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ABSTRACT

Phase retrieval in real or complex Hilbert spaces is the task of recovering a vector, up to an overall

unimodular multiplicative constant, from norms of projections onto subspaces. This dissertation

deals with phase retrieval of normalized vectors after the norms of projections are quantized by

pairwise comparison to retain only one bit of information. In more specific, geometric terms, we

choose a sequence of pairs of subspaces in a real or complex Hilbert space and only record which

subspace from each pair is closer to the input vector. The recovery algorithm we define uses the

qualitative proximity information encoded in the binary measurement of an input vector to assemble

an auxiliary matrix, and then chooses a unit vector in the principal eigenspace of this auxiliary

matrix as the estimate for the input vector.

For this measurement and recovery procedure, we provide a pointwise bound for fixed input

vectors and a uniform bound that controls the worst-case scenario among all inputs. Both bounds

hold with high probability with respect to a choice of subspaces from the uniform distribution

induced by the action of the orthogonal or unitary group. For real or complex vectors of dimension

n, the pointwise bound requires m ≥ Cδ−2n log(n) and the uniform bound m ≥ Cδ−2n2 log(δ−1n)

binary questions in order to achieve a reconstruction accuracy of δ. The accuracy δ is measured by

the operator norm of the difference between the rank-one orthogonal projections corresponding to

the normalized input vector and its approximate recovery.

After establishing the pointwise and uniform error bounds for noiseless binary measurements,

we consider the case of noisy measurements. Noise for a binary-valued measurement takes the form

of bit-flips that corrupt the proximity information encoded in the binary measurement. We show

that our measurement and recovery scheme is robust in the presence of a percentage of adversarial

bit-flips on the order of 1√
n

. We also consider random bit-flips and show in this setting that the

mean squared error of reconstruction decays with respect to the number of projections m on the

order of log(m)
m .
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Chapter 1

Background and Preliminaries

This dissertation primarily deals with one-bit phase retrieval, which is a particular type of problem

in the larger field of signal acquisition and recovery. This chapter gives a brief introduction to the

concepts and mathematical tools needed to understand one-bit phase retrieval. Some knowledge of

linear algebra and probability is assumed.

First, Section 1.1 gives a brief outline of signal processing problems that help motivate the one-

bit phase retrieval problem. In particular, one-bit compressed sensing is presented as an illuminating

example of a signal processing problem that acquires signals through quantized measurements.

Section 1.2 provides a more in-depth look at phase retrieval with non-quantized measurements,

including the types of problems people try to solve in this field and an overview of major results.

In Section 1.3, one-bit phase retrieval is motivated as a natural extension of non-quantized phase

retrieval, and general versions of the problems that are addressed in Chapters 2 and 3 are formally

stated. Section 1.4 discusses the distributions of random variables, vectors, and matrices that we

will make use of, along with concentration inequalities that serve as important probabilistic tools.

Lastly, Section 1.5 discusses how one-bit phase retrieval may be viewed as an encoding and decoding

problem in rate-distortion theory.

Notation

Let F denote the field of real numbers or complex numbers, and define βF = 1
2 if F = R and βF = 1

if F = C. Let TF := {α ∈ F : |α| = 1} be the set of unimodular scalars in F and let Sd−1
F

be the

set of unit-norm vectors in Fd. The set of rank-k orthogonal projection matrices on Fd is denoted
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ProjF(k, d), and the group of unitary matrices on Fd is denoted UF(d). For functions f and g

depending on a real-valued parameter x, the notation f(x) = O(g(x)) as x → a means that there

exists positive numbers M and ε such that |f(x)| ≤ Mg(x) for all |x− a| < ε. For two random

variables X,Y , the notation X
(d)
= Y indicates equality in distribution, i.e., P {X ∈ E} = P {Y ∈ E}

for all measurable sets E.

1.1 Overview of relevant signal processing problems

Signal processing problems deal with acquisition and reconstruction of signals. A signal is repre-

sented by a vector in some Hilbert space which is assumed to be finite-dimensional. Acquisition of a

signal is the process by which an unknown signal is measured and the measurements are recorded.

Signal recovery, or reconstruction, is the inverse problem of determining a signal based on the

recorded measurements acquired from it. Methods for signal acquisition and recovery depend on

the specific type of signal being considered, but they may be broadly classified as linear and non-

linear methods. This section gives a brief overview of some of these methods and related fields

as context for the one-bit phase retrieval problems that are stated in Section 1.3 and addressed in

Chapters 2 and 3.

Linear acquisition and linear recovery with frames

The simplest form of signal acquisition and recovery is based on fundamental principles of linear

algebra that are familiar to most mathematicians. To linearly acquire a signal x ∈ Fd, measurement

devices take one-dimensional linear measurements of x of the form x 7→ 〈x, fj〉 for some vectors

f1, . . . , fm ∈ Fd to yield a measurement vector M(x) = (〈x, fj〉)mj=1 ∈ Fm. Such a measurement

mapM is linear and may be expressed via matrix multiplication: if F is the m× d matrix with f̄j

as its rows, then M(x) = Fx. A linear recovery algorithm would be implemented by a linear map

R : Fm → Fd that is a left inverse forM, i.e., such that R◦M = I where I is the identity map on

Fd. By basic linear algebra, a left inverse R exists if and only if M is injective, which happens if

and only span {f1, . . . , fm} = Fd. A collection of vectors with this property is sometimes referred
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to as a (finite) frame.

Definition 1.1.1. A sequence of vectors F = {f1, . . . , fm} in Fd is called a (finite) frame if

span {f1, . . . , fm} = F
d.

The linear measurement map M mentioned above is injective if and only if the associated

collection of vectors F = {f1, . . . , fm} is a frame. If F is a frame, then there is a canonical linear

reconstruction map R on Ran(M) by setting R(M(x)) = x. Injectivity of M implies this map is

well-defined. To see linearity of R, observe that for any x, y ∈ Fd and a ∈ F

R(aM(x) +M(y)) = R(M(ax+ y)) = ax+ y = aR(M(x)) +R(M(y)).

Extending this definition of R to all of Fm by setting R(z) = 0 for z ∈ Ran(M)⊥ yields a linear

recovery map with the property that R◦M = I. This particular left-inverse forM is implemented

by the matrix (F ∗F )−1F ∗, i.e., R(y) = (F ∗F )−1F ∗y for all y ∈ Fm. Thus, studying linear signal

acquisition schemes that admit linear reconstruction algorithms is equivalent to studying frames of

vectors for Fd.

The smallest frame possible for Fd is a basis, i.e., a maximal set of linearly independent vectors.

In this case, the associated linear measurement map M is invertible and there is a unique linear

reconstruction algorithm given by R =M−1, i.e., R(x) = F−1x. On the other hand, the definition

of a frame allows for larger collections of vectors, which provide redundancy in the acquired linear

measurement M(x) that can lead to robustness of the linear reconstruction algorithm to various

types of error in the measurement process. Different applications encounter different types of errors

in measuring or transmitting signals, which lead to different properties that frames must have to

handle those errors as well as possible.

The study of frames, their properties, and their behavior for signal processing is called frame

theory [32, 60]. Generalizations of frames to collections of subspaces rather than vectors, called
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fusion frames, have been studied in the context of recovery from higher rank linear measurements

[29, 31, 33]. Although this section has only discussed frames for finite-dimensional Hilbert spaces,

historically frame theory began by looking at redundant expansions of signals in infinite-dimensional

Hilbert spaces, for example continuous acoustical signals [28, 42]. Much of frame theory in the finite-

dimensional case is concerned with finding properties of frames that ensure optimal robustness to

certain error models and then constructing frames with those properties. For example, equal-

norm Parseval frames yield the minimum mean-squared error of reconstruction in the presence

of an erasure of one of the linear measurements, i.e., when M(x)j is set to 0 for a single index j

[30, 54, 62]. Burst erasures are another error model that has been studied, leading to associated

frame-theoretic properties for robust recovery [20, 81].

Linear acquisition and nonlinear recovery

In specific applications, nonlinear recovery algorithms using linearly acquired measurements have

proven useful. Nonlinear reconstruction methods can provide improvements over linear methods

when the signals being considered have some added structure that causes them to lie in a subset

of Fd that is not a subspace. For example, in the field of compressed sensing various convex

optimization problems have been shown to allow exact recovery of sparse signals [39, 44, 52].

Definition 1.1.2. A signal x ∈ Fd is called s-sparse if the number of non-zero entries of x is at

most s.

The set of s-sparse signals is not a linear subspace, since the sum of two s-sparse vectors can

have up to 2s nonzero entries. In compressed sensing, it is assumed that measurement devices

can take linear measurements of a sparse signal x ∈ Fd of the form M(x) = (〈x, fj〉)mj=1 for some

vectors {f1, . . . , fm} ⊂ Fd. By using the assumption that the input signals considered are s-sparse

for some s� d, a linear measurement M may be constructed that admits a recovery algorithm R

even if the number of one-dimensional linear measurements is much smaller than the dimension of

the signal, i.e., m� d.
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For example, R can be defined by selecting the minimizer of the convex program

minimize
y∈Fd

‖y‖1

subject to M(y) =M(x).

(1)

If m ≥ Cs log(d/s) and {f1, . . . , fm} are independent standard Gaussian random vectors in Fd,

then with high probability all s-sparse vectors x may be recovered from their linear measurement

M(x) = (〈x, fj〉)mj=1 by finding the minimizer to (1) [39]. The optimization problem given in (1) is

called basis pursuit, and has been shown to be robust to errors in the linear measurement process

[40]. In relevant applications such as Medical Resonance Imaging (MRI), the one-dimensional linear

measurements are taken in sequence, and so reducing the number of necessary measurements to

fewer than the dimension of the signal can result in a dramatic speed-up of the signal acquisition

process [70].

Compressed sensing is closely related to frame theory. Certain classes of signals might not be

sparse in the standard orthonormal basis but are sparse with respect to a redundant frame expan-

sion; if F is a frame with associated matrix F , the linear measurement Fx may be sparse. Signals

with this property can still be recovered by basis pursuit from a small number of measurements

[23, 82].

Nonlinear acquisition of measurements

Recently, there has been interest in studying problems which require nonlinear signal acquisition

methods. For example, in some real-world applications like automatic speech recognition and x-ray

crystallography, instead of acquiring one-dimensional linear measurements 〈x, fj〉, measurement

devices only have access to intensity measurements of the form M(x) = (|〈x, fj〉|2)mj=1 [10, 14,

45, 49, 50, 61, 69, 72, 92]. The problem of reconstructing signals from a collection of intensity

measurements is called phase retrieval. There are many generalizations of phase retrieval and its

related problems, see Section 1.2 for more detail and discussion.
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Another type of nonlinear signal acquisition comes from quantized measurements. Quantization

means that the measurements take values in some finite alphabet, which is required for sending

and representing signals digitally [57]. The most extreme type of quantization that still reveals

information about the input signal uses an alphabet of only two elements, which is called binary

quantization or one-bit quantization. Some analysis and empirical evidence has shown that one-bit

quantization is the optimal quantization scheme in many practical applications with a low signal-

to-noise ratio [68]. Any form of quantization makes exact recovery of all input signals impossible,

as there are only a finite number of outputs in the quantization alphabet. Still, it is possible

to find recovery maps that provide approximate recovery. Linear reconstruction from quantized

frame coefficients has been studied extensively [36, 41, 55, 56, 71, 88]. Both phase retrieval and

quantization of measurements are closely related to the field of quantum state tomography, where

repeated quantum measurements yield frequencies from a discrete probability distribution that can

be used to determine a quantum state [25, 58, 59, 83, 84].

Compressed sensing of sparse signals in Rd is one particular field where binary quantization

of measurements has been studied, yielding recovery guarantees for a computationally feasible

optimization problem. In the most basic setup of one-bit compressed sensing, each one-dimensional

linear measurement 〈x, fj〉 is quantized by applying the signum function, yielding

sgn(〈x, fj〉) =


1 if 〈x, fj〉 ≥ 0

−1 else.

Letting Φ : Rm → {−1, 1}m be the map which applies the signum function to each component, the

binary measurement Φ(M(x)) = (sgn(〈x, fj〉))mj=1 encodes an input signal x ∈ Rd into string of 1’s

and −1’s. Assuming unit-norm input signals in Rd, with sufficiently many such one-bit measure-

ments a sparse input signal can still be approximately estimated from its binary measurement via

a variety of algorithms.

Boufounos and Baraniuk first investigated the one-bit compressed sensing problem in [21]. They
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observed problems with treating one-bit quantization as a special case of the noise models used in

traditional compressed sensing reconstruction algorithms, and ultimately proposed a new algorithm

that seeks a consistent reconstruction, i.e., finds a vector x̂ for which sgn(〈x̂, fj〉) = sgn(〈x, fj〉)

for every j. Their algorithm performed better in experiments than traditional compressed sens-

ing algorithms applied to one-bit measurements. In a follow-up paper, theoretical bounds on the

reconstruction error achieved by consistent reconstruction were derived, and measurement by ran-

dom Gaussian vectors was shown to allow near optimal consistent reconstruction up to logarithmic

factors [64].

Plan and Vershynin provided the first formal error bounds for a computationally feasible algo-

rithm for one-bit compressed sensing in [78] and related papers [77, 79]. Their algorithm yields a

reconstructed signal that is not necessarily consistent with the original one-bit measurements, but

is an accurate estimate for the input signal nonetheless. By relaxing the requirement of consistent

reconstruction, they find a provable and efficiently implementable algorithm.

The reconstruction algorithm studied in [78] estimates a unit vector x from its binary measure-

ment Φ(M(x)) via the convex program

maximize
y

m∑
j=1

Φ(M(x))j 〈y, aj〉

subject to y ∈ K,

(2)

where K is taken to be the convex hull of the set of s-sparse unit vectors. In particular, by letting

m ≥ Cδ−6s log(2d/s) and letting {a1, . . . , am} be independent standard Gaussian random vectors,

then with high probability

‖x̂− x‖2 ≤ δ
√

log(eδ−1)

for all s-sparse unit vectors x, where x̂ is the solution to the optimization problem (2) [78, Theo-

rem 1.3]. The results derived by Plan and Vershynin are actually much more general than the above

statement and include applications to low-rank matrix recovery and other classes of signals. More

recent results have introduced new algorithms that improve the dependence of the reconstruction
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error on the number of bits if the measurement seeks a consistent reconstruction [13, 87, 95].

The main focus of this dissertation is on one-bit phase retrieval, which is similar in some ways

to one-bit compressed sensing. One-bit phase retrieval is a signal recovery problem where the signal

acquisition process has two types of nonlinearity. First, a nonlinear intensity measurement is taken

as in regular phase retrieval. Second, binary quantization reduces the information content of the

intensity measurement to just a single bit. Section 1.3 describes the one-bit phase retrieval problems

that are later solved in Chapters 2 and 3. Section 2.1 presents a signal acquisition method for one-

bit phase retrieval, and Section 2.2 gives its associated signal recovery algorithm. This recovery

algorithm is nonlinear, and involves computing the principal eigenspace of an auxiliary matrix

determined by the one-bit measurements of an input signal.

1.2 Phase retrieval

The phase retrieval problem arises in many mathematical applications whenever an unknown signal

must be exactly reconstructed or accurately estimated from squared magnitudes of linear measure-

ments. Reconstruction and estimation from linear measurements is a well-understood problem, but

taking the squared magnitude of each linear measurement adds a nonlinear twist and requires new

algorithms and proof strategies. This situation was first encountered in crystallography and optics,

where physical measurement devices can actually record the squared modulus of an evaluation of

the Fourier transform of an unknown signal. In these fields, algorithms were developed to recon-

struct signals from such magnitude measurements, along with principles for how many magnitude

measurements are required for unique reconstruction [14, 45, 49, 50, 61, 69, 72, 92]. Reconstruction

based on magnitudes of linear measurements is also encountered in applications such as automatic

speech recognition [15, 80], noise reduction for signal processing [5, 46], and astronomical imaging

[48]. Earlier theoretical work also studied to what extent the modulus of the Fourier transform

could determine signals uniquely [2, 3].

In all of these applications, the unknown signals that are measured are mathematically mod-

eled by vectors in a real or complex Hilbert space H. The Hilbert space H is often assumed
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to be finite-dimensional, i.e., H = Fd where d ∈ N. The linear measurements used are typi-

cally linear functionals of the form x 7→ 〈x, a〉 for some unit vector a ∈ Fd, and the associated

magnitude measurements that are accessible for the phase retrieval problem then have the form

x 7→ |〈x, a〉|2. Higher rank magnitude measurements have also been studied, for example of the

form x 7→ ‖Px‖22 for some orthogonal projection P on Fd [8, 34, 43]. Notice that the formulation of

magnitude measurements in terms of orthogonal projections generalizes the linear functional case,

since |〈x, a〉|2 = ‖Pax‖22 if a ∈ Fd is a unit vector and Pa is the orthogonal projection onto span {a}.

Given a signal x ∈ Fd, notice that for any orthogonal projection P on Fd and any unimodular

constant α ∈ TF that the magnitude measurement of αx satisfies

‖P (αx)‖22 = |α|2 ‖Px‖22 = ‖Px‖22 . (3)

In other words, the vectors x and αx are indistinguishable under the magnitude measurements

used in phase retrieval problems. For this reason, maps of the form x 7→ ‖Px‖22 are called phaseless

measurements: they lose all information about the global phase of the measured signal. Using

phaseless measurements means that it does not make sense to talk about exact reconstruction or

even approximate estimation in Euclidean norm of a signal x as an individual vector, since −x is a

distinct vector that is separated from x by a Euclidean distance of ‖x− (−x)‖2 = 2 but which always

has the same phaseless measurements as x. For this reason, the goal of signal reconstruction from

phaseless measurements must be modified to be reconstruction or estimation of signals in Fd up to

a unimodular multiplicative constant, i.e., up to a global phase factor. Formally, the quotient space

Fd/TF denotes the equivalence classes of vectors in Fd that differ by a unimodular multiplicative

constant in TF: for any x ∈ Fd, its equivalence class is defined by [x] = {αx : α ∈ TF} ∈ Fd/TF.

Remark 1.2.1. There is a natural identification of the quotient space Fd/TF with the space of

positive rank-one Hermitian operators on Fd via the bijection [x] 7→ xx∗. The operator xx∗ is

defined by xx∗(y) = 〈y, x〉x. This is a rank-one operator since Ran(xx∗) = span {x} . The notation

comes from thinking of vectors x ∈ Fd as d×1 matrices, in which case x∗ is the conjugate transpose

9



and the matrix product xx∗ is then a rank-one d×d matrix. The map [x] 7→ xx∗ map is well-defined

since

(αx)(αx)∗ = αᾱxx∗ = |α|xx∗ = xx∗

for all α ∈ TF. It is surjective since all positive rank-one Hermitians X have the form X = xx∗

for some x ∈ Fd [63]. To see injectivity, observe that if X = x1x
∗
1 and X = x2x

∗
2 for some nonzero

x1, x2 ∈ Fd then

‖x2‖22 x2 = x2x
∗
2x2 = Xx2 = x1x

∗
1x2 = 〈x2, x1〉x1 =⇒ x2 =

〈x2, x1〉
‖x2‖22

x1. (4)

Letting α = 〈x2,x1〉
‖x2‖22

, it follows that

X = x2x
∗
2 = |α|2 x1x

∗
1 = |α|2X.

Taking the operator norm of each side shows that |α|2 = 1, hence α ∈ TF. Equation 4 says that

x2 = αx1, and thus [x1] = [x2] by definition of Fd/TF. This shows that the map [x] 7→ xx∗ is

in fact a bijection. The phaseless measurements considered in phase retrieval problems may also

be expressed in terms of these rank-one Hermitians since ‖Px‖22 = tr [Pxx∗] for any x ∈ Fd and

orthogonal projection P on Fd. Henceforth, Fd/TF will be implicitly identified with the space of

positive rank-one Hermitians, and phase retrieval will be formulated in terms of measuring and

reconstructing these operators X ∈ Fd/TF.

Definition 1.2.2. For a collection of orthogonal projections P = {Pj}mj=1 on Fd, the phaseless

measurement associated to P is defined to be the map MP : Fd/TF → Rm given by

MP(X) = (tr [PX])mj=1.

