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Abstract 

Routing packet traffic through a chain of hosts is a common technique for hackers 

to attack a victim machine without exposing themselves. Generally, a long connection 

chain formed is an indication of the presence of an intruder. Previous work has mostly 

focused on detecting stepping-stone hosts.  Few researchers have addressed the issue of 

long connection chains (especially downstream detection).  A challenging issue in this 

area is to detect users connecting to a server using a long connection chain with only the 

information at the end of the chain. This thesis presents a solution to the problem of 

detecting upstream long connection chains. We first observe that the longer a connection 

chain is, the more packet crossovers are generated. Thus we reduce the problem of 

detecting long chains to that of detecting unusually large number of packet crossovers 

along the chain between requests and responses at server side. However, the approach 

requires the packet information along the whole chain. Since we cannot directly measure 

the number of crossovers on intermediate nodes, we are forced to study the consequences 

of large number of crossovers. A detection algorithm has been designed based on the 

distribution of packet gaps.  We validated our algorithm using test data generated on the 

Internet. The result shows a high detection rate of long connection chains from short ones 

without too many false positives. 
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Chapter 1 

Introduction 

Information security has becoming a more and more significant domain recently 

in the whole world, since everything has been digitalized to enjoy the convenience it 

brings. In particular, the Internet is regard as one of the most important inventions in the 

20th century. Security across the Internet is essentially required in order to stop hackers 

from stealing information and damaging our networks. Even though a lot of measures 

have been deployed, such as firewall, IDS, IPS, etc., to prevent hackers from intruding 

the systems, there are still many intrusion cases happened recently. For example, servers 

at LinkedIn were compromised and 6.5 million users’ passwords were stolen in 2012 [1]. 

In 2011, Sony PlayStation suffered from 24 days of network outage due to intrusions, 

which cost Sony $171 million loss. The attack occurred for 3 days and Sony had to turn 

off the PlayStation Network for maintenance [2] [3].  

There are many different ways of attacking. Since network communication is 

divided into a 7-layer OSI model [17], each layer has a lot of corresponding methods to 

perform attacking. Our project focuses on the layer of Application, where Secure Shell 

protocol works. In the layer of Application, a great number of attacks can be performed, 

such as Denial of Service, SQL Injection, Man-in-the-middle attack, etc. In our case, we 

aim to detect hackers who are trying to tamper with systems. Normally, when a hacker 

tried to compromise a victim host, a secure connection needs to be set up for 

communication between hacker and victim. With the purpose of not being detected and 
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caught, most intruders use long chains of stepping-stones before login to victim hosts. 

Figure 1.1 below indicates the process of logging in a host using stepping-stones.  

	
  

Figure 1.1: An illustration of a hacker attacking a target server using three  
stepping-stone hosts 

This stepping-stone technique is widely used by hackers to perform intrusion 

because they would prefer to be anonymous and not being traced back. The intermediate 

nodes, called stepping-stones, along the long chain are usually previously compromised 

by hackers. Before conducting an intrusion to a target host, the hacker connects to a 

series of machines he controlled and carries out the final attack via the last intermediate 

node. The controlled hosts are usually picked by intruders and may be in different 

countries. Therefore it would be extremely difficult to trace back to the original attacker 

without the assistance of the system administrators of these intermediate hosts in real-

time. Thus it is important to detect stepping-stones while the hackers are connected [4]. 

There have been many publications focusing on this area during the past two decades. 

Staniford-Chen and Heberlein [5] wrote the first paper addressing this issue. Without 

bothering the intermediate hosts, the paper proposed a method that helps to flag 
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suspicious activities, maintaining logs in case of an intrusion to be detected as starting 

from local sites, setting up their connections through external nodes. It also helps to 

enforce policies in terms of cross-traffic and to detect insecure combinations of legitimate 

connections. 

Previous research primarily concentrated on intermediate host based stepping-

stone detections, i. e., detecting stepping-stones by correlating streams of packet traffics. 

From the view of an intermediate host, the data generated by the attacker are sent 

downstream and a response from the server (target host) is passed backward upstream to 

the attacker. The request/response packets form a closed loop between an intermediate 

host and the target server. Meanwhile, the time difference between request and response 

is captured for detection. Yang and Huang [6] use time gaps in the closed loop to detect a 

downstream connection chain in real time. They are trying to stand between the attacker 

and victim, protecting the target host, which is usually an unknown third party connected 

by a long chain from a hacker. However, most of the times we do not have privilege on 

intermediate hosts on a long chain. It will be extremely helpful if we could detect 

intruders and avoid being compromised at the target host. There is no straightforward 

method that is able to measure the full Round Trip Time (RTT) from the target to the 

hacker. Since SSH is an interactive terminal session, the client’s machine will not 

automatically send a reply back to the server for us to compute RTT. The responses that 

the server could receive are only generated from the closest node on the connection chain. 

As presented in Figure 1.2, the neighbor hosts are the only machines visible to the victim, 

which are directly connected to it. The rest hosts on the chain are beyond the vision of 

victim.   
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Figure 1.2: One of the three incoming connection chains is a stepping-stone  
attack using a long connection chain 

	
  

	
  

Figure 1.3: Detecting intruders at the end of a long connection chain 
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Ding et al. [7] propose an intrusion detection algorithms based on the victim host, 

which is at the end of the connection chain shown in Figure 1.3. Their goal is the same as 

ours, which is to detect and prevent suspicious intrusion connection chains by 

distinguishing long connection chains from short ones. To our knowledge, that is the only 

work done in this area.   

