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Abstract

This much is certain: neurons are coupled, and they exhibit covariations in their out-
put. The extent of each does not have a single answer. Moreover, the strength of neu-
ronal correlations, in particular, has been a subject of hot debate within the neuroscience
community over the past decade, as advancing recording techniques have made avail-
able a lot of new, sometimes seemingly conflicting, datasets. The impact of connectivity
and the resulting correlations on the ability of animals to perform necessary tasks is even
less well understood. In order to answer relevant questions in these categories, novel
approaches must be developed. This work focuses on three somewhat distinct, but in-
separably coupled, crucial avenues of research within the broader field of computational
neuroscience. First, there is a need for tools which can be applied, both by experimen-
talists and theorists, to understand how networks transform their inputs. In turn, these
tools will allow neuroscientists to tease apart the structure which underlies network ac-
tivity. The Generalized Thinning and Shift framework, presented in Chapter 4, addresses
this need. Next, taking for granted a general understanding of network architecture as
well as some grasp of the behavior of its individual units, we must be able to reverse the
activity to structure relationship, and understand instead how network structure deter-
mines dynamics. We achieve this in Chapters 5 through 7 where we present an application
of linear response theory yielding an explicit approximation of correlations in integrate—
and-fire neuronal networks. This approximation reveals the explicit relationship between
correlations, structure, and marginal dynamics. Finally, we must strive to understand the
functional impact of network dynamics and architecture on the tasks that a neural net-
work performs. This need motivates our analysis of a biophysically detailed model of the
blow fly visual system in Chapter 8. Our hope is that the work presented here represents

significant advances in multiple directions within the field of computational neuroscience.
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correlation function, shaded area — one standard deviation from the mean
found by bootstrapping). (D) Average reduction in L? error between cross-
correlation functions and their respective first-order conditioned averages,
relative to the error between the cross-correlations and their cell-type av-
erages. Blue circles give results for a precisely tuned network, and red
squares for a network with stronger, faster inhibition. Error bars indicate
two standard errors above and below the mean. Gg, Gy, 1, 71 for panels A-
C are as in the precisely tuned network of Figure 6.5, and the two networks
of panel D are as in the networks of the same figure. . ... ... ... ...

Spiking correlation structure within distance-dependent neuronal net-
works. (A) Exhibiting the relationship between pairwise asymptotic spike
count correlation coefficients (Eq. (2.12)). The blue line indicates the lin-
ear respose prediction (Eq. (6.1)) while black indicates the estimation of
the distance-correlation relationship acquired from Monte Carlo simual-
tion. The “circular boxcar” network was of size N = 100 with Ng = 80,
and the synaptic footprints were o = 20°,01 = 60°. (B) Decomposi-
tion of the linear response prediction of the distance-correlation relation-
ship in panel A into contributions up to specified orders (acquired using
Eq. (6.2)). (C) Correlation between the pooled (summed) spiking outputs
of the circular boxcar network. Pools were formed as collections of neu-
rons with preferred orientations falling within an interval of length twice
the pool radius. The network was approximately radially symmetric, and
thus, only the relative positions of the pools (compare blue and red lines),
as opposed to the absolute positions, mattered in determining pooled cor-
relation. Black lines indicate values obtained by pooling randomly from
the circular boxcar network (solid black line) and pooling randomly from a
random network (i.e., one without distance-dependent architecture — bro-
ken black line). (D) Same as panel A, but for a “planar boxcar” network.
The planar network was of size N = 1000 with Ng = 800. The distance
metric was Euclidean, and wesetog = 0.15,00 =04. . . . .. ... ... ..
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lated from Monte Carlo simulations and linear response theory for an ar-
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all-to—-all network from Monte Carlo simulations and linear response the-
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tively. (A) Monte Carlo-estimated third-order cross-cumulant density for
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tion 6.4.3.2. Colors indicate function values at the corresponding lags 71
(horizontal axis) and 1> (vertical axis) — see color bar (far right). (B) Same
as panel A, but displays the linear response approximation to the third-

order cross-cumulant density derived by an two-dimensional inverse Fourier

transformof Eq. (6.39). . . . . . . ...
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Second-order motifs within a recurrent network. (Left) Second-order sub-
motifs — motifs involving two connections and at most three cells — are
embedded within the graph of a network. (Right) The three types of second-
order motifs: chain, diverging, and converging. . ... .. ... ... .. ..

Diagrammatic expansion of the probability of occurrence for motifs. (A)
The probability of observing a third-order chain motif, i3, can be expanded
in terms of empirical motif cumulants of lesser or equal order. (B) Same as
panel A, but for a third-order diverging motif, po1. . . . ... ... ... ..

Second-order motifs in a two population network. In a two population
network, twenty different second-order motifs can be defined depending
on the motif type (converging, diverging or chain) as well as the subpopu-
lation identity of each neuron in the motif. In this case, the two populations,
represented by different colored shapes, are excitatory and inhibitory neu-
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The relationship between second-order motif frequencies and average
correlation in excitatory-only EIF networks. (A) Three-dimensional scat-
ter plot of average correlations obtained from Monte Carlo simulation of
excitatory-only networks of exponential integrate—and—fire neurons, given
as a function of second-order motif frequencies. The x, y and z coordinates
indicate the quantities g4iy, §ch and geon, respectively. The color of a point
indicates the average second-order covariance calculated for that network
(see color bar). Each of the 265 points displayed corresponds to an adja-
cency matrix of size N = 100 sampled randomly according to the methods
prescribed in Section 7.1.1.1. Second-order motif frequencies were calcu-
lated from the adjacency matrices as in Egs. (7.3-7.5), and the effective in-
teraction strength was Wgg (Aw) = 0.2 (see Eq. (7.1)). The average spiking
correlation coefficient ranged from 0.0036 to 0.0078 in the networks consid-
ered. (B) Linear regression coefficients which relate average second-order
covariance obtained from Monte Carlo simulation of the integrate—and—fire
network to the frequencies of second-order motifs in this dataset. . . . . ..
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Accuracy of the “cumulant resumming” approximation of average covari-
ance in excitatory-only EIF networks. (A) Scatter plot of average correla-
tion obtained from the motif cumulant resumming approximation (hori-
zontal axis, see Eq. (7.27)) against that obtained from Monte Carlo simula-
tion of the integrate—and—fire network (vertical axis). The dashed line rep-
resents the diagonal, and each of the 265 points corresponds to one of the
networks considered in Figure 7.4. (B) Coefficients of the least squares lin-
ear regression of average covariance against the frequency of second-order
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average covariance obtained from the motif cumulant resumming approxi-
mation Eq. (7.27), and dots indicate the values obtained by considering the
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The relationship between second-order motif frequencies and average
correlation in EIF networks with excitatory and inhibitory neurons. (A)
Three-dimensional scatter plot of average correlations obtained from Monte
Carlo simulation of an excitatory-only network of EIF neurons, given as a
function of weighted linear combinations of second-order motif frequen-
cies. The x,y and z coordinates indicate weighted linear combinations of
diverging, chain and converging motifs, respectively. The weightings are
explained in a technical note within Section 7.2.2. The color of a point in-
dicates the average second-order covariance calculated for that network
(see color bar). Each of the 265 points displayed corresponds to an adja-
cency matrix of size N = 100 (Ng = 80) sampled randomly according to
the methods prescribed in Section 7.1.1.1. The effective interaction strength
was Wgr (Aw) = 0.234 (see Eq. (7.1)). The average spiking correlation co-
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7.7 Accuracy of the “cumulant resumming” approximation of average covari-
ance in EIF networks with excitatory and inhibitory neurons. (A) Scatter
plot of average correlation obtained from the motif cumulant resumming
approximation (horizontal axis, see Eq. (7.27)) against that obtained from
Monte Carlo simulation of the EIF networks (vertical axis). The dashed
line represents the diagonal, and each of the 265 points corresponds to one
of the networks considered in Figure 7.6. (B) The eight largest coefficients
of the least squares linear regression of average covariance against the fre-
quency of second-order motif frequencies for the 265 networks considered
in panel A. Bars represent the values obtained by performing the regres-
sion on the prediction of average covariance obtained from the motif cumu-
lant resumming approximation Eq. (7.27), and dots indicate the values ob-
tained by considering the average covariances obtained from simulations.
The motifs corresponding to each regression coefficient are indicated by the
graphics along the horizontal axis — for example, the first motif listed is the
E — E — E chain motif, and the last is the E <— I — I diverging motif. No
converging motif regression coefficients are shown, as they were generally
much smaller in magnitude for the presented motifs. . . ... ... ... ..
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quences (red curved arrow) were presented to the model of the fly verti-
cal system (VS). The rotation axis in the equatorial plane is characterized
by its azimuth, Osim. Lower right inset shows how the Reichardt detectors
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detector. LP and HP indicate first-order low- and high- pass linear filters,
respectively, while x and — represent elementary signal multiplication and
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rated by an elevation of 2°. (C) Horizontal cross sections of the dendritic
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of a number of components: The optic flow stimulus is generated by ro-
tations of spherical images, and is filtered by the local motion detectors
(LMDs). The LMD output is separated into upward and downward com-
ponents which are mapped to inhibitory (—), and excitatory (4) conduc-
tances, respectively, onto the dendrites of the VS neurons. Conductances
are weighted by the position of the LMD with respect to the VS cell recep-
tive fields (see C). Resistor symbols indicate electrical coupling of compart-
ments, and &y, resp. &pe, are independent, intrinsic noise sources to the
axons, resp. dendrites, of VS cells. (E) Steady-state membrane potential of
the twenty coupled VS neurons (g¢,p = 1 uS) in response to stimulation
by a horizontal grating with constant downward velocity. The input was a
narrow, 10° wide strip centered at angle 6. The responses were obtained by
sweeping the strip 360° around the visual field. Upper inset details color
scheme and cell ordering for panelsCandE. . . .. ... ... ........

A typical response of the VS network (A) Plot of the temporal response of
the left-side VS1, VS5 and VS10 neurons in the uncoupled system (ggap =
0 uS) to the rotation of a natural scene stimulus (see Figure 1.4B). Shaded
boxes labeled T and SS indicate time intervals 10 ms in duration over
which we average the VS axonal responses to obtain the transient aver-
age, Vi (T), and the steady-state average V', (T), respectively. (B) Same
as panel A, but for the coupled system (ggap =1 S). . . .. ...... ...
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Assessing the copula fit for the transient response distribution (A) Blue
points give a P-P plot of the fit copula (horizontal axis) against the true,
empirical copula for a randomly-selected subset of three left-side VS neu-
rons, at a random stimulus angle. We computed the copula probabilities at
1,000 points which divided the unit cube into 1,000 equal sized sub-cubes
as described in the text. The black dashed line indicates the diagonal, with
agreement between the true and fit models being indicated by the points
lying on or near the diagonal. Optic flow presented to the system was gen-
erated by the rotation of random bar images, and the copula was fit to the
transient response distribution. (B) Histogram of relative errors for copula
probabilities. Vertical axis represents fractions of points which lie in the
corresponding error range on the horizontal axis. We repeated the simu-
lation of panel A, for a total of twenty random pairings of three left-side
VS neurons and stimulus angles. We then computed the relative error (see
Eq. (8.8)) between the true and fit copula probabilities at the 1,000 equally
spaced points within the unit cube for all twenty copula fits, and plotted
the errors as a histogram. . . . ... ... ... ... . .. 0 L.

The effect of coupling on VS neuronal dynamics. (A) (Left) Typical axonal
response of the left-side VS10 cell in the uncoupled network (ggap = 0 15)
to rotations of bar images about sty = 90°. Different line types indicate
different, randomly generated images. (Right) Same as the left panel, but
for the coupled system (ggap = 1 uS). Images rotated to generate optic flow
stimuli were the same ones used in the uncoupled system, with matching
line types indicating matching image presentations. (B) Correlations for the
integrated membrane potential in steady-state for the left-side VS neurons.
Values above (resp. below) the diagonal are for the uncoupled (resp. cou-
pled) system. Nearby cells were correlated at levels of approximately 0.7
and 0.97 for the uncoupled and coupled systems, respectively. (C) Steady-
state tuning curve (mean response) and variability as a function of rotation
angle for (i) VS1 and (ii) VS10 in the uncoupled system. Shaded areas in-
dicate +/ — 1 s.d. of the response distribution. (D) Same as C, but for the
coupled system. All responses and statistics for this figure were generated
in the absence of intrinsic fluctuations (oax, ope = 0), and the optic flow
stimuli were created by rotations of random bar images (see Section 8.1.2). .
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Mean-square error of the OLE for steady-state responses (A) (Left) Lines
indicate the square root of the mean-square error of the OLE for steady-
state responses to filtered optic flow stimuli generated by the rotation of
random bar images with a T = 10 ms window of integration. Line col-
ors correspond to different coupling strengths as indicated by the legend.
(Right) Bars represent the square root of the stimulus averaged mean-square
error for the data plotted to the left, with bar colors corresponding to line
colors. (B) Same as A, but for a window of integration of T = 20 ms. (C)
Same as A, but for random checkerboard images. Note the different scaling
of the vertical axis. (D) Same as A, but for natural scenes. Details regarding
image generation and the technique for generating the optic flow presented
to the model can be found in Section8.1.2. . . . . ... ... ... .. ... ..

Mean-square error of the MMSE for transient responses (A) (Left) Lines
indicate the square root of the mean-square error of the MMSE for transient
responses to filtered optic flow stimuli generated by the rotation of random
bar images with a T = 10 ms window of integration. Line colors corre-
spond to different coupling strengths as indicated by the legend. (Right)
Bars represent the square root of the stimulus averaged mean-square error
from the data plotted to the left, with bar colors corresponding to line col-
ors. (B) Same as A, but for a window of integration of T = 20 ms. (C) Same
as A, but for random checkerboard images. Note the different scaling of
the vertical axis. (D) Same as A, but for natural scenes. . . . ... ... ...

Mean-square error of the MMSE for a partial readout of transient re-
sponses (A) (Left) Lines indicate the square root of the mean-square error
of the MMSE for transient responses to filtered optic flow stimuli gener-
ated by the rotation of random bar images with a T = 10 ms window of
integration. Line colors correspond to different coupling strengths as indi-
cated by the legend. The partial readout was formed from the responses of
the VS 5-7 cells on each side. (Right) Bars represent the square root of the
stimulus averaged mean-square error from the data plotted to the left, with
bar colors corresponding to line colors. (B) Same as A, but for a window
of integration of T = 20 ms. (C) Same as A, but for random checkerboard
images. Note the different scaling of the vertical axis. (D) Same as A, but
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Mean-square error of the MMSE for full and partial readout from an
approximating Ornstein-Uhlenbeck system (A) (Left) Lines indicate the
square root of the mean-square error of the OLE for transient responses to
filtered optic flow stimuli generated by the rotation of random bar images.
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Visualizing the zero-crossing estimator. (A) Circles indicate the mean ax-
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cell’s zero angle 6°. (B) On an example realization for the response to rota-
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lines indicate the square root of the mean-square error of the MMSE for
trial-shuffled transient responses to filtered optic flow stimuli generated by
the rotation of random bar images with a T = 10 ms window of integra-
tion. Line colors correspond to different coupling strengths as indicated by
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square error of the MMSE for transient responses to filtered optic flow stim-
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Chapter

Introduction

Recordings across the brain suggest that neural populations spike collectively — the statis-
tics of their activity as a group are distinct from that expected in assembling the spikes
from one cell at a time [11,14,17,87,106,108,173,207,239,241,252]. Advances in elec-
trode and imaging technology allow us to explore the dynamics of neural populations
by simultaneously recording the activity of hundreds of cells. This is revealing patterns
of collective spiking that extend across multiple cells. The underlying structure is in-
triguing: For example, higher-order interactions among cell groups have been observed
widely [7, 87,173,194, 241,251,252, 287]. A number of recent studies point to mechanisms
that generate such higher-order correlations from common input processes, including un-
observed neurons. This suggests that, in a given recording or given set of neurons pro-
jecting downstream, higher-order correlations may be quite ubiquitous [16, 151,177, 308].
Moreover, these higher-order correlations may impact the firing statistics of downstream
neurons [156], the information capacity of their output [43,87,187], and could be essential

in learning through spike-time-dependent synaptic plasticity [91,206].



What exactly is the impact of such collective spiking on the encoding and transmis-
sion of information in the brain? This question has been studied extensively, but much re-
mains unknown. Results to date show that the answers will be varied and rich. Patterned
spiking can impact responses at the level of single cells [156,239,304] and neural popu-
lations [8,232,233,271]. Neurons with even the simplest of nonlinearities can be highly
sensitive to correlations in their inputs. Moreover, such nonlinearities are sufficient to

accurately decode signals from the input to correlated neural populations [246].

An essential tool in understanding the impact of collective spiking is the ability to gen-
erate artificial spike trains with a predetermined structure across cells and across time [35,
96,155,176]. Such synthetic spike trains are the grist for testing hypotheses about spa-
tiotemporal patterns in coding and dynamics. In experimental studies, such spike trains
can be used to provide structured stimulation of single cells across their dendritic trees
via glutamate uncaging [32, 33, 89, 214]. In addition, entire populations of neurons can be
activated via optical stimulation of microbial opsins [47,103]. Computationally, they are

used to examine the response of nonlinear models of downstream cells [44, 156, 239].

Therefore, much effort has been devoted to developing statistical models of popula-
tion activity. A number of flexible, yet tractable probabilistic models of joint neuronal ac-
tivity have been proposed. Pairwise correlations are the most common type of interactions
obtained from multi-unit recordings. Accordingly, many earlier models were designed to
generate samples of neural activity patterns with predetermined first- and second-order
statistics [35, 96, 155,176]. In these models, higher-order correlations are not explicitly and

separately controlled.

A number of different models have been used to analyze higher-order interactions.



However, most of these models assume that interactions between different cells are instan-
taneous (or near-instantaneous) [137, 156, 263]. A notable exception is the work of Bauerle
and Griibel [19], in which methods for generating spike trains with temporal structure
were developed for use in financial applications. In these previous efforts, correlations at
all orders were characterized by the increase, or decrease, in the probability that groups
of cells spike together at the same time, or have a common temporal correlation structure

regardless of the group.

In Chapter 4, we introduce a statistical method for generating spike trains with more
general correlation structures across cells and time. Specifically, we allow distinct tempo-
ral structure for correlations at second, third, and all higher orders, and do so separately
for different groups of cells in the neural population. Our aim is to describe a model that

can be applied in neuroscience, and can potentially be fit to emerging datasets.

A sample realization of a multivariate generalized thinning and shift (GTaS) process
is shown in Fig. 1.1. The multivariate spike train consists of six marginally Poisson pro-
cesses. Each event was either uncorrelated with all other events across the population, or
correlated in time with an event in all other spike trains. This model was configured to
exhibit activity that cascades through a sequence of neurons. Specifically, neurons with
larger index tend to fire later in a population wide event (this is similar to a synfire chain
[2], but with variable timing of spikes within the cascade). In Figure 1.1B, we plot the
“population cross-cumulant density” for three chosen neurons — the summed activity of
the population triggered by a spike in a chosen cell. The center of mass of this function
measures the average latency by which spikes of the neuron in question precede those of
the rest of the population [173]. Finally, Figure 1.1C shows the third-order cross-cumulant

density for the three neurons. The triangular support of this function is a reflection of



a synfire-like cascade structure of the spiking shown in the raster plot of panel A: when

tiring events are correlated between trains, they tend to proceed in order of increasing

index.
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Figure 1.1: Example of a GTaS process exhibiting “synfire-like” firing patterns (A)
Raster plot of event times for an example multivariate Poisson process X = (Xj, ..., Xs)
generated using the methods presented in Chapter 4. This model exhibits independent
marginal events (blue) and population-level, chain-like events (red). (B) Some second-
order population cumulant densities (i.e., second-order correlation between individual
unit activities and population activity) for this model [173]. Greater mass to the right
(resp. left) of T = 0 indicates that the cell tends to lead (resp. follow) in pairwise-
correlated events. (C) Third-order cross-cumulant density for processes X, X», X3. The
quantity k%, (11, T2) yields the probability of observing spikes in cells 2 and 3 at an offset
71, T2 from a spike in cell 1, respectively, in excess of what would be predicted from the
first- and second-order cumulant structure. All statistical quantities are precisely defined
in Chapter 2.

Beyond important and rich challenges for statistical modeling [37], the emerging data
promise new perspectives on the neural encoding of information [11]. The structure of
correlations in the activity of neuronal populations is of central importance in under-
standing the neural code [1, 20,202,203, 245,259,310]. However, theoretical [1,139, 160,
242,259,310], and empirical studies [50,191,230] do not provide a consistent set of gen-

eral principles about the impact of correlated activity. This is largely because the presence

4



of correlations can either strongly increase or decrease the fidelity of encoded information
depending on both the structure of correlations across a population and how their impact

is assessed.

A basic mechanistic question underlies the investigation of the role of collective activ-
ity in coding and signal transmission: How do single-cell dynamics, connection architec-
ture, and synaptic dynamics combine to determine patterns of network activity? System-
atic answers to this question would allow us to predict how empirical data from one class
of stimuli will generalize to other stimulus classes and recording sites. Moreover, a mech-
anistic understanding of the origin of correlations, and knowledge of the patterns we can
expect to see under different assumptions about the underlying networks, will help re-
solve recent controversies about the strength and pattern of correlations in mammalian
cortex [51,64,217]. Finally, understanding the origin of correlations will inform the more
ambitious aim of inferring properties of network architecture from observed patterns of

activity [193,198,201].

In Chapters 5 through 7, we examine the link between network properties and cor-
related activity. First, in Chapter 5, we develop a theoretical framework that accurately
predicts the structure of correlated spiking that emerges in a widely used model — recur-
rent networks of general integrate and fire cells. The theory naturally captures the role
of single cell and synaptic dynamics in shaping the magnitude and timescale of spiking
correlations. We focus on the exponential integrate and fire model, which has been shown
to capture membrane and spike responses of cortical neurons [81]; however, the general

approach we take can be applied to a much broader class of neurons.

Our approach is based on an extension of linear response theory to networks [167, 198].
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Figure 1.2: Linear response theory admits an expansion of correlations in terms of mo-
tifs within the network (A) Linear response theory can serve as an important tool for
understanding how architecture in dynamics shape the statistics of responses in large,
complex networks. This is enacted via an expansion of correlations by contributions due
to different motifs embedded within the network architecture. We highlight some second-
order motifs — motifs which involve a pair of connections and up to three cells. (B) Some
second-order motifs involving cells of two distinct populations, with edge color indicat-
ing whether the motifs connect cells of a single population (red, blue) or both populations

(purple).

We start with a linear approximation of a neuron’s response to an input. This approxi-
mation can be obtained explicitly for many neuron models [38, 168, 221], and is directly
related to the spike triggered average [85]. The correlation structure of the network is then

estimated using an iterative approach.

In Chapter 6, we first demonstrate how the linear response approximation of correla-
tions admits an expansion of the correlation in terms of submotifs embedded within the
network architecture [205,211,212]. In order to gain intuition for the nature of the de-

composition, we first apply the theory to the analysis of correlations for a pair of simple



microcircuits.

Next, we consider applications to large networks, beginning with those featuring pre-
cisely balanced inhibition and excitation in the inputs to individual cells. In this state
individual cells receive a combination of excitatory and inhibitory inputs with mean val-
ues that largely cancel. We show that, when timescales and strengths of excitatory and
inhibitory connections are matched, only local interactions between cells contribute to
correlations. Moreover, our theory allows us to explain how correlations are altered when
precise balance is broken. In particular, we show how strengthening inhibition can syn-
chronize the spiking activity in the network. Using the linear response theory allows us
to derive results which lend an intuitive understanding of the factors shaping average
correlation structure in randomly connected networks of neurons. Finally, we conduct a
brief exploration of the structure of correlations within a pair of distance-dependent net-
works. These examples also demonstrate that linear response theory can be used as a tool

for computationally efficient analysis of correlations within large networks.

At the end of Chapter 6, we carry out a thorough error analysis of the linear re-
sponse theory, examining the correlation approximation across a variety of network con-
ditions. We also briefly exhibit the failure of the linear response theory of correlations for
integrate—and—fire networks when applied to the estimation of third-order dependencies.
Whether there exists a consistent correction to the linear response theory in this case is an

open question of great import.

The global statistics of networks can depend sensitively on the local features of their ar-
chitecture, as shown in Figure 1.3. In Chapter 7, we introduce a novel statistical measure

of network connectivity, motif cumulants, in order to better understand this relationship.



Whereas motif moments define the true probability of observing one of the motifs appear-
ing in the correlation decomposition of Chapter 6, a motif cumulant is a measure which,
analogous to the relationship between moments and cumulants of random variables, cap-
tures the probability of seeing these same motifs in excess of the “best” guess given only
knowledge of lower-order motif cumulants. By an algebraic resumming argument, we
rewrite the expansion of correlations in terms of motif cumulants. Doing so reveals an
explicit link between micro-scale features of the synaptic structure — motif cumulants —
and a universal feature of the dynamics this structure supports — average output corre-

lations for the integrate—and—fire networks.

In Chapter 8, we present an analysis of part of the blow fly visual system. To motivate
this study, flying organisms require fast, reliable feedback regarding ego-motion to make
rapid course corrections. This information is primarily extracted from the optic flow — the
motion of the external world as perceived by the organism [26, 148, 163]. In the visual sys-
tem of the fly, neurons of the lobula plate receive as input a two-dimensional retinotopic
representation of the optic flow, allowing them to encode the parameters of ego-motion
(i.e., rotational and translational velocities) [27,30,142,298]. The lobula plate serves as a

primary relay between early vision and downstream motor centers [100, 268, 296, 297].

Approximately sixty large tangential cells responsive to wide-field motion have been
identified within the lobula plate of each hemisphere of the blow fly [110,115]. Ten of
these neurons comprise part of the vertical system (VS) and are thought to encode the
azimuthal direction of rotations in the horizontal plane [152,153]. These cells were the

focus of our study.