The goal in phase retrieval problems is to use the phaseless measurement of an input signal

MP(X) to completely determine the measured operator X, or at least to determine an estimate
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that is close to X in some metric. This is accomplished by a reconstruction algorithm, which

is a map R : Rm → Fd/TF which takes a phaseless measurement and outputs a positive rank-one

Hermitian.

1.2.1 Exact phase retrieval

In the absence of noise that could perturb the phaseless measurement MP(X) of a signal X ∈

Fd/TF it is desirable to ask for a measurement and reconstruction scheme that recovers the mea-

sured signal exactly. The weakest formulation of this problem deals with exact recovery of a single

input signal.

Problem 1.2.3 (Exact phase retrieval - fixed input). Let X ∈ Fd/TF be an arbitrary input signal.

Choose orthogonal projections P = {Pj}mj=1 on Fd and a reconstruction algorithm R as defined

above such that

R ◦MP(X) = X.

As a stronger version of Problem 1.2.3, one can search for a single collection of projections

and a single reconstruction algorithm that provides exact phase retrieval for all input signals. The

slight change in the order of quantifiers makes the desired property much stronger. A measurement

and reconstruction scheme that provides simultaneous phase retrieval of all inputs is more useful

than one that is only guaranteed to work for a fixed input; once the measurement MP and the

reconstruction procedure R are implemented, they can be used for any encountered unknown signal

without modification.

Problem 1.2.4 (Exact phase retrieval - all inputs). Choose orthogonal projections P = {Pj}mj=1

on Fd and a reconstruction algorithm R as defined above such that

R ◦MP(X) = X

for all X ∈ Fd/TF.
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Exact recovery as in Problem 1.2.4 means that composition of the measurement and recon-

struction maps R ◦MP is the identity on Fd/TF, which implies the phaseless measurement MP

must be injective. On the other hand, if MP is injective, then choosing R =M−1
P would result in

exact recovery. So Problem 1.2.4 is equivalent to finding orthogonal projections P = {Pj}mj=1 such

that the phaseless measurementMP is injective. This is more commonly called the phase retrieval

injectivity problem, and is formally stated below for reference.

Problem 1.2.5 (Phase retrieval injectivity). Classify collections of projections P = {Pj}mj=1 on

Fd such that MP is injective on Fd/TF.

There has been much activity related to the phase retrieval injectivity problem in the last fifteen

years, focusing on finding properties of the collection of projections P that are equivalent to injectiv-

ity ofMP and finding the minimal cardinality out of all collections P that give injectivity on Fd/TF

for a fixed dimension d. The phase retrieval injectivity problem when P is restricted to consist of

only rank-one projections is closely related to frame theory, since span {Ran(P ) : P ∈ P} = Fd is

a necessary condition for MP to be injective.

In the case when F = R, and restricting to only rank-one projections for the phaseless measure-

ment, Problem 1.2.5 has been solved completely: any frame of m = 2d− 1 rank-one projections on

Rd which satisfies the complement property results in a phaseless measurementMP which is injec-

tive [10, Theorem 2.8], and all collections of m < 2d − 1 rank-one projections give a non-injective

phaseless measurement [10, Proposition 2.5]. A collection of rank-one orthogonal projections P

on Rd has the complement property if and only if for every subset S ⊂ P either
∨
P∈S P = I or∨

P∈Sc P = I, where I denotes the identity operator on Fd and
∨

denotes the lattice-theoretic

join of orthogonal projections. This is a straightforward translation of the usual definition of the

complement property for a frame of vectors, found in [10]. In particular, the rank-one projections

associated to a generic choice of 2d − 1 vectors in Fd will have the complement property [10,

Theorem 2.2].

Real phase retrieval injectivity with higher rank projections has also been studied, yielding an

elegant characterization of collections P = {Pj}mj=1 of orthogonal projections of arbitrary ranks that
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yield an injective phaseless measurement: the phaseless measurement MP is injective on Rd/TR

if and only if {Pjx}mj=1 spans the whole space Rd for all x ∈ Rd [43, Theorem 1.1]. Furthermore,

a generic choice of m = 2d − 1 non-trivial projections of any ranks will yield injectivity, which

generalizes the result mentioned previously for a generic choice of rank-one projections [43, Theorem

1.4]. The minimal number of higher rank projections necessary for injectivity has not been settled

except in special cases. If d = 2k + 1 for some k ∈ N, all collections of m < 2d − 1 projections

fail to give injective phaseless measurements, so the minimal number of projections in this case is

in fact 2d− 1 even when allowing higher-rank projections [43, Theorem 1.6]. Further complicating

the picture, there is a collection of m = 6 projections providing injectivity on R4, meaning that

the 2d − 1 is not the minimal number in general for the real case with higher rank projections

[94, Theorem 4.2]. Working with slightly more general phaseless measurements, recent work has

resolved the minimal measurement number in some more specific cases and provided general non-

trivial upper and lower bounds: for example, 6 projections in R4 is now known to be optimal

[93].

For complex signals, even specifying to rank-one projections for the phaseless measurement,

the minimal number of projections required for injectivity of MP is still unknown. That being

said, some bounds on the minimal number have been found and improved over time [10, 35, 93].

It has been shown that m = 4d − 4 generic rank-one measurements yield an injective phaseless

measurement on Cd [35], and a constructive method for choosing 4d − 4 rank-one measurements

that give injectivity on Cd has also been demonstrated [18]. Despite what these results might

indicate, it is also known that m = 4d − 4 is not the minimal number of rank-one projections for

complex signals in general, since a collection of 11 rank-one measurements on C4 has been proven

to yield injectivity [91]. Some general bounds on the minimal number are derived in [93], and the

exact minimal number is determined in some special cases for slightly more general measurements.

The minimal number of projections for an injective phaseless measurement will not play a big

role in one-bit phase retrieval; the above results are stated mainly to serve as a contrast to the

typical results used in one-bit signal processing problems. Whereas solutions to the phase retrieval
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injectivity problem are often constructive and tend to rely on linear algebra or algebraic geometry,

the one-bit phase retrieval results derived in Chapter 2 and Chapter 3 are probabilistic in nature.

1.2.2 Stable phase retrieval from noisy measurements

In practice, requiring exact phase retrieval of a signal is unnecessary or impossible due to the pres-

ence of noise in the phaseless measurement. In this case, knowing the minimal number of projections

to provide injectivity is not particularly useful without guarantees for how well the reconstruction

algorithm performs on noisy measurements. Still, it is desirable to accurately estimate the input

signal from noisy phaseless measurements under suitable assumptions on the level of noise. To

model this scenario, let E : Rm → Rm be a noise map. After taking the phaseless measurement

of a signal MP(X), the noise map is applied yielding the noisy phaseless measurement E ◦ MP

which is then passed through the reconstruction algorithm. There are many different noise models

that can be considered, but for the sake of simplicity consider an additive noise model of the form

E(y) = y+ z for some z ∈ Rm with bounded `1-norm ‖z‖1 < ε, which is a standard noise model for

phase retrieval [26, 67]. To judge the effectiveness of a particular measurement and reconstruction

scheme in the presence of noise, the reconstruction error can be measured with either the operator

norm distance ‖X − Y ‖ or the Hilbert-Schmidt distance ‖X − Y ‖HS =
√

tr [(X − Y )∗(X − Y )].

Problem 1.2.6 (Stable phase retrieval - fixed input). Consider a fixed input signal X ∈ Fd/TF.

For a desired reconstruction accuracy δ > 0 and noise term z ∈ Rm with ‖z‖1 < ε, choose orthogonal

projections P = {Pj}mj=1 and a reconstruction algorithm R as defined above such that

∥∥∥X̂ −X∥∥∥ < δ,

where X̂ = R(MP(X) + z).

Before discussing some of the relevant literature and existing algorithms for stable phase re-

trieval, it is worth stating a stronger version of Problem 1.2.6 that requires uniform reconstruction

of all input signals using a fixed measurement and reconstruction procedure. The desire for such
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a uniform result is motivated by real-world constraints: generating and implementing new set of

projections P for each measured signal is an unnecessary burden if a single P can work for all

signals simultaneously.

Problem 1.2.7 (Uniformly accurate stable phase retrieval). For a desired reconstruction accuracy

δ > 0 and noise term z ∈ Rm with ‖z‖1 < ε, choose orthogonal projections P = {Pj}mj=1 and a

reconstruction algorithm R as defined above such that

∥∥∥X̂ −X∥∥∥ < δ,

for all X ∈ Fd/TF, where X̂ = R(MP(X) + z).

There are many constructions of frames of vectors, or collections of higher-rank projections, that

have been shown to allow stable phase retrieval [8, 9, 11, 19]. Finding solutions to Problem 1.2.6 or

Problem 1.2.7 as stated is already an interesting problem, but there is one additional constraint that

comes with real-world applications: if the solution is to be applied in practice, the reconstruction

algorithm R must be computationally feasible, not abstractly defined and impossible to implement

effectively.

The PhaseLift procedure given in [27] is notable for being the first algorithm proven to provide

stable phase retrieval of fixed input signals via a computationally feasible reconstruction algorithm,

solving Problem 1.2.6 in an efficient way. PhaseLift uses random rank-one projections for the phase-

less measurement and the reconstruction algorithm is implemented through solving a semidefinite

program. The PhaseLift algorithm and its proven guarantees for effectiveness illustrate what solu-

tions to Problems 1.2.6, 1.2.7 and other similar stable recovery problems tend to look like. Some

of the details are provided below as an example.

1.2.3 Example: PhaseLift [26, 27]

Let X ∈ Fd/TF be an arbitrary input signal and let P = {Pj}mj=1 be a collection of rank-one

orthogonal projections on Fd. Given the phaseless measurement b =MP(X), choose R(MP(X))
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to be a minimizer of the semidefinite program

minimize
Y

tr [Y ]

subject to MP(Y ) = b, Y � 0.

(5)

Minimizing the trace promotes low-rank solutions, and if the number of projections m is large

enough then X is the exact solution to the program. In other words, under suitable assumptions

the semidefinite program (5) is a computationally feasible reconstruction algorithm for exact phase

retrieval. This result is stated formally in the below theorem.

Theorem 1.2.8 (Exact phase retrieval via Phaselift). Let X ∈ Fd/TF be an arbitrary input signal

and

m ≥ c0d

where c0 is a dimension-independent constant. If P = {Pj}mj=1 is a collection of rank-one orthogonal

projections chosen independently and uniformly at random, then the minimizer of the semidefinite

program (5) is X with probability at least 1−O(exp (−γm)) for a constant γ > 0.

Suppose the phaseless measurement is further passed through an additive noise map as in

Problem 1.2.6, i.e., yielding a noisy phaseless measurement b = MP(X) + z for some noise term

z ∈ Rm. In this case, the semidefinite program (5) may be modified to deal with the presence of

noise by defining R(MP(X) + z) to be the minimizer X̂ of the `1-minimization problem

minimize
Y

‖MP(Y )− b‖1

subject to Y � 0.

(6)

Like the program in (5), this is a computationally tractable minimization problem. With a large

enough number of projections m, the algorithm (6) yields stable and accurate reconstruction.

Theorem 1.2.9 (Stable phase retrieval via PhaseLift). Let X ∈ Fd/TF be an arbitrary input
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signal, δ > 0 be a desired level of accuracy, and ε > 0 be a noise level. If

m ≥ c0dε
−1δ−1

where c0 is a dimension-independent constant, P = {Pj}mj=1 is a collection of rank-one orthogonal

projections chosen independently and uniformly at random, and z ∈ Rm is an additive error term

with ‖z‖1 < ε, then with probability similar to that in Theorem 1.2.8

∥∥∥X̂ −X∥∥∥
HS

< δ,

where X̂ is the solution to the semidefinite program (6).

Unlike the noiseless case, the minimizer X̂ is not guaranteed to be rank-one, but it can be used

to find a good rank-one estimate for the input X. Since X̂ is a positive Hermitian operator, by

the spectral theorem it may be decomposed as X̂ =
∑d

k=1 λkPk for some λ1 ≥ . . . ≥ λd ≥ 0 and

rank-one orthogonal projections Pk. Taking the largest rank-one component λ1P1 results in a good

rank-one approximation to X.

The PhaseLift procedure may be generalized to higher-rank orthogonal projections while retain-

ing stability in the presence of noise. For any rank 1 ≤ k ≤ d−1, using m ≥ c0d independently and

uniformly random subspaces of rank k yields accurate reconstruction via (6) with high probability

analogously to Theorem 1.2.9 [8, Theorem 5.11]. A modification of the PhaseLift procedure using a

different measurement scheme has been shown to provide uniformly accurate stable phase retrieval,

solving Problem 1.2.7 [67]. A further development shows that solving a semidefinite program is not

even necessary for exact (or stable) phase retrieval of a fixed input: with m ≥ cod log(d) random

rank-one projections, MP is injective (or stable) on Fd/TF with high probability [37]. More in

line with results in Section 1.2.1, there is a deterministic construction of m = 5d − 6 rank-one

projections on Cd for which the PhaseLift algorithm provides an injective phaseless measurement,

and thus exact recovery [66].
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1.3 One-bit phase retrieval

Phase retrieval as in Problem 1.2.4 and Problem 1.2.6 can be thought of as signal recovery from

linear measurements after losing some of the information contained in each measurement in a

nonlinear way; instead of measuring the exact value of each linear functional 〈x, fj〉, only the

squared magnitude |〈x, fj〉|2 is retained, and the original input signal x is still to be determined

from these magnitude measurements up to a unimodular multiplicative constant. In one-bit phase

retrieval, even more information is lost from these magnitude measurements until only a single bit

of information is retained. Examples of quantization methods include comparing each measured

quantity to a fixed threshold or comparing pairs of measured quantities to each other.

One-bit phase retrieval involves two key steps: taking a phaseless binary measurement of the

input signal, and then estimating the input signal based on that binary measurement. The first

step, taking a phaseless binary measurement, may be split further into taking a non-quantized

phaseless measurement as in regular phase retrieval, and then quantizing the measured quantities

to one bit of information, a 1 or a 0. Before giving the general statement of the problem, the various

maps that are used in these steps must be defined.

Let K ⊂ Fd/TF be a set of possible signals, where as before Fd/TF represents the equivalence

classes of vectors in Fd that differ by a unimodular multiplicative constant in F. The quotient

space Fd/TF is identified with the set of positive rank-one Hermitian operators on Fd as discussed

in Remark 1.2.1. For a collection of orthogonal projections (of any ranks) P = {Pj}m
′

j=1 on Fd,

the (non-quantized) phaseless measurement given by P is the map MP : K → Rm′ defined

by MP(X) = (tr [PjX])m
′

j=1, exactly as defined in Definition 1.2.2. In the one-bit phase retrieval

problem, the phaseless measurements are further passed through a binary quantization map

Φ : Rm′ → {0, 1}m. Together, MP and Φ give a phaseless binary measurement.

Definition 1.3.1. For a collection of orthogonal projections P and a binary quantization map

Φ as above, the phaseless binary measurement given by P and Φ is defined to be the map

ΦP := Φ ◦MP .
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In the last step of one-bit phase retrieval, an element of K is selected based on the binary

measurement via an estimation algorithm R : {0, 1}m → K. The output of R based on the

phaseless binary measurement of X is denoted X̂ := R(ΦP(X)) to further simplify notation. The

accuracy of the recovery algorithm R is judged by comparing how close the estimate X̂ is to the

measured signal X in operator norm distance
∥∥∥X̂ −X∥∥∥.

For a given reconstruction algorithm R : {0, 1}m → Fd/TF to provide uniformly accurate

recovery, X̂ = R(ΦP(X)) must be close to X in operator norm for all input signals X, i.e.,∥∥∥X̂ −X∥∥∥ < δ for some desired accuracy δ > 0. If ΦP(X) and ΦP(Y ) are close together for two

distinct input signals X,Y ∈ ProjF(1, d), then ideally X and Y would be close to each other in

operator norm, otherwise the reconstruction algorithm would not be robust under a bit-flip error

that changes ΦP(X) into ΦP(Y ). The Hamming distance is used to measure the distance between

the phaseless binary measurements of different input signals.

Definition 1.3.2. Let ΦP be a phaseless binary measurement. The measurement Hamming

distance associated with ΦP between X and Y is defined to be

dP(X,Y ) := dH(ΦP(X),ΦP(Y ))

where dH denotes the normalized Hamming distance on {0, 1}m defined by

dH(x, y) =
1

m
|{j : xj 6= yj}| .

The value dP(X,Y ) gives the fraction of binary questions in the phaseless binary measurement

that yield different answers for X and Y as inputs. Note that dP is a pseudometric, not a metric,

since distinct input signals can potentially yield identical phaseless binary measurements.

Remark 1.3.3. Suppose K ⊂ Fd/TF is an unbounded signal set. Since ΦP has a finite range of

at most 2m elements, there exists a binary string b ∈ {0, 1}m such that the pre-image Φ−1
P (b) is

unbounded. The recovery algorithm R must assign a single element in K to b, but since Φ−1
P (b)
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is unbounded, for any choice of R(b) there exists some Y ∈ Φ−1
P (b) with operator norm distance

‖Y −R(b)‖ arbitrarily large. In other words, there is no way to accurately estimate all signals in

an unbounded signal from a phaseless binary measurement consisting of a finite number of bits.

For this reason, it is assumed that the norm of the input signal is already known, so that

without loss of generality only unit-norm input signals need to be considered. This assumption is

further justified by the fact that in high dimensions the norm of a random input signal concentrates

near a fixed dimension-dependent value [90]. Notice that for any x ∈ Fd, the operator norm of

its associated positive rank-one Hermitian xx∗ satisfies ‖xx∗‖ = ‖x‖22, so working with unit-norm

vectors x ∈ Sd−1
F

may be phrased as working with positive rank-one Hermitians with unit operator

norm via the identification in Remark 1.2.1. The positive rank-one Hermitians with operator norm

are exactly the rank-one orthogonal projections, so henceforth the space of input signals for one-bit

phase retrieval will always be K = ProjF(1, d) ⊂ Fd/TF.

Principal angles and operator norm distance

After specializing to unit-norm input signals as stated in Remark 1.3.3, the operator norm dis-

tance between two rank-one projections is commonly encountered. For example, a reconstruction

algorithm R outputs a rank-one projection X̂, and the operator norm is used to measure how

close this recovered signal is to the original input X by computing
∥∥∥X̂ −X∥∥∥. The operator norm

distance between two rank-one orthogonal projections X,Y ∈ ProjF(1, d) has the property that

‖X − Y ‖ = sin(θ) where θ is the principal angle between the one-dimensional subspaces Ran(X)

and Ran(Y ) as defined below.

Definition 1.3.4 ([53]). Given a pair of subspaces V,W ⊂ Fd with dim(V ) = k1 and dim(W ) = k2,

the principal angles between θj ∈ [0, π2 ] are recursively defined for j = 1, . . . ,min(k1, k2) by

cos(θj) = max
v∈V,w∈W
‖v‖2=‖w‖2=1

〈v,vi〉=〈w,wi〉=0, i=1,...,j−1

|〈v, w〉| = 〈vj , wj〉 .

The vectors vj and wj are called the principal vectors of V and W respectively.
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The fact that ‖X − Y ‖ = sin(θ) where θ is the principal angle between the ranges of X and Y

follows from a useful fact about the spectral decomposition of X −Y that will also be used in later

chapters.

Lemma 1.3.5. Let X,Y ∈ ProjF(1, d). Then the spectral decomposition of X − Y is

X − Y = sin(θ)(A−B)

where θ is the principal angle between the subspaces Ran(X) and Ran(Y ) and A,B ∈ ProjF(1, d)

satisfy Ran(A) ⊥ Ran(B). In particular,

‖X − Y ‖ = sin(θ).

Proof. If X = Y , then the principal angle in question is θ = 0, and ‖X − Y ‖ = 0 = sin(0) trivially.

Suppose next that X 6= Y . Then (X − Y )z = 0 if and only if Xz = Y z, which happens if and only

if 〈x, z〉 = 〈y, z〉 = 0. Thus ker(X − Y ) = span {Ran(X),Ran(Y )}⊥. Since X − Y is Hermitian, it

follows that Ran(X − Y )⊥ = ker(X − Y ), and hence Ran(X − Y ) = span {Ran(X),Ran(Y )}.