Their approach is to compute the difference of the distribution of the packet gaps. 

Their hypothesis is the longer the chain is, the larger the gaps are.  In their experiments to 

validate their hypothesis, connection chains of 4-hop and 6-hop are compared to short 

connection chains of length one. The result shows that the algorithm works, as 86% of 

long connection chains could be identified, with a false positive rate of around 13% in the 

case of 6-hop chains.  The accuracy for the 4-hop chains is less impressive. 

Our project's goal is to improve the accuracy rate of detecting long connection 

chains based on Ding's work.  To their credit, they discovered the packet crossovers in 

long connection chains, even though they did not take advantage of that to detect long 

connection chain. It was also suggested that longer connection chains have more packet 

crossovers.  Our work is based on these findings.  

We collected the cross-traffic packets on each intermediate node and analyzed 

them to verify the hypothesis, that there could be many crossovers generated between 

machines when they are used as a stepping-stone. Moreover, the closer an intermediate 

node is to the hacker on a connection chain, the more crossovers it will generate. With 

such a conclusion, we develop a new method of detecting long connection chains by 

examining the gap differences between selected request/response packets, which only 
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requires data collected at the end of the connection chain. As a result, we are able to 

achieve a detection rate of 85% at a false positive of 5%. Moreover, the experiments were 

designed to identify connection chains of length of 3 hops, which is more realistic in real 

world. 

The rest of thesis is organized into four chapters. Chapter 2 gives definitions 

about network security, intrusion detection, stepping-stones, and some related work. 

Chapter 3 studies the issue of packet crossover and its relationship with the length of the 

connection chain. We present an algorithm to estimate the number of packet crossovers 

as well as techniques used to analyze them. Experiments are conducted which validated 

our hypothesis on the relationship between packet crossover and the length of the 

connection chain. Chapter 4 shows a detection algorithm to identify long connection 

chains from short ones. We are able to detect long connection chains by examining data 

packets collected at the end of the chain only. The conclusion chapter summarizes our 

work and also gives some further prospect on stepping-stones detection. 
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Chapter 2 

Literature Survey and Definitions 

In this chapter we briefly review the numerous advances in the area of stepping-

stone intrusion detection. Terminologies and assumptions are properly defined. 

2.1 Definitions and Assumptions 

Network security is concerned with a variety of security issues that happen on 

networks, especially on the Internet. Network security has become a hot topic of research 

from over the past few decades, as well as intrusion detection [7][8][9][10]. Intrusion 

detection provides the network as well as resources that are stored in the network, 

accessible devices protection from intruders stealing information from them. 

Authentication could be deployed as the first step defense of network security. People 

could use their username and password to be authorized into the system. There are also 

some further authentication mechanisms such as token, fingerprint, and retina recognition. 

Sometimes information security is also regarded as one aspect of network security, which 

focuses on protecting data from unauthorized access or being misused by legitimate users 

inside an organization. 

Secure Shell (SSH) is a cryptographic network protocol for securing data 

communication, remote command-line login, remote command execution, and other 

secure network services between two networked computers. It connects via a secure 

channel over an insecure network, a server and a client running SSH server and SSH 
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client programs, respectively [16]. Although the data field of SSH packet is encrypted, 

we are still able to get the header of packet in plain text. With information contained in 

the header, we could be aware of the type of packet, source/destination IP, and size of 

packet.  

More and more network attacks and security breaches happen with the growth of 

the Internet. It is necessary and inevitable for intrusion detection to come to stage. 

Intrusion detection plays a critical role in securing networks and systems since various 

attacks have caused so much trouble. It is a process of monitoring the network and 

system activities via auditing techniques to detect malicious behaviors or policy 

violations, which attempt to destroy CIA triad (confidentiality, integrity, and availability). 

Intrusion protection techniques are usually used to handle detected security events pairing 

with intrusion detection. 

Stepping-stones are always involved when the hacker tries to hide their existence, 

which makes it relatively difficult to track the intruder. Thus it will be helpful if we can 

detect the stepping-stones that lead to the occurrence of intrusion. A hacker may log in a 

computer, start a new connection to another one from this machine and do the same thing 

thereafter. Those intermediate computers are called “stepping-stones”, which form a 

connection chain. Anytime such long chains are detected, we are convinced that someone 

may try to intrude the system and hide his existence. 

During the connection of secure shell, each client’s keystroke generates a request 

packet (called “send packet”). Then the server will send one or more response packets 

(called “echo packet”) back to the client after receiving a request so that the content of 



	
  

	
   9	
  

responses will show up in client’s terminal window.  

Normally, the client host is able to receive the response of previous request before 

sending out the next request. However, in some circumstances, the client host sends out 

the request packets before receiving responses due to large round trip time caused by long 

connection chain. In those cases, the request packet will “meet” the coming response 

packet halfway. We call this situation “crossover”. Every time a request packet meets a 

response packet, one crossover is counted. 

In summary, the type of intrusion that we discuss in this paper has the following 

characteristics: (1) the intruder must login into the target host in order to steal information 

or cause other damages to the system and (2) the data content of the connection may be 

encrypted and not visible to the detection algorithm.  Denial of service attack, for 

example, does not fall under this category. 

