p̂r + fE1 p̂ fE , Ĵ fE = r̂ fE ĵr + fE1 ĵ fE .

Substituting these decompositions into Eq. (5.30) again yields a pair of two-dimensional,

first-order ODEs which can be integrated backwards from threshold Vth to the lower

bound Vlb. The excitatory response function is then given by

ÃE(ω) = −
ĵ fE(Vlb)

ĵr(Vlb)
.

The inhibitory response function can be derived likewise.
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Chapter 6
Analysis of neuronal networks using

linear response

Novel experimental techniques reveal the simultaneous activity of larger and larger num-

bers of neurons. As a result there is increasing interest in the structure of cooperative – or

correlated – activity in neural populations, and in the possible impact of such correlations

on the neural code. A fundamental theoretical challenge is to understand how the archi-

tecture of network connectivity along with the dynamical properties of single cells shape

the magnitude and timescale of correlations. In what follows, we consider applications of

the linear response theory of correlations introduced in Chapter 5, aiming to highlight the

importance of this theory as an invaluable tool in tackling these challenges..

The linear response approximation of correlations will be shown to admit an expan-

sion in powers of the matrices that describe the network architecture. This expansion can

be readily interpreted in terms of paths between different cells. We apply our results to

large excitatory-inhibitory networks, and demonstrate first how precise balance — or lack
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thereof — between the strengths and timescales of excitatory and inhibitory synapses is

reflected in the overall correlation structure of the network. We then derive explicit ex-

pressions for the average correlation structure in randomly connected networks. These

expressions help to identify the important factors that shape coordinated neural activity

in such networks. We briefly consider applications of the linear response theory to analy-

sis of correlations within distance-dependent networks.

We conclude this chapter by conducting a thorough error analysis of the linear re-

sponse theory of correlations. We explore the dependence of the match between theory

and simulations on the dynamical operating point of the cell as well as on the strength

of interactions. We also consider the failure of the linear response theory to yield accu-

rate predictions of third-order dependencies amongst spiking neurons. The question of

whether there exists a consistent correction to the predictions of third-order correlations

acquired from the linear response theory is unresolved, and of great significance for future

applications.

6.1 Path expansion of correlations

Recall the iterative construction of the linear response approximation to activity, as was

illustrated in the previous chapter, and in particular in Figure 5.2. As explained around

Eq. (5.9), terms in this expansion of the output of the coupled network captured linear

perturbations to activity due to synaptic paths of increasing length. This decomposition

of activity into path contributions suggests a similar decomposition of correlations.

Recall the linear response approximation of the second-order correlation structure
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given in Eq. (5.12), which we restate here for convenience:

Sy(ω) =
(

I− K̃(ω)
)−1

Sy
0(ω)

(
I− K̃T(ω)

)−1
. (6.1)

For ease of notation, we will say that the output spectra are equal to their linear response

approximation, denoted by the equality in Eq. (6.1). the reader should bear in mind this

is still an approximation. Under the assumption of linear stability of the network under

which the iterative approximation was also formed (i.e., Ψ(K̃(ω)) < 1 for allω), we can

expand the matrix inverses in Eq. (6.1) in a von Neumann series, obtaining

Sy(ω) =
∞
∑

n,m=0

(
K̃(ω)

)n
Sy

0(ω)
(

K̃T(ω)
)m

. (6.2)

The terms of this series expansion correspond to contributions to correlations of mo-

tifs of varying orders within the network architecture. The order of a motif refers to the

number of connections which form the motif. In particular, the (i, j)th entry of the matrix

term (
K̃(ω)

)n
Sy

0(ω) (6.3)

corresponds to contributions to correlations between the pair of cells (i, j) from length n

chains through the network which begin at cell j and terminate at cell i. We depict a chain

motif in Figure 6.1A. Similarly, the (i, j)th entry of the (n + m)th order term(
K̃(ω)

)n
Sy

0(ω)
(

K̃T(ω)
)m

(6.4)

yields the contribution to correlations between the pair of cells (i, j) from (n + m)th-order

diverging motifs which connect a common source neuron to cell i via a length n chain, and

cell j via a length m chain, as depicted in Figure 6.1B. In what follows, we will explore

some applications of linear response theory, including some elementary applications of

the linear response path expansion of correlations. In the next chapter, we present a more

significant application.
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A Bi an-1

a1

j i

a1

a0

b1

j

nth order chain motif (n+m)th order diverging motif

Figure 6.1: Motifs appearing in the linear response diagrammatic expansion of correla-
tions given in Eq. (6.2). (A) An nth-order chain motif in a recurrent network connecting
the pair of cells (i, j). Within the linear response path expansion of correlations (Eq. (6.2),
the contributions to correlations of such motifs are captured by the term in Eq. (6.3). (B)An
(n + m)th-order diverging motif which contributes to the correlation (i, j) in a recurrent
network. Within the linear response path expansion of correlations (Eq. (6.2), the contri-
butions to correlations of such motifs are captured by the term in Eq. (6.4).

6.2 Linear response application to coupled microcircuits

To illustrate the use of linear response theory in analyzing correlations in coupled neu-

ronal networks, we first consider a pair of simple microcircuits. In the case of small net-

works, we can solve exactly and explicitly the linear response approximation of correla-

tions given in Eq. (6.1).

6.2.1 Feed-forward inhibitory microcircuit

The first microcircuit we consider is a feed-forward inhibitory (FFI) microcircuit. Feed-

forward inhibition is believed to be a central mechanism utilized within cortical networks

in order to gate synaptic inputs, shaping integration windows and increasing spike pre-

cision [24, 76, 86, 186, 208, 294]. The circuit consists of two excitatory E1 and E2 with a

monosynaptic coupling from E1 to E2. In addition, there is a second-order chain connec-

tion from E1 to E2 through a third, inhibitory cell I. Activation of the neuron E1 provides
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simultaneous activation of both cells E2 and I. If the inhibitory connection is strong, then

the cell E2 only has a short time in which to spike before the inhibition will prevent firing

(this is the integration window), causing it to forget about the input from E1.

The circuit is shown on left in Figure 6.2A. In Figure 6.2B, we compare the linear re-

sponse approximation of the second-order cross-cumulant density between the cells E2

and I.

In the FFI circuit, the interaction matrix K̃ takes the form

K̃(ω) =


0 0 0

K̃E2E1(ω) 0 K̃E2 I(ω)

K̃IE1(ω) 0 0

 ,

where we have indexed the cells in the order (E1, E2, I) — for instance, the (2, 1) entry

corresponds to the interaction kernel for the synapse E1 → E2. To simplify notation, we

will omit further expression of the dependence of spectral quantities on the frequencyω.

In this instance, the matrix K̃ is nilpotent of order three (that is, K̃3 = 0), which is a

reflection of the non-recurrent nature of the synaptic architecture of the microcircuit. As a

result, the matrix inverses appearing in Eq. (6.1) can be expanded as

(
I− K̃

)−1
=
(

I + K̃ + K̃2
)
=


1 0 0

K̃E2E1 + K̃E2 IK̃IE1 0 K̃E2 I

K̃IE1 0 0

 . (6.5)

Substituting Eq. (6.5) — and the corresponding, similar expansion of
(

I − K̃T)−1 — into

Eq. (6.1) yields an explicit approximation of the cross-spectra for all neuron pairs within

the FFI network in terms of the individual interaction kernels as well as the uncoupled

spectra of the constituent neurons.
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Figure 6.2: Linear response path expansion of correlations in a feed-forward inhibitory
(FFI) microcircuit. (A) Linear response path expansion of the second-order correlations
for cells (E2, I) in the FFI microcircuit. Each of the three terms appearing in the finite
expansion correspond to the contribution of a different motif, and their values are denoted
in Eq. (6.6). (B) Comparison of the linear response approximation of correlations with
Monte Carlo estimation of the second-order cross-cumulant density for the pair (E2, I) in
the FFI microcircuit. Results are plotted for two values of the inhibitory time constant τI .
The solid line corresponds to τI = 5 ms, and the dashed line to τI = 10 ms. (C) Plot of the
three contributions to the cross-cumulant density for the pair (E2, I) as determined from
the linear response expansion of their correlation structure (Eq. (6.6)). Solid and dashed
lines again correspond to values for the two different inhibitory synaptic time constants.
The inset shows the two inhibitory synaptic kernels.

For instance, the cross-spectrum for the pair (E2, I) is given by

Sy
E2 I = K̃∗E2 I Sy

0,I + K̃∗E2E1
K̃IE1 Sy

0,E1
+ K̃∗E2 I

∣∣K̃IE1

∣∣2 Sy
0,E1

=
(

ÃE2β̃E2 I
)∗ Sy

0,I︸ ︷︷ ︸
I

+
(

ÃE2β̃E2E1

)∗ (ÃIβ̃IE1

)
Sy

0,E1︸ ︷︷ ︸
I I

+
(

ÃE2β̃E2 I
)∗ ∣∣ÃIβ̃IE1

∣∣2 Sy
0,E1︸ ︷︷ ︸

I I I

,
(6.6)

where the uncoupled spectra Sy
0,· are equal to the corresponding entries of Sy

0 and Ã are the

susceptibility functions (see Chapter 5). The functions βi j(t) = Wi jα j(t) are the weighted
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synaptic kernels (see Eq. (5.5)) so that the β̃i j(ω) are their Fourier transforms.

Equation (6.6) provides intuition about how the joint response of cells E2 and I is

shaped by the features of the network — namely, the synaptic architecture and marginal

dynamical properties of the individual neurons. At first order, term I corresponds to the

effect of the direction connection from cell I to E2. The second-order term II captures

the correlating effect of the common input arriving to each cell from neuron E1. Lastly,

term III approximates the contribution to correlations between cells E2 and I due to the

interaction of the synapse connection E1 → I and the two-synapse pathway from E1 to E2

through neuron I. This diverging motif provides an indirect source fo common input. We

plot the temporal domain contributions of these three terms in Figure 6.2C.

In order to gain insight into how synaptic properties can shape the correlation struc-

ture within the FFI microcircuit, we varied the time constant τI governing the synaptic

dynamics of the connection I → E2. First, we compare theory and simulations for two

values of the time constant in Figure 6.2B. Note that the slower inhibitory time constant

results in an elongated cross-cumulant density.

Referring to Figure 6.2C, the linear response decomposition of the correlations reveals

that the effect of changing the time constant on the cross-cumulant density is primar-

ily reflected in the first-order term (light blue lines). Referring to Eq. (6.6), we see that

term I includes a factor β̃E2 I . This frequency-domain multiplication becomes a convo-

lution in the temporal domain. Decreasing τI sharpens the synaptic filter resulting in a

corresponding decrease in the timescale of the first-order term I, and hence, in the cross-

cumulant density as well. The decrease in the cross-cumulant density at values τ > 0

implies the aforementioned gating of the output of cell E2 by cell I, tightening the timing

dependencies between the outputs of these two. cells. [78, 118, 145, 198, 288].
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At second order, term II in Eq. (6.6) captures the effect of the common input to the

two cells. This contribution does not involve the inhibitory synaptic kernel, and is there-

fore unaffected by the change to the synaptic time constant. At third order, term III in

Eq. (6.6) is similarly smoothed as the first-order term, though its contribution is signifi-

cantly smaller. We note that, in general, higher-order contributions need not be negligible,

a fact we illustrate in the next example.

6.2.2 Bi-directional excitatory microcircuit

Experiments conducted on rats have revealed that bidirectional synaptic interactions be-

tween pairs of neurons are significantly more common than would be expected for truly

random (i.e., Erdös-Rényi) cortical connectivity [121, 179, 255, 260]. Thus, it is important to

understand how mutual connectivity between neurons shapes their correlation structure.

To this end, we consider the linear response approximation to the correlation structure for

a pair of reciprocally-connected excitatory neurons E1 and E2 (Figure 6.3A, left).

In this case, we have

K̃ =

 0 K̃E1E2

K̃E2E1 0

 ,

so that (
I− K̃

)−1
=

1
1− K̃E1E2 K̃E2E1

(
I + K̃

)
.

Substituting this matrix inverse into Eq. (6.1) yields the following approximation to the
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Figure 6.3: Linear response path expansion of correlations in a bidirectional excitatory
microcircuit. (A) The cross-cumulant density of the two cells can be represented in terms
of contributions from an infinite sequence of submotifs (See Eq. (6.8)). Though we show
only a few “chain” motifs in one direction, one should note that there will also be con-
tributions to the cross-cumulant from chain motifs in the reverse direction in addition to
indirect common input motifs (See Figure 6.1). (B), (E) Linear response kernels in the ex-
citable (B) and oscillatory (E) regimes. (C), (F) Comparison of the cross-cumulant density
computed from Monte Carlo simulation and linear response theory (from Eq. (6.7)) with
first- and third-order contributions (from Eq. (6.8)) in the excitable (C) and oscillatory (F)
regimes. (D), (G) Comparison of the auto-cumulant density computed from Monte Carlo
simulation and linear response theory (from Eq. (6.7)) with zeroth- and second-order con-
tributions (from Eq. (6.8)) in the excitable (D) and oscillatory (G) regimes.
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matrix of cross-spectra for the microcircuit

Sy =
1∣∣1− K̃E1E2 K̃E2E1

∣∣2 (I + K̃
)Sy

0,E1
0

0 Sy
0,E2

(I + K̃T
)

=
1∣∣1− K̃E1E2 K̃E2E1

∣∣2
 Sy

0,E1
+
∣∣K̃E1E2

∣∣2 Sy
0,E2

K̃∗E1E2
Sy

0,E2
+ K̃E2E1 Sy

0,E1

K̃E1E2 Sy
0,E2

+ K̃∗E2E1
Sy

0,E1
Sy

0,E2
+
∣∣K̃E2E1

∣∣2 Sy
0,E1

 .

(6.7)

In contrast to the previous example, the linear response approximation of the second-

order correlation structure does not terminate at finite order in the interaction matrix K̃

owing to the non-polynomial prefactor. This is a reflection of the non-nilpotency of K̃, or

equivalently, the existence of directed chains of infinite length through this circuit (allow-

ing for repetition of connections).

Following our exploration of the impact of synaptic dynamics on neuronal correlation

structure in the previous example, we will now investigate the effect of the marginal firing

rate dynamics on correlations in the context of the bidirectional excitatory microcircuit.

To this end, we placed the neurons in two regimes — the first was an excitable regime

where, in the absence of input from its synaptic partner, the firing rate of each neuron is

relatively low, but the membrane potential lives close to the firing threshold much of the

time (Figure 6.3B-D). In the excitable regime, firing is highly irregular (ISI CV ≈ 0.98).

We also placed the neurons in an oscillatory regime, characterized by strong, regular firing

in the absence of input from the other neuron (ISI CV ≈ 0.31). Synaptic input from the

other neuron in the circuit tended only to slightly perturb spike times in this regime. The

firing regime of the neuron was set by manipulating the mean of the intrinsic fluctuations

provided to each cell, which directly determines the rest potential of the neuron. When

the rest potential is not too far below threshold, the neuron is excitable, and when it is

near or above the firing threshold, oscillatory activity results.
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In a linear response theory applications, these changes in firing regime of the neu-

rons are reflected in the linear response function A of each neuron, as well as in their

uncoupled power spectra Sy
0 . To gain a better understanding of the impact of the alter-

ation of the firing regime on the marginal spiking dynamics, we present the firing rate

linear response functions for a neuron in the excitable regime (Figure 6.3B) as well as the

oscillatory regime (Figure 6.3E). Notably, the response function for the neuron in the os-

cillatory regime exhibits a resonance absent in that of the excitable neuron, a reflection of

the natural firing frequency of the neuron.

Returning to the approximation of correlations between these two neurons given in

Eq. (6.7), expanding the prefactor allows us to express the cross-spectrum between E1 and

E2 as an infinite series:

Sy
E1E2

=
∞
∑

n,m=0

(
K̃∗E1

K̃∗E2

)n (K̃∗E1
K̃∗E2

)m
(

K̃∗E1E2
Sy

0,E1
+ K̃E2E1 Sy

0,E2

)
. (6.8)

Paths within the synaptic architecture of this microcircuit which contribute to the cross-

correlations between the two neurons (see Figure 6.1) must originate from one of the two

cells, and the two branches must terminate each at a different cell. This implies that one of

the branches must be of odd length (one branch connects the root cell with itself), and the

other of even length (connecting the root cell to the other cell). Hence, all contributions

to the correlations between the two cells are from paths of odd order. This is reflected in

Eq. (6.8), where each term of the expansion consists of a multiplication of an odd number

of interaction kernels K̃. We depict three of the contributing motifs in Figure 6.3A. Similar

reasoning shows that only even-order motifs will contribute to the linear response ap-

proximation of the coupled power spectra (i.e., the auto-cumulants or auto-correlations

of neurons in the circuit).

We compare the linear response approximation of correlations to results obtained via
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Monte Carlo estimation in Figure 6.3. The match is excellent in both regimes. We also

present in Figure 6.3 some lower-order contributions to the second-order cross- and auto-

cumulant densities for neurons in the bidirectional excitatory microcircuit. Results for

excitable neurons are in panels C and D, while those for oscillatory neurons are in panels

F and G. For the excitable neurons, we see that third-order contributions to the cross-

cumulant density of the two neurons (orange line, panel C), while small in comparison

to their first-order counterparts (light blue line, panel C), are certainly not insignificant,

which was the case in the FFI circuit (Figure 6.2).

Likewise, Figure 6.3D exhibits that, for neurons in the excitable regime, second-order

contributions to the auto-correlation are of similar magnitude to the zeroth-order terms

(i.e., the uncoupled spectra Sy
0). These second-order contributions arise from two sources

— first, the resonance exhibited away from τ = 0 is the signature of the neurons detection

of its own output (i.e., the contribution of the length two chain connecting the neuron to

itself). In addition, the synaptic input from the other cell in the circuit acts as “common

input” to a cell, supplying a peak in this contribution near τ = 0 in analogy to the peak in

the cross-cumulant density induced by common input to a pair of distinct neurons (green

line, Figure 6.2C). For neurons in the oscillatory regime, the first (in the case of the cross-

cumulant) and zeroth-order (in the case of the auto-cumulant) terms are dominant, so we

do not bother to plot higher-order contributions.

In the oscillatory regime, higher-order contributions to the cross- and auto-cumulants

were small relative to first-order contributions and are therefore not shown in panels F

and G of Figure 6.3. In addition, the network’s symmetry implies that cross-cumulant

densities are symmetric, and we only show these functions for positive lags. The long

window spike count correlation coefficient ρE1E2(∞) between the two cells was ≈ 0.8 in
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the excitable regime and ≈ 0.5 in the oscillatory regime.

6.3 Linear response applications to large networks

The full power of the present approach becomes evident when analyzing the activity of

networks larger than the microcircuits considered to this point. We again illustrate the

accuracy and utility of the linear response theory using several examples.

In all–to–all networks where inhibition and excitation are tuned to be precisely bal-

anced, the theory reveals that the only contributions to correlations are from local paths

— specifically, from first-order (direct) interactions and second-order common input. If

this balance is broken, terms appear in the linear response expansion of correlations which

correspond to longer paths (and hence, higher-order motifs). One immediate consequence

is that a relative increase in inhibition can lead to elevated network synchrony in such net-

works.

Following our treatment of the simple, all–to–all case, we also consider two other large

network examples. In random Erdös-Rényi networks, we exhibit how linear response al-

lows for the derivation of accurate approximations of the average temporal structure of

the cross-cumulant density. In the final pair of examples, we treat very large networks

with distance-dependent connectivity, exploring the relationship between inter-neuronal

distance and correlation in their activity. As a side note, these examples also demonstrates

the computational expediency of the linear response theory of correlations relative to tra-

ditional Monte Carlo methods for determining the structure of temporal dependencies in

complex neuronal networks.
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6.3.1 All–to–all networks

Consider an all–to–all coupled network of N neurons with identical membrane and spik-

ing parameters1. Of these cells, NE make excitatory, and NI make inhibitory synaptic

connections. The excitatory cells are assigned indices 1, 2, . . . , NE, and the inhibitory cells

indices NE + 1, NE + 2, . . . , N, where N = NE + NI . We assume that all excitatory (resp.

inhibitory) synapses have identical weights WE = GE
NE

(resp. WI =
GI
NI

). Synaptic kernels

are given by alpha functions (Eq. (5.6)) with time constant τE = 10 ms (resp. τI = 5 ms).

The constants GE, GI set the overall strength of excitation and inhibition in the network.

In this case, the interaction matrix K̃ can be written in block form as

K̃ = Ãβ̃, where β̃ =

β̃E1NE NE β̃I1NE NI

β̃E1NE NI β̃I1NI NI

 .

In the previous expression, 1N1 N2 is the N1 × N2 matrix of ones, β̃X = WXα̃X is the

weighted synaptic kernel applied to the output of cells in class X ∈ {E, I} (assumed

identical within each class), and Ã is the common susceptibility network for each cell in

the network. Autaptic synapses (i.e., synapses from a cell to itself) are included in order

to greatly simplify the analysis. We show in Figure 6.4 that their inclusion has negligible

impact.

Define the quantities ϕ̃E = NEβ̃E, ϕ̃I = NIβ̃I , and ϕ̃ = ϕ̃E + ϕ̃I . A simple inductive

argument gives that, for every k ≥ 1, we have

K̃k = Ãkϕ̃k−1β̃.

In addition, direct matrix multiplication yields

K̃K̃T = ϕ̃c1NN , where ϕ̃c = NE
∣∣β̃E
∣∣2 + NI

∣∣β̃I
∣∣2 ,

1Consideration of identical neurons implies equivalence of their uncoupled spectra as well as their firing
rate linear response functions in the absence of coupling.
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Figure 6.4: Inclusion of autaptic connections in the all–to–all network has a negligi-
ble impact on correlations. (A) Comparison of the linear response theory prediction of a
second-order cross-cumulant density in an all–to–all network of size N = 100 with (solid
line) and without (dashed line) autaptic connections.Relative L2 difference was approxi-
mately 0.0043 (the two lines are almost exactly on top of one another). (B) Same as panel
A, for a second-order auto-cumulant density. Relative L2 difference was approximately
0.0016.

which allows for direct calculation of the matrix products
(

K̃
)n (

K̃
)m when n, m 6= 0,(

K̃
)n (

K̃
)m

= Ãn∗ Ãlϕ̃(n−1)∗ϕ̃m−1ϕ̃c1NN . (6.9)

Note that the dynamical homogeneity assumption implies that we can write Sy
0 = Sy

0I

— i.e., all cells have a common uncoupled power spectrum. Substituting Eq. (6.9) into

Eq. (6.1) gives

Sy = Sy
0

∞
∑

n,m=0

(
K̃
)n (

K̃
)m

= Sy
0

[(
Ã

1− Ãϕ̃

)∗
β̃+

(
Ã

1− Ãϕ̃

)
β̃

T
∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c1NN + IN

]
.

(6.10)

Thus, due to the block structure of the matrices in Eq. (6.10), the cross-spectrum between

two cells in the network depends only on the class (excitatory or inhibitory of the two

cells),

Sy
i j |i∈X, j∈Y = Sy

0

[(
Ã

1− Ãϕ̃

)∗
ϕ̃∗Y
NY

+

(
Ã

1− Ãϕ̃

)
ϕ̃X

NX
+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c + δi j

]
, (6.11)
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where X, Y ∈ {E, I}.

In Eq. (6.11) the first term represents the effects of all directed chains originating at cell

j and terminating at cell i, and from cell j to cell i for the second term. To see this, one

can expand the denominators of these terms as power series in Ãϕ̃. The third term repre-

sents the effects of direct and indirect common inputs to the two neurons, an observation

reached by similarly expanding the denominator of this term as a product of power series

in each of (Ãϕ̃)∗ and Ãϕ̃. In Figure. 6.5A, we highlight a few of these contributing motifs.

1

2

A B

Theory
Simulations 10-5

T (ms)25

.05

(kHz2)

(ms)-50 50
(ms)50

Balanced Unbalanced

10-5

C

10-5

Figure 6.5: Linear response theory of correlations in all–to–all networks, and the impor-
tance of higher-order motifs. (A) Some of the submotifs contributing to correlations in
the all–to–all network. (B) Comparison of Monte Carlo estimation cross-cumulant density
between two excitatory cells in an all–to-all network with the linear response theoretical
prediction obtained using Eq. (6.11) (Solid lines – precisely tuned network with ϕ̃ ≡ 0
[GE = −GI = 140 mV·ms, τE = τI = 10 ms], dashed – non-precisely tuned network with
ϕ̃ 6= 0 [GE = 168 mV ·ms, GI = −210 mV ·ms, τE = 10 ms, τI = 5 ms]). The population
sizes were NE = 80, NI = 20. (C) Comparison of first- and second-order contributions
to the cross-correlation function in panel A in the precisely tuned (left) and non-precisely
tuned (right) network. In both cases, the long window correlation coefficient ρy

i j(∞) was
0.05. The blue line indicates the contribution due to the direct connection between the two
cells, while the dotted green line captures contributions due to second-order chain motifs,
and the dashed green line second-order diverging motifs (common input).

When excitation and inhibition are tuned for precise balance in both strength and the

speed of their synaptic dynamics, the temporal averages of the excitatory and inhibitory
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currents cancel each other, and we have ϕ̃ = ϕ̃E +ϕ̃I = 0. Using ϕ̃ = 0 in Eq. (6.11) yields

Sy
i j |i∈X, j∈Y = Sy

0

[
Ã∗
ϕ̃∗Y
NY

+ Ã
ϕ̃X

NX
+
∣∣Ã∣∣2 ϕ̃c + δi j

]
. (6.12)

Effects of direct connections between the cells are captured by the first two terms, while

those of direct common inputs to the pair are captured by the third term. Interestingly,

contributions from any other submotif of the synaptic architecture precisely cancel, and

do not appear in the linear response approximation of correlations. In other words, in the

precisely balanced case, only local interactions contribute to correlations.

To understand this cancellation intuitively, consider the contribution of directed chains

originating at a given excitatory neuron, j. For τ > 0, the cross-cumulant density, κy
i j(τ),

is directly determined by the expected change in firing rate of cell j given a spike in cell i

τ units of time in the past (see Eq. (2.14)). By the symmetry of the all–to–all connectivity

and assumed joint stationarity of the network activity, the firing of cell j has an equal

probability of eliciting a spike in any excitatory or inhibitory cell in the network. Due to

the precise synaptic balance, the post-synaptic current generated by the elicited spikes in

the excitatory population will cancel the post-synaptic current due to elicited spikes in

the inhibitory population on average. The contribution of other motifs cancel in a similar

way.