By the spectral theorem and the fact that Rank(X − Y ) = 2 from above, the difference X − Y

may be expressed as as

X − Y = λ1A+ λ2B, (7)

where λ1 ≥ λ2 ∈ R and A,B ∈ ProjF(1, d) with A ⊥ B. Clearly tr [X − Y ] = 0, which implies

λ2 = −λ1 and hence λ2
1 = λ2

2. Furthermore, it follows that

2λ2
1 = λ2

1 + λ2
2 = tr

[
(X − Y )2

]
= tr [X + Y −XY − Y X] = 2(1− tr [XY ]). (8)

Letting x ∈ Ran(X) and y ∈ Ran(Y ) be principal vectors for Ran(X) and Ran(Y ), by definition

〈x, y〉 = cos(θ). Also, since ‖x‖2 = ‖y‖2 = 1, the projections X and Y may be expressed as
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X = xx∗ and Y = yy∗. Thus

tr [XY ] = tr [xx∗yy∗] = tr [y∗xxy∗] = 〈x, y〉2 = cos2(θ).

From (8) it follows that λ2
1 = sin2(θ), and hence λ1 = sin(θ) and λ2 = − sin(θ) since λ1 ≥ λ2 and

λ1 + λ2 = 0.

Also, observe that for a unit-norm input X ∈ ProjF(1, d) and orthogonal projection P ∈

ProjF(k, d), the magnitude measurement tr [PX] = cos2(θ) where θ is the principal angle between

Ran(P ) and Ran(X). If x ∈ Ran(X) and p ∈ Ran(P ) are principal vectors, then PX = pp∗xx∗, so

tr [PX] = tr [pp∗xx∗] = |〈p, x〉|2 = cos2(θ).

Noiseless one-bit phase retrieval

Now that the relevant maps have been defined, the simplest one-bit phase retrieval problem may

be stated: accurate reconstruction of a fixed input signal from a phaseless binary measurement and

reconstruction algorithm.

Problem 1.3.6 (One-bit phase retrieval - fixed input). Let X ∈ ProjF(1, d) be an arbitrary input

signal. For a desired maximum recovery error δ > 0, choose a phaseless binary measurement ΦP

and an estimation algorithm R such that

∥∥∥X̂ −X∥∥∥ < δ.

Solutions to Problem 1.3.6 follow the trend introduced with the PhaseLift algorithm in [27] and

[24] of choosing the phaseless measurement by random selection. Empirical results in [74] show that

traditional algorithms for phase retrieval do not adapt well to binary quantization of measurements

and they instead propose an algorithm based on gradient descent. Results in one-bit compressed

sensing can be applied to Problem 1.3.6 as a special case, with some slight modification of the
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type of measurement used. For example, m = Cδ−4n random one-bit measurements (of the form

X 7→ sign(tr [GjX]) for {Gj}mj=1 independent matrices with independent standard Gaussian entries)

are sufficient to recover X̂ with nuclear norm tr
[∣∣∣X̂∣∣∣] = 1 and Hilbert-Schmidt norm

∥∥∥X̂∥∥∥2

2
≤ 1

such that the Hilbert-Schmidt error satisfies
∥∥∥X̂ −X∥∥∥

HS
< δ [78, Section 3.3]. Another result

on one-bit phase retrieval also gives comparable asymptotics when using measurements based on

comparing pairs of rank-one magnitude measurements [73].

Chapter 2 of this dissertation provides several phaseless binary measurements and an associated

reconstruction algorithm that together solve Problem 1.3.6. The reconstruction procedure studied

there is called Principal Eigenspace Programming (PEP). With high probability, PEP recovers an

estimate X̂ of an input signal X that satisfies
∥∥∥X̂ −X∥∥∥ < δ when m ≥ Cδ−2n log(n) random

projections of rank equal to half the dimension of the signal are selected for the binary phaseless

measurement. Here, C is a constant independent of n and δ. See Theorem 2.4.4 for details. This

is an improvement over [78] and [73] in terms of the number of one-bit measurements sufficient to

guarantee accurate recovery with high probability.

In the same way that Problem 1.2.4 is a stronger version of Problem 1.2.3 and Problem 1.2.7

is a stronger version of Problem 1.2.6, there is a stronger version of Problem 1.3.6 that is of more

practical use: can ΦP and R be selected in such a way that applying the estimation algorithm to

the phaseless binary measurement of X ∈ ProjF(1, d) gives a good approximation for X, for all

X ∈ ProjF(1, d)? In other words, a single phaseless binary measurement and a single reconstruction

method should work for all possible input signals. This is called the uniformly accurate one-bit phase

retrieval problem.

Problem 1.3.7 (Uniformly accurate one-bit phase retrieval). For a desired maximum recovery

error δ > 0, choose a phaseless binary measurement ΦP and an estimation algorithm R such that

∥∥∥X̂ −X∥∥∥ < δ

for all input signals X ∈ ProjF(1, d).
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Uniformly accurate signal reconstruction from one-bit measurements is a relatively new problem.

The most directly related results come from the field of one-bit compressed sensing, where uniformly

accurate reconstruction from one-bit measurements has been studied and recovery guarantees have

been proven to hold [78].

In Chapter 2, after providing a solution to Problem 1.3.6, a similar proof strategy as in [78]

is used to prove that the binary measurement and reconstruction scheme PEP provides uniformly

accurate one-bit phase retrieval of all input signals simultaneously. With high probability, PEP

recovers an estimate X̂ of an input signal X which satisfies
∥∥∥X̂ −X∥∥∥ < δ for all X for a particular

type of phaseless binary measurement of at least m ≥ Cδ−2n2 log(δ−1n) bits. See Theorem 2.5.14

for details. To my knowledge, this is the first solution to Problem 1.3.7. Results in [78] on uniformly

accurate one-bit compressed sensing may be applied to low-rank matrix recovery as a special case

to give a benchmark for one-bit phase retrieval, but it must be noted that the measurements used

in compressed sensing do not fit the phaseless measurement model in phase retrieval problems.

With that being said, our solution to Problem 1.3.7 improves on [78] in how the number of bits in

the binary measurement depends on the desired uniform accuracy.

1.3.1 Noisy one-bit phase retrieval

Like in other signal reconstruction and inverse problems, it is desirable that the reconstruction

algorithm for one-bit phase retrieval be robust under measurement error. For one-bit measurements,

the most common type of error studied is a bit-flip error, which occurs when one or more of the

bits in the binary measurement “flip” from the true value of 1 (or 0) to the incorrect value of 0

(or 1, respectively). Bit-flip errors may be modeled for one-bit phase retrieval by assuming that

the phaseless binary measurement ΦP passes through a bit-flip map FT : {0, 1}m → {0, 1}m

associated to a subset T ⊂ {1, . . . ,m}, defined by

FT (x)j =


1− xj if j ∈ T

xj else.
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The composition FT ◦ ΦP is called the noisy phaseless binary measurement, and denoted by

ΦP,T (X) to simplify notation. To further simplify notation, the reconstruction based on the noisy

phaseless binary measurement of an input X is denoted X̂T := R(ΦP,T (X)).

This dissertation will consider two different noise models for how to select the subset of bit-flips

T for the bit-flip map FT . The first is adversarial noise, which can be though of as “worst case”

bit-flips. For adversarial noise, it is assumed that a certain percentage of the bits could flip, and

control is sought for the maximum error of reconstruction after all bit-flip maps of that size. The

task of performing one-bit phase retrieval of a fixed input vector in the presence of adversarial noise

is stated formally in the problem below.

Problem 1.3.8 (Fixed input one-bit phase retrieval, adversarial noise). Let X ∈ ProjF(1, d) be an

arbitrary input signal. For a desired recovery error δ and a maximum bit-flip ratio τ > 0, choose a

phaseless binary measurement ΦP and an estimation algorithm R such that

∥∥∥X̂T −X
∥∥∥ < δ + r(τ) (9)

for all T ⊂ {1, . . . ,m} with |T | ≤ τm.

We include a term r(τ) in the error bound (9) because adversarial bit-flips may result in in-

creased reconstruction error depending on the ratio of bit-flips performed. Ideally, r(τ) would

depend on the number of bits in the binary measurement m in such a way that r(τ) → 0 as

m→∞, which would mean for any δ0 > 0 the number of bits could be chosen to be large enough

to ensure δ + r(τ) < δ0 on the right-hand side of (9).

A still more difficult problem is to find measurement and reconstruction algorithms that allow

uniformly accurate one-bit phase retrieval as in Problem 1.3.7, but with adversarial bit-flips in the

phaseless binary measurement. This problem is formally stated below.

Problem 1.3.9 (Uniformly accurate one-bit phase retrieval, adversarial noise). For a maximum

recovery error δ and a maximum bit-flip ratio τ > 0, choose a phaseless binary measurement ΦP
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and an estimation algorithm R as defined above such that

∥∥∥X̂T −X
∥∥∥ < δ + r(τ)

for all X ∈ ProjF(1, d) and for all T ⊂ {1, . . . ,m} with |T | ≤ τm.

Solutions to Problems 1.3.8 and 1.3.9 are derived in Chapter 3. These results follow as corol-

laries to the solutions to the noiseless one-bit phase retrieval problems, see Corollary 3.2.1 and

Corollary 3.2.2 for details.

1.4 Tools from probability

This section provides definitions of relevant probability distributions, along with a few important

probabilistic tools and concepts that are used in proofs. The power of probabilistic methods in

signal processing has already been demonstrated in the discussion of phase retrieval in Section 1.2,

where several algorithms were mentioned that choose the orthogonal projections P = {Pj}mj=1 at

random. For a specific example, Theorems 1.2.8 and 1.2.9 both used rank-one projections chosen

independently and uniformly at random from ProjF(1, d). These theorems are phrased in such

a way that the desirable property (exact/stable reconstruction) holds with high probability with

respect to these random projections. This paradigm will be used in Chapter 2 to prove fixed input

and uniform reconstruction guarantees for a one-bit phase retrieval algorithm that also randomly

selects projections for the phaseless measurement. Chapter 3 shows that these random phaseless

measurements are also stable under adversarial and random bit-flips.

Random vectors and related distributions

The concept of random vectors occurs naturally in probability theory; as soon as one investigates

two random variables X and Y on F simultaneously, their joint distribution (X,Y ) on R2 is a

random vector that becomes of interest. An F-valued d-dimensional random vector is a vector

x = (xj) ∈ Fd where each vector component xj is a random variable on F. An F-valued d1 × d2
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random matrix is simply a random vector X = (xj,k) ∈ Fd1×d2 thought of as a d1×d2 matrix. The

basic probabilistic tools and concepts for regular F-valued random variables extend to F-valued

random vectors and matrices. For example, the expectation of a random vector x = (xj) ∈ Fd is

the vector of expected values of its individual entries, i.e., E [x] = (E [xj ]).

The Gaussian distributions are standard examples of random variables, vectors and matrices.

These distributions are defined below, as they are important for constructing other distributions

such as random unit vectors and random orthogonal projections.

Definition 1.4.1. The real-valued Gaussian (or normal) distribution with mean µ and

variance σ2 is the probability distribution on R given by the probability density function

f(t) =
1

σ
√

2π
exp

(
−1

2

(
t− µ
σ

)2
)
.

The notation x ∼ N(µ, σ2) is used to say that x is a real-valued random variable that has the

Gaussian distribution with mean µ and variance σ2.

Definition 1.4.2. A d-dimensional real-valued standard Gaussian random vector is a vector

g = (gj) ∈ Rd where the entries gj are independent and each gj ∼ N(0, 1). A d-dimensional

complex-valued standard Gaussian random vector is a vector g = (gj) ∈ Cd where the entries

gj are complex-valued random variables of the form gj = yj + izj for independent yj ∼ N(0, 1
2) and

zj ∼ N(0, 1
2).

A d1× d2 real-valued standard Gaussian random matrix is a real-valued standard Gaus-

sian random vector in Rd1×d2 thought of as a matrix. A d1×d2 complex-valued standard Gaus-

sian random matrix is a complex-valued standard Gaussian random vector in Cd1×d2 thought of

as a matrix.

An important property of the Gaussian distribution for random vectors is that it is rotationally

invariant, i.e., the distribution is invariant under unitary transformation.

Proposition 1.4.3 (Rotational invariance of standard Gaussian random vector). Let g ∈ Fd be a

standard Gaussian random vector and U ∈ UF(d) be a fixed unitary matrix. Then Ug
(d)
= g.
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In general, the entries of a random vector or random matrix may not be independent of each

other. Several particular types of random vectors and matrices with dependent entries will be of

interest. One important example is the uniform distribution on unit vectors.

Definition 1.4.4. Let g be a standard Gaussian random vector in Fd. Then g
‖g‖2

, is a random

unit vector, called a uniformly distributed unit vector in Sd−1
F

.

Another important one-dimensional distribution used in later chapters is the beta distribution,

which is a probability distribution on the interval [0, 1].

Definition 1.4.5. The beta distribution with parameters a, b > 0 is the probability distribution

on [0, 1] given by the probability density function

f(t) =
1

B(a, b)
ta−1(1− t)b−1,

where B(·, ·) is the beta function defined by

B(a, b) :=

∫ 1

0
ta−1(1− t)b−1 dt.

The notation x ∼ Beta(a, b) is used to say that x is a random variable in [0, 1] that has the beta

distribution with parameters a and b.

The beta distribution arises naturally in the setting of phase retrieval as the distribution of the

squared norm of an orthogonal projection of a uniformly distributed unit vector.

Lemma 1.4.6. Let x ∈ Sd−1
F

be a uniformly distributed unit vector and P ∈ ProjF(k, d) be a fixed

rank-k orthogonal projection on Fd. Then ‖Px‖22 ∼ Beta(βFk, βFd), where βF = 1
2 if F = R and

βF = 1 if F = C.

Proof. By definition, x
(d)
= g
‖g‖2

where g is a standard Gaussian random vector in Fd. The squared

norm of the projection of x can be rewritten using distributional equality to see

‖Px‖22 = 〈Px, Px〉 (d)
=

1

‖g‖2
〈Pg, Pg〉 .
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Let U be the unitary matrix such that U∗PU is the projection onto the span of the first k standard

basis vectors. Then by the rotational invariance of the distribution of g and the fact that P ∗P = P

it follows that

1

‖g‖2
〈Pg, Pg〉 (d)

=
1

‖g‖2
〈PUg, PUg〉 =

1

‖g‖2
〈U∗PUg, U∗PUg〉 =

‖U∗PUg‖22
‖g‖22

.

Expanding this ratio of squared norms in terms of the components of g,

‖U∗PUg‖22
‖g‖22

=

∑k
j=1 |gj |

2∑k
j=1 |gj |

2 +
∑d

l=k+1 |gl|
2
. (10)

If F = R, then the entries gj are independent and gj ∼ N(0, 1) for every j. Thus X =

sumk
j=1 |gj |

2 is chi-squared distributed with k degrees of freedom, i.e., X ∼ χ2(k), and similarly

Y =
∑d

l=k+1 |gl|
2 ∼ χ2(d− k). The ratio X

X+Y is then beta distributed with parameters a = k
2 and

b = d−k
2 . Altogether, this means that

‖Px‖22
(d)
=

∑k
j=1 |gj |

2∑k
j=1 |gj |

2 +
∑d

l=k+1 |gl|
2

=
X

X + Y
∼ Beta

(
k

2
,
d− k

2

)
.

On the other hand, if F = C, then multiplying and dividing by 2 gives us

∑k
j=1 |gj |

2∑k
j=1 |gj |

2 +
∑d

l=k+1 |gl|
2

=

∑k
j=1

∣∣√2gj
∣∣2∑k

j=1

∣∣√2gj
∣∣2 +

∑d
l=k+1

∣∣√2gl
∣∣2 .

By definition, each gj = xj + iyj for independent xj , yj ∼ N(0, 1
2), so

√
2xj ∼ N(0, 1) and

√
2yj ∼

N(0, 1). Since
∣∣√2gj

∣∣2 =
∣∣√2xj

∣∣2 +
∣∣√2yj

∣∣2, it follows that

∑k
j=1

∣∣√2gj
∣∣2∑k

j=1

∣∣√2gj
∣∣2 +

∑d
l=k+1

∣∣√2gl
∣∣2 =

∑k
j=1

(∣∣√2xj
∣∣2 +

∣∣√2yj
∣∣2)∑k

j=1

(∣∣√2xj
∣∣2 +

∣∣√2yj
∣∣2)+

∑d
l=k+1

(∣∣√2xl
∣∣2 +

∣∣√2yl
∣∣2) .

Thus X =
∑k

j=1

(∣∣√2xj
∣∣2 +

∣∣√2yj
∣∣2) is chi-squared distributed with 2k degrees of freedom, i.e.,

X ∼ χ2(2k), and similarly Y =
∑d

l=k+1

(∣∣√2xl
∣∣2 +

∣∣√2yl
∣∣2) ∼ χ2(2(d − k)). The ratio X

X+Y is
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then beta distributed with parameters a = 2k
2 = k and b = 2(d−k)

2 = d− k. Altogether, this means

that

‖Px‖22
(d)
=

∑k
j=1

(∣∣√2xj
∣∣2 +

∣∣√2yj
∣∣2)∑k

j=1

(∣∣√2xj
∣∣2 +

∣∣√2yj
∣∣2)+

∑d
l=k+1

(∣∣√2xl
∣∣2 +

∣∣√2yl
∣∣2) =

X

X + Y
∼ Beta (k, d− k) .

Random unitaries and orthogonal projections

The group of unitary matrices on Fd, denoted UF(d), is a compact group and thus admits a

Haar measure γ with γ(UF(d)) = 1 [51, 65]. The Haar measure has the important property of

being translation invariant, which means that for any measurable subset E ⊂ UF(d) and any

element U ∈ UF(d) the translated sets UE = {UV : V ∈ E} and EU = {V U : V ∈ E} satisfy

γ(UE) = γ(E) = γ(EU). The Haar probability measure on UF(d) is also referred to the uniform

distribution.

Definition 1.4.7. A uniformly distributed unitary matrix U ∈ UF(d) is a unitary matrix

with probability distribution given by the Haar probability measure on UF(d). In other words,

P {U ∈ E} = γ(E)

for all measurable subsets E ⊂ UF(d).

Since UF(d) acts on the space of rank-k orthogonal projection matrices via conjugation, γ

induces a probability measure γ′ on ProjF(k, d): a subset E ⊂ ProjF(k, d) is measurable with

respect to γ′ if and only {U ∈ UF(d) : U∗V U ∈ E} is measurable with respect to γ for any fixed

V ∈ ProjF(k, d), and γ′(E) is defined by γ′(E) := γ ({U ∈ UF(d) : U∗V U ∈ E}) for all measurable

subsets E [8]. This measure γ′ is sometimes referred to as the the uniform probability measure

on ProjF(k, d).
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Definition 1.4.8. A uniformly distributed rank-k projection matrix P ∈ ProjF(k, d) is a pro-

jection picked from the uniform probability measure on ProjF(k, d). In other words,

P {P ∈ E} = γ′(E) := γ ({U ∈ UF(d) : U∗V U ∈ E})

for all measurable subsets E ⊂ ProjF(k, d).

The translation invariance of the Haar measure on the group of unitaries gives the induced

measure on the space of orthogonal projections the property of being rotationally invariant: if P

is uniformly distributed in ProjF(k, d) and U ∈ UF(d) is fixed, then U∗PU
(d)
= P . Conjugation by

the unitary U “rotates” a projection P , in the sense that U∗PU is the orthogonal projection onto

U∗Ran(P ).

There are many equivalent ways to generate a uniformly distributed rank-k projection on Fd.

For example, one can take k Gaussian random vectors in Fd and then form the projection onto

their span. A second way is to take a fixed rank-k projection and conjugate it by a Haar distributed

random unitary U ∈ UF(d). It can be helpful to think of a “uniformly distributed rank-k projection”

as just a “projection onto a uniformly distributed k-dimensional subspace”. There are a few more

ways to generate uniformly distributed random projections and unit vectors worth mentioning,

which are contained in the following lemma.

Lemma 1.4.9. Let x ∈ Sd−1
F

, P ∈ ProjF(k, d), and U ∈ UF(d) each be uniformly distributed as

defined above. Let y ∈ Sd−1
F

and Q ∈ ProjF(k, d) be fixed. Then the following facts hold:

(a) xx∗ is uniformly distributed in ProjF(1, d)

(b) Uy is uniformly distributed in Sd−1
F

(c) U∗QU is uniformly distributed in ProjF(k, d)

(d) I − P is uniformly distributed in ProjF(d− k, d).