2.2 Previous Work 

There have been quite a few studies focused on stepping-stones detection, which 

using various techniques to discover those hosts used by the hacker to escape tracing. For 

an intermediate host, there are a great amount of incoming and outgoing connections. If 

we are able to pair those connections, the host will be highly suspicious to be a stepping-

stone. Figure 2.1 shows how this technique works.  
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Figure 2.1: A host can be identified as a stepping-stone by correlating its incoming packet 
streams with its outgoing streams 

An algorithm can be used to match those incoming and outgoing connections 

based on time gaps or other flags. If the host is detected as a stepping-stone, the 

connection from this host will be paid extra attention in case it is originated from the 

hacker. 

Staniford-Chen and Heberlein [5] are the pioneers in this area. Their early 

research was based on the content of the traffic, which they captured. Thumbprints are 

short summary of the connection packet captured in cross-traffic. They compared these 

thumbprints to determine whether those bi-directional packets contain same content. If so, 

the host is likely to be an intermediate node of a long connection chain. However, this 

method is only able to detect stepping-stones using unencrypted messages, such as Telnet 

connection. It becomes useless when it deals with encrypted connections like SSH, whose 

content of packets are unreadable to people except for users at both ends of the 

connection. The thumbprint method is no longer valid. 

Wang and Reeves [11] proposed a novel intrusion framework called “Sleepy 

Hacker Target 
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Watermark Tracing (SWT)”. It integrates a sleepy intrusion response scheme, a 

watermark correlation technique, and an active tracing protocol. The “sleepy” infers that 

no overhead is introduced when no intrusion is detected. But it will become active when 

detecting an intrusion. The target host will inject a watermark into the backward 

connection of intrusion and then wake up to collaborate with routers along the chain. 

According to their results, SWT could achieve a high efficient and accurate source 

tracing when the hackers use telnet or rlogin to intrude the target, which are not encrypted 

during communication comparing to SSH. Wang and Reeves’ work is quite inspiring, 

since they makes it possible to trace back to the original source node in real time when 

the hacker uses long chain to cover his presence in order to achieve interactive intrusion. 

This method is efficient and scalable to detected intrusion using unencrypted connection 

tools, which is a big milestone in the era of Telnet. 

With the purpose of privacy, SSH is gradually becoming the most useful remote 

connection tool over Telnet. Thus we need some new techniques to detect intrusions 

because the previous methods do not work any more due to the encryption of connections. 

In order to adapt new ways of connection, Zhang and Paxson [4] proposed a method 

using timing correlation of ON/OFF periods of different connections to detect stepping-

stone attacks. Relying on the properties of interactive traffic, such as packet sizes and idle 

periods, they do not need to look at the contents of packets of the connections to detect 

intrusions. Their algorithm provides a good accuracy and less workload of capturing 

packets by only keeps packet headers. But there is still a weakness in their approach that 

it cannot distinguish the legitimate stepping-stones from malicious ones.  

Yung’s research [12] focused on estimating the RTT for out-going connections 
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using request and response pairs between the client and downstream server. Yung’s 

approach monitors an outgoing connection to estimate two metrics. The first metric is the 

time gap between requests from client and acknowledgements from the downstream 

server, which is used to estimate RTT between the client and the server. The second one 

is the time gap between client’s request and server’s response used to estimate how far 

away the targeted server is. These two metrics are also used to estimate how many hops 

there are on the connection chain to the victim. This method performs well in identifying 

connections with more than two downstream hops and can be used on interactive sessions, 

such as Telnet and SSH. However, the time gaps are greatly influenced by the network 

environment and the machine at the end, since any delay in network traffic and server 

machine could impact the size of RTT. 

Yang and Huang [6] proposed an algorithm to estimate the length of downstream 

connection chain by monitoring outgoing and incoming packets. The algorithm computes 

the RTT in a request and response pair. By capturing the changes in these RTTs, the 

number of nodes in downstream chain could be estimated. With this approach, the user 

could find if his machine is used as a stepping-stone when the hacker is connected to a 

target server and take measures to stop the intrusion. The method is able to detect 

intrusion in real-time, which is significant in real world. It also delivers an accurate result 

of estimating the length of downstream connection chain. Meanwhile, it still has a 

restriction, like other approaches, that the algorithm can only estimate the length of 

downstream chain instead of the whole connection chain. 

After Yang and Huang’s work [6], they proposed two additional algorithms [13] 

of matching TCP Send and Echo packets. One algorithm is relatively conservative, and 
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can accurately match a smaller number of packets, whereas the other one is heuristic, and 

can match a larger number of packets with less accuracy. The authors justified the 

correctness of their conservative algorithm. By applying these two algorithms in the 

experiments, the result shows that two algorithms could achieve the same performance. If 

the conservative algorithm failed to generate enough data, the heuristic one will be used 

as a supplement. The combined algorithm can detect intruders in real-time. It can also 

estimate the encrypted connection chain length accurately even with fluctuated network 

traffic. The major weakness of this approach is that it requires capturing the packets 

throughout a connection session. 

Since the previous research [13] was not able to capture enough send packets 

using a conservative algorithm, Yang and Huang proposed a new clustering partitioning 

algorithm [14] to extract the timestamps from send and echo packets of a connection 

chain.  