The visual information available to the fly is very rich, but only part of it is essen-

tial to control flight. Irrelevant information can be regarded as external noise, and neural
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Figure 1.3: Local features of network architecture can strongly influence global behav-
ior The black line indicates the relation between the density of connections and average
output correlation in truly random (i.e., Erdos-Rényi), excitatory-only integrate—and—fire
neuronal networks, as predicted by the cumulant resumming theory of Chapter 7. The
dark gray dots indicate simulations of integrate—and—fire networks. Fluctuations about
the line are due essentially to finite-size effects — in particular, finite networks are gener-
ally not perfectly regular, and thereby exhibit residual higher-order structure within their
architecture. The light gray dots indicate output correlation in networks designed to be
non-Erdos-Rényi. The adjacency graphs associated with these networks featured depen-
dent edges — i.e., pairs of connections were not present or absent independently. This
yielded, in turn, significant deviations in the dynamics of the corresponding networks
from what is expected in the case of underlying Erd6s-Rényi graphs.

processing within the fly visual system produces additional, internal variability. Rele-
vant information about the world is probabilistically represented in the resulting neural
signals. The VS cells encode an essential parameter from this complex input — the hori-
zontal axis of ego-rotation. Estimating this parameter is a problem of marginalization (see

Figure 1.4C and [175]), as the quantity of interest must be disentangled from irrelevant

components of the response.



Electrical coupling between adjacent VS cells significantly shapes their responses (See
Figure 1.4A) [75,97]. Our goal was to examine the role of this coupling in achieving an
efficient representation of the azimuthal angle of rotation in the VS population response.
We extended previous studies which made generally qualitative observations about the

role of coupling [56, 68, 292].

In contrast to most previous studies, we considered transient responses. Random ro-
tating images (Figure 1.4B) were presented as input to a biophysically-plausible model
of the VS cell network [30]. Instead of using heuristic or suboptimal estimators, we ap-
plied probabilistic modeling methods to compute optimal Bayesian estimators from the
responses. Surprisingly, we found that the quality of optimal estimates of the azimuthal
angle from the collective response of VS cells is independent of coupling in both transient

and steady-state situations.

On the other hand, anatomical and electrophysiological characterizations of lobula
plate neurons have identified a pair of pre-motor neurons at the next stage of processing
of the fly’s nervous system. The strongest projections of the VS population onto these
descending neurons originate from a subset of the VS population [297]. We found that
under a partial readout, coupling-induced changes in tuning and reliability were crucial
for an efficient representation of the angle of rotation. We provide an intuitive explanation
of these observations. These ideas are quite general, and can offer insights into the role of

coupling between neurons in other species and modalities.

Over the course of this work, we hope to address three important needs within the
field of computational neuroscience: First, the Generalized Thinning and Shift framework
presented in Chapter 4 addresses the need for tools which can be applied, by both exper-

imentalists and theorists, to understand how networks transform their inputs. Next, the

10



linear response theory of correlations for integrate—and—fire networks presented in Chap-
ters 5 through 7 can serve as an invaluable tool for understanding explicitly the relation-
ship between structure and dynamics. Finally, our analysis of the fly visual system in
Chapter 8 exhibits a general methodology for assessing task performance of neural net-
works; our hope is that our analysis will serve as a blueprint for future research, both in

the fly visual system and elsewhere.

11
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Figure 1.4: The VS network extracts motion parameters from optic flow-related infor-
mation. (A) (Left) The ten VS cells in one lobula plate (LP) as reconstructed from two-
photon image stacks. Each neuron is T-shaped, with an elongated dendrite sampling a
thin vertical stripe in the retinotopically organized LP (VS 1 to 10 arranged from distal to
proximal in the LP, [117]). Inset indicates approximate orientation (a: anterior, p: poste-
rior, I: lateral, m: medial, d: dorsal, v: ventral). Adapted from [56]. (Right) Connectivity
scheme of the VS network. VS cell axons are electrically coupled to nearest neighbors.
There is a functionally mutually inhibitory (or “repulsive”) interaction between VS1 and
VS10. Receptive field (RF) centers indicate azimuthal position in the horizontal equato-
rial plane of right side VS neurons, taking 0° to represent the anteroposterior axis of the
fly. Left side VS neuron receptive field centers are given by reflection across 0° [30]. (B)
Examples of images used to generate the optic flow stimuli presented to the VS network
model. Details of image generation are given in the Methods, along with parameters and
procedure for generation of rotational optic flow stimuli. (C) The marginalization prob-
lem: Parameters of ego-motion (such as the axis of rotation, 8,,) are first probabilistically
embedded in the external world (Image), and additional layers of variability (noise) are
imposed by the processing in VS cells at the dendritic (De) and axonal (Ax) stages (V
denotes time-averaged membrane potential; see Methods). Reading-out the azimuthal
rotation axis from the VS population response amounts to marginalization — extract a
notion of the posterior distribution of the stimulus from the axonal responses.
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Chapter

Correlations and stochastic processes

We will consider models of neuronal activity given by stochastic processes. The neu-
ronal networks we model explicitly will have membrane potentials governed by Langevin
equations, and we will model their inputs and outputs as spike trains. In this chapter,
we will first cover fundamental measures of covariability amongst general numerically-
valued stochastic processes, and then amongst spike trains, which we interpret as gener-
alized functions. To conclude the chapter, we discuss copulas, a useful way of imposing a

certain correlation structure onto a set of independent random variables.

Throughout most of this work (with analysis of transient responses in Chapter 8 as
the lone exception), we assume the stochastic processes we consider are jointly stationary.
In particular, if X(t) = (Xy(f),..., Xn(f)) is a vector stochastic process, then the joint
distribution of Y(t) = (X;, (t +t1), X, (t + t2), ..., Xi,, (t + tam)) is independent of ¢ for any

finite sequence of times {t ]}é\i , and indices {i; 5\1 1 € {1,2,...,N}. We further assume

these stationary processes to be ergodic; that is, for any Borel measurable f : RM — R, we

13



2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

have

tim 1 [ (0t = B[],

T—ro0
whenever the expectation on the right-hand side exists. Finally, we assume that the
stochastic processes we consider have finite cumulants (equivalently, finite moments) up

to the order we consider.

2.1 Statistical measures of stochastic processes

Much of this work is concerned with the quantification and study of dependencies be-
tween stochastic processes representing the activity of neurons. In this section, we first
review cross-cumulants, a useful measure of correlation amongst collections of random
variables. We then briefly discuss the Wiener-Khinchin theorem and its higher-order gen-
eralizations. Following this, we provide an overview of application of these statistical
measures to point process, and define some additional measures which are useful in this

context.

2.1.1 General measures of correlation

Cross-cumulants Consider a random vector X = (X3,...,Xy) € RN. The cumulant

7

generating function [88, 102,144, 267] of X is given by

N
Q(t,..., tn) =log (E [exp (Z thj>
j=1

The r-cross-cumulant (or r-joint cumulant) is then given by

ol
Kr(X) = Wg(tl, . .,tN)
1 N

==ty =0
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

where r = (rq,...,7yN) is an N-vector of positive integers, and |r| = Zfil r;. We will often
refer to the cumulant k(X) of the collection of random variables without reference to an
index vector r; in this case, it is to be assumed that every variable is considered at first

order:

aN

k(X) :=k1(X) = mg(tl,...,tN) , where 1=(1,...,1).

t1=---:t1\]:0

The cross-cumulant of X can be expressed combinatorially in terms of moments as

[1%

ic€S

k(X) = Y (|| = 1)(=1)" ' [TE

7T Sem

, 2.1)

where 71 runs through all partitions of D = {1,...,N}, and S through all blocks of the
partitions of 7r. We note that the cumulant of a set of random variables is invariant to
permutations of their ordering. Equation 2.1 is derived by first noting that an r-cross-
cumulant can be expressed in terms of moments by expanding the cumulant generating

function as a Taylor series,

X1,...,X .
Mt? .. t;N with r! = H(Ti!)-

i=1

g(tl,...,tN) :Z

Next, the moment generating function M(t) is similarly expanded,

E[X) X}
r!

M(t) =},

r

r1 'N
tl '”td X

Finally, by expanding g(t) = log M(f) in terms of the moment coefficients, we arrive at
Eq. (2.1) by matching the polynomial coefficients for the term r = 1. We also define the
h

n'" cumulant of a single random variable X by

n copies

In Chapter 4, we will make extensive use of the following two principal characteristics

of cross-cumulants [36, 185,263, 267]:
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

(C1) Multilinearity - for any random variables X, Y, {Z l}f\i , and constants «, 3, we have
K((XX +BY, Zy,... ,ZN) = GKK(X, Zy, ... ,ZN) + ﬁK(Y, Zo, ... ,ZN).

This is a general form of the bilinearity which holds for covariances at second order.

Property (C1) holds regardless of dependencies amongst the random variables.

(C2) If any subset of the random variables in the cumulant argument is independent from
the remaining variables, the cross-cumulant is zero - i.e., if X = (Xi,..., Xx,) and

Y = (Y1,...,Yn,) are two sets of random variables such that each X; is independent

from every Y, then
K(rx,ry)(Xll ... ,XN],Yl, .. "YNZ) =0 forallry € Nijl,ry c NNZ,

where (rx, ry) is the length N7 4+ N, concatenation of the vectors rx, ry.

To exhibit another central property of cumulants, we consider a 4-vector
X = (X1, X2, X3, X4)

with non-zero fourth cumulant and a random variable Z independent of each X;. Define
Y = (X1+Z X2+ Z,X3+ Z, X4). Using properties (C1), (C2) above, it is elementary to

show that, for example,
k(Y1,Y2,Y3) = k(X1, X2, X3) + k3(Z).
On the other hand, it is also true that
k(Y) = k(Y1, Y2, Y3, Ys) = k(Xy, X2, X3, Xg) = k(X).

That is, adding the variable Z to only a subset of the variables in X results in changes to cu-

mulants involving only the variables within that subset and no others. Cross-cumulants
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

for supersets of the modified variables (such as for the entire vector X in the present
example) are unchanged. In this sense, cross-cumulants are “pure”: an r"-order cross-
cumulant of a collection of random variables captures exclusively dependencies amongst
the collection which cannot be described by cumulants of lower order [263]. In the exam-
ple above, we affected only the joint statistical properties of a subset of X, and as a result,

the total cumulant «(X) remained fixed.

From Eq. (2.1), it can be seen that k(X;) = E [Xi], k(X;, Xj) = cov [X;, Xj], and
(X, Xj, Xi) = E[(Xi — E[X)])(X; — E [X;]) (X — E[X4])] -

That is, up to third order, cumulants and central moments agree, and thus, central mo-
ments share the properties (C1) and (C2) at these orders. However, at fourth order, we

have
K(Xi,Xj, X, X;) = E [(X; — E[Xi])(X; — E [X;]) (X — E[X;])(X; — E[X)])]
— cov [X;, Xj] cov [Xi, Xj] — cov [X;, Xi] cov [Xj, X;] — cov [X;, X] cov [Xj, Xi],
(2.2)
with similar (but more complex) expressions holding at orders higher than four. As a

result, central moments of fourth- and higher-order do not exhibit the attractive property

of characterizing exclusively higher-order dependencies.

Temporal statistics In this work, we will utilize cross-cumulant densities as a standard
measure of the temporal dependence structure of a stochastic process. Given a vector
stochastic process X(t) = (Xi(t),..., Xn(t)) € RY, the cross-cumulant density of X(t)
is [36,267]

(11, ) = k(X (8), Xa(t+ 1), Xn(E+1TNo1)), (2.3)
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

where we remind the reader that these definitions are for strongly stationary stochastic
processes as described in the opening of this chapter. Thus, the value of t used in the
definition Eq (2.3) is not relevant. When we are interested in the cumulant function of
a subset of the processes X, we will indicate this by a subscript — i.e., the second-order

cross-cumulant density of the i and " processes of X is denoted

K??(T) = k(X X)) (7). (2.4)

We also define the central moment density of the processes X by
CX(Tl, .. .,TN,1) =E [(X1(t> —E [Xﬂ)(Xz(t + T1> —E [X2]) e (XN(t + TN,1) —E [XND] .

For a pair of processes (i.e., N = 2), the cross-cumulant density is often referred to as
the cross-correlation function or cross-covariance density. In addition, up to third order, the

central moment density is equivalent to the cross-cumulant density.

A general cross-cumulant density can be expressed as

KX(Tl,. . -/TN—l) =E [f(X](t),Xz(t+T1),.. .,XN(t—I—TN_l))]

for some polynomial function f which can be derived from the combinatorial form of
cross-cumulants given in Eq. (2.1). Estimation of the cross-cumulant density from data

typically relies on the joint ergodicity of the processes [267],

1T
KT, ) = %520?/0 FXr(t), Xor(t+10), .., Xnor(E+ Tnon) )it

Here, X; 7(t) = X;(t)1jo,r)(t) is the mean-subtracted process X; restricted to the time win-
dow [0, T], and we remind the reader that all considered processes are assumed to be
stationary, unless otherwise noted. All convergence results regarding stochastic processes

contained in this chapter are in mean-square [306].

18



2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

In many applications (such as those of Chapters 5 through 7), it is convenient to cal-
culate spectral rather than temporal statistics of the stochastic processes under considera-

tion. A common measure of spectral correlation is the polyspectrum [36], defined as

N B, ~ i
Sx(wl, ey CUNfl) = lim TE [XLT(wl + ...+ wal)leT(wl) ce XN,T(wal)] ’ (25)

T—o0

where X* indicates the scalar complex conjugate of X. The Fourier transform convention

throughout this work is

Xr(w) = F [Xr(t)]

/ e MW (H)dt.

The process Xt is known as the spectrum of X [267]. When N = 2 in Eq. (2.5), the polyspec-
trum is often referred to as the cross spectrum or cross spectral density of X when X consists
of two distinct processes. If X consists of two identical processes, the second-order quan-
tity is referred to instead as the power spectrum. Likewise, the N = 3 case is referred to
as the bispectrum, and the N = 4 case the trispectrum [36]. As for the cross-cumulant
density, we will denote power spectra of subsets of the vector process X with subscripts.

For example, the cross-spectrum of X; and X; is
S¥(w) = SHX) (w).
The classical Wiener-Khinchin theorem relates the cross-cumulant density and the
power spectrum at second order [46,267]. Generalized directly to higher orders, the the-

orem states that the spectral decomposition of the central moment density is given by the

polyspectrum of corresponding order, i.e.,
Sx(wl, ceny CUN_l) = / cee /e_zm(wﬂl_'_mwN’]TN’])CX(Tl, . ITN—l)dTN—l 1. (26)

A spectral decomposition of the cross-cumulant density can be established likewise.
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

2.1.2 Point processes
2.1.2.1 Spike trains as point processes

Neurons communicate primarily through spikes (or action potentials) — rapid hyperpolar-
izations of the membrane potential followed by rapid depolarizations which create trav-
eling waves in the membrane potential gradient which move through the body of the
neuron. These spikes typically travel down the axon of the neuron. Upon reaching the
site of a synapse with another neuron, the synapses is activated, initiating a sequence of

molecular events. This process is described in somewhat more detail in the next chapter.

Mathematical modeling of neuronal activity involves an important choice of how to
model spike trains (i.e., sequences of action potentials). One approach is to discretize time
into bins, and represent the spike train by a binary word, where a 1 in a bin indicates a
spike in the corresponding time interval. As the discretization of time is accommodat-
ing to computations, this is often done in practice. However, analysis of the output of a
spiking neuronal system can be sensitive to this bin size [62], which should be neither too
large nor too small (in which case the timescale of an action potential will not be correctly
characterized by the binary sequence). Furthermore, discretization often is inconvenient

for mathematical analysis of a spiking neuronal system.

A more tractable (and convenient) approach is to represent spike trains by sequences
of time points {tly }, each of which represents the time of an action potential. As a stochas-

tic process, a spike train y(t) takes the form

y(t) =Y s(t—+t]), 2.7)

™~

1

where 5(t) is the Dirac delta function, and 0 < t! € R is the time of the i spike of the

neuron (a random variable). For theoretical considerations, this is essentially equivalent
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2.1. STATISTICAL MEASURES OF STOCHASTIC PROCESSES

to the representation of the spike train by a random measure N, on the Borel sets B(R) of
R [57]. In particular,
Ny(A) =#{t! € A}, A€ B(R).

In addition, the random measure N, can expressed in terms of the spike train y via
Ny (A) = /A y(t)dt, A e B(R).

In some of what follows, it will be convenient to slightly abuse notation and write Ny (t)

as a random function on R:
Ny(t) = Ny ([0,#]) = #{t! € [0,£]}, teR.

The random measure N, can itself be viewed as a stochastic process. In this context, we
would call Ny the counting process associated with the point process y. Throughout this
work, we generally choose to perform our analysis in terms of spike trains, though in

Chapter 4, it will be convenient to deal primarily with the counting processes.

We will say that a vector point process y(t) = (y1(t), ..., yn(f)) with the representa-
tion in Eq. (2.7) is jointly stationary if the associated counting process Ny = (N, ..., Ny, )
satisfies the stationarity condition given in the introduction to this chapter; that is, y is said

to be jointly stationary if the distributions of the random vectors
(Nyil (Al), ey N]/iM (AM)) and (Nyl.l (A1 -+ S), ceey, NyiM (AM -+ S))

agree for all finite sets of indices {i ]}?i , C {1,...,N}, collections of subsets {A;}M, C

B(R) and s € R, where we define a set translation as
A+s={a+s:ae A}
Some popular, general references on the properties of point processes are [54, 57].
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2.1.2.2 Statistical measures for point processes

Spike count cumulants Statistics of spike trains, like the stationarity condition above,
are properly stated in terms of their counting processes. We define general r-spike count
cumulants of a vector y of spike trains over windows of length T by

YI(T) = %Kr(Nyl(T),...,NyN(T)). (2.8)

Asymptotic spike count cumulants are defined by taking the limit of large T:
y = 1 y
¥z (00) = lim ¢ (7). (2.9)
T—ro0

At first order, the spike count cumulant equals the firing rate r;(T) of the process,

V(T) = B [Ny (T)] . (2.10)

T’i(T) T

= -

Adopting the subscript notation defined in Eq. (2.4) for the cross-cumulant density, we

write the spike count variances and covariances over windows of length T as

VI(T) = %var [Ny (T)], V}(T) = %cov [Ny, (T), Ny, (T)]

General spike count cross-cumulants are denoted

V)i (T) = %K(Ny,.1 (T), Ny, (T),..., Ny, (T)). (2.11)

Lastly, we will make use of the second-order spike count correlation coefficient pl);(T)
This is given by the Pearson correlation of the spike counts:
vi(T)

=D
% VTYHT)

(2.12)

The asymptotic quantity plyj(oo) is defined by

¥(00)

V(00 (c0)
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Cross-cumulant densities The cross-cumulant density of a vector of spiking processes

y can be expressed as a limit of cumulants of the associated counting processes,

. kK(Ny,[0,At|, Ny, |11, 71 + At], ..., Nyy|TN-1, TN-1 + At
Ky(Tl,...,TN_l):Alglo (Ny, [ ], Ny, [ AlN ywl ])

(2.13)
When dealing with point processes, the cross-cumulant density can be interpreted as the
probability of observing spikes from the processes y in the arrangement indicated by the
intervals in the definition Eq. (2.13) (i.e., a spike at time t in y;, at time ¢ + 7y in ¥, and so
on) beyond what can be inferred from lower-order cumulants. For instance, consider the
conditional intensity 1115 () of a pair of spiking processes (11, y2), a second-order quantity
given by [54, 55]

P(N,.|t, T+ At| > 0|N,.|0,At] >0
W e) — tim T lr T+ A > OINy [0,41] > 0)
2 At—0 At

It is not difficult to show using the law of total expectation that

KZ}}(T) = T’ihi]'(’l') — T’ﬂ”]'. (2.14)

Thus, the second-order cross-cumulant density gives the probability that a spike in y; is
followed by one in y; at a lag T (namely, 7;;;(7)) above what would be expected to occur

by random chance (7;7;).

We note that there is nothing particular about the order of conditioning considered in
the argument above. For instance, we could have defined instead the intensity function

h;’i (7), then expressed the cross-cumulant density as

KZ};(T) = T]I’lill(—’[') — 1"1'7"]'.

In addition, this method of expressing the cross-cumulant density in terms of conditional

tiring intensities can be extended directly to third and higher orders. In all cases, the order
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of conditioning is not important — only the relative arrangement of the time lags for the

collection of processes under consideration matter.

Another statistic useful in the study of a correlated vector point process y is the popula-
tion cumulant density. At second order, the population cumulant density for the i*" process

takes the form [173]
Kipop (T) = X K3j(T)-
j#i
More generally, the k-order population cumulant density corresponding to the processes

Yiy,---, Vi, is given by
y — y
Ki1~--ik,],pop(T1""'kal) = Z | Ki]mikilj(’fl,...,Tk,l). (2.15)
]7&11/“'111(
The population cumulant density measures the propensity of the set of neurons under
consideration to spike in a certain arrangement relative to other neurons in the popula-

tion.

Cross-cumulant densities with repeated spiking processes Consider the auto-cumulant
density J;(7). It is known that, for a general stationary point process, this function takes

the form

y

k7, (T) = r;6(T) + “non-singular contributions”,

where r; is the constant intensity (rate) of y; [54].

Similar singular contributions can appear in higher-order cross-cumulant densities
when processes are repeated. As an example, consider the third-order cross-cumulant

density of the triplet (i, i, j). From Eq. (2.13), using that the third-order cross-cumulant is
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equal to the central moment, we can write

E [(Nyi [0, ] — 1iAt) (N, [12, T2 + Af] — rjAt)}

KZ]-(O, ) = lim

At—0 At3
E [Ny, [0, A2 (N, [, 72 + At] = 1;A1) |
= lim
At—0 At3
L E [Nyl. [0, At)(Ny, [12, T2 + Af] — rjAt)} L E [Ny,. [0, At] — rjAt}
! A2 i At
E [Ny [r, 7 + Af] - r]-At’ Ny, [0, A1) > 0] P(N,,[0, ] > 0)
= lim — Zi’iKy-(Tz)
At—0 At3 1
y
. Kij(TZ) y
TAmTar ()

where the final equality follows from Eq. (2.14). Since the joint firing probabilities will

generally remain bounded at all pairs of lags for which 7; # 0, we have established that

y

K i(11,12) = 8(m1)K;;(72) + “non-singular contributions”. (2.16)

A similar argument establishes that, for example,

Kl?;.j(fl, ) =6(1 — Tl)KZ}}(Tl) + “non-singular contributions”.

Comparable expressions hold in the general case of arbitrary-order cross-cumulant
densities. In short, cross-cumulant densities involving multiple copies of a spiking pro-
cess will necessarily contain singular contributions proportional to lower-order cross-
cumulant densities of the same set of processes. These singular contributions are anal-
ogous to the delta contribution proportional to the firing rate (i.e., the first-order cumu-
lant) which appears in the second-order auto-cumulant density of a spiking process. In
the third-order case, for example, these singular contributions can appear along “ridges”

centered on the 71, 7 axes, as well as the diagonal 71 = 1.
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Relating spike count cumulants and cross-cumulant densities The spike count covari-

ance can be related directly to the second-order cross-cumulant density by [54, 55,232, 271]

yI(T) = /T p(T; T)K (t)dt with p(7;T)=1-— Il (2.17)
i] _T 4 T 4 :

where the prefactor accounts for edge effects of the finite window. A similar relation holds
which relates the spike count variance y};(T). to the second-order auto-cumulant density
y

K.

>(7). The integral in Eq. (2.17) can also be evaluated in the frequency domain, relating

spike count covariance to the cross-spectral density by

Vlyj(T) = /OO pw; T)S?}(w)dw,

—00

where p(w; T) = F [p(t; T)] = Tw2 sin?(wT/2).

Eq. (2.17) can be generalized to relate higher-order spike count cumulants to the cor-

responding densities. For example, if we define

1—madallnl g >,
p(t1,72;T) =
1— M’ T -Tr < O/
we then have that
T— T
l]k / / p(11,72) l]k<T1/T2 Ydrdt +/ / p(T1,12) l]k(Tl,Tz)ded’n.
-

Similar expressions can be derived at higher orders. In general, the asymptotic spike
count cumulants (defined in Eq. (2.9)) equal the total integral under the corresponding

cross-cumulant density:

/ / Tl,...,TN_l)dTN_l = -d’l’l. (2.18)

Using Egs. (2.1, 2.6), the asymptotic spike count cumulant can also be evaluated in terms
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of the cross-spectral density. For instance, owing to the equivalence of second- and third-

order cross-cumulants and central moments, we have at these orders
Yi(s0) = $7(0) and ¥y(c0) = S%,(0).

Our ergodicity assumptions guarantee the existence of all cumulant quantities considered,

and the integrability of the cross-cumulant densities.

2.2 Copulas

Consider a random vector X = (Xj, ..., Xy) with joint distribution function
F(xl,...,xN) = P[X] <x1,..., XNy < xn] , (xl,...,xN) S RN,
and marginal distribution functions

Fi(xl-) :/---/F(xl,...,xN)dxn---dxiﬂdxi_l---dxl.

The copula C of X — which can also be identified with the distribution F and marginals

{F}Y, —is a function which satisfies the equality [189, 256]
F(xl, .. .,xN) = C(Fl(x1), .. .,FN(JCN)) v (JC1, e ,XN) S RN, (2.19)

By the probability integral transform, each of F;(X;) is a uniformly distributed random
variable. The function C can also be defined as the joint distribution of the random vec-
tor (F1(Xy),..., Fn(Xn)). Sklar’s Theorem [256] provides uniqueness of the copula as-
sociated with a random vector on [T, Ran(F;), the Cartesian product of the ranges of
the marginal distribution function, also implying that the copula is unique under the as-
sumption of absolutely continuous distributions. A copula can be equivalently viewed as

a distribution function on the N-dimensional unit hypercube with U[0, 1] marginals.
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The copula density c is defined as the density corresponding to the copula distribution

C and is given by
d d

- — N
=5 s Cw, e o). (2.20)

Using the copula density, we can express the joint density f for the distribution F as

—=

f(xl,...,xN) :c(Fl(xl),...,FN(xN)) fi(xl-), (221)

i=1
where
filws) = - Flx)
1 1) — axl 1
is the marginal density for the i component of X.