In Figure 6.5B, we show the impact of breaking this excitatory-inhibitory balance

on cross-correlation functions. We increased the strength and speed of the inhibitory

synapses relative to excitatory synapses. For comparison purposes, we held constant the

long window correlation coefficients ρy
i j(∞) between excitatory pairs by increasing both

the excitatory and inhibitory weights (note that, by symmetry, all excitatory pairs should

have the same correlation coefficient). Moreover, the degree of network synchrony, char-

acterized by the short window correlation coefficients, is increased (See Figure 6.5B inset).
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Intuitively, a spike in one of the excitatory cells transiently increases the likelihood of spik-

ing in all other cells in the network. Since inhibition in the network is stronger and faster

than excitation, these additional spikes will transiently decrease the likelihood of spiking

in twice removed cells.

Linear response theory allows us to confirm this heuristic observation, and quantify

the impact of the imbalance on second-order statistics. Expanding Eq. (6.11) for two exci-

tatory cells to second order in coupling strength, we find

Sy
EiE j

= Sy
0

[
Ã∗
ϕ̃∗E
NE

+ Ã
ϕ̃E

NE
+ |Ã|2ϕ̃c + (Ã∗)2ϕ̃∗

ϕ̃∗E
NE

+ Ã2ϕ̃
ϕ̃E

NE
+ δi j

]
+O(||K̃||3). (6.13)

Compared to the balanced case, there is no longer a complete cancellation between contri-

butions of chains involving excitatory and inhibitory cells, and the two underlined terms

appear as a result (compare with Eq. (6.12)). These terms capture the effects of all length

two chains between cells Ei or E j, starting at one and terminating at the other.

The relative strengthening of inhibition implies that chains of length two provide a

negative contribution to the cross-correlation function at short times (cf. [288] and the

dashed green lines in Figure 6.5C). Additionally, the impact of direct common input to

cells Ei and E j on correlations is both larger in magnitude (because we increased the

strength of both connection types) and sharper (the faster inhibitory time constant means

common inhibitory inputs induce sharper correlations). These changes are reflected in the

shape of the second-order common input term |Ã|2ϕ̃c in Eq. (6.13) (see dotted green lines

in Figure 6.5C).

In sum, breaking the balance between excitation and inhibition via stronger, faster

inhibitory synapses enhances synchrony, moving a greater proportion of the covariance

mass closer to τ = 0 (See Figure 6.5B). To illustrate this effect in terms of underlying

connectivity motifs, we show the contributions of length two chains and common input in
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both the precisely tuned and non-precisely tuned cases in Figure 6.5C. A similar approach

would allow us to understand the impact of a wide range of changes in cellular or synaptic

dynamics on the structure of correlations across networks.

6.3.2 Random networks

Connectivity in cortical neuronal networks is typically sparse, and connection probabili-

ties can follow distinct rules depending on area and layer [250]. The present theory allows

us to consider arbitrary architectures, as we now illustrate.

We consider a randomly connected network of NE excitatory and NI inhibitory cells

coupled with probability p. To simplify the analysis, every cell receives exactly pNE ex-

citatory and pNI inhibitory inputs. Thus, having fixed in-degree (that is, the number

of inputs is fixed and constant across cells), each cell receives an identical level of mean

synaptic input. In addition, we continue to assume that cells are identical in their individ-

ual dynamical properties. Therefore, the response of each cell in the network is described

by the same linear response kernel. The excitatory and inhibitory connection strengths are

GE/(pNE) and GI/(pNI), respectively. The timescales of excitation and inhibition were

allowed to differ, but are again identical for cells within each class. We note that the above

restrictions are not general limitations of the linear response theory of correlations, but

are pertinent to the identities we derive below.

When network connectivity is random, the approximation of network correlations

(Eq. (6.1)) depends on the realization of the weight matrix W. For a fixed realization of

W, the linear response approximation Eq. (6.1) can be solved numerically to approximate

the correlation structure (See Figure 6.6A). However, the cross-cumulant density between

a pair of cells of given types has a form which is easy to analyze when only leading-order
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terms in 1/N are retained. In what follows, we will derive these forms conditioned only

on the class (i.e., excitatory or inhibitory) of the two cells involved (Proposition 6.3.1).

Following this, we derive the same average further conditioned on the first-order con-

nectivity of the pair in question (Proposition 6.3.2). This additional information leads

to a significant reduction in variability in the linear response prediction of the average

cross-cumulant density amongst pairs of neurons within the network. These results are

suggestive of an idea which will be explored more fully in the linear response applica-

tion of Chapter 7: Given some minimal characterizations of the synaptic architecture and

marginal neuronal dynamics in a local cortical network, linear response theory can allow

one to gain insight into the average structure of correlations in that area.

6.3.2.1 Average cross-cumulant densities in the random network

Proposition 6.3.1. In the random network described in the open to Section 6.3.2, the average

cross-spectrum for two cells of given types is

E
{

Sy
i j

}
i∈X, j∈Y

= Sy
0

[(
Ã

1− Ãϕ̃

)∗
ϕ̃∗Y
NY

+

(
Ã

1− Ãϕ̃

)
ϕ̃X

NX
+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c

]
+O(1/N2),

(6.14)

when i 6= j, where E {·} represents an average over realizations of the weight matrix W. In

addition, the average power spectrum (i = j) is given by

E
{

Sy
ii

}
i∈X = Sy

0

[
1 +

(
Ã

1− Ãϕ̃

)
ϕ̃X

NX
+

(
Ã

1− Ãϕ̃

)∗
ϕ̃∗X
NX

+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c + |Ã|2ϕ̃c

(
1− p

p

)]
+O(1/N2).

(6.15)
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Figure 6.6: Application of the linear response to a random network reveals the average
second-order temporal correlation structure. (A) A comparison of numerically obtained
excitatory-inhibitory cross-correlations to the approximation given by Eq. (6.31). (B)
Mean and standard deviation for the distribution of correlation functions for excitatory-
inhibitory pairs of cells. (Solid line – mean cross-correlation, shaded area – one standard
deviation from the mean, calculated using bootstrapping in a single network realization).
(C) Mean and standard deviation for the distribution of cross-correlation functions con-
ditioned on cell type and first-order connectivity for a reciprocally coupled excitatory-
inhibitory pair of cells. (Solid line – mean cross-correlation function, shaded area – one
standard deviation from the mean found by bootstrapping). (D) Average reduction in
L2 error between cross-correlation functions and their respective first-order conditioned
averages, relative to the error between the cross-correlations and their cell-type averages.
Blue circles give results for a precisely tuned network, and red squares for a network with
stronger, faster inhibition. Error bars indicate two standard errors above and below the
mean. GE, GI , τE, τI for panels A-C are as in the precisely tuned network of Figure 6.5,
and the two networks of panel D are as in the networks of the same figure.
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Proof. Under the given assumptions, the interaction matrix K̃ takes the form

K̃(ω) = Ã(ω)β̃(ω) where β̃(ω) =

 GE
pNE
α̃E(ω)RNE NE

GI
pNI
α̃I(ω)RNE NI

GE
pNE
α̃E(ω)RNI NE

GI
pNI
α̃I(ω)RNI NI

 , (6.16)

and RN1 N2 is a random N1 × N2 matrix of 0’s and 1’s, with pN2 chosen non-zero entries

on each row. Note that entries of K̃(ω) are independent except within the rows of each

block. Moving forward, we will suppress dependencies on ω for notational purposes.

The derived expressions can be assumed to hold for eachω.

In the following, E {·} is an average over realizations of the random adjacency matri-

ces RXY. We define ϕ̃X to be

ϕ̃X = ∑
k0∈X

E
{
β̃k1k0

}
= NXE

{
β̃k1k0

}
k0∈X

= NX

(
GX

pNX
α̃E

)
p

= GXα̃X ,

(6.17)

where we have used the subscript notation k0 ∈ X to denote that the cell with index k0

belongs to class X = E or X = I. Note that the definition of ϕ̃X is independent of the index

k1 chosen, and can alternatively be defined as the same value via a simple sum without

expectations as we assumed in-degrees to be fixed. We also define the quantity ϕ̃ as

ϕ̃ = ∑
k0

E
{
β̃k1k0

}
= ϕ̃E + ϕ̃I = GEα̃E + GIα̃I , (6.18)

and ϕ̃c as

ϕ̃c = ∑
k0

E
{
β̃k1k0β̃

∗
l1k0

}
= NEE

{
β̃k1k0β̃

∗
l1k0

}
k0∈E + NIE

{
β̃k1k0β̃

∗
l1k0

}
k0∈I

= NE

∣∣∣∣ GE

pNE
α̃E

∣∣∣∣2 p2 + NI

∣∣∣∣ GI

pNI
α̃I

∣∣∣∣2 p2

=
1

NE
|ϕ̃E|2 +

1
NI
|ϕ̃I |2.

(6.19)
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We note that the definition of ϕ̃c is independent of the indices k1, l1, so long as k1 6= l1.

To understand this calculation, as we sum over k0, we will sum over NE excitatory cells

and NI inhibitory cells. For each value of k0, conditioned on the type of cell being k0 ∈ X,

the squared absolute value of the matrix entry will be | ϕ̃X
pNE
|2 with probability p2 (the

probability both connections are “on”), and zero otherwise.

Approximate independence of the entries of β̃ Consider a pair of cells with indices

i, j in the random network. From Eq. (6.1), we again series expand the linear response

approximation to the correlation between cells i and j as

E
{

Sy
i j

}
i∈X, j∈Y

= Sy
0 E

{[(
I− Ãβ̃

)−1 (
I− Ãβ̃

)−T
]

i j

}
i∈X, j∈Y

= Sy
0

∞
∑

n,m=0
Ãn∗ ÃmE

{[(
β̃
)n (

β̃
T
)m]

i j

}
i∈X, j∈Y

.

(6.20)

We will assume that the spectral radius Ψ(Ãβ̃) < 1, and thus, this series converges.

The assumption of fixed in-degrees means that there are dependencies between the

entries of W (and hence, β̃) inside each row of each block of the matrix which are absent

in a fully random network. The matrix consists of four blocks, corresponding to the pair

types of pre- and post-synaptic cells (EE, EI, IE and II). However, if the network is large

and connections are relatively weak, then the entries of the matrix β̃ are approximately

independent, to leading order in 1/N. In particular, we will show that

N

∑
k0 ,...,kn−1 ,l1 ,...,lm−1=1

[
E
{
β̃ikn−1β̃kn−1kn−2 · · · β̃k1k0β̃

∗
l1k0
· · · β̃∗jlm−1

}
−E

{
β̃ikn−1

}
E
{
β̃kn−1kn−2

}
· · · E

{
β̃k1k0

(
β̃l1k0

)∗} · · · E{(β̃ jlm−1

)∗}] ∼ O(1/N2)

(6.21)

holds for 0 < n, m � N. When we do not have n, m � N, the difference will be small

compared to an exponential prefactor which will always accompany these terms, and the

relationship still holds.
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In Eq. (6.21), we have neglected the conditioning of the cell types of i, j for notation,

though this conditioning on cell type can be assumed to always be present. This means

that, to lowest order in 1/N, expectations of powers of β̃ can be taken as if all entries

of the weight matrix W were chosen completely independently, and without concern for

the fixing of in-degrees. Note that the term E
{
β̃k1k0

(
β̃l1k0

)∗} is not factored — these two

terms will not be approximately independent as they both involve a connection originat-

ing from the same cell k0, meaning they will (when the connections are present) have the

same value for any k0. Instead, these terms will be replaced by contributions in terms of

ϕ̃c, as we have from Eq. (6.19),

∑
k0

E
{
β̃k1k0

(
β̃l1k0

)∗}
= ϕ̃c ∀ k1, l1.

In what follows, we prove Eq.(6.21) by considering various conditions on the values

of n, m relative to the network size N. In particular, in cases 3 and 4, we assume that n, m

are small enough so that the following approximations hold,

P(N − 1, n− 1) ∼ Nn−1 +O(Nn−2)

P(N − 1, n + m− 1) ∼ Nn+m−1 +O(Nn+m−2),
(6.22)

where P(x, y) stands for the number of permutations of y elements chosen from a pool of

x, without replacement. Terms in the series expansion of correlations Eq. (6.2) will decay

exponentially with an upper bound proportional to Ψ(K̃)n+m, where ψ(K̃) is the spectral

radius of the matrix K̃ = Ãβ̃. The spectral radius of K̃ will typically vary with ω, so

we assume the existence of a uniform bound below unity for allω. We then assume that

by the time the approximations in Eq. (6.22) are no longer valid, the order n + m is large

enough so as to make the contributions of the remaining tail of the series not significant.

Numerical investigation confirms this to be a reasonable assumption for the networks we

consider.
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• Case 1: n = 1, m = 0

These values of n, m correspond to the correlating effects of direct synaptic interac-

tions between pairs of cells. In this case, Eq. (6.21) is trivially satisfied. We have, by

definition of ϕ̃E, ϕ̃I , that

E
{
β̃i j
}

i∈X, j∈Y =
ϕ̃Y

NY
, (6.23)

as the total amount of input from cells of class Y is ϕ̃Y. This, in turn, implies that the

expected impact of a single connection is as stated in Eq. (6.23).

• Case 2: n = m = 1

These values of n, m correspond to the correlating effects of direct shared inputs to

pairs of cells in the network. In this case, we can find the exact value of E
{[

β̃β̃
T
]

i j

}
.

First, suppose i 6= j. From the definition of ϕ̃c (Eq. (6.19)), we have

E
{[

β̃β̃
T
]

i j

}
i∈X, j∈Y

=
N

∑
k=1

E
{
β̃∗ikβ̃ jk

}
= ϕ̃c. (6.24)

Similarly, if i = j, we find

E
{[

β̃β̃
T
]

ii

}
i∈X

=
N

∑
k=1

E
{
|β̃ik|2

}
= NE

∣∣∣∣ GE

pNE
α̃E

∣∣∣∣2 p + NI

∣∣∣∣ GI

pNI
α̃I

∣∣∣∣2 p =
ϕ̃c

p
. (6.25)

• Case 3: 2 ≤ n� N, m = 0

These values of n, m correspond to correlating effects of directed chains between

cells in the network which are short relative to the size of the network. Following

Eq. (6.21), for terms of this form we must examine the sum

N

∑
k1 ,...,kn−1=1

[
E
{
β̃ikn−1 · · · β̃k2k1β̃k1 j

}
− E

{
β̃ikn−1

}
· · · E

{
β̃k2k1

}
E
{
β̃k1 j

}]
. (6.26)

Counting indices, we first note that there will be Nn−1 terms in this sum. If all of

the initial indices (which correspond to rows) are distinct, the corresponding entries
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of β̃ are independent, and there is no contribution to the sum in Equation (6.26).

The number of terms which factor (and cancel) due to being chosen from distinct

rows will be at least the number of ways to pick different arrangements of n − 1

distinct integers from 1, . . . , i − 1, i + 1, . . . , N, or P(N − 1, n− 1). If n � N, then

P(N − 1, n− 1) = Nn−1 +O(Nn−2), so that only O(Nn−2) terms do not cancel.

Recall that each entry of β̃ is proportional to 1/Nn owing to the 1/N scaling of the

connections. This implies that the error introduced by assuming independence of

matrix entries when averaging isO(1/N2). Hence, to leading order in 1/N, we find

E
{[

β̃
n
]

i j

}
i∈X, j∈Y

=
N

∑
k1 ,...,kn−1=1

E
{
β̃ikn−1 · · · β̃k2k1β̃k1 j

}
i∈X, j∈Y

=
N

∑
k1 ,...,kn−1=1

E
{
β̃ikn−1

}
· · · E

{
β̃k2k1

}
E
{
β̃k1 j

}
i∈X, j∈Y +O(1/N2)

=

(
∑

kn−1

E
{
β̃ikn−1

})
· · ·
(

∑
k1

E
{
β̃k2k1

})
E
{
β̃k1 j

}
i∈X, j∈Y +O(1/N2)

= ϕ̃n−1 ϕ̃Y

NY
+O(1/N2).

(6.27)

In factoring the sum in the second-to-last equality, we used that the expectation of

an entry of β̃ depends only on the class of the pre-synaptic cell (the second index).

Similarly, we find that

E
{[(

β̃
T
)m]

i j

}
i∈X, j∈Y

= ϕ̃m−1 ϕ̃X

NX
+O(1/N2).

• Case 4: 3 ≤ n + m� N, and n, m 6= 0

These values of n, m correspond to direct and indirect common input motifs in the

network. As stated in the proof for case 3 above, a sufficient condition for the terms

to factor as in Eq. (6.21) is the independence of the matrix entries involved. This will
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certainly be true if the entries come from different rows of β̃, i.e., if all of the second

indices in Eq. (6.21) have distinct second entries,

i 6= kn−1 6= kn−2 6= · · · 6= k1 6= l1 6= · · · 6= lm−1 6= j.

Note that since k0 does not appear as a row index, its value has no bearing on the

dependence of the matrix entries (this leads to the multiplicative factor N scaling

the permutation below). In addition, as explained in case 2, this term does not

factor. The number of ways we can choose such distinct indices is equal to the

number of ways in which we can choose n + m− 2 indices distinctly, from the set

{1, . . . , N}\{i, j}. So long as n + m ≤ N, there are P(N − 2, n + m− 2) such combi-

nations.

Thus, the number of terms which factor due to independence and do not contribute

to the sum in Eq. (6.21) is NP(N− 2, n + m− 2), where the factor N results from the

fact that we can perform the factorization for all values of k0. If we also have that

n + m − 1 � N, then NP(N − 2, n + m − 2) ∼ Nn+m−1 +O(Nn+m−2). It follows

that, out of the Nn+m−1 terms comprising this sum only at most O(Nn+m−2) do

not cancel. Since each term in the sum is scaled by 1/Nn+m, this implies that the

difference is again only O(1/N2). Thus, when n + m� n, we have

E
{[(

β̃
)n (

β̃
T
)m]

i j

}
i∈X, j∈Y

=
N

∑
k0 ,...,kn−1 ,l1 ,...,lm−1=1

E
{
β̃∗ikn−1

β̃∗kn−1kn−2
· · · β̃∗k1k0

β̃l1k0 · · · β̃ jlm−1

}
=

N

∑
k0 ,...,kn−1 ,l1 ,...,lm−1=1

[
E
{
β̃∗ikn−1

}
E
{
β̃∗kn−1kn−2

}
· · · E

{
β̃∗k1k0

β̃l1k0

}
· · · E

{
β̃ jlm−1

} ]
+O(1/N2).

(6.28)

Again noting that the expected value of an entry of β̃ is independent of the row
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index, we have

E
{[(

β̃
)n (

β̃
T
)m]

i j

}
i∈X, j∈Y

=

(
∑

kn−1

E
{
β̃∗ikn−1

})(
∑

kn−2

E
{
β̃∗kn−1kn−2

})

· · ·
(

∑
k0

E
{
β̃∗k1k0

β̃l1k0

})
· · ·
(

∑
lm−1

E
{
β̃ jlm−1

})
+O(1/N2)

= ϕ̃(n−1)∗ϕ̃m−1ϕ̃c +O(1/N2).

(6.29)

Note that the second equality in Eq. (6.28) is not exactly valid if i = j, as the first and

last terms (β̃i,kn−1 and β̃i,lm−1 ) are no longer independent. However, it is not difficult

to verify that the difference is provably only O(1/N2), so Eq. (6.29) remains valid.

• Case 5: n, m not significantly smaller than N

The counting arguments employed in cases 3 and 4 are no longer valid when n, m

are not significantly smaller than N, as the corresponding differences of the form in

Eq. (6.21) will begin to feature too many entries from common rows, breaking the

permutation approximations we used in the preceding analysis.

However, as explained prior to the consideration of case 1, we assume that terms

for which the counting arguments fail are rendered negligible in their contribution

to the linear response expansion of correlations, owing to the exponential decay of

the terms in the series.

Finally, applying Eqs. (6.23–6.28) to Eq. (6.20) yields the following expression when
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i 6= j :

E
{

Sy
i j

}
i∈X, j∈Y

= Sy
0

[( ∞
∑

n=1
Ãnϕ̃n−1

)∗
ϕ̃∗Y
NY

+

( ∞
∑

m=1
Ãmϕ̃m−1

)
ϕ̃X

NX

+

( ∞
∑

n,m=1
(Ãnϕ̃n−1)∗(Ãmϕ̃m−1)

)
ϕ̃c

]
+O(1/N2)

= Sy
0

[(
Ã

1− Ãϕ̃

)∗
ϕ̃∗Y
NY

+

(
Ã

1− Ãϕ̃

)
ϕ̃X

NX
+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c

]
+O(1/N2).

(6.30)

When i = j, an additional correction term enters at second order owing to the fact that

in the random network, when computing the correlation between a neuron and itself, it

does not share a random amount of common input with itself, but a deterministic amount

given by the in-degree and strength of connections. Hence, the terms corresponding to

common input are scaled upwards in strength as seen in Eq. (6.25) and we have for i = j

E
{

Sy
ii

}
i∈X = Sy

0

[( ∞
∑

n=1
Ãnϕ̃n−1

)∗
ϕ̃∗X
NX

+

( ∞
∑

m=1
Ãmϕ̃m−1

)
ϕ̃X

NX
+ |Ã|2ϕ̃c

p

+

 ∞
∑

n,m=1
n+m≥3

(Ãnϕ̃n−1)∗(Ãmϕ̃m−1)

 ϕ̃c

+O(1/N2)

= Sy
0

[
1 +

(
Ã

1− Ãϕ̃

)∗
ϕ̃∗X
NX

+

(
Ã

1− Ãϕ̃

)
ϕ̃X

NX

+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c + |Ã|2ϕ̃c

(
1− p

p

)]
+O(1/N2).

Proposition 6.3.1 shows that, to leading order in 1/N, the mean cross-spectrum be-

tween two cells in given classes equals that in the all–to–all network (cf. Eq. (6.11)).

Therefore, our previous discussion relating network architecture to the shape of cross-

correlations in the all–to–all network extends to the average correlation structure in the
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random network for large N.

Pernice et al. [205] derived expressions similar to Eq. (6.14) for the correlation functions

in networks of interacting Hawkes processes [111, 112], which are linear, self-exciting point

processes with history-dependent intensities. They assumed that either the network is

regular (i.e., both in- and out-degrees are fixed) or has a sufficiently narrow degree dis-

tribution. Our analysis depends on having fixed in-degrees, and we do not assume that

networks are fully regular. Both approaches lead to results that hold approximately (for

large enough N) when the in-degree is not fixed.

6.3.2.2 Reducing uncertainty of average correlations by conditioning on connectivity

As Figure 6.6B shows there is large variability around the mean excitatory-inhibitory

cross-correlation function given by the leading order term of Eq. (6.14). Therefore, un-

derstanding the average cross-correlation between cells of given types does not neces-

sarily provide much insight into the mechanisms that shape correlations on the level of

individual cell pairs. Instead, we examine the average correlation between a pair of cells

conditioned on their first-order (direct) connectivity.

Proposition 6.3.2. The average cross-spectrum for a pair of cells with indices i 6= j, conditioned

on the value of the direct connections between them is

E
{

Sy
i j|β̃i j, β̃ ji

}
i∈X, j∈Y

= Sy
0

[
Ã∗β̃∗i j + Ãβ̃ ji +

(
Ã2ϕ̃

1− Ãϕ̃

)∗
ϕ̃∗Y
NY

+

(
Ã2ϕ̃

1− Ãϕ̃

)
ϕ̃X

NX

+

∣∣∣∣ Ã
1− Ãϕ̃

∣∣∣∣2 ϕ̃c

]
+O(1/N2).

(6.31)

Here we set β̃i j = 0 if we condition on the absence of a connection j → i, and β̃i j = β̃Y/p if we

condition on its presence. The term β̃ ji is set similarly.
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Proof. Our strategy will be to first make use of the fact that the results shown in the proof

of Proposition 6.3.1 for the approximate independence of connections still hold. Then, in

Eqs (6.32–6.35), we show that the factored expectations are unchanged by conditioning on

the value of the connections to leading order in 1/N. These two observations will prove

Proposition 6.3.2. As an example, we consider the case of conditioning on the connectivity

of a pair of excitatory cells (β̃i j and β̃ ji, where i, j ∈ E), and the proofs for conditions on

the presence or absence of connections of other classes is nearly identical.

First, we can solve for the expectation of an outgoing connection from cell i (with an

identical conclusion holding for cell j):

E
{
β̃ai|β̃i j, β̃ ji

}
i, j∈E,a =

Probability that cell

a is excitatory


Expected value of β̃ai

if a is excitatory


+

Probability that cell

a is inhibitory


Expected value of β̃ai

if a is inhibitory


=

NE

N

(
GE

pNE
α̃E

)(
p +

1− δβ̃ ji ,0 − p

NE

)
+

NI

N

(
GE

pNE
α̃E

)
p

=
ϕ̃E

NE
+

(1− δβ̃ ji ,0 − p)GE

pN2

=
ϕ̃E

NE
+O(1/N2),

(6.32)

where the subscript a denotes an average over all possible values of the index a. The term

p +
1− δβ̃ ji ,0 − p

NE

represents the fraction of connections cell i will make onto other excitatory cells which

are expected to be present. Because we fix the in-degree when generating graphs in this

example, this fraction depends on the value of β̃ ji. In particular, it will be greater or less

than p, the connection probability, depending on whether the connection i → j is on

(β̃ ji 6= 0) or off (β̃ ji = 0), respectively.
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As an example, if the connection j → i is “on”, the expected number of outgoing

connections from j to excitatory cells which will be on is 1 + p(NE − 1), as unconditioned

outgoing connections (i.e., β̃ki for k 6= j) are multiples of Bernoulli random variables. Note

that the first-order conditioned expected value coincides with the unconditioned expected

value to leading order in 1/N (compare Eq. (6.32) with Eq. (6.23)).

We also have that

∑
b

E
{
β̃ab|β̃i j, β̃ ji

}
i, j∈E = E

{(
∑
b
β̃ab

) ∣∣∣∣∣ β̃i j, β̃ ji

}
i, j∈E

= ϕ̃ and

∑
b∈X

E
{
β̃ab|β̃i j, β̃ ji

}
i, j∈E = E

{(
∑

b∈X
β̃ab

) ∣∣∣∣∣ β̃i j, β̃ ji

}
i, j∈E

= ϕ̃X

(6.33)

for any a, agreeing with the values of the same quantities found in the absence of condi-

tioning on connection values (cf. Eqs. (6.17, 6.18)). We have fixed the in degree so that the

fact that certain connections are present or absent has no bearing on the expected input to

a particular cell.

