Defect Analysis of 1D Spring-Mass Systems via Laplace Transform and Asymptotics

Larry Guan ${ }^{1}$; Neil Jerome Egarguin, M.S. ${ }^{1}$; Daniel Onofrei, Ph.D. ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Houston, Houston, USA

INTRODUCTION

Spring-mass systems have utility in modeling multiple physical phenomena involving elastic deformation and wave propagation. In the scope of this project: we focus on linear spring-mass systems and use experimental data to analytically locate and enumerate defects along the chain. A particular application of this project concerns limited access pipelines, where we can determine the number of blockages present and their severity.
Consider a chain of n blocks linked in series with springs within two rigid, immobile walls on a flat surface. All springs are massless, identical, and uniformly stiff ($k=1 \mathrm{~N} / \mathrm{m}$). Frictional effects dampen each block in the chain uniformly ($d=0.1$). All blocks are assigned an integer indicative of their location along the chain ($1,2, \ldots, n$) and are identical in size and shape. Most blocks have a fixed mass of 1 kg , but some of them have unknown mass of non-unity (the " defects"). The locations of each defect are also unknown
If we apply an impulse to the first block and observe ONLY the vibrations of the first block, is it possible to:

- count the number of defects in the chain?
- recover each defects' masses and locations?
$\delta(t)$

$1 \mathrm{~kg} \quad 1 \mathrm{~kg}$

$m_{j} \mathrm{~kg}$
(In the case of one defect: the defective block has mass m_{j} and is situated at location j.)

THEORY

Establish the system of differential equations describing the motions of each block.

$$
\left\{\begin{aligned}
\delta(t) & =x_{1}{ }^{\prime \prime}+d x_{1}{ }^{\prime}+2 x_{1}-x_{2} \\
0 & =x_{2}{ }^{\prime \prime}+d x_{2}{ }^{\prime}+2 x_{2}-x_{1}-x_{3} \\
& \vdots \\
0 & =m_{j} x_{j}^{\prime \prime}+d x_{j}^{\prime}+2 x_{j}-x_{j-1}-x_{j+1} \\
& \vdots \\
0 & =x_{\mathrm{n}-1}{ }^{\prime \prime}+d x_{\mathrm{n}-1}{ }^{\prime}+2 x_{\mathrm{n}-1}-x_{\mathrm{n}-2}-x_{\mathrm{n}+1} \\
0 & =x{ }^{\prime \prime}+d x^{\prime}+2 x-r
\end{aligned}\right.
$$

Transform the system into the Laplace domain and rewrite as a matrix equation.

Explicitly invert A with a method from "Analytical Inverstion of Symmetric Tridiagonal Matrices" by Hu and O'Connell. $\left(A^{-1}=R\right)$

$$
R_{\mathrm{i}, \mathrm{j}}=\frac{\cosh [\lambda(\mathrm{n}+1-\mathrm{i}-\mathrm{j})]-\cosh [\lambda(\mathrm{n}+1-\mathrm{j}-\mathrm{i} \mid)]}{2 \sinh (\lambda) \sinh [\lambda(\mathrm{n}+1)]}
$$

$R_{\mathrm{i}, \mathrm{j}}=\frac{2 \sinh (\lambda) \sinh [\lambda(\mathrm{n}+1)]}{}$
$\lambda=\operatorname{arccosh}(-h / 2)$
Compute an alternate form of $\widetilde{x_{1}}(s)$ with the matrix equation.

$$
\widetilde{x_{1}}(s)=-R_{1,1}+\left(1-m_{j}\right) s^{2} \frac{\left|R_{1, j}\right|^{2}}{1+\left(1-m_{j}\right) s^{2} R_{j, j}}
$$

- This equation is for one defect. When an arbitrary number of defects are present, there are additional additive terms of similar structure representing each defect (one term per defect).

METHOD

- Algebraically manipulate the alternate form of $\widetilde{x_{1}}(s)$ under full expansion such that all terms containing a^{j} remain on one side of the equation

$$
\frac{\mathrm{D}}{s^{2}}\left(\widetilde{x_{1}}(s)+R_{1,1}\right)=a^{-2 j} \frac{\left(1-m_{j}\right)\left|r_{1, j}\right|^{2}}{\mathrm{D}+\left(1-m_{j}\right) s^{2} r_{j, j}}
$$

where: $a=\frac{1}{2}\left(-h+\sqrt{h^{2}-4}\right)$
$\mathrm{D}=1+a^{-2 \mathrm{n}-4}-a^{-2}-a^{-2 \mathrm{n}-2}$
$r_{1, j}=a^{-2}+a^{2 j-2 \mathrm{n}-2}-1-a^{2 j-2 \mathrm{n}-4}$
$r_{j, j}=a^{-2 j}+a^{2 j-2 \mathrm{n}-2}-1-a^{-2 \mathrm{n}-2}$

- Insert a new parameter $j_{\text {test }}$ and define the left side as a function.

$$
\begin{aligned}
& \mathrm{g}\left(s, j_{\text {test }}\right)=\frac{\mathrm{D}}{s^{2}}\left(\widetilde{x_{1}}(s)+R_{1,1}\right) a^{2 j_{\text {test }}} \\
& \left.\mathrm{g}\left(s, j_{\text {test }}\right) \approx \frac{1-m_{j}}{m_{j}} a^{2 j_{\text {test }}-2 j} \quad \text { (for large values of } s\right)
\end{aligned}
$$