As is clear from Eq. (2.19), the copula encapsulates completely the dependence struc-
ture of the random vector X, and knowledge of the joint distribution F is equivalent
to knowledge of the marginal distributions {F;}Y ; and the copula function C. Thus,
methods which approximate the copula associated with a distribution provide an avenue
for approximation of the joint distribution itself, when coupled with estimations of the
marginal distributions. To this end, many parametric copula models exist which can be
fit to data by the usual maximum likelihood methods. Before introducing some of these
parametric models, we quickly note that if the components of the vector X are indepen-

dent, then

F(x1,...,xn) = HFi(Xi)/

N
i=1

leading to the definition of the independence copula,

N
Cina(u) = [Jui, welo01]".
i=1

Clearly, if C = Cj,,4 in Eq. (2.19), then the components of the vector X are independent.
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2.21 Archimedian copulas

One common parametric class of copulas is the Archimedean copulas which are defined in
terms of parametric generator functions 1. The copula Cy, associated with a generator 1

is defined by
Cyl(u) = 1 <1p_1(u1) ot w-l(uN)) , uelo,1]V,

where it is additionally required that the function 1) be N-monotone for Cy, to be a proper

copula [183]. In other words, i) must satisfy the conditions

o (—1)N=2y(N=2)(x) is non-increasing and convex.

For example, the Gumbel copula, which exhibits strong correlation in the positive tails of
the distribution — i.e., events in the positive tails of the joint distribution tend to occur

together at a level well above chance — is an Archimedean copula with generator
W(t0) = exp [—tl/g] , 0€[l,00).

More generally, the Archimedean copula generators can be parameterized by a vector 6.
Given sample data, maximum likelihood methods can be applied to determine the most

likely value of the parameter vector 6.

2.2.2 The Gaussian copula

Another commonly used copula model is the Gaussian copula [305], parameterized by a

correlation matrix X, assumed to be a positive definite matrix with £; = 1 and %;; €
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[—1,1]. The Gaussian copula distribution function is given by
8 (u) = @5 (@7 ()., @ (un)), (2.22)

where @ is the standard, univariate normal CDF, and @5 is the N-dimensional CDF for
the Gaussian distribution with zero mean and correlation matrix Z. In the applications
of Chapter 8, it will be useful to note that the Gaussian copula density can be written in
closed form as

C}C:;auSS( T

Ui, ..., UN) = exp [WT(Z’1 — I)w} , W= [q’fl(m),---,@fl(uN)}

(2.23)

The Gaussian copula is advantageous to apply in that, given a collection of observa-
tions {Xj } ?:1 of the random vector X, the maximum likelihood value of ):-j of ¥;; can be
determined without the need to apply a gradient descent method or other optimization

techniques. In particular, the maximum likelihood value for the correlation parameter in

the Gaussian copula is given by [305]

A

£, = corr (cp—l(g(xi)), cp—l(Fj(xj))) .

The correlation computed in the previous expression is the empirically observed correla-
tion from the samples {X/ }?:1. In Chapter 8, we apply Gaussian copulas in order to obtain
an estimate of a joint distribution which is both continuous and has twenty dimensions.
It is not feasible to tackle this problem directly, even with modern computational power

and storage capabilities.

We conclude by noting that, in certain applications the Gaussian distribution is found
to be unsuitable for fitting to the true copula as it predicts very low probabilities for joint
events involving multiple marginally rare events. In many cases, however, so-called “ex-

treme” events tend to occur in a correlated fashion (such as during a period of elevated
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activity within a neuronal network, or the collective behavior of securities during finan-
cial booms or crises). In this case, one can achieve a better fit by applying the t-copula. The
t-copula is a direct generalization of the Gaussian copula, and includes an additional de-
gree of freedom with which to better capture the dependence structure [60]. The t-copula
is defined similarly to the Gaussian copula in Eq. (2.22), replacing the joint distribution
with the joint ¢ distribution with correlation matrix X and v degrees of freedom, and the
marginal distributions with standard t distributions with v degrees of freedom. The t-

copula converges in distribution to the Gaussian copula as v — oo.
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Chapter

Modeling of neurons and their

interactions

Neuronal models can vary greatly in their complexity [58,79, 81, 84,105,120, 147,159, 188,
291]. At one end, highly detailed models can consist of hundreds of coupled differen-
tial equations modeling “electrical compartments” of the neuron, and attempt to capture
changes in membrane potential induced by molecular-level kinetics of ions traversing
membrane channels [84,243,279]. These neuron models provide near-complete descrip-

tions of responses to biophysically realistic stimulation.

On the other end of this spectrum, reduced models aim to capture salient features of
neuronal activity, favoring tractability over completeness [39, 131, 182]. The models which
we will primarily employ herein, the so-called integrate—and—fire (IF) model neurons [40,
41, 81], are of the latter type. When a neuron spikes, its membrane potential undergoes a
rapid depolarization followed by a comparably rapid hyper-polarization back towards a

resting potential [79,120]. Integrate—and—fire neuron models exhibit a firing threshold on
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the membrane potential which is meant to approximate realistic spiking dynamics.

In this chapter, we introduce and briefly explore the properties of integrate—and—fire
neuron models. Following this, define and discuss the manner in which these neuron
models are typically coupled to each other. We conclude the chapter by introducing the
diffusion approximation in Section 3.3, motivating the consideration of white noise-driven
neurons throughout most of the rest of this work. Before doing so, however, we introduce
a useful change of coordinates for the parametrization of the sub-threshold dynamics of
conductance-driven neurons. This effective time constant form helps to elucidate the func-

tional significance of differences between current- and conductance-based input modes.

3.1 Integrate—and-fire neuron models

A general integrate—and-fire model neuron receiving current input I(¢) neuron has a

membrane potential which evolves according to the differential equation [41]
CuV(t)=F(V(t))+I(t), Vo= 0.

Upon crossing the threshold Vy;,, the membrane potential of the neuron is reset to V,
where it is held fixed for an absolute refractory period of length 7., after which normal
voltage dynamics resume. We denote by y(t), the spiking output of the neuron given by
y(t) = L y(t— 1),
]
with t/ equal to the time of the j* crossing of the membrane potential across the threshold
Vin- The nature of the function F(V') determines the sub-threshold dynamics of the neuron

model. We next discuss a few canonical integrate—and—fire neuron models.
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3.1.1 The leaky integrate—and—fire neuron

One of the simplest variants of the integrate—and-fire family is the leaky integrate—and—
fire (LIF) model [39,41,147,159,264]. In this model, the voltage-dependent dynamics are
given by

Fp(V)=g.(VL-V),

where g7 is the membrane conductance, and Vi < Vy, is the rest potential in the absence
of input (I(t) = 0). In this case, the membrane potential will relax to the leak (or resting)
potential V} exponentially, with a time constant given by 7, = C,, /gy - this is the mem-
brane time constant of the neuron. In Figure 3.1A, we exhibit the evolution of the membrane

potential of an LIF neuron receiving Poisson input I(t), where we write
o0
I(H=wY s(t—th) for t, <t} <..,

and depict the resulting output spike train y(t) at the top of the panel.

A __l | 1 1 1 1 8111 [ 1 1 11 1]
t1t2 t3... t1 t2t3"'
V (mV)

V (mV)
-55 -554

5.0 t (ms) 5l0 t (ms)

Figure 3.1: Illustrating the membrane potential and spiking dynamics of integrate—
and-fire model neurons. (A) The time evolution of the membrane potential of an LIF
neuron receiving excitatory Poisson current inputs. The corresponding output spike train
is displayed at the top of the panel. (B) Same as panel A, but for the EIF neuron model.
Unlike the LIF, the EIF neuron features a spike initiation phase in its sub-threshold dy-
namics in which the membrane potential exhibits a smooth but rapid escape.
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3.1.2 The exponential integrate-and—fire neuron

An important generalization of the LIF neuron presented above is the exponential integrate—
and—fire (EIF) model neuron [41,81]. The voltage-dependent dynamics of the EIF contain
the same leak term as the LIF, but also an exponential term which models membrane

potential spike dynamics induced by fast sodium currents [81]. In particular,

V—VT}
|-

Fr(V)=g.(VL =V +¢(V)), where (V)= Arexp [

Typically, the parameters of the model are such that the exponential non-linearity 1) has
only a minor effect on the voltage dynamics around the rest potential E;. The parameter

V7 is referred to as the “soft threshold” of the EIF model, as it solves the equation

If set initially above this value, the membrane potential can be shown to diverge to +oco
in finite time, assuming the absence of input (I(t) = 0). Such a divergence indicates a
“spike” of the EIF model. The exponential integrate—and-fire neuron has been shown
to match well both sub-threshold and spiking neuronal dynamics in certain cortical ar-

eas [13,81].

In practice, one still sets a hard threshold Vy,, but as long as the hard threshold is suffi-
ciently high relative to the soft threshold, the spiking dynamics of the EIF are not sensitive
to this value owing to the exponential escape of the potential [81], in sharp contrast to the
LIF model. The paramter Ar shapes the spiking dynamics of the membrane potential
— higher At induces a more rapid onset of spiking (i.e., depolarizations of higher slope,
implying narrower spikes). In the limit that At — 0, the EIF converges to the LIF with
threshold Vr. In Figure 3.1B, we exhibit the evolution of the membrane potential of an

EIF neuron receiving Poisson input and depict the resulting output spike train y(t) above

35



3.2. MODELS OF SYNAPTIC INTERACTION

the trace. Note the smooth initiation of the action potentials in contrast to the LIF in panel

A.

3.1.3 The general integrate—and—fire neuron

Other canonical models of the integrate—and—fire family have been considered extensively
in the literature [41,132]. Although we will not cover them in detail, much of what fol-
lows can be applied to these models as well. One particularly important example is the
quadratic integrate—and-fire (QIF) model [69,72,161]. For this model, the sub-threshold
dynamics are given by

F(V) oc (V = VL) (V = Vi).

For initial values Vy < Vy,, the membrane potential will relax to the leak potential V7,
and for Vy > Vy,, the membrane potential again diverges to +oco in finite time. This
model can be fit so that its dynamics mimic well those of the Morris-Lecar model (a two-
dimensional neuron model exhibiting realistic spike-reset dynamics) in certain cases [69],

and is equivalent to the canonical theta model after a change of variable.

Another important set of examples is the class of adaptive integrate-and—fire neu-
rons [34,131], which seem to achieve a nexus of simplicity (low dimensionality) and flex-
ibility. Whether the methods herein can be applied (particularly those of Chapters 5, 6) to

such models in a useful manner is an interesting topic for future research.

3.2 Models of synaptic interaction

In this section, we will review some common approximations to neuronal interactions.

Briefly, chemical interactions between neurons take place when the membrane potential
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of one neuron (the pre-synaptic neuron) is rapidly depolarized. This rapid depolarization
creates a traveling wave (also called an action potential or spike) which moves rapidly along

the length of the axon of the neuron.

When this action potential reaches a synaptic terminal, it causes a small quantity of
a neurotransmitter to be released into the synaptic cleft, a small gap between the pre-
synaptic and post-synaptic terminals at the site of the interaction. These neurotransmitter
molecules bind with receptors in the membrane of the post-synaptic cell, opening ion
channels and eliciting a transient change in the membrane potential of the post-synaptic
neuron. Typically, chemical synapses link the axon of the pre-synaptic cell to the dendrite
of the post-synaptic cell, though this needn’t always be the case. The change in mem-
brane potential in the post-synaptic neuron elicited by synaptic input can be either hyper-
polarizing (inhibitory) or depolarizing (excitatory) depending on the type of synapse, it-

self characterized by the identity of the neurotransmitter released.

3.2.1 Current-based synapses

Throughout this work, we employ reduced integrate—and-fire models of neuronal ac-
tivity. In adopting these models, we choose to neglect detailed modeling of membrane
potential modulations through the operation of ion channels, and other such details, and
accordingly, much of the detail of chemical synaptic interactions briefly described in the
opening to this section. One simple way to approximate chemical synaptic kinetics is

through so-called “current-based synapses”.

One of the simplest reductions of these chemical synaptic kinetics is the approximation

of such exchanges is through current-based interactions.
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Considering an example leaky integrate-and—fire neuron model receiving the spiking

output x(t) of another neuron, the membrane potential evolves according to
CuV () = gL(VL = V(1)) + (ax x)(¢).

The filter «(t) is known as the synaptic filter or post-synaptic current (PSC). Upon the recep-
tion of a spike in the process x(t), the current across the membrane of the post-synaptic
neuron exhibits a transient change with a time-course matching that of the filter ().
Synapses vary not only in polarity, but also strength and timescale, depending on many
factors, such as the particular neurotransmitter involved and the number of post-synaptic
binding sites available for neurotransmitter binding. The filter «(f) sets both the strength
as well as the time-scale of the interaction. In Figure 3.2A, we show the time-evolution
of the membrane potential of an LIF neuron receiving excitatory, current-based Poisson
input. The synaptic filter was instantaneous (i.e., x(f) = wé(t)), resulting in a fixed-size
jump followed by an exponential decay in the membrane potential upon the arrival of an

input pulse.

3.2.2 Conductance-based synapses

Chemical synaptic kinetics at the molecular level involve the opening and closing of ion
channels in the membrane of neurons, and these channels are often themselves controlled
or affected by the membrane potential of the neuron involved. In short, this imposes a
membrane potential dependence on synaptic interactions which can, in many cases, be
more accurately captured by considering synaptic interactions through membrane con-

ductances [61], as opposed to the current-based synapses covered in Section 3.2.1.

Thus, consider again a leaky integrate—and—fire neuron receiving a spike train input

x(t) representing the output of a distinct neuron. The membrane potential of this neuron
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Figure 3.2: Implementing coupling amongst integrate—and—fire model neurons. (A)
Time evolution of the membrane potential of a LIF neuron (with spiking dynamics —i.e.,
the threshold and reset — neglected) receiving current-based excitatory Poisson input.
(B) Same as panel A for conductance-based input. The input spike train was precisely
that used for panel A. Note that the jump size now depends on the membrane potential
at the time of arrival for the input pulse. (C) Time evolution of the membrane potentials
(bottom) and resulting spike trains (top) for a pair of electrically coupled LIF neurons.
(D) Same as panel C, except for EIF neurons. The nature of the spiking dynamics strongly
modulates the effect of gap junction coupling on output spiking correlations. The strength
of the gap-junction synapses was set to g¢qp = 10g;.

evolves according to
CnV(t) = gL(Ve = V(t)) + (o x) (1) (Vsyn — V(t)).
Here Vsyn sets the synaptic reversal potential (as well as the polarity of the synapse), and
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the synaptic filter a(t) now gives the transient increase in the post-synaptic conductance

induced by an input spike from x().

The net effect of considering conductance-based synapses rather than current-based
ones is that the closer the membrane potential of a neuron is to the synaptic reversal po-
tential for a given synapse at the time of reception of an input, the weaker the correspond-
ing induced post-synaptic current will be. Synapses with Vgy, > V| are called excitatory,
and others inhibitory. In Figure 3.2B, we exhibit the membrane potential evolution of
an LIF neuron (with spiking dynamics removed) receiving excitatory, conductance-based
Poisson input. The synaptic filter again was instantaneous, however, due to the inputs be-
ing through conductances as opposed to currents (see Figure 3.2A), there is a strong state-
dependence of the jump size upon arrival of an input pulse. The input spike train in

Figure 3.2B precisely matched that used in Figure 3.2A.

An important difference between the current- and conductance-based models of synap-
tic interaction is that a neuron receiving conductance-based inputs does not have a single
membrane filter in the classical sense - rather, the timescale at which the neuron responds
to inputs changes (decreases) with increasing synaptic conductance, as greater synaptic
conductance has the side-effect of inducing an increase in the effective membrane con-
ductance. This in turn leads to interesting effects such as shunting inhibition, in which a
neuron can become effectively silent despite the reception of large amounts of both exci-

tatory and inhibitory synaptic input.

3.2.3 Electrical synapses

In the early 20" century, there was a great debate within the budding neuroscientific
y Y g g

community regarding the predominant nature of neuronal interactions. Camillo Golgi
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and others supported the reticular hypothesis [92], in which it was believed that neurons
(and elements of the nervous system in general) formed a continuum through which in-
formation passed smoothly. Based on the work of Golgi himself, Santiago Ramoén y Cajal
presented an alternative theory known as the neuron doctrine [210], in which it was hy-
pothesized that neurons were distinct anatomical units which communicated exclusively
through “discrete” (chemical) events. An extended debate over which was the valid hy-
pothesis ensued [281]. Ramoén y Cajal’s neuron doctrine was dominant until the presence
of electrical synapses was first concretely exhibited in crayfish in 1959 [83], thereby indi-
cating there were two distinct modes for neuronal communication (chemical and electri-
cal), and that there were elements of truth to each theory. It should be noted that chemical
interactions are still believed to be the primary mode of communication for cortical neu-

rons.

In more recent studies, electrical synapses between neurons which lie very close to
each other have been shown to be much more common than was previously believed in
the mammalian brain [53]. In Chapter 8, we will study a system of neurons in the brain of
the blowfly Calliphora vicina which utilize these so-called gap junction synapses for robust

encoding of behaviorally relevant stimuli values.

A gap junction synapse between two neurons results in the direct coupling between
their membrane potentials of neurons, allowing for coupling and communication at a
much shorter timescale than generally possible through chemical synapses. We will con-
sider only bi-directional gap junction synapses, though examples of unidirectional gap

junction coupling do exist [229]. We consider a pair of gap junction-coupled LIF neurons

41



3.2. MODELS OF SYNAPTIC INTERACTION

with membrane potentials Vi (t), V»(t) evolving according to

CuV1(t) = gL(VL = Vi(t)) + geap(V2(t) = Vi (1)) + Lina (1),

CuVa(t) = 8L(VL = Va(t)) + ggap(Va(£) = Va(t)) + L2 (8)-
Here, I;, ;(t) consists of exponentially-filtered, current-based Poisson input in Sections
3.2.1and 3.2.2. Considering the evolution of Vi, the terms of the form gga, (V2 (t) — Vi(t))
has the effect of continuously pulling the membrane potential of the first cell towards that
of the second, and the corresponding term in the equation for the evolution of V; has the

same effect.

The effect gap junction coupling can have on neuronal activity is exhibited in Figs. 3.2C,
D. In Figure 3.2C, we show the membrane potentials and output spike trains of a pair of
electrically-coupled LIF neurons receiving independent, excitatory Poisson input. Due
to the sharp threshold involved in the LIF spiking dynamics, electrical coupling (though
attractive in nature) can actually lead to anti-correlation in the output spiking of the two
neurons. Compare this to Figure 3.2D, where we exhibit the activity of two electrically-
coupled EIF neurons. The more realistic spiking dynamics (which involve a rapid es-
cape towards a very high threshold) lead to the two neurons tending to pull each other
along upon initiation of a spike, resulting in nearly-synchronous output spiking [166].
This is an example of a situation in which it is crucial to include more realistic spiking
dynamics in the sub-threshold description of neuronal activity. The role of gap junc-
tion coupling in regulating spiking dynamics has been studied extensively in the liter-

ature [48, 104, 150, 165, 166, 277,290].
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3.3 The diffusion approximation

When considering the behavior of a model neuron, or a network of such neurons, it is
common to include in the input to the neuron a noisy component which represents this
signal extraneous to the explicitly modeled circuit or network. Cortical neurons have
been shown to exhibit highly irregular firing patterns characterized by inter-spike inter-
vals with elevated coefficients of variation under a variety of conditions [237, 257, 265].
This induces a common simplifying assumption in neuronal modeling, namely, that this
noisy signal consists of Poisson spike trains of both polarities (excitatory and inhibitory).
The Poisson variability of the noisy inputs reflects the variability commonly exhibited by

cortical neurons.

Modern estimates put the number of neurons and synapses in the human brain at
about 100 billion (10'!) and 100 trillion (10'4), respectively [301]. Many neurons in vivo re-
ceive synaptic input from thousands of afferents, many of which can be relatively weak. In
this section, we begin with an integrate—and—fire neuron receiving Poisson, conductance-
based (i.e., multiplicative) input, and present the so-called diffusion approximation [41, 88,
107,216,218, 227] to the input, which allows us to treat the sub-threshold dynamics of the

neuron as a simple drift-diffusion process [88].

Preceding our presentation of the diffusion approximation, we introduce the effective
time constant form and a related approximation [41, 136, 225] of sub-threshold neuronal dy-
namics which motivates the consideration of additive noise. The effective time constant
form elucidates the true nature of sub-threshold neuronal dynamics in the presence of
multiplicative, conductance-based inputs. The diffusion approximation, in turn, signifi-

cantly increases tractability of the neuron models we consider, allowing for the analysis

43



3.3. THE DIFFUSION APPROXIMATION

we will present in the sequel. These approximations have been shown to be valid in bio-

logically significant parameter regimes. [220,221]

3.3.1 The effective time constant form

We will again consider the leaky integrate—and-fire neuron for concreteness. Letting
Qe(t), g1(f) be the time-varying excitatory and inhibitory synaptic conductances, respec-

tively, the membrane potential evolves according to
CuV () = gL(VL = V(1) + ge() (VE = V() + &1(1) (Vi = V(1)). (3.1)
After some simple algebraic manipulation, we can write the previous equation
CnV (1) = eft(Viert — V(1)) + 88£(t) (Ve — V(1) + 6g1() (Vi = V(1)),  (32)
where the variation §f(t) of a stochastic process f(t) is defined as
of(t) = f(t) —E{f ()],

and the effective membrane conductance and rest potential are

Vi + Ei{ge(t)] Er + Edgi(t)| E
Gett = BilgL + ge(D) + g1(D)],  Vieg = S22L {lgE( EffE g ()] Er

In this effective time constant form [41,225], the membrane potential is seen to have an effec-
tive filter with time constant
C

Teff = —-
Seff

Often, the synaptic conductances gr(t), g1(t) include noise terms, and the consideration of
multiplicative noise systems is generally more complicated than consideration of additive

noise systems. In situations where it benefits tractability, it is common to replace the V(¢)
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in these multiplicative noise terms with its temporal average, giving membrane potential

dynamics
CanV(t) = Gett(Viett — V(1)) + 68E(t) (VE — BV (£)]) + 8g1(t) (Vi — E[V(1)]).  (3.3)

This approximation is known as the effective time constant approximation [41,136,225], and
has been shown to match well the neuronal dynamics of the full model in Eq. (3.1) in

biologically relevant parameter regimes [220, 221], a point we return to below.

3.3.2 The diffusion approximation for multiplicative Poisson noise

Now, consider a neuron receiving Poisson synaptic conductance drive. Assuming instan-

taneous synapses, we have that
e(t) = Cuwexp(t),  gi(t) = Cuwrx (1),

where xg(t), x;(t) are Poisson processes of intensity Rg, R;, respectively. The constants
we, wy set the input weights, though there is a choice to be made in how to handle terms
of the form §(t)V(t) when integrating Eq. (3.2). In neuroscience applications, “instan-
taneous” synapses are a convenient interpretation of the physical limit of “very fast”
synapses, and so the Stratonovich interpretation is appropriate [227,267]. In this case,
arrival of an excitatory spike at time ¢, for example, yields an instantaneous increase in

the membrane potential of amplitude ug(Eg — V(t)), where ug = 1 — e~ ™E.

An integrate—and—fire neuron receiving Poisson input (either current- or conductance-
based) is generally intractable when it comes to solving for essentially any firing statistic
(including the firing rate) [41,226]. Often, in order to gain some tractability, the diffu-

sion approximation [41, 88,216,218, 227] is utilized. Under the diffusion approximation, the
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Poisson drive is replaced by an appropriately scaled white noise signal. In the present

case, we set

§e(t) = Cu(ue + 0£ép(t)),
where &(t) is a standard white noise process, and the mean p and intensity or are given
by

ug = ugRg, o = ug\/Rg.

The inhibitory input is approximated similarly.

Thus, under the diffusion approximation, the effective time constant form of the mem-

brane potential dynamics is

TtV (1) = Vit — V(1) + 1/ 2702 (V (£))E (1), (3.4)

where the effective time constant, rest potential and noise intensity are given (in terms of

diffusion approximation parameters) as

C E; +C Eg + yE
Gett = &L+ Co(HE + 11), Test = ——, Vieg = gLEut Couee + I),
Seff Seff

and the voltage-dependent effective noise intensity is

02(V) = Tt [0F(Ep = V)? + 0F(E1 = V)2 (35)

In Figure 3.3, we depict the time-evolution of the membrane potential of an LIF neuron
receiving excitatory and inhibitory Poisson noise as parameters are moved towards the
region of validity for the diffusion approximation. This approximation is valid in the
limit where wg, w; < 1 and rg, 71 > 1 (becoming exact as the weights tend to zero and
the rates to infinity), i.e., in the case where we have many inputs which are individually
weak. For the remainder of this work, we will consider exclusively neurons with noisy

driving signals which are white, as opposed to Poisson.
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Figure 3.3: The diffusion approximation. Left to right: input parameters of an LIF neu-
ron receiving excitatory and inhibitory Poisson noise are moved towards the region of
validity for the diffusion approximation (i.e., input weights are decreased and input rates
are increased).

3.3.3 Consideration of additive noise sources

Throughout this work, we will generally consider model neurons receiving additive white
noise. As mentioned in the preceding section, the additive noise approximation has been
shown as valid in biologically significant parameter regimes [220,221], and a neuron
driven by additive fluctuations is generally simpler to analyze. If one wishes to make
a consistent additive noise approximation to a Poisson-driven neuron, then the average
membrane potential must be determined beforehand — for integrate-and-fire neurons,
this problem is not generally analytically tractable. An alternative approach is to assume
a fixed noise intensity (implicitly fixing an average membrane potential), taking the model
as determined by a diffusion approximation to a Poisson-driven neuron for some ratio of
input rates and weights. In the latter case, the rates and weights which yielded the ap-
proximating system are typically not of particular interest, so long as they can be assumed

to be biophysically plausible. We elect the latter approach.
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Chapter

A generative spike train model with
time-structured higher-order

correlations

Emerging technologies are revealing the spiking activity in ever larger neural ensembles.
Frequently, this spiking is far from independent, with correlations in the spike times of
different cells. Understanding how such correlations impact the dynamics and function
of neural ensembles remains an important open problem. Here we describe a new, gen-
erative model for correlated spike trains that can exhibit many of the features observed
in data. Extending prior work in mathematical finance [19], this Generalized Thinning and
Shift (GTaS) model creates marginally Poisson spike trains with diverse temporal corre-
lation structures. We give several examples which highlight the model’s flexibility and

utility.
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We begin by describing the algorithm for sampling from the GTaS model. This con-
structive approach provides an intuitive understanding of the model’s properties. We
then present a pair of examples, the first of which highlights the utility of the GTaS frame-
work. The second example demonstrates how sample point processes from the GTaS
model can be used to study population dynamics. Next, we present the analysis which
yields the explicit forms for the cross-cumulant densities derived in the context of the ex-
amples. We do so by first establishing a useful distributional representation for the GTaS
process, paralleling [19]. Using this representation, we derive cross-cumulants of a GTaS
counting process, as well as explicit expressions for the cross-cumulant densities. After
explaining the derivation at lower orders, we present a theorem which describes cross-

cumulant densities at all orders.