After that, Ding et al. [7] continue detection work from another perspective by 

proposing an intrusion detection algorithm based on the victim host. They analyzed the 

delay between the time a user presses enter button to finish a command and the time that 

the user types the next character, and used an approximated upstream round-trip time to 

separate a long connection chain from short ones. Their result showed that this proposed 

algorithm was able to distinguish long connection chains from short ones with relatively 

low false rate. 
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Chapter 3 

Packet Crossovers and their Relationship to the 

Length of Connection Chain 

Ding et al. [7] discovered the “crossover” issue in their examination of the packets 

in a long connection chain. In this chapter we shall study the relationship between the 

number of crossovers and the length of the connection chain.  We first formally define 

packet crossovers and state our hypothesis about the crossovers in Section 3.1. In Section 

3.2 we describe our setup for the experiments to validate the hypothesis. Finally results 

from the experiments are summarized in Section 3.3 to validate our hypothesis. 

3.1 Packet Crossovers and our Hypothesis 

Since we need to find a feature that could separate long connection chains with 

short ones, let us review the process of SSH connection and the characteristics of 

protocol. 

When TCP/IP Services is started on an SSH server host, the auxiliary server 

creates a listening socket for SSH. The SSH server is now ready to accept a remote 

connection request. When the client execute an SSH command on a remote client host, 

the SSH client is initiated. The client reads the configuration file and initiates a TCP 

connection to a server host using the specified destination port. On an SSH server host, 

the auxiliary server creates a copy of the server process, which reads the server's 
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configuration file. The SSH client and server exchange information about supported 

protocol versions. During the connection the SSH server runs in a loop, accepting request 

messages from the client, performing required actions, and returning respond messages to 

the client. For a stepping-stone type of connection, there is a new packet between every 

pair of successive hosts in the chain.  For example, there are four separate packets used as 

vehicles to send the contents to the target machine in Figure 3.2 below. Each packet may 

be of different sizes and must be agreed upon the two hosts involved. 

Each time a user on the client-side pressed a key, the client host generates a 

request packet with the character (padded and encrypted) as the content to the server. The 

server will send a response packet back to the client after processing the request packet. If 

the server is an intermediate stepping-stone host, it will turn around and send the request 

to the next sever and wait for its response.  However, if the server is the intended target 

host, then the host processes the request, which includes sending a respond packet back 

with the same character in it. Occasionally, if a command has been received at the server 

side, it will send one or more packets back with the reply. A server also sends an 

acknowledgement packet if no respond was ready to be sent. When the user closes the 

connection, the server process terminates. The auxiliary server continues to listen for new 

SSH connection requests [15].  

In TCP/IP protocol, a client is allowed to send a limited number of packets to the 

server without having to wait for the response. What was shown in Figure 3.1 with three 

request/response nicely separated is highly unlikely. The Round-Trip Time (RTT) is the 

difference of the time stamps between sending a packet and receiving its response.  The 

RTT for different request packets will be different.  It can be modeled as a random 
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variable depending on the network traffic and the availability of the hosts involved. 

Normally, request and response packets stay in the same sequence at both ends of the 

connection. Also round-trip times between two consecutive hosts are much shorter than 

intervals between keystrokes as showed in Figures 3.1 and 3.2.  

	
  

Figure 3.1: An Illustration of packet exchanges between two hosts A and B 
However, in some cases, the connection chain is long enough that round-trip 

times are longer than intervals between keystrokes. For data transfer, the client is allowed 

to send further messages without waiting for the response to the request [16]. Therefore, 

if the client’s keystroke intervals are longer than round-trip time, response packet will 

arrive at client’s machine before another request is sent out. On the other hand, if the 

client’s keystroke intervals are shorter than the round-trip time of the previous packet, 
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there will be two or more consecutive request packets sent before a response packet 

arrives. Figure 3.2 shows some packets with overlapping round-trip time. Intuitively, the 

round-trip time is proportion to the length of connection chain. Thus, it is reasonable to 

assume that the client’s intervals are likely to be shorter than round-trip times in a long 

connection chain. When a response packet arrives at the client’s machine later than 

another request packet is sent out, this response packet will “meet” the coming request 

packet halfway before arrival, which is called “crossover”.  

Crossover of the request and response packets deserves more explanation.  When 

a “crossover” happens, the downstream node stays in the normal request/response packets 

order, whereas the upstream node sends out the next request packet before receiving a 

response packet for the previous one. Then in upstream node, there will be two 

consecutive request packets whose sequence is different from the downstream node. So if 

there is a flip over of request/response packets, a crossover is generated. Figure 3.2 shows 

this procedure. 
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Figure 3.2 Crossovers in long connection chain 

Based on the analysis above, we proposed a hypothesis that there are more 

crossovers generated in a long connection chain than in a short one. In other words, the 

longer a connection chain is, the more crossovers there are, which means the number of 

packet crossovers is positively correlated to the length of the chain. 

3.2 Validation by Experiments 

We designed experiments of real connection chains routing through four hosts on 

the Internet.  Network packets were collected along every step of the chain. Collecting 

data during one-time connection ensures data not being influenced by network 

environmental differences and fluctuation. 
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3.2.1 Configuration 

In our experiments, four different machines are used to act as client, server, and 

stepping-stones. Operating systems are Ubuntu and OS X with Secure Shell client/server 

and Wireshark installed. To simulate intrusions in real world, some of the machines are in 

different cities across the country. Two of hosts are located in Houston here on campus. 