- Systematically determine j by plotting $g\left(s, j_{\text {test }}\right)$ for $j_{\text {test }}$ from 2 to n . If..
- $j_{\text {test }}<j: \lim _{s \rightarrow \infty}\left[\mathrm{~g}\left(s, j_{\text {test }}\right)\right]=0$; Block is not a defect.
- $j_{\text {test }}>j: \lim _{s \rightarrow \infty}\left[\mathrm{~g}\left(s, j_{\text {test }}\right)\right]= \pm \infty ;$ Block is not a defect.
- $j_{\text {test }}=j: \lim _{s \rightarrow \infty}\left[\mathrm{~g}\left(s, j_{\text {test }}\right)\right]=\frac{1-m_{j}}{m_{j}} ;$ Block is a defect.
- m_{j} can be recovered from the finite limit.

$$
m_{j} \approx \lim _{s \rightarrow \infty}\left[\frac{1}{1+\mathrm{g}\left(s, j_{\text {test }}\right)}\right]
$$

- Repeat iteratively. Loop back to the algebraic isolation of the next successive defect's factor each time a defect is discovered, and terminate at the end of the chain. The iteration count of this algorithm gives the number of defective blocks.
- The lack of access to a laboratory setting compelled numerical synthesis of the vibrational data for $\widetilde{x_{1}}(s)$ from the matrix equation $(A+E) \tilde{x}=\mathbf{b}$.
- Such a system is impossible to solve exactly, so $\widetilde{x_{1}}(s)$ is numerically approximate (though, to a very high degree of precision).
The alternate form of $\widetilde{x_{1}}(s)$, being analytically exact, acted as smoothed noise-free data and was considered "perfect."

RESULTS

One Defect

- Data for $\widetilde{x_{1}}(s)$ was synthesized with the following parameters

$$
\mathrm{n}=10 ; m_{j}=2 ; j=4
$$

Plots of g using the synthetic data of $\widetilde{x_{1}}(s)$:

Algorithm detected one defect of correct mass at the right location. - Convergence to zero for $j_{\text {test }}<j$ and divergence for $j_{\text {test }}>j$. As s grows large, numerical instabilities overtake smoothness of g. Extremely small numerical imprecisions in the simulation of $\widetilde{x_{1}}(s)$ ($\sim 10^{-150}$) due to software limitations are blown up as s grows.

- Analogous to measurement errors and cannot be remedied.

RESULTS (cont.)

Plots of g using the "perfect" data of $\widetilde{x_{1}}(s)$:

- Expected behavior is observed
- g is smooth everywhere.
- Noise-free data is impossible to obtain in reality. Two Defects

$$
\frac{\widetilde{x_{1}}(s)+R_{1,1}}{s^{2}} a^{2 j_{\text {test }}} \approx\left(\frac{1-m_{j_{1}}}{m_{j_{1}}} a^{-2 j_{1}}+\frac{1-m_{j_{2}}}{m_{j_{2}}} a^{-2 j_{2}}\right) a^{2 j_{\text {test }}}
$$

- Data for $\widetilde{x_{1}}(s)$ was synthesized with the following parameters:

$$
\mathrm{n}=20 ; m_{j_{1}}=3 ; j_{1}=5 ; m_{j_{2}}=8 ; j_{2}=16
$$

- Algorithm found the first defect with correct mass at the right location. - Defect \#2 is irrecoverable for the following reasons:
- Multiplicative coupling of $m_{j_{1}}$ and $m_{j_{2}}$. The alternate form of $\widetilde{x_{1}}(s)$ requires knowledge of $m_{j_{2}}$ when trialing for j_{2}.
- Exacerbated numerical imprecision. Finite convergence is never observed if $m_{j_{2}}$ is approximated out during the second iteration.
Exponentiation rules. When trialing for j_{2}, no such value of $j_{\text {test }}$ can force convergence to a finite value.

CONCLUSION \& FUTURE WORK

- Though theoretically sound, this algorithm managed to detect only the first defect in the chain. Furthermore, the numerical instabilities in plotting $\mathrm{g}\left(s, j_{\text {test }}\right)$ irreconcilably conflicted with the expectation of smooth, gradual convergence to a finite value due to the imprecision o $\widetilde{x_{1}}(s)$ - fundamentally similar to measurement noise. Using exact data removed the instability, but that is impossible to procure in reality.
- In the future: we'll revisit the problem in the time domain, where the first block vibration curve can be found by rewriting the system of differential equations into a first order system and solving with matrix exponentials.

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & \cdots & \cdots \\
-2 k & -d & k & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 1 & \ddots & \ddots \\
k & 0 & -2 k & -d & k & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right) \quad \mathbf{f}=\left(\begin{array}{c}
0 \\
\delta(t) \\
0 \\
\vdots \\
0
\end{array}\right) \mathbf{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{2 n}
\end{array}\right)
$$

REFERENCES

- Egarguin, N. J. A., Meklachi, T., Onofrei, D., \& Harari-Arnold, N. D. (2019). Vibration Suppression and Defect Detection Schemes in 1D Linear SpringMass Systems. Journal of Vibration Engineering \& Technologies, 2.
Hu, G. Y., \& Robert F. O'Connell. (1996). Analytical inversion of symmetric tridiagonal matrices. Journal of Physics A: Mathematical and General, 29(7), 1511-1512.