4.1 Defining the Generalized Thinning and Shift model

We will describe a flexible multivariate point process capable of generating a range of
high-order correlation structures. To do so we extend the TaS (Thinning and Shift) model
of temporally- and spatially-correlated, marginally Poisson counting processes [19]. The
TaS model itself generalizes the SIP and MIP models [156] which have been used in the-
oretical neuroscience [43,232,272]. However the TaS model has not been used as widely.
The original TaS model is too rigid to generate a number of interesting activity patterns
observed in multi-unit recordings [130,173,174]. We therefore developed the General-
ized Thinning and Shift model (GTaS) which allows for a more diverse temporal correlation

structure.
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41.1 GTaS model simulation

The GTaS model is parameterized first by a rate A which determines the intensity of a
“mother process” - a Poisson process on R. The events of the mother process are marked,
and the markings determine how each event is distributed among a collection of N daugh-
ter processes. The daughter processes are indexed by the set D = {1, ..., N}, and the set
of possible markings is the power set 27, the set of all subsets . We define a probability
distribution p = (pp)pcp, assigning a probability to each possible marking, D. As we will
see, pp determines the probability of a joint event in all daughter processes with indices
in the set D. Finally, to each marking, D, we assign a probability distribution Qp, giving

a family of shift (jitter) distributions (Qp)pcp- Each (Qp) is a distribution over RV,

The rate A, the distribution p over the markings, and the family of jitter distributions
(Qp)pcp, define a vector X = (Xj,..., Xy) of dependent daughter Poisson processes

described by the following algorithm, which yields a single realization (see Figure 4.1):

1. Simulate the mother Poisson process of rate A on R, generating a sequence of event

times {t/}. (Figure 4.1A).

2. With probability pp; assign the subset D/ C D to the event of the mother process
at time #/. This event will be assigned only to processes with indices in DJ. (Fig-

ure 4.1B).

3. Sample a vector (Y{,...,YI];,) = Y/ from the distribution Qp;. For each i € D,
the time t/ + Yij is set as an event time for the marginal counting process X;. (Fig-

ure 4.1C).
Hence, copies of each point of the mother process are placed into daughter processes
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after a shift in time. A primary difference between the GTaS model and the TaS model
presented in [19] is the dependence of the shift distributions Qp on the chosen marking.

This allows for greater flexibility in setting the temporal cumulant structure.

A
ty t t
B X, | D'={1}] D*={1,2} |D*={1,23} | |
X I I I I
Xs_. : |
C X1 |. .| [ |
v ! v
X2 Y] Yl- 'Yl I I
2 ' 3
X3 Y2 | e |
3
Y3

Figure 4.1: The GTaS simulation protocol. (A) Step 1: Simulate the mother process - a
time-homogeneous Poisson process with event times {t/}. (B) Step 2: For each #/ in step
1, select a set D/ C D according to the distribution pp, and project the event at time t/ to
the subsets with indices in D/. The legend indicates the colors assigned to three possible
markings in this example. (C) Step 3: For each pair (#/, D/) generated in the previous
two steps, draw random vectors Y/ from Q;, and shift the event times in the daughter

processes by the corresponding values Y.

4.2 Examples of applications of the GTaS framework

4.2.1 Relationto SIP/MIP processes

Two simple models of correlated, jointly Poisson processes were defined in [156]. The
resulting spike trains exhibit spatial correlations, but only instantaneous temporal depen-

dencies. Each model was constructed by starting with independent Poisson processes,
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and applying one of two elementary point process operations: superposition and thin-

ning [54]. We show that both models are special cases of the GTaS model.

In the single interaction process (SIP), each marginal process X; is obtained by merging

an independent Poisson process with a common, global Poisson process. That is,
Xi()=Zi(:)+Z(), i=1,...,N,

where Z. and each Z; are independent Poisson counting processes on R with rates A, A;,
respectively. An SIP model is equivalent to a GTaS model with mother process rate A =

Ac + YN A, and marking probabilities

4, D= {i},
pp =%, D=D,

0, otherwise.

Note that if A. = 0, each spike will be assigned to a different process X;, resulting in N
independent Poisson processes. Lastly, each shift distribution is equal to a delta distribu-
tion at zero in every coordinate (i.e., p(y1, ..., yn) = Hf\il 5(y;) for every D C D). Thus,
all joint cumulants (among distinct marginal processes) of orders 2 through d are delta

functions of equal magnitude, App.

The multiple interaction process (MIP) consists of N Poisson processes obtained from a
common mother process with rate A, by thinning [54]. The i daughter process is formed
by independent (across coordinates and events) deletion of events from the mother pro-
cess with probability p = (1 — €). Hence, an event is common to k daughter processes
with probability €*. Therefore, if we take the perspective of retaining, rather than delet-
ing events, the MIP model is equivalent to a GTaS process with A = Ay, and pp =

elPl(1 — €)4-IPI. As in the SIP case, the shift distributions are singular in every coordinate.
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In Theorem 4.3.3, we present a general result which immediately yields as a corollary
that the MIP model has cross-cumulant functions which are 6 functions in all dimensions,

scaled by ek where k is the order of the cross-cumulant.

4.2.2 Generation of synfire-like cascade activity

The GTaS framework provides a simple, tractable way of generating cascading activity
where cells fire in a preferred order across the population — as in a synfire chain, but (in
general) with variable timing of spikes [2—4,12,130]. More generally, it can be used to
simulate the activity of cell assemblies [17,42,108,113], in which the firing of groups of

neurons is likely to follow a particular order.

In the Introduction, we briefly presented one example in which the GTaS framework
was used to generate synfire-like cascade activity (see Figure 1.1), and we present another
in Figure 4.2. In what follows, we will present the explicit definition of this second model,
and then derive explicit expressions for its cumulant structure. Our aim is to illustrate
the diverse range of possible correlation structures that can be generated using the GTaS

model.

Consider an N-dimensional counting process X = (Xj, ..., Xy) of GTaS type, where
N > 4. We restrict the marking distribution so that pp = 0 unless |D| < 2 or D = D. That
is, events are either assigned to a single, a pair, or all daughter processes. For sets D with
|D| =2, weset Qp ~ N (0, £) - a Gaussian distributions of zero mean and some specified
covariance. The choice of the precise pairwise shift distributions is not important. Shifts
of events attributed to a single process have no effect on the statistics of the multivariate
process — this will become clear in Section 4.3, where we exhibit that a GTaS process is

equivalent in distribution to a sum of independent Poisson processes. In that context,

53



4.2. EXAMPLES OF APPLICATIONS OF THE GTAS FRAMEWORK

the shifts of marginal events are applied to the event times of only one of these Poisson

processes, which does not impact its statistics.

It remains to define the jitter distribution for events common to the entire population
of daughter processes, i.e., events marked by ). We will show that we can generate cas-
cading activity, and analytically describe the resulting correlation structure. We generate

random vectors Y ~ Qp according to the following rule, foreachi =1,...,N:

1. Generate independent random variables ¢; ~ Exp(«;) where «; > 0.

2. SetY; = Z;’:l @j.

In particular, note that these shift times satisfty Yy > ... > Y, > Y; > 0, indicating the

chain-like structure of these joint events.

From the definition of the model and our general result given below (see Theorem
4.3.3), we immediately have that Ké(’r), the second-order cross-cumulant density for the

pair of processes (i, j), is given by

K1) = () + (), @)

where
cii(T) = Apgi) /q}iﬁ (t,t+7)dt, cff(T) = App / gl (¢, + )t (4.2)
define the contributions to the second-order cross-cumulant density by the second-order,

Gaussian-jittered events and the population-level events, respectively. Therefore, correla-

tions between spike trains in this case reflect distinct contributions from second-order and

n the present chapter, we slightly abuse notation — when we reference the cross-cumulant densities kX,

we are actually referring to the cross-cumulant densities of the point processes associated with the counting
processes of X.
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higher-order events. The functions g5 indicate the densities associated with the distribu-
tion Qp, projected to the dimensions of D’. All statistical quantities are precisely defined
in Chapter 2.

A 6 IIIJ Ci) fy(t,m) e i) Kou(t,m2) s

1
il 'Mh' il mas I 10

11
AA A AA
kHz2 (x1072)
B 3

0
-10 10 T (ms) 3 m (ms) 0 3 71 (ms)

B
|

o

Figure 4.2: An example of a six dimensional GTaS model exhibiting synfire-like cascad-
ing firing patterns. (A) A raster-plot of spiking activity over a 100ms window. Blue spikes
indicate either marginal or pairwise events (i.e., events corresponding to markings for sets
D C D with |D| < 2. Red spikes indicate population-wide events which have shift-times
given by cumulative sums of independent exponentials, as described in the text. Arrows
indicate the location of the first spike in the cascade. (B) A second-order cross-cumulant
k%, (black line) of this model is composed of contributions from two sources: correlations
due to second-order markings, which have Gaussian shifts (c%3 — dashed red line), and
correlations due to the the occurrence of population wide events (c}}; — dashed blue line).
(C) Density plots of the third-order cross-cumulant density for triplets i) (1,2,3) and ii)
(1,2,4) — the latter is given explicitly in Eq. (4.6).

By exploiting the hierarchical construction of the shift times, we can find an expres-
sion for the joint density gp, necessary to explicitly evaluate Eq. (4.1). For a general N-

dimensional distribution,

fy, - yn) = fynlyr, - yn—) f(yn-1lya, - yn—2) - f(yaly) f(y1). - (43)

Since Y1 ~ Exp(ay), we have f(y1) = e “¥10(y1), where O(y) is the Heaviside step

function. Further, as Y;|(Y1,...,Yi_1) ~ Y1 + Exp(a;) fori > 2, the conditional densities
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of the y;’s take the form

fWilyi, - yic1) = f(yilyio1) = ae W Vi@ (y; — y;q), 0> 2.

Substituting this into the identity Eq. (4.3), we have

el Hll\iz (xie*“i(yi*yifl), YN > ... 2 Y1 >0,

qD(yl/"'/yN) - (44)
0, otherwise.

Applying Theorem 4.3.3, we obtain the N*"-order cross-cumulant density,

KX (T, TN1) = /\PD/QD(t,f+T1,---,f+TN71)

MY e (=m0, g > 1 Vi, (4.5)
0, otherwise,
where, for notational convenience, we define 79 = 0. A raster plot of a realization of
this model is shown in Figure 4.2A. We note that the cross-cumulant densities of arbitrary

sub-collections of the counting processes X can be obtained by finding the appropriate

marginalization of gy via integration of Eq. (4.4).

As a particular example, we consider the cross-cumulant density of the marginal pro-

cesses X1, X3. Using Egs. (4.2, 4.4), we find

e TR =TT, oo F a,

ci3(1) = App®(7) -
ooz Te” %27 0 = 3.

An expression for ¢2,(7) can be obtained similarly using Eq. (4.2) and recalling that Q () =
N(0, %) for all i, j. In Figure 4.2B, we plot these contributions, as well as the full covari-

ance density.
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Similar calculations at third order yield, as an example,

XA3IXY ,— X T —a3(Tr—T —ay (T —T;
me 21[6 3(T2 1)_3 4(2—m1) , “37&0¢4,

Kloq(T1,T2) = App - (4.6)

o304 (Ty — Ty )o@ w(n-T), a3 = oy,
where the cross-cumulant density 3%, (11, T2) is supported only on 7, > 71 > 0. Plots of
the third-order cross-cumulants for triplets (1,2,3) and (1,2, 4) in this model are shown
in Figure 4.2C. Note that, for the specified parameters, the conditional distribution of Y}
— the shift applied to the events of X4 in a joint population event — given Y, follows
a gamma distribution, whereas Y3|Y> follows an exponential distribution, explaining the

differences in the shapes of these two cross-cumulant densities.

General cross-cumulant densities of at least third order for the cascading model will
have a form similar to that given in Eq. (4.6), and will contain no signature of the cor-
relation of strictly second order events. This highlights a key benefit of cumulants as a
measure of dependence: although they agree with central moments up to third order, we
know from Eq. (2.2) (or Eq. (2.1) in the general case) that central moments necessarily ex-
hibit a dependence on lower-order statistics. On the other hand, cumulants are “pure”
and quantify only dependencies at the given order which cannot be inferred from lower-

order statistics [94].

One useful statistic for analyzing population activity through correlations is the pop-
ulation cumulant density [173]. The second-order population cumulant density for cell 7 is

defined by (see Eq. (2.15))
Kl?/(pop(T) = Z K?;(T)
j#i
This function is linearly related to the spike-triggered average of the population activity
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conditioned on that of cell i. In Figure 4.3 we show three different second-order popula-
tion cumulant functions for the cascading GTaS model of Figure 4.2A. When the second-
order population cumulant for a neuron is skewed to the right of T = 0 (as is Ki(/pop —
blue line), a neuron tends to precede other cells in the population in pairwise spiking
events. Similarly, skewness to the left of T = 0 (Ké(,pop — orange line) indicates a neuron
which tends to trail other cells in the population in such events. A symmetric population
cumulant density indicates a neuron is a follower and a leader. Taken together, these three

second-order population cumulants hint at the chain structure of the process.

Greater understanding of the joint temporal statistics in a multivariate counting pro-
cess can be obtained by considering higher-order population cumulant densities. From
Eq. (2.15), we define the third-order population cumulant density for the pair (7, j) to be

K??/pop(’['l,’l'g) =) K?;k(Tl,Tz).
k#i,j
The third-order population cumulant density is linearly related to the spike-triggered
population activity, conditioned on spikes in cells i and j separated by a delay 7;. In
Figure 4.3B,C,D, we present three distinct third-order population cumulant densities. Ex-
amining Ki(zlpop(’ﬁ,’fz) (panel B), we see only contributions in the region 7» > 71 > 0,
indicating that the pairwise event 1 — 2 often precedes a third spike elsewhere in the
population. The population cumulant K§4/pop (71, T2) has contributions in two sections of
the plane (panel C). Contributions in the region 7, > 71 > 0 can be understood following
the preceding example, while contributions in the region 7o < 0 < 11 imply that the firing
of other neurons tends to precede the joint firing event 3 — 4. Lastly, contributions to
Ki(é,pop (71, 72) (panel D) are limited to 0 < 7, < 73, indicating an above chance probability
of joint firing events of the form 1 — i — 6, where i indicates a distinct neuron within the

population.
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Figure 4.3: Population cumulants for the synfire-like cascading GTaS process of Fig-
ure 4.2. (A) Second-order population cumulant densities for processes 1,3 and 6. Greater
mass to the right (resp. left) of T = 0 indicates that a cell tends to lead (resp. follow) in
pairwise-correlated events. (B) Third order population cumulant for processes Xj, X, in
the cascading GTaS process. Concentration of the mass in different regions of the plane
indicates temporal structure of events correlated between X, X relative to the remainder
of the population (see the text). (C) Same as (B), but for processes X3, X4. (D) Same as (B),
but for processes Xi, X¢. Population cumulants are defined in Eq. (2.15).

A distinct advantage of the study of population cumulant densities as opposed to in-
dividual cross-cumulant functions in practical applications is related to data (i.e., sample
size) limitations. In many practical applications, where the temporal structure of a collec-

tion of observed point processes is of interest, we often deal with a small, noisy samples.
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As a result, it can be difficult to estimate third- or higher-order cumulants. Population cu-
mulants partially circumvent this issue by pooling [232,233,271] (or summing) responses,

to amplify existing correlations and average out the noise in measurements.

We conclude this section by noting that even cascading GTaS examples can be much
more general. For instance, we can include more complex shift patterns, overlapping
sub-assemblies within the population, different temporal processions of the cascade, and

more.

4.2.3 Timing-selective network

The responses of single neurons and neuronal networks in experimental [17,184, 254] and
theoretical studies [95,125, 135, 138, 274] can reflect the temporal structure of their inputs.
Here, we present a simple example that shows how a network can be selective to fine tem-

poral features of its input, and how the GTaS model can be used to explore such examples.

4.2.3.1 Model definition

As a general network model, we consider N leaky integrate-and-fire (LIF) neurons with

membrane potentials V; obeying (see Section 3.1)

av;
dt

N .
=-V+ Zwij(oc*zj)(t)+w1“xi(t), i=1,...,N. 4.7)
j=1

When the membrane potential of cell i reaches a threshold Vy,, an output spike is recorded
and the membrane potential is reset to zero, after which evolution of V; resumes the dy-
namics in Eq. (4.7). Here w;; is the synaptic weight of the connection from cell j to i, wn
is the input weight, and we assume time to be measured in units of membrane time con-

stants. The function «(t) = ng,}le_(t”d)/ Tm@(t — 14) is a delayed, unit-area exponential
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synaptic kernel with time-constant Teyn and delay 74. The output of the i neuron is
zi(t) = Y 8(t —t]),
j
where tlj is the time of the j spike of neuron i. In addition, the input {x;} ¥, is
xi(t) =) 8(t— sh),
j

where the event times {sf } correspond to those of a GTaS counting process X. Thus, each
input spike results in a jump in the membrane potential of the corresponding LIF neuron
of amplitude w'™. The particular network we consider will have a ring topology (nearest

neighbor-only connectivity) — specifically, fori,j =1,..., N, we let

w", i—j mod N=1lorN-—-1,
wl']':

0, otherwise.

We further assume that all neurons are excitatory, so that w*¥™ > 0.

A network of LIF neurons with synaptic delay is a minimal model which can exhibit
fine-scale discrimination of temporal patterns of inputs without precise tuning [133] (that
is, without being carefully designed to do so, with great sensitivity to modification of
network parameters). To exhibit this dependence we generate inputs from two GTaS pro-
cesses. The first (the cascading model) was described in the preceding example. To indepen-
dently control the mean and variance of relative shifts we replace the sum of exponential
shifts with sums of gamma variates. We also consider a model featuring population-level
events without shifts (the synchronous model), where the distribution Qp is a ¢ distribution

at zero in all coordinates.

The only difference between the two input models is in the temporal structure of joint
events. In particular, the rates, and all long timescale spike count cross-cumulants (equiv-

alent to the total “area” under the cross-cumulant density, see Eq. (2.18)) of order two and
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higher are identical for the two processes. We focus on the sensitivity of the network to

the temporal cumulant structure of its inputs.

In Figure 4.4A,B, we present two example rasters of the nearest-neighbor LIF network
receiving synchronous (left) and cascading (right) input. In the second case, there is an
obvious pattern in the outputs, but the firing rate is also increased. This is quantified in
Figure 4.4C, where we compare the number of output spikes fired by a network receiving
synchronous input (horizontal axis) with the same for a network receiving cascading in-
put (vertical axis), over a large number of trials. On average, the cascading input increases
the output rate by a factor of 1.5 over the synchronous inputs — we refer to this quantity

as the cascade amplification factor (CAF).

Finally, in Figure 4.4D, we illustrate how the the cascade amplification factor depends
on the parameters that define the timing of spikes for the cascading inputs. First, we
study the dependence on the standard deviation og;s of the gamma variates determining
the shift distribution. We note that amplification factors above 1.5 hold robustly (i.e., for
a range of shift og,ire values). The amplification factors decrease with shift variance. In
the inset to panel D, we show how the gain depends on the mean of the shift distribution
Ushife. On an individual trial, the response intensity will depend strongly on the total
number of input spikes. Thus, in order to enforce a fair comparison, the mother process
and markings used were identical in each trial of every panel of Figure 4.4. We note
that network properties, such as the membrane properties of individual cells or synaptic
timescales, can have an equally large impact on the cascade amplification factor —indeed,
as we explain below, the observed behavior of the CAF is a result of synergy between the

timescales of input and interactions within the network.

These observations have simple explanations in terms of the network dynamics and
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Figure 4.4: Using the GTaS model to probe a timing-selective network. (A) Example
input (left) and output (right) for the nearest neighbor LIF network receiving input with
synchronous input. (B) Same as (A), but for cascading input. (C) Scatter plot of the output
spike count of the network receiving synchronous (horizontal axis) and cascading input
(vertical axis) with pgpist = 2, Oghist = 0.3. The red line is the diagonal. (D) Average gain
(rate in response to cascading input divided by rate in response to synchronous input)
as a function of the standard deviation of the gamma variates which compose the shift
vectors for population-level events (ugphire was fixed at 2). The red dot indicates the value
of oghist used in panel C. Inset shows the same gain as panel D, but for varying the mean
of the shift distribution (ognist = 0.3). Spike counts in panels C and D were obtained for
trials of length T = 100.

input statistics. Neglecting, for a moment, population-level events, the network is config-
ured so that correlations in activity decrease with topographic distance. Accordingly, the
probability of finding neurons that are simultaneously close to threshold also decreases
with distance. Under the synchronous input model, a population-level event results in a
simultaneous increase of the membrane potentials of all neurons by an amount w'™, but

unless the input is very strong (in which case every, or almost every, neuron will fire re-

gardless of fine-scale input structure), the set of neurons sufficiently close to threshold to
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“capitalize” on the input and fire will typically be restricted to a topographically adjacent
subset. Neurons which do not fire almost immediately will soon have forgotten about this
population-level input. As a result, the output does not significantly reflect the chain-like

structure of the inputs (Figure 4.4A, right).

On the other hand, in the case of the cascading input, the temporal structure of the in-
put and the timescale of synapses can operate synergistically. Consider a pair of adjacent
neurons in the ring network, called cells 1 and 2, arranged so that cell 2 is downstream
from cell 1 in the direction of the population-level chain events. When cell 1 spikes, it
is likely that cell 2 will also have an elevated membrane potential. The potential is fur-
ther elevated by the delayed synaptic input from cell 1. If cell 1 spikes in response to a
population-level chain event, then cell 2 imminently receives an input spike as well. If the
synaptic filter and time-shift of the input spikes to each cell align, then the firing proba-
bility of cell 2 will be large relative to chance. This reasoning can be carried on across the
network. Hence, synergy between the temporal structure of inputs and network archi-
tecture allows the network to selectively respond to the temporal structure of the inputs

(Figure 4.4B, right).

In [156], the effect of higher-order correlations on the firing rate gain of an integrate—
and-fire neuron was studied by driving single cells using sums of SIP or MIP processes
with equivalent firing rates (first-order cumulants) and pairwise correlations (second-
order cumulants). In contrast, in the preceding example, the two inputs have equal long
time spike count cumulants, and differ only in temporal correlation structure. An increase
in firing rate was due to network interactions, and is, therefore, a population-level effect.

We return to this comparison in the Discussion.

These examples demonstrate how the GTaS model can be used to explore the impact of
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spatio-temporal structure in population activity on network dynamics. We next proceed

with a formal derivation of the cumulant structure for a general GTaS process.

4.3 Cumulant structure of a GTaS process

The GTaS model defines an N-dimensional counting process. Following the standard
description for a counting process, X = (X3, ..., Xy) on R¥, given a collection of Borel
subsets A; € B(R),i =1,...,N, then X(A1 x --- x Ay) = (X1(A1),..., Xn(Ayn)) € NN
is a random vector where the value of each coordinate i indicates the (random) number of

points which fall inside the set A;.

Note that the GTaS model defines processes that are marginally Poisson: For each

D c D={1,...,N}, define the tail probability pp by

p= Y Po- (4.8)

DcD'cD

i

Since pp is the probability that exactly the processes in D are marked, pp is the probability
that all processes in D, as well as possibly other processes, are marked. An event from the
mother process is assigned to daughter process X; with probability p;;. As noted in the
presentation of the simulation protocol for the GTaS process (see Section 4.1.1), an event
attributed to process i following a marking D > i will be marginally shifted by a random
amount determined by the distribution Qg} which represents the projection of Qp onto
dimension i. Thus, the events in the marginal process X; are shifted in an independent

and identically distributed (IID) manner according to the mixture distribution Q; given

by '
_ Y Dsi pDQg}

Qi Y.psi PD

Note that IID shifting of the event times of a Poisson process generates another Poisson
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process of identical rate [234]. As a result, the process X; is marginally Poisson with rate
In deriving the statistics of the GTaS counting process X, it will be useful to express

the distribution of X as

X1(A1) Yps1&(D;Ay,..., AN)
—distr . (49)

XN(AN) ZDaNé(D;A1/~~-/AN)

Here, each é(D; A, ..., AyN) is an independent Poisson process. This process counts the
number of points which are marked by a set D’ D D, but (after shifting) only the points
with indices i € D lie in the corresponding set A;. Precise definitions of the processes &
and a proof of Eq. (4.9) are the subject of Theorem 4.3.1. We emphasize that the Poisson
processes & (D) do not directly count points marked for the set D, but instead points which
are marked for a set containing D that, after shifting, only have their D-components lying

in the corresponding sets A;.

Suppose we are interested in calculating dependencies among a subset of daughter
processes, {X; }; cp for some set D C D, consisting of |D| = k distinct members of the
collection of counting processes X. The random vector consisting of the processes in this

subset can be decomposed via an equality in distribution as

Xi, (Ai) Yiepcplp(Ay, ..., AN)
= distr ; , (4.10)
Xi (Ay) Yiepcp Cp(A1, ..., AN)
where
(p(A1,...,AN)= )Y, &(DAy,..., Ay).

/

oD
(D\D)ND'=0
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We illustrate this decomposition in the cases k = 2, 3 in Figure 4.5. The sums in Eq. (4.10)
run over all sets D C D containing the indicated indices i; and contained within D.
The processes (p are comprised of a sum of all of the processes &(D’) (described below
Eq. (4.9) and precisely defined in Theorem 4.3.1) such that D’ contains all of the indices D,
but no other indices which are part of the subset D under consideration. These sums are

non-overlapping, implying that the {p are also independent and Poisson.

The following examples elucidate the meaning and significance of Eq. (4.10). We em-
phasize that the GTaS process is a completely characterized, joint Poisson process, and we
use Eq. (4.10) to calculate cumulants of a GTaS process. In principle, any other statistics

can be obtained similarly.