One of the hosts is in Pittsburg, PA and another one stays in Columbus, GA. Our scenario 

is to connect the host one by one using SSH. With two nodes off campus, we are able to 

make sure that each connection is across the country. Therefore, the connection chain is 

long enough just like how hackers build. Figure 3.3 shows how our experiment is set up. 

Since CSU is simulated as the target host that a hacker is trying to attack, data collected 

from UH-2, Pittsburg, and UH-1 are regarded as packets that travels through 1 hop, 2 

hops, and 3 hops respectively. We will see data collected from each different length 

chains later in next section. 
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Figure 3.3 Connection chain setup in the experiment with two local  
hosts and two remote hosts 

 

3.2.2 Data collection and analysis 

To collect every Secure Shell packet, we start tshark (command line version of 

Wireshark) before the connection is set up and stop it after the connection is terminated. 

During the connection, we simulate hackers’ actions such as executing system commands 

and editing files. We also tried to maintain the same and normal typing speed. 

Since Secure Shell packets are the only packets we focus on, we eliminate those 

irrelevant packets such as TCP Ack, UDP, DHCP, and ARP etc. We conducted this 

experiment 20 times to guarantee our result’s accuracy. All data packets are saved in text 

UH-­‐1 
129.7.243.* 

CSU 
168.26.*.* 

Pittsburg 
67.186.*.* 

UH-­‐2 

129.7.243.* 



	
  

	
   21	
  

files for further analysis. 

As displayed in Figure 3.3 above, we can see that request packets start from UH-1 

node and route through Pittsburg and UH-2, arrive at the server host, CSU. Response 

packets travel backward from CSU to UH-1. From UH-1 to CSU, there are three hops, 

two for Pittsburg and one for UH-2. So we collected SSH packets between two 

consecutive hosts to compute the number of packet crossovers. For example, we collected 

all SSH communication packets between UH-1 and Pittsburg at both hosts. Same 

collections also happened between Pittsburg – UH-2 and UH-2 – CSU.  

After collection, we proposed an algorithm to compute the number of packet 

crossovers between two consecutive nodes. The algorithm works as follows: 

1) Extract request/response packets from Host A and label them according to 

timestamps individually. 

2) Extract request/response packets from Host B and label them according to 

timestamps individually. 

3) Mix request and response packets respectively in time order. 

4) Compare two sequences of label and compute how many flip overs occur, which 

equals the number of packet crossovers. 

The number of packet crossovers for 3 hops, 2 hops, and 1 hop can be computed 

by applying the algorithm above to the packet data between UH-1 and Pittsburg, 

Pittsburg and UH-2, and UH-2 and CSU respectively. 
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3.2.3 Results 

We perform the experiments for 20 times in order to get the most accurate results. 

Each experiment delivers one dataset consisting of data packets collected at four nodes. 

Then we could get data from three different lengths of connection chain. The result of 

experiments shows as follows in Table 3.1 and Figure 3.4:  

 
Table 3.1 Percentage of crossover among packets 

Packets # Crossover # Ratio Packets # Crossover # Ratio Packets # Crossover # Ratio
746 283 37.94% 729 110 15.09% 717 17 2.37%
778 325 41.77% 758 88 11.61% 746 2 0.27%
778 285 36.63% 760 79 10.39% 747 3 0.40%
778 303 38.95% 761 103 13.53% 749 2 0.27%
797 348 43.66% 779 165 21.18% 763 14 1.83%
789 311 39.42% 770 129 16.75% 750 11 1.47%
757 298 39.37% 739 69 9.34% 727 3 0.41%
766 333 43.47% 748 96 12.83% 736 8 1.09%
776 314 40.46% 753 111 14.74% 732 5 0.68%
758 304 40.11% 741 136 18.35% 729 2 0.27%
755 317 41.99% 738 110 14.91% 725 4 0.55%
756 292 38.62% 714 127 17.79% 680 27 3.97%
772 323 41.84% 750 114 15.20% 738 9 1.22%
760 311 40.92% 715 117 16.36% 698 12 1.72%
762 298 39.11% 703 99 14.08% 683 7 1.02%
788 321 40.74% 770 134 17.40% 755 18 2.38%
766 306 39.95% 729 129 17.70% 699 8 1.14%
743 311 41.86% 726 115 15.84% 711 8 1.13%
753 369 49.00% 741 115 15.52% 711 9 1.27%
770 413 53.64% 756 113 14.95% 733 7 0.95%

3"hop 2"hop 1"hop
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Figure 3.4 Ratio of crossovers for different lengths of connection chain 

 

From the figure above, we could find that there are clear margins of ratio between 

different numbers of hops, which can be used to easily distinguish from each other. Thus 

if we can collect data at each host along the connection chain, it is possible to determine 

which part of chain a host stays. In summary, we have validated that there are more 

crossovers generated in a long connection chain than in a short one. The number of 

crossovers is related positively to the length of the chain. 
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Chapter 4 

Detection of Long Connection Chains 

The goal of validating the relationship between crossovers and connection chain 

is to help us to detect long connection chains. Although we have already concluded that a 

high number of crossovers implies a long connection chain, we cannot use that to identify 

long connection chains.  The reason is due to the availability of the packet information. 