Proof. All of these facts are proven by showing the given random vector or matrix satisfies the

rotational invariance property that characterizes the respective uniform distribution.
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For (a), observe first that xx∗ defines a random rank-one orthogonal projection since it is

Hermitian, has range Ran(xx∗) = span {x}, and is idempotent:

(xx∗)(xx∗) = x(x∗x)x∗ = 〈x, x〉xx∗ = ‖x‖22 xx
∗ = xx∗.

If W ∈ UF(d) is an arbitrary unitary, then the rotational invariance of the uniform distribution on

S
d−1
F

yields that

W ∗xx∗W = (W ∗x)(W ∗x)∗
(d)
= xx∗.

Thus the distribution of xx∗ is rotationally invariant, hence xx∗ is uniformly distributed in ProjF(1, d).

For (b), observe first that Uy defines a random unit vector since ‖Uy‖2 = ‖y‖2 = 1 because

U is an isometry. If W ∈ UF(d) is an arbitrary unitary, then the translation invariance of the

uniform distribution on UF(d) implies that WUy
(d)
= Uy. Thus the distribution of Uy is rotationally

invariant, hence Uy is uniformly distributed in Sd−1
F

.

For (c), observe first that U∗QU defines a random rank-k orthogonal projection since it is

Hermitian, has range Ran(U∗QU) = U∗Ran(Q), and is idempotent:

(U∗QU)(U∗QU) = U∗Q(UU∗)QU = U∗Q2U = U∗QU.

If W ∈ UF(d) is an arbitrary unitary, then the translation invariance of the uniform distribution

on UF(d) yields that

W ∗U∗QUW = (UW )∗Q(UW )
(d)
= U∗QU.

Thus the distribution of U∗QU is rotationally invariant, hence U∗QU is uniformly distributed in

ProjF(k, d).

Lastly, for (d), observe that I −P defines a random rank-(d− k) orthogonal projection since it

is Hermitian, has range Ran(I − P ) = Ran(P )⊥, and is idempotent:

(I − P )(I − P ) = I − 2P + P 2 = I − P.
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If W ∈ UF(d) is an arbitrary unitary, then by the translation invariance of the uniform distribution

on ProjF(k, d) it follows that

W ∗(I − P )W = W ∗IW −W ∗PW = I −W ∗PW (d)
= I − P.

Thus the distribution of I − P is rotationally invariant, hence I − P is uniformly distributed in

ProjF(d− k, d).

The rotational invariance of the uniform distribution on ProjF(k, d) is useful for determining

its expectation. The following lemma determines this expectation, and serves as a useful example

of how rotational invariance will be used in proofs.

Lemma 1.4.10. Let P ∈ ProjF(k, d) be uniformly distributed. Then

E [P ] =
k

d
I.

Proof. By the rotational invariance of the unitary distribution on ProjF(k, d), if U ∈ UF(d) is an

arbitrary unitary then U∗PU
(d)
= P . Using the linearity of the expected value, it follows that

E [P ] = E [U∗PU ] = U∗E [P ]U,

or in other words E [P ] commutes with every unitary on Fd. At this point, one could appeal

to Schur’s lemma to say that E [P ] must be a multiple of the identity, E [P ] = λI. Instead, an

elementary proof of this fact for this particular case is provided below for the sake of completion.

If d = 1 then trivially E [P ] = λI for some λ ∈ F, so suppose d > 1. Since P is a random

positive Hermitian operator, E [P ] is Hermitian and may be decomposed according to the spectral

theorem as

E [P ] =
d∑

k=1

λkVk (11)

where λ1 ≥ . . . ≥ λk and Vk ∈ ProjF(1, d). Let {v1, . . . , vk} be an orthonormal basis for Fd with
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vkv
∗
k = Vk, and for each j1 6= j2 let Uj1,j2 be the unitary defined by

Uj1,j2vk =



vj2 if k = j1

vj1 if k = j2

vk else.

From this definition, U∗j1,j2E [P ]Uj1,j2 may be expressed as

U∗j1,j2E [P ]Uj1,j2 = U∗j1,j2

(
d∑

k=1

λkVk

)
Uj1,j2

=
d∑

k=1

λkU
∗
j1,j2VkUj1,j2

= λj1Vj2 + λj2Vj1 +
∑

k 6=j1,j2

λkVk.

Since U∗j1,j2E [P ]Uj1,j2 = E [P ], it follows that

λj1Vj2 + λj2Vj1 = λj1Vj1 + λj2Vj2 . (12)

Applying both sides of (12) to the vector vj1 yields λj1 = λj2 . Since j1 6= j2 were arbitrary indices,

it follows that all eigenvalues of E [P ] are the same, i.e., λk = λ for some λ ∈ R. Thus E [P ] = λI.

To compute λ, the linearity of the trace and the expected value operations show that

λd = tr [λI] = tr [E [P ]] = E [tr [P ]] = k,

and thus λ = k
d .

Concentration of measure for random variables

Concentration of measure is a useful phenomenon that occurs for functions of high-dimensional

random vectors. Essentially, concentration of measure results say that a function f : Fd → F of
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a random variable X ∈ Fd, under suitable regularity assumptions of f and X, will be close to its

expected value with high probability. The classic example of concentration of measure is the law

of large numbers, which is usually stated as follows.

Theorem 1.4.11 (Weak law of large numbers [47]). Let (Xj)j∈N be an infinite sequence of i.i.d.

Lebesgue integrable F-valued random variables with E [Xj ] = µ ∈ F. For each n ∈ N define

X̂n = 1
n

∑n
j=1Xj, the empirical average of the first n random variables. Then for every ε > 0

lim
n→∞

P
{∣∣∣X̂n − µ

∣∣∣ ≥ ε}→ 0.

Under the assumptions of Theorem 1.4.11, let Zn = (X1, . . . , Xn) ∈ Fn and fn : Fd → F be

given by f(x1, . . . , xn) = 1
n

∑n
j=1 xj . Then Zn is a random vector in Fn and X̂n = fn(Zn) may be

thought of as a function of that random vector. Additionally,

E [fn(Zn)] = E

 1

n

n∑
j=1

Xj

 =
1

n

n∑
j=1

E [Xj ] = µ.

In this notation, the weak law of large numbers says that for all ε > 0

lim
n→∞

P {|fn(Zn)− E [fn(Zn)]| ≥ ε} → 0,

i.e., the function fn of the random vector Zn is close to its expected value with high probability in

high dimensions n.

The weak law of large numbers gives an asymptotic statement about concentration of measure

for a specific type of random vector and a specific function (the empirical average) as the dimension

grows to infinity. There are other, non-asymptotic measure concentration results that provide

numerical bounds on the probability in question and show how quickly the probability decays to

zero. A standard example is Chebyshev’s inequality, which describes the concentration of measure

of random variables with respect to their variance.
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Theorem 1.4.12 (Chebyshev’s inequality). Let X be a random variable with E [X] = µ <∞ and

0 < var(X) = σ2 <∞. Then for every t ∈ R

P {|X − µ| ≥ t} ≤ σ2

t2
.

Chebyshev’s inequality can be seen as a quantitative version of the weak law of large numbers

with the added assumption of finite variance: using the notation and assumptions of Theorem 1.4.11

and assuming var(X1) = σ2 < ∞, the empirical average X̂n is a random variable with variance

var(X̂n) = σ2

n . Thus by Chebyshev’s inequality, for any t > 0

P
{∣∣∣X̂n − µ

∣∣∣ ≥ t} ≤ σ2

nt2
.

Since σ2

nt2
→ 0 as n→∞, the weak law of large numbers follows as a consequence.

More powerful concentration inequalities provide bounds on the probability of deviating sub-

stantially from the mean that are sub-exponential in the number of terms in the empirical average.

Of particular importance for the proof strategy in Chapter 2 are the Chernoff inequality and the

Bernstein inequality. These concentration inequalities are key tools in proving concentration results

for one-bit phase retrieval using random projections for the phaseless measurement.

Theorem 1.4.13 (Chernoff inequality for binomial random variables [4, Corollary A.1.7]). Let

X ∼ Binom(m, p). Then for any t > 0

P {|X −mp| ≥ t} ≤ 2 exp

(
−2t2

m

)
.

Observe that if X ∼ Binom(m, p), then E [X] = mp, so Theorem 1.4.13 gives sub-exponential

concentration of binomial random variables around their expected values. If the random variable

1
mX is considered instead, which is the empirical average of a sum of i.i.d. Bernoulli random
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variables, then Theorem 1.4.13 says that

P
{∣∣∣∣ 1

m
X − p

∣∣∣∣ ≥ t} ≤ 2 exp
(
−2mt2

)
.

In other words, as m → ∞ the normalized binomial random variable 1
mX concentrates sub-

exponentially around its expected value p.

Whereas binomial random variables are sums of independent Bernoulli random variables, the

Bernstein inequality can be used to give a more general sub-exponential concentration bound for

sums of bounded random variables.

Theorem 1.4.14 (Bernstein inequality [89, Theorem 1.6.1]). Let X1, . . . , Xm be a finite sequence

of independent random variables with E [Xj ] = 0 and |Xj | ≤ L for all j. Let Z =
∑m

j=1Xj. Then

for any t > 0

P {|Z| ≥ t} ≤ 2 exp

(
− t2

2 var(Z) + 2Lt
3

)
.

The Bernstein inequality may be extended to cover sums of independent random matrices,

rather than just one-dimensional random variables as in Theorem 1.4.14.

Theorem 1.4.15 (Matrix Bernstein inequality [89, Theorem 6.6.1]). Let X1, . . . , Xm be a finite

sequence of independent Hermitian random matrices in Fd×d with E [Xj ] = 0 and ‖Xj‖ ≤ L for all

j. Let Z =
∑m

j=1Xj, and let var(Z) be the matrix variance of the sum defined by

var(Z) :=
∥∥E [Z2

]∥∥ =

∥∥∥∥∥∥
m∑
j=1

E
[
X2
j

]∥∥∥∥∥∥ .
Then the expected value of the norm of Z is bounded by

E [‖Z‖] ≤
√

2v(Z) log(d) +
1

3
L log(d),

and for any t > 0

P {‖Z‖ ≥ t} ≤ 2d exp

(
− t2

2 var(Z) + 2Lt
3

)
.
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Theorem 1.4.14, the Bernstein inequality for one-dimensional random variables, can be seen as

a special case of the matrix Bernstein inequality: real-valued random variables are just random

1×1 Hermitian matrices, the operator norm of a 1×1 matrix is just the absolute value of its single

entry, and the matrix variance of the sum v(Z) is just the regular notion of variance of a random

variable.

The matrix Bernstein inequality will mainly be applied to study the concentration of an em-

pirical average of i.i.d. random Hermitian matrices. The following corollary says that such an

empirical average experiences concentration of measure that is sub-exponential in the number of

i.i.d. copies in the empirical average.

Corollary 1.4.16. Let X1, . . . , Xm be a finite sequence of i.i.d. Hermitian random matrices in

Fd×d with E [Xj ] = 0 and ‖Xj‖ ≤ L for all j. Let Ẑ = 1
m

∑m
j=1Xj. Then

E
[∥∥∥Ẑ∥∥∥] ≤

√
2
∥∥E [X2

1

]∥∥ log(d)

m
+
L log(d)

3m

and for any t > 0

P
{∥∥∥Ẑ∥∥∥ ≥ t} ≤ 2d exp

(
− mt2

2
∥∥E [X2

1

]∥∥+ 2Lt
3

)
.

Proof. Let Yj = 1
mXj . Then E [Yj ] = 0 and ‖Yj‖ ≤ L

m for all j, and Ẑ =
∑m

j=1Xj . Also, using the

fact the Xj are i.i.d. it follows that

v(Ẑ) =

∥∥∥∥∥∥
m∑
j=1

E
[
Y 2
j

]∥∥∥∥∥∥ = m
∥∥E [Y 2

1

]∥∥ =
1

m
E
[
‖X1‖2

]
.

The results follow by applying Theorem 1.4.15 for Ẑ.

The matrix Bernstein inequality may be generalized even further to non-Hermitian and non-

square matrices, see [89, Theorem 6.1.1], but the Hermitian case will be sufficient to prove the

measure concentration results needed for one-bit phase retrieval.
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1.5 Rate-distortion theory and an additional noise model

The one-bit phase retrieval problems of Section 1.3 and other one-bit signal recovery problems

such as one-bit compressed sensing can be interpreted in an information theoretic context, making

use of concepts from rate-distortion theory and source-channel coding. Rate-distortion theory was

first introduced by Shannon to study how well signals drawn from particular distributions could

be compressed by measuring the number of bits necessary to achieve a given level of distortion in

the recovery procedure [85, 86]. These concepts are briefly discussed in this section, and used to

motivate an additional noise model that will be consider in Chapter 3.

In the language of rate-distortion theory, a phaseless binary measurement ΦP defined as in

Section 1.3 encodes an input signal X ∈ ProjF(1, d) and the reconstruction algorithm R decodes

the binary string ΦP(X) to yield an approximation for the input signal. If P = {Pj}mj=1 is a

collection of orthogonal projections on Fd, then the distortion of the measurement and recovery

scheme R ◦ ΦP is the mean squared error

D(ΦP ,R) := EX
[∥∥∥X̂ −X∥∥∥2

]
,

where X ∈ ProjF(1, d) is uniformly distributed and X̂ = R ◦ ΦP(X) is the approximate recovery

of X. The mean squared error is a common measure of distortion of an encoding and decoding

scheme, and is often used for video or image compression [16, 75].

More generally, the binary string ΦP is passed through a noisy channel before the reconstruction

algorithm is applied. As discussed in Section 1.3, the noise is implemented via a bit-flip map

FT : {0, 1}m → {0, 1}m associated to a subset T ⊂ {1, . . . ,m} that flips the components of a

binary string corresponding to the indices in T . The recovered signal based on the phaseless binary

measurement that has been flipped on index set T is denoted X̂T = R(FT (ΦP(X))). Unlike the

adversarial noise model described in Problems 1.3.8 and 1.2.7, in rate-distortion theory the noisy

channel, thought of as the environment the encoded signal is transferred through, is typically

assumed to act randomly and not in an adversarial way. This is modeled by selecting the bit-flip
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index set T randomly in such a way that each index j ∈ {1, . . . ,m} is included in T independently

with some fixed probability τ . This distribution on subsets of {1, . . . ,m} is referred to as the

binomial distribution with probability τ . The distortion of a measurement and recovery scheme

using a fixed collection of orthogonal projections P is then computed by also averaging over these

binomially distributed bit-flip sets to define

D(ΦP ,R, τ) := EX,T
[∥∥∥X̂T −X

∥∥∥2
]
.

In order to gauge the effectiveness of a binary quantization map Φ and reconstruction algorithm

R under the presence of random bit-flips with probability τ , it is useful to study the average

distortion as the projections P = {Pj}mj=1 are chosen independently and uniformly at random.

This approach avoids questions about the optimality of a particular collection of projections and

instead focuses on the performance of the measurement and reconstruction scheme for random

projections. The task of devising a measurement and reconstruction scheme for one-bit phase

retrieval that achieves an average mean squared error distortion is stated formally below.

Problem 1.5.1 (One-bit phase retrieval average distortion, random i.i.d. bit-flips). Let δ > 0 be a

desired distortion level. Choose m, a binary quantization map Φ, and a recovery algorithm R such

that

EP [D(ΦP ,R, τ)] = EX,T,P
[∥∥∥X̂T −X

∥∥∥2
]
< δ,

where X ∈ ProjF(1, d) is uniformly distributed, T ⊂ {1, . . . ,m} is binomially distributed with proba-

bility τ , P = {Pj}mj=1 is a sequence of independent and uniformly distributed orthogonal projections

on Fd, and X̂T = R(FT (ΦP(X))).

The measurement and reconstruction scheme for noiseless one-bit phase retrieval in Chapter 2

is shown in Section 3.3 to solve 1.5.1. The number of bits-per-dimension, m
d , sufficient to achieve

a mean squared error of δ is used to judge the effectiveness of this scheme. In the language of

rate-distortion theory: the number of bits-per-dimension is the rate and the mean squared error is
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the distortion, and reconstruction algorithms are judged by the rate m
d required to achieve a given

distortion δ.
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Chapter 2

Uniformly Accurate

One-Bit Phase Retrieval

This chapter addresses the task of performing approximate phase retrieval from phaseless binary

measurements that reveal qualitative information about the measured signal. For this chapter, it is

assumed that the phaseless binary measurement is always obtained without any bit-flip errors. See

Chapter 3 for the extension to the noisy measurement case with a few different noise models. Addi-

tionally, see Section 1.2 for an overview of phase retrieval, Section 1.3 for the basic definitions and

problems of one-bit phase retrieval, and Section 1.4 for some definitions and tools from probability

theory that will be referenced in proofs throughout this chapter.

Section 2.1 discusses a few types of binary questions that can be used to form a phaseless binary

measurement. In particular, magnitude comparison measurements are defined, a type of phaseless

binary measurement where each bit is determined by comparing two magnitudes tr [P1X] and

tr [P2X] and recording which is larger. Two specific ways to generate random orthogonal projections

for a magnitude comparison measurement are identified: independent pairs, and complementary

pairs.

Section 2.2 presents an algorithm called Principal Eigenspace Programming (PEP) that per-

forms uniformly accurate one-bit phase retrieval, solving Problem 1.3.7. PEP may be implemented

by finding the maximizer of a computationally tractable semidefinite program. This algorithm is

based on selecting random projections P for the phaseless binary measurement and assembling

an auxiliary matrix Q̂P(X) based on the quantized magnitudes that in expectation has the input
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signal X as its principal eigenprojection.

Section 2.3 computes the expectation of the auxiliary matrix Q̂P(X) used in PEP. The spectral

decomposition of this matrix is directly related to the accuracy of PEP, and it varies depending

on the phaseless binary measurement used to construct Q̂P(X). The spectral decomposition is

computed for magnitude comparison measurements associated to independent or complementary

pairs of projections.

Section 2.4 shows the following pointwise result: for any fixed X ∈ ProjF(1, 2n) and any

δ > 0, a random magnitude comparison measurement ΦP associated to either independent or

complementary pairs of projections gives ΦP(X) for which PEP yields a solution X̂ that satisfies∥∥∥X̂ −X∥∥∥ < δ with high probability. See Theorem 2.4.4 for details. This result solves the one-

bit phase retrieval problem for fixed input signals, Problem 1.3.6. Measure concentration results

described in Section 1.4 are used to show that PEP works with high probability with respect to

the choice of random projections.

Much of the effort in Section 2.5 is directed toward getting uniform results from the point-

wise one given by Theorem 2.4.4. This section specifies to complementary magnitude comparison

measurements associated to random half-dimensioned projections. The uniform result derived says

that for any δ > 0, m may be selected large enough so that a collection of independent uniformly

distributed half-dimensioned projections P = {Pj}mj=1 will, with high probability, yield comple-

mentary magnitude comparison measurements ΦP(X) for every X ∈ ProjF(1, 2n) for which the

solution X̂ to PEP satisfies
∥∥∥X̂ −X∥∥∥ < δ. See Theorem 2.5.14 for details. This result solves

the uniformly accurate one-bit phase retrieval problem, Problem 1.3.7. According to the uniform

result, a large enough random collection of projections has the property that every signal is ap-

proximately recoverable up to an error of δ from the complementary magnitude comparisons using

those projections.

Most work in this chapter may be found in my paper with Bernhard Bodmann [38], which has

been submitted for publication. Specifically, [38] dealt with complementary magnitude comparison

measurements for half-dimensioned projections as defined in Definition 2.1.6, and derived pointwise

43



and uniform guarantees for this measurement model.

2.1 Phaseless binary measurement models

A solution to either of the noiseless one-bit phase retrieval problems, Problem 1.3.6 for recovery of

a fixed input or Problem 1.3.7 for uniformly accurate recovery of all inputs, must first decide upon

a phaseless binary measurement ΦP as in Definition 1.2.2. This section examines a few possible

ways to take a random phaseless binary measurement where each bit of the output has the same

information capacity. As mentioned in Remark 1.2.1 and Remark 1.3.3, the equivalence class of

a normalized input signal x ∈ Sd−1
F

is identified with the rank-one orthogonal projection onto its

span, denoted xx∗ ∈ ProjF(1, d). This identification is used to provide geometric intuition for the

qualitative information recorded in each individual one-bit measurement.