Second order decomposition Third order decomposition
D>1 D>2

A

‘) ‘) )
E{1,3,4} [ &{1,2,3,4} \&{2,3,4}
&{1,3} &{1,2,3}

£{1,4}
&{1}

£{1,2,4}
&{1,2}

Figure 4.5: Illustrating the representation given by Eq. (4.10) . (A) Performing the de-
composition at second-order (D = {1,2}, see Eq. (4.11) and the surrounding discussion)
with N = 4. (B) Same as panel A, but for three processes with D = {1,2,3} (see Eq. (4.16)
and the surrounding discussion).

4.3.1 Second-order cumulants (covariance)

We first generalize a well-known result about the dependence structure of temporally

jittered pairs of Poisson processes, Xi, Xp. Assume that events from a mother process
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with rate A, are assigned to two daughter processes with probability p. Each event time
is subsequently shifted independently according to a univariate distribution f. The cross-

cumulant density then has the form [35]

(1) = Ap [ FOF(t+)dt = Ap(F = £)(x).
We generalize this result within the GTaS framework. At second-order, Eq. (4.10) has a

particularly nice form. Following [19] we write for i # j (see Figure 4.5A)

Xi(Ai) Crijy (Ais Aj) + Gy (Ai)
—dse | 12T . 4.11)
Xj(4)) Cijy (Ais Aj) + ¢y (4)
The process (y; j, sums all £(D’) for which {1,2} C D', while the process (j;; sums all

&(D') such thati € D', j ¢ D', and (y; is defined likewise.
Using the representation in Eq. (4.11), we can derive the second-order cumulant (co-
variance) structure of a GTaS process. First, we have
cov [Xi(Ai), Xj(Aj)] = «[Xi(Ai), X;(Aj)]
= k[ jy (Ais Aj), Gy (Ai, Af)] + &[Gy (Ad), Chijy (Ai, A
+ k[ (Ais Aj), S (Af)] + k(G (Ai), Cjy (A))]
= Kk2[gi,jy (Ai, Aj)] 40
= E |¢1 (A A7) -
The third equality follows from the construction of the processes (p: if D # D’, then the

processes (p,(p are independent. The final equality follows from the observation that

every cumulant of a Poisson random variable equals its mean.

The covariance can be further expressed in terms of model parameters (see Theo-

rem 4.3.3 for a generalization of this result to arbitrary cumulant orders):

cov [Xi(Ai)/ X](A]>] =A Z Pp! /P (t + Yi - Ai,t—f— Y] c A] | Y ~ QD’) dt. (412)
D'>{i,j}
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In other words, the covariance of the counting processes is given by the weighted sum
of the probabilities that the (7, j) marginal of the shift distributions yield values in the ap-
propriate sets. The weights are the intensities of each corresponding component processes

&(D) which contribute events to both of the processes i and j.

In the case that Qp = Q, Eq. (4.12) reduces to the solution given in [19]. Using the tail
probabilities defined in Eq. (4.8), if Qp = Q for all D, the integral in Eq. (4.12) no longer

depends on the subset D’, and the equation can be written as

cov [XZ(AI),X](A])} = 7\}5{1,]} /P (t—f-Yi S Ai,t-f-Yj € A] | Y ~ Q) dt

Using Eq. (4.12), we can also compute the second-order cross-cumulant density of the

processes. From the definition of the cross-cumulant density (see Eq. (2.13)), this is given

cov [X;([0, At)), X;([t, T+ At))]

X _
Kij(T) N AltinO A2
. P(t+Yi€[0,At),t+Y, €1, T+ At | Y~ Qp) (4.13)
=A Z pp | lim dt.
. At=0 AP2
D'>{i,j}

Before continuing, we note that given a random vector Y = (Y3,...,Yn) ~ Q, where Q

has density q(y1, ..., yn), the vector Z = (Y — Y1,..., YN — Y1) has density gz given by

qz(le---/TN—l) = /q(t,t+T1,...,t+TN_1)dt. (4.14)

Assuming that the distributions Qs have densities qpr, and denoting by qi{)/] ! the bivariate

marginal density of the variables Y;, Y]- under Qp/, we have that

k(1) = /q{ WYt T)d 4.15)
D/D{z J}

According to Eq. (4.14), the integrals present in Eq. (4.15) are simply the densities of the

variables Y; — Y;, where Y ~ Qp.
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Thus, the cross-cumulant density K?;(T), which captures the additional probability for
events in the marginal processes X; and X; separated by 7 units of time beyond what
can be predicted from lower-order statistics is given by a weighted sum (in this case, the
lower-order statistics are marginal intensities — see Eq. (2.14) and the surrounding discus-
sion). The weights are the “marking rates” App/ for markings contributing events to both
component processes, while the summands are the probabilities that the corresponding
shift distributions yield a pair of shifts in the proper arrangement - specifically, the shift
applied to the event as attributed to X; precedes that applied to the event mapped to X;
by 7 units of time. This interpretation of the cross-cumulant density is quite natural, and
will carry over to higher-order cross-cumulants of a GTaS process. However, as we show

next, this extension is not trivial at higher cumulant orders.

4.3.2 Third-order cumulants

To determine the higher-order cumulants for a GTaS process, one can again use the rep-
resentation given in Eq. (4.10). The distribution of a subset of three processes can be

expressed in the form (see Figure 4.5B)

Xi(Ai) Cijiy + Cijy + Gy + Gy
Xi(Aj) | =distr | Cpijry + gy +Con 45 |- (4.16)
Xy (Ax) Cijiy + Clijy T G+ G

where, for simplicity, we suppressed the arguments of the different {p on the right hand
side. Again, the processes in the representation are independent and Poisson distributed.
The variable (; ;4 is the sum of all random variables £(D) (see Eq. (4.9)) with D D
{i, j,k}, while the variable ¢j; ;; is now the sum of all £(D) with D D {i, j}, butk ¢ D.

The rest of the variables are defined likewise. Using properties (C1) and (C2) of cumulants
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given in Chapter 2, and assuming that i, j, k are distinct indices, we have

K(X (A, Xi(A)), XelAK)) = k3 jay) = E [Ci ] -

The second equality follows from the fact that all cumulants of a Poisson distributed ran-

dom variable equal its mean. Similar to Eq. (4.12), we can write

K(Xi(Ai), Xj(A)), Xk(Ax)) =

ALY pDr/P(H—YZ- EALE+YE A t+ Y € Ar| Y ~ Qp) dt.
D'k}

The third cross-cumulant density is then given similarly to the second-order function by
sz(ﬁ,rz) =AY /qgjj’k}(t,t—k T, t + Tp)dt.
D'>{i,jk}
Here, we have again assumed the existence of densities g/, and denoted by qg;j’k} the
joint marginal density of the variables Y;, Y;, Y under qp/. The integrals appearing in the
expression for the third-order cross-cumulant density are the probability densities of the

vectors (Y; —Y;, Yx — Y;), where Y ~ Qpr.

4.3.3 General cumulants

In Theorem 4.3.3 below, we will establish the general form of a cross-cumulant for a GTaS
process in terms of model parameters. Before this, however, we need to establish an
extension of the distributional representation result given by [19]. This is the subject of

Theorem 4.3.1.

Some definitions are required: first, for subsets Ay,..., Ay € B(R) and D,D’ C D
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with D C D/, let

A;, forieD,

M(D,D’; Ay,...,AN) := By X --- X By with B; := AS, forie D'\D,

\ R, otherwise.

In addition, setting 1 = (1,...,1) to be the N-dimensional vector with all components
equal to unity, and if Qp is a measure on RN, then we define the measure v(Qp) by

v(Qp)(4) == [ Qo(A~t1)dt for A € BRY)
(4.17)

:/PW+HEAW~Qwﬁ

The measure v(Qp) can be interpreted as giving the expected Lebesgue measure of the
subset L of R for which uniform shifts by the elements of L translate a random vector
Y ~ Qp into A. Heuristically, one can imagine sliding the vector Y over the whole real
line, and counting the number of times every coordinate ends up in the “right” set — the
projection of A onto that dimension. In equation form, this means that the measure v(Qp)
can be written

V(QD)(A) = Ey[f({t eER:Y+11€ A})’Y ~ QD] ,

where the subscript Y indicates that we take the average over the distribution of Y ~ Qp.

Theorem 4.3.1. Let X be an N-dimensional counting process of GIaS type with base rate A,
thinning mechanism p = (pp)pcn, and family of shift distributions (Qp)pcp. Then, for any

Borel subsets Ay, ..., AN of the real line, we have the following distributional representation:

Xl(Al) ZDslg(D;Alz---/AN)
—distr ’ (4.18)

XN(AN) ZDBdE(D;Alr---/AN)

72



4.3. CUMULANT STRUCTURE OF A GTAS PROCESS

where the random variables &(D; Ay, ..., AN),0 # D C D, are independent and Poisson dis-
tributed with

E[E(D; Ay,..., AN) =AY pov(Qp)(M(D,D’; Ay, ..., AN)).
D'>D

Before providing the proof of Theorem 4.3.1, we give Theorem 1 of [19], necessary for

what follows, as Lemma 4.3.2.

Lemma 4.3.2. Let X be an N-dimensional counting process of 1aS type with base rate A, thinning
mechanism p = (pp)pcp, and shift distribution Q. Then, for any Borel subsets A1, ..., AN of

the real line, we have the following distributional representation:

X1(A1) Yps1é(D; Aq, ..., AN)
=distr E ’
XnN(AN) Yosné(D; A, ..., AN)
where the random variables &(D; A1, ..., AN), 0 # D C D, are independent and Poisson dis-
tributed with

E[E,(D,’Al,...,AN)]I/\ Z pD/V(Q)(M(D,D,;Al,...,AN)).
D'>D

Proof. For each marking D’ C I, define X"’ to be an independent TaS [19] counting pro-
cess with mother process rate App, shift distribution Qp/, and markings ( pB/)DdD where
pg/ — 1if D = D’ and is zero otherwise (i.e., the only possible marking for X" is D’). We
first claim that

X =diste 3, X7 (4.19)
Dl

To see this, note that spikes in the mother process of the GTaS process of X marked for a

set D’ occur at a rate App, which is the rate of the process XP'. In addition, these event
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times are then shifted by Qpy, exactly as they are for XP'. Thus, the distribution of event

times (and hence, the counting process distributions) are equivalent.

Let Ay, ..., An be any Borel subsets of the real line. Applying Lemma 4.3.2 to each XD’

gives the following distributional representation:

XP'(Ay) Y1 EP(D; Ay, ..., A)
—distr ’ (4.20)

XY (An) YosnEP(D; Ag, ..., AN)

where the random variables E,D/(D; ,A1,...,AN) are taken to be identically zero unless

D C D'. In the latter case, they are independent and Poisson distributed with

E &7 (D; A1, AN)| = Appr ¥, pBv(Qo)(M(D,D"; As, ..., Ay))
D">D

= APD/V(QD/>(M(D, D/,‘ Al, ceny AN))
The second equality above follows from the fact that pB, = 1if D” = D’ and is zero
otherwise. Next, define
E,(D,'Al,. . .,AN) == ZED/(D,'Al,. . -/AN) == Z éD/(D}Al, .. -/AN)-
D/ D'>D
As the sum of independent Poisson variables is again Poisson with rate equal to the sum
of the rates, we have that (D; Ay, ..., Ay) is Poisson with mean

E [é(D, Al, ey AN)] =A Z pD/V(QD/)(M(D, D/; Al, ey AN)) (421)
D'>D
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Finally, combining Egs. (4.19, 4.20), we can write

X1 (A1) Yo Yps18P (D Al ..., AN)

—distr
XN(AN) Yo Yosn &P (D Ay, ..., AN)

Yps1 Yo &P(D; Ay, ..., AN)

YN Lo EP(D; Ax, ..., AN)

Yps1&(D; Ay, ..., AN)

Ypsn&(D; Ay, ..., AN)

which, along with Eq. (4.21), establishes the theorem.

Finally, consider a general subset of k distinct members of the vector counting process
X as in Eq. (4.10). The following theorem provides expressions for the cross-cumulants
of these counting processes, as well as their cross-cumulant densities, in terms of model
parameters. It is worth noting that the result Theorem 4.3.3 is quite natural in its final
form. Further, the simplicity of the final expression hinges crucially on our utilization of
cumulants, and not moments, as a measure of co-dependence. The equivalent expression,
given in terms of central moment functions, would be of enormous complexity at higher-

orders.

Theorem 4.3.3. Let X be a joint counting process of GTaS type with total intensity A, marking
distribution (pp)pcp, and family of shift distributions (Qp)pcp. Let As, ..., Ax be arbitrary

sets in B(R), and D = {iy,...,ix} C D with |D| = k. The cross-cumulant of the counting
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processes can be written

K(Xil(Al)/---/Xik(Ak)) =A Z Pp /P(tl-i—YD S Al X oo X Ak’Y ~ QD/)dt, (422)
D'>D

where YP represents the projection of the random vector Y onto the dimensions indicated by
the members of the set D. Furthermore, assuming that the shift distributions possess densities

(9p) DD, the cross-cumulant density is given by

k(T o) =AY pu//qg/(t,t+T1,--- b+ T )dt, (4.23)
D'>D

where qg, indicates the k''-order joint marginal density of qpy in the dimensions of D.

Proof. First, as noted in Eq. (4.10), we can rewrite the distributional representation of The-

orem 4.3.1 (Eq. (4.18)) as

Xi, (Ayy) Yiepcp (A1, ..., AN)
—distr ’ (4.24)
Xi, (Aik) ZikeDcD (p(A1,..., AN)
where
CD(Al/--'/AN) = Z E(D/;Al,...,AN). (425)
D'>D
(D\D)ND'=0

The processes (p are comprised of a sum of all of the processes ¢ (D’) (defined in Theorem
0) such that D’ contains all of the indices D, but no other indices which are part of the
subset D under consideration. These sums are non-overlapping, implying that the {p are

also independent and Poisson.

Using the representation of Eq. (4.24), we first find that

K(Xil(Al)/~~-/Xik(Ak)) = K Z CDI ey Z CDk

i1€D1CD ikGDkCD
= Z Z K[CDll"'/CDk]‘
i1€D1CD ikGDkCD
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where we suppressed the dependence of the variables {p on the subsets A;. The first
equality in the previous equation is simply the representation defined in Eq. (4.25), and the
second is from the multilinear property of cumulants (property (C1) of cumulants from
Chapter 2). Note that the sums are over the sets Dy, ..., Dy satisfying the given conditions.
Recall that, by construction, the Poisson processes (p (see Eq. (4.25)) are independent for
distinct marking sets. Accordingly, the cumulant k[(p,, ..., {p,] is zero unless D = ... =
Dy, by property (C2) of cumulants given in Chapter 2 — that is,

Kk(CD(All' . .,AN)), D] = D for eachj,
«[¢p,(A1,..., AN), ..., iD (A1, ..., AN)] =

0, otherwise.

Hence,
K(Xi1 (Al), . /Xik(Ak)) = Kk(CD(All NN ,AN)) =E [CD(AL . .,AN)] ’ (4.26)

where we have again used that all cumulants of a Poisson-distributed random variable

are equal to its mean.
For what follows, taking Dy, D’ C D fixed with Dy C D’, thesets M(D, D’; A4, ..., AN)

with Dy C D C D’ are disjoint, and

Ai/ i€ DO/
UDOCDCD’M(D/ D’; A4, .. .,AN) =By x---x By with B; = (4.27)
R, i¢ Dp.

In particular, note the independence of the above union from D’.
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Substituting Eq. (4.25) into Eq. (4.26), we have

K(Xil(A1>z---/Xik(Ak)) = Z E[E(D,’AL...,A](]

D>D
=AY Y pov(Qp)(M(D,D’; Ay,..., AN))
Do>D D'D>D

=AY pp Y VQo)(M(D, DAy, Ay))

D'>D DcDcD!

=AY pov(Qp)(UpcpcpM(D,D'; Ag, ..., AN))
D'>D

=2 ) Pof/P(t+YD € A1 x -+ X Ag|Y ~ Qp/)dt,
D'>D

where the third equality above is a simple exchange of the order of summation, and the
fourth equality follows from the additivity of the measure v(Qp/) over the disjoint sets
M(D,D’; Ay, ..., AN). Finally, the fifth equality makes use of the independence of the set
union on the fourth line from the set D’ as indicated by Eq. (4.27), the definition of the

measure v(Qp) in Eq. (4.17) and the value of the set union given in Eq. (4.27).

This completes the proof of Eq. (4.22), and Eq. (4.23) follows from the definition of the

cross-cumulant density in Eq. (2.13). O

An immediate corollary of Theorem 4.3.3 is a simple expression for the infinite-time-
window cumulants, obtained by integrating the cumulant density across all time lags ;.
From Eq. (4.23), we have

V(o) = [ [kl m e mdter - dn =2 ¥ po1=App.  (428)

D'>D
This shows that the infinite window spike count cumulants yl)f i (c0) for a GTaS process

should be non-increasing with respect to the ordering of sets D, i.e.,
X X
’)/il'--ikik+1<oo) S ’)/lllk(oo)'
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We have shown that the cumulant structure of the GTaS model is fully solvable in
terms of model parameters, and exhibited its utility in generating spike trains with pre-
determined joint temporal correlation structures. As exhibited in Section 4.2.3, the GTaS
framework can be used to explore the properties of the input-output transfer for com-
plex networks. The GTaS framework presented in this chapter will hopefully serve as an

invaluable tool for researchers in this capacity.
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Chapter

Introduction to linear response theory

Analysis of coupled neuronal networks is generally quite difficult [70-72,123,124,182,
217,284, 285]. For example, in networks of integrate—and-fire neurons, only first moments
(firing rates) can be determined analytically [169,219, 280]. Doing so requires one to solve
for fixed points of the F-I function which relates output firing rate to mean input cur-
rent [167]. The problem of solving for second moments of the spiking output of integrate—
and-fire neurons is known to be intractable. Precise determination of even second-order
dependencies requires novel application of partial differential equation methodologies to

the Fokker-Planck equations describing the system [180, 231].

In this chapter, we exhibit a linear response method in which single cell properties
can be utilized in order to develop an accurate approximation of second-order statistics of
spiking neuron models. We appeal to the diffusion approximation (Section 3.3) in order
to render tractable the determination of marginal statistics [167, 169]. We first review con-
cepts of firing rate linear response theory, which yields an analytical approximation of the

time-dependent firing rate (or PSTH) of a neuron receiving noisy input. We then introduce
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5.1. FIRING RATE LINEAR RESPONSE THEORY

a linear approximation of neuronal activity which supplies directly an analytical approxi-
mation of correlations in a general recurrent, noisy neuronal network [278]. We next gen-
eralize previous work [221,222] to derive the necessary quantities to allow application of
our approximation to neuronal networks with both current-based and conductance-based
synapses. More general applications of this theory, and a more detailed examination of its

accuracy are relegated to subsequent chapters.

In what follows, we will consider model neurons of the exponential integrate—and-
fire variety (defined in Section 3.1.2) as a proxy for the ideas we present, though many
of the principles are more general. In particular, the approximation of correlations in a
general spiking neuronal network which we present depends explicitly on knowledge of
the shape and strength of interactions, in addition to the firing rate linear response func-
tion and the covariance structure in the absence of interactions. For any system in which
these quantities are known, either exactly (such as in the case of Ornstein-Uhlenbeck sys-
tems of linear stochastic differential equations [88]) or approximately (either via experi-
mentation [9, 146, 149] or simulation [197]), the concepts we present may be applicable.
In addition, the material on calculation of firing statistics in Section 5.3 is general to all
integrate—and—fire neuron models which are encompassed by an appropriate choice of

the function ¢(V) present in the definition of the membrane potential dynamics.

5.1 Firing rate linear response theory

Consider an EIF neuron receiving as current input a fixed signal X (), with a stochastically

fluctuating membrane potential evolving according to

TV = —(V = EL = (V) + Es 4 /202 1& (1) + X (t). (5.1)
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Here, &(t) is a standard white noise process. The input X is taken to have a vanishing
temporal average (E;X] = 0) and to exhibit fluctuations which are not too strong relative
to the noisy background signal ,/2027,,(t). Thresholding the membrane potential V

yields an output spike train

y(t) = L5t~ 1),
]
with realizations of y being in 1 — 1 correspondence with realizations of the noise &£. See

Chapter 3 for a more complete definition and discussion of integrate—and—fire neuron

models.

Averaging over the distribution of & yields the time-dependent firing rate r(¢). Using
tiring rate linear response theory, we can achieve an approximation of the firing rate of
the form [38,169,197,224]

r(t) =ro+ (AxX)(t). (5.2)

Here, ry is the (constant) stationary firing rate in the absence of the fixed signal X(t), and
A(t) is the linear response function for the neuron (A(t) may alternatively be referred to
as the firing rate response function, or firing rate impulse response function). We illustrate the

tiring rate approximation of Eq. (5.2) in Figure 5.1.

The function A(t) is proportional to the first-order approximation of the spike-triggered
average of the neuron with respect to the noise signal &(t), and is hence equivalent to the
optimal Weiner kernel is the presence of &(t) — this relationship can be exploited in or-
der to estimate the linear response function in experimental settings [13,119], or through
simulation of complex neuron models [63]. The Fourier transform A(w) of A(t) is known

as the susceptibility.

A common method of determining the kernel A(t) is to first determine A(w). For

response to a fluctuating input current, the susceptibility is determined by the amplitude

82



5.2. LINEAR RESPONSE APPROXIMATION OF CORRELATIONS

and phase shift of the firing rate in response to a cosinusoidal variation of the current, and
can be determined thusly both in experiments and simulations of complex neuron models.
For integrate—and—fire neuron models such as those considered here, the linear response
function can be solved for numerically, to arbitrary precision, by solving a backwards

boundary-value ordinary differential equation (see Section 5.3).

We emphasize that, while the linear response function depends implicitly on the model
parameters (T, Er, Ez, 0z), it is independent of the input signal X(¢). In particular, A(t)
is sensitive to the resting potential (the sum E; + E;). Further, it should be noted that the
presence of the fluctuating background signal £ is crucial to the accuracy of the approxi-

mation in Eq. (5.2), as it is the noise which linearizes the average firing response.

5.2 Linear response approximation of correlations

Except in highly simplified micro-circuits (such as a pair of cells with unidirectional synap-
tic coupling or receiving a common input [198]), the linear response approximation of fir-
ing rates in Eq. (5.2) cannot yield directly an approximation of the cross-covariance func-
tion between two neurons. In essence, there is a loss of information regarding the relative
time-courses of the neuronal activity upon taking averages — in particular, by taking the
average which yields the firing rate, we have retained only the marginal probability of
observing spikes from that neuron. The dependencies in the firing rate on, for example,

the activity of other neurons cannot be recovered.

To remedy this, we generalize the approach of [167], and instead of approximating
the time-dependent firing rate in response to a fixed signal X(t), we approximate the

time-dependent spiking activity. In particular, we postulate that the trial-by-trial firing
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Figure 5.1: Depicting the firing rate linear response approximation Eq. (5.2). (A) A
spike train is generated and supplies an input current to an exponential integrate—and-
fire neuron. (B) The membrane potential of the neuron is driven by intrinsic white noise
fluctuations and the spike train in panel A. Each realization of the intrinsic noise corre-
sponds to a realization of the output spike train (red ticks). (C) Fixing the input spike
train, repeat the simulation in panel B many times for independent realizations of the in-
trinsic noise process, generating a raster plot. A dot in the raster indicates a spike in that
time bin (horizontal axis) for a specific trial (vertical axis). (D) Averaging the output spike
train across trials yields the time-dependent firing rate, or PSTH (gray indicates the Monte
Carlo estimation of the PSTH, and black is the theoretical prediction). Spikes in the fixed
input spike train shown in panel A (repeated at the bottom of panel D for ease of compar-
ison) drive deviations in the (constant) background firing rate, a quantity determined by
the mean and variance of the intrinsic noise.
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response y(t) of the neuron to the signal X(t) is given by

y(t) = yo(t) + (A= X)(t), (5.3)

where A(t) is again the firing rate response function, and y(t) should be viewed as a

realization of the output of a neuron with membrane potential obeying Eq. (5.1) with

If we were to assume Eq. (5.3) holds exactly, this would be equivalent to making an
assumption of perfect linearity on the input-output transfer of the neuron in response to
the signal X(f), indicated by the superimposition of the linear filtering of X(t) on top of
the normal EIF dynamics of y(t). We note that averaging Eq. (5.3) across realizations of
the underlying driving noise process &(t) returns exactly Eq. (5.2), and in this sense, the
ansatz in Eq. (5.3) can be viewed as a partial repealing of the average which yields the

time-dependent firing rate of the neuron in response to X ().

5.2.1 Independent noise

We will first apply the linear response ansatz in Eq. (5.3) to a network of exponential
integrate—and-fire (EIF) neurons receiving independent white noise and exhibited current-
based synaptic interactions, as described in Chapter 3. Briefly, in this setting the mem-

brane potential V; of the i’ cell of the network evolves according to
TnVi = —(Vi = EL = ¥(V})) + Eci + Bil fi] + /207 mu&i(t) + (fi(t) —Edfi]),  (5.4)

where E,[-] indicates a temporal average, and

filt) = Y Wij(aj=y;) (). (5.5)
J
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Here, W;; is the synaptic weight of the connection from neuron j to neuron i, «; is the
synaptic filter applied to the output of neuron j (assumed to have unit area). Unless
otherwise specified, synaptic filters are given by delayed alpha functions. The form of

such function for a time constant 75y, and delay 14 is

a(t) = ! exp [—

Tsyn

t—14

] Ot —14), (5.6)

Tsyn
where G(t) is the Heaviside step function. The stochastic process y; again represents the
spiking output acquired by thresholding the membrane potential of cell j. We further
assume that the signals &;(t) are independent (this assumption can be relaxed — see Sec-

tion 5.2.2).

Thus, in the network setting, we have replaced the fixed input signal X () of the pre-
vious case with the mean-subtracted, synaptically-filtered output of the network itself,
dictating that any proper approximation of the firing activity should be self-consistent.
Note that the addition and subtraction of E[f;] in Eq. (5.4) is to allow us to compute linear
response to the fluctuations in the synaptic input about its mean value, which can greatly

improve the accuracy of the approximation [167].