We can also solve for the value of ϕ̃c when we condition on the first-order connectivity

of two excitatory cells:

ϕ̃EE,c = E
{[

β̃β̃
T
]

i j
|β̃i j, β̃ ji

}
i∈E, j∈E

=
N

∑
k=1

E
{
β̃ikβ̃ jk|β̃i j, β̃ ji

}
= ∑

k 6=i, j
E
{
β̃ikβ̃ jk|β̃i j, β̃ ji

}
+ E

{
β̃iiβ̃ ji|β̃i j, β̃ ji

}
+ E

{
β̃i jβ̃ j j|β̃i j, β̃ ji

}
= ∑

k 6=i, j
E
{
β̃ikβ̃ jk|β̃i j, β̃ ji

}
+ β̃ jiE

{
β̃ii|β̃i j, β̃ ji

}
+ β̃i jE

{
β̃ j j|β̃i j, β̃ ji

}
= (NE − 2)

(
GE

pNE
α̃E

)2

pi p j + NI

(
− GI

pNI
α̃I

)2

p2

+ β̃i j

(
GE

pNE
α̃E

)
pi + β̃ ji

(
GE

pNE
α̃E

)
p j,

(6.34)
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where we define pi to be the probability that an excitatory connection k → i exists when

k 6= j conditioned on the value of β̃i j.This can be explicitly calculated as

pi =


pNE−1
NE−1 , if β̃i j 6= 0,

pNE
NE−1 , if β̃i j = 0,

with identical calculations holding for p j for the probability of an excitatory connection

k→ j when k 6= i. In either case, it is easy to see that pi = p +O(1/N). Substituting these

identities into Eq. (6.34) and comparing with Eq. (6.19), we have

ϕ̃EE,c = ϕ̃c +O(1/N2). (6.35)

Like the first-order terms in Eqs (6.32, 6.33), the expected common input ϕ̃c is unchanged

to leading order in 1/N by conditioning on the first-order connectivity of a pair of cells.

The results established in the proof of Proposition 6.3.1 regarding the approximate

independence of entries of β̃ (Eq. (6.21)) still hold. Equations (6.32-6.35) reveal that, to

leading order in 1/N, there will be no change to the expectation of terms higher than first

order in Eq. (6.20) as a result of the conditioning. Hence, the only difference occurs at first

order, where we are replacing average connection values with known connection values.

Finally, applying Eq. (6.21) and Eqs. (6.32-6.35) to Eq. (6.20), we obtain Eq. (6.31).

Although Eq. (6.31) appears significantly more complicated than the cell-type aver-

ages given in Eq. (6.14), they only differ in the first-order terms Sy
0 Ã∗β̃∗i j and Sy

0 Ãβ̃ ji. The

magnitude of expected contributions from all higher-order motifs is unchanged and coin-

cides with those in the all–to–all network.

Figure 6.6C shows the mean cross-correlation function for excitatory-inhibitory pairs
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with bidirectional coupling. Taking into account the mutual coupling significantly re-

duces variability (Compare with Figure 6.6B). To quantify this improve, we calculate the

mean reduction in variability when correlation functions are computed conditioned on

the connectivity between the cells. For a single network, the relative decrease in variabil-

ity can be quantified using

µerror =
1

NT
∑

(i, j)∈T
i > j

‖κy
i j(τ)−κFOC

T (τ)‖2

‖κy
i j(τ)−κCT

T (τ)‖2
,

where T represents the collection of all pairs of cells of a given type and pairwise connec-

tivity (in the present example these are reciprocally coupled excitatory-inhibitory pairs),

and NT is the number of pairs of that type in the network. The function κCT
T (τ) is the

leading-order approximation of average correlations given only the type of cells in T (as

in Eq. (6.14)), and κFOC
T (τ) the leading-order approximation to average correlations con-

ditioned on the first-order connectivity of class T (as in Eq. (6.31)). We make use of the

norm ‖·‖2 defined by ‖ f ‖2 =
(∫
| f |2

)1/2. Figure 6.6D shows µerror averaged over twenty

networks. In particular, compare the reduction in variability when conditioning on bidi-

rectional coupling between excitatory-inhibitory pairs shown in Figures 6.6B,C, with the

corresponding relative error in Figure 6.6D (circled in red).

6.3.3 Distance-dependent networks

Distance-dependent features of cortical connectivity have been observed in a variety of

settings [114, 204, 213, 260]. In auditory and visual cortices, for example, it has been ob-

served that neurons preferentially form synapses with partners with similar tuning pref-

erences [22, 164, 199, 302]. In addition, computational studies have attempted to explain

the role of distance-dependent connectivity in shaping neuronal activity [154, 157, 258].
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Here, we present some preliminary results acquired via the application of linear re-

sponse theory in two networks with distance-dependent connectivity. We believe these

results are suggestive of some interesting paths for future exploration of applications of

the linear response theory of correlations.

The first network we consider is a spatially one-dimensional “circular boxcar” net-

work. In particular, we consider a network of NE excitatory and NI inhibitory integrate–

and–fire neurons. Each neuron was assigned a preferred orientationφi. Within each class

(excitatory and inhibitory), the preferred orientations of class members were spread uni-

formly about the unit circle. Connectivity weights were set as

Wi j =



wE, j ∈ E, d(φi,φ j) ≤ θE,

wI , j ∈ I, d(φi,φ j) ≤ θI ,

0, otherwise,

(6.36)

where d(φi,φ j) is the angular distance around the circle. The constants θX set the connec-

tivity radii for neurons of each class. This type of connectivity is loosely based on models

of orientation selectivity in visual cortex [258].

The distance-dependent synaptic architecture not surprisingly generates a correspond-

ing distance-dependent correlation structure. In Figure 6.7A, we compare the relationship

between tuning distance and the pairwise long-window spike count correlation (Eq. (2.12))

obtained using the linear response theory (Eq. (6.1)) with that acquired via Monte Carlo

simulation. The parameters of the network were such that excitation was stronger and

more localized than inhibition. As a result, nearby neurons were strongly positively corre-

lated, while neurons at intermediate distances became significantly negatively correlated.

In Figure 6.7B, we plot the distance-correlation curve accounting for interactions only up

to certain orders (acquired from Eq. (6.2)). Interestingly, there are significant contributions
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from non-local interactions from motifs of fifth order and above.
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Figure 6.7: Spiking correlation structure within distance-dependent neuronal net-
works. (A) Exhibiting the relationship between pairwise asymptotic spike count cor-
relation coefficients (Eq. (2.12)). The blue line indicates the linear respose prediction
(Eq. (6.1)) while black indicates the estimation of the distance-correlation relationship ac-
quired from Monte Carlo simualtion. The “circular boxcar” network was of size N = 100
with NE = 80, and the synaptic footprints were σE = 20◦,σI = 60◦. (B) Decomposition
of the linear response prediction of the distance-correlation relationship in panel A into
contributions up to specified orders (acquired using Eq. (6.2)). (C) Correlation between
the pooled (summed) spiking outputs of the circular boxcar network. Pools were formed
as collections of neurons with preferred orientations falling within an interval of length
twice the pool radius. The network was approximately radially symmetric, and thus,
only the relative positions of the pools (compare blue and red lines), as opposed to the
absolute positions, mattered in determining pooled correlation. Black lines indicate val-
ues obtained by pooling randomly from the circular boxcar network (solid black line) and
pooling randomly from a random network (i.e., one without distance-dependent archi-
tecture – broken black line). (D) Same as panel A, but for a “planar boxcar” network. The
planar network was of size N = 1000 with NE = 800. The distance metric was Euclidean,
and we set σE = 0.15,σI = 0.4.

In Table 6.1, we contrast the mean and standard deviation of correlations in the distance-

dependent network with that of a random network possessing similar connection strengths

and connection probability, but lacking the distance-dependence in the connectivity. The
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mean correlation between cells in the two networks is similar, but the variation in correla-

tion values is much smaller for a random network — a direct reflection of the strong local

variations in spike count correlation is visible in Figure 6.7A.

Network type Theory Simulation
Circular boxcar (N = 100) 0.0346± 0.1022 0.0332± 0.0903
Random (N = 100) 0.0481± 0.0240 0.0402± 0.0252
Planar boxcar (N = 1000) 0.0094± 0.0773 0.0075± 0.0719
Random (N = 1000) 0.0097± 0.0073 0.0091± 0.0140

Table 6.1: Mean and standard deviation of the distribution of excitatory-excitatory pair-
wise correlations in structured and random networks. The values in circular and planar
boxcar networks are from the same data as Figure 6.7.

As an example, we considered the correlation of pooled collections of neurons within

the distance-dependent network in Figure 6.7C [232, 233]. In particular, we formed pools

by summation of all excitatory neurons with preferred orientations which fell within two

pools of increasing radius (note that the approximate radial symmetry of the network

made only the relative positions of the pools important). The correlation between two

nearby pools (blue line) was significantly larger than that between two distant pools (red

line). In both cases, correlation increases with pool radius as the growing pools encom-

pass more neurons with positive correlations amongst them. If the output of this ring

network feeds forward in a spatially-dependent manner (as is posited in the aforemen-

tioned models of orientation selectivity in V1), then the level of pooled correlation could

strongly modulate the activity of the downstream network.

We also plot in Figure 6.7C, the pooled correlation when pools of matching size are

formed by a random selection of neurons from the ring network without regard to pre-

ferred orientations (solid black line). The level of pooled correlation is very similar to that

obtained by likewise sampling from a truly random network (i.e., one without distance-

dependent connectivity). This is not too surprising, as we have been shown in [232] that
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mean correlation is a strong determinant of pooled correlation, and the mean correlations

are similar between the circular and random networks (Table 6.1).

We also considered a spatially extended, two-dimensional network. Neurons were

assigned a location on the 2-torus instead of the 1-torus as in the previous example. The

network connectivity was constructed similarly (see Eq. (6.36)), and the distance metric

was Euclidean distance. In Figure 6.7, we plot the distance-correlation relationship for this

“planar boxcar” network. The “planar boxcar” label given to the network owes to the na-

ture of the distance-dependent connectivity in this example, in which neurons synapsed

onto all other cells within a specified radius of their location at the same strength. Nearby

cells were again strongly positively correlated, with negative correlations introduced at

intermediate distances. In Table 6.1, we give the mean and standard deviation of cor-

relations for this network, and for comparison, the same for a similarly defined random

network. Again, mean correlations are of comparable magnitudes, but in this much larger

network (N = 1000, compared with N = 100 for the boxcar network), the variation in

correlations is increased by an order of magnitude owing to the spatial structure.

6.4 Validity of the linear response approximation

A natural question at this point is when the linear response theory gives accurate approx-

imations to the correlation structure. There are two factors that determine the consistency

of the linear response theory with the true spiking correlations: First, we must be in a

regime where the firing rate approximation of Eq. (5.2) is valid. The linear response ansatz

given by Eq. (5.3) relies on the average effect of an input being a “good” (in some sense)

imitator of the true effect of an input; therefore, failure of the rate (first-order) approxi-

mation necessarily implies failure of the correlation (second-order) approximation. The
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first-order approximation will be valid when the fluctuations in the input signal X(t) are

not too large compared to intensity of the intrinsic noise ξ . In particular, one general re-

quirement is that each neuron respond linearly not only to individual synaptic inputs, but

also to its summed synaptic input, implying that, for example, the summed strengths of

excitatory and inhibitory inputs must be appropriately “weak.”

On the other hand, the first-order theory does not supply the second-order approx-

imation of correlations by rigorous argument except in the case of a pair of cells with a

unidirectional synaptic interaction between them. Thus, it is not completely clear when

the additional step of using the linear response theory to approximate correlations should

fail in networks with non-trivial synaptic structure.

A detailed theoretical error analysis is infeasible due to the non-rigorous nature of

the linear response approximation of correlations. In general, though, we observed that

the accuracy of the linear response theory of correlations showed the same trends as the

firing rate theory: it was improved for weaker perturbations (i.e., weaker coupling and

input correlations) and stronger intrinsic noise.

6.4.1 Accuracy of linear response in the all–to–all network of Figure 6.5

First, we examined the limits of linear response theory in predicting time-dependent firing

activity (the peri-stimulus time histogram, or PSTH) in the balanced, all–to–all network

considered in Figure 6.5. We generated 100 realizations of Poisson spiking processes, each

2s in duration. We designated 80 to be excitatory and 20 to be inhibitory, to emulate the

input received by a cell in the all–to–all network. These point processes were convolved

with weighted alpha functions (see Eq. (5.6)), and used to drive an EIF neuron which was

also receiving a white, fluctuating background input.
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As exhibited in Figure 5.1, we averaged over realizations of background noise to ob-

tain the time-dependent firing intensity of this post-synaptic cell. We quantified the agree-

ment between the result obtained by numerical simulation and the approximation ob-

tained using linear response theory by computing the Pearson correlation coefficient be-

tween the two. This was performed over a range of input noise intensities and connection

weights to obtain the density plot in Figure 6.8A. In agreement with the expectation that

noise linearizes responses and improves the linear response approximation, the agree-

ment is best when noise is strong and connections weak, and worst for weak noise and

strong connections. Notably, for a large range of parameters, the linear response predic-

tion of the PSTH was quite good, with Pearson correlation coefficients above 80%.
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Figure 6.8: Error analysis of the linear response theory. (A) The Pearson correlation co-
efficient between the time-dependent firing activity (PSTH) calculated from Monte Carlo
simulations and linear response theory for an array ofσ (noise intensity) and GE (total ex-
citatory/inhibitory connection weight) values for a single EIF neuron receiving 80 excita-
tory and 20 inhibitory Poisson inputs at 17 Hz, convolved with alpha synaptic kernels (see
Eq. (5.6)). These inputs emulated the total drive received by a neuron in the precisely bal-
anced, all–to–all network considered in Figure 6.5. A higher correlation indicates a closer
match between simulations and theory. The red dot indicates the parameters used for
Figure 6.5. (B) The cross-correlation function between two excitatory cells in the precisely
balanced, all–to–all network from Monte Carlo simulations and linear response theory at
four points in (σ , GE) space, indicated by the black dots in panel A.
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Approximating time-dependent firing activity (PSTH) is only a part of approximating

network correlations. Network effects can further limit the accuracy of the approximation

given by Eq. (5.12). We therefore compared numerically obtained cross-correlation func-

tions with those given by Eq. (6.11) at four points (indicated by black dots in Figure 6.8A).

The results shown in Figure 6.8B indicate that the trends in cross-correlations and PSTH

approximation errors are similar. In particular, for connection strengths still stronger than

those used in the paper (red dot), the match between theory and simulations is excellent

at both noise levels tested.

However, in networks, large connection strengths (over 10x those used in Figure 6.5)

can cause the approximation of cross-correlations to be worse than what would be ex-

pected from the agreement in firing rate prediction. In particular, note that the relative L2

error2 between theoretical and numerical predictions was much lower for cases (iii), (iv)

when connection strengths were weak. Nevertheless, in the case of strong connectivity

(examples (i), (ii)), the relative error was significantly reduced in the high noise case (ii).

It is possible that a significant portion of the increase in error could be tied to an increase

in the input variability when the input comes from a (generally correlated) recurrent net-

work.

6.4.2 Accuracy of the linear response theory in different firing regimes

The accuracy of the linear response could also potentially depend on the firing regime

of the responding neuron. To explore this possibility, we revisit the FFI microcircuit con-

sidered in Figure 6.2. We varied the effective rest potential EL + Eξ ,i of the downstream

2The relative L2 error between the linear response-predicted correlation C∞ and the Monte Carlo predic-
tion C was defined as error = ||C∞ − C||2/||C||2.
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excitatory cell E2, while keeping the remaining parameters fixed. The linear response pre-

diction and Monte Carlo estimated cross-cumulant densities for the pair (E2, I) are shown

in Figure 6.9 at three values of the effective rest potential.

A B C
(kHz2) (kHz2) (kHz2)

-10-5

-10-5

-10-4

(ms) (ms) (ms)

50 50 50

r ~ 1.7 Hz
CV ~ 1.1

r ~ 17.2 Hz
CV ~ 1.0

r ~ 47.1 Hz
CV ~ 0.7

Figure 6.9: The performance of linear response theory in various firing regimes. For
the feed-forward inhibitory microcircuit considered in the manuscript (see Figure 6.2),
we varied the effective rest potential EL + Eξ ,i (see Eq. (5.4) and Figure 6.2) to the cell E2
between three values — (A) EL + Eξ ,i = −59 mV, (B) EL + Eξ ,i = −54 mV (this is the value
used in Figure 6.2), (C) EL + Eξ ,i = −49 mV. Insets give the firing rate and the coefficient
of variation of the interspike interval distribution of cell E2.

For comparison, we have also included the CV of the ISI distribution for the cell E2.

The three chosen parameter values lead to three quantitatively and qualitatively different

firing behaviors. In particular, when the effective rest potential is -59 mV, firing is spon-

taneous, but rare (rate ∼ 1.7 Hz, CV ∼ 1.1). Although the error does seem to increase as

firing rates decreases, the theory still performs well even for very low-rate spiking. We

suspect that part of this error is due to the propensity of linear response theory to predict

negative (nonphysical) firing rates when rates are low but connections are strong.
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6.4.3 Failure of the linear response theory of correlations at third order

To this point, we have only considered linear response as applied to the estimation of

second-order cross-cumulant measures. We also attempted to apply linear response the-

ory to approximate third-order cross-cumulant densities. However, we found that there

are serious issues with such applications. We will present a pair of examples revealing

somewhat distinct issues presented by the theory when applied to third-order correla-

tions amongst spiking neurons.

There is still an open question as to whether a correction can be posed which could

account, to some extent, for these discrepancies. One possible avenue of future research

is to attempt an extension of the rigorous derivation of the second-order correlation struc-

ture of Hawkes processes [111, 112] to third order. The second-order correlation structure

of a vector Hawkes process has a form very reminiscent of the linear response approx-

imation to correlations given in Eq. (6.1). If the form of the third-order correlations for

Hawkes processes could be determined, this could suggest a beneficial alteration of the

naive linear response approximation of the third-order correlation structure.

6.4.3.1 Linear response theory of third-order correlations

Recall that the starting point for the linear response approximation of second-order corre-

lations in Eq. (6.1) was a linear approximation of the spectra ỹ(ω) of the point processes

y(t) representing the output of the modeled network (cf. Eq. (5.11)). For each process yi,

we can write

ỹi(ω) = L̃i(ω)ỹ0(ω) =
N

∑
n=1

L̃in(ω)ỹ0,n(ω), (6.37)

where L̃i(ω) is the ith row of the matrix L̃(ω) =
(
I− K̃(ω)

)−1.

151



6.4. VALIDITY OF THE LINEAR RESPONSE APPROXIMATION

Given the spectra ỹ(ω), the bispectrum (see Eq.(2.5)) for a subset of three of these

processes can be written

Sy
i jk(ω1,ω2) = E

[
ỹ∗i (ω1 +ω2)ỹ j(ω1)ỹk(ω2)

]
.

Substituting Eq. (6.37) into the previous expression gives

Sy
i jk(ω1,ω2) =

N

∑
n1 ,n2 ,n3=1

L̃∗in1
(ω1 +ω2)L̃ jn2(ω1)L̃kn3(ω2)Sy

0,i jk(ω1,ω2), (6.38)

where the functions

Sy
0,i jk(ω1,ω2) = E

[
ỹ∗0,i(ω1 +ω2)ỹ0, j(ω1)ỹ0,k(ω2)

]
are the “uncoupled bispectra” of the network. Under the assumption of independent

uncoupled activity, Sy
0 is a diagonal tensor. We note that Eq. (6.38) can be re-expressed in

tensor notation as as

Sy(ω1,ω2) = E
[
ỹ(ω1 +ω2)⊗ ỹ(ω1)⊗ ỹ(ω2)

]
= E

[
L̃(ω1 +ω2)ỹ0(ω1 +ω2)⊗ L̃(ω1)ỹ0(ω1)⊗ L̃(ω2)ỹ0(ω2)

]
=
[
L̃(ω1 +ω2)⊗ L̃(ω1)⊗ L̃(ω2)

]
· Sy

0(ω1,ω2),

(6.39)

where ⊗ indicates a tensor product.

To our knowledge, the uncoupled bispectra Sy
0 cannot be determined analytically for

integrate–and–fire neurons even in the absence of correlated input. In the second-order

case, the derivation relies heavily on a second-order identity relating the first-passage

time density of a renewal process to its power spectrum (see Eq. (5.25)). In the absence of

an equivalent identity at third order, the uncoupled spectra of the EIF neurons composing

the systems under consideration must be determined by other means. In what follows,

before computing linear response approximations to third-order correlation structures,

we computed by Monte Carlo simulation an approximation of the uncoupled bispectra

Sy
0 .
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6.4.3.2 Three-cell excitatory microcircuit

The first example we considered was a feed-forward excitatory microcircuit consisting of

three neurons. The weight matrix was of the form

W =


0 0 0

wE 0 0

wE wE 0

 .

That is, the connectivity was 1 → 2, 1 → 3, 2 → 3. In Figure 6.10, we compare the Monte

Carlo-estimated cross-cumulant density for the triplet (1, 2, 3) (panel A) to the naive linear

response estimation of the same (panel B) calculated using Eq. (6.39).

There are significant qualitative and quantitative errors in the linear response approx-

imation. In particular, the true cross-cumulant density exhibits a sharp peak in the region

τ2 > τ1 > 0. Recall that the third-order cross-cumulant density measures the excess

rate of spiking above what would be predicted from lower-order cumulants (first- and

second-order, in the present example). Therefore, this peak indicates an elevated likeli-

hood to observe firing events ordered as 1 → 2 → 3, a feature which is not captured by

the linear response theory.

6.4.3.3 Two-cell bidirectional inhibitory microcircuit

We also evaluated the linear response approximation to third-order correlations for a two-

cell, bidirectional inhibitory microcircuit. The weight matrix had the form

W =

 0 wI

wI 0

 .
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Figure 6.10: Linear response fails to capture third-order correlations even qualitatively.
(A) Monte Carlo-estimated third-order cross-cumulant density for the triplet (1, 2, 3) in
the 3-cell excitatory microcircuit described in Section 6.4.3.2. Colors indicate function
values at the corresponding lags τ1 (horizontal axis) and τ2 (vertical axis) — see color
bar (far right). (B) Same as panel A, but displays the linear response approximation to
the third-order cross-cumulant density derived by an two-dimensional inverse Fourier
transform of Eq. (6.39).

In this case, we calculated the third-order cross-cumulant density for the triplet (1, 2, 1),

which included the first cell twice. Interestingly, as we exhibit in Figure 6.11, the linear

response approximation of the third-order correlations failed, but in a very different way

than was observed for the three-cell system considered in Section 6.4.3.2.

As explained in the discussion surrounding Eq. (2.16), the cross-cumulant density

κ
y
121(τ1, τ2) can generally be written as

κ
y
121(τ1, τ2) = δ(τ2)κ

y
12(τ1) + “non-singular contributions”.

In Figure 6.11A, we plot the second-order cross-cumulant density for the pair (1, 2) and

the singular contribution predicted by the linear response theory (scaled to real units).

Half of the correlation function is effectively missing from the linear response prediction.
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6.4. VALIDITY OF THE LINEAR RESPONSE APPROXIMATION

In addition, as Figure 6.11B,C show, half of the non-singular, “true” third-order features

are missing as well. Interestingly, the half that is present is accurately reproduced, both

qualitatively and quantitatively. This suggests that a correction may be possible, but we

have not yet determined what that correction should be.
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Figure 6.11: Linear response theory captures “half” of the third-order correlations in
a bidirectional inhibitory microcircuit. (A) Comparing the singular contribution calcu-
lated from Monte Carlo simulation (black line) with the linear response prediction (blue
line). Note that for τ1 > 0, the blue and black lines lie almost exactly on top of each other.
(B) Monte Carlo-estimated third-order cross-cumulant density for the triplet (1, 2, 1) in
the 2-cell inhibitory microcircuit described in Section 6.4.3.3. Colors indicate function val-
ues at the corresponding lags τ1 (horizontal axis) and τ2 (vertical axis) — see color bar (far
right). (C) Same as panel A, but displays the linear response approximation to the third-
order cross-cumulant density obtained from a two-dimensional inverse Fourier transform
of Eq. (6.39).
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Chapter 7
Motif cumulants and average

correlations

The aim of the field of connectomics is to produced detailed maps of cortical connectiv-

ity [261, 262]. Thanks to rapid technological advancement in the areas of electrical record-

ing [67, 289], optogenetics [10, 172], and photostimulation [200, 286], the neuroscientific

community has made amazing strides in mapping neural circuitry. However, as men-

tioned in Section 3.3, the human brain, is currently estimated to possess on the order of

100 billion (1011) neurons making 100 trillion (1014) synapses with each other. For this

reason, a detailed mapping and modeling of the full neuronal architecture of mammalian

brains will not be achieved in the foreseeable future.

The cause is not lost — experimental studies are already revealing a wealth of infor-

mation about the statistics of connectivity in various cortical regions [260, 273, 295]. These

experimental efforts place the burden on theorists to explore what can be inferred about
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the nature of cortical activity from these available data. In the present chapter, we will in-

troduce measures of neuronal connectivity known as motif cumulants [127, 128, 309]. Fig-

ure 1.3 portrays the role that motif cumulants can play in shaping the global dynamical

properties of a neuronal network. An Erdös-Rényi network model can be equivalently

defined as a network model having zero expected motif cumulants above first order, and

deviations from this model equate to the introduction of non-zero motif cumulants.

Applying the linear response theory of Chapters 5 and 6, we will achieve an expansion

of average correlations within a network of integrate–and–fire neurons in terms of these

motif cumulants [127, 128]. In particular, we utilize this expansion to express average cor-

relation as a function of the frequency (probability of observation) of second-order motifs

within the synaptic architecture. We depict the second-order motifs for a network with a

single class of cells in Figure 7.1. Embedded within this result is the observation that, in

networks admitting a linear description, the second-order cross-cumulant structure can

be determined from knowledge of relatively few dynamical and synaptic architectural

statistics. The theory presented in this chapter reveals explicitly the nature of the ties

between dynamics and network topology.

Chain Diverging Converging

1

2

3
4

5

1

2

3

5

2 3 5

1 4

Figure 7.1: Second-order motifs within a recurrent network. (Left) Second-order submo-
tifs — motifs involving two connections and at most three cells — are embedded within
the graph of a network. (Right) The three types of second-order motifs: chain, diverging,
and converging.
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7.1. GRAPHICAL STRUCTURE OF NEURONAL NETWORKS

7.1 Graphical structure of neuronal networks

7.1.1 Preliminaries

We will again consider coupled networks of N exponential integrate–and–fire neurons.