Types of binary questions

The phaseless binary measurements considered in this dissertation depend upon a random selection

of projections P in such a way that for every X ∈ ProjF(1, d) the entries (ΦP(X)j)
m
j=1 are indepen-

dent and identically distributed. In other words, each bit of the binary string ΦP(X) has the same

information capacity. One way to accomplish this is to assume that the projections P = {Pj}mj=1

are identically distributed, and that each entry of the phaseless binary measurement has the form

ΦP(X)j = Φ′(MPj (X)) where Pj ⊂ P with |Pj | = s for all j, Pi ∩ Pj = ∅ for all i 6= j, Pi and Pj

are independent for every i 6= j, and Φ′ : [0, 1]s → {0, 1}. A map like Φ′ ◦MPj is called a binary

question, because it takes the s magnitude measurements MPj (X) and outputs a binary value.

To define a phaseless binary measurement of this form requires defining the binary questions it is

comprised of.

One natural binary question compares a pair of traditional phase retrieval magnitude measure-

ments to each other and records which one is larger.

Definition 2.1.1. Let P1 ∈ ProjF(k1, d) and P2 ∈ ProjF(k2, d) be orthogonal projections. The

magnitude comparison associated to P1 and P2 is the map φP1,P2 : ProjF(1, d) → {0, 1} given
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by

φP1,P2(X) =


1 if tr [P1X] ≥ tr [P2X]

0 else.

If φP1,P2(X) = 1, then P1 is called the projection in {P1, P2} that is proximal to X.

Recall that if P ∈ ProjF(k, d) and X ∈ ProjF(1, d), then tr [PX] = cos2(θ) where θ is the

principal angle between the subspaces Ran(P ) and Ran(X). The principal angle is a way to measure

the distance between subspaces, see Definition 1.3.4 and the surrounding discussion for details.

Thus, a magnitude comparison φP1,P2 provides a simple way to record qualitative information about

the proximity of Ran(X) to a pair of subspaces Ran(P1) and Ran(P2). Specifically, φP1,P2(X) asks

“Is Ran(X) closer to Ran(P1) than to Ran(P2)?”, and records the answer “Yes” as a 1 and “No” as

a 0. Magnitude comparisons associated to pairs of rank-one projections were used in [73] to prove

error bounds for one-bit phase retrieval of fixed input signals.

As a special case, one can consider magnitude comparisons between complementary projections,

i.e., projections P1, P2 with P1 + P2 = I.

Definition 2.1.2. Let P ∈ ProjF(k, d) be an orthogonal projections. The complementary mag-

nitude comparison associated to P is the binary question φP := φP,I−P .

A complementary magnitude comparison φP asks the question “Is Ran(X) closer to Ran(P )

than to its orthogonal complement Ran(I−P )?”, and records the answer “Yes” as a 1 and “No” as a

0. Since tr [PX]+tr [(I − P )X] = tr [X] = 1 for all X ∈ ProjF(1, d) and projections P ∈ ProjF(k, d)

of any rank, tr [PX] ≥ tr [(I − P )X] if and only if tr [PX] ≥ 1
2 . In other words, the complementary

magnitude comparison quantizes the magnitude measurement tr [PX] by applying a threshold at

1
2 , i.e.,

φP (X) :=


1 if tr [PX] ≥ 1

2

0 else.

(13)

Other threshold values may also be used to quantize magnitude measurements.
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Definition 2.1.3. Let P ∈ ProjF(k, d) be an orthogonal projections. The γ-thresholding ques-

tion associated to P is the binary question ϕP,γ : ProjF(1, d)→ {0, 1} given by

ϕP,γ(X) :=


1 if tr [PX] ≥ γ

0 else.

From the above discussion, it follows that φP = ϕP, 1
2
. Another natural threshold value for

γ is the average value of the magnitude measurement tr [PX] for a uniformly distributed input

X ∈ ProjF(1, d).

Definition 2.1.4. Let P ∈ ProjF(k, d) be an orthogonal projection. The average value thresh-

olding question associated to P is the binary question ϕP := ϕP, k
d

.

Observe that if X ∈ ProjF(1, d) is a uniformly distributed rank-one orthogonal projection and

P ∈ ProjF(k, d) is fixed, then the average value of tr [PX] is precisely k
d . To see this, first observe

that by linearity of the expected value E [tr [PX]] = tr [PE [X]]. By Lemma 1.4.10 it follows that

E [X] = 1
dI, thus

tr [PE [X]] =
1

d
tr [P ] =

k

d
,

as claimed. Thus ϕP quantizes the magnitude measurement tr [PX] by comparing it to the thresh-

old E [tr [PX]], as its name “average value thresholding question” suggests. Put another way, ϕP

asks the question “Is tr [PX] larger than its average if X were uniformly distributed?”, and the

answer “Yes” is encoded as a 1 and “No” is encoded as a 0.

If X ∈ ProjF(1, d) and P ∈ ProjF(k, d) are both uniformly distributed, and Y ∈ ProjF(1, d) and

Q ∈ ProjF(k, d) are fixed, then tr [PY ]
(d)
= tr [QX]. This holds by using the rotational invariance

of the uniform distributions for orthogonal projections and the cyclic property of the trace: if U ∈

UF(d) is a Haar distributed random unitary, then P
(d)
= U∗QU and X

(d)
= UY U∗ by Lemma 1.4.9,

and so

tr [PY ]
(d)
= tr [U∗QUY ] = tr [QUY U∗]

(d)
= tr [QX] .
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Hence, ϕP may also be interpreted as asking the question “Is tr [PX] larger than its average if P

were uniformly distributed?” and recording the answer in a binary value.

This dissertation will not investigate thresholding quantization in full generality, only in the

specific case of γ = 1
2 when it coincides with complementary magnitude comparisons as mentioned

above. In particular, if P ∈ ProjF(n, 2n) then the complementary magnitude comparison φP , the

1
2 -thresholding question ϕP, 1

2
, and the average value thresholding question ϕP all coincide.

Phaseless binary measurements via magnitude comparison

The goal of this chapter is to show that accurate phase retrieval may be achieved with the qualitative

proximity information gained from a sufficiently large set of binary questions. The results derived

are for phaseless binary measurements for that are formed by taking magnitude comparisons as

defined in Definition 2.1.1 for many different pairs of projections.

Definition 2.1.5. If P = {Pj}2mj=1 is a collection of orthogonal projections on Fd, then the

magnitude comparison measurement associated to P is the phaseless binary measurement

ΦP : ProjF(1, d)→ {0, 1}m defined by

ΦP(X)i = φPi,Pm+i(X)

for each i = 1, . . . ,m. In other words,

ΦP(X)i =


1 if tr [PiX] ≥ tr [Pm+iX]

0 else.

Magnitude comparison measurements are a particular choice of ΦP that fit the general definition

of a phaseless binary measurement as given in Definition 1.2.2. As a special case, one can consider

magnitude comparison measurements associated to complementary pairs of projections.
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Definition 2.1.6. If P = {Pj}mj=1 is a collection of orthogonal projections on Fd, the complemen-

tary magnitude comparison measurement associated to P is the phaseless binary measurement

ΦP : ProjF(1, d)→ {0, 1}m defined by

ΦP(X)i = φPi,I−Pi(X)

for each i = 1, . . .m. In other words,

ΦP(X)i =


1 if tr [PiX] ≥ tr [(I − P )X]

0 else

=


1 if tr [PiX] ≥ 1

2

0 else.

This corresponds to the magnitude comparison measurement associated to the collection of projec-

tions

P ∪ (I − P) = {P1, . . . , Pm, I − P1, . . . , I − Pm}.

Measurement by random projections

Due to the absence of an intuitive way to construct “optimal” collections of orthogonal projections

for magnitude comparison measurements, the projections will be chosen uniformly at random and

results will be stated with respect to this probability distribution. The uniform probability measure

on ProjF(k, d) is induced by the Haar measure of the unitary group UF(d), and is characterized

by the property of being rotationally invariant. In other words, if P is uniformly distributed in

ProjF(k, d) then for any U ∈ UF(d) the random projection UPU∗ satisfies UPU∗
(d)
= P . See

Section 1.4 for more details, such as how to generate a uniformly distributed orthogonal projection

matrix.

Two methods of selecting uniformly distributed orthogonal projections for a magnitude com-

parison measurement will be considered for the pointwise results derived in Section 2.4. For the

first, all projections are assumed to have the same rank and be independent, i.e., P = {Pj}2mj=1 is

an independent sequence of uniformly distributed projections in ProjF(k, d). The second model
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chooses m independent projections of a fixed rank for a complementary magnitude comparison

measurement. By (13), this second model is equivalent to thresholding the magnitudes at 1
2 . Both

of these methods result in a phaseless binary measurement ΦP where the entries of ΦP(X) are i.i.d.

for each X ∈ ProjF(1, d), i.e., each entry carries the same information capacity. In Section 2.5,

only complementary magnitude comparison measurements associated to uniformly distributed half-

dimensioned projections will be considered.

2.2 Estimation algorithm - Principal Eigenspace Programming (PEP)

The overarching goal of this chapter is to show that the outcome of a phaseless binary measurement

can be used to accurately and uniformly estimate all input signals via a computationally tractable

reconstruction algorithm. This section defines the particular reconstruction algorithm R that

will be used for estimation of signals from a magnitude comparison measurement as defined in

Definition 2.1.5.

Suppose an unknown input signal X ∈ ProjF(1, d) is measured with a magnitude comparison

measurement ΦP associated with a collection of random orthogonal projections P to obtain the

binary vector ΦP(X). The information gained from these measurements will not in general com-

pletely determine the rank-one projection X corresponding to the input signal: in fact, the sets

Φ−1
P ({y}) for y ∈ {0, 1}m partition ProjF(1, d), and many of these preimages can consist of infinitely

many signals that all yield the same phaseless binary measurement. Still, with enough binary ques-

tions the measurement ΦP(X) may be used to construct a projection X̂ which approximates X.

A consistent reconstruction would seek an element X̂ in the feasible set, that is, the set of all Y

consistent with the binary measurement in the sense that ΦP(Y ) = ΦP(X) [22]. A natural error

bound for such a reconstruction strategy would then result from the diameter of the feasible set,

which intuitively will be small if P is suitably large and uniformly distributed.

The reconstruction method considered in this dissertation relaxes the perfect consistency condi-

tion, but still achieves accurate recovery with a computationally feasible semidefinite programming

algorithm. The approximate reconstruction of X is conveniently described in terms of auxiliary
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projections obtained from the binary measurement ΦP(X).

Definition 2.2.1. Given an input signal X ∈ ProjF(1, d) and a magnitude comparison measure-

ment ΦP associated to orthogonal projections P = {Pj}2mj=1, the proximal projections are defined

to be P̂j(X) := ΦP(X)jPj + (1− ΦP(X)j)Pm+j. In other words,

P̂j(X) :=


Pj if tr [PjX] ≥ tr [Pm+jX]

Pm+j else.

The empirical average of the proximal projections is defined to be

Q̂P(X) :=
1

m

m∑
j=1

P̂j(X).

In other words, P̂j(X) picks out of the two options Pj and Pm+j the projection that is proximal

to X in the sense of Definition 2.1.1. If ΦP is a complementary magnitude comparison measurement

associated to orthogonal projections P = {Pj}mj=1, then by definition Pm+j = I − Pj , and so

P̂j(X) =


Pj if tr [PjX] ≥ 1

2

I − Pj else.

Given a sequence P = {Pj}mj=1, the binary vector ΦP(X) is encoded into the sequence of proximal

projections {P̂j(X)}mj=1, and Q̂P(X) is the empirical average of this auxiliary sequence.

The recovery algorithm takes the binary measurement ΦP(X) and outputs X̂ := R(ΦP(X))

which is the rank-one orthogonal projection onto the eigenspace of Q̂P(X) corresponding to the

largest eigenvalue.

Definition 2.2.2. Given an input signal X ∈ ProjF(1, d) and a magnitude comparison measure-

ment ΦP associated to orthogonal projections P = {Pj}2mj=1, Principal Eigenspace Program-

ming (PEP) is the reconstruction algorithm R defined by R(ΦP(X)) = X̂ where X̂ is a rank-one

orthogonal projection onto the principal eigenspace of Q̂P(X).
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This choice of X̂ is the solution to the semidefinite program

maximize
Y

tr
[
Q̂P(X)Y

]
subject to Y � 0, tr [Y ] ≤ 1.

(14)

Finding the maximizer to (14) is referred to as Principal Eigenspace Programming (PEP) be-

cause it amounts to maximizing the Rayleigh quotient [63, Section 4.2] for Q̂P(X), which finds

its principal eigenspace. This special class of semidefinite programs can be implemented efficiently

[76, Chapter 4]. To be more specific, X̂ is given by finding a unit eigenvector corresponding to the

largest eigenvalue x̂ = arg maxu∈Sd−1
F

〈
Q̂P(X)u, u

〉
and then setting X̂ = x̂x̂∗.

Since Q̂P(X) is a positive self-adjoint operator, it may be decomposed according to the spectral

theorem as a linear combination of mutually orthogonal rank-one projections Q̂P(X) =
∑2n

i=1 λiEi,

where λ1 ≥ λ2 ≥ . . . ≥ λ2n ≥ 0. Thus, any positive self-adjoint trace normalized operator with

range contained in the principal eigenspace of Q̂P(X) is a solution to (PEP). If in addition λ1 is

strictly larger than λ2 (which happens with probability 1 for our random measurement models),

then its principal eigenspace is one-dimensional, and so X̂ = E1 is the unique solution to (PEP).

Corollary 2.3.7 will show that E
[
Q̂P(X)

]
= µ1X + µ2(I − X) with µ1 > µ2, i.e., the input

signal X is “on average” the principal eigenspace of Q̂P(X). The matrix Bernstein inequality,

Theorem 1.4.15, is used to show for large m that Q̂P(X) concentrates around its expectation, and

this concentration passes to the principal eigenspace to show X̂ ≈ X. The spectral gap µ1 − µ2 of

E
[
Q̂P(X)

]
measures how well on average PEP can distinguish X from other rank-one projections,

and will play an important role in proving reconstruction guarantees for PEP and establishing its

robustness to noise.

2.3 Spectral decompositions for PEP

In this section, the expectation of the empirical average of proximal projections, E
[
Q̂P(X)

]
, is com-

puted for magnitude comparison measurements comprised of independent or complementary pairs

of projections. Recovery guarantees for PEP will rely in large part on the spectral decomposition

51



of E
[
Q̂P(X)

]
.

First, a simple fact is shown about the distribution of the non-quantized phaseless measurement

tr [PX] for a fixed input signalX and random rank-k orthogonal projection. Since tr [PX] = cos2(θ)

where θ is the principal angle between Ran(X) and Ran(P ), this lemma can also be interpreted as

giving the distribution of the cosine squared of the principal angle between a random k-dimensional

subspace and a fixed one-dimensional subspace in Fd.

Lemma 2.3.1. Let X ∈ ProjF(1, d) be fixed and P ∈ ProjF(k, d) be uniformly distributed. Then

tr [PX] ∼ Beta(βFk, βF(d− k)).

Proof. Let x ∈ Ran(X) with ‖x‖2 = 1, which implies xx∗ = X. Then we may rewrite tr [PX] in

terms of x as tr [PX] = ‖Px‖22. Recall from Lemma 1.4.9 that if U ∈ UF(d) is uniformly distributed

and P ′ ∈ ProjF(1, d) is fixed, then U∗P ′U
(d)
= P . In particular, this means that

‖Px‖22
(d)
=
∥∥U∗P ′Ux∥∥2

2
=
∥∥P ′Ux∥∥2

2
,

where the last equality follows by the fact U∗ is a unitary matrix and hence an isometry. Altogether,

these facts tell us that

tr [PX]
(d)
=
∥∥P ′Ux∥∥2

2
.

By Lemma 1.4.9 we know that Ux is a uniformly distributed unit vector, hence ‖P ′Ux‖22 is the

squared-norm of a fixed projection of a uniformly distributed unit vector in Sd−1
F

. Thus Lemma 1.4.6

implies ∥∥P ′Ux∥∥2

2
∼ Beta(βFk, βF(d− k)).

Combining all these steps then shows

tr [PX]
(d)
=
∥∥P ′Ux∥∥2

2
∼ Beta(βFk, βF(d− k)).
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The expectation of the empirical average of proximal projections associated to a magnitude

comparison measurement can now be derived from the distribution of tr [PX] given in Lemma 2.3.1.

First, consider the case where each magnitude comparison comes from an i.i.d. pair of uniformly

distributed projections.

Proposition 2.3.2. Let d ≥ 2 and X ∈ ProjF(1, d) be fixed. If ΦP is the magnitude comparison

measurement associated to an independent sequence of uniformly distributed orthogonal projections

P = {Pj}2mj=1 ⊂ ProjF(k, d), then

E
[
Q̂P(X)

]
= µ1X + µ2(I −X)

where

µ1 =
k

d
+

2B(2βFk, 2βF(d− k))

βFd B(βFk, βF(d− k))2
, µ2 =

k

d
− 2B(2βFk, 2βF(d− k))

βFd(d− 1) B(βFk, βF(d− k))2
.

Proof. By definition of Q̂P(X) from Definition 2.2.1 and the fact that the P ′js are identically

distributed, we have

E
[
Q̂P(X)

]
= E

[
P̂1(X)

]
.

If U ∈ UF(d) is an arbitrary unitary that fixes X, i.e., such that U∗XU = X, then the distribution

of P̂1(X) is invariant under conjugation by U . Indeed, by definition of P̂1(X), the cyclic property

of the trace, and the rotational invariance of the uniform distribution on orthogonal projections

U∗P̂1(X)U =


U∗P1U if tr [P1X] ≥ tr [Pm+1X]

U∗Pm+1U else

=


U∗P1U if tr [U∗P1UX] ≥ tr [U∗Pm+1UX]

U∗Pm+1U else

(d)
= P̂1(X).
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This implies that the expectation of P̂1(X) is invariant under conjugation by any unitary that fixes

X, i.e.,

U∗E
[
P̂1(X)

]
U = E

[
U∗P̂1(X)U

]
= E

[
P̂1(X)

]
.

Since P̂1(X) is a random Hermitian matrix, its expectation E
[
P̂1(X)

]
is Hermitian and thus has

a unique spectral decomposition E
[
P̂1(X)

]
=
∑l

k=1 λkVk for some λ1 > . . . > λl and orthogonal

projections Vk with Ran(Vk1) ⊥ Ran(Vk2) for all k1 6= k2. If U is a unitary with U∗XU = X, then

l∑
k=1

λkVk = E
[
P̂1(X)

]
= U∗E

[
P̂1(X)

]
U =

l∑
k=1

λkU
∗VkU,

and by uniqueness of the spectral decomposition this implies U∗VkU = Vk for all k = 1, . . . , l.

Thus each eigenspace of E
[
P̂1(X)

]
is invariant under conjugation by all unitaries that fix X. The

only subspaces with this property are Ran(X) and Ran(I −X), and thus E
[
P̂1(X)

]
has spectral

decomposition of the form

E
[
P̂1(X)

]
= µ1X + µ2(I −X)

for some µ1, µ2.

To determine the exact value of µ1, we use the law of total expectation to see

µ1 = E
[
tr
[
P̂1(X)X

]]
= E

[
tr
[
P̂1(X)X

]
| tr [P1X] ≥ tr [Pm+1X]

]
P {tr [P1X] ≥ tr [Pm+1X]}

+ E
[
tr
[
P̂1(X)X

]
| tr [P1X] < tr [Pm+1X]

]
P {tr [P1X] < tr [Pm+1X]} .