The linear response ansatz Eq. (5.3) in the network case then takes the form!
y(t) = yo(t) + (Kx[y—1])(t), where K;ij(t)=W;;(A;*a;)(t). (5.7)

The filter K;;, which consists of a convolution of the linear response function A; of the

downstream cell i with the synaptic filter W;;«; applied to output of the upstream cell j,

£ X(t), Y(t) are n x m and m x p matrices of integrable functions, respectively, we define the n x p matrix
convolution (X * Y)(t) by

m

(X*Y)ij(t) = Y (Kige % Yiej) (£).

k=1
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captures the linear response of cell i to the output of cell j. At first glance, the approxima-
tion of Eq. (5.7) may seem somewhat strange, as we are approximating a vector of point
processes y(t) with a vector of “hybrid” processes, composed both of points in yo(t) as
well as a smooth component (K x y)(t). Clearly the comparison is poor at the resolution of
individual realizations, but we will instead focus on the matching of statistical properties

of this approximation — particularly at second order.

We can also arrive at the approximation Eq. (5.7) by a slightly more intuitive road.
Above, we discussed Eq. (5.3), and its close relation to the more rigorous approximation
of the firing rate in Eq. (5.2). Keeping this discussion in mind, we next define a series of

approximations y(") for n > 1 by

y"(8) = yo(t) + (Kxy"V)(t), where y*(t) = yo(b). (58)

For instance, we can regard y(!)(t) as a first approximation of the effects of coupling,
in that y(!)(t) accounts only for first-order effects of the synaptic architecture in K(t).
If we consider the cross-covariance functions of the processes y!) (t), we would arrive at
approximations to the true cross-covariance functions for the network which are precisely
equivalent to those postulated in [198]. These approximations ignore, in particular, any
perturbation to correlations due to paths within the network architecture longer than a

single synapse.

Continuing this logic, the approximation y") (t) can be viewed as accounting for (via
a linear approximation) the effects of paths within the neuronal network up to length 7,
and the cross-covariance functions between these processes would reflect the correlating

effects of such network motifs. This becomes further apparent if we expand the recursive
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approximation Eq. (5.8), giving

y " (t) = yo(t) + Y (K yo)(t), (5.9)

-

i=1

where the matrix powers in Eq. (5.9) are defined with respect to matrix convolutions. The
term in the sum on the right-hand side of Eq. (5.9) involving the power K'(#) captures pre-
cisely those linear perturbations to activity attributable to length i directed chains through

the network architecture.

Finally, defining y®(t) = lim, y(")(t), it is not hard to show that the paths of this
limit converge pointwise (and uniformly over finite intervals) to our approximation of

y(f) given self-consistently in Eq. (5.7) — that is,

y>(t) = yo(t) + (K [y™ —r]) (#). (5.10)

Thus, the linear response approximation of firing activity can be viewed as a linear ap-
proximation in which we take account of linear perturbations to activity of all orders in

the synaptic architecture. We illustrate the iterative approximation approach in Figure 5.2.

The limit in Eq. (5.10) — and the approximation in Eq. (5.7) — are only valid when
| [ K(t)dt| < 1. This condition guarantees linear stability of the system. In the context of
spiking neurons, one can interpret this condition to mean that a spike elicited by any neu-
ron within the system does not reverberate indefinitely; rather, its impact on the network

activity will converge to zero as time proceeds.

Applying the Fourier transform to Eq. (5.7), convolutions turn to multiplication, and

we can solve the resulting linear equation for §(w):
§(w)~ (I-K(w))  Fo(w). (5.11)

Considering the product of this approximating process with its complex conjugate, we

arrive at an approximation for the cross-spectral structure of the spiking output for the
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Figure 5.2: Equations (5.8) and (5.9) give rise to an iterative approximation of network
activity. (A) We approximate the activity y; of cell 1, embedded in the depicted recurrent
microcircuit. (B) The first approximation y1 of the activity of neuron 1 reflects only the
effect of input from the uncoupled approximations y? of activity for its afferent partners.

(C) The second approximation y3 of the activity of neuron 1 now reflects the effects of
length two chains through the circuit. In particular, the output of neuron 1 now reflects
the impact of its own activity (! — y2 — y?), and the approximation of neuron 1’s
activity now also reflects the indirect input from neuron 4 through neuron 3. (D) The dif-
ference between higher-order approximations and the second-order approximation will
be improved resolution of the recurrent loop between cells 1 and 2. At each step, effects
due to a longer chain through this loop will be included, and owing to this recurrence, the
approximation does not converge in finitely many iterations.

network (see Eq. (2.5)):

where
S(w) = E [yo(w)yf (w)] .
and the over-line in Eq. (5.12) indicates a complex conjugate without a transpose. Under
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the assumptions of independence of the noise vector &, S3(w) is a diagonal matrix with

entries given by
(S?)ii(w) = Sk (w; E: ;i +E{fi], /2(75;,11) , (5.13)

where we have defined the scalar quantity Sgrp(w;p, o) to be the spectrum of an EIF
neuron receiving white noise input of mean u and standard deviation o (we omit the
many other parametric dependencies). Like the linear response function, this “unper-
turbed spectrum” can be measured through simulation or experiments, or determined
numerically for the case of general integrate—and—fire neurons [169,222], a technique we

describe in Section 5.3.1.3.

Thus, Eq. (5.12) provides an analytical approximation of the second-order correlation
structure of a general, noisy neuronal network (a problem which has no tractable, exact
solution, for instance, in the case of integrate—and—fire neuron models). Furthermore, this
approximation is given in terms of known (or determinable) marginal properties of the
neurons (A;, S%’) and the synaptic architecture (W, «;), reflecting directly the impact of

each on the second-order correlation structure of the network.

In Figure 5.3, we compare cross-covariance functions for 3 pairs of EIF neurons within
a randomly connected network of both excitatory and inhibitory cells. The three pairs of
neurons were selected randomly, with one each from the categories of excitatory-excitatory,
excitatory-inhibitory, and inhibitory-inhibitory pairs. Errors in the linear response ap-
proximations of the cross-covariance functions indicate a departure from linearity of the
input-output transfer for neurons in the network. In Section 6.4, we will more closely
examine the validity of the linear response approximation to correlations in a few situa-
tions, in hope of gaining a general notion of when we can expect the approximation to be

accurate.
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Figure 5.3: Illustrating the the accuracy of the linear response approximation of corre-
lations in a random network. Comparison of Monte Carlo estimation of second-order
cross-cumulant densities (black lines) with their linear response approximations (blue
lines, Eq. (5.12)) for nine neuron pairs from a size N = 100 random network consisting
of 80 excitatory and 20 inhibitory cells. The connection probability was 0.2. A cross-
cumulant density is exhibited for one example neuron pair from each of nine possible
pairings of neuron classes (EE, EI, II) and first-order connectivity (bidirectional, unidirec-
tional or none).
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5.2.1.1 Calculation of the linearization point

The precision of the linear response theory, both of correlations and firing rates, requres
that the value of the uncoupled spectrum (Eq. (5.13)) as well as the firing rate response
function depend on the temporal average of the synaptic input. Here, we address the

computation of this average.

Consider a network of EIF neurons receiving independent white noise input of mean
p and intensity o, and with some synaptic coupling, as in Eq. (5.4). As we assume the
synaptic output of the explicitly modeled network to be weighted by the matrix W and

convolved with unit-area synaptic kernels (Eq. (5.5)), it is not hard to show that
E{fi] = WUr,

where W() is the i" row of the matrix W and r is the vector of output firing rates of the
(coupled) network. However, the output firing rates r are not trivial to calculate, and
clearly must depend in turn on the average synaptic inputs. If rgp(p, o) gives the F-
I curve for an EIF neuron receiving white noise input of mean u and intensity o, then
the output firing rates r of this coupled network satisfy the system of non-linear, self-

consistent equations

r=reir(n+ Edf],0), where Ejf] = Wr.

Generally, the convexity of the F-I curve will allow this equation to be solved most
easily by simple fixed point iteration [167]. The uncoupled firing rate runcoup = r£1r (K, 0)
serves as an appropriate starting point for this iteration. Generally, this can be far from

the true firing rate of a neuron within a network.

92



5.2. LINEAR RESPONSE APPROXIMATION OF CORRELATIONS

5.2.2 Correlated noise

In the preceding section, we considered linear response of correlations for networks being
driven by independent white noise fluctuations. We can relax this assumption, allowing
correlations that are not too strong in these noise sources. The equations for the membrane

potential evolution become (compare with Eq. (5.4))

T Vi = —(Vi — EL —(V})) + Eei + Bilfi] 4+ /202 T (V1 — c&i(t) + V/ce(t))
+ (fi(t) — Edfi])-

Here, each &;(t) and é&.(t) are independent standard white noise sources. Thus, the noise

(5.14)

to cell 4,

V1= c&i(t) + Vede(t),

will also be a standard white noise, now pairwise correlated with correlation coefficient c

acCross neuromns.

The linear response approximation of correlations is formulated similarly as in the
previous case, with minor adjustments made for the correlated noise sources. First, a
naive application of the linear response ansatz Eq. (5.3) to the dynamics in Eq. (5.14),

setting
Xi(t) = /o Tmée(t) + (fi(t) — Edfil),

yields an approximation of the output spiking correlations in this network which is iden-
tical schematically to Eq. (5.12). However, the matrix S}(w) is no longer diagonal, and

has entries given by

(8p)ij(w) = e <w; Bei+Elfi], 201 C>U§ﬂ’”> +2c| Ai(w) PR T, i =],

2CA?(W)Aj(w)U£,iU£,]’Tm, i#].
(5.15)
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Figure 5.4: Linear response of of correlations for common input. (A) Comparison of
second-order cross-cumulant density from simulations and theory (see Eq. (5.15)) for a
pair of neurons receiving common white noise input. The input correlation was ¢ = 0.25
and the infinite window correlation between the spiking output of the neurons was ~
0.21. (B) Comparison of the steady-state auto-covariance density (5-peak removed) for
the one of the neurons without (Eq. (5.15)) and with (Eq. (5.16)) the adjustment to the
power spectrum acquired via a naive linear response application.

There is an apparent correction which can be made to the linear response approx-
imation of correlations in this case: The diagonal entries of S} given in Eq. (5.15) are
approximating the power spectrum of EIF neurons receiving white noise input of mean

E¢; + E[fi] and intensity \/2(1 — )02 T +2¢07 Ty = /202 /Ty Thus, we can improve

the linear response approximation of correlations for the correlated noise system by set-

ting in Eq. (5.15)

(S)ii(w) = Sk (w; Esi +E[fi], @) : (5.16)

This adjustment of the linearization point in the linear response theory was first noted
in [167]. The linearization point of the firing rate response function should be adjusted

likewise.

The linear response theory is perturbative in the input correlations as it is in the cou-

pling, and precise only in the case that the system is uncoupled and input correlations are
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zero. It is not clear a priori at what point the linear response theory will fail as a function
of the magnitude of input correlations, and in general, the answer will be dependent on
the parameters of the system to which the theory is applied. We note only that it is clear
the approximation must fail when ¢ = 1. Consider an example system consisting of two
symmetrically coupled neurons with identical parameters (i.e., leak potentials, etc.), un-
der the assumption of perfectly correlated intrinsic noise and identical initial conditions
the spiking output of the two cells should be identical, a prediction not matched by the

linear response theory.

5.2.3 Conductance-based synaptic interactions

The theory presented in Section 5.2.1 is valid for the application of linear response theory
to systems exhibiting current-based synaptic dynamics. When synapses are conductance-
based, a slightly different formulation is necessary. We will present the methodology for
a single neuron, and the extension to network applications will be nearly identical to the

theory presented for current synapses.

Beginning with a neuron modeled under the diffusion approximation (see Eq. (3.4)),
assume additionally that the neuron receives excitatory (f£(t)) and inhibitory (f;(t)) synap-

tic conductance inputs so that the membrane potential evolves according to

T V(1) = —(V = Viggr — (V) + /202 (V) g ()

e g vy gy
8eff 3eff

(5.17)

The presence of the additional synaptic input requires adjustment of the effective time

constant and rest potential, essentially repeating the algebraic rearrangement of Section
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3.3.1. These constants are now given by

Ci

Serf = 8L+ (Cupte + EdfE]) + (Cupr + Eelf1]),  Tepr =

SLEr 4 (Cue + Ei{fe])EE + (Coupr + Eof1])Er
8eff

Seff (5.18)

Vierr =

Because we assume the synaptic input is coming from the local network — the network
explicitly modeled — we assume it has finite variance (i.e., it does not include a white
component), so that the effective noise intensity o,¢¢(V) is unchanged. We reminder the

reader that the variation 5f(t) of a process f(t) is defined by
8f(t) = f(t) —Edf].

Application of linear response to a system exhibiting conductance-based synapses is
slightly different in that, in this case, the response properties of a neuron are no longer
expressible in terms of a single linear response function. Instead, each neuron possesses
two response functions — one for excitatory input (Ag), and one for inhibitory (Aj). It
is instructive to first consider the linear response approximation to the firing rate of the

neuron to the inputs fg, f1:
T’(t) ~ 19+ (AE * 5fE)(t) + (A[ * 5f[)(t)

As in the current-based case considered in Section 5.1, r¢ is the steady-state firing rate of

the neuron in the absence of fluctuations in the synaptic inputs (i.e., 6fg = 6f; = 0).

Similarly, the linear response approximations of correlations for conductance-based
systems begins by posing an approximation to the spiking activity which mimics the firing

rate approximation,
y(t) = yo(t) + (Ap = ofe)(t) + (Ar x 8f1)(t).
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Figure 5.5: Exhibiting the linear response approximation of correlations for
conductance-based synapses. Comparison of the theoretical prediction (blue) with the
Monte Carlo estimation (black) of the second-order cross-cumulant density of a pair of
excitatory neurons reciprocally coupled via conductance-based synapses.

Application in the network case is essentially identical to the current-based case presented
in Section 5.2.1, with the key difference being the form of the matrix of response filters
K(t) (see Eq. (5.7)). In the conductance-based case, this matrix is given by

Wi]»(AE,i * aj)(t), j€E,

Kij(t) =

Wij(Aixaj)(t), j€L,
where A ;, A ; are the excitatory and inhibitory response kernels of celli,and j € Eor j €
I conditions on whether the pre-synaptic cell j is excitatory or inhibitory. In Figure 5.5, we
exhibit the accuracy of the linear response approximation of the cross-cumulant density

for a pair of excitatory neurons reciprocally coupled via conductance-based synapses.

97



5.3. CALCULATION OF FIRING STATISTICS FOR IF NEURONS

5.3 Calculation of firing statistics for IF neurons

To this point, we have taken for granted knowledge of the firing statistics (firing rates,
susceptibility and unperturbed spectra) of the neuron models to which we apply the lin-
ear response theory of correlations. As previously mentioned, these quantities are mea-
surable, both in experiments, as well as in simulations for complex models by similar
principles. In the case of the integrate—and-fire neuron models considered herein, these

quantities can be calculated numerically.

Previous analyses derived expressions for some marginal firing statistics of the lin-
ear [38,168,169,253], quadratic and exponential [80] integrate—and—fire neuron models.
Typically, these analyses lead to expressions for the marginal firing statistics in terms of er-
ror functions and parabolic cylinder functions. However, these functions can be computa-
tionally expensive to evaluate accurately, and further, these derivations were highly com-
plex and difficult to generalize across neuron models. Richardson [221,222] introduced a
method which nearly perfectly approximates these quantities for general integrate—and-
fire models driven by white noise. The statistics are given as solutions of simple boundary
value ordinary differential equations derived directly from the Fokker-Planck equations
for the evolution of the membrane potential of the neuron model. In Section 5.3.1, we
review the results of [221,222]. In Section 5.3.2, we present one important generalization
necessary for the calculation of correlations in neuronal networks exhibiting conductance-

based interactions.
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5.3.1 Review of existing results
5.3.1.1 Fokker-Planck formalism

Consider a single EIF neuron, evolving in response to a time-varying rest potential E(t)

with membrane dynamics
TmV = _(V —EL - IP(V)) + E(t) + ZUngé(t), (5.19)

possessing a firing threshold Vi, and an absolute refractory period t,e¢. Fluctuations in
the rest potential can be driven by synaptic inputs, for example. The membrane potential
distribution P(V, t) quantifies the probability of finding the membrane potential of such a
neuron near the potential V at time ¢, and J(V, ) is the probability flux across V at time .

The continuity equation [88, 227] relates the two quantities via

%IZ aa‘]/ = 5<t_t0)Pinit(V) +r(t)6(V — Vr) _r(t_Tref)‘S(V_ Vin). (5.20)

Here, Pinit(V) = P(V, 1)) sets the initial distribution of the membrane potential, and the
other two terms on the right-hand side account for flux due to the threshold, reset and
absolute refractory period. The firing rate r(t) = J(Vy,, t) is simply the probability flux

across threshold at a given time. In addition, the distribution and flux satisfy the relation

, P

Tu] = (E(t) + (V) = V)P — o 37 (5.21)

The membrane potential V lives on the domain (—oo, Vi]. The method presented
by Richardson [221,222] transforms this into a boundary value problem on a bounded
domain by imposing a reflecting boundary at a potential Vy, (J(Vip,t) = 0). Placed
sufficiently low, this reflecting boundary has a negligible impact on the solution of Egs.

(5.20, 5.21). In the presence of the lower reflecting boundary, the membrane potential is
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instead limited to the domain (Vy,, Viy], and the correct normalization of the probability
density P is given by
V t
/ "P(V,1)dV + r(#)dt =1, (5.22)

Vib b= Tref
which states that the proportion of an ensemble of neurons evolving according to the
dynamics of Eq. (5.19) which are in non-refractory (first term) and refractory (second term)

states at any time f sum to unity.

5.3.1.2 Solving for the steady-state firing rate

In the stationary state, under the assumption of a constant rest potential E(t) = E, initial
conditions are forgotten and probability no longer flows with time (i.e., %—1; = 0). From
Egs. (5.20, 5.21), the steady-state probability Py(V) and flux Jo(V) satisfy the pair of first-

order differential equations

0
—a—<2 = 1"05(‘/ — Vth) - 7’05(V - Vr)’
0P, 1
_BT;) = 3 [twlo+ (V= EL = Eo — (V) Po] .

&

The boundary conditions for the system are Py(Vy,) = 0, Jo(Vin) = ro, where rp is the
stationary firing rate for the neuron. In particular, the solution to the system depends on
the firing rate, which is not known a priori. Richardson [221,222] gets around this issue by

setting

_bh
pO 7’0, ]0 1’0’

so that these scaled quantities satisfy the pair of differential equations

_ 9o =6(V—Vy)—6(V-V,),

aV

v (5.23)
—57 = ;52 [Timjo +(V —EL —Eo —¥(V))po] -

100



5.3. CALCULATION OF FIRING STATISTICS FOR IF NEURONS

A convenient scheme is suggested in [221, 222] for the backward integration of these equa-

tions from Vy, to the reflecting boundary Vy,.

In steady-state, Eq. (5.22) becomes
Vin Vin
/ Po(V)dV + Trefto = 10 </ po(V)dV + Tref> =1.
Vib Vip
Therefore, once the solution to the system in Eq. (5.23) has been found numerically, the

tiring rate is given by

Vin -1
ro=</ po(V>dV+rref) |

Vib
5.3.1.3 Solving for the spectrum Sgip(w)

A similar method can be employed for the determination of the steady-state power spec-
trum of the neuron with dynamics as described by Eq. (5.19). Again assume that the rest
potential is constant (E(t) = Ej). The idea will be to solve for the first-passage time den-
sity of the neuron, then utilize well-known identities for renewal point processes in order

to determine the power spectrum of the neuron.

The general first-passage time density is the distribution of times it takes the neuron
to reach the firing threshold Vy, starting from some initial distribution of values at a time
t = to. We are interested in the particular first-passage time density f(f) which we define
to be the distribution of times to reach the threshold Vy, starting from the spike reset

potential V; at time t = T,¢¢. Similar to Egs. (5.20, 5.21), we can write [222]

0 JP
2 = L S5V — Vi) = 5(t ~ )V — Vi),
1

=[] + (V= EL = Eo — %(V))P].

vV~ o

Because of the presence of the time-derivative %—It), which cannot be neglected in this case,
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it is convenient to consider these equations in the frequency domain, where we have

_aa‘]/ = 2miwP —i—f(w)é(v — Vi) — efzm'wfref(s(v Y
oP ! i ~ (5.24)
=2 [Tm]+ (V—EL—Ey —ll)(V))P] )

13

The first equality above used the identity

F [fﬂ (w) = 27iwF [f] (w).

Next, dividing each of P, | into two parts, one of which is proportional to f, and one

which is not,
P=fps+po, T=Fir+o

gives a decoupled pair of two-dimensional first-order ODEs: one for (fy, i )

a]f -
—5y = 2miwps + S(V = V),

9Py p
v = gz [ir + (V= EL—Eo—b(V)pg],

with initial conditions ff(Vin) = 0, jf(Vin) = 1 (since f(t) = J(Vi, t)), and another for

(Po, jo),
8]70 . o 27T W Tpef
—5y = 2miwpy — e 5(V—-Vy),
aﬁo 1 ¥ >
- = ;g [Tmjo+ (V—EL—Eo—¥(V))po],

with initial conditions fip(Vy,) = jo(Vi) = 0. These two allied systems can be solved by
the same numerical scheme utilized in the steady-state case of Section 5.3.1.2. Once the
solution is obtained, the zero-flux condition at V7, implies J(Vip, w) = 0 for every w, so

that

Flaw) = otV )

1 Vi, w)
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Having obtained the Fourier-transformed first-passage time density, identities for re-
newal point processes [90] (such as the presently considered integrate—and-fire neuron)

give that

7'[1’05((1)), w=20

SEIF (w; Ep + Eo, \/@> = , (5.25)

o(1+2R [d]). w0

where R [] indicates the real part of the argument. To obtain the auto-correlation function
(the cross-cumulant density between a process with itself — see Chapter 2), the spectrum
should be solved for at a range of frequency values. The Fourier transform then yields the

auto-correlation by the Wiener-Khinchin theorem (Eq. (2.6)).

5.3.1.4 Susceptibility to current modulation

Richardson [221,222] exhibited how to apply the method utilized above for determina-
tion of the firing rate and spectra to obtain the linear response to periodic modulation of
system parameters, including the noise potential and amplitude. As we are interested in
linear response approximations of coupling between neurons, it is the latter on which we

focus.

In particular, suppose that the parameter E(t) now undergoes periodic (complex) os-

cillations about a mean value Ey, i.e.,
E(t) = Ey+ E1€2ﬂth.

Then, expanding the time-dependent firing rate r(t) = J(Vy,, t) to first order in the ampli-

tude of modulation E;, we write
r(t) = ro + Ppe?™et,
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where 7y is the stationary firing rate for for constant E(f) = Ej as determined in Sec-
tion 5.3.1.2, and the amplitude and phase shift of the firing rate modulation is captured in
the quantity 7¢(w) = E1A(w). The susceptibility A(w) is the same one appearing in the

linear response ansatz Eq. (5.3) and the subsequent analysis.

Note that the periodic fluctuations in the firing rate are complex (i.e., they have both
real and imaginary components), owing to the complex nature of the fluctuations in the
parameter E. This turns out to be a convenient assumption for the derivation of the firing
statistics — one should think of it as simultaneous consideration of two systems, one of

which is driven cosinusoidally, and the other driven sinusoidally.

The probability density and flux can likewise be expressed to first order in the strength

of resting potential fluctuation E; as
P = PO + I’jEEZWiwt, ]: ]0 + fEeZTEiwt'

Substituting these first-order approximations of P and ] into Egs. (5.20, 5.21) and collecting
the first-order terms (i.e., those proportional to ¢2™%*) gives that the first-order responses

DPg, JE satisfy the equations

aJ, R .
—87?/5 = 2miwPg + ?Eé(V — Vth) — ?Ee_zmwT‘efé(V — Vr),
apE 1 A X (5.26)
v T o2 [TwJe+ (V—EL — Eg— (V) Pg — E1Po],
£

with boundary conditions Pg(Vy,) = 0 and Jg (Vi) = 7e.

We can perform a separation similar to that of Section 5.3.1.3 by writing
Pe = ?epr+ Eape,  Je =Pejr+ Evje

Substituting these values into Eq. (5.26) and collecting terms proportional to ¢ and E;
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yields a pair of two-dimensional ODEs, one for (py, fr),

_g<; — zniwﬁr -+ §(V — Vth) — 3*27Tiwnef5(v _ Vr>,
M, 1 . .
=55 = =5 [Tjr + (V= EL = Eo = (V)]

&

with boundary conditions p,(Vy) = 0, ,(Vi) = 1, and another for (pg, [k,

_an = 2miwpE,
pr 1 . . A
—5 = o3 [tfe + (V — EL — Eo —(V))pe — Po]
é

~

with boundary conditions pg(Vin) = je(Vin) = 0. Once again applying the zero-flux

condition at V7, gives
Alw) = — 12V ©)
Jr(Vip, w)

As in the case of the power spectrum, the linear response kernel A(t) can be acquired
by solving the system of ODEs determining A(w) for a range of w values and taking an

inverse Fourier transform.