We do not have packet information along the chain except for the last host where the 

monitoring algorithm resides. However, the large number of crossover packets will alter 

the distribution of the packet gaps.  This chapter proposes an algorithm to capture those 

gaps variances resulted by the large number of packet crossovers. With this algorithm, it 

is possible to identify long connection chains from shorter chains. 

First of all, we would like to introduce the definition of “Upstream Round Trip 

Time”. We take a response packet sent back and the next packet received as an estimated 

RTT, which is called Upstream Round Trip Time (uRTT). This is the time gap we will 

use later in our research, since we cannot get a real RTT due to lack of control over hosts 

except for our server machine.  

Then we distinguish two types of gaps between packets: “Inter-command Gap” 

and “Intra-command Gap” used in Ding et al. [7]. Each command is usually followed by 

an “Enter” button. Inter-command Gap refers to the time gaps between a “return” 

character and the first character of the next Unix command by the user. Intra-command 
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Gap refers to the time gaps between two keystrokes within a single command,  

i. e., no return or end-of-line characters. Examples of several gaps of each type are shown 

in Figure 4.1 below.  

 

	
  

Figure 4.1 Inter-command gaps and Intra-command gaps 

	
  
The reason for separating inter- and intra-command gaps is to filter out some of 

the packet gaps that are not contributing to our detection algorithms.  Figure 4.2(a) shows 

all the gaps between successive packets of a long connection chain (shown in blue) and 

that of a short one (shown in red).  The gaps are sorted in increasing order in Figure 4.2.  

The two curves are difficult to separate from each other.  Intra-command gaps essentially 

measure the typing speed of a user and do not depend on the length of the chain. On the 

other hand, inter-command gaps do depend on the chain length, because the user may 

have to see the result from the prior command to determine what to do next. 

d c ↵ l s ↵ 

d c ↵ l s ↵ 

(a)	
  Inter-­‐command	
  gaps 

(b)	
  Intra-­‐command	
  gaps 
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Thus we need an algorithm to separate inter-command gaps and intra-command 

gaps from each other. The strategy behind the separation method is that after a client 

enters a command, the amount of returned data exceeds the size of MTU (Maximum 

Transmission Unit) that Secure Shell protocol defines is typically fairly large. So the 

server will usually return more than one response packets. Even an empty “Enter” stroke 

may get two response packets returned. Therefore, at any moment there are more than 

one response packets consecutively returned, it indicates an inter-command gap. This 

method is probably not 100% accurate but our observation of the data suggest that it is 

fairly accurate.  With that, we are able to separate inter-command gaps from intra-

command gaps. Figure 4.2(b) and (c) shows the two sets of gaps sorted in increasing 

order of the gaps. 

From previous experiments, we conclude that long connection chain will generate 

a great amount of packet crossovers. These crossovers lead to some relatively small inter-

command gaps, which are even smaller than round-trip times. So if there exists some 

unusual small inter-command gaps, we will have a suspicion that it is possibly a long 

connection chain, which an intruder may use for attack. Figure 4.2 (a)-(c) indicate the 

differences of three gap types between long connection chains and short ones. As the 

figures show, we cannot separate long chains from short ones via first two charts. While 

in the third chart, the marked line of long chain has a huge jump at first several data 

points while the short chain’s line increases smoothly. 
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Figure 4.2(a) Mixed Gaps: Long chains vs. short chains 

	
  

Figure 4.2(b) Intra-Gap: Long chains vs. short chains 
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Figure 4.2(c) Inter-Gap: Long chains vs. short chains 
 

Since the target server is the only host on the connection chain that we are able to 

monitor the packets, we need to analyze the packets captured at the server machine in the 

previous experiments. Here is how our algorithm works: 

1) Extract request/response SSH packets from data collected at the targeted server 

host of the selected connection. 

2) Compute uRTT gaps of successive packets and sort them in ascending order. 

3) Filter out the intra-command gaps and keep only the inter-command gaps G[i] 

sorted in ascending order. 

4) Compute the ratios of successive gaps over their previous ones, R[i] = G[i-1]/G[i]. 

5) Find the maximum gap ratio mgr = max 𝑅 𝑖 𝑖 = 2,… ,𝑛} and if this maximum 
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ratio  mgr is greater than a predetermined threshold t, it is considered as a long 

connection chain. Otherwise, it is a short one.. 

 

Table 4.1 Three cases of ratios of consecutive gaps among twenty long  
connection chains collected in our experiments (chain length = 3 hops).   

Only the first 20 gaps are shown here in the table. 

Gaps%(s) Ratios Gaps%(s) Ratios Gaps%(s) Ratios
1 0.0447 0.0198 0.0432
2 0.0456 1.0217 0.0434 2.1899 0.0445 1.0296
3 0.0457 1.0013 0.0443 1.0212 0.0447 1.0032
4 0.0466 1.0207 0.0452 1.0196 0.0447 1.0012
5 0.5117 10.9721 0.0454 1.0050 0.0693 1.5497
6 0.5203 1.0168 0.5513 12.1381 0.0730 1.0539
7 0.5231 1.0054 0.5533 1.0038 0.1901 2.6035
8 0.5506 1.0525 0.6865 1.2406 0.3542 1.8630
9 0.5906 1.0727 0.6899 1.0050 0.4588 1.2954
10 0.6512 1.1027 0.7240 1.0494 0.4733 1.0314
11 0.6547 1.0052 0.7342 1.0141 0.5273 1.1141
12 0.6603 1.0087 0.7648 1.0417 0.5539 1.0504
13 0.6715 1.0169 0.7976 1.0428 0.6134 1.1075
14 0.6978 1.0392 0.8509 1.0669 0.6372 1.0388
15 0.6996 1.0025 0.8546 1.0044 0.6604 1.0364
16 0.7311 1.0451 0.8616 1.0082 0.6905 1.0456
17 0.7836 1.0718 0.9165 1.0637 0.7494 1.0853
18 0.8229 1.0501 0.9276 1.0121 0.7709 1.0286
19 0.8316 1.0106 0.9414 1.0149 0.7729 1.0026
20 0.9312 1.1198 0.9562 1.0157 0.7820 1.0118