By the definition of P̂1(X) and the fact that P1
(d)
= Pm+1, we have

tr
[
E
[
P̂1(X)X

]
| tr [P1X] ≥ tr [Pm+1X]

]
= E [tr [P1X] | tr [P1X] ≥ tr [Pm+1X]]

= E
[
tr
[
P̂m+1(X)X

]
| tr [Pm+1X] ≥ tr [P1X]

]
= E

[
tr
[
P̂1(X)X

]
| tr [P1X] < tr [Pm+1X]

]
.
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Since P {tr [P1X] ≥ tr [Pm+1X]} = P {tr [P1X] < tr [Pm+1X]} = 1
2 , these steps show that

µ1 = E
[
tr
[
P̂1(X)X

]]
= E [tr [P1X] | tr [P1X] ≥ tr [Pm+1X]] . (15)

Since P1 and Pm+1 are independent uniformly distributed projections in ProjF(k, d), by Lemma 2.3.1

the joint distribution (tr [P1X] , tr [Pm+1X]) has probability density function defined on [0, 1]2 by

p(x, y) =
1

B(βFk, βF(d− k))2
(xy)βFk−1((1− x)(1− y))βF(d−k)−1.

We can express the conditional expectation in (15) with this density function to get

µ1 =
2

B(βFk, βF(d− k))2

∫ 1

0

∫ x

0
x · (xy)βFk−1((1− x)(1− y))βF(d−k)−1 dydx

=
2

B(βFk, βF(d− k))

∫ 1

0
P {b ≤ x}xβFk(1− x)βF(d−k)−1 dx, (16)

where b ∼ Beta(βFk, βF(d−k)). Letting c ∼ Beta(βFk+1, βF(d−k)), a property of the cumulative

distribution function of beta random variables from [1] says that

P {b ≤ x} = P {c ≤ x}+
xβFk(1− x)βF(d−k)

βFk B(βFk, βF(d− k))
.

Substituting this identity into (16), and using the fact that the expected value of a random variable

evaluated by its own cumulative distribution function is 1
2 , we have

µ1 =
B(βFk + 1, βF(d− k))

B(βFk, βF(d− k))
+

2B(2βFk + 1, 2βF(d− k))

βFk B(βFk, βF(d− k))2
.

Another property of the beta function from [1] shows that

B(βFk + 1, βF(d− k))

B(βFk, βF(d− k))
=
k

d
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and similarly

2B(2βFk + 1, 2βF(d− k))

βFk B(βFk, βF(d− k))2
=

2B(2βFk, 2βF(d− k))

βFd B(βFk, βF(d− k))2
,

yielding the desired expression for µ1. The value of µ2 follows from the fact that tr
[
E
[
Q̂P(X)

]]
=

k, and so µ1 + (d− 1)µ2 = k.

As mentioned in Section 2.2, the spectral gap of the empirical average of the proximal projections

is an important quantity for determining how well an input signal may be identified based on its

phaseless measurement. The spectral gap for a magnitude comparison measurement associated to

pairs of independent projections is bounded in the next corollary, and it is shown to be maximized

for half-dimensioned projections, i.e., of rank 1
2d.

Corollary 2.3.3. Let X ∈ ProjF(1, d) be fixed. If ΦP is the magnitude comparison measure-

ment associated to an independent sequence of uniformly distributed orthogonal projections P =

{Pj}2mj=1 ⊂ ProjF(k, d), then the spectral gap µ1(k, d)− µ2(k, d) of E
[
Q̂P(X)

]
is

µ1 − µ2 =
2B(2βFk, 2βF(d− k))

βF(d− 1) B(βFk, βF(d− k))2
,

and there are constants c0, c1 independent of k and d such that

c0

√
k(d− k)

d3/2
≤ µ1 − µ2 ≤ c1

√
k(d− k)

d3/2
.

In particular, for a fixed dimension d the spectral gap is maximized by using rank-
⌈

1
2d
⌉

projections.

Proof. Using the expressions for µ1 and µ2 as given in Proposition 2.3.2, the spectral gap is

µ1 − µ2 =
2B(2βFk, 2βF(d− k))

βF(d− 1) B(βFk, βF(d− k))2
. (17)

Using the fact that B(α1, α2) = Γ(α1)Γ(α2)
Γ(α1+α2) from [1], where Γ(x) is the gamma function defined by

Γ(z) =

∫ ∞
0

xz−1e−x dx,
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we may express the spectral gap in terms of gamma functions as

µ1 − µ2 =
2

βF(d− 1)
· Γ(2βFk)Γ(2βF(d− k))Γ(βFd)2

Γ(2βFd)Γ(βFk)2Γ(βF(d− k))2
. (18)

Treating k as a real-valued parameter in the interval [1, d − 1], we can use calculus to find the

maximum value of the spectral gap as a function of k. To do this, we employ the digamma

function ψ0 which is defined by Γ′(x) = Γ(x)ψ0(x) for x > 0. Letting a = 2Γ(βFd)2

βF(d−1)Γ(2βFd) , g(k) =

Γ(2βFk)Γ(2βF(d− k)) and h(k) = Γ(βFk)2Γ(βF(d− k))2 we have

f(k) := µ1 − µ2 = a · g(k)

h(k)
.

Taking the derivative of f with the quotient rule yields

f ′(k) = f(k) · 2βF [ψ0(2βFk)− ψ0(2βF(d− k))− ψ0(βFk) + ψ0(βF(d− k))] .

If j(k) = 2βF [ψ0(2βFk)− ψ0(2βF(d− k))− ψ0(βFk) + ψ0(βF(d− k))], then since f(k) > 0 we

have f ′(k) = 0 if and only if j(k) = 0, and sgn(f ′(k)) = sgn(j(k)). By the multiplication theorem

for the gamma function [1], ψ0(2x) = log(2) + 1
2ψ0(x) + 1

2ψ0(x+ 1
2), and thus

j(k) = βF

[
ψ0

(
βFk +

1

2

)
− ψ0(βFk) + ψ0(βF(d− k))− ψ0

(
βF(d− k) +

1

2

)]
.

Clearly, j(1
2d) = 0, and j(1

2d+ r) = −j(1
2d− r). For k ∈ [1, 1

2d), since ψ0 is strictly increasing and

ψ′0 is strictly decreasing, we have

ψ0(βF(d− k))− ψ0(βFk) ≥ ψ0

(
βF(d− k) +

1

2

)
− ψ0

(
βFk +

1

2

)
,

and hence j(k) > 0. By symmetry, this implies j(k) < 0 for k ∈ (1
2d, d − 1]. Thus the maximum

value of f occurs at 1
2d.

For explicit bounds on the spectral gap, we use Stirling’s approximation for the gamma function
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to approximate the beta functions in (18). In particular, we use the form of Stirling’s approximation

given in [7] which says that for all x > 0 there exists some 0 < r < 1 such that

Γ(x) =
√

2πxx−
1
2 exp

(
−x+

r

12x

)
. (19)

To simplify notation, let a = βFk, b = βF(d− k), and c = βFd. Then Stirling’s formula says

B(2βFk, 2βF(d− k)) =

√
πa2a− 1

2 b2b−
1
2

c2c− 1
2

· exp
( r1

16a
+

r2

16b
− r3

16c

)
,

and

B(βFk, βF(d− k))2 =
2πa2a−1b2b−1

c2c−1
· exp

( r4

4a
+
r5

4b
− r6

4c

)
,

where 0 < rj < 1 for j = 1, . . . , 6. Making these substitutions in (17), we have

µ1 − µ2 =

√
ab

βF
√
πc(d− 1)

· exp

(
r1

16a
+

r2

16b
− r3

16c
− r4

4a
− r5

4b
+
r6

4c

)
.

Substituting our expressions for a, b, and c, we observe that

√
ab

βF
√
πc(d− 1)

=

√
k(d− k)√

βFπd(d− 1)
.

The exponential multiplicative factor may be bounded above and below by a constant.

From this analysis, it follows that for fixed k, as d→∞ the spectral gap satisfies µ1−µ2 = O(1
d).

On the other hand, if k = αd for some fixed α and d → ∞, then µ1 − µ2 = O( 1√
d
). In particular,

k =
⌈

1
2d
⌉

gives the maximal spectral gap.

The next proposition gives the expectation of the empirical average of proximal projections for

a complementary magnitude comparison measurement.

Proposition 2.3.4. Let X ∈ ProjF(1, d) be fixed. If ΦP is the complementary magnitude com-

parison measurement associated to an independent sequence of uniformly distributed orthogonal
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projections P = {Pj}mj=1 ⊂ ProjF(k, d), then

E
[
Q̂P(X)

]
= µ1(k, d)X + µ2(k, d)(I −X)

for

µ1 =
k

d
pk +

d− k
d

(1− pk) +
2

βFd2βFdB(βFk, βF(d− k))

µ2 =
k

d
pk +

d− k
d

(1− pk)−
2

βFd(d− 1)2βFdB(βFk, βF(d− k))
,

where pk = P
{

tr [PX] ≥ 1
2

}
for a uniformly distributed P ∈ ProjF(k, d).

Proof. By definition of Q̂P(X) from Definition 2.2.1 and the fact that the P ′js are identically

distributed, we have

E
[
Q̂P(X)

]
= E

[
P̂1(X)

]
.

If U ∈ UF(d) is an arbitrary unitary that fixes X, i.e., such that U∗XU = X, then the distribution

of P̂1(X) is invariant under conjugation by U . Indeed, by definition of P̂1(X) for a complementary

magnitude comparison, the cyclic property of the trace, and the rotational invariance of the uniform

distribution on orthogonal projections, we have

U∗P̂1(X)U =


U∗P1U if tr [P1X] ≥ 1

2

U∗(I − P1)U else

=


U∗P1U if tr [U∗P1UX] ≥ 1

2

U∗(I − P1)U else

(d)
= P̂1(X).

This implies that the expectation of P̂1(X) is invariant under conjugation by any unitary that fixes
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X, i.e.,

U∗E
[
P̂1(X)

]
U = E

[
U∗P̂1(X)U

]
= E

[
P̂1(X)

]
.

Since P̂1(X) is a random Hermitian matrix, its expectation E
[
P̂1(X)

]
is Hermitian. The invari-

ance of E
[
P̂1(X)

]
under conjugation by all unitaries that fix X implies that it has a spectral

decomposition of the form

E
[
P̂1(X)

]
= µ1X + µ2(I −X)

for some µ1, µ2 ≥ 0 as in the proof of Lemma 1.4.10.

To determine the exact value of µ1, we compute

µ1 = tr
[
E
[
P̂1(X)

]
X
]

= E
[
tr [P1X] | tr [P1X] ≥ 1

2

]
P
{

tr [P1X] ≥ 1

2

}
+ E

[
tr [(I − P1)X] | tr [(I − P1)X] >

1

2

]
P
{

tr [(I − P1)X] >
1

2

}
.

If vk = E
[
tr [PX] | tr [PX] ≥ 1

2

]
and pk = P

{
tr [PX] ≥ 1

2

}
for a uniformly distributed P ∈

ProjF(k, d), then using the fact that tr [P1X] + tr [(I − P1)X] = 1 we have

µ1 = vkpk + vd−kpd−k. (20)

To compute vk, observe that tr [PX] ∼ Beta(βFk, βF(d − k)) for a uniformly distributed P ∈

ProjF(k, d) by Lemma 2.3.1. Using the probability density function from Definition 1.4.5 we com-

pute

vkpk =
1

B(βFk, βF(d− k))

∫ 1

1
2

x · xβFk−1(1− x)βF(d−k)−1 dx.

Let u = xβFk and dv = (1− x)βF(d−k) − 1, so du = βFkx
βFk−1dx and v = − 1

βF(d−k)(1− x)βF(d−k),

and integrate by parts to get

vkpk =
1

βF(d− k)2βFdB(βFk, βF(d− k))
+

k

d− k
(pk − vkpk) .
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Rearranging this equation and solving for vkpk yields

vkpk =
1

βFd2βFdB(βFk, βF(d− k))
+
k

d
pk.

Thus by (20) we have

µ1 =
2

βFd2βFdB(βFk, βF(d− k))
+
k

d
pk +

d− k
d

(1− pk).

Observe that µ1 + (d − 1)µ2 = tr
[
E
[
Q̂P(X)

]]
= kpk + (d − k)(1 − pk), which yields the desired

expression for µ2.

The spectral gap for a complementary magnitude comparison measurement is bounded in the

next corollary, and it is also shown to be maximized for half-dimensioned projections, i.e., of rank

1
2d.

Corollary 2.3.5. Let X ∈ ProjF(1, d) be fixed. If ΦP is the complementary magnitude comparison

measurement associated to an independent sequence of uniformly distributed orthogonal projections

P = {Pj}mj=1 ⊂ ProjF(k, d), then the spectral gap µ1(k, d)− µ2(k, d) of E
[
Q̂P(X)

]
is

µ1 − µ2 =
1

βF(d− 1)2βFd−1B(βFk, βF(d− k))
,

and there are constants c0, c1 independent of k and d such that

c0r(k, d) ≤ µ1 − µ2 ≤ c1r(k, d).

where r(k, d) =

√
k(d−k)

d3/2

(
d
2k

)βFk ( d
2(d−k)

)βF(d−k)
. In particular, for a fixed dimension d, the spectral

gap is maximized by using rank-
⌈

1
2d
⌉

projections.

Proof. To bound the spectral gap, we have from Proposition 2.3.4 that

µ1 − µ2 =
1

βF(d− 1)2βFd−1B(βFk, βF(d− k))
.
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Rewriting the beta function in terms of gamma functions, we have

µ1 − µ2 =
Γ(βFd)

βF(d− 1)2βFd−1Γ(βFk)Γ(βF(d− k))
. (21)

Treating k as a real-valued parameter in the interval [1, d − 1], we can use calculus to find the

maximum value of the spectral gap as a function of k. Letting a = Γ(βFd)

βF(d−1)2βFd−1 and g(k) =

Γ(βFk)Γ(βF(d− k)), we see that

f(k) := µ1 − µ2 = a · 1

g(k)
.

Taking the derivative of f yields

f ′(k) = f(k) · [ψ0(βF(d− k))− ψ0(βFk)] .

Since the digamma function is strictly increasing, we see that f ′(1
2d) = 0, f ′(k) > 0 for k ∈ [1, 1

2d),

and f ′(k) < 0 for k ∈ (1
2d, d−1]. Thus the spectral gap is maximized by using rank-

⌈
1
2d
⌉

projections.

Using Stirling’s approximation as in our proof of Proposition 2.3.2, we have

B(βFk, βF(d− k))−1 =

√
βFd

βFd− 1
2

√
2πkβFk−

1
2 (d− k)βF(d−k)− 1

2

· exp

(
− r1

8βFk
− r2

8βF(d− k)
+

r3

8βFd

)

for 0 < r1, r2, r3 < 1. Observe that

dβFd−
1
2

kβFk−
1
2 (d− k)βF(d−k)− 1

2

=

√
k(d− k)

d

(
d

k

)βFk ( d

d− k

)βF(d−k)

.

from which the desired bounds follow by substitution into (21).

Complementary magnitude comparison measurements associated to half-dimensioned projec-

tions, i.e., rank-n projections on F2n, are of particular interest. In this case, the beta distribution

of tr [PX] has nice properties that allow the expression for E
[
Q̂P(X)

]
given in Proposition 2.3.4
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to be simplified. These elementary properties are stated in the following lemma.

Lemma 2.3.6. Let X ∈ ProjF(1, 2n) be fixed and P ∈ ProjF(n, 2n) be uniformly distributed. Then

tr [PX] ∼ Beta(βFn, βFn) has the following properties:

(a) The distribution of tr [PX] is symmetric about 1
2

(b) E [tr [PX]] = 1
2

(c) P
{

tr [PX] ≥ 1
2

}
= P

{
tr [PX] ≤ 1

2

}
= 1

2

(d) var(tr [PX]) = 1
4(2βFn−1) .

Proof. The fact that tr [PX] ∼ Beta(βFn, βFn) follows directly from Lemma 2.3.1. By Defini-

tion 1.4.5, this means that tr [PX] has the probability density function

f(t) =
1

B(βFn, βFn)
tβFn−1(1− t)βFn−1.

For (a), observe that for any s ∈ [0, 1
2 ] we have

f

(
1

2
+ s

)
=

1

B(βFn, βFn)

(
1

2
+ s

)βFn−1(1

2
− s
)βFn−1

= f

(
1

2
− s
)
.

Thus f is symmetric about 1
2 .

To see (b), we could use the fact that symmetry of the probability density function about 1
2

further implies that E [tr [PX]] = 1
2 since the expected value of a symmetric distribution is exactly

its point of symmetry. For the sake of completeness, we observe that this holds for this Beta

distribution: E
[
tr [PX]− 1

2

]
may be expressed as

E
[
tr [PX]− 1

2

]
=

1

B(βFn, βFn)

∫ 1

0

(
t− 1

2

)
tβFn−1(1− t)βFn−1 dt.
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Making the change of variables t = 1
2 + s, we have

E
[
tr [PX]− 1

2

]
=

1

B(βFn, βFn)

∫ 1
2

− 1
2

s

(
1

2
+ s

)βFn−1(1

2
− s
)βFn−1

ds.

Since g(s) = s is an odd function and h(s) =
(

1
2 + s

)βFn−1 (1
2 − s

)βFn−1
is an even function, we

conclude g(s)h(s) is odd and thus
∫ 1

2

− 1
2

g(s)h(s) ds = 0. Thus

E
[
tr [PX]− 1

2

]
=

1

B(βFn, βFn)

∫ 1
2

− 1
2

g(s)h(s) ds = 0,

so E [tr [PX]] = 1
2 .

For (c), since the interval [0, 1
2 ] is the reflection of the interval [1

2 , 1] about the point 1
2 , symmetry

of the distribution of tr [PX] about 1
2 implies that the probability of tr [PX] being in [0, 1

2 ] is equal

to the probability that it is in [1
2 , 1]. Thus

2P
{

tr [PX] ≥ 1

2

}
= P

{
tr [PX] ≥ 1

2

}
+ P

{
tr [PX] ≤ 1

2

}
= 1,

which implies

P
{

tr [PX] ≥ 1

2

}
= P

{
tr [PX] ≤ 1

2

}
=

1

2
.

Lastly, for (d), we compute the variance by first evaluating E
[
tr [PX]2

]
via integrating by

parts. Using the probability density function for tr [PX], we see

E
[
tr [PX]2

]
=

1

B(βFn, βFn)

∫ 1

0
tβFn+1(1− t)βFn−1 dt.

Letting u = tβFn+1 and dv = (1−t)βFn−1 dt, we have du = (βFn+1)tβFn dt and v = − 1
βFn

(1−t)βFn.
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Integration by parts says

∫
tβFn+1(1− t)βFn−1 dt =

∫
u dv

= uv −
∫
v du

= − 1

βFn
tβFn+1(1− t)βFn +

βFn+ 1

βFn

∫
tβFn(1− t)βFn dt,

so we can evaluate the definite integral

∫ 1

0
tβFn+1(1− t)βFn−1 dt =

[
− 1

βFn
tβFn+1(1− t)βFn

]1

0

+
βFn+ 1

βFn

∫ 1

0
tβFn(1− t)βFn dt

=
βFn+ 1

βFn
B(βFn+ 1, βFn+ 1).

Thus the second moment of tr [PX] is

E
[
tr [PX]2

]
=

1

B(βFn, βFn)

∫ 1

0
tβFn+1(1− t)βFn−1 dt

=
(βFn+ 1) B(βFn+ 1, βFn+ 1)

βFn B(βFn, βFn)
. (22)

By using properties of the Beta function, we have

B(βFn+ 1, βFn+ 1) = B(βFn, βFn+ 1)
βFn

2βFn+ 1
= B(βFn, βFn)

βFn

2(2βFn+ 1)
. (23)

Putting together (22) and (23) yields

E
[
tr [PX]2

]
=

βFn+ 1

2(2βFn+ 1)
,
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and so the variance of tr [PX] is

var(tr [PX]) = E
[
tr [PX]2

]
− E [tr [PX]]2

=
βFn+ 1

2(2βFn+ 1)
− 1

4

=
2(βFn+ 1)− (2βFn+ 1)

4(2βFn+ 1)

=
1

4(2βFn+ 1)
.

Using some of the above facts about the distribution of the phaseless measurement tr [PX] for

a random half-dimensioned projection P , the expressions for the spectral decomposition given in

Proposition 2.3.4 may be simplified for the case of half-dimensioned projections. We state these

simplified expressions in the following corollary.

Corollary 2.3.7. Let X ∈ ProjF(1, 2n) be fixed. If ΦP is the complementary magnitude comparison

measurement associated to an independent sequence of uniformly distributed orthogonal projections

P = {Pj}mj=1 ⊂ ProjF(n, 2n), then

Q(X) = µ1X + µ2(I −X)

for

µ1 =
1

2
+

1

βFn4βFnB(βFn, βFn)
, µ2 =

1

2
− 1

βFn(2n− 1)4βFnB(βFn, βFn)
.