To facilitate the analysis in this chapter, we will make some simplifying assumptions:

First, we will assume the cells in our networks to be dynamically identical — in the con-

text of the linear response theory, this implies identical susceptibility functions Ã(ω) and

identical uncoupled power spectra Sy
0(ω). Furthermore, we will assume the strength of

synaptic interactions to be constant within neuron classes: For a network consisting of a

single population in which we do not distinguish between types or classes of neurons,

this means we can express the synaptic weight matrix as

W = wW0,

where W0 is the adjancency matrix of the network (i.e., W0
i j = 1 if there is a connection

j→ i, and is zero otherwise).

Finally, we will consider all spectral quantities to be evaluated at ω = 0 (and ac-

cordingly omit all dependencies on ω). This corresponds to the consideration of spike

count cross-cumulants over infinitely long windows (see Eq. (2.18) and the surrounding

discussion). In general, the analysis presented in this chapter can be performed at each

frequency in order to analyze the full second-order temporal cumulant structure.

Rajan and Abbot [209] derived an asymptotic (large N) characterization of the spec-

tral radius of the weight matrix for a general excitatory-inhibitory neuronal network. In

particular, they found that for an Erdös-Rényi network consisting of NE excitatory (resp.

NI inhibitory) cells making synapses with weight wE (resp. wI), there would be a single
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eigenvalue at pNEwE + pNIwI , characterizing the average strength of an interaction, and

the remaining eigenvalues would be randomly randomly in the circle with radius√
p(1− p)(NEw2

E + NIw2
I ).

Motivated by these findings, we quantify the strength of interactions across a distribution

of random networks by associating with the class a so-called Erdös-Rényi spectral radius

ΨER
(

Ãw
)

by

ΨER
(

Ãw
)
=
∣∣Ã∣∣max

{
|pNEwE + pNIwI |,

√
p(1− p)(NEw2

E + NIw2
I )

}
. (7.1)

Here, p is the expected connection probability across the distribution of networks. In

general, a higher value of ΨER
(

Ãw
)

indicates stronger interactions between cells on av-

erage, and the performance of the linear response theory is generally better on classes of

networks with relatively small ΨER
(

Ãw
)
.

7.1.1.1 Graph generation

In this chapter, we will make use of random, non-Erdös-Rényi graphs (i.e., graph edges

are not placed independently from each other). Here, we present more details on how we

generate network samples with fixed connection probability, but different frequencies of

second-order motifs.

First, the degree distribution method consists of initially generating a sample of in and

out degrees from a truncated power law distribution with density, following [309],

f (d) =



C1dγ1 , 0 ≤ d ≤ L1,

C2dγ2 , L1 ≤ d ≤ L2,

0, otherwise,
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7.1. GRAPHICAL STRUCTURE OF NEURONAL NETWORKS

where d is the in- or out-degree. The two marginal distributions of in and out degree are

then coupled using a Gaussian copula with correlation coefficient ρ to generate the in- and

out-degree list. The parameters ρ, L1/L2, L2,γ1 > 0,γ2 < 0 are randomly and uniformly

sampled for each network, separately for in and out degrees.

We also use the SONET method [309] for generating single population networks. In

concept, the sampling distribution of the SONET algorithm is similar to that of the maxi-

mum entropy graph distribution: Given only the connection probability and second-order

motif frequency, we try to generate the “most random” network satisfying these moment

constraints. However, instead of drawing the connections from a Gibbs distribution as

in a proper maximum entropy method, we make use of a dichotomized, N2-dimensional

multivariate Gaussian distribution. The SONET algorithm allows us to sample from the

entire range of possible first- and second-order motif frequencies. Network samples gen-

erated using both methods cover the range of motif frequencies observed experimentally

in cortical circuits [260, 309].

7.1.2 Second-order motif cumulants

Briefly, a motif is defined as a subgraph of the network architecture. To quantify the

frequency of a motif in a given realization of the random synaptic architecture, we first

count the number of times the motif occurs, then normalize by the number of occurences

possible in a network of that size. For instance, the first-order motif cumulant is simply

the empirical connection probability p, given by

p =
1
N

uTW0u =
1

N2 ∑
i, j

W0
i j, (7.2)
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where we have defined the N-vector u by u = 1√
N

1N1. Here, 1N1 N2 is the N1 × N2 matrix

of all ones. Note that if 〈X〉 indicates the entry-wise average of the matrix X, then

〈X〉 = 1
N

uTXu.

The prevalence of second-order motifs is assessed similarly. For instance, the fre-

quency of second-order diverging motifs (see Figure 7.1) is measured by

qdiv =
1

N2 uTW0W0Tu− p2

=
1
N

〈
W0W0T

〉
− p2

=
1

N3 ∑
i, j,k

W0
ikW0

jk − p2.

(7.3)

Motif cumulants for second-order chain and converging motifs are defined likewise,

qch =
1

N2 uT
(

W0
)2

u− p2

=
1
N

uT
(

W0T
)2

u− p2

=
1
N

〈(
W0
)2
〉
− p2,

(7.4)

qcon =
1

N2 uTW0TW0u− p2

=
1
N

〈
W0TW0

〉
− p2.

(7.5)

In the limit of large population size, the empirical connection probability p of an Erdös-

Rényi network converges to the statistical connection probability pstat used to define the

model with probability one, by the strong law of large numbers. Similarly, the probability

of observation of any second-order motif necessarily converges to p2. Thus, the subtrac-

tion of p2 in the definitions (7.3–7.5) specifies these quantities to be measurements of the

frequency of the corresponding second-order motif in excess (or deficit) of what would
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be naively predicted from lower-order — in the present case, just first-order — motif fre-

quencies. In other words, given only the first-order motif cumulant (the connection prob-

ability) and lacking any knowledge of the graphical dependencies, the “best guess” one

can make for the probability of seeing a given second-order motif is p2 — i.e., to assume

connections are independent. It is this normalization which suggests the interpretation of

qdiv as a motif cumulant.

Relation between motif cumulants and the degree distribution It is important to note

that the second-order motif cumulants defined in Eqs. (7.3–7.5) are not independent, and

generally cannot be manipulated independently. These quantities do jointly possess three

degrees of freedom, given by their relationship to moments of the degree distributions [101,

127, 128, 236],

qdiv =
1

N2 var
[
dout] , qcon =

1
N2 var

[
din
]

, and qch =
1

N2 cov
[
dout, din

]
.

The stated variances and covariances are sample moments of the network degree distri-

bution.

7.1.3 Motif moments and higher-order cumulants

7.1.3.1 Single population networks

In anticipation of subsequent analyses, we will now establish some additional notation,

and define higher-order motif cumulants. First, we define a motif moment to be the empir-

ical probability of observing a specified motif, without removal of lower-order contribu-

tions. For an (n, m) diverging motif (see Figure 6.1 and the surrounding discussion), the
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motif moment µn,m is simply defined as

µn,m =
1

Nn+m−1

〈(
W0
)n (

W0T
)m〉

=
1

Nn+m uT
(

W0
)n (

W0T
)m

u. (7.6)

Motif moments µn corresponding to length n chains are given by µn = µn,0 = µ0,n.

The relationship between motif moments and motif cumulants is analogous to that

between moments and cumulants of random variables. In particular, we define motif

cumulants implicitly via expanded forms of motif moments. Letting

C(n) =
{
{n1, . . . , nt} : ∑

i
ni = n, ni > 0

}
be the collection of all compositions (ordered partitions) of N, we set for n, m ≥ 1

µn = ∑
{n1 ,...,nt}∈C(n)

(
t

∏
i=1
κni

)
, (7.7)

µn,m = ∑
{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

(
t−1

∏
i=1
κni

)
(κnt ,ms +κntκms)

(
s−1

∏
j=1
κm j

)
. (7.8)

In evaluating the motif cumulant µn,m, we adopt the convention that
(
∏

t−1
i=1 κni

)
= 1 if

t = 1, and likewise if s = 1.

The construction of motif moments from cumulants has a familiar interpretation: esti-

mating the probability of a joint event from the probability of its constituents. Figure 7.2

demonstrates this for two example motifs. Each term in the diagrammatic expansion

arises from a cumulant. The first-order term gives the probability assuming independence

of each connection, and the subsequent terms give corrections from excess occurrences

of second-, and then higher-order submotifs. Hence, each motif cumulant κn,m captures

“pure” higher-order connectivity statistics.

Referring to definitions given in Eqs. (7.2), (7.3) and (7.4), it is not difficult to check that

p = κ1, qdiv = κ1,1, and qch = κ2.
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A

B
1st order 2nd order 3rd order

Figure 7.2: Diagrammatic expansion of the probability of occurrence for motifs. (A)
The probability of observing a third-order chain motif, µ3, can be expanded in terms of
empirical motif cumulants of lesser or equal order. (B) Same as panel A, but for a third-
order diverging motif, µ2,1.

General motif moments can also be expressed explicitly in terms of the adjacency matrix,

which is the subject of the next proposition.

Proposition 7.1.1. Let W0 be the adjacency matrix for a size N network consisting of a single

class of cells. Define H = uuT and Θ = I−H. Define Wθ
n =

[(
W0Θ

)n−1 W0
]
. If the motif

cumulants κn,κn,m are defined implicitly by Eqs. (7.7, 7.8) then we also have for n, m ≥ 1 that

κn =
1

Nn uTWθ
nu, (7.9)

κn,m =
1

Nn+m uTWθ
nΘWθ

mu. (7.10)

Proof. First, recall that from Eq. (7.6), we have

µn =
1

Nn uT
(

W0
)n

u.

Substituting I = Θ+ H between every subsequent appearance of the adjacency matrix
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W0 gives

µn =
1

Nn

[
W0 (Θ+ H)

]n−1
W0u. (7.11)

Next, we expand across every sum Θ+H in Eq. (7.11) and collect consecutive products of

W0 and Θ into terms of the form Wθ
ni

. Noting the obvious bijection between a composition

of the integer n, i.e., {n1, . . . , nt} ∈ C(n), and a term of the form[
t−1

∏
i=1

(
Wθ

ni
H
)]

Wθ
nt

.

we can write (substituting H = uuT)

µn =
1

Nn uT

{
∑

{n1 ,...,nt}∈C(n)

[
t−1

∏
i=1

(
Wθ

ni
H
)]

Wθ
nt

}
u

=
1

Nn ∑
{n1 ,...,nt}∈C(n)

[
t

∏
i=1

(
uTWθ

ni
u
)]

.

(7.12)

If t = 1, we define the product
[
∏

t−1
i=1

(
Wθ

ni
H
)]

= I.

Now, we will establish Eq. (7.9) by induction. Note that this equation holds trivially

for n = 1, as from Eqs. (7.6, 7.7) we have, noting that the only decomposition of n = 1 is

{1},

κ1 = µ1 =
1
N

uTW0u =
1
N

uTWθ
1u.

Next, assume that Eq. (7.9) holds for all n < p. That is, we have

κn =
1

Nn uTWθ
nu, n < p. (7.13)

From Eq. (7.12) we can write

µp =
1

Np

{
uTWθ

pu +
∗
∑

{n1 ,...,nt}∈C(p)

[
t

∏
i=1

(
uTWθ

ni
u
)]}

,

where the notation
∗
∑ indicates a sum over all partitions not consisting of a single element

(i.e., t > 1). Substituting Eq. (7.13) into the previous expression next gives that

µp =
1

Np uTWθ
pu +

∗
∑

{n1 ,...,nt}∈C(p)

[
t

∏
i=1
κni

]
.
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Noting that Eq. (7.7) can be written

µp = κp +
∗
∑

{n1 ,...,nt}∈C(p)

[
t

∏
i=1
κni

]
,

comparing the previous two expressions yields that

κp =
1

Np uTWθ
pu.

In sum, Eq. (7.9) holding for n < p implies that it holds for n = p. By induction, Eq. (7.9)

holds for all n.

Equation (7.10) is established likewise. Starting from Eq. (7.6), substituting I = Θ+ H

between every subsequent appearance of the adjacency matrix W0 gives

µn,m =
1

Nn+m uT
[
W0(Θ+ H)

]n−1
W0(Θ+ H)W0T

[
(Θ+ H)W0T

]m−1
u. (7.14)

By expanding across all sums of Θ+H except the central one (between the terms W0, W0T),

and noting that there is an obvious bijection between a pair of compositions of the integers

n and m, i.e., {n1, . . . , nt} ∈ C(n), {m1, . . . , ms} ∈ C(m), and a term of the form[
t−1

∏
i=1

(
Wθ

ni
H
)] [

Wθ
nt
(Θ+ H)Wθ

ms

] [s−1

∏
j=1

(
HWθ

m j

)]
,

we can write (substituting H = uuT)

µn,m =
1

Nn+m uT

 ∑
{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

[
t−1

∏
i=1

(
Wθ

ni
H
)] [

Wθ
nt
(Θ+ H)Wθ

ms
u
] [s−1

∏
j=1

(
HWθ

m j

)] u

=
1

Nn+m ∑
{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

[
t−1

∏
i=1

(
uTWθ

ni
u
)] [

uTWθ
nt
(Θ+ uuT)Wθ

ms
u
] [s−1

∏
j=1

(
uTWθ

m j
u
)]

= ∑
{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

[
t−1

∏
i=1

(
1

Nni
uTWθ

ni
u
)] [

1
Nnt+ms

uTWθ
nt
(Θ+ uuT)Wθ

ms
u
]

·
[

s−1

∏
j=1

(
1

Nm j
uTWθ

m j
u
)]

.

(7.15)
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If t = 1, we again define the product
[
∏

t−1
i=1

(
Wθ

ni
H
)]

= I and likewise if s = 1.

We now prove Eq. (7.10) by induction, taking as true Eq. (7.9). First, when n = m = 1,

the only compositions are trivial (i.e., C(1) =
{
{1}

}
). Equations (7.8) and (7.15) give in

this case that

µ1,1 = κ1,1 +κ
2
1 =

1
N2 uTWθ

1ΘWθ
1u +

(
1
N

uTWθ
1u
)2

.

Since Eq. (7.7) for n = 1 provides the equality

κ1 =
1
N

uTWθ
1u,

we have that

κ1,1 =
1

N2 uTWθ
1ΘWθ

1u.

Hence, Eq. (7.8) holds for n = m = 1. Next, fix a pair of integers (p, q) with (p, q) > (1, 1),

where the inequality (n, m) < (p, q) is defined such that n ≤ p and m ≤ q, with at least

one inequality holding strictly. Assume Eq. (7.8) is true for all (n, m) < (p, q). That is, in

these cases,

κn =
1

Nn uTWθ
nu (by Eq. (7.7)) and κn,m =

1
Nn+m uTWθ

nΘWθ
mu. (7.16)

From Eq. (7.15), we can write

µp,q =
∗
∑

{n1 ,...,nt}∈C(p)
{m1 ,...,ms}∈C(q)

[
t−1

∏
i=1

(
1

Nni
uTWθ

ni
u
)] [

1
Nnt+ms

uTWθ
nt
(Θ+ uuT)Wθ

ms
u
]

·
[

s−1

∏
j=1

(
1

Nm j
uTWθ

m j
u
)]

+
1

Np+q

[
uTWθ

pΘWθ
qu +

(
uTWθ

pu
) (

uTWθ
qu
)]

,

where the notation
∗
∑ indicates a sum over all partitions in C(p) and C(q) not both con-

sisting of a single element (i.e., t, s are not simultaneously equal to 1). Substituting in
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Eq. (7.16) gives that

µp,q =
1

Np+q uTWθ
pΘWθ

qu +κpκq +
∗
∑

{n1 ,...,nt}∈C(p)
{m1 ,...,ms}∈C(q)

(
t−1

∏
i=1
κni

)
(κnt ,ms +κntκms)

(
s−1

∏
j=1
κm j

)
.

In addition, Eq. (7.8) can be written

µn,m = κp,q +κpκq +
∗
∑

{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

(
t−1

∏
i=1
κni

)
(κnt ,ms +κntκms)

(
s−1

∏
j=1
κm j

)
.

Comparing the previous two expressions yields that

κp,q =
1

Np+q uTWθ
pΘWθ

qu,

i.e., Eq. (7.10) holds for (n, m) = (p, q). Therefore, Eq. (7.10) holds for (n, m) = (1, 1) and

if it holds for (n, m) < (p, q), then it holds for (n, m) = (p, q). By induction, Eq. (7.10)

holds for all (n, m) ≥ (1, 1), completing the proof.

The motif moments and cumulants defined in Eqs. (7.9–7.10) involve diverging and

chain motifs of the type depicted in Figure 6.1. The astute reader may wonder at this

point why no converging motifs are being considered. The answer is that such motifs

simply do not appear in the linear response approximation of correlations. Below, we will

verify this independence of correlations on converging motifs which is generally true for

linearly interacting networks.

7.1.3.2 Motif cumulants in networks with multiple subpopulations

Neuronal network models often possess natural divisions into subpopulations. For exam-

ple, neuronal populations can be divided according to the polarity of interactions between

neurons (i.e., into excitatory and inhibitory neurons). In addition, neurons of different
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types have been observed to exhibit a wide range of synaptic and electrophysiological

properties [18]. We next extend the concept of motif cumulants presented in Section 7.2.1

for a single homogeneous population to networks consisting of distinguishable subpopu-

lations.

One immediate complication which arises in the consideration of motif cumulants in

the context of networks with multiple subpopulations is the combinatorial explosion of

the number of motifs embedded within the network architecture of a given order. For

example, there are twenty distinct second-order motifs for a network consisting of two

distinct populations, as opposed to three for a single population (see Figure 7.1). The

twenty motifs include three motif types, and 23 = 8 possible choices for each type, in-

cluding four redundant motifs — for example, the motifs E← E→ I and I ← E→ E are

equivalent. Diagrams of these twenty motifs are shown in Figure 7.3.

Diverging Converging Chain

Excitatory cell Inhibitory cell

Figure 7.3: Second-order motifs in a two population network. In a two population net-
work, twenty different second-order motifs can be defined depending on the motif type
(converging, diverging or chain) as well as the subpopulation identity of each neuron in
the motif. In this case, the two populations, represented by different colored shapes, are
excitatory and inhibitory neurons.
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When considering the situation of multiple subpopulations, it is natural to also con-

sider the block-wise-averaged correlation. To fix ideas, we will consider a two-class net-

work consisting of excitatory and inhibitory cells, but the theory is certainly more general,

and extensions to more subpopulations are natural. In this case, take our size N network

to consist of NE excitatory cells and NI = N−NE inhibitory cells. Define the N× 2 matrix

U as

U =

 1√
NE

1NE1 0

0 1√
NI

1NI 1

 .

In addition, define the blockwise average 〈X〉B of an N × N matrix X as the 2× 2 matrix

〈X〉B =

〈XEE〉 〈XEI〉

〈XIE〉 〈XI I〉

 ,

where XYZ indicates the corresponding NY × NZ block of X and 〈XYZ〉 is a normal entry-

wise matrix average. We note that

〈X〉B = DUTXUD,

where

D =

1/
√

NE 0

0 1/
√

NI

 .

Motif moments are defined analogously to the single population case (see Eq. (7.6)) as

µn,m =
1

Nn+m−1

〈
(W)n

(
WT
)m〉

B
=

1
Nn+m−1 DUT (W)n

(
WT
)m

UD. (7.17)

Note that motif moments (and, accordingly, cumulants) are now matrices, as opposed to

scalars when defined for a single population, and more importantly, are defined in terms

of the weight matrix, as opposed to the adjacency matrix. The reasoning behind this choice

is simple — when considering multiple populations, a natural difference one can pose
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between the populations is different synaptic efficacies. In the present case, excitatory

and inhibitory synapses should, at minimum, differ in sign (polarity). In the presence of

heterogeneous synaptic weighting, the adjacency matrix is generally less meaningful to

the determination of network dynamics than the weight matrix. As a result, motifs, like

the connections they involve, can also now possess a strength or polarity which depends

on the classes of the cells embedded in the motif.

In parallel with and with slight modification to Eqs. (7.7) and (7.8) in the single pop-

ulation situation, motif moments and cumulants are implicitly related in the multiple

subpopulation case as

µn = ∑
{n1 ,...,nt}∈C(n)

[(
t−1

∏
i=1

κni E

)
κnt

]
, (7.18)

µn,m = ∑
{n1 ,...,nt}∈C(n)
{m1 ,...,ms}∈C(m)

(
t−1

∏
i=1

κni E

)
(κnt ,ms +κnt Eκms)

(
s−1

∏
j=1

Eκm j

)
, (7.19)

where

E =
1
N

D−2 =

NE/N 0

0 NI/N

 .

The matrix E interleaves products of cumulant terms to ensure that the correct scaling is

applied for the diagrammatic expansion of motif moments as in Figure 7.2 — in short, this

accounts for the probabilities of selecting cells of each population.

Finally, a direct extenxion of Proposition 7.1.1 gives the following explicit definition of

motif cumulants for multiple subpopulations [127, 128],

κn =
1

Nn−1 DUTWθ
nUD, (7.20)

κn,m =
1

Nn+m−1 DUTWθ
nΘWθT

m UD, (7.21)
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where we have Θ = I−UUT and, in a slight deviation from the single population case,

Wθ
n = [WΘ]n−1 W. Importantly, note that motif cumulants in this multi-population case,

like their moment counterparts, are given in terms of the synaptic weight matrix, and

not the synaptic adjacency matrix. Thus, in the multi-population case, the entries of the

motif cumulant κn,m should be interpreted as the expected weight of an (n, m) diverging

motif in excess of what one would predict given access to expected weights of lower-order

submotifs comprising the (n, m) diverging motif.

The second-order motif cumulants κ1,1 and κ2 for two populations can be tied explic-

itly to scalar motif frequencies as were defined in the single population case [127]. First,

assuming that synaptic strengths are constant within each class and depend only on the

presynaptic cell, we can write

W =

wEW0
EE wIW0

EI

wEW0
IE wIW0

I I

 ,

where W0
XZ is the adjacency matrix for connections from cells in class Z to those in class X.

Letting pXZ = 〈W0
XZ〉 represent the corresponding connection probability, we define the

quantity qXY,Z
div to be the second-order motif cumulant for diverging motifs with a presy-

naptic cell in class Z and postsynaptic cells of type X, Y, where X, Y, Z ∈ {E, I}, i.e.,

qXY,Z
div =

1
NZ
〈W0

XZW0T
YZ〉 − pXZ pYZ. (7.22)

Compare the definition in Eq. (7.22) with that for the corresponding single population

quantity in Eq. (7.3). Similar expressions define qXY,Z
con , the motif cumulant for converging

motifs emanating from cells of classes X and Y and terminating in a cell of class Z, and

qXYZ
ch , the motif cumulant for second-order chain motifs which originate from a cell of

class Z, terminate in a cell of class X, passing through an intermediate cell of class Y.
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The motif cumulantκ1,1 can be expressed in terms of scalar second-order motif cumu-

lants as

κ1,1 =

NE
N w2

EqEE,E
div + NI

N w2
I qEE,I

div
NE
N w2

EqEI,E
div + NI

N w2
I qEI,I

div

NE
N w2

EqIE,E
div + NI

N w2
I qIE,I

div
NE
N w2

EqI I,E
div + NI

N w2
I qI I,I

div

 . (7.23)

The form of this matrix makes intuitive sense: Take, for example, the entry corresponding

to the EE block:
NE

N
w2

EqEE,E
div +

NI

N
w2

I qEE,I
div .

The first term above is a product of the weight of a diverging motif from an excitatory cell

(w2
E) with the excess probability of seeing such a motif which terminates in two excitatory

cells, finally modulated by the probability of selecting an E cell as the “root” cell in the

diverging motif. The second term is interpreted likewise, and the sum arises as a result of

the law of total expectation. We can similarly expand the motif cumulant κ2 in terms of

the quantities qXYZ
ch .

7.2 Motif cumulants determine average second-order correlation

We next apply the linear response theory of Chapters 5 and 6 in order to explore the

relationship between average spiking correlation in a neuronal network and the motif cu-

mulants defined in the previous section. In particular, we will show that motif cumulants

of only first and second order can almost completely account for the impact of network

architecture on average correlation in several classes of random networks. Through the

linear response theory, we will arrive at an explicit approximation of average correlation

for an integrate–and–fire network in terms of motif cumulants of all orders.
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7.2.1 Single population networks

Figure 7.4 exhibits the relationship between second-order motif frequencies and average

correlation in a network consisting of a single class of excitatory cells. In Figure 7.4A,

we plot average correlation as a function of the three second-order motif frequencies de-

fined in Eqs. (7.3–7.5). The data reveal a strong, positive dependence on the frequency

of second-order chain motifs. Likewise, we observe a positive (but somewhat weaker)

dependence on the frequency of diverging motifs. Finally, there seems to be a negligible

dependence on the frequency of converging motifs. We confirmed these qualitative obser-

vations by performing linear regression on the data, and the coefficients of this regression

for the second-order motif frequencies are displayed in Figure 7.4B.

We derive an analytical form for the relationships between average covariance and

second-order motif frequencies suggested in Figure 7.4. We again return to the linear

response path expansion of second-order correlations given in Eq. (6.2). Under the sim-

plifying assumptions outlined in Section 7.1.1, we have K̃ = ÃwW0 and Sy
0 = Sy

0I. Thus,

we can express the path expansion for a single population network as

Sy

Sy
0
=

∞
∑

n,m=0

(
Ãw
)n+m

(
W0
)n (

W0T
)m

. (7.24)

A first approach is to simply truncate Eq. (7.24) at second order in motif moments,

thereby ignoring completely contributions to covariances of all motifs higher than second

order. Doing so yields the following approximation of average covariance in terms of

first- and second-order motif cumulants,

〈Sy〉
Sy

0
=

1
N

uTSyu
Sy

0
≈ 1

N
+ 2Ãwp + 3N

(
Ãw
)2 p2 + N

(
Ãw
)2 qdiv + 2N

(
Ãw
)2 qch. (7.25)

The approximation of Eq. (7.25) is susceptible to large systematic errors in networks with

strong synaptic interactions (for a complete discussion, see [127]).
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0.02
0

0.05

0

0.05

B
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0.1

(kHz)
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Figure 7.4: The relationship between second-order motif frequencies and average corre-
lation in excitatory-only EIF networks. (A) Three-dimensional scatter plot of average cor-
relations obtained from Monte Carlo simulation of excitatory-only networks of exponen-
tial integrate–and–fire neurons, given as a function of second-order motif frequencies. The
x, y and z coordinates indicate the quantities qdiv, qch and qcon, respectively. The color of a
point indicates the average second-order covariance calculated for that network (see color
bar). Each of the 265 points displayed corresponds to an adjacency matrix of size N = 100
sampled randomly according to the methods prescribed in Section 7.1.1.1. Second-order
motif frequencies were calculated from the adjacency matrices as in Eqs. (7.3–7.5), and the
effective interaction strength was ΨER

(
Ãw
)
= 0.2 (see Eq. (7.1)). The average spiking

correlation coefficient ranged from 0.0036 to 0.0078 in the networks considered. (B) Lin-
ear regression coefficients which relate average second-order covariance obtained from
Monte Carlo simulation of the integrate–and–fire network to the frequencies of second-
order motifs in this dataset.