5.3.2 Derivation of firing statistics for conductance synapses

As discussed in Section 5.2.3, application of linear response theory to the approximation
of correlations in systems which exhibit conductance-based synapses requires the deter-
mination of two linear response functions per neuron — one each for excitatory and in-
hibitory inputs. In particular, the necessary linear response functions are those for re-
sponse to fluctuations in the steady-state conductance (just as the application for current-
based synapses necessitated the determination of the linear response function to varia-
tions in the resting potential which, up to a scaling factor, is equivalent to the response

function to variations in the steady-state input current).
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For convenience, we restate here the dynamics of the conductance-based neuron under
the diffusion approximation (given in Eq. (5.17)):
. Sfe(t) Sf1(t)
TorfV(t) = Vierr — V 4 1 /202 (V) ToppE(t) + =—(Ep — V) + ——2(E; — V).
effV(t) = Viess V2005, (V)Tefpé (1) P (Ee—V) P (Er=V)
The values of the effective time constant and rest potential are given in Eq. (5.18), and the

effective noise intensity is given in Eq. (3.5).
The corresponding continuity equation is identical to Eq. (5.20), and the flux is given

by [88,227]

_ SfE(t) Sfi(t) d [ 2
Terf] = [VL,eff -V+ ?ﬁ(EE —V)+ @(El - V)] P— 7 [creff(V)P} . (5.27)

Differentiating the product in Eq. (5.27) and collecting terms, we have

Ofe(t
Teff] = |:V — VL,eff + ( fE( ) + 2T€ffo-%> (EE - V)
Serf (5.28)
g (Er=V)| P = o (V) gy

5.3.2.1 Solving for the steady-state firing rate and spectrum

The determination of the stationary firing rate of the neuron proceeds exactly as in the
current-based case (Section 5.3.1.2). First, assume the excitatory and inhibitory synaptic
conductances are constant — fg(t) = E{{fr] = fro and similarly for f;(t) — so that the
variations &fg(t) and 6fj(;) are identically zero. The equations for the steady-state flux Jo

and probability density Py are then

0
S = (V= Viw) = ro8(V — Vi),
0Py . 1 2 2
_W = W {Teffjo + [V — VL,eff + 2TeffO'E(V — EE) + ZTeffO'I (V — E[)} Po} .

(5.29)
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This system of ODEs can be solved for the stationary firing rate ro exactly as in Sec-

tion 5.3.1.2.

Likewise, the spectrum is determined by first computing the Fourier-transformed
first-passage time density with a method identical to that exhibited in Section 5.3.1.3. The

pertinent flux and probability density differential equations are (compare with Eq. (5.24))

_881]/ = 2miwP + f(w)5(V — Vi) — e 2Tt §(V — V),
oP 1 - 2 2 5
= o {Teff]+ {V — Vieff — P(V) +2Teff0E(V — Eg) + 27,507 (V — EI)} P} .

eff ( V)
5.3.2.2 Linear response to mean conductance modulation

The general methodology for derivation of the excitatory and inhibitory conductance lin-
ear response kernels is again similar to that exhibited for current-based synapses (see Sec-
tion 5.3.1.4). The excitatory and inhibitory kernels are determined separately by posing
harmonic modulation of the excitatory and inhibitory conductances separately. We will
exhibit the method for the excitatory kernel, and the derivation of the inhibitory kernel is

identical.

Suppose that the excitatory conductance is given a periodic variation of the form

fe(t) = feo+ fere?™
while the inhibitory conductance is constant in time (f;(f) = E{f;] = fi0). Note that
Eife] = fro and &fe(t) = fr1e*™“t. We expand the firing rate, probability density and
flux to first order in fg;, giving, similar to the current-based case considered above,

27riwt

r(t) = ro+7pe ,

with similar expansions for P and J. Substituting these first-order expansions into the

continuity and flux equations (Egs. (5.20 and 5.28)) and collecting first-order terms (again,
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those proportional to e?™%* gives the following system for the linear responses of the firing

rate, density and flux:

af PP N s —2miwrT,
— i = 2miwly, +#,8(V — Vi) — Fre TSV — V),
oP 1 .
fe _ 2
_ aVE — O-?ff(V) {TEff]fE + [V — VL,eff — II)(V) + ZTeffO'E(V — EE) (530)

+2Teff0'12(v — E[)] pr + gljflf(v — EE)PO} .

Here, P is the solution to the ODE in Eq. (5.29). Employing the same technique as Sec-

tion 5.3.1.4, we write

Py, =5 pr+ ferPre Jpo = Prodr + fE1] -

Substituting these decompositions into Eq. (5.30) again yields a pair of two-dimensional,
tirst-order ODEs which can be integrated backwards from threshold Vi, to the lower

bound Vy;,. The excitatory response function is then given by

7 ~ Jr(Vi)
Ae(w) = Jr(Vin)

The inhibitory response function can be derived likewise.
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Chapter

Analysis of neuronal networks using

linear response

Novel experimental techniques reveal the simultaneous activity of larger and larger num-
bers of neurons. As a result there is increasing interest in the structure of cooperative — or
correlated — activity in neural populations, and in the possible impact of such correlations
on the neural code. A fundamental theoretical challenge is to understand how the archi-
tecture of network connectivity along with the dynamical properties of single cells shape
the magnitude and timescale of correlations. In what follows, we consider applications of
the linear response theory of correlations introduced in Chapter 5, aiming to highlight the

importance of this theory as an invaluable tool in tackling these challenges..

The linear response approximation of correlations will be shown to admit an expan-
sion in powers of the matrices that describe the network architecture. This expansion can
be readily interpreted in terms of paths between different cells. We apply our results to

large excitatory-inhibitory networks, and demonstrate first how precise balance — or lack
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thereof — between the strengths and timescales of excitatory and inhibitory synapses is
reflected in the overall correlation structure of the network. We then derive explicit ex-
pressions for the average correlation structure in randomly connected networks. These
expressions help to identify the important factors that shape coordinated neural activity
in such networks. We briefly consider applications of the linear response theory to analy-

sis of correlations within distance-dependent networks.

We conclude this chapter by conducting a thorough error analysis of the linear re-
sponse theory of correlations. We explore the dependence of the match between theory
and simulations on the dynamical operating point of the cell as well as on the strength
of interactions. We also consider the failure of the linear response theory to yield accu-
rate predictions of third-order dependencies amongst spiking neurons. The question of
whether there exists a consistent correction to the predictions of third-order correlations
acquired from the linear response theory is unresolved, and of great significance for future

applications.

6.1 Path expansion of correlations

Recall the iterative construction of the linear response approximation to activity, as was
illustrated in the previous chapter, and in particular in Figure 5.2. As explained around
Eq. (6.9), terms in this expansion of the output of the coupled network captured linear
perturbations to activity due to synaptic paths of increasing length. This decomposition

of activity into path contributions suggests a similar decomposition of correlations.

Recall the linear response approximation of the second-order correlation structure
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given in Eq. (5.12), which we restate here for convenience:

SV (w) = (I—W) 'SY(w) (I—f(T(w)>_l. (6.1)

For ease of notation, we will say that the output spectra are equal to their linear response
approximation, denoted by the equality in Eq. (6.1). the reader should bear in mind this
is still an approximation. Under the assumption of linear stability of the network under
which the iterative approximation was also formed (i.e., ¥(K(w)) < 1 for all w), we can

expand the matrix inverses in Eq. (6.1) in a von Neumann series, obtaining

[e°]

sw) = Y (K@) s§w) (K (w))". (62)

n,m=0

The terms of this series expansion correspond to contributions to correlations of mo-
tifs of varying orders within the network architecture. The order of a motif refers to the
number of connections which form the motif. In particular, the (i, )th entry of the matrix

term
=—\" y

(K(w)) S¥(w) (6.3)

corresponds to contributions to correlations between the pair of cells (i, j) from length n

chains through the network which begin at cell j and terminate at cell i. We depict a chain

)th

motif in Figure 6.1A. Similarly, the (i, /) entry of the (n + m)"" order term

——\" ~ m
(K(w)) S (w) (KT(w)) (6.4)
yields the contribution to correlations between the pair of cells (i, j) from (n + m)"-order
diverging motifs which connect a common source neuron to cell i via a length n chain, and
cell j via a length m chain, as depicted in Figure 6.1B. In what follows, we will explore
some applications of linear response theory, including some elementary applications of

the linear response path expansion of correlations. In the next chapter, we present a more

significant application.
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n'" order chain motif (n+m)™" order diverging motif

A

i an-‘] ao
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Figure 6.1: Motifs appearing in the linear response diagrammatic expansion of correla-
tions given in Eq. (6.2). (A) An n'"-order chain motif in a recurrent network connecting
the pair of cells (i, j). Within the linear response path expansion of correlations (Eq. (6.2),
the contributions to correlations of such motifs are captured by the term in Eq. (6.3). (B)An
(n + m)"-order diverging motif which contributes to the correlation (i, j) in a recurrent
network. Within the linear response path expansion of correlations (Eq. (6.2), the contri-
butions to correlations of such motifs are captured by the term in Eq. (6.4).

6.2 Linear response application to coupled microcircuits

To illustrate the use of linear response theory in analyzing correlations in coupled neu-
ronal networks, we first consider a pair of simple microcircuits. In the case of small net-
works, we can solve exactly and explicitly the linear response approximation of correla-

tions given in Eq. (6.1).

6.2.1 Feed-forward inhibitory microcircuit

The first microcircuit we consider is a feed-forward inhibitory (FFI) microcircuit. Feed-
forward inhibition is believed to be a central mechanism utilized within cortical networks
in order to gate synaptic inputs, shaping integration windows and increasing spike pre-
cision [24,76,86,186,208,294]. The circuit consists of two excitatory E; and E; with a
monosynaptic coupling from E; to E,. In addition, there is a second-order chain connec-

tion from E; to E; through a third, inhibitory cell I. Activation of the neuron E; provides
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simultaneous activation of both cells E; and I. If the inhibitory connection is strong, then
the cell E; only has a short time in which to spike before the inhibition will prevent firing

(this is the integration window), causing it to forget about the input from Ej.

The circuit is shown on left in Figure 6.2A. In Figure 6.2B, we compare the linear re-
sponse approximation of the second-order cross-cumulant density between the cells E;

and I.

In the FFI circuit, the interaction matrix K takes the form

where we have indexed the cells in the order (Eq, Ey, I) — for instance, the (2,1) entry
corresponds to the interaction kernel for the synapse E; — E>. To simplify notation, we

will omit further expression of the dependence of spectral quantities on the frequency w.

In this instance, the matrix K is nilpotent of order three (that is, K3 = 0), which is a
reflection of the non-recurrent nature of the synaptic architecture of the microcircuit. As a

result, the matrix inverses appearing in Eq. (6.1) can be expanded as

1 0 0
— —1
I-K) =(I+K+K*) =g ReoKir. 0 Keol- (6.5)
E2Ey T KEyIKIE Esl
K, 0 0

Substituting Eq. (6.5) — and the corresponding, similar expansion of (I — KT) ' _into
Eq. (6.1) yields an explicit approximation of the cross-spectra for all neuron pairs within
the FFI network in terms of the individual interaction kernels as well as the uncoupled

spectra of the constituent neurons.
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Figure 6.2: Linear response path expansion of correlations in a feed-forward inhibitory
(FFI) microcircuit. (A) Linear response path expansion of the second-order correlations
for cells (Ep, I) in the FFI microcircuit. Each of the three terms appearing in the finite
expansion correspond to the contribution of a different motif, and their values are denoted
in Eq. (6.6). (B) Comparison of the linear response approximation of correlations with
Monte Carlo estimation of the second-order cross-cumulant density for the pair (E, I) in
the FFI microcircuit. Results are plotted for two values of the inhibitory time constant ;.
The solid line corresponds to 7; = 5 ms, and the dashed line to 7; = 10 ms. (C) Plot of the
three contributions to the cross-cumulant density for the pair (Ep, I) as determined from
the linear response expansion of their correlation structure (Eq. (6.6)). Solid and dashed
lines again correspond to values for the two different inhibitory synaptic time constants.
The inset shows the two inhibitory synaptic kernels.

For instance, the cross-spectrum for the pair (E, I) is given by

Y _pr oy or T y o |7 1% Y
St,1 = K150, + Kiye, Kik, Sy, + Kiyr [Kie, | Sy,

6.6
= (Ap,Brat)” Sy + (AeBroe))” (AiBie) SY g, + (Ar,Best) " |AtBir, |” SY ., (©©)

I 11 111

where the uncoupled spectra S _ are equal to the corresponding entries of S} and A are the

susceptibility functions (see Chapter 5). The functions 8;;(t) = W;;«;(t) are the weighted
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synaptic kernels (see Eq. (5.5)) so that the f3;j(w) are their Fourier transforms.

Equation (6.6) provides intuition about how the joint response of cells E; and I is
shaped by the features of the network — namely, the synaptic architecture and marginal
dynamical properties of the individual neurons. At first order, term I corresponds to the
effect of the direction connection from cell I to E;. The second-order term II captures
the correlating effect of the common input arriving to each cell from neuron E;. Lastly,
term III approximates the contribution to correlations between cells E; and I due to the
interaction of the synapse connection E; — [ and the two-synapse pathway from E; to E;
through neuron I. This diverging motif provides an indirect source fo common input. We

plot the temporal domain contributions of these three terms in Figure 6.2C.

In order to gain insight into how synaptic properties can shape the correlation struc-
ture within the FFI microcircuit, we varied the time constant 7; governing the synaptic
dynamics of the connection I — E;. First, we compare theory and simulations for two
values of the time constant in Figure 6.2B. Note that the slower inhibitory time constant

results in an elongated cross-cumulant density.

Referring to Figure 6.2C, the linear response decomposition of the correlations reveals
that the effect of changing the time constant on the cross-cumulant density is primar-
ily reflected in the first-order term (light blue lines). Referring to Eq. (6.6), we see that
term I includes a factor Bg,;. This frequency-domain multiplication becomes a convo-
lution in the temporal domain. Decreasing 7; sharpens the synaptic filter resulting in a
corresponding decrease in the timescale of the first-order term I, and hence, in the cross-
cumulant density as well. The decrease in the cross-cumulant density at values 7 > 0
implies the aforementioned gating of the output of cell E; by cell I, tightening the timing

dependencies between the outputs of these two. cells. [78,118, 145,198, 288].
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At second order, term II in Eq. (6.6) captures the effect of the common input to the
two cells. This contribution does not involve the inhibitory synaptic kernel, and is there-
fore unaffected by the change to the synaptic time constant. At third order, term III in
Eq. (6.6) is similarly smoothed as the first-order term, though its contribution is signifi-
cantly smaller. We note that, in general, higher-order contributions need not be negligible,

a fact we illustrate in the next example.

6.2.2 Bi-directional excitatory microcircuit

Experiments conducted on rats have revealed that bidirectional synaptic interactions be-
tween pairs of neurons are significantly more common than would be expected for truly
random (i.e., Erdds-Rényi) cortical connectivity [121,179, 255, 260]. Thus, it is important to
understand how mutual connectivity between neurons shapes their correlation structure.
To this end, we consider the linear response approximation to the correlation structure for

a pair of reciprocally-connected excitatory neurons E1 and E; (Figure 6.3A, left).

In this case, we have

0 KElEz

R
I

KE2E1 0
so that
1 -

~\ 1
I-K =———(I+K).
(I-K) " =— KaEzKEZEl( )

Substituting this matrix inverse into Eq. (6.1) yields the following approximation to the
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Figure 6.3: Linear response path expansion of correlations in a bidirectional excitatory
microcircuit. (A) The cross-cumulant density of the two cells can be represented in terms
of contributions from an infinite sequence of submotifs (See Eq. (6.8)). Though we show
only a few “chain” motifs in one direction, one should note that there will also be con-
tributions to the cross-cumulant from chain motifs in the reverse direction in addition to
indirect common input motifs (See Figure 6.1). (B), (E) Linear response kernels in the ex-
citable (B) and oscillatory (E) regimes. (C), (F) Comparison of the cross-cumulant density
computed from Monte Carlo simulation and linear response theory (from Eq. (6.7)) with
tirst- and third-order contributions (from Eq. (6.8)) in the excitable (C) and oscillatory (F)
regimes. (D), (G) Comparison of the auto-cumulant density computed from Monte Carlo
simulation and linear response theory (from Eq. (6.7)) with zeroth- and second-order con-
tributions (from Eq. (6.8)) in the excitable (D) and oscillatory (G) regimes.
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matrix of cross-spectra for the microcircuit

1 — [ S} 0 3
Sy — —— 1+1<) 0.E: (I+KT>
|1 - KElEzKEZEl ‘ 0 S())I,Ez
6.7)
. 2 - .
1 Sg,El + ‘KEIEZ ‘ S(})’,Ez KE1E2 Sg,Ez + KEZEl Sg,E1

{1 - KE]EZKE2E1 ’2

Keie, Sy e, + Kiye, Soe, St T |[KEE, ? S3,E,

In contrast to the previous example, the linear response approximation of the second-
order correlation structure does not terminate at finite order in the interaction matrix K
owing to the non-polynomial prefactor. This is a reflection of the non-nilpotency of K, or

equivalently, the existence of directed chains of infinite length through this circuit (allow-

ing for repetition of connections).

Following our exploration of the impact of synaptic dynamics on neuronal correlation
structure in the previous example, we will now investigate the effect of the marginal firing
rate dynamics on correlations in the context of the bidirectional excitatory microcircuit.
To this end, we placed the neurons in two regimes — the first was an excitable regime
where, in the absence of input from its synaptic partner, the firing rate of each neuron is
relatively low, but the membrane potential lives close to the firing threshold much of the
time (Figure 6.3B-D). In the excitable regime, firing is highly irregular (ISI CV ~ 0.98).
We also placed the neurons in an oscillatory regime, characterized by strong, regular firing
in the absence of input from the other neuron (ISI CV ~ 0.31). Synaptic input from the
other neuron in the circuit tended only to slightly perturb spike times in this regime. The
firing regime of the neuron was set by manipulating the mean of the intrinsic fluctuations
provided to each cell, which directly determines the rest potential of the neuron. When
the rest potential is not too far below threshold, the neuron is excitable, and when it is

near or above the firing threshold, oscillatory activity results.
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In a linear response theory applications, these changes in firing regime of the neu-
rons are reflected in the linear response function A of each neuron, as well as in their
uncoupled power spectra S). To gain a better understanding of the impact of the alter-
ation of the firing regime on the marginal spiking dynamics, we present the firing rate
linear response functions for a neuron in the excitable regime (Figure 6.3B) as well as the
oscillatory regime (Figure 6.3E). Notably, the response function for the neuron in the os-
cillatory regime exhibits a resonance absent in that of the excitable neuron, a reflection of

the natural firing frequency of the neuron.

Returning to the approximation of correlations between these two neurons given in
Eq. (6.7), expanding the prefactor allows us to express the cross-spectrum between E; and
E; as an infinite series:

0
She = L (RiKe)" (RiKe)" (Reie,Shs, + KeariShis ) (6.8)
1=

Paths within the synaptic architecture of this microcircuit which contribute to the cross-
correlations between the two neurons (see Figure 6.1) must originate from one of the two
cells, and the two branches must terminate each at a different cell. This implies that one of
the branches must be of odd length (one branch connects the root cell with itself), and the
other of even length (connecting the root cell to the other cell). Hence, all contributions
to the correlations between the two cells are from paths of odd order. This is reflected in
Eq. (6.8), where each term of the expansion consists of a multiplication of an odd number
of interaction kernels K. We depict three of the contributing motifs in Figure 6.3A. Similar
reasoning shows that only even-order motifs will contribute to the linear response ap-

proximation of the coupled power spectra (i.e., the auto-cumulants or auto-correlations

of neurons in the circuit).
We compare the linear response approximation of correlations to results obtained via
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Monte Carlo estimation in Figure 6.3. The match is excellent in both regimes. We also
present in Figure 6.3 some lower-order contributions to the second-order cross- and auto-
cumulant densities for neurons in the bidirectional excitatory microcircuit. Results for
excitable neurons are in panels C and D, while those for oscillatory neurons are in panels
F and G. For the excitable neurons, we see that third-order contributions to the cross-
cumulant density of the two neurons (orange line, panel C), while small in comparison
to their first-order counterparts (light blue line, panel C), are certainly not insignificant,

which was the case in the FFI circuit (Figure 6.2).

Likewise, Figure 6.3D exhibits that, for neurons in the excitable regime, second-order
contributions to the auto-correlation are of similar magnitude to the zeroth-order terms
(i-e., the uncoupled spectra S}). These second-order contributions arise from two sources
— first, the resonance exhibited away from 7 = 0 is the signature of the neurons detection
of its own output (i.e., the contribution of the length two chain connecting the neuron to
itself). In addition, the synaptic input from the other cell in the circuit acts as “common
input” to a cell, supplying a peak in this contribution near T = 0 in analogy to the peak in
the cross-cumulant density induced by common input to a pair of distinct neurons (green
line, Figure 6.2C). For neurons in the oscillatory regime, the first (in the case of the cross-
cumulant) and zeroth-order (in the case of the auto-cumulant) terms are dominant, so we

do not bother to plot higher-order contributions.

In the oscillatory regime, higher-order contributions to the cross- and auto-cumulants
were small relative to first-order contributions and are therefore not shown in panels F
and G of Figure 6.3. In addition, the network’s symmetry implies that cross-cumulant
densities are symmetric, and we only show these functions for positive lags. The long

window spike count correlation coefficient pg, g, (co0) between the two cells was ~ 0.8 in
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the excitable regime and ~ 0.5 in the oscillatory regime.

6.3 Linear response applications to large networks

The full power of the present approach becomes evident when analyzing the activity of
networks larger than the microcircuits considered to this point. We again illustrate the

accuracy and utility of the linear response theory using several examples.

In all-to—all networks where inhibition and excitation are tuned to be precisely bal-
anced, the theory reveals that the only contributions to correlations are from local paths
— specifically, from first-order (direct) interactions and second-order common input. If
this balance is broken, terms appear in the linear response expansion of correlations which
correspond to longer paths (and hence, higher-order motifs). One immediate consequence
is that a relative increase in inhibition can lead to elevated network synchrony in such net-

works.

Following our treatment of the simple, all-to—-all case, we also consider two other large
network examples. In random Erdos-Rényi networks, we exhibit how linear response al-
lows for the derivation of accurate approximations of the average temporal structure of
the cross-cumulant density. In the final pair of examples, we treat very large networks
with distance-dependent connectivity, exploring the relationship between inter-neuronal
distance and correlation in their activity. As a side note, these examples also demonstrates
the computational expediency of the linear response theory of correlations relative to tra-
ditional Monte Carlo methods for determining the structure of temporal dependencies in

complex neuronal networks.
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6.3.1 All-to-all networks

Consider an all-to-all coupled network of N neurons with identical membrane and spik-

ing parameters!

. Of these cells, N make excitatory, and N; make inhibitory synaptic
connections. The excitatory cells are assigned indices 1, 2, ..., Ng, and the inhibitory cells
indices Ng + 1, Ng + 2,..., N, where N = N + N;. We assume that all excitatory (resp.
inhibitory) synapses have identical weights Wg = Z% (resp. Wi = %). Synaptic kernels

are given by alpha functions (Eq. (5.6)) with time constant 7z = 10 ms (resp. 71 = 5 ms).

The constants Gg, G; set the overall strength of excitation and inhibition in the network.

In this case, the interaction matrix K can be written in block form as

K= AB, where = BeINN:  Bringw,

Belnen,  Bring,
In the previous expression, 1n,n, is the N7 x N> matrix of ones, BX = Wxayx is the
weighted synaptic kernel applied to the output of cells in class X € {E,I} (assumed
identical within each class), and A is the common susceptibility network for each cell in
the network. Autaptic synapses (i.e., synapses from a cell to itself) are included in order

to greatly simplify the analysis. We show in Figure 6.4 that their inclusion has negligible

impact.
Define the quantities pr = Ng BEe, 1 = Nif3;,and ¢ = @ + &1. A simple inductive
argument gives that, for every k > 1, we have
R = AkgF13.

In addition, direct matrix multiplication yields

2

7

KK" = ¢.1yn, where @ = N |/3E‘2 + N; |Bi

IConsideration of identical neurons implies equivalence of their uncoupled spectra as well as their firing
rate linear response functions in the absence of coupling.

122



6.3. LINEAR RESPONSE APPLICATIONS TO LARGE NETWORKS

K7 (7) (kHZ?) kY(7) (kHz?)
10
» 10»4

. 1 -50 50 T (ms)
-50 50 7 (ms)

Figure 6.4: Inclusion of autaptic connections in the all-to-all network has a negligi-
ble impact on correlations. (A) Comparison of the linear response theory prediction of a
second-order cross-cumulant density in an all-to-all network of size N = 100 with (solid
line) and without (dashed line) autaptic connections.Relative L? difference was approxi-
mately 0.0043 (the two lines are almost exactly on top of one another). (B) Same as panel
A, for a second-order auto-cumulant density. Relative L? difference was approximately
0.0016.

which allows for direct calculation of the matrix products (E) ! (K) " when n,m # 0,
(R)" (K)" = 4™ Alpl D" 1 payy. (6.9)
Note that the dynamical homogeneity assumption implies that we can write S} = S’I

— i.e., all cells have a common uncoupled power spectrum. Substituting Eq. (6.9) into

Eq. (6.1) gives
o= 5 (@) (1)

n,m=0

A \'= A T
(1—21@) ﬁ+<1—A¢)’3

Thus, due to the block structure of the matrices in Eq. (6.10), the cross-spectrum between

5 (6.10)

@AnN + Iy

=S

1-Ap

two cells in the network depends only on the class (excitatory or inhibitory of the two

cells),
2
G + bij

. (6.11)

Y | vy —5Y ( _ ) Y 4 < — ) — + ' =
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where X,Y € {E, I}.

In Eq. (6.11) the first term represents the effects of all directed chains originating at cell
j and terminating at cell 7, and from cell j to cell i for the second term. To see this, one
can expand the denominators of these terms as power series in Ap. The third term repre-
sents the effects of direct and indirect common inputs to the two neurons, an observation
reached by similarly expanding the denominator of this term as a product of power series
in each of (A®)* and A@. In Figure. 6.5A, we highlight a few of these contributing motifs.
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Figure 6.5: Linear response theory of correlations in all-to—all networks, and the impor-
tance of higher-order motifs. (A) Some of the submotifs contributing to correlations in
the all-to—all network. (B) Comparison of Monte Carlo estimation cross-cumulant density
between two excitatory cells in an all-to-all network with the linear response theoretical
prediction obtained using Eq. (6.11) (Solid lines — precisely tuned network with @ = 0
[GE = —G; = 140 mV -ms, ¢ = 177 = 10 ms], dashed — non-precisely tuned network with
@ # 0[Gg =168 mV -ms, Gy = =210 mV - ms, 7z = 10 ms, 7; = 5 ms]). The population
sizes were Ng = 80, N; = 20. (C) Comparison of first- and second-order contributions
to the cross-correlation function in panel A in the precisely tuned (left) and non-precisely
tuned (right) network. In both cases, the long window correlation coefficient plyj(oo) was
0.05. The blue line indicates the contribution due to the direct connection between the two
cells, while the dotted green line captures contributions due to second-order chain motifs,
and the dashed green line second-order diverging motifs (common input).