Case%1 Case%2 Case%3

 

The above algorithm did not specify what the threshold value to use.  There is an 

obvious trade-off between the accuracy of our ability to detect long connection chains 

(lower t value) and the false positive rate.  We will address that later. 

Table 4.1 gives us three of the twenty long-connection cases tested. As one can 
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see, there is one ration that stands out among all of the ratios. Case Three has the lowest 

mgr value among all twenty test cases. 

We did a similar analysis for the short connection chains as showed in Table 4.2. 

The ratios for the short chains are supposed to be low, but we do see some outlier values, 

as showed in Case 3, in the twenty cases of short connection chains. However, for most 

of the cases, the mgr for the short chains is smaller than those of the long chains. We can 

use this as a feature to separate the two cases. 

Table 4.2 Three cases of ratios of consecutive gaps among twenty short  
connection chains collected in our experiments (chain length = 1 hop).   

Only the first 20 gaps are shown here in the table. 

Gaps%(s) Ratios Gaps%(s) Ratios Gaps%(s) Ratios
1 0.0505 0.0517 0.0505
2 0.0517 1.0222 0.0518 1.0004 0.0522 1.0346
3 0.0519 1.0038 0.0548 1.0593 0.4992 9.5575
4 0.1267 2.4431 0.1266 2.3085 0.5127 1.0271
5 0.1949 1.5381 0.2411 1.9046 0.5191 1.0124
6 0.1961 1.0062 0.2597 1.0771 0.5261 1.0135
7 0.2040 1.0406 0.2829 1.0897 0.5827 1.1076
8 0.2874 1.4089 0.3098 1.0950 0.5960 1.0229
9 0.3055 1.0629 0.3390 1.0940 0.5980 1.0032
10 0.3633 1.1891 0.3499 1.0324 0.6142 1.0271
11 0.3973 1.0935 0.3725 1.0643 0.6304 1.0264
12 0.4287 1.0791 0.3882 1.0424 0.6782 1.0759
13 0.4306 1.0044 0.4691 1.2084 0.7006 1.0330
14 0.4418 1.0260 0.5105 1.0881 0.7025 1.0027
15 0.4703 1.0646 0.5329 1.0439 0.7063 1.0054
16 0.5374 1.1426 0.5439 1.0206 0.7420 1.0506
17 0.5976 1.1121 0.5758 1.0586 0.7481 1.0082
18 0.5996 1.0033 0.5790 1.0055 1.0134 1.3546
19 0.6046 1.0083 0.5920 1.0225 1.0476 1.0338
20 0.6861 1.1348 0.6054 1.0227 1.2036 1.1489

Case%1 Case%2 Case%3
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In	
  the	
  rest	
  of	
  this	
  chapter	
  we	
  will	
  determine	
  what	
  is	
  a	
  reasonable	
  threshold	
  

value	
  and	
  evaluate	
  the	
  effectiveness	
  of	
  our	
  detection	
  algorithm.	
  	
  We pick the highest 

mgr value from each experiment for both long and short chains. The result for all 40 

cases (20 long and 20 short) is summarized in Table 4.3 below. We notice that there are 

some overlaps in value between short chains and long chains. However, the result is still 

enough for use to separate the two cases (showed in Table 4.3).  

Table 4.3 Maximum gap ratios (mgr) of 20 long chains and 20 short chains 

Long Short
1 13.8608 9.5575
2 7.9976 4.7240
3 10.4442 3.0517
4 6.2593 3.4897
5 10.2412 3.6067
6 13.0579 1.7436
7 4.9606 1.9759
8 6.6623 3.5048
9 10.7373 2.4431
10 8.7353 4.4025
11 8.3042 2.8133
12 12.1381 2.3085
13 6.6999 3.3191
14 4.4003 2.2266
15 7.1686 2.0160
16 7.9714 2.9693
17 2.6035 2.2142
18 8.3235 2.9597
19 8.6655 4.2507
20 10.9721 5.4760  
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Take the forty numbers from Table 4.3 and mix them together and sort them in 

ascending order. As showed in Figure 4.3, most short chain (blue circles) and long chain 

(red squares) data points stay in lower part and upper part of the chart respectively. 

Figure 4.3 may be used to evaluate the accuracy of our algorithm.  For example, if we 

select the threshold t to be 6.0, then there is one short chain misclassified (the only blue 

circle above 6.0), a false positive. At the same time, there are three long connection 

chains that we will be unable to detect, three false negative cases.  

	
  

Figure 4.3 Maximum ratios of 20 short chains (blue circles) and 20 long chains (red 
squares) 

 

In order to better examine the detection rate of this method, we set the ratio 

threshold at different levels to distinguish long connection chains from short ones. For 
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are correctly detected with a true positive ratio of 85%. In this way, we generate a ROC 

(Receiver Operating Characteristic) curve with different pairs of false/true positive ratios. 