In addition to the bounds for the spectral gap given by Corollary 2.3.5, later results will require

asymptotically correct bounds for µ1 − µ2 with explicit constants for the case of half-dimensioned

projections. First, asymptotically correct bounds are given for the beta function in the special case

where both arguments are the same, i.e., B(x, x) for some x > 0. Afterwards, the beta function

bounds will be used to bound µ1−µ2 for half-dimensioned complementary magnitude comparisons.
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Proposition 2.3.8. For all x > 0,

2
√
π

4x
√
x
· exp

(
− 1

24x

)
≤ B(x, x) ≤ 2

√
π

4x
√
x
· exp

(
1

6x

)
.

Proof. From (19), we get an expression for the beta function of the form

B(x, x) =
Γ(x)2

Γ(2x)

=
2πx2x−1 exp

(
−2x+ r1

6x

)
√

2π(2x)2x− 1
2 exp

(
−2x+ r2

24x

)
=

2
√
π

4x
√
x
· exp

(
4r1 − r2

24x

)
.

The inequalities follow from the fact that 0 < r1, r2 < 1.

Finally, the bounds in Proposition 2.3.8 give asymptotically correct bounds for the spectral gap

µ1−µ2. While not strictly necessary to prove our pointwise and uniform results, these bounds will

be used to compute explicit constants arising in the sufficient number of projections for accurate

one-bit phase retrieval of a fixed input signal.

Lemma 2.3.9. Let µ1 and µ2 be as in Corollary 2.3.7. Then we have

√
n

(2n− 1)
√
βFπ

· exp

(
− 1

6βFn

)
≤ µ1 − µ2 ≤

√
n

(2n− 1)
√
βFπ

· exp

(
1

24βFn

)
.

Proof. From the expressions derived in Corollary 2.3.7 we have

µ1 − µ2 =
1

βFn4βFnB (βFn, βFn)
+

1

βFn(2n− 1)4βFnB (βFn, βFn)

=
2

βF(2n− 1)4βFnB(βFn, βFn)
. (24)

By the bounds on the beta function given in Proposition 2.3.8, we have that

2
√
π

4βFn
√
βFn

exp

(
− 1

24βFn

)
≤ B(βFn, βFn) ≤ 2

√
π

4βFn
√
βFn

· exp

(
1

6βFn

)
.
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Applying these inequalities to (24) gives the desired bounds for µ1 − µ2.

2.4 Accurate recovery for a fixed input

This section derives results on the statistics of signal recovery using PEP by considering a fixed input

signal while a random collection of projections is used for the phaseless binary measurement. The

phaseless binary measurements ΦP considered are as in Proposition 2.3.2 and Proposition 2.3.4, i.e.,

magnitude comparison measurements associated to uniformly distributed independent or comple-

mentary pairs of projections. Reconstruction by PEP is defined in Definition 2.2.2. To summarize

the entire procedure: for X ∈ ProjF(1, 2n), each bit of the binary string ΦP(X) identifies whether

Ran(X) is closer to Ran(P1) or Ran(P2) for some projections P1, P2. PEP then recovers a rank-one

projection by taking the principal eigenprojection of the empirical average of the proximal pro-

jections, Q̂P(X). The main goal of this section is to prove that PEP provides accurate recovery

of an input signal when sufficiently many random projections are used for the phaseless binary

measurement, i.e., when m, the number of bits in the binary measurement, is large enough. This

result is contained in Theorem 2.4.4, and gives a solution to the one-bit phase retrieval problem for

a fixed input signal, see Problem 1.3.6. The derivation of the result proceeds in three steps:

(1) If the orthogonal projections P for the magnitude comparison measurement ΦP of X are

chosen uniformly and independently, then the empirical average of the proximal projections

has the expectation Q(X) := E
[
Q̂P(X)

]
= µ1X+µ2(I−X) where 0 < µ2 < µ1 are constants.

In particular, X is the projection onto the eigenspace corresponding to the largest eigenvalue

of Q(X).

(2) The empirical average of the proximal projections Q̂P(X) concentrates near its expectation

Q(X).

(3) The orthogonal projection onto the eigenspace of Q̂P(X) corresponding to its largest eigen-

value concentrates near X.

Step (1) was completed in Section 2.3, so the proof proceeds with step (2).
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Concentration of Q̂P(X) near Q(X)

Since the empirical average of the proximal projections Q̂P(X) is, after all, an empirical average, by

the law of large numbers it should concentrate tightly around its expectation Q(X) as the number

of measurements m goes to infinity. While the traditional law of large numbers only applies to

sequences of one-dimensional random variables, there are generalizations to sequences of random

matrices. The matrix Bernstein inequality is used to show concentration of measure for Q̂P(X),

see Theorem 1.4.15 and Corollary 1.4.16 [89, Theorem 1.6.2].

Lemma 2.4.1. Let X ∈ ProjF(1, d) be fixed. Let ΦP be a magnitude comparison measurement as in

Proposition 2.3.2 or a complementary magnitude comparison measurement as in Proposition 2.3.4.

Then

E
[∥∥∥Q̂P(X)−Q(X)

∥∥∥] ≤√2 log(2d) max(µ1 − µ2
1, µ2 − µ2

2)

m
+

log(2d) max(µ1, 1− µ2)

3m
,

and for any t > 0,

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≥ t} ≤ 2d exp

(
− t2m

2 max(µ1 − µ2
1, µ2 − µ2

2) + 2
3 max(µ1, 1− µ2)t

)
.

Proof. Let Sj = 1
m(P̂j(X) − Q(X)). Then E [Sj ] = 0 and ‖Sj‖ ≤ 1

m max(µ1, 1 − µ2) for all

j = 1, . . . ,m. Note that Z :=
∑m

j=1 Sj = Q̂P(X)−Q(X). Additionally, since P̂j(X) is a projection

and E
[
P̂j(X)

]
= Q(X) for all j, we may bound the matrix variance

v(Z) =

∥∥∥∥∥∥
m∑
j=1

E
[
S2
j

]∥∥∥∥∥∥
=

1

m

∥∥∥E [(P̂j(X)−Q(X))2
]∥∥∥

=
1

m

∥∥Q(X)−Q(X)2
∥∥

= max(µ1 − µ2
1, µ2 − µ2

2).
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The expectation bound and probability bound now follow from applying the matrix Bernstein

Inequality as in Theorem 1.4.15.

As a corollary, the probability in Lemma 2.4.1 can be applied to the case of a complementary

magnitude comparison measurement associated to a collection of half-dimensioned projections.

Corollary 2.4.2. Let X ∈ ProjF(1, 2n) be fixed. Let ΦP a complementary magnitude comparison

measurement associated to an independent sequence of projections P = {Pj}mj=1 ⊂ ProjF(n, 2n).

Then for any 0 < t < 1,

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≥ t} ≤ 4n exp

(
−6t2m

7

)
.

In particular, if m ≥ 7
6 t
−2 log(4nρ−1) then

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥} ≤ ρ.
Proof. For this particular phaseless measurement, we may bound max(µ1 − µ2

1, µ2 − µ2
2) ≤ 1

4 and

max(µ1, 1− µ2)t ≤ 1 and apply Lemma 2.4.1 to get

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≥ t} ≤ 4n exp

(
− t2m

1
2 + 2

3

)
= 4n exp

(
−6t2m

7

)
.

Additionally, if m ≥ 7
6 t
−2 log(4nρ−1) then this probability bound satisfies

4n exp

(
−6t2m

7

)
= exp

(
log(4n)− 6t2m

7

)
≤ ρ.

Concentration of X̂ near X (Solution to Problem 1.3.6)

Lemma 2.4.1 says that, with enough random projections for the phaseless binary measurement,

with high probability Q̂P(X) is close to Q(X) in operator norm. When it is sufficiently close, then
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the eigenspace of Q̂P(X) corresponding to its maximum eigenvalue will also be close to X. To see

this, Lemma 1.3.5 is invoked to extract a factor of
∥∥∥X̂ −X∥∥∥ from the operator difference X̂ −X.

This will let us prove another key lemma that will let us control the perturbation of the principal

eigenspace of Q(X) under our approximation of it by the empirical average Q̂P(X).

Lemma 2.4.3. Let X,Y ∈ ProjF(1, d) with X 6= Y and Q = µ1X + µ2(I − X) for µ1, µ2 ∈ F.

Then

‖X − Y ‖ = (µ1 − µ2)−1 tr [Q(A−B)]

where A,B ∈ ProjF(1, 2n) are the mutually orthogonal projections in the spectral decomposition

X − Y = ‖X − Y ‖ (A−B) given in Lemma 1.3.5.

Proof. Let θ be the principal angle between the subspaces associated to X and Y . Then we can

pick x, y, z ∈ S2n−1
F

with x ⊥ z such that X = xx∗, Y = yy∗ and y = cos(θ)x+ sin(θ)z. Then

Y = yy∗ = cos2(θ)xx∗ + sin2(θ)zz∗ + sin(θ) cos(θ)(xz∗ + zx∗).

Since Q(X) = µ1X + µ2(I −X), both x and z are eigenvectors of Q(X) with eigenvalues µ1 and

µ2 respectively, thus

tr [Q(X)(xz∗ + zx∗)] = tr [Q(X)xz∗] + tr [Q(X)zx∗]

= tr [µ1xz
∗] + tr [µ2zx

∗]

= µ1 〈x, z〉+ µ2 〈z, x〉 = 0.

Thus we can evaluate tr [Q(X)(X − Y )] to get

tr [Q(X)(X − Y )] = tr
[
Q(X)

(
xx∗ − cos2(θ)xx∗ − sin2(θ)zz∗ − sin(θ) cos(θ)(xz∗ + zx∗)

)]
= sin2(θ) (tr [Q(X)xx∗]− tr [Q(X)zz∗])

= (µ1 − µ2) sin2(θ).
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Since sin(θ) = ‖X − Y ‖, the above chain of equalities says that

tr [Q(X)(X − Y )] = (µ1 − µ2) ‖X − Y ‖2 .

By Lemma 1.3.5, there exist mutually orthogonal rank-one projections A,B ∈ ProjF(1, 2n) such

that X − Y = ‖X − Y ‖ (A−B). Thus

‖X − Y ‖ tr [Q(X)(A−B)] = tr [Q(X)(X − Y )] = (µ1 − µ2) ‖X − Y ‖2 ,

and by the hypothesis that X 6= Y we may cancel a factor of ‖X − Y ‖ on each side and divide by

the spectral gap to yield the desired equality.

Note that Q(X) = E
[
Q̂P(X)

]
has the necessary spectral decomposition for Lemma 2.4.3 when

the phaseless binary measurement ΦP is chosen randomly as in Proposition 2.3.2 or Proposi-

tion 2.3.4. Applying Lemma 2.4.3 and the concentration inequality from Lemma 2.4.1 leads to

the pointwise error bound for approximate recovery of a fixed input signal using PEP.

Theorem 2.4.4. Let X ∈ ProjF(1, d) be a fixed input signal, and let ΦP be a magnitude comparison

measurement as in Proposition 2.3.2 or a complementary magnitude comparison measurement as

in Proposition 2.3.4. Then

E
[∥∥∥X̂ −X∥∥∥ > δ

]
≤

√
8 log(2d) max(µ1 − µ2

1, µ2 − µ2
2)

m(µ1 − µ2)2
+

2 log(2d) max(µ1, 1− µ2)

3m(µ1 − µ2)

and for any 0 < δ < 1

P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ 2d exp

(
− (µ1 − µ2)2δ2m

8 max(µ1 − µ2
1, µ2 − µ2

2) + 8
3 max(µ1, 1− µ2)(µ1 − µ2)δ

)
(25)

where X̂ is the projection onto the principal eigenspace of Q̂P(X).
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Proof. From Lemma 2.4.3, we may express the error in approximating X by X̂ as

∥∥∥X̂ −X∥∥∥ = (µ1 − µ2)−1 tr [Q(X)(A−B)] , (26)

where A,B ∈ ProjF(1, d) are the orthogonal projections from the spectral decomposition of the

difference X − X̂ =
∥∥∥X − X̂∥∥∥ (A−B).

Since X̂ is the projection onto the principal eigenspace of Q̂P(X), we know tr
[
Q̂P(X)X̂

]
≥

tr
[
Q̂P(X)X̂

]
, and thus we have inequalities

tr
[
Q̂P(X)(X̂ −X)

]
≥ 0 =⇒ tr

[
Q̂P(X)(B −A)

]
≥ 0

=⇒ (µ1 − µ2)−1 tr
[
Q̂P(X)(B −A)

]
≥ 0.

This shows that adding (µ1 − µ2)−1 tr
[
Q̂P(X)(B −A)

]
to the right-hand side of (26) gives an

upper bound ∥∥∥X̂ −X∥∥∥ ≤ (µ1 − µ2)−1 tr
[
(Q(X)− Q̂(X))(A−B)

]
.

Since Q(X) − Q̂(X) is Hermitian, we know that for any rank-one projection Z ∈ ProjF(1, d)

that

λd(Q(X)− Q̂(X)) ≤ tr
[
(Q(X)− Q̂(X))Z

]
≤ λ1(Q(X)− Q̂(X)),

where λ1(·) and λd(·) denote the largest and smallest eigenvalues of the operator, and that both

bounds are sharp by choosing Z to be a rank-one projection onto the eigenspace of Q(X)− Q̂P(X)

corresponding to its smallest (respectively, largest) eigenvalue. Thus

tr
[
(Q(X)− Q̂(X))(A−B)

]
≤ λ1(Q(X)− Q̂(X))− λd(Q(X)− Q̂(X)).

Since the operator norm of a Hermitian matrix is the largest of the magnitudes of its eigenvalues,
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we know
∥∥∥Q̂P(X)−Q(X)

∥∥∥ = max
[∣∣∣λ1(Q(X)− Q̂(X))

∣∣∣ , ∣∣∣λd(Q(X)− Q̂(X))
∣∣∣]. It follows that

λ1(Q(X)− Q̂(X))− λd(Q(X)− Q̂(X)) =
∣∣∣λ1(Q(X)− Q̂(X))− λd(Q(X)− Q̂(X))

∣∣∣
≤
∣∣∣λ1(Q(X)− Q̂(X))

∣∣∣+
∣∣∣λd(Q(X)− Q̂(X))

∣∣∣
≤ 2

∥∥∥Q̂P(X)−Q(X)
∥∥∥ .

Altogether these steps show that

∥∥∥X̂ −X∥∥∥ ≤ (µ1 − µ2)−1 tr
[
(Q(X)− Q̂(X))(A−B)

]
≤ 2(µ1 − µ2)−1

∥∥∥Q(X)− Q̂(X)
∥∥∥ . (27)

The result then follows by bounding
∥∥∥Q̂P(X)−Q(X)

∥∥∥ with high probability using Lemma 2.4.1

with t = 1
2(µ1 − µ2)δ.

Theorem 2.4.4 provides a variety of solutions to the one-bit phase retrieval problem for fixed

input signals, Problem 1.3.6. Specifically, it gives recovery guarantees when ΦP is the magnitude

comparison measurement associated to an independent sequence P = {Pj}2mj=1 ⊂ ProjF(k, d), and

when ΦP is the complementary magnitude comparison measurement associated to an independent

sequence P = {Pj}mj=1 ⊂ ProjF(k, d). The probability bound in (25) is of main interest, as it

ensures that if m is chosen large enough then the random choice of projections will accurately

recover X with high probability. Theorem 2.4.4 may be applied to a few natural choices of the

rank k of the projections used for the measurement. First, consider independent pairs of rank-one

projections.

Corollary 2.4.5. Let X ∈ ProjF(1, d) be a fixed input signal, 0 < δ < 1 be a desired level of

accuracy, and 0 < ρ < 1 be an acceptable failure probability. There is a constant C such that if

m ≥ Cδ−2d log(2dρ−1)
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and ΦP is the magnitude comparison measurement associated to an independent sequence of pro-

jections P = {Pj}2mj=1 ⊂ ProjF(1, d), then with probability at least 1− ρ we have

∥∥∥X̂ −X∥∥∥ < δ

where X̂ is the projection onto the principal eigenspace of Q̂P(X).

Proof. By Proposition 2.3.2, we know Q(X) = µ1X + µ2(I −X) where

µ1 =
1

d
+

2B(2βF, 2βF(d− 1))

βFd B(βF, βF(d− 1))2
, µ2 =

1

d
− 2B(2βF, 2βF(d− 1))

βFd(d− 1) B(βF, βF(d− 1))2
.

In particular, µ1, µ2 = O(1
d) and similarly µ1 − µ2 = O(1

d) by Corollary 2.3.3. Thus, by Theo-

rem 2.4.4 there exists a constant c > 0 such that

P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ 2d exp

(
− (µ1 − µ2)2δ2m

8 max(µ1 − µ2
1, µ2 − µ2

2) + 8
3 max(µ1, 1− µ2)(µ1 − µ2)δ

)

≤ 2d exp

(
−cδ

2m

d

)
.

If m ≥ c−1δ−2d log(2dρ−1) then P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ ρ.

Corollary 2.4.5 can be seen as an improvement of the pointwise result in [73]. In particular, in

a fixed dimension d using m = O(δ−2) rank-one magnitude comparison is sufficient to guarantee

phase retrieval with high probability, as opposed to the O(δ−4) shown in [73].

On the opposite end of the spectrum, the magnitude comparison measurement associated to

independent pairs of half-dimensioned projection can be considered in Theorem 2.4.4.

Corollary 2.4.6. Let X ∈ ProjF(1, 2n) be a fixed input signal, 0 < δ < 1 be a desired level of

accuracy, and 0 < ρ < 1 be an acceptable failure probability. There is a constant C such that if

m ≥ Cδ−2n log(4nρ−1)
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and ΦP is the magnitude comparison measurement associated to an independent sequence of pro-

jections P = {Pj}2mj=1 ⊂ ProjF(n, 2n), then with probability at least 1− ρ we have

∥∥∥X̂ −X∥∥∥ < δ

where X̂ is the projection onto the principal eigenspace of Q̂P(X).

Proof. By Proposition 2.3.2, we know Q(X) = µ1X + µ2(I −X) where

µ1 =
1

2
+

B(2βFn, 2βFn)

βFn B(βFn, βFn)2
, µ2 =

1

2
− B(2βFn, 2βFn)

βFn(2n− 1) B(βFn, βFn)2
.

In particular, µ1−µ2 = O( 1√
n

) by Corollary 2.3.3. Thus, by Theorem 2.4.4 there exists a constant

c > 0 such that

P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ 4n exp

(
− (µ1 − µ2)2δ2m

8 max(µ1 − µ2
1, µ2 − µ2

2) + 8
3 max(µ1, 1− µ2)(µ1 − µ2)δ

)

≤ 4n exp

(
−cδ

2m

n

)
.

If m ≥ c−1δ−2d log(2dρ−1) then P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ ρ.

The minimal constants C in Corollary 2.4.5 and Corollary 2.4.6 may be different, but otherwise

the number of projections used is the same. In other words, half-dimensioned projections provide

accurate one-bit phase retrieval via PEP with the same number of bits per measurement as rank-

one projections, up to an absolute constant. A similar proof shows that the same guarantee holds

for complementary magnitude comparison measurements using half-dimensioned projections, with

a potentially different constant C. In this case, an explicit value for C is computed.

Corollary 2.4.7. Let X ∈ ProjF(1, 2n) be a fixed input signal, 0 < δ < 1 be a desired level of

accuracy, and 0 < ρ < 1 be an acceptable failure probability. There is a constant C such that if

m ≥ Cδ−2n log(4nρ−1) (28)
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and ΦP is the complementary magnitude comparison measurement associated to an independent

sequence of projections P = {Pj}mj=1 ⊂ ProjF(n, 2n), then with probability at least 1− ρ we have

∥∥∥X̂ −X∥∥∥ < δ

where X̂ is the projection onto the principal eigenspace of Q̂P(X). In particular, we can take

C = 28
3 βFπ.

Proof. In the proof of Theorem 2.4.4, we instead apply Lemma 2.4.2 to bound the probability that∥∥∥Q̂P(X)−Q(X)
∥∥∥ ≥ 1

2(µ1 − µ2)δ, yielding that

P
{∥∥∥X̂ −X∥∥∥ > δ

}
≤ 4n exp

(
−6

7
(µ1 − µ2)2δ2m

)
.