We next derive a correction to the approximation Eq. (7.25) which similarly depends

only on first- and second-order motif cumulants, but also includes in the estimate contri-

butions to covariances of motifs higher than second order. This correction depends on the

following proposition:

Proposition 7.2.1. Let H be the rank-1 orthogonal projection matrix generated by the unit vector

u = 1√
N

1N1, i.e., H = uuT, and Θ = I−H. For any N × N matrix B, let

Bθn = (BΘ)n−1 B = BΘB · · ·ΘB︸ ︷︷ ︸
n factors of B

.
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If the spectral radii Ψ(B) < 1 and Ψ(BΘ) < 1, then

∞
∑

n,m=0
uTBnBmTu =

(
1−

∞
∑

n=1
uTBθnu

)−2(
1 +

∞
∑

n,m=1
uTBθnΘBθT

m u

)(
1−

∞
∑

m=1
uTBθT

m u

)−1

.

Proof. Omitted. A detailed proof can be found in [127].

Taking an entry-wise average of Eq. (7.24) gives

〈Sy〉
Sy

0
=

1
N

uTSyu
Sy

0
=

1
N

∞
∑

n,m=0
u
(

Ãw
)n+m

(
W0
)n (

W0T
)m

uT .

Thus, applying Proposition 7.2.1 with B = ÃwW0, assuming that the spectral radius con-

ditions are satisfied, we can write

〈Sy〉
Sy

0
=

1
N

(
1−

∞
∑

n=1

(
Ãw
)n uTWθ

nu

)−1(
1 +

∞
∑

n,m=1

(
Ãw
)n+m uTWθ

nΘWθT
m u

)

·
(

1−
∞
∑

m=1

(
Ãw
)m uTWθT

m u

)−1

.

Substituting the explicit forms of motif cumulants (Eqs. (7.9) and (7.10)) into the previous

expression gives

〈Sy〉
Sy

0
=

1
N

(
1−

∞
∑

n=1

(
NÃw

)n
κn

)−1(
1 +

∞
∑

n,m=1

(
NÃw

)n+m
κn,m

)

·
(

1−
∞
∑

m=1

(
NÃw

)m
κm

)−1

.

(7.26)

Retaining only those terms which involve cumulants up to order two (namely,κ1,κ1,1 and

κ2) in Eq. (7.26), and substituting the definitions qdiv = κ1,1, qch = κ2 gives the following

approximation of average correlations in terms of first- and second-order cumulants [127,

128]:

〈Sy〉
Sy

0
=

1
N

1 +
(

NÃw
)2 qdiv[

1−
(

NÃw
)

p−
(

NÃw
)2 qch

]2 . (7.27)
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Truncation of Eq. (7.26) at a certain motif cumulant order improves upon similar trun-

cations of Eq. (7.24) at a certain motif moment order (or, equivalently, a certain motif or-

der) by attempting to account for the contributions of motifs of all orders. This is done

by approximating the probability of observing these higher-order motifs in terms of the

probabilities of observing lower-order motifs which compose the higher-order motifs (see

Figure 7.2). In the special case of Eq. (7.27), we approximate the probability of observing

these motifs exclusively in terms of first- and second-order motif frequencies.

In Figure 7.5A, we compare the predictions of average correlation obtained from the

“cumulant resumming” approximation in Eq. (7.27) with that obtained from Monte Carlo

simulation of a network of EIF neurons. As shown in Figure 7.5B, the motif cumulant re-

summing approximation accurately captures the dependencies of average covariance on

second-order motif cumulants observed from simulations. We emphasize that the present

analysis of average spiking covariance in integrate–and–fire networks, particularly the

explicit expression of average correlations in terms of the graph architecture, is not gener-

ally tractable. These results are made possible here by the synthesis of the linear response

theory of correlations presented in Chapters 5 and 6 with the graph-theoretical analysis

of Section 7.1.

7.2.2 Multi-population networks

The expression of average correlation can be extended to networks consisting of multiple

homogeneous populations. We focus on presenting clearly the theory for two subpopula-

tions, and the requirements of extension to more than two subpopulations are immediate.

Figure 7.6 reveals the dependence between second-order motif frequencies in the two
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A

Figure 7.5: Accuracy of the “cumulant resumming” approximation of average covari-
ance in excitatory-only EIF networks. (A) Scatter plot of average correlation obtained
from the motif cumulant resumming approximation (horizontal axis, see Eq. (7.27))
against that obtained from Monte Carlo simulation of the integrate–and–fire network
(vertical axis). The dashed line represents the diagonal, and each of the 265 points cor-
responds to one of the networks considered in Figure 7.4. (B) Coefficients of the least
squares linear regression of average covariance against the frequency of second-order
motif frequencies for the 265 networks considered in panel A. Bars represent the values
obtained by performing the regression on the prediction of average covariance obtained
from the motif cumulant resumming approximation Eq. (7.27), and dots indicate the val-
ues obtained by considering the average covariances obtained from simulations (same
data as Figure 7.4B).

population, excitatory-inhibitory network. Mirroring our findings for the single popu-

lation case (see Figure 7.4), we found that chain motifs are the strongest determinant of

average correlation amongst the second-order motifs, while the dependence on diverging

motifs is weaker but still positive, and there is a negligible dependence on converging

motifs. As discussed in Section 7.1.3.2, certain motifs now possess a “polarity”; for ex-

ample, a second-order chain motif involving two excitatory (positive) connections will

have a positive contribution to correlation. On the other hand, a chain motif consisting of

an excitatory (positive) and inhibitory (negative) connection will contribute negatively to
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correlations.

A

0.2

Div

ChainCon

-0.005

0

0.0050.01

0.02

0.05

B

div

con

ch

2.5

(kHz)

0.4

0.01

Figure 7.6: The relationship between second-order motif frequencies and average cor-
relation in EIF networks with excitatory and inhibitory neurons. (A) Three-dimensional
scatter plot of average correlations obtained from Monte Carlo simulation of an excitatory-
only network of EIF neurons, given as a function of weighted linear combinations of
second-order motif frequencies. The x, y and z coordinates indicate weighted linear com-
binations of diverging, chain and converging motifs, respectively. The weightings are
explained in a technical note within Section 7.2.2. The color of a point indicates the aver-
age second-order covariance calculated for that network (see color bar). Each of the 265
points displayed corresponds to an adjacency matrix of size N = 100 (NE = 80) sampled
randomly according to the methods prescribed in Section 7.1.1.1. The effective interaction
strength was ΨER

(
Ãw
)
≈ 0.234 (see Eq. (7.1)). The average spiking correlation coefficient

ranged from 0.015 to 0.055 in the networks considered. (B) Linear regression coefficients
which relate average second-order covariance obtained from Monte Carlo simulation of
the EIF network to the weighted linear combinations of second-order motif frequencies
on the axes in panel A for the 265 networks considered in panel A.

Analogous to the single population expansion of average correlation in terms of motif

cumulants in Eq. (7.26), the blockwise average correlations for the network with multiple

subpopulations can be expressed as [127, 128]

〈Sy〉
Sy

0
=

1
N

(
I−

∞
∑

n=1

(
NÃ

)n
κnE

)−1(
E−1 +

∞
∑

n,m=1

(
NÃ

)n+m
κn,m

)

·
(

I−
∞
∑

m=1

(
NÃ

)m EκT
m

)−1

,

(7.28)
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where all variables are defined in Section 7.1.3.2. The derivation of this expansion is es-

sentially identical to that for the single population case, relying on a higher dimensional

analog of Proposition 7.2.1, and we omit it.

Truncating Eq. (7.28) at second cumulant order, retaining only factors which involve

the cumulants κ1,κ1,1 and κ2, gives

〈Sy〉
Sy

0
=

1
N

(
I− NÃκ1E−

(
NÃ

)2
κ2E

)−1 (
E−1 +

(
NÃ

)2
κ1,1

)
·
(

I− NÃEκT
1 −

(
NÃ

)2 EκT
2

)−1
.

(7.29)

Equation (7.29) yields an approximation of average blockwise correlation for the multi-

population network, extending the single population result. Eq. (7.27). In Figure 7.7,

we check the performance of the multi-population motif cumulant resumming approxi-

mation Eq. (7.29) for calculating the three different blockwise averages in an excitatory-

inhibitory network of EIF neurons.

We next performed a least squares linear regression of the average correlation against

the frequencies of the twenty motifs displayed in Figure 7.3. Figure 7.7B compares the

values of the largest eight of the twenty regression coefficients obtained from the motif

cumulant resumming approximation in Eq. (7.29) and Monte Carlo simulations. The motif

cumulant resumming approximation captures dependencies in average covariance on the

individual motif frequencies. Note that the motifs displayed are all chain and diverging

motifs — the dependencies on converging motifs were not significant, paralleling our

findings in the single population example.

Technical note on generation of Figure 7.6 Performing least squares linear regression of

average covariance against the twenty second-order motif frequencies in the two-population
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Figure 7.7: Accuracy of the “cumulant resumming” approximation of average covari-
ance in EIF networks with excitatory and inhibitory neurons. (A) Scatter plot of aver-
age correlation obtained from the motif cumulant resumming approximation (horizontal
axis, see Eq. (7.27)) against that obtained from Monte Carlo simulation of the EIF net-
works (vertical axis). The dashed line represents the diagonal, and each of the 265 points
corresponds to one of the networks considered in Figure 7.6. (B) The eight largest coeffi-
cients of the least squares linear regression of average covariance against the frequency of
second-order motif frequencies for the 265 networks considered in panel A. Bars represent
the values obtained by performing the regression on the prediction of average covariance
obtained from the motif cumulant resumming approximation Eq. (7.27), and dots indi-
cate the values obtained by considering the average covariances obtained from simula-
tions. The motifs corresponding to each regression coefficient are indicated by the graph-
ics along the horizontal axis — for example, the first motif listed is the E → E → E chain
motif, and the last is the E ← I → I diverging motif. No converging motif regression co-
efficients are shown, as they were generally much smaller in magnitude for the presented
motifs.

network yields a relation of the form

〈Sy〉
Sy

0
= ∑

X,Y,Z∈{E,I}
kXYZ

ch qXYZ
ch + ∑

X,Y,Z∈{E,I}
kXY,Z

div qXY,Z
div + ∑

X,Y,Z∈{E,I}
kXY,Z

con qXY,Z
div . (7.30)

In order to aid in the visualization of the dependence of average covariance on these

motifs in Figure 7.6, we plotted average covariance against weighted linear combinations

of these motif frequencies. As an example, consider chain motifs. We weighted each
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chain motif first by the probability of observation of that type of chain motif within all

chain motifs (thus inducing factors of fE = NE/N and f I = NI/N in the weighted motif

strength), as well as the relative strength and sign of the specific connections involved.

The weighted chain motif strength Qch (the quantity on the y-axis in Figure 7.6) is

given by

Qch = ∑
X,Y,Z∈{E,I}

wZ

wE

wY

wE
fX fY fZqXYZ

ch .

We remind the reader that qXYZ
ch indicates the second-order motif cumulant corresponding

to chain motifs connecting the classes X, Y and Z as Z → Y → X, and wE, wI are the

(signed) strengths of excitatory and inhibitory connections in the network, respectively.

The weight of qXYZ
ch involves the weights wY and wZ, corresponding to the weight of the

two synapses involved in the motif. The factors fX , fY , fZ account for the probability of

picking cells of the type involved in the motif, so that the product of the three gives the

probability of selecting a chain motif consisting of cells in that particular arrangement.
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Chapter 8
Efficient encoding of the ego-rotational

axis in the fly brain

Coupling between sensory neurons impacts their tuning properties and the correlation

of their responses to external stimuli. How such coupling affects motor commands and

ultimately behavior remains unclear. In this chapter, we investigate the role of neuronal

coupling during visual processing using a biophysical model of the vertical system (VS)

cell network in the blow fly. These neurons are thought to encode the horizontal rotation

axis over the course of rapid free flight maneuvers, such as those executed while cruising

or for pursuit behaviors. This presents to the VS network and its efferents a problem

of marginalization (see Figure 1.4C and [175]) — neurons within the visual system must

attempt to remove or reduce “unimportant” variability, representing the angle of rotation

in its collective response with sufficient fidelity.

A prominent feature of the vertical system is the strong electrical coupling between

its neurons. We computed optimal linear and non-linear Bayesian estimators from the VS
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cell population response to rotating natural and artificial visual scenes. Surprisingly, and

in contrast to the predictions of previous heuristic studies [56, 68, 292], our analysis shows

that coupling between VS cells has no impact on the quality of encoding in their response.

The result holds both for steady-state and transient responses, contrary to the intuition

gained from suboptimal decoders considered previously.

However, anatomical and electrophysiological findings suggest that several down-

stream neurons driving motor responses to ego-rotation receive inputs primarily from a

small subset of VS cells [100, 268, 296–298]. These downstream neurons must therefore

decode information about the axis of rotation from a partial readout of the VS popula-

tion response. In this case, coupling significantly increases encoding efficiency, leading to

near–optimal estimates from a subpopulation readout. We explain our findings in terms

of the dynamical transformation between visual inputs and the vertical system response

in the presence of electrical coupling. Thus, coupling at one level of the fly visual system

allows for near–optimal decoding from partial information at the subsequent, pre-motor

level. Our conclusions are suggestive of more general principles, and can provide insight

into efficient processing of sensory information in other organisms.

8.1 Modeling the vertical system response to optic flow

8.1.1 Model of the VS network

Our study is based on a model of the vertical system tangential cells closely based on that

of [30]. Here, we will briefly describe the model, and note the differences between the

specific implementations. Parameters not explicitly stated, and details of the model not

discussed are identical to those given by [30].
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Simulations proceeded by first projecting a random image onto the surface of a sphere.

We considered images which consist of randomly arranged bars of varying sizes, as well

as random checkerboard images and compositions of natural scenes. Spherical images

involving natural scenes were generated by choosing six frames at random from a subset

of the van Hateren dataset [283], arranging these on the faces of a cube, then projecting the

cube onto the surface of the sphere [30]. Spherical images were rotated about a horizontal

axis, thereby generating a pattern of optic flow (Figure 8.1A). Details on image and optic

flow stimulus generation are given in Section 8.1.2.

The rotated image sequences (‘optic flow stimuli’) were first filtered by an array of ver-

tically oriented local motion detectors (LMDs or ‘Reichardt detectors’; [29, 99, 215]). The

LMDs were spaced approximately evenly on the surface of the sphere. There were 5,000

per hemisphere, corresponding approximately to the number of facets on the left and

right eyes [116]. For the Reichardt detector model utilized by [30], the input to a single

detector is composed of luminance signals from two vertically-aligned pixels separated

by an elevation of 2◦. First-order filtered low- and high-pass versions of the input from

the two pixels are cross-multiplied and then subtracted (Figure 8.1B). A negative (resp.

positive) detector response reflects upward (resp. downward) motion. The downward

and upward components are separately weighted according to the dendritic receptive

field (RF) of each cell, and activate the dendritic compartment of the VS model neurons

as excitatory and inhibitory conductances, respectively. Dendritic receptive fields were

vertically-centered Gaussians, with horizontal standard deviation 15◦, and vertical stan-

dard deviation 60◦ (see Figure 8.1C and [30]). Hence each cell effectively sampled the

entire vertical surround above and below its receptive field center. Receptive field centers

are given in Figure 1.4A. Note that maximal excitation and inhibition occurs at azimuthal

rotation angles approximately orthogonal to the centers of the receptive field.
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Figure 8.1: Schematic of the VS network model. (A) Spherical image rotation sequences
(red curved arrow) were presented to the model of the fly vertical system (VS). The ro-
tation axis in the equatorial plane is characterized by its azimuth, θstim. Lower right in-
set shows how the Reichardt detectors were arrayed on the surface of the sphere. (B)
Schematics of the Reichardt detector. LP and HP indicate first-order low- and high- pass
linear filters, respectively, while × and − represent elementary signal multiplication and
subtraction steps. Each detector was assembled from two subunits separated by an el-
evation of 2◦. (C) Horizontal cross sections of the dendritic receptive fields for the VS
neurons. The front-most curve is for the left-side VS10 neuron (see panel E, upper in-
set). (D) The model is an assembly of a number of components: The optic flow stimulus
is generated by rotations of spherical images, and is filtered by the local motion detec-
tors (LMDs). The LMD output is separated into upward and downward components
which are mapped to inhibitory (−), and excitatory (+) conductances, respectively, onto
the dendrites of the VS neurons. Conductances are weighted by the position of the LMD
with respect to the VS cell receptive fields (see C). Resistor symbols indicate electrical cou-
pling of compartments, and ξAx, resp. ξDe, are independent, intrinsic noise sources to the
axons, resp. dendrites, of VS cells. (E) Steady-state membrane potential of the twenty
coupled VS neurons (ggap = 1 µS) in response to stimulation by a horizontal grating with
constant downward velocity. The input was a narrow, 10◦ wide strip centered at angle θ.
The responses were obtained by sweeping the strip 360◦ around the visual field. Upper
inset details color scheme and cell ordering for panels C and E.
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8.1. MODELING THE VERTICAL SYSTEM RESPONSE TO OPTIC FLOW

Lastly, the axonal compartments of adjacent, ipsilateral VS neurons are electrically

coupled to each other. Figure 8.1D shows a schematic of the model processing stages.

Figure 8.1E shows the response of each VS neuron to downward stimulation in a narrow

(10◦ wide) vertical strip which was swept across the visual field.

The axonal and dendritic membrane potentials for the VS neurons in each hemisphere

evolve according to:

Cm
dVAx

dt
= −GAxVAx(t) + gAx-DenVDe(t) +

√
σ2

AxτAxξAx(t),

Cm
dVDe

dt
= −GDe(t)VDe(t) + gAx-DenVAx(t) + I(t) +

√
σ2

DeτDeξDe(t).
(8.1)

Here VAx and VDe are vectors whose entries correspond to the 10 axonal and dendritic

voltages, respectively. The full VS model consists of two copies of this system, represent-

ing the activity of the system in the left and right hemispheres. The two systems differ

parametrically only in their receptive field centers (see Figure 1.4A and Figure 8.1C). The

parameter gAx-Den sets the conductance for the coupling of the axonal and dendritic com-

partments of each neuron, while Cm is the membrane capacitance and gL,Ax, gL,De are the

leak conductances of each compartment. The membrane time constant of each compart-

ment is τX = Cm/gL,X , X = Ax, De. The resting potential of each compartment is zero.

Following a perturbation from rest, the membrane potential decays exponentially back to

the resting potential with a characteristic timescale τX. Intrinsic variability is modeled by

standard white noise processes ξAx(t),ξDe(t), and σAx,σDe set the noise intensities.

The input current to the dendrite of cell i is given by Ii(t) = EEgE,i(t) + EIgI,i(t), where

gE,i(t) is the excitatory conductance to cell i induced by the optic flow stimulus, EE is the

associated reversal potential, and likewise for the inhibitory quantities gI,i(t) and EI. The

matrix GDe(t) is diagonal with entries given by

GDe,ii(t) = gL,De + gAx-Den + gE,i(t) + gI,i(t), i = 1, . . . 10.
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The matrix GAx has entries given by

GAx,i j =



gL,Ax + gAx-Den + ggap + ginh i = j = 1 or 10,

gL,Ax + gAx-Den + 2ggap 2 ≤ i = j ≤ 9,

−ggap i = j + 1 or i = j− 1,

−ginh i = 1, j = 10 or i = 10, j = 1.

(8.2)

Here, ggap sets the strength of the axo-axonal gap junction coupling between adjacent, ip-

silateral VS neurons. One difference between our simulation protocol and that of [30] is

that we generated visual inputs at time steps of 1 ms, but integrated Eq. (8.1) at a smaller

time step of 0.01 ms to guarantee numerical accuracy. We first calculated the conductances

elicited by the optic flow stimulus at the coarser time step, then linearly interpolated to

obtain a realization of the conductance at the finer timescale. Typical responses of the un-

coupled and coupled systems to rotation of a random bar image at θstim = 90◦ are shown

in Figure 8.2A and Figure 8.2B, respectively. Central to the ability of the VS population

to encode the axis of rotation is the fact that the magnitude of the response of a VS neu-

ron depends strongly (but non-linearly) on the rotational velocity of the visual stimulus

within its receptive field.

When we consider the efficiency with which the rotation axis is encoded in the VS

axonal responses, we take the output of the system to be temporal averages of the axonal

membrane potential. For transient responses, the VS output is

Vtr
Ax(T) =

1
T

∫ T

0
VAx(t)dt, where VAx(0) = VDe(0) = 0. (8.3)

In particular, when considering transient responses, we assume the system starts from

rest (0 mV) at the beginning of the period over which we average. Similarly, steady-state
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Figure 8.2: A typical response of the VS network (A) Plot of the temporal response of the
left-side VS1, VS5 and VS10 neurons in the uncoupled system (ggap = 0 µS) to the rotation
of a natural scene stimulus (see Figure 1.4B). Shaded boxes labeled T and SS indicate time
intervals 10 ms in duration over which we average the VS axonal responses to obtain the
transient average, Vtr

Ax(T), and the steady-state average Vss
Ax(T), respectively. (B) Same

as panel A, but for the coupled system (ggap = 1 µS).

responses are given as

Vss
Ax(T) =

1
T

∫ τss+T

τss

VAx(t)dt, where τss = 30 ms. (8.4)

In contrast to the transient response defined above, the steady-state response is defined

so that, at the beginning of the integration period (τss), the entire VS system is (approxi-

mately) in steady-state. It should be noted that despite the very fast time constants the VS

model neurons possess, they do not immediately reach steady-state, as it takes some time

for the motion detector-filtered stimulus impinging on the VS dendrites to equilibrate. In

Figure 8.2, the shaded boxes indicate the periods over which we obtain the transient and

steady-state responses.

It has been observed that there is a functionally mutually inhibitory interaction be-

tween the end cells (VS1 and VS10) in each hemisphere, believed to be implemented

by electrical coupling of VS7-10 to an inhibitory cell Vi which forms a chemical synapse

onto the ipsilateral VS1 cell, and electrical coupling of VS1 to an inhibitory cell Vi2 which
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forms a chemical synapse onto the ipsilateral VS10 cell [30, 98]. Following [292], we imple-

mented this functionally mutually inhibitory (or “repulsive”) coupling using a negative-

conductance gap junction between VS1 and VS10 (ginh in Eq. (8.2)) instead of explicitly

modeling the Vi cell. Our findings do not depend qualitatively on the presence of this

connection (results not shown). When we change the strength of the axo-axonal gap junc-

tion coupling amongst VS neurons, this repulsive coupling is scaled accordingly. Unless

otherwise specified, we set ginh = −0.06ggap.

For simplicity, we did not model several known functional and anatomical properties

of VS cells, such as the rotational structure of their receptive fields [152, 153] or dendro-

dendritic connections with the dCH neuron [98]. These properties and their impact on

the VS network are currently the subject of electrophysiological investigations [126], but

are not expected to significantly affect our conclusions. Previous computational studies

of the VS network have made similar simplifying assumptions [56, 68, 142, 292].

8.1.2 Generation of images and optic flow patterns

Optic flow patterns were generated by first projecting various types of random images

onto the surface of the unit sphere. We considered three classes of random images: ran-

dom bar images, random checkerboard images, and natural scenes (see Figure 1.4B for

examples of each type of image). In the first two cases, images were binary — pixel in-

tensities were either 0 or 1 — and for natural scenes, pixel intensities varied continuously

between 0 and 1. All images were discretized at 1◦ increments in spherical coordinates.

Throughout, images were random and distinct across trials.

Random bar images were parameterized by the number of bars, as well as bar width
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and length. When generating a bar image, each bar was generated by first randomly plac-

ing an initial line segment of the specified bar width on the surface of the unit sphere. We

then translated this segment along the direction of the length of the bar by rotation about

the appropriate axis, turning “on” all pixels along the path touched by the rotating seg-

ment. Bar images utilized in generating the presented results (i.e., Figures 8.4–8.7, 8.11)

contained 25 bars of length 40◦ and width 5◦. Choosing bars with different dimensions

or changing the number of bars affected our findings only quantitatively and not qualita-

tively (results not shown).

For checkerboard images, we defined a coarse discretization of the image consisting

of 4◦ × 4◦ squares, and randomly set all pixels within a square to be zero or one, inde-

pendently across squares. Lastly, for natural images, we first took a sub-collection of one

hundred natural scenes from the van Hateren dataset [282]. We then randomly selected

six (with replacement) of these one hundred images, projected them onto the sides of a

cube, which was itself then projected onto a sphere, mimicking the approach of [30].

The sequences of images comprising optic flow patterns were generated by rotation

of the sphere about a horizontal axis (we did not consider translatory motion). At a given

positive time, the value of a pixel was set equal to the value of the pixel obtained by a

reversal of the rotation to the original image. The rotational velocity was constant across

simulations and set to 500◦/s, falling well within the parameters of typical motion of the

fly during flight [66]. This value is also consistent with the range of values considered in

previous computational studies of the VS network [56, 68, 142, 292].
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8.2 Implementation of estimators for the rotational axis

In order to quantify the fidelity of encoding of the ego-rotational axis within the VS ax-

onal population response, we implement a pair of probabilistic estimators. First, for our

analysis of the steady-state responses, we make use of the optimal linear estimator (OLE,

see [238]) — the linear estimator which exhibits the lowest mean-square error of predic-

tion amongst all linear estimators. In Section 8.2.1, we present an explicit definition of the

OLE, along with some details of how it was applied to the VS axonal responses.

Our primary interest, however, will be in the more behaviorally-relevant transient

responses. When we analyze the transient encoding of the axis of rotation, we imple-

mented an approximation the true minimum mean-square estimator (MMSE), defined as

the expected value over the posterior distribution of the stimulus. The MMSE is globally

optimal across all estimators in the mean-square sense. However, even with the benefit

of modern computational power, it is not feasible to directly estimate distribution func-

tions for continuous variates with more than a very few dimensions. For this reason, in

order to implement the MMSE, we must first formulate an approximation of the stimulus

posterior distribution and, thus, the joint distribution of VS axonal responses.