When excitation and inhibition are tuned for precise balance in both strength and the

speed of their synaptic dynamics, the temporal averages of the excitatory and inhibitory
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currents cancel each other, and we have @ = @ + @; = 0. Using ¢ = 0in Eq. (6.11) yields

Py

y . o — QY | Ax
Si]‘ |zeX,]eY—SO A NY

+ AL L AP oo+ 5 - (6.12)
Nx

Effects of direct connections between the cells are captured by the first two terms, while
those of direct common inputs to the pair are captured by the third term. Interestingly,
contributions from any other submotif of the synaptic architecture precisely cancel, and
do not appear in the linear response approximation of correlations. In other words, in the

precisely balanced case, only local interactions contribute to correlations.

To understand this cancellation intuitively, consider the contribution of directed chains
originating at a given excitatory neuron, j. For T > 0, the cross-cumulant density, Klyj(T),
is directly determined by the expected change in firing rate of cell j given a spike in cell i
T units of time in the past (see Eq. (2.14)). By the symmetry of the all-to-all connectivity
and assumed joint stationarity of the network activity, the firing of cell j has an equal
probability of eliciting a spike in any excitatory or inhibitory cell in the network. Due to
the precise synaptic balance, the post-synaptic current generated by the elicited spikes in
the excitatory population will cancel the post-synaptic current due to elicited spikes in
the inhibitory population on average. The contribution of other motifs cancel in a similar

way.

In Figure 6.5B, we show the impact of breaking this excitatory-inhibitory balance
on cross-correlation functions. We increased the strength and speed of the inhibitory
synapses relative to excitatory synapses. For comparison purposes, we held constant the
long window correlation coefficients plyj(oo) between excitatory pairs by increasing both
the excitatory and inhibitory weights (note that, by symmetry, all excitatory pairs should
have the same correlation coefficient). Moreover, the degree of network synchrony, char-

acterized by the short window correlation coefficients, is increased (See Figure 6.5B inset).
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Intuitively, a spike in one of the excitatory cells transiently increases the likelihood of spik-
ing in all other cells in the network. Since inhibition in the network is stronger and faster
than excitation, these additional spikes will transiently decrease the likelihood of spiking

in twice removed cells.

Linear response theory allows us to confirm this heuristic observation, and quantify
the impact of the imbalance on second-order statistics. Expanding Eq. (6.11) for two exci-

tatory cells to second order in coupling strength, we find

0~ | AP L APE i Ape 4 (A2 PE L 26 PE s | L o(IKIP). (613
Lo =) |A TE 4 AE AP+ (A0 E 4 26 0E 15| + O(IRIF). (613

Compared to the balanced case, there is no longer a complete cancellation between contri-
butions of chains involving excitatory and inhibitory cells, and the two underlined terms
appear as a result (compare with Eq. (6.12)). These terms capture the effects of all length

two chains between cells E; or Ej, starting at one and terminating at the other.

The relative strengthening of inhibition implies that chains of length two provide a
negative contribution to the cross-correlation function at short times (cf. [288] and the
dashed green lines in Figure 6.5C). Additionally, the impact of direct common input to
cells E; and E; on correlations is both larger in magnitude (because we increased the
strength of both connection types) and sharper (the faster inhibitory time constant means
common inhibitory inputs induce sharper correlations). These changes are reflected in the
shape of the second-order common input term | A|?@, in Eq. (6.13) (see dotted green lines

in Figure 6.5C).

In sum, breaking the balance between excitation and inhibition via stronger, faster
inhibitory synapses enhances synchrony, moving a greater proportion of the covariance
mass closer to T = 0 (See Figure 6.5B). To illustrate this effect in terms of underlying

connectivity motifs, we show the contributions of length two chains and common input in
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both the precisely tuned and non-precisely tuned cases in Figure 6.5C. A similar approach
would allow us to understand the impact of a wide range of changes in cellular or synaptic

dynamics on the structure of correlations across networks.

6.3.2 Random networks

Connectivity in cortical neuronal networks is typically sparse, and connection probabili-
ties can follow distinct rules depending on area and layer [250]. The present theory allows

us to consider arbitrary architectures, as we now illustrate.

We consider a randomly connected network of Ng excitatory and Nj inhibitory cells
coupled with probability p. To simplify the analysis, every cell receives exactly pNE ex-
citatory and pN; inhibitory inputs. Thus, having fixed in-degree (that is, the number
of inputs is fixed and constant across cells), each cell receives an identical level of mean
synaptic input. In addition, we continue to assume that cells are identical in their individ-
ual dynamical properties. Therefore, the response of each cell in the network is described
by the same linear response kernel. The excitatory and inhibitory connection strengths are
Ge/(pNg) and G;/(pN), respectively. The timescales of excitation and inhibition were
allowed to differ, but are again identical for cells within each class. We note that the above
restrictions are not general limitations of the linear response theory of correlations, but

are pertinent to the identities we derive below.

When network connectivity is random, the approximation of network correlations
(Eq. (6.1)) depends on the realization of the weight matrix W. For a fixed realization of
W, the linear response approximation Eq. (6.1) can be solved numerically to approximate
the correlation structure (See Figure 6.6A). However, the cross-cumulant density between

a pair of cells of given types has a form which is easy to analyze when only leading-order
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terms in 1/N are retained. In what follows, we will derive these forms conditioned only

on the class (i.e., excitatory or inhibitory) of the two cells involved (Proposition 6.3.1).

Following this, we derive the same average further conditioned on the first-order con-
nectivity of the pair in question (Proposition 6.3.2). This additional information leads
to a significant reduction in variability in the linear response prediction of the average
cross-cumulant density amongst pairs of neurons within the network. These results are
suggestive of an idea which will be explored more fully in the linear response applica-
tion of Chapter 7: Given some minimal characterizations of the synaptic architecture and
marginal neuronal dynamics in a local cortical network, linear response theory can allow

one to gain insight into the average structure of correlations in that area.

6.3.2.1 Average cross-cumulant densities in the random network

Proposition 6.3.1. In the random network described in the open to Section 6.3.2, the average

cross-spectrum for two cells of given types is
A\ @ A \ox | A
EJS =97 _ Y | ¥x _
{ ’]}ieX,jeY 0 (1 —A(TD) Ny * (1 —A<b> Nx " ‘1 —Ap

when i # j, where E{-} represents an average over realizations of the weight matrix W. In

2

(bC] + O(l/NZ)r
(6.14)

addition, the average power spectrum (i = j) is given by

A Px A G
y =gy ~ >
E{S\}iex = So 1+<1_A¢> Nx+<1—A¢> Nx
e (6.15)
A 7 L—-p
| o+ AP, [~ O(1/N?).
+‘1—A<,b Pc +|A| C< p ) +O(1/N7)
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Figure 6.6: Application of the linear response to a random network reveals the average
second-order temporal correlation structure. (A) A comparison of numerically obtained
excitatory-inhibitory cross-correlations to the approximation given by Eq. (6.31). (B)
Mean and standard deviation for the distribution of correlation functions for excitatory-
inhibitory pairs of cells. (Solid line — mean cross-correlation, shaded area — one standard
deviation from the mean, calculated using bootstrapping in a single network realization).
(C) Mean and standard deviation for the distribution of cross-correlation functions con-
ditioned on cell type and first-order connectivity for a reciprocally coupled excitatory-
inhibitory pair of cells. (Solid line — mean cross-correlation function, shaded area — one
standard deviation from the mean found by bootstrapping). (D) Average reduction in
L? error between cross-correlation functions and their respective first-order conditioned
averages, relative to the error between the cross-correlations and their cell-type averages.
Blue circles give results for a precisely tuned network, and red squares for a network with
stronger, faster inhibition. Error bars indicate two standard errors above and below the
mean. Gg, Gy, 7, 71 for panels A-C are as in the precisely tuned network of Figure 6.5,
and the two networks of panel D are as in the networks of the same figure.
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Proof. Under the given assumptions, the interaction matrix K takes the form

L gp(w)R Ll (w)R
- - ~ ~ E\W) NN X(W)RNEN
K(w) =A(w)B(w) where B(w)= péjE (w)Roep pé\]’ () RN, , (6.16)
s OE(W)RN N, 53 & (w)RyN,

and Ry, n, is a random Nj X Np matrix of 0's and 1’s, with pN, chosen non-zero entries
on each row. Note that entries of K(w) are independent except within the rows of each
block. Moving forward, we will suppress dependencies on w for notational purposes.

The derived expressions can be assumed to hold for each w.

In the following, E {-} is an average over realizations of the random adjacency matri-

ces Rxy. We define @x to be

Px = Z E {Eklko} = NxE {Bklko}koeX

koeX
_ Gx . (6.17)

= Gxax,
where we have used the subscript notation ky € X to denote that the cell with index ky
belongs to class X = E or X = I. Note that the definition of ¢x is independent of the index
ki chosen, and can alternatively be defined as the same value via a simple sum without

expectations as we assumed in-degrees to be fixed. We also define the quantity ¢ as
= ; E{ Bk } = Pe+ @1 = Geag + Giay, (6.18)
0
and ¢, as
Pec = ; E { BrykoBrik, }
0

= NgE {Bklkoﬁflko}koe}; + NiE {BklkOBZko}kOGI

(6.19)
Ge . | G . |* 5
= Np | —& + N |—a&
E pNE E P I pNI 1 P
_ 1 ~ 12 1 ~ 12
= NEIWI + N, o1l



6.3. LINEAR RESPONSE APPLICATIONS TO LARGE NETWORKS

We note that the definition of ¢, is independent of the indices k1,13, so long as k1 # I;.
To understand this calculation, as we sum over kg, we will sum over Ng excitatory cells
and Nj inhibitory cells. For each value of ko, conditioned on the type of cell being kj € X,
the squared absolute value of the matrix entry will be |;’TXE]2 with probability p? (the

probability both connections are “on”), and zero otherwise.

Approximate independence of the entries of 3 Consider a pair of cells with indices
i, j in the random network. From Eq. (6.1), we again series expand the linear response

approximation to the correlation between cells i and j as
e{t),,, - e [0-8) " 0-a8) ] )
s £ aae{[E) (7)),

n,m=0

ieX,jeY (620)
ieX,jeY '
We will assume that the spectral radius ‘l’(fl [§) < 1, and thus, this series converges.

The assumption of fixed in-degrees means that there are dependencies between the
entries of W (and hence, 3) inside each row of each block of the matrix which are absent
in a fully random network. The matrix consists of four blocks, corresponding to the pair
types of pre- and post-synaptic cells (EE, EI, IE and II). However, if the network is large
and connections are relatively weak, then the entries of the matrix 3 are approximately

independent, to leading order in 1/N. In particular, we will show that
N ~ ~ ~ ~ ~
[E {Bikn,l By rkn2 " BrakoBlikg " ﬁ?z,n,l}
Kook 1,01 g1 =1 (6.21)
~E{Bie, }E{Be, o} E{Brako (Bui) } - E{ By, )"} ~ O(1/N?)
holds for 0 < n,m <« N. When we do not have n,m < N, the difference will be small

compared to an exponential prefactor which will always accompany these terms, and the

relationship still holds.
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In Eq. (6.21), we have neglected the conditioning of the cell types of i, j for notation,
though this conditioning on cell type can be assumed to always be present. This means
that, to lowest order in 1/N, expectations of powers of 3 can be taken as if all entries
of the weight matrix W were chosen completely independently, and without concern for
the fixing of in-degrees. Note that the term E {Bkl ko ( Bl] ko) *} is not factored — these two
terms will not be approximately independent as they both involve a connection originat-
ing from the same cell ko, meaning they will (when the connections are present) have the
same value for any ko. Instead, these terms will be replaced by contributions in terms of

@., as we have from Eq. (6.19),
Y E{Bus, (Bus) } =@ Vb
ko

In what follows, we prove Eq.(6.21) by considering various conditions on the values
of n, m relative to the network size N. In particular, in cases 3 and 4, we assume that n, m

are small enough so that the following approximations hold,

P(N—1,n—1) ~ N"1 4+ O(N"2)
(6.22)
P(N—1,n+m—1) ~ N 14 O(N""2),

where P(x, y) stands for the number of permutations of y elements chosen from a pool of
x, without replacement. Terms in the series expansion of correlations Eq. (6.2) will decay
exponentially with an upper bound proportional to ¥(K)"*™, where 1(K) is the spectral
radius of the matrix K = Af. The spectral radius of K will typically vary with w, so
we assume the existence of a uniform bound below unity for all w. We then assume that
by the time the approximations in Eq. (6.22) are no longer valid, the order n 4 m is large
enough so as to make the contributions of the remaining tail of the series not significant.

Numerical investigation confirms this to be a reasonable assumption for the networks we

consider.
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e Casel:n=1,m=0

These values of n, m correspond to the correlating effects of direct synaptic interac-
tions between pairs of cells. In this case, Eq. (6.21) is trivially satisfied. We have, by
definition of @g, ¢;, that

3 Py
E {ﬁij}iEX,jEY = Ni}/’ (623)

as the total amount of input from cells of class Y is @y. This, in turn, implies that the

expected impact of a single connection is as stated in Eq. (6.23).

e Case2:n=m=1

These values of 1, m correspond to the correlating effects of direct shared inputs to

pairs of cells in the network. In this case, we can find the exact value of E { {Eﬁq } .
ij

First, suppose i # j. From the definition of @, (Eq. (6.19)), we have

_ N
E { [ﬁﬁT].} = Y E{B;Bi} = @ (6.24)
1)ieX,jey k=1
Similarly, if i = j, we find
N 2 2 ~
Fry _ 5 2\ _ | GE & G 17 P
EHBB Lz'}iex_,;lE{m”" }_NE N p+ N N P = (6.25)

e Case3:2<n<« N,m=0

These values of n,m correspond to correlating effects of directed chains between
cells in the network which are short relative to the size of the network. Following
Eq. (6.21), for terms of this form we must examine the sum
N
. kZ . [E{Bik, "~ Broki Broj} — E{Bit, 1 } - E{Broks } E{Brj}] - (626)

Counting indices, we first note that there will be N =1 terms in this sum. If all of

the initial indices (which correspond to rows) are distinct, the corresponding entries
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of B are independent, and there is no contribution to the sum in Equation (6.26).
The number of terms which factor (and cancel) due to being chosen from distinct
rows will be at least the number of ways to pick different arrangements of n — 1
distinct integers from 1,...,i —1,i+1,...,N,or P(N—-1,n—1). If n < N, then
P(N—1,n—1) = N*"1 + O(N"2), so that only O(N"~2) terms do not cancel.

Recall that each entry of 3 is proportional to 1/N" owing to the 1/N scaling of the

connections. This implies that the error introduced by assuming independence of

matrix entries when averaging is O(1/N?). Hence, to leading order in 1/N, we find

N
F { [ﬁ L]}'EX]'GY - k kZ 1E Bty lgkzklﬁk”}iGX,fGY
rea, 1yeekn—1=
N
= ) kZ . E {ﬁikn—l} - E {ﬁk2k1} E {ﬁklj}iex,jey + O(l/NZ)
17eees n—1=

(Z E {Bikn1}> (ZE {Bk2k1}> E {Btij}iex jey + O(1/N?)
kn—1 kq

@It + O(1/N).
Y

(6.27)

In factoring the sum in the second-to-last equality, we used that the expectation of
an entry of 3 depends only on the class of the pre-synaptic cell (the second index).

Similarly, we find that

E{[(BT)WL} — "1 PX L o/N?).

i€X,jeY Nx
e Case4:3<n+m< N, andn,m#0

These values of n, m correspond to direct and indirect common input motifs in the
network. As stated in the proof for case 3 above, a sufficient condition for the terms

to factor as in Eq. (6.21) is the independence of the matrix entries involved. This will
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certainly be true if the entries come from different rows of B, i.e., if all of the second

indices in Eq. (6.21) have distinct second entries,

i#knfl#kn727é"'7ék1#ll#"'#lmfl#j'

Note that since kp does not appear as a row index, its value has no bearing on the
dependence of the matrix entries (this leads to the multiplicative factor N scaling
the permutation below). In addition, as explained in case 2, this term does not
factor. The number of ways we can choose such distinct indices is equal to the
number of ways in which we can choose n + m — 2 indices distinctly, from the set
{1,...,N}\{i, j}. Solong as n + m < N, there are P(N — 2, n + m — 2) such combi-

nations.

Thus, the number of terms which factor due to independence and do not contribute
to the sum in Eq. (6.21) is NP(N — 2, n + m — 2), where the factor N results from the
fact that we can perform the factorization for all values of kg. If we also have that
n+m—1< N, then NP(N —2,n+m—2) ~ N1 4 O(N*""=2)_ Tt follows
that, out of the N"*"~1 terms comprising this sum only at most O(N"*"~2) do
not cancel. Since each term in the sum is scaled by 1/N"*™, this implies that the

difference is again only O(1/N?). Thus, when n + m < 1, we have

e{[() ()],

i€X,jey

N
= E:BL Bi B Bri -+ fBi
= )y Bk 1Py 1k 2 PrlakoPriko = Bty
ko,...,k,/,,l,ll,...,ln,,l:l (628)

N

L D *

= )y E{Bi JE{BL x .}
koseeskn—1d1,0 e dim—1=1

- E {B;lkOBllkO} - E {le,,,,l}} + 0(1/N2>.

Again noting that the expected value of an entry of B is independent of the row
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index, we have

{16 (), - (E et ) (e e
(;&E {[g;glko[gllko}> (lz E {le,,,l}) +O(1/N?) (6.29)

m—1
Note that the second equality in Eq. (6.28) is not exactly valid if i = j, as the first and

last terms (3, , and f;; _,) are no longer independent. However, it is not difficult

m—1

to verify that the difference is provably only O(1/N?), so Eq. (6.29) remains valid.

e Case 5: n, m not significantly smaller than N

The counting arguments employed in cases 3 and 4 are no longer valid when n, m
are not significantly smaller than N, as the corresponding differences of the form in
Eq. (6.21) will begin to feature too many entries from common rows, breaking the

permutation approximations we used in the preceding analysis.

However, as explained prior to the consideration of case 1, we assume that terms
for which the counting arguments fail are rendered negligible in their contribution
to the linear response expansion of correlations, owing to the exponential decay of

the terms in the series.

Finally, applying Egs. (6.23-6.28) to Eq. (6.20) yields the following expression when
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i#j:
y —qy = An~n—1 (pi*Y v Am ~m—1 @
E{ ij}iexrjey_ 0 [(nglA @ ) Ny + <m21A % ) ”
+{ Y (A" (A" | @e| + O(1/N?)
nm=1
* 5 2
A Py A Px A _
—gY _ XY ) X _ O(1/N?
0 (1—A¢> Ny+<1—A¢> Ny ‘1—A Pc| +O0/N7)

When i = j, an additional correction term enters at second order owing to the fact that
in the random network, when computing the correlation between a neuron and itself, it
does not share a random amount of common input with itself, but a deterministic amount
given by the in-degree and strength of connections. Hence, the terms corresponding to

common input are scaled upwards in strength as seen in Eq. (6.25) and we have for i = j

Ef{sY\  _—¢gY OoAnm—l Px = Amgm—1 @ A2@

+ X (A% (A" | @ | +O(1/N?)

A "% A Px
1+ = + = —
<1—A¢) Nx <1—A(~p> Nx

_ 1—
e+ 1A, (’”)
p

+ O(1/N?).

Proposition 6.3.1 shows that, to leading order in 1/N, the mean cross-spectrum be-
tween two cells in given classes equals that in the all-to-all network (cf. Eq. (6.11)).
Therefore, our previous discussion relating network architecture to the shape of cross-

correlations in the all-to—all network extends to the average correlation structure in the
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random network for large N.

Pernice et al. [205] derived expressions similar to Eq. (6.14) for the correlation functions
in networks of interacting Hawkes processes [111,112], which are linear, self-exciting point
processes with history-dependent intensities. They assumed that either the network is
regular (i.e., both in- and out-degrees are fixed) or has a sufficiently narrow degree dis-
tribution. Our analysis depends on having fixed in-degrees, and we do not assume that
networks are fully regular. Both approaches lead to results that hold approximately (for

large enough N) when the in-degree is not fixed.

6.3.2.2 Reducing uncertainty of average correlations by conditioning on connectivity

As Figure 6.6B shows there is large variability around the mean excitatory-inhibitory
cross-correlation function given by the leading order term of Eq. (6.14). Therefore, un-
derstanding the average cross-correlation between cells of given types does not neces-
sarily provide much insight into the mechanisms that shape correlations on the level of
individual cell pairs. Instead, we examine the average correlation between a pair of cells

conditioned on their first-order (direct) connectivity.

Proposition 6.3.2. The average cross-spectrum for a pair of cells with indices i # j, conditioned

on the value of the direct connections between them is

M. e | 7 A% \" ¢ A%p \ px
E!SYIB.. B. = SY | A*B* + AR v XY kel S I
{Sllyﬁlf’ﬁ]l}iex,jey So [ AR+ ﬁjl+(l—A(~p> Ny+<l—A<b> Nx 631)

6.31
e 2
A
— | ¢ O(1/N?).
|| o] +oamd

Here we set 3;; = 0 if we condition on the absence of a connection j — i, and pii = By/p if we
j ] i P

condition on its presence. The term 3 is set similarly.
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Proof. Our strategy will be to first make use of the fact that the results shown in the proof
of Proposition 6.3.1 for the approximate independence of connections still hold. Then, in
Eqgs (6.32-6.35), we show that the factored expectations are unchanged by conditioning on
the value of the connections to leading order in 1/N. These two observations will prove
Proposition 6.3.2. As an example, we consider the case of conditioning on the connectivity
of a pair of excitatory cells (3;; and f3j;, where i, j € E), and the proofs for conditions on

the presence or absence of connections of other classes is nearly identical.

First, we can solve for the expectation of an outgoing connection from cell i (with an

identical conclusion holding for cell j):

. Probability that cell | [ Expected value of (3,
E {B.i|Bij, ﬁji}i,jeEﬂ =

a is excitatory if a is excitatory

Probability that cell Expected value of j3,;
+

a is inhibitory if a is inhibitory

_Ne(Ge o N, 1700 P NI Ge
~N \pNTE) P Nr N \pN:F) P
_ e, (1—05,0—P)GE

_NE pNZ

_ e 2

= N0/,

where the subscript a denotes an average over all possible values of the index 4. The term

(6.32)

1-— 5/; 0P
Pt
represents the fraction of connections cell i will make onto other excitatory cells which
are expected to be present. Because we fix the in-degree when generating graphs in this
example, this fraction depends on the value of 3 ji- In particular, it will be greater or less

than p, the connection probability, depending on whether the connection i — j is on

(Bji # 0) or off (Bj; = 0), respectively.
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As an example, if the connection j — i is “on”, the expected number of outgoing
connections from j to excitatory cells which will be on is 1 + p(Ng — 1), as unconditioned
outgoing connections (i.e., By; for k # j) are multiples of Bernoulli random variables. Note
that the first-order conditioned expected value coincides with the unconditioned expected

value to leading order in 1/N (compare Eq. (6.32) with Eq. (6.23)).

We also have that

(6.33)

Z E {Bab|[§ij/ Bji}i,jGE =E { <Z Eab) ‘ Bi]" B]l} = (pX
i,jeE

beX
for any a, agreeing with the values of the same quantities found in the absence of condi-
tioning on connection values (cf. Egs. (6.17, 6.18)). We have fixed the in degree so that the
fact that certain connections are present or absent has no bearing on the expected input to

a particular cell.

We can also solve for the value of . when we condition on the first-order connectivity

of two excitatory cells:

Peec =E { [EBT} g |BijrBji}
1 i€E,jeE
N -~ ~ ~ ~
=Y E{BiBilBij Bji}
k=1
= ZE {BikBjx|Bij, Bji} +E{BiiBjil Bij, Bji} +E{BiBjjlBij, Bji}
N (6.34)
= Y E{BuBjlBij Bji} + BiiE {BiilBij, Bji } + BijE {BjlBij, Bji }

KA j
=(Ng—2) | —& ipj+Ni| ———&
(NE )<PNEE pipj NI =N, %1) P
5 ( Ge . s [ Ge .
+ Bij <PNE(XE> pi + Bji <PNE(XE> Pir
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where we define p; to be the probability that an excitatory connection k — i exists when

k # j conditioned on the value of B3;;.This can be explicitly calculated as

REE, i B #£0,
pi =

N .
g if Bij=0,

with identical calculations holding for p; for the probability of an excitatory connection
k — jwhen k # i. In either case, it is easy to see that p; = p+ O(1/N). Substituting these

identities into Eq. (6.34) and comparing with Eq. (6.19), we have
PeEc = @c + O(1/N?). (6.35)

Like the first-order terms in Eqs (6.32, 6.33), the expected common input @, is unchanged

to leading order in 1/N by conditioning on the first-order connectivity of a pair of cells.

The results established in the proof of Proposition 6.3.1 regarding the approximate
independence of entries of B (Eq. (6.21)) still hold. Equations (6.32-6.35) reveal that, to
leading order in 1/N, there will be no change to the expectation of terms higher than first
order in Eq. (6.20) as a result of the conditioning. Hence, the only difference occurs at first
order, where we are replacing average connection values with known connection values.

Finally, applying Eq. (6.21) and Egs. (6.32-6.35) to Eq. (6.20), we obtain Eq. (6.31).

Although Eq. (6.31) appears significantly more complicated than the cell-type aver-
ages given in Eq. (6.14), they only differ in the first-order terms S} A* ~;'kj and S} Afj;. The
magnitude of expected contributions from all higher-order motifs is unchanged and coin-

cides with those in the all-to—-all network.

Figure 6.6C shows the mean cross-correlation function for excitatory-inhibitory pairs
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with bidirectional coupling. Taking into account the mutual coupling significantly re-
duces variability (Compare with Figure 6.6B). To quantify this improve, we calculate the
mean reduction in variability when correlation functions are computed conditioned on
the connectivity between the cells. For a single network, the relative decrease in variabil-

ity can be quantified using

1 1&7:(T) = k175 (T) |12
Herror = 37— Z J

T (i,j)er ||’<1y]-(T) — k5 (D)l2”
i>j

where T represents the collection of all pairs of cells of a given type and pairwise connec-
tivity (in the present example these are reciprocally coupled excitatory-inhibitory pairs),
and Nt is the number of pairs of that type in the network. The f