Explicit bounds for µ1 − µ2 for this phaseless binary measurement are given in Lemma 2.3.9, and

imply that (µ1 − µ2)2 ≥ 1
8βFπn

, and so

4n exp

(
−6

7
(µ1 − µ2)2δ2m

)
≤ exp

(
log(4n)− 3δ2m

28βFπn

)
.

If m ≥ 28βFπ
3 δ−2n log(4nρ−1), then this probability is bounded by ρ.

Thus, all three of these choices of phaseless binary measurement yield roughly equivalent recon-

struction guarantees, up to a dimension-independent constant. Theorem 2.4.4 also gives complete

freedom to choose the probability of failure ρ, whereas [73] ensured recovery with a predefined

probability of failure ρ = O(d−2). Any of the phaseless binary measurements considered in Theo-

rem 2.4.4 — in particular those specified by Corollaries 2.4.5, 2.4.6, and 2.4.7 — can ensure success

with high probability by taking ρ = d−α for some α > 0, or with overwhelming probability by

taking ρ = exp (−d). For overwhelming probability of success, the number of sufficient bits for the

binary measurement increases by a factor of the dimension, as the next corollary says.

Corollary 2.4.8. Let X ∈ ProjF(1, 2n) and 0 < δ < 1 be a desired level of accuracy. There is a
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constant C such that if

m ≥ Cδ−2n2

and and ΦP is a phaseless binary measurement associated to an independent sequence of projections

P as in Corollary 2.4.5, 2.4.6, or 2.4.7, then with probability at least 1− exp (−2n)

∥∥∥X̂ −X∥∥∥ < δ,

where X̂ is the solution to PEP with input ΦP(X).

The solution to Problem 1.3.6 given by Corollary 2.4.7, i.e., using a complementary magnitude

comparison measurement associated to half-dimensioned projections, is of particular interest. It is

this phaseless measurement model that is exclusively studied to derive uniform recovery results in

Section 2.5. In the notation of Problem 1.3.6, this solution is as follows: for signal reconstruction of

X ∈ ProjF(1, 2n), let m be as in (28) and generate m independent uniformly distributed projections

of rank-n. Let ΦP be the complementary magnitude comparison measurement as in Corollary 2.4.7

and R be the recovery algorithm given by PEP as in Definition 2.2.2. Then with probability at

least 1− ρ, this choice of ΦP and R gives one-bit phase retrieval of X, i.e., ‖R(ΦP(X))−X‖ < δ.

See Figure 1 for a plot showing how our theoretical bound from Corollary 2.4.7 on the sufficient

number of measurements to achieve an accuracy of δ relates to experimental results. The single line

separate from the cluster represents the upper bound on δ given by Corollary 2.4.7. The MATLAB

code used to generate this plot is included in Appendix A.1.

2.5 Uniformly accurate recovery

As discussed in Section 1.3, uniformly accurate recovery of all input signals is a desirable property

for a measurement and reconstruction scheme for one-bit phase retrieval. The task of devising a

measurement and reconstruction scheme with this property was formally stated in Problem 1.3.7,

called the uniform one-bit phase retrieval problem. In this section the result from Theorem 2.4.4,

and more specifically Corollary 2.4.7, is extended to show that the recovery error using PEP is
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Figure 1: Plot showing the accuracy of recovery using PEP compared to the theoretical upper bound
in Corollary 2.4.7 for 7200 independent complementary magnitude comparison measurements, each
using a collection of 106 half-dimensioned projections on R16.

small uniformly across all input vectors X ∈ ProjF(1, 2n) for a single complementary magnitude

comparison measurement ΦP associated to a random collection of half-dimensioned projections.

In other words, the same measurement and reconstruction scheme used for one-bit phase retrieval

of fixed input signals also provides a solution to Problem 1.3.7, although a greater number m of

projections will be required to achieve a desired level of uniform accuracy. See Section 2.1 for

details about the specific phaseless binary measurement we are considering, and Section 2.2 for the

definition of the reconstruction algorithm PEP.

The strategy for extending from the pointwise result in Corollary 2.4.7 to the uniform result

given in Theorem 2.5.14 consists of the following steps:

(1) Using sufficiently many random projections, Q̂P(X) concentrates near Q(X) for all X in an

ε-net of ProjF(1, 2n).

(2) With high probability the measurement Hamming distance between a pairX,Y ∈ ProjF(1, 2n)
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concentrates near its expected value E [dP(X,Y )], uniformly for all such pairs. See Defini-

tion 1.3.2 for the definition of the measurement Hamming distance.

(3) The expected value of the measurement Hamming distance E [dP(X,Y )] is bounded above

by the operator norm distance ‖X − Y ‖.

(4) The eigenspace of Q̂P(X) corresponding to its largest eigenvalue concentrates near X uni-

formly for all X ∈ ProjF(1, 2n).

As previously mentioned, in this section the phaseless binary measurement is always assumed to

be a complementary magnitude comparison associated to a collection of random half-dimensioned

projections P ⊂ ProjF(n, 2n).

2.5.1 Concentration of Q̂P(X) near Q(X) uniformly on a net

Recall that a subset Nε ⊂ ProjF(1, 2n) is called an ε-net if for every X ∈ ProjF (1, 2n) there exists

some Y ∈ Nε such that ‖X − Y ‖ < ε. This section shows that the empirical average of the proximal

projections concentrates uniformly for all input signals in an ε-net of ProjF(1, 2n). This fact relies

on the existence of ε-nets of ProjF(1, 2n) with explicit cardinality bounds. First, a basic inequality

is derived that related the Euclidean distance between unit vectors to the operator norm distance

between their associated rank-one projections.

Lemma 2.5.1. Let d ∈ N. Then for all x, y ∈ Sd−1
F

‖xx∗ − yy∗‖ ≤ ‖x− y‖2 .

Proof. Let θ be the principal angle between the subspaces associated to xx∗ and yy∗, and recall

‖xx∗ − yy∗‖ = sin(θ). Since θ ∈ [0, π2 ] we know 0 ≤ cos(θ) ≤ 1, and thus

‖xx∗ − yy∗‖2 = sin2(θ) = (1 + cos(θ))(1− cos(θ)) ≤ 2(1− cos) = 2− 2 cos(θ).

Since cos(θ) is the maximum value of |〈x′, y′〉| over unit vectors x′ ∈ span {x} and y′ ∈ span {y}, it
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follows that

2− 2 cos(θ) ≤ 2− 2 |〈x, y〉| ≤ 2− 2<〈x, y〉 = 〈x− y, x− y〉 = ‖x− y‖22 .

Combining these inequalities yields the desired bound.

Lemma 2.5.1 can now be used to prove the existence of ε-nets of ProjF(1, 2n) with explicit

cardinality bounds. This follows from the analogous results for ε-nets of S2n−1
F

.

Lemma 2.5.2. For any 0 < ε ≤ 1, there exists an ε-net Nε for ProjF(1, 2n) with respect to the

operator norm with cardinality satisfying

log |Nε| ≤ 4βFn log(3ε−1).

Proof. By the standard volume bound for the covering number of the sphere in real Euclidean space

[12], and the fact that S2n−1
C

is naturally isometric to S4n−1
R

in the Euclidean distance, for every

ε > 0 there exists an ε-net N ′ε for S2n−1
F

(with respect to the Euclidean distance) with cardinality

satisfying ∣∣N ′ε∣∣ ≤ (3

ε

)4βFn

.

By Lemma 2.5.1, Nε := {xx∗ : x ∈ N ′ε} is an ε-net for ProjF(1, 2n) with the desired cardinality

bound.

With control of the cardinality of epsilon-nets for ProjF(1, 2n), using Lemma 2.4.1 and a union

bound shows that with sufficiently many measurements Q̂P(X) concentrates near Q(X) uniformly

for all X in an epsilon-net of ProjF(1, 2n).

Lemma 2.5.3. Let ε > 0 and Nε be an ε-net of ProjF(1, 2n) such that log |Nε| ≤ 4βFn log(3ε−1),

0 < δ < 1 be a desired level of concentration, and 0 < ρ < 1 be an acceptable failure probability. If

m ≥ 7

6
δ−2

[
log(4n) + 4βn log(3ε−1) + log(ρ−1)

]
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and P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− ρ

∥∥∥Q̂P(X)−Q(X)
∥∥∥ < δ

for all X ∈ Nε.

Proof. By Corollary 2.4.2 and our assumption on m, for each X ∈ Nε we know

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≥ δ} ≤ exp
(
−4βn log(3ε−1) + log(ρ−1)

)
,

so by looking at the complement of these events we have for X ∈ Nε that

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ < δ
}
≥ 1− exp

(
−4βn log(3ε−1) + log(ρ−1)

)
.

By taking a union bound over all X ∈ Nε it follows that

P
{∥∥∥Q̂P(X)−Q(X)

∥∥∥ < δ for all X ∈ Nε
}
≥ 1− |Nε| exp

(
−4βn log(3ε−1) + log(ρ−1)

)
≥ 1− exp

(
log(|Nε|)− 4βn log(3ε−1) + log(ρ−1)

)
= 1− ρ.

2.5.2 Uniform concentration of measurement Hamming distance

The main goal of this section is to prove Theorem 2.5.9, which says that with sufficiently many

measurements, with high probability the measurement Hamming distance dP(X,Y ) concentrates

uniformly near its expected value for all pairs X,Y ∈ ProjF(1, 2n) simultaneously. It is relatively

simple to show that this happens for fixed X and Y , but showing that it holds uniformly for

all such pairs requires more complicated techniques. To this end, the t-soft Hamming distance
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will be defined similarly as in Plan and Vershynin’s Dimension reduction by random hyperplane

tessellations [79]. The t-soft Hamming distance admits a type of continuity property which will be

used to show uniform concentration of the measurement Hamming distance near its expected value

over all of ProjF(1, 2n), Theorem 2.5.9.

In order to motivate the definition of the t-soft Hamming distance, define for any pair of input

signals X,Y ∈ ProjF(1, 2n) the set

SX,Y := {P ∈ ProjF(n, 2n) : φP (X) 6= φP (Y )},

i.e., the set of projections P that yield different one-bit measurements of X and Y under the

complementary magnitude comparison φP . If P ∈ SX,Y , then P is said to separate X and Y . By

the definition of the binary question φP , Definition 2.1.2, there is an equivalent expression for SX,Y

given by

SX,Y ={P ∈ ProjF(n, 2n) : tr [PX] <
1

2
≤ tr [PY ]}

∪ {P ∈ ProjF(n, 2n) : tr [PY ] <
1

2
≤ tr [PX]}.

For a sequence P = {Pj}mj=1 ⊂ ProjF(n, 2n), recall that the measurement Hamming distance

between X and Y is the fraction of projections in P that separate X and Y , i.e.,

dP(X,Y ) =
1

m
|{j : Pj ∈ SX,Y }| .

With this expression for the measurement Hamming distance in mind, define subsets

StX,Y := {P ∈ ProjF(n, 2n) : tr [PX] + t <
1

2
≤ tr [PY ]− t}

∪ {P ∈ ProjF(n, 2n) : tr [PY ] + t <
1

2
≤ tr [PX]− t}

for all t ∈ [−1
2 ,

1
2 ]. If P ∈ StX,Y then P is said to t-separate X and Y . In a similar fashion to
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the measurement Hamming distance, the t-soft Hamming distance is defined to be the fraction of

projections in P that t-separate X and Y .

Definition 2.5.4. Given a sequence of orthogonal projections P = {Pj}mj=1 in ProjF(n, 2n) and

t ∈ [−1
2 ,

1
2 ], define the t-soft Hamming distance between input projections X,Y ∈ ProjF(1, 2n)

to be

dtP(X,Y ) :=
1

m

∣∣{j : Pj ∈ StX,Y
}∣∣ .

The goal is to prove uniform concentration results for the measurement Hamming distance, but

its discontinuity causes problems with standard ε-net arguments. The t-soft Hamming distance

helps work around this discontinuity by adjusting the parameter t which determines how strict the

criteria should be for determining whether each binary question ϕPj distinguishes X and Y . This

is reflected in the fact that for t1 ≤ 0 ≤ t2 we have St2X,Y ⊂ SX,Y ⊂ S
t1
X,Y .

The addition of this extra parameter gives rise to a type of continuity for dtP(X,Y ) where both

t and the projections X and Y are allowed to vary. If the projections X,Y are perturbed by a small

amount in operator norm, then the Hamming distance between the measurements of the perturbed

X and Y can be controlled by slightly increasing/decreasing the parameter t. This fact is contained

in the following proposition.

Proposition 2.5.5. Let P = {Pj}mj=1 be a sequence of projections in ProjF(n, 2n), t ∈ [−1
2 ,

1
2 ],

0 < ε < 1, and X0, Y0, X, Y ∈ ProjF(1, 2n) such that ‖X −X0‖ < ε and ‖Y − Y0‖ < ε. Then

dt+εP (X,Y ) ≤ dtP(X0, Y0) ≤ dt−εP (X,Y )

Proof. To see this chain of inequalities, we show the subset inclusions

St+εX,Y ⊂ S
t
X0,Y0 ⊂ S

t−ε
X,Y , (29)

which imply ∣∣∣{j : Pj ∈ St+εX,Y

}∣∣∣ ≤ ∣∣{j : Pj ∈ StX0,Y0

}∣∣ ≤ ∣∣∣{j : Pj ∈ St−εX,Y

}∣∣∣
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and hence the desired inequality for the soft Hamming distances in (2.5.5).

To this end, suppose P ∈ St+εX,Y . Then, without loss of generality, we may assume that

tr [PY ] + t+ ε <
1

2
< tr [PX]− t− ε.

Since P is a projection we have |tr [P (Y0 − Y )]| ≤ ‖Y − Y0‖ < ε, so

tr [PY0] + t = tr [PY ]− tr [P (Y − Y0)] + t ≤ tr [PY ] + t+ ε <
1

2

and also

tr [PX0]− t = tr [PX]− tr [P (X −X0)]− t ≥ tr [PX]− t− ε > 1

2
.

Thus P ∈ StX0,Y0
, which shows St+εX,Y ⊂ StX0,Y0

.

The second set inclusion in (29) follows from above by swapping the roles of X,Y with X0, Y0

and replacing t with t− ε.

The next lemma gives a concentration result for for the t-soft Hamming distance between two

fixed vectors. It follows from the fact that

dtP(X,Y ) =
1

m

∣∣{j : Pj ∈ StX,Y
}∣∣

=
1

m

m∑
j=1

1StX,Y (Pj), (30)

where 1StX,Y (·) is the indicator function of the set StX,Y .

Lemma 2.5.6. Let P = {Pj}mj=1 be an independent sequence of uniformly distributed projections

in ProjF(n, 2n), t ∈ [−1
2 ,

1
2 ] be a parameter for the soft Hamming distance, δ > 0 be a desired level

of concentration, and X,Y ∈ ProjF(1, 2n) be fixed. Then

P
{∣∣dtP(X,Y )− E

[
dtP(X,Y )

]∣∣ > δ
}
≤ 2 exp

(
−2δ2m

)
.
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Proof. As mentioned above,

dtP(X,Y ) =
1

m

m∑
j=1

1StX,Y (Pj).

Since the projections P are independent and identically distributed, the outputs of the indicator

function are i.i.d. Bernoulli random variables: for each j, 1StX,Y (Pj) = 1 with probability p =

P
{
StX,Y

}
and 1StX,Y (Pj) = 0 with probability 1− p. Thus m · dtP(X,Y ) ∼ Binom(m, p). Observe

from (30), p = E
[
dtP(X,Y )

]
. The result then follows from a standard Chernoff inequality for

binomial random variables, see Theorem 1.4.13 and the ensuing discussion.

Next, Lemma 2.5.6 and the bound on the size of ε-nets of ProjF(1, 2n) given in Lemma 2.5.2

are used to take a union bound. The result is a bound for the probability that the t-soft Hamming

distance is close to its expectation for all pairs of projections in an ε-net simultaneously.

Proposition 2.5.7. Let ε > 0 and Nε be an ε-net of ProjF(1, 2n) such that log |Nε| ≤ 4βFn log(3ε−1).

Also, let t ∈ [−1
2 ,

1
2 ] be a parameter for the soft Hamming distance, δ > 0 be a desired level of ac-

curacy, and 0 < ρ < 1 be an acceptable failure probability. If

m ≥ 1

2
δ−2

(
8βFn log(3ε−1) + log(ρ−1)

)
(31)

and P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− ρ

∣∣dtP(X,Y )− E
[
dtP(X,Y )

]∣∣ ≤ δ
for all X,Y ∈ Nε.

Proof. By Proposition 2.5.6 and taking a union bound over all
(|Nε|

2

)
≤ 1

2 |Nε|
2 pairs in Nε × Nε,

we have that

P
{∣∣dtP(X,Y )− E

[
dtP(X,Y )

]∣∣ ≤ δ, for all (X,Y ) ∈ Nε ×Nε
}
≥ 1− |Nε|2 exp

(
−2δ2m

)
.
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Using our bound on the cardinality of |Nε| and our assumption about m we have

|Nε|2 exp
(
−2δ2m

)
= exp

(
2 log(|Nε|)− 2δ2m

)
≤ exp

(
8βFn log(3ε−1)− 2δ2m

)
≤ ρ.

Proposition 2.5.5 showed that both entries in the t-soft Hamming distance may be perturbed

slightly in exchange for perturbing the value of t. The following proposition addresses how varying

t affects the expected difference of the t-soft Hamming distance from the measurement Hamming

distance.

Proposition 2.5.8. Let P = {Pj}mj=1 be an independent sequence of uniformly distributed pro-

jections in ProjF(n, 2n), t ∈ [−1
2 ,

1
2 ] be a parameter for the soft Hamming distance, and X,Y ∈

Proj(1, 2n) be fixed. Then

∣∣E [dtP(X,Y )− dP(X,Y )
]∣∣ ≤ 8 |t|

√
βFn√
π

.

Proof. Because the t-soft and regular Hamming distances are linear combinations of indicator

functions, and the fact that the Pj are i.i.d., we have

∣∣E [dtP(X,Y )− dP(X,Y )
]∣∣ =

∣∣∣∣∣∣E
 1

m

m∑
j=1

1StX,Y (Pj)

− E

 1

m

m∑
j=1

1SX,Y (Pj)

∣∣∣∣∣∣
=
∣∣∣E [1StX,Y (P1)− 1SX,Y (P1)

]∣∣∣ .
By Jensen’s inequality we may bring the absolute value inside the expected value to get an upper

bound ∣∣∣E [1StX,Y (P1)− 1SX,Y (P1)
]∣∣∣ ≤ E

[∣∣∣1StX,Y (P1)− 1SX,Y (P1)
∣∣∣] . (32)
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Since |1A − 1B| = 1A4B, where A4B is the symmetric difference

A4B = (A \B) ∪ (B \A),

it follows from (32) that

E
[∣∣∣1StX,Y (P1)− 1SX,Y (P1)

∣∣∣] = E
[
1StX,Y4SX,Y (P1)

]
= P

{
P1 ∈ StX,Y4SX,Y

}
,

and hence ∣∣E [dtP(X,Y )− dP(X,Y )
]∣∣ ≤ P

{
P1 ∈ StX,Y4SX,Y

}
. (33)

We break up this symmetric difference into two disjoint pieces

P
{
P1 ∈ StX,Y4SX,Y

}
= P

{
P1 ∈ StX,Y \ SX,Y

}
+ P

{
P1 ∈ SX,Y \ StX,Y

}
and look at two cases. First, if t > 0 then StX,Y \ SX,Y is empty, and

SX,Y \ StX,Y ⊂
{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < t

}⋃{∣∣∣∣tr [P1Y ]− 1

2

∣∣∣∣ < t

}
.

Similarly, if t < 0 then SX,Y \ StX,Y is empty and again

StX,Y \ SX,Y ⊂
{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < −t}⋃{∣∣∣∣tr [P1Y ]− 1

2

∣∣∣∣ < −t} ,
Since tr [P1X]

(d)
= tr [P1Y ], in both cases (and trivially if t = 0) we have

P
{
P1 ∈ StX,Y4SX,Y

}
≤ 2P

{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < |t|} . (