ROC curve gives a simple visual evaluation of the accuracy and false alarm rate of our 

method in long connection chain detection. Depending on the amount of false positive 

one is willing to tolerate, one can estimate the accuracy of the detection algorithm. ROC 

curve is presented in Figure 4.4, which turns out to be an excellent result comparing with 

previous research performances. 

	
  

Figure 4.4 ROC Curve showing the accuracy of the detection algorithm vs.  
false positive rate. 
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Chapter 5 

Conclusion 

Cyber attack through stepping-stones has been widely used by hackers to perform 

an intrusion to servers anonymously. It can effectively prevent from being traced back to 

the source. In this research, we first establish that the number of packet crossovers is 

proportional to the length of the connection chain.  This was done by collecting packets 

along the whole connection. A “flip over” in two successive nodes indicated a packet 

crossover. Our experiments validated our hypothesis.   

Unfortunately we cannot use the result directly to help us identify the long 

connection chains.  To protect a server from being attacked via a long connection chain, 

we can only monitor packets entering and leaving the server (at the end of the chain). We 

designed an algorithm to do exactly that in Chapter 4. 

Our algorithm is based on the prior work done by Ding et al. [7], which 

investigated the upstream RRT of the target server.  They also separated the intra-

command gaps from the inter-command gaps so that they can focus on the difference of 

long and short chains.  Their result shows modest success in detecting long connection 

chains of lengths 4 and 6. 

We propose a new approach to detect long connection chain based on the 

hypothesis that we already validated. We follow the approach of Ding and observe that 

there is a obvious sharp increase in uRTT for the long connection chain.  This is a direct 
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result of the crossover packets.  For the short chains, the (sorted) uRTTs are distributed 

fairly smoothly (cf. Figure 4.2c). For the long chains, some of the gaps were significantly 

reduced because of the packet crossovers.  These artificially created RTTs dragged the 

uRRTs down significantly, thus opening up a gap between the crossover uRTTs and the 

non-crossover uRTTs (see the fourth and the fifth value of the long chain).  Since we 

don’t know the number of crossovers, we look for the sharp jump in the uRTTs caused by 

the crossover instead. Thus our approach is to find the maximum inter-command gaps 

ratio from collected uRTT data, which achieves a true positive of 85% with false positive 

as low as 5%. Our approach is able to detect connection chain of three hops with a better 

accuracy than the previous research. 

Despite that our experiment results are already acceptable, we still have several 

improvements to make. Firstly, we only conducted the experiment 40 times in total for 

both short and long chains. And, each experiment consists around 35 commands input, 

which could be increased in order to collect more data. Secondly, 5-hop connection chain 

or even longer is not conducted due to shortage of experimental machines nationwide. 

We believe our approach can achieve an even better detection rate for longer chain 

detection.  

Our research will help servers to stay safe by detecting long connection chains, 

which imply the existence of intruders. Also it only requires the data at the end of chains, 

so it is easy to implement. Last but not least, the false positive is acceptable along with 

high detection rate. More research is needed on intrusion detection in the future to 

guarantee a safer network.  
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Appendix 

1. Computing the number of crossovers from collected data stored in spreadsheet. 

import sys 
import xlrd 
import string 
 
data = xlrd.open_workbook(sys.argv[1]) 
 
for i in range(1,21): 
    table = data.sheet_by_name("Sheet"+str(i)) 
    nrows = table.nrows 
    count = 0 
    crossover = 0 
    false = 0 
    for r in range(nrows): 
        if table.cell_value(r,23) == 'TRUE': 
            crossover += count%2 
            count = 0 
            continue 
        if table.cell_value(r,23) == 'FALSE': 
            count += 1 
            false +=1 
     
    print "Row # of Sheet" + str(i) + ": " + str(nrows) 
    print "Crossover # of Sheet" + str(i) + ": " +  
          str(false/2 + crossover) 
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2. Computing Inter-command and Intra-command gaps. 

import re 
import sys 
import string 
 
count = 0 
 
f1 = open(sys.argv[1],"r") 
f2 = open(sys.argv[1].rstrip('.txt')+'-IntraGap.txt', 'w') 
f3 = open(sys.argv[1].rstrip('.txt')+'-InterGap.txt', 'w') 
 
for line in f1: 
    Packet = line.split() 
#    print Packet[0], Packet[7] 
    if Packet[7] == 'request' and count == 0: 
        t1 = string.atof(Packet[0]) 
    elif Packet[7] == 'request' and count == 1: 
        IntraGap = str(t2 - t1) 
        t1 = string.atof(Packet[0]) 
        count = 0 
        f2.write(IntraGap+'\n') 
        #        print 'IntraGap = ' 
        #        print IntraGap 
    elif Packet[7] == 'request' and count > 1: 
        t2 = string.atof(Packet[0]) 
        InterGap = str(t2 - t1) 
        count = 0 
        t1 = string.atof(Packet[0]) 
        f3.write(InterGap+'\n') 
        #        print 'InterGap = ' 
        #        print InterGap 
    elif Packet[7] == 'response': 
        t2 = string.atof(Packet[0]) 
        count+=1 
 
f1.close() 
f2.close() 
f3.close() 
 