Two popular approaches to this problem used in computational neuroscience are to fit

a maximum entropy distribution that matches a set of empirical statistics of the data [74,

134, 194, 235, 251], or to apply copulas [190]. We chose the latter approach, which is com-

mon in the valuation of financial derivatives, but has not been widely applied in neu-

roscience(see, however, [23, 195, 196]). One advantage of the copula approach is that it

allows us to use the true (empirical) marginal distributions in the fit — the copula serves

strictly as a fittable model for the dependence structure amongst the marginal responses.
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We outline our method for approximating the joint distribution using copulas, and pro-

vide an evaluation of the distributional fit in Section 8.2.2. In Section 8.2.3, we briefly

explain how our approximation of the joint distribution of VS axonal responses is used to

implement the MMSE.

8.2.1 Optimal linear estimator

In the following three sections, the reader should keep in mind that the random vector

V is a surrogate for the time-averaged axonal response. For the present section involv-

ing the optimal linear estimator, applications will involve the steady-state averaged ax-

onal response Vss
Ax defined in Eq. (8.4). In the subsequent sections where we consider the

application of copulas to computation of the minimum mean-square estimator (MMSE),

we will be referring to the transient averaged axonal response Vtr
Ax which is defined in

Eq. (8.3).

For our analysis of the steady-state encoding of the axis of rotation, we applied an

optimal linear estimator, the linear estimator which minimizes the expected value of the

squared error under the posterior distribution [238]. Given an M-dimensional stimulus

vector s encoded in the N-dimensional variable response V = (V1, . . . , VN)
T of a neu-

ronal system (where T denotes transposition), the tuning curve for the ith neuron is the

scalar-valued function

µi(s) = E
[

Vi|s
]
=
∫

dV ViP(V|s).

The center of mass for the ith neuron is the vector

Li = E [sµi(s)] =
∫

ds sµi(s),

193



8.2. IMPLEMENTATION OF ESTIMATORS FOR THE ROTATIONAL AXIS

and the second moment of the responses of the ith and jth neurons (averaged across stim-

ulus values) is

Qi j =
∫

ds dV ViV jP(V|s)P(s),

where P(s) is the prior distribution for the stimulus. Throughout this work, we assume a

uniform prior distribution of stimulus rotation angles. Given an observed response Vobs,

the optimal linear estimator has the form

ŝ = LTQ−1Vobs,

where L = [L1| . . . |LN ]
T is an N×M matrix obtained by concatenating the M-dimensional

column vectors L1, . . . LN [238]. As long as the joint distribution P(V, s) of responses (V)

and stimuli (s) possesses finite first and second moments, the matrix Q is invertible. Im-

plementation of the optimal linear estimator requires measurement of only first and sec-

ond moments. It is thus considerably simpler to obtain than, for instance, the true min-

imum mean-square estimator defined in Section 8.2.3. The optimal linear estimator and

the minimum mean-square estimator coincide only when the joint distribution P(V, s) is

Gaussian, which is not generally true for the system we consider.

In our applications, the stimulus vector s was assumed to be a two-dimensional unit

vector representing the angle of rotation by

s(θstim) = (cos(θstim), sin(θstim))T .

The estimated angle θ̂OLE
stim was determined by assuming ŝ possessed the same form, and

setting

θ̂OLE
stim = arg(ŝ).
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8.2.2 Modeling the joint distribution of VS axonal responses using copulas

For our analysis of the transient state encoding of the axis of rotation, we applied the true

minimum mean-square estimator (MMSE). However, even with the benefit of modern

computational power, it is not feasible to directly estimate probability distribution func-

tions for continuous variates with more than a few dimensions. For this reason, in order to

implement the MMSE, we must first formulate an approximation of the joint probability

distribution of VS axonal responses.

Two approaches to this problem are to fit a maximum entropy distribution that matches

a set of empirical statistics of the data [74, 134, 194, 235, 251], or to apply copulas [190]. We

chose the latter approach, which is common in the valuation of financial derivatives, but

has not been widely applied in neuroscience (see, however, [23, 195, 196]). One advantage

of the copula approach is that it allows us to use the true (empirical) marginal probability

distributions in the fit — the copula serves strictly as a fittable model for the dependence

structure amongst the marginal responses.

To fix ideas, we remind the reader that ultimately we will fit a copula to the averaged

transient VS axonal response, Vtr
Ax(T), which is defined in Eq. (8.3). Thus, we consider a

random vector V = (V1, . . . , VN)
T with cumulative distribution function F(v1, . . . , vN).

A copula for the distribution function F is an N-variable function C for which

F(v1, . . . , vN) = C(F1(v1), . . . , FN(vN)), (8.5)

where Fi(·) is the marginal cumulative probability distribution function for the variable

Vi, i = 1, . . . N. Sklar’s Theorem guarantees the existence of the copula C for any dis-

tribution F with marginals {Fi}N
i=1 (cf. [190], Theorem 2.10.9). If F is continuous, C is
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unique. From Eq. (8.5), it is clear that C determines completely the inter-variable depen-

dence structure contained in the distribution F.

Note that an N-dimensional copula is equivalent to a distribution function on the N-

dimensional unit hypercube [0, 1]N with uniform marginals: Define the random vector

U = (U1, . . . , UN) where Ui = Fi(Vi). The probability integral transform implies that

each Ui is a marginally uniformly distributed random variable (e.g., [84], Sect. 11.8). The

copula C(u1, . . . , uN) for V has an equivalent definition as the distribution function of U.

As is the case for the distribution function F of V, the ‘curse of dimensionality’ pre-

vents us from directly approximating the corresponding copula C. A common approach

is to select a parametrized copula family which can then be fit most easily via the maxi-

mum likelihood principle [307]. We applied the Gaussian copula [305], which takes the

form

CGauss
Σ (u1, . . . , uN) = ΦΣ

(
Φ−1(u1), . . . , Φ−1(uN)

)
. (8.6)

Here ΦΣ is the joint Gaussian distribution function with correlation matrix Σ (i.e., Σii = 1

for each i) and Φ is the standard univariate Gaussian distribution function. Given in-

dependent identically distributed samples of a random vector V = (V1, . . . , VN)
T with

marginals {Fi}, the value of the correlation Σi j which is consistent with application of the

maximum likelihood principle to second moments can be shown to equal [31]

Σ̂i j = corr[Φ−1(Fi(Vi)), Φ−1(Fj(V j))], 1 ≤ i, j ≤ N, (8.7)

where corr(x, y) denotes the correlation coefficient of x and y [305].

We fit a Gaussian copula to the transient response of the system, Vtr
Ax(T), defined in

Eq. (8.3). In order to test the goodness of the fit distribution, we selected twenty random

subsets of three left-side VS neurons, and associated with each subset a random stimulus
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rotation angle. We then sampled the marginal copula for each subset (i.e., C(ui, u j, uk)

with ui = Fi(Vi) in Eq. (8.5)), comparing it with the fit copula utilized in the MMSE

calculations outlined in the next section (Eqs. (8.6), (8.7)). We compared the empirically

observed and fit copula distribution values at 1,000 equally spaced points in the unit cube

of the form (0.1i, 0.1 j, 0.1k), 1 ≤ i, j, k ≤ 10. In Figure 8.3A, we present a probability-

probability (P-P) plot of the true (empirical) copula values against the fit values. In other

words, letting Ctrue and Cfit indicate the true and fit copula distribution functions for three

randomly selected left-side VS neurons in the system presented a rotation at a random

stimulus angle, Figure 8.3 presents a scatter plot of the 1,000 points

{(
Cfit(0.1i, 0.1 j, 0.1k), Ctrue(0.1i, 0.1 j, 0.1k)

)
: 1 ≤ i, j, k ≤ 10

}
.

We also computed for each of the twenty subsets and for all 1,000 sample points the

relative error between the probabilities from the true and fit copula distributions. In par-

ticular, we defined for each point

εrel
i jk =

|Ctrue(0.1i, 0.1 j, 0.1k)− Cfit(0.1i, 0.1 j, 0.1k)|
Ctrue(0.1i, 0.1 j, 0.1k) + Cfit(0.1i, 0.1 j, 0.1k)

, 1 ≤ i, j, k ≤ 10. (8.8)

Since the probabilities lie within [0, 1] by definition, the relative errors lie also within [0, 1],

with a value of 0 indicating a perfect match. In Figure 8.3B, we plot a histogram of the rel-

ative errors for all twenty random subsets (thus comprising a total of 20,000 data points).

We found the true and fit copula distributions generally agreed quite well. The average

relative error across all 20,000 points was ≈ 0.0438, and 90.3% of relative errors were

below 0.1.
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Figure 8.3: Assessing the copula fit for the transient response distribution (A) Blue
points give a P-P plot of the fit copula (horizontal axis) against the true, empirical copula
for a randomly-selected subset of three left-side VS neurons, at a random stimulus angle.
We computed the copula probabilities at 1,000 points which divided the unit cube into
1,000 equal sized sub-cubes as described in the text. The black dashed line indicates the
diagonal, with agreement between the true and fit models being indicated by the points
lying on or near the diagonal. Optic flow presented to the system was generated by the ro-
tation of random bar images, and the copula was fit to the transient response distribution.
(B) Histogram of relative errors for copula probabilities. Vertical axis represents fractions
of points which lie in the corresponding error range on the horizontal axis. We repeated
the simulation of panel A, for a total of twenty random pairings of three left-side VS neu-
rons and stimulus angles. We then computed the relative error (see Eq. (8.8)) between the
true and fit copula probabilities at the 1,000 equally spaced points within the unit cube for
all twenty copula fits, and plotted the errors as a histogram.

8.2.3 Computation of the MMSE

Given a general copula distribution function C as defined in Eq. (8.5), the copula density

is defined by

c(u1, . . . , uN) =
∂

∂u1
· · · ∂

∂uN
C(u1, . . . uN).

Applying the chain rule for derivatives, the joint density f corresponding to the distribu-

tion F can then be written

f (x1, . . . , xN) = c(F1(x1), . . . , FN(xN))
N

∏
i=1

fi(xi), (8.9)

where each fi is the marginal density corresponding to the distribution Fi. As we will

make use of the Gaussian copula, it will be useful to note that the density of the Gaussian
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copula can be expressed in closed form as

cGauss
Σ (u1, . . . , uN) =

1
det(Σ)

exp
[
wT(Σ−1 − I)w

]
, w =

[
Φ−1(u1), . . . , Φ−1(uN)

]T
.

(8.10)

To approximate minimum mean-square estimation [143], we first simulated the re-

sponse of the VS network in order to determine an empirical estimate of the marginal

distribution functions Fi. Note that we did not assume a parametric form for the marginal

distributions, but instead obtained a discrete estimate by binning values of the membrane

potential integral at a sufficiently fine resolution. We then separately fit the Gaussian

copula to the joint responses.

Both the marginal distributions and the copula were determined as a function of the

stimulus rotation angle θstim at a resolution of 1◦. Marginal distribution histograms were

approximated from ten thousand samples at each rotation angle, and the copula from one

thousand samples. The MMSE was then computed based on 1,600 samples taken at 5◦

increments.

The MMSE of the axis of rotation is calculated as the mean of the posterior distribution

of rotation angles given the axonal membrane potentials. To be precise, given an observed

response Vtr
Ax(T), we associated each stimulus angle value θstim with a corresponding

two-dimensional unit vector s(θstim) = [cos(θstim), sin(θstim)]T, and defined θ̂MMSE
stim , the

estimate of the MMSE, to be the argument of this vector, averaged over the posterior

distribution, i.e.,

θ̂MMSE
stim = E

[
θstim

∣∣∣Vtr
Ax(T)

]
= arg

[∫
dθstim s(θstim)P

(
θstim

∣∣∣Vtr
Ax(T)

)]
.

Values of the posterior density P
(
θstim

∣∣∣Vtr
Ax(T)

)
were determined using the fit copula

and the measured marginal distributions, along with Eqs. (8.9, 8.10). The integral over the
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posterior density was calculated via simple Riemann integration at a 1◦ discretization.

8.3 Steady-state encoding of the axis of rotation

We studied how the azimuth of the angle of body rotation is encoded in the response of

the vertical system (VS) neuronal network using the model schematically depicted in Fig-

ure 8.1. We first provide a summary system description, and then examine how coupling

amongst VS neurons affects their joint dynamics. We then explore the efficiency with

which the axis of ego-rotation of the fly may be encoded in the VS population response

during flight.

8.4 Dynamical effects of coupling on VS network responses

The effect of coupling on response properties of the VS network has recently received

some attention [30, 56, 68, 97, 292]. We first review and expand upon some previous ob-

servations pertinent to the present investigation.

Figure 8.4A shows five typical responses of the left-side VS10 neuron to rotations of

random bar images about θstim = 90◦ in the absence (left) and presence (right) of the axo-

axonal gap junction coupling. External variability in the optic flow stimulus provided

to the system leads to large trial-to-trial fluctuations in responses, even in the absence of

intrinsic fluctuations. The efficacy of coupling in reducing external variability is visible

even at the resolution of a few trials. In Figure 8.4B, we show that correlations increase

significantly when the VS neurons are coupled electrically. Correlations were measured
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between steady-state average membrane potential responses for the left-side VS popula-

tion (the steady-state average is taken to be the average membrane potential over the SS

window in panel A).

Throughout Figure 8.4, we depict responses in the absence of intrinsic fluctuations

(i.e., σAx = σDe = 0), highlighting the effect of coupling on external variability. Fig-

ures 8.4C and D show how steady-state tuning (i.e., mean responses) and variance are

affected by coupling. First, we note the considerable reduction in external variability ow-

ing to coupling. Just as importantly, coupling allows the VS neurons to interpolate their

responses [56, 68]. This results in an increase in orientation coverage [93], thereby allow-

ing each cell to individually represent a greater range of stimulus angles in its response.

This effect is also observed by comparing the receptive fields in Figure 8.1C with the “ef-

fective” tuning curves to strip stimulation shown in Figure 8.1E. Notably, this smoothing

effect takes place without a significant decrease in tuning curve amplitude.

8.5 Steady-state encoding of the axis of rotation

The effects of coupling discussed in the previous section point to a potential trade-off:

coupling could improve encoding by extending the range of tuning curves, and reduc-

ing response variability. On the other hand, increased correlations (redundancy) could

potentially reduce total stimulus-related information content. Whether and to what ex-

tent this is the case depends heavily on the specifics of the system under considera-

tion [11, 15, 65, 162, 203, 247].
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Figure 8.4: The effect of coupling on VS neuronal dynamics. (A) (Left) Typical axonal
response of the left-side VS10 cell in the uncoupled network (ggap = 0 µS) to rotations of
bar images about θstim = 90◦. Different line types indicate different, randomly generated
images. (Right) Same as the left panel, but for the coupled system (ggap = 1 µS). Images
rotated to generate optic flow stimuli were the same ones used in the uncoupled system,
with matching line types indicating matching image presentations. (B) Correlations for
the integrated membrane potential in steady-state for the left-side VS neurons. Values
above (resp. below) the diagonal are for the uncoupled (resp. coupled) system. Nearby
cells were correlated at levels of approximately 0.7 and 0.97 for the uncoupled and cou-
pled systems, respectively. (C) Steady-state tuning curve (mean response) and variability
as a function of rotation angle for (i) VS1 and (ii) VS10 in the uncoupled system. Shaded
areas indicate +/ − 1 s.d. of the response distribution. (D) Same as C, but for the cou-
pled system. All responses and statistics for this figure were generated in the absence of
intrinsic fluctuations (σAx,σDe = 0), and the optic flow stimuli were created by rotations
of random bar images (see Section 8.1.2).
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Previous studies have made primarily heuristic arguments about the effects of cou-

pling on the encoding of the axis of rotation in steady-state responses (see, for exam-

ple, [56, 292]). We will provide a quantitative answer to this question by studying the

error of an optimal linear estimator (see Section 8.2.1) which decodes the steady-state re-

sponses of the VS population.

8.5.1 MSE of the OLE is independent of coupling in steady-state

VS neurons do not directly participate in the generation of motor responses, but are elec-

trically coupled to motor neurons [129, 269] as well as to prominent descending neu-

rons [100, 269, 296–298]. The response of these downstream neurons is determined by a

temporal filtering of the graded response of the VS population rather than instantaneous

values of their membrane potentials. We therefore define the response of the system of VS

cells using time-averaged integrals of the graded responses of the VS population, Vss
Ax(T),

as defined in Eq. (8.4). Here T indicates the time scale of integration and the “ss” super-

script indicates that the system is in steady-state.

Variability of the axonal response is a consequence of both intrinsic fluctuations and

variability in the optic flow stimulus, which reflects the randomness of visual inputs. To

evaluate the accuracy with which the angle of rotation is encoded in the averaged re-

sponse, we implemented an optimal linear estimator (OLE; see Section 8.2.1 and [238]). This

linear estimator minimizes mean-square error (MSE) under the posterior distribution of

the stimulus. The OLE applied in this section is computationally simpler to implement

than the true (generally non-linear) mean-square error minimizing estimator. However,

as noted at the end of the section, the general conclusions drawn using it apply more
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generally. The true mean square minimizing estimator will be considered in the next sec-

tion, when analyzing the efficiency of encoding of the axis of rotation within transient

responses.

The MSE of the OLE as a function of θstim is shown in Figure 8.5, for three types of

images and two integration timescales. The effects of coupling discussed in Section 8.4

suggest that coupling can affect the performance of the OLE. Surprisingly, we found that

across image types and integration timescales, the MSE of the OLE in steady-state was in-

dependent of the strength of axo-axonal coupling. In panels A and B, we show results for

random bar images with integration windows of T = 10 ms and T = 20 ms, respectively.

Panels C and D of Figure 8.5 show the MSE for random checkerboard images and natu-

ral scenes, respectively. The statistics of the optic flow generated by images from a given

class set the baseline level for the MSE. However, the error was found to be independent

of coupling strength for all classes of images tested. We also verified this for different

parameters of the random bar images (results not shown — see Section 8.1.2 for details of

image generation).

Since the axonal and dendritic compartments were coupled electrically, the dendritic

response was affected by the strength of the axo-axonal coupling. However, the impact of

coupling on the vector VDe(t) of dendritic responses was found to be limited to a multi-

plication of the response by a diagonal matrix (result not shown). Up to this scaling, the

time course of the dendritic response is dominated by the synaptic input arriving through

the visual pathway which reflects response to the filtered optic flow stimulus. There-

fore, to a good approximation, the system can be viewed as hierarchical [68]: The motion

detector-filtered optic flow stimulus drives the dendrites, and the dendrites drive the ax-

onal compartments, with the activity at each step determined completely by the response
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Figure 8.5: Mean-square error of the OLE for steady-state responses (A) (Left) Lines
indicate the square root of the mean-square error of the OLE for steady-state responses
to filtered optic flow stimuli generated by the rotation of random bar images with a T =
10 ms window of integration. Line colors correspond to different coupling strengths as
indicated by the legend. (Right) Bars represent the square root of the stimulus averaged
mean-square error for the data plotted to the left, with bar colors corresponding to line
colors. (B) Same as A, but for a window of integration of T = 20 ms. (C) Same as A, but
for random checkerboard images. Note the different scaling of the vertical axis. (D) Same
as A, but for natural scenes. Details regarding image generation and the technique for
generating the optic flow presented to the model can be found in Section 8.1.2.

at the preceding stage (along with any intrinsic noise sources). In particular, disregarding

intrinsic noise in the system, we have

Vss
Ax(T) =

1
T

∫ T

0
ds VAx(s)

=
1
T

∫ T

0
ds
∫ ∞

0
du H(u)VDe(s− u)

≡D

[
ds
∫ ∞

0
H(s)

] [
1
T

∫ T

0
ds VDe(s)ds

]
= HVss

De(T), where H =
∫ ∞

0
ds H(s).

(8.11)
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Here,≡D indicates equality in distribution, and H(s) = C−1
m gAx-Den exp

[
−C−1

m GAxs
]
Θ(s)

is the exponential filter the axonal system applies to the dendritic response. We note that

at positive times, when the Heaviside function Θ(s) = 1, H(s) is a matrix exponential.

That the axonal response can be represented by a convolution of a matrix exponential

with the dendritic response (second equality) is a general mathematical property of linear

systems of differential equations such as those which describe the evolution of VAx (see

Eq. (8.1)).

The equality in distribution in Eq. (8.11) arises from switching the order of integration

and using the time-shift invariance of the dendritic membrane potential distribution un-

der the steady-state assumption. In this case the distributions of VDe(s− u) and VDe(s)

agree for all finite u, and the two quantities can be exchanged under an equality in dis-

tribution. The dendritic average Vss
De(T) is defined analogously to the axonal quantity in

Eq. (8.4).

Under the hierarchical assumption, the axonal activity is conditionally independent of

the input given the dendritic activity: If the linear transfer exhibited in Eq. (8.11) is invert-

ible, the posterior distribution of the stimulus given the axonal response agrees exactly

with the distribution conditioned on the dendritic response. Since Vss
Ax(T) ≡D HVss

De(T)

for some invertible matrixH, it follows that

P(θstim|V
ss
Ax(T)) = P(θstim|V

ss
De(T)). (8.12)

In this situation, there is no change in information due to coupling. This equality holds

as long as H is invertible. Realistic gap junction coupling strengths change the entries in

the matrix H, but do not impact its invertibility. In addition, we found that the dendritic

responses were independent of coupling up to an invertible linear scaling factor, imply-

ing that the posterior distribution P(θstim|V
ss
De(T)) is likewise independent of coupling.
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Thus, not only will the performance of the OLE be unaffected by coupling in this case,

but the same conclusion holds for more general probabilistic estimators (including the

MMSE considered in what follows, all Bayesian estimators and the maximum likelihood

estimator).

8.6 Transient encoding of the axis of rotation

During cruising flight in a stationary environment, flies often move along straight-line

segments separated by saccadic periods of rapid rotation. These straight-flight segments

can occur at rates of up to ten per second and can be as short as 30 ms in duration [25,

240, 282]. Since motor projections of the VS network must pass through intermediate

descending neurons [100, 268, 296–298], the representation of ego-rotations for compen-

satory optomotor responses must take place at an even shorter time scale. Similarly short

time scales are likely critical during other natural flying behaviors, such as pursuit and

tracking [52, 158]. For realistic rotational velocities, the transient period of the VS cells

membrane potential from rest can last upwards of 30 ms (see the time scale of response

in Fig. 8.4A), calling into question the behavioral relevance of steady-state responses for

a fly in motion. We therefore considered instead time-averaged integrals of the transient

response beginning from rest, Vtr
Ax(T) (see Eq. (8.3)). Here, T denotes the length of inte-

gration window and the “tr” superscript indicates the transient state of the system.

The OLE applied in Section 8.5.1 is only the optimal mean-square Bayesian estima-

tor under the assumption of Gaussianity of the integrated membrane potentials. This

assumption does not hold in general, and we therefore implemented the true minimum
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mean-square estimator (MMSE) given by

θ̂MMSE
stim = E

[
θstim

∣∣∣Vtr
Ax(T)

]
, (8.13)

with the average taken over the posterior distribution of the stimulus, P(θstim|V
tr
Ax(T)).

Our model VS network is highly complex, and it is not obvious how to parametrize the

likelihood P(Vtr
Ax(T)|θstim). As a result, Eq. (8.13) cannot be evaluated via Markov Chain

Monte Carlo (MCMC) methods, or other techniques designed for efficient sampling from

probability distributions [228]. We therefore generated samples from the posterior dis-

tribution by simulating the model directly. We then compute the integral in Eq. (8.13)

after using copulas to approximate the multivariate distribution of the responses (see Sec-

tions 8.2.2 and 8.2.3).

8.6.1 MMSE is independent of coupling in the transient state

The MMSE for the angle of rotation estimated from the integrated axonal potentials is

shown in Figure 8.6. Surprisingly, the behavior of the MMSE in the transient state was

qualitatively identical to that of the OLE in the steady-state (see Figure 8.5). Although the

error depended on image statistics, it was again approximately independent of coupling.

The explanation for this behavior turned out to be largely identical to that provided in

the steady-state case (see Eq. (8.11)), with one crucial difference: The equality in distribu-

tion on the third line of Eq. (8.11) does not hold exactly for transient responses. A priori

it is not obvious that the equality should hold even approximately. The characteristic re-

sponse timescales of the VS axonal compartments (and of the system filter H) are given

as the product of the membrane capacitances with the inverses of the eigenvalues of GAx.

If these eigenvalues are large enough (i.e., if the VS axonal effective time constants are
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Figure 8.6: Mean-square error of the MMSE for transient responses (A) (Left) Lines
indicate the square root of the mean-square error of the MMSE for transient responses to
filtered optic flow stimuli generated by the rotation of random bar images with a T =
10 ms window of integration. Line colors correspond to different coupling strengths as
indicated by the legend. (Right) Bars represent the square root of the stimulus averaged
mean-square error from the data plotted to the left, with bar colors corresponding to line
colors. (B) Same as A, but for a window of integration of T = 20 ms. (C) Same as A, but
for random checkerboard images. Note the different scaling of the vertical axis. (D) Same
as A, but for natural scenes.

fast relative to the window of integration), this equality does hold approximately, owing

to a separation of these timescales. In this case, there again exists an invertible linear re-

lationship between the transient axonal average Vtr
Ax(T) and the corresponding dendritic

average Vtr
De(T). We emphasize the importance of the separation of timescales effect in

this independence of error from coupling for the transient response. It is achieved as a

result of the contrast between the extremely fast axonal time constants and the slow evo-

lution of the dendritic response to the filtered optic flow stimulus.
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According to [30], the VS axonal compartments have baseline time constants on the or-

der of a millisecond. The effective time constants will thus be even smaller, owing to the

axo-dendritic and axo-axonal gap junction synapses [237]. These short integration time

constants allow the system to reliably implement the linear transfer relating the dendritic

and axonal averages for transient responses, as in Eq. (8.11). To verify this, we carried out

linear regression analysis of the dependence between the axonal and dendritic responses.

We found R2 values for individual coordinates in excess of 0.999 for all coupling values

(ggap = 0, 0.5, 1 µS) and integration time windows tested (T = 10, 20 ms) when the in-

tensity of intrinsic noise was set to zero (results not shown). This indicates that transfer

is nearly linear in each axonal dimension. The linear regression was performed for ran-

dom values ofθstim, indicating the independence of this transfer matrix from the stimulus

value.

In short, the axonal network uses a very fast system filter to institute a highly reliable

linear transfer of the averaged transient dendritic response to the average transient ax-

onal response. As in the steady-state case, the entries of the transfer matrix depend on

coupling, but its existence and invertibility do not. Hence, the posterior distribution of

the stimulus conditioned on the axonal response is nearly identical to that conditioned

on the dendritic response (see Eq. (8.12)), and the latter is approximately independent of

coupling [68]. As a result, the estimates (and error) of any probabilistic estimators will not

depend significantly on the strength of the axo-axonal gap junction coupling within the

VS system.
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8.7 The role of coupling

At this point, it is unclear whether coupling between VS neurons has any impact on the

quality of encoding of the axis of rotation. While previous studies argued that it could

be beneficial [56, 68, 97, 292], our attempts to quantify its impact on optimal encoding effi-

ciency had thus far shown no effect.

A possible answer is found in considering the downstream projections of the vertical

system. A pair of prominent pre-motor descending neurons has been identified within

each brain hemisphere. These descending neurons of the ocellar and vertical system

(DNOVS) form gap junctions with subsets of the VS cells, and directly innervate motor

neurons in the thoracic ganglion of the fly [100, 296–298]. DNOVS1 and DNOVS2 couple

electrically to ipsilateral VS neurons, with the strongest coupling to the VS6-7 and VS5-6

neurons, respectively.

Based on this anatomical observation, we thus considered the MMSE based on a par-

tial readout of the VS5-7 neurons from each hemisphere. The results are presented for dif-

ferent images and integration timescales in Figure 8.7, which parallels Figures 8.5 and 8.6

in format. We found that coupling is of great benefit to the accuracy of the MMSE of θstim

given access only to the response of a subpopulation of the VS neurons. Depending on im-

age statistics and the timescale of integration, even moderate levels of coupling resulted

in two to three-fold improvements in the square root of the stimulus averaged MSE (bar

charts in Figure 8.7).

In order to explain these findings, we return to our discussion of the effects of coupling

on the axonal response distribution shown in Figure 8.4 for steady-state responses. The

effects on transient responses are qualitatively similar. Increasing coupling causes three
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Figure 8.7: Mean-square error of the MMSE for a partial readout of transient responses
(A) (Left) Lines indicate the square root of the mean-square error of the MMSE for tran-
sient responses to filtered optic flow stimuli generated by the rotation of random bar
images with a T = 10 ms window of integration. Line colors correspond to different
coupling strengths as indicated by the legend. The partial readout was formed from the
responses of the VS 5–7 cells on each side. (Right) Bars represent the square root of the
stimulus averaged mean-square error from the data plotted to the left, with bar colors
corresponding to line colors. (B) Same as A, but for a window of integration of T = 20
ms. (C) Same as A, but for random checkerboard images. Note the different scaling of the
vertical axis. (D) Same as A, but for natural scenes.

important qualitative changes in the response distribution: First, variability was reduced

without diminishing the amplitude of tuning curves, which assists encoding of the axis of

rotation (see Figure 8.4C, D).

Next, tuning curves (mean responses) were widened so that each cell individually

responds to a wider range of angles. This may only marginally benefit a full readout.

On the other hand, for a partial readout, responses can appear marginally identical for

stimulus values lying in the flat regions of the tuning curves (e.g., between 45 and 135◦
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in Figure 8.4Ci). Without coupling, the readout would have to rely entirely on higher-

order statistics to distinguish these angles. Coupling, on the other hand, smoothed out

these non-informative portions of the tuning curves. This increase in orientation coverage

allowed nearby stimuli to be distinguished even at the level of individual responses.

Lastly, coupling increases correlations (see Figure 8.4B), potentially reducing the infor-

mation the population carries about the stimulus [11, 15, 203, 259]. However, this increase

in redundancy was favorable to a subpopulation readout, as the marginal distribution

of the retained neurons encodes information about the responses of neurons which are

hidden to the readout. In other words, although the total stimulus-related information

contained in population responses can be reduced, the information carried by an arbi-

trary subpopulation could simultaneously be increased significantly.

In short, coupling modified the dynamical characteristics of VS population responses

in such a way that a near-precise trade-off takes place for a full readout (in which case

error is largely independent of coupling). However, as will be elaborated further in Sec-

tion 8.8 and Figure 8.11 below, for a readout from a subset of the VS cells, these same

effects work in harmony to augment encoding efficiency, resulting in the large decrease in

MSE with coupling shown in Figure 8.7.

8.7.1 Coupling improves partial decoding in simplified model

We verified the robustness of our findings by qualitatively reproducing them using a sim-

plified and dimensionless Ornstein-Uhlenbeck model (or OU model). The features of

the model were set so that only essential characteristics were shared with the full model

defined above in Eq. (8.1). In particular, each cell was given a sinusoidal tuning curve

(i.e., the mean response depended sinusoidally on the stimulus angleθstim) to emulate the
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characteristic retinotopic responses of the VS network.

We replaced the processed optic flow stimulus input to VS model neurons with sim-

ple white noise. To imitate the slow timescale of the dendritic response as received at

the axonal terminals, the dendritic compartments were given a significantly slower time

constant than the axonal compartment. Lastly, the white noise inputs to the dendritic

compartments were assigned a spatially decaying correlation structure to emulate the ef-

fects of receptive field overlap. In this setting, we qualitatively replicated our findings for

full and partial readouts (Figure 8.8). The model was not precisely tuned, and the result

held over a sizable range for all parameters (results not shown).
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Figure 8.8: Mean-square error of the MMSE for full and partial readout from an ap-
proximating Ornstein-Uhlenbeck system (A) (Left) Lines indicate the square root of the
mean-square error of the OLE for transient responses to filtered optic flow stimuli gener-
ated by the rotation of random bar images. Line colors correspond to different coupling
strengths between “axon” compartments, as indicated by the legend. (Right) Bars rep-
resent the square root of the stimulus averaged mean-square error from the data plotted
to the left, with bar colors corresponding to line colors. (B) Same as A, but for a partial
readout formed from the responses of the cells index 5, 6 and 7 on each side, imitating the
partial readout considered in the full system (see Figure 8.7).

We now provide a precise definition of the model. In form, the corresponding Langevin

equations for the evolution of the coupled OU processes XAx, XDe are similar to those of
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the full model (Eq. (8.1)):

τAx,OU
dXAx

dt
= −AAxXAx(t) + aAx-DenXDe(t) +

√
σ2

Ax,OUτAx,OUξAx(t),

τDe,OU
dXDe

dt
= −(1 + aAx-Den)XDe(t) + aAx-DenXAx(t) +µ(θ) +

√
σ2

De,OUτDe,OUBDeξDe(t).

Compared with the matrix GAx defined for the full model in Eq. (8.2), the matrix AAx has

entries given by

AAx,i j =



1 + aAx-Den + agap i = j = 1 or 10,

1 + aAx-Den + 2agap 2 ≤ i = j ≤ 9,

−agap i = j + 1 or i = j− 1.

Thus, XAx, XDe are ten-dimensional processes, and there exists a copy of the system for

each hemisphere. The two copies are uncoupled, and differ parametrically only in their

receptive field centers, as in the full model. The parameters are labeled in such a way as to

facilitate comparisons with their counterparts in the full model. For example, the param-

eter agap captures the coupling between neighboring compartments, and the parameter

aAx-Den the axo-dendritic coupling.

The tuning curves describe the steady-state response in the absence of fluctuations. To

coarsely approximate the steady-state responses of the full system, we defined the tuning

curves as sinusoids with µi(θ) = sin(θ−ϕi), whereϕi indicates the receptive field center

of the ith cell. Note that as a result, each cell’s response will be extremal at stimulation

angles separated by 90◦ from the cell’s receptive field center, as is approximately the case

in the detailed VS model — see Figure 8.1E. Responses were taken to be time integrals as

for the detailed model.
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8.7. THE ROLE OF COUPLING

8.7.2 Comparison of the MMSE with a zero-crossing estimator

Both Cuntz et al. [56] and Elyada et al. [68] argued heuristically that coupling could in-

crease the accuracy of an estimator which would, given the VS axonal responses, propose

the axis of rotation to be defined as a “zero crossing” of the population response. We

implemented such an estimator, and assessed the effects of coupling on its accuracy.

We first explicitly define this estimator, a step which was bypassed by the heuristic

descriptions of [56, 68]. Our approach will be to define for each cell a zero angle, which

is intuitively the most likely rotation angle given that the axonal response of the cell is

near zero in absolute value. Then, given the population response to a rotation about the

stimulus angle θstim, the estimator searches for consecutive pairs of VS neurons which

exhibit a sign change in their responses. Once such a pair is found, the estimator will

propose the axis of rotation to be given by an angle in between the zero angles of the two

VS neurons. The precise estimate is given by assuming that the responses of the two VS

neurons to rotations about θstim vary linearly with their zero angle, and then solving by

linear interpolation for the zero angle of a hypothetical VS neuron which would exhibit a

zero absolute response to the rotation about θstim.

More precisely, we define the zero angle of the ith cell on each side, θ0
X,i, to be

θ0
X,i = argmax

θstim∈Q
P
(
θstim|VAx,X,i ≈ 0

)
, X ∈ {L, R}, 1 ≤ i ≤ 10,

where

Q =

{
θstim

∣∣∣∣∣ ∂P
(
θstim|VAx,X,i ≈ 0

)
∂θstim

> 0

}
.

When defining the zero angle of a VS neuron, we would like this angle to correspond

approximately to the center of the receptive field of the neuron. The posterior distribution
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Figure 8.9: Visualizing the zero-crossing estimator. (A) Circles indicate the mean ax-
onal response of the left-side VS neurons to a rotation of a random bar image about
θstim = −85◦. Error bars indicate 1 standard deviation of the response distribution. The
horizontal coordinate of each dot indicates that cell’s zero angle θ0. (B) On an example
realization for the response to rotation about θstim = −85◦, the zero crossing occurred
between the VS5 and VS6 cells. These cells had had zero angles of θ0

L,5 = −73◦ and
θ0

L,6 = −87◦, respectively. The zero crossing estimator predicts the angle of rotation to
be the zero angle of a hypothetical cell which would exhibit zero response, under the
assumption that the response varies linearly with zero angle (red dashed line).

of the stimulus conditioned on a small absolute response for a given VS cell will gener-

ally have two relative maxima, roughly corresponding to rotations near the center of the

receptive field to the neuron and rotations 180◦ from the center of the receptive field. In

these stimulus ranges, the optic flow crossing the retinotopic receptive field of the cell in

question will have low velocity, leading to weak absolute responses. Near the receptive

field center of the neuron, the posterior gradient will be positive, owing to the polarity

of the synapses through which upward and downward motion separately arrive at the

dendrites of a VS neuron (in particular, upward motion inhibits the cell, and downward

motion excites, as stated in the model definition of Section 8.1.1), as well as the fact that all

rotations we consider would correspond to counter-clockwise rolls of the fly about a given

axis. Restriction to the set Q where the derivative of the posterior with respect to the stim-

ulus angle θstim is positive is designed to resolve this ambiguity in the definition of the
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8.7. THE ROLE OF COUPLING

zero angle. We plot the mean and standard deviation of the marginal response distribu-

tion for each left-side VS neuron to a rotation of a random bar image about θstim = −85◦

in Figure 8.9A. The horizontal coordinate of each point indicates the zero angle of each

cell.

The estimator first searches for a pair of consecutive VS neurons which exhibit re-

sponses V1 < 0, V2 > 0, having zero angles θ0
1 ,θ0

2, where we assume the two cells are

labeled such that

θ0
2 −θ0

1 mod 360◦ ∈ [0◦, 180◦).

A sufficient condition for such a pair to exist is existence of at least one pair of VS neurons

exhibiting positive and negative responses, respectively. Once such a pair is located, the

zero-crossing estimateθZC
est is proposed as the angle associated with the zero potential level

for the line connecting (θ0
1 , V1) and (θ0

2 , V2) — i.e., we set

θZC
est = θ

0
1 +

θ0
2 −θ0

1

V2 −V1
(0−V1).

We provide a visualization of this estimation scheme in Figure 8.9B.

It is possible, in the case of a subpopulation readout in the presence of large noise,

for example, that all of the considered neurons can exhibit either positive or negative

responses. In this case, the estimate is set to be a random angle in [0◦, 360◦). It may also

be that multiple such pairs are found. In this case, the estimate is randomly selected from

the values of θZC
est associated with each pair.

In Figure 8.10, we plot the performance of the zero-crossing estimator. As was pre-

dicted by [56, 68], the estimator does benefit from the axo-axonal coupling for a full read-

out (panel A). However, in the case of a partial readout (panel B), the changes in prediction

error with coupling are not significant and the error increases significantly. In all cases,
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8.8. FACTORS DETERMINING PARTIAL DECODING IMPROVEMENT

as one should expect, the estimator is suboptimal when compared to the MMSE, notably

so for the case of a subpopulation readout (compare with Figure 8.6A and Figure 8.7A).

In general, it is possible to propose various suboptimal estimators which are affected by

coupling in different ways — our findings are derived from the application of general

Bayesian estimators, and in particular, the optimal mean-square estimator.
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Figure 8.10: Mean-square error of the MMSE for a full and partial readout, for the zero-
crossing estimator. (A) (Left) Lines indicate the square root of mean-square error of the
zero-crossing estimator for transient responses to filtered optic flow generated by the rota-
tion of random bar images with a T = 10ms window of integration. The readout provided
to the estimator consisted of the full VS population response. Line colors correspond to
different coupling strengths as indicated by the legend. (Right) Bars represent the square
root of the stimulus averaged mean-square error from the data plotted to the left, with bar
colors corresponding to line colors. (B) Same as A, but for a partial readout formed from
the responses of the VS5–7 cells on each side.

8.8 Factors determining partial decoding improvement

A natural question at this point is whether the efficient encoding of the axis of rotation

by a subpopulation can be achieved simply through changes in the marginal responses of

the VS cells. Could changes to tuning curves and reduction in variability (see Figure 8.4)

completely account for the observed improvements in encoding accuracy? Or is it im-

portant that the electrical coupling between VS cells also affects the correlations in their
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8.8. FACTORS DETERMINING PARTIAL DECODING IMPROVEMENT

response? In order to assess the importance of correlations in encoding, it is common to

shuffle observations across trials [160, 192, 242].

8.8.1 Trial-to-trial variations vs. tuning curve smoothing

In Figure 8.11, we plot the MSE of the MMSE as a function of the axis of rotation for

two coupling strengths, for trial-shuffled data. The bar chart to the right in Figure 8.11

presents the estimation error for the uncoupled and coupled systems, with and without

trial-shuffling. Approximately half of the improvement in MSE for the subpopulation

readout (dashed bars, Figure 8.11 right) was accounted for by the changes to tuning and

variability (gray bar). This demonstrates that the marginal dynamical changes and the

shaping of the correlation structure were of nearly equal importance to the efficient sub-

population representation in this example.

8.8.2 Axonal filtering

The encoding of the axis of rotation in the VS response takes on a hierarchical structure,

as discussed above and depicted in Figure 1.4C. In particular, the axonal system receives

input from the dendritic system, which itself possesses a retinotopic receptive field struc-

ture, and thus also encodes the axis of rotation in its response. If only a subset of the

VS responses are made known to an estimator, why have ten cells instead of, say, a more

economical single cell with the same extended dendritic structure?

To answer this question, we simulated the system with only a single cell (axon) in each

hemisphere which received input from all ten dendrites, and left the dendritic structure

unchanged. In this case, the axonal response within each hemisphere is now univariate
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Figure 8.11: Correlations encode stimulus information in a partial readout (Left) Solid
lines indicate the square root of the mean-square error of the MMSE for trial-shuffled
transient responses to filtered optic flow stimuli generated by the rotation of random bar
images with a T = 10 ms window of integration. Line colors correspond to different
coupling strengths as indicated by the legend. Dashed lines indicate the error of the partial
readout without shuffling for the same strengths of coupling (same data as Figure 8.7A).
The partial readout was formed from the responses of the VS 5–7 cells on each side. (Right)
Solid border bars represent the square root of the stimulus averaged mean-square error for
the cross-trial shuffled data plotted to the left, with bar colors corresponding to line colors.
Dashed border bars indicate the same, but for the non-shuffled data (as in Figure 8.7).

and evolves according to (compare with Eq. (8.1))

Cm
dVAx

dt
= −(gL,Ax + 10gAx-Den)VAx(t) + 10gAx-Den

[
1

10

10

∑
i=1

VDe,i(t)

]
+
√
σ2

AxτAxξAx(t).

(8.14)

As Eq. (8.14) reveals, this is essentially equivalent to assuming the single axonal com-

partment couples to a single dendritic compartment evolving as the average of the ten

dendritic compartments in the full model. Naively, one should expect this to be much

worse, and we verify this in Figure 8.12, where we compare the error of the MMSE for the

single axon system to that of the full, coupled system with a partial readout consisting of

the VS5–7 cells (as in Figure 8.7). The average error in the full system is decreased by over

a factor of four (compare the solid orange and dashed blue lines, Figure 8.7, right), while

the local error is reduced by up to a factor of eight (Figure 8.7, left).
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To eliminate the possibility that the improvement is entirely due to the two additional

dimensions available when reading out the VS5–7 responses, we also compared the per-

formance of the MMSE for the single axon system to that for the full, coupled system,

allowing for a readout of only the VS5 cell. This coupled system is again notably supe-

rior to the single axon system (compare Figure 8.7, dashed orange and blue lines). In

short, the axonal post-processing of the dendritic input due to coupling is notably dis-

tinct from the detrimental pre-processing which takes place for the single axon system, in

which a potentially large loss of stimulus-related information results from the averaging

of dendritic responses. These results hold for passive dendrites — it is an open question

as to whether the single axon system could be rescued by more complex (i.e., nonlinear)

dendritic processing.

#
Axons
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40o
25o

110

1 Axon
10 Axons, VS5
10 Axons, VS5-7

1090o 180o 270o θstim

Figure 8.12: A single cell with large dendritic extent cannot accurately encode the axis
of rotation (Left) Solid orange line indicates the square root of the mean-square error of
the MMSE for transient responses to filtered optic flow stimuli generated by the rota-
tion of random bar images with a T = 10 ms window of integration, for the full system
with a partial readout consisting of the VS5–7 cells in each hemisphere (same data as
Figure 8.7A). The dashed orange line is the same as the solid line, except the readout con-
sisted of only the VS5 cell. The dashed blue line indicates the MSE for a system consisting
of a single axonal compartment in each hemisphere which couples to all ten of the cor-
responding dendritic compartments, as described in the text. (Right) Bars represent the
square root of the stimulus averaged mean-square error for the systems and readouts of
the corresponding lines to the left.
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8.8.3 Partial readout subset size and VS cell identity

Finally, we asked to what extent our results depend on the particular subset of the VS

population which the MMSE has access to. We randomly selected twenty distinct read-

outs of sizes up to five (except for readouts of size one, of which there are only ten possible

choices). In addition, for readouts of size three, we ensured that the set VS5–7, the readout

considered in Figure 8.7, was one of the tested readouts. For each of the chosen readouts,

we computed the MSE averaged across values of θstim.

The results are presented in Figure 8.13. The MSE for the coupled network (panel B)

decreases rapidly, essentially leveling off for readouts of two cells or more. Strikingly, for

these same readout sizes, there is very little dependence on the particular subset chosen,

as indicated by the closeness of the minima and maxima to the average. On the other

hand, the average MSE across readouts does not decrease as rapidly for the uncoupled

network. Moreover, the MSE for the uncoupled network depends strongly on the iden-

tity of the particular subset — though the mean for the uncoupled network is close to

that of the coupled network by readouts of size three, the error for the “worst” readout

remains greatly elevated by comparison. Coupling is uniformly beneficial to the fidelity

of encoding of the axis of rotation in the axonal response. Strikingly, however, the error

for the readout of the VS5–7 cells was highest amongst all tested readouts for both the

coupled and uncoupled system. Thus, if biological constraints dictate a situation where

the rotation angle must be estimated from the response of only these particular neurons,

coupling of the VS axonal responses becomes of great importance, as we have illustrated

(Figure 8.7). This phenomenon is closely linked to the changes in ‘orientation coverage’

with population size recently reported in pools of orientation selective cortical neurons

used to discriminate sinusoidal gratings drifting in different directions [93]. Analogous
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coverage changes are a central effect of coupling in the VS network (Figure 8.4).
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Figure 8.13: Encoding accuracy depends on cell identities for a partial readout (A) The
solid line indicates the average square root of the mean-square error of the MMSE calcu-
lated from transient responses in the uncoupled system. Input to the system consisted of
filtered optic flow stimuli generated by the rotation of random bar images with a T = 10
ms window of integration. The MSE was averaged across 20 randomly chosen subsets
for each readout subset size, except for a size one readout, where we could only consider
ten readouts, corresponding to the ten VS cells. Dashed lines indicate the maximum and
minimum values of the MSE observed across the randomly chosen subsets. For size three
readouts, we ensured that we included the subset consisting of VS5–7 (the same subset
used in Figures 8.7), and the filled circle indicates the MSE for this subset. Note the loga-
rithmic scale of the vertical axes. (B) Same as panel A, but for the coupled system.
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Chapter 9
Discussion

This work can be divided into three distinct subjects: First, the Generalized Thinning and

Shift model of Chapter 4 presents a powerful tool to computational and experimental

neuroscientists who need to better understand how neuronal networks operate on their

inputs, and how these operations depend on the fine-scale correlation structure of that

input. The linear response theory of correlations in integrate–and–fire networks of Chap-

ters 5 through 7 is invaluable for gaining intuition for how the properties of individual

cells, network architecture, and response statistics interact and are shaped by each other.

Finally, the analysis of part of the fly visual system given in Chapter 8 revealed a crucial

function of coupling within cells detecting rotations of the fly. Our findings may have

more general implications.

The Generalized Thinning and Shift model

In Chapter 4, we introduced the Generalization Thinning and Shift (GTaS) model, a gen-

eral method of generating spike trains with flexible spatiotemporal structure. The GTaS
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model is completely analytically tractable: all statistics of interest can be obtained directly

from the distributions used to define it. It is based on an intuitive algorithm of selecting

and shifting point processes from a “mother” train. Moreover, the GTaS model can be

used to easily generate partially synchronous states, cluster firing, cascading chains, and

other spatiotemporal patterns of neural activity.

Processes generated by the GTaS model are naturally described by cumulant densi-

ties of pairwise and higher orders. This raises the question of whether such statistics are

readily computable from data, so that realistic classes of GTaS models can be defined in

the first place. One approach is to fit mechanistic models to data, and to use the higher-

order structure that is generated by the underlying mechanisms [308]. A synergistic blend

of other methods with the GTaS framework may also be fruitful — for example, the Cu-

BIC framework of [263] could be used to determine relevant marking orders, and the

parametrically-described GTaS process could then be fit to allow generation of surrogate

data after selection of appropriate classes of shift distributions. When it is necessary to

infer higher-order structure in the face of data limitations, population cumulants are an

option to increase statistical power (albeit at the cost of spatial resolution — see Figure 4.3).

While the GTaS model has flexible higher-order structure, it is always marginally Pois-

son. While throughout the cortex spiking is significantly irregular [122, 245], the level of

variability differs across cells, with Fano factors ranging from below 0.5 to above 1.5 [49].

Changes in variability can reflect cortical states and computation [170, 299]. A model that

would allow flexible marginal variability would therefore be very useful. Unfortunately,

the tractability of the GTaS model is closely related to the fact that the marginal processes

are Poisson. For this reason, an immediate generalization does not seem possible.

A number of other models have been used to describe population activity. Maximum

226



entropy (ME) approaches also result in models with varied spatial activity. ME models

are defined based on moments or other averaged features of multivariate spiking activ-

ity [235, 241]. Such models are often used to fit purely spatial patterns of activity, though

[181, 270] have extended the techniques to treat temporal correlations as well. General-

ized linear models (GLMs) have been used successfully to describe spatiotemporal pat-

terns at second [207], and third order [194]. In comparison to the present GTaS method,

both GLMs and ME models are more flexible. They feature well-defined approaches for

fitting to data, including likelihood-based methods with well-behaved convexity proper-

ties. What the GTaS method contributes is an explicit way to generate population activity

with explicitly specified high-order spatio-temporal structure. Moreover, the lower-order

cumulant structure of a GTaS process can be modified independently of the higher-order

structure, though the reverse is not true.

There are a number of possible implications of such spatio-temporal structure for com-

munication within neural networks. In Section 4.2.3, we showed that these temporal cor-

relations can play a role similar to that of spatial correlations established in [156] for de-

termining network input-output transfer. Our model allowed us to examine that impact

of such temporal correlations on the network-level gain of a downstream population (cas-

cade amplification factor). Even in a very simple network it was clear that the strength of

the response is determined jointly by the temporal structure of the input to the network,

and the connectivity within the network. Kuhn et al. examined the effect of higher order

structure on the firing rate gain of an integrate–and–fire neuron by driving it with a mix-

ture of SIP or MIP processes [156]. However, in these studies, only the spatial structure of

higher order activity was varied. The GTaS model allows us to concurrently change the

temporal structure of correlations. In addition, the precise control of the cumulants allows

us to derive models which are equivalent up to a certain cross-cumulant order, when the
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configuration of marking probabilities and shift distributions allow it (as for the SIP and

MIP processes of [156], which are equivalent at second order).

Such patterns of activity can be useful when experimentally probing dendritic infor-

mation processing [89], or investigating the response of neuronal networks to complex

patterns of input [141]. Spatiotemporal patterns can also be generated by cell assem-

blies [17]. The firing in such assemblies can be spatially structured, and this structure

may not be reflected in the activity of participating cells. Assemblies can exhibit persis-

tent patterns of firing, sometimes with millisecond precision [109]. The GTaS framework

is well suited to describe exactly such activity patterns. The examples we presented can

be easily extended to generate more complex patterns of activity with overlapping cell

assemblies, different cells leading the activity, and other variations.

Understanding impact of spatiotemporal patterns on neural computations remains an

open and exciting problem. Progress will require coordinating computational, theoretical,

and experimental work – the latter taking advantage of novel stimulation techniques.

We hope that the GTaS model, as a practical and flexible method for generating high-

dimensional, correlated spike trains, will play a significant role along the way.

Analysis of neuronal dependencies through linear response

In Chapters 5 through 7, we have extended and further developed a general theoretical

framework that can be used to describe the correlation structure in a network of spiking

cells. The application of linear response theory allows us to find tractable approxima-

tions of cross-correlation functions in terms of the network architecture and single cell

response properties. The approach was originally used to derive analytical approxima-

tions to auto- and cross-spectra in an all–to–all inhibitory network in order to study the
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population response of the electrosensory lateral line lobe of weakly electric fish [167]. The

key approximation relies on the assumption that the activity of cells in the network can

be represented by a mixed point and continuous stochastic process, as given in Eq. (5.3).

This approximation can be viewed as a generalization of classic Linear-Poisson models

of neural spiking: the crucial difference is the replacement of the stationary firing rate by

a realization of an integrate-and-fire spiking process. This allows for the retention of the

underlying IF spiking activity while additionally posing that neurons act as perfect linear

filters of their inputs. An intuitive, iterative construction then leads to the expressions for

approximate cross-correlations between pairs of cells given by Eq. (5.12).

The linear response framework of Lindner et al. [167] was extended by Marinazzo

et al. [178] to somewhat more complex networks, and compared with other studies in

which networks exhibit collective oscillations. In addition, other works [5, 20, 45] used

linear response techniques to study information in the collective response of cells in a

network. More recently, Ostojic et al. [198] obtained formulas for cross-correlations one

would obtain by terminating the iterative construction in Eq. (5.8) at first order (n = 1).

Their approach captures corrections due to direct coupling (first-order terms) and direct

common input (second-order terms involving second powers of interaction kernels; for

further reference, see also [59, 249]). Our approach can be viewed as a generalization that

also accounts for length two directed chains, along with all higher order corrections. As

Figure 6.3 illustrates, these additional terms can be significant. The present approach also

allows us to calculate corrected auto-correlations, in contrast with that of Ostojic et al.

Our work is also closely related to that of Pernice et al. [205], who analyzed the correla-

tion structure in networks of interacting Hawkes processes [111, 112]. Both studies represent

correlations between cell pairs in terms of contributions of different connectivity motifs.
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While our methods apply directly to integrate–and–fire systems, stationary Hawkes pro-

cesses are necessarily Poisson in the absence of coupling. As a result, the methods of

Pernice et al. do not generally apply to integrate–and–fire neuronal networks. Moreover,

for simplicity Pernice et al. examined only “total” spike count covariances, which are the

integrals of the cross-correlation functions. However, as they note, their approach can be

extended to obtain the temporal structure of cross-correlations. Similarly, Toyoizumi et

al. [276] derive expressions for cross-correlations in networks of interacting point process

models in the Generalized Linear Model (GLM) class. These are very similar to Hawkes

processes, but feature a static nonlinearity that shapes the spike emission rate.

To illustrate the power of the present linear response theory in analyzing the factors

that shape correlations, we considered a number of simple examples for which the ap-

proximation given by Eq. (5.12) is tractable. We showed how the theory can be used both

to gain intuition about the network and cell properties that shape correlations, and to

quantify their impact. In particular, we explained how only local connections affect cor-

relations in a precisely tuned all–to–all network, and how strengthening inhibition can

synchronize spiking activity. In each case, we use comparisons with integrate-and-fire

simulations to show that linear response theory makes highly accurate predictions.

It may be surprising that linear response theory can be used to provide corrections to

cross-correlations of arbitrary order in network connectivity. The key to why this works

lies in the accuracy of the linearization. A more accurate approximation could be obtained

by including second- and higher-order corrections to the approximate response of a single

cell, as well as corrections to the joint response. While including such terms is formally

necessary to capture all contributions of a given order in network connectivity [211, 212],

the success of of linear response theory suggests that they are small for the cases at hand.
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In short, the present approximation neglects higher-order corrections to the approximate

response of individual cells, along with all corrections involving joint responses, but ac-

counts for paths through the network of arbitrary length.

As expected from the preceding discussion, simulations suggest that, for IF neurons,

our approximations become less accurate as cells receive progressively stronger inputs.

The physical reasons for this loss of accuracy could be related to interactions between the

“hard threshold” and incoming synaptic inputs with short timescales. Additionally, while

the theory will work for short synaptic timescales, it will improve for slower synaptic

dynamics, limiting towards being essentially exact in the limit of arbitrarily long synaptic

time constants (note the improvement in the approximation for the FFI circuit for the

slower timescale exhibited in Figure 6.2). Another important factor is background noise,

which is known to improve the accuracy of the linear description of single cell responses.

We assume the presence of a white noise background, although it is possible to extend the

present methods to colored background noise [6, 81].

We found that linear response theory remains applicable in a wide range of dynam-

ical regimes, including relatively low noise, super-threshold regimes where cells exhibit

strong oscillatory behavior. Moreover, the theory can yield accurate approximations of

strong correlations due to coupling: for the bidirectionally coupled excitatory circuit of

Figure 6.3, the approximate cross-correlations match numerically obtained results even

when correlation coefficients are large (ρE1E2
(∞) ≈ 0.8 in the excitable regime, ≈ 0.5 in

the oscillatory regime). A thorough discussion of the limits of applicability of linear re-

sponse to the computation of correlations in networks can be found in Section 6.4. There,

we show that the approximation is valid over a range of physiological values in the case

of the all-to-all network, and that the theory gives accurate predictions in the presence of
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low firing rates. We briefly reviewed some preliminary findings which indicate the failure

of the linear response theory to accurately describe third-order correlations. Resolution of

this disagreement by the proposition of a consistent correction to the linear response the-

ory is an important open problem.

The limits of linear response approximations of time-dependent firing activity and

correlations have been tested in a number of other studies. Ostojic and Brunel [197] ex-

amined this accuracy in the relatively simple case of a neuron receiving filtered Gaussian

noise in addition to a white background. Chacron et al. [45] noted that linear response ap-

proaches applied to networks of perfect integrators begin to display significant errors at

larger connection strengths. Marinazzo et al. [178] remarked on the errors induced by net-

work effects in linear response approximations to correlations in a delayed feedback loop.

In particular, these errors were attributed to network effects such as synchrony in the ex-

citatory population. The authors noted that such activity cannot be correctly modeled by

a linear approach.

Although we have demonstrated the theory using networks of integrate–and–fire neu-

rons, the approach is widely applicable. The linear response kernel and power spectrum

for a general integrate and fire neuron model can be easily obtained [221]. In addition, it

is also possible to obtain the rate, spectrum, and susceptibility for modulation of the mean

conductance in the case of conductance-based (rather than current-based) synapses (See

[223] and Section 3 in Text S1). As the linear response kernel is directly related to the spike

triggered average [85, 198], the proposed theoretical framework should be applicable even

to actual neurons whose responses are characterized experimentally.

The possibilities for future applications are numerous. For example, one open ques-

tion is how well the theory can predict correlations in the presence of adaptive currents [223].
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In addition, the description of correlations in terms of architecture and response proper-

ties suggests the possibility of addressing the difficult inverse problem of inferring ar-

chitectural properties from correlations [193, 198, 201, 276]. Ostojic et al. applied linear

response methods to the latter problem. It is our hope that the present approach will

prove a valuable tool in moving the computational neuroscience community towards a

more complete understanding of the origin and impact of correlated activity in neuronal

populations.

The role of coupling in the blow fly vertical system

A fly faces the challenging task of rapidly extracting information about ego-motion from

complex patterns of optic flow. In probabilistic terms, the fly’s brain must perform real-

time marginalization to extract relevant information from visual inputs (Figure 1.4C). We

used a simplified, but biophysically realistic model of the vertical cell system (VS) to ex-

amine the role of electrical coupling in encoding the azimuthal axis of ego-rotation. We

have shown that this parameter can be accurately extracted from the transient response of

the VS network, within time windows that are neurally and behaviorally relevant in free

flight.

Coupling did not affect the error of probabilistic estimates obtained from the popula-

tion response (Figures 8.5, 8.6). This surprising result is explained by several changes to

the population response. In isolation, some of these changes can be detrimental, while

others can be beneficial to encoding (Figure 8.4). Notably, the fast responses of the VS net-

work resulted in an invertible linear transfer from dendritic to axonal responses (Eq. (8.11)).

As a consequence, the posterior distribution of the azimuthal angle of rotation was unaf-

fected by coupling. Hence, any Bayesian or maximum-likelihood estimator, including the
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OLE and MMSE, are unaffected by coupling.

The DNOVS 1 and 2 are two well-studied, efferent targets of the VS system [100, 296–

298]. These neurons project to thoracic ganglia where they contact neck motor neurons

involved in head stabilization during flight. Each DNOVS neuron is coupled electrically

to multiple VS neurons, exhibiting the strongest connections to only two of them. In

total, the DNOVS pair is coupled predominantly to a subset of three VS neurons in each

hemisphere.

When we estimated the rotation angle from the response of this subset of three VS

neurons, coupling significantly improved encoding accuracy (Figure 8.7). For such a sub-

population readout, the transfer from dendritic to axonal membrane potential is linear,

but no longer invertible. Hence, the performance of the estimator depends on coupling.

The dynamical changes induced by coupling (Figure 8.4) result in a sub-population read-

out that has fidelity comparable to a full readout. This result depends on the chosen sub-

population. Coupling had the greatest impact on the readout from VS5–7 (Figure 8.13).

These resuts are robust. Model details such as image statistics and the output integra-

tion window had only a quantitative impact. We reproduced our findings in an Ornstein-

Uhlenbeck system that shared only general features with the full system (Figure 8.8). Post-

dendritic processing enabled by the coupling of distinct axonal compartments was crucial

to encoding accuracy (Figure 8.12).

Earlier arguments regarding the benefit of coupling were primarily heuristic [68], and

generally concerned steady-state responses [56, 292]. By considering dominant eigen-

modes, [292] showed that coupling lead to a reliable, lower dimensional representation

of VS activity. Rotation about a given azimuthal axis results in depolarization of the po-

tential of VS cells located to one side of the axis, and hyperpolarization in the remaining
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cells. This prompted [56] and [68] to propose estimating the axis of rotation by interpolat-

ing the responses of the VS cells, and finding a zero crossing.

When we implemented such a zero-crossing estimator and compared it to the MMSE,

we found it to be significantly suboptimal. The estimator usually struggled to achieve rea-

sonable encoding accuracy when presented with responses to natural scenes. In this case,

responses are generally weaker than those induced by the other image types we consid-

ered, and the zero-crossing estimator is more susceptible to noise. Furthermore, coupling

could either improve or degrade prediction error, depending on image statistics. When

presented with a subpopulation response, the zero crossing estimator fared even worse,

generally producing an error several times that of the MMSE in the coupled system.

The MMSE establishes a baseline for the performance of any estimator. While subopti-

mal estimators can be affected by coupling in different ways, we found consistent results

for the MMSE across stimulus conditions. While brains and neurons may not necessarily

process information optimally[171], evidence for optimality has been gathered both at the

behavioral and neural level (e.g., [73, 77]). In this study, optimal estimators served as an

operational benchmark, revealing the potential capabilities of the system under realistic

assumptions.

Among previous analyses of optic flow encoding in lobula plate neurons of the fly,

two studies stand conceptually close to the current work. Karmeier and collaborators

took a Bayesian approach reminiscent of our own to quantify the encoding efficiency of

the axis of rotation in the VS population response [142]. Further, they also proposed time

integrals of the VS membrane potentials as readout variables, and examined the impact of

population size on the ability of the VS system to encode the axis of rotation. We note sev-

eral important differences: Foremost, [142] did not investigate the effect of VS coupling,
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instead focusing on the effects of integration time and input correlations. Furthermore,

they used a phenomenological model, in contrast to the biophysically plausible model we

considered. More recently, Weber and collaborators applied generalized linear models to

assess the benefits of coupling between two optic flow-processing, spiking neurons of the

lobula plate (H1 and Vi) for conveying information about optic flow parameters [293].

Our results in the fly VS system are suggestive of more general principles: Consider a

neuronal network which encodes an external parameter in its response. Coupling can al-

low each neuron to represent a greater extent of the parameter space. When downstream

targets need to extract information about this parameter from relatively few neuronal pro-

jections, the redundancy within their responses can be highly beneficial [266]. As we have

shown, such redundancy will not necessarily degrade the performance of an estimator.

We found that changes in correlation structure were important in improving encoding

accuracy in the case of a subpopulation readout (Figure 8.11). These findings contrast with

the usual discourse on whether neuronal responses should be correlated (to error-correct),

or decorrelated (to maximize information transmission; [275]). In the present case, correla-

tions between VS neurons carry information about the responses of unobserved neurons.

Electrical synapses are both strong and fast in their effect on sub-threshold dynamics rel-

ative to their chemical counterparts [303]. They are therefore particularly well-suited for

increasing the coverage of a parameter, reducing variability and introducing redundancy.

Many previous theoretical studies examined how changes in neuronal response statis-

tics, such as correlations or tuning curves, impact coding [11, 15, 65, 140, 162, 203, 244, 247,

259]. This approach gives us valuable insights into how information about a stimulus is

affected by different aspects of the neural population response. However, it is important

to remember that different response statistics are frequently dependent [21, 248]. They are
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characterizations of a generally complex system that may be better described in terms of

its underlying architecture and the dynamical properties of its input.

These issues relate to a key advantage of our approach: We made no a priori assump-

tions about the statistical form of the VS population response. In particular, we made no

assumptions on how the joint activity of VS neurons encodes the axis of rotation. Rather,

we considered the responses of a biophysically inspired model to realistic stimuli. The

spatiotemporal structure of the input, and the properties of the VS network fully deter-

mined its responses. Since we obtained the full joint distribution of responses, we could

avoid an ad-hoc analysis (or model) of encoding in the VS response. Instead, we obtained

a direct measure of the information available to the animal about the stimulus [93].

There are some manifest avenues for future investigation: For instance, we imple-

mented the readout of the VS population responses as simple temporal averages. How-

ever, downstream DNOVS neurons are not perfect integrators. In particular, DNOVS 2 is

a spiking neuron, introducing a strong nonlinearity into the processing pathway. Further,

the effect of interactions with other neurons of the lobula plate should be investigated [30].

We also did not attempt to determine whether significant information is contained in cor-

relations higher than second order. Application of maximum-entropy approaches could

help answer this question [134].

The aerial performance of flies during intra-saccadic flight maneuvers is unmatched

in both nature and technology [82], making the study of optic flow processing within

the brain of flies and other insects of great general interest. A vertical system, similar to

the one examined here, has been identified in the fruit fly, Drosophila melanogaster. More

broadly, the extraction of information from optic flow is a problem faced by all seeing

organisms moving through the world. Understanding how the brain of a fly does this
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efficiently, and with so few neurons, can provide insight into the implementations utilized

in more complex organisms.

Tying it all together

Animal brains may range widely in their complexity, from the “simplicity” of the round-

worm (approximately 300 neurons and 5000 synapses [300]), to the relatively amazing

efficiency of the fly brain (containing a few hundred thousand cells [28], all the way to the

stunning intricacy of our own human brains (1011 neurons and 1014 synapses [301]). The

study of brains, and specifically the form and function of the subnetworks they contain,

is a problem of both immense importance and immense difficulty.

The common thread which weaves the present work together is the focus on the effect

of dependencies and interactions amongst neuronal populations in shaping their collec-

tive responses. We believe that successful scientific progress towards understanding such

relationships rests on three foundational pillars: First, we must develop tools which will

allow us to “poke and prod” neurons and networks, increasing our understanding of their

general response properties, and pulling back the veil over the underlying structure of

these networks. The Generalized Thinning and Shift framework and related approaches

can provide such instruments.

Next, given the extreme nature of the complexity of the computational and experimen-

tal settings neuroscientists find themselves in, we must strive to better understand how

local (observable) properties of networks can shape their response distributions. This is

a central function of the linear response theory of correlations. In particular, we showed

how motif cumulants — the values of which experimentalists are making increasingly
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available for a variety of cortical networks [260] — can accurately predict global dynam-

ical properties. Furthermore, given knowledge of such relationships, there is a potential

for flipping them on their heads, thereby drawing conclusions on local network structure

(which is generally poorly sampled) from observable, large scale statistics of network ac-

tivity.

Comprehension of the structure of a network and the dynamics that overlay that struc-

ture, and more importantly, their interrelationship, still says nothing of the function of the

network. This is the final pillar: we must advance our procedures for assessing the role

of the dynamics and structure in creating an environment conducive for the network to

perform the tasks it is faced with. Crucially, in our analysis of the encoding of the axis of

ego-rotation in a biophysically-realistic model of the fly visual system, we avoided a priori

assumptions of form or function of the population response. As in our study of the fly

visual system, embracing this approach will hopefully lead to studies and findings with

broader implications.
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Appendix A
Notation tables

Symbol Description
Vi(t) Membrane potential of cell i at time t.

EL, Cm, gL, τm Leak reversal potential, membrane capacitance, leak conductance
and membrane time constant of a neuron. The latter three are related
by τm = Cm/gL.

Eξ ,i,σξ ,i Mean and standard deviation of the background noise for cell i.
Vth, Vr, τref Membrane potential threshold, reset, and absolute refractory period

for cells.
ψ(v), VT , ∆T Spike generating current, soft threshold and spike shape parameters

for the IF model [81].
τsyn, τd Synaptic time constant and delay of the synaptic filter applied to the

output of a neuron. See an example filter in Eq. (5.6).
Wi j The j → i synaptic weight, proportional to the area under a single

post-synaptic current for current-based synapses.

β̃(t) Entries [β̃(t)]i j = β̃i j(t) give the j → i synaptic kernel - equals the
product of the synaptic weight Wi j and the synaptic filter for outputs
of cell j.

y(t) Vector of spike train outputs of a network, y(t) = (y1(t), . . . , yN(t)).
Nyi(A) Spike count for cell i — counts the Number of spikes of the process i

with times in the set A. Also referred to as a counting process.

Table A.1: Notation for neuron models. Notation used in defining and discussing neuron
models.
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Symbol Description
x∗ The complex conjugate x∗ = a− bi of a scalar quantity

x = a− bi, where a, b ∈ R.

X The complex conjugate (non-tranposed) of a matrix or
vector X, defined as an entry-wise scalar conjugate
transpose.

( f ∗ g)(t) The convolution of f and g given by

( f ∗ g)(t) =
∫ ∞
−∞ f (s)g(t− s)ds.

f (t), f̃ (ω) f̃ (ω) is the Fourier transform of f (t) with the conven-
tion

f̃ (ω) = F [ f ](ω) ≡
∫ ∞
−∞ e−2π iωt f (t)dt

κ(X) Cross-cumulant of a random vector X defined in
Eq. (2.1).

κ
y
i1i2···ik

(τ1, . . . , τk−1) The kth order cross-cumulant density for the processes
(yi1 , yi2 , . . . , yik), defined in Eq. (2.13) for spike trains
and Eq. (2.3) for numerically valued stochastic pro-
cesses. When y is replaced by a counting process X, as
in Chapter 4, we refer to the cross-cumulant density of
the corresponding spike trains, and not to the density
associated with the counting processes themselves.

Sy
i1i2···ik

(τ1, . . . , τk−1) The kth order polyspectrum for the processes
(yi1 , yi2 , . . . , yik), defined in Eq. (2.5).

γ
y
i1i2···ik

(T),γy
i1i2···ik

(∞) The kth order spike count cross-cumulant for the pro-
cesses (yi1 , yi2 , . . . , yik) over windows of length T, and
over arbitrarily long windows, defined in Eqs. (2.11)
and (2.9).

ρ
y
i j(T) Pearson correlation coefficient between the spike counts

Nyi(T) and Ny j(T) over windows of length T.

C(u1, . . . , uN), c(u1, . . . , uN) Copula distribution function and density. Defined in
Section 2.2.

Table A.2: Mathematical notation. Mathematical notation used in the text.
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Symbol Description
X Vector of counting processes associated with a GTaS pro-

cess.
D D = {1, 2, . . . , N} where N is the system size of the GTaS

process under consideration.
(pD)D⊂D Marking probabilities of a GTaS process.

(QD)D⊂D, Y Family of shift distributions on RN for a GTaS process, and
a the random shift vector drawn from these distributions.

B(R) Borel subsets of the real line R.
ξ(D; A1, . . . , AN) Independent Poisson variables which count points which,

after shifting, lie in the sets Ai only along the dimensions
corresponding to the indices of D. These counts consist of
contributions from subsets marked for D′ ⊃ D, but indices
in D′\D end up outside the corresponding Ai. Defined in
the statement of Theorem 4.3.1.

ζD(A1, . . . , AN) Independent Poisson variables which are context-
dependent resummations of the variables
ξ(D; A1, . . . , AN). Defined below Eq. (4.10).

κX
i1···ik−1 ,pop(τ1, . . . , τk−1) Population cumulant density defined in Eq. (2.15).

Table A.3: Notation for the Generalized Thinning and Shift model. Notation used in
the definition and discussion of the Generalized Thinning and Shift model in Chapter 4.
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Symbol Description
ri, ri(t), Ai(t) Stationary rate and linear response kernel for cell i. The latter two

are related in Eq. (5.2).
K(t) The entry [K(t)]i j = Ki j(t) gives the j → i interaction kernel - de-

scribes how the firing activity of cell i is perturbed by an input spike
from cell j. It is defined by Ki j(t) = (Ai ∗ β̃i j)(t).

yn
i (t) The nth order approximation of the activity of cell i in a network

which accounts for directed paths through the network graph up to
length n ending at cell i. Defined in Eqs. (5.8, 5.9).

Sy
0,i The “unperturbed” spectra for cell i, defined as the power spectrum

of the ith process in the absence of fluctuations due to input.
ϕ̃E,I , ϕ̃, ϕ̃c Total excitatory/inhibitory synaptic input, total input, and total

common input in the all–to–all and random networks of Chapter 6.

p Empirical connection probability in a random network.
µn,µn,m The motif moment for order length n chain motifs and (n, m) di-

verging motifs, respectively — quantify the empirical probability
of observation for nth order chain motifs and (n + m)th order, re-
spectively. Motifs are depicted in Figure 6.1. Definition given in
Eq. (7.6), and we set µn = µn,0 = µ0,n.

κn,κn,m The motif cumulant for length n chain motifs and (n, m) diverging
motifs, respectively. Defined implicitly in terms of motif moments
in Eqs. (7.7, 7.8), and explicitly in Eq. (7.9, 7.10).

ρavg,ρavg
XY Average spike count correlation coefficient across a network, and

average spike count correlation coefficient between cells of classes
X and Y, respectively.

ΨER
(

Ãw
)

Erdös-Rényi spectral radius, used as a measure to quantify the av-
erage total strength of interactions within realizations of a random
network ensemble, defined in Eq. (7.1).

Table A.4: Notation for linear response theory applications. Notation used in the appli-
cations of linear response theory contained in Chapters 5 through 7.
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[9] M. Arsiero, H.-R. Lüscher, B. N. Lundstrom, and M. Giugliano. The impact of input
fluctuations on the frequency–current relationships of layer 5 pyramidal neurons in
the rat medial prefrontal cortex. J. Neurosci., 27(12):3274–3284, 2007.

244



BIBLIOGRAPHY

[10] G. Aston-Jones and K. Deisseroth. Recent advances in optogenetics and pharmaco-
genetics. Brain Res., 2013.

[11] B. B. Averbeck, P. E. Latham, and A. Pouget. Neural correlations, population coding
and computation. Nat. Rev. Neurosci, 7(5):358–366, 2006.

[12] Y. Aviel, E. Pavlov, M. Abeles, and D. Horn. Synfire chain in a balanced network.
Neurocomputing, 44:285–292, 2002.

[13] L. Badel, S. Lefort, T. K. Berger, C. C. H. Petersen, W. Gerstner, and M. J. E. Richard-
son. Extracting non-linear integrate–and–fire models from experimental data using
dynamic i–v curves. Biol. Cybern., 99(4):361–370, 2008.

[14] W. Bair, E. Zohary, and W.T. Newsome. Correlated firing in macaque visual area
mt: time scales and relationship to behavior. J Neurosci, 21(5):1676–1697, 2001.

[15] H. B. Barlow. Possible principles underlying the transformation of sensory mes-
sages. Sensory Communication, pages 217–234, 1961.

[16] A. K. Barreiro, J. Gjorgjieva, F. Rieke, and E. Shea-Brown. When are feedforward
microcircuits well-modeled by maximum entropy methods? Arxiv preprint, 2010.

[17] B. Bathellier, L. Ushakova, and S. Rumpel. Discrete neocortical dynamics predict
behavioral categorization of sounds. Neuron, 76(2):435–449, 2012.

[18] D. Battaglia, A. Karagiannis, T. Gallopin, H. W. Gutch, and B. Cauli. Beyond the
frontiers of neuronal types. Front. Neural Circuits, 7, 2013.

[19] N. Bauerle and R. Grubel. Multivariate counting processes: copulas and beyond.
Astin Bulletin, 35(2):379, 2005.

[20] J. Beck, V. R. Bejjanki, and A. Pouget. Insights from a simple expression for linear
Fisher information in a recurrently connected population of spiking neurons. Neural
Comput., 23(6):1484–1502, 2011.

[21] JM Beck, WJ Ma, X Pitkow, PE Latham, and Pouget A. Not noisy, just wrong: the
role of suboptimal inference in behavioral variability. Neuron, 74(1):30–39, 2012.

[22] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in
visual cortex. Proc. Natl. Acad. Sci. USA, 92(9):3844–3848, 1995.

[23] P. Berkes, F. Wood, and J. Pillow. Characterizing neural dependencies with copula
models. Adv. Neur. In., 21:129–136, 2009.

[24] D. M. Blitz and W. G. Regehr. Timing and specificity of feed-forward inhibition
within the LGN. Neuron, 45(6):917–928, 2005.

245



BIBLIOGRAPHY

[25] N. Boeddeker and M. Egelhaaf. A single control system for smooth and saccade-like
pursuit in blowflies. J. Exp. Biol., 208(8):1563–1572, 2005.

[26] A. Borst and S. Bahde. Spatio-temporal integration of motion: A simple strategy for
safe landing in flies. Naturwiss., 75(5):265–267, 1988.

[27] A. Borst and J. Haag. Neural networks in the cockpit of the fly. J. Comput. Phys. A,
188(6):419–437, 2002.

[28] A. Borst, J. Haag, and D. F. Reiff. Fly motion vision. Ann. Rev. Neurosci., 33:49–70,
2010.

[29] A. Borst, C. Reisenman, and J. Haag. Adaptation of response transients in fly motion
vision. II: Model studies. Vision Res., 43(11):1309, 2003.

[30] A. Borst and F. Weber. Neural action fields for optic flow based navigation: a simu-
lation study of the fly lobula plate network. PLoS ONE, 6(1):e16303, 2011.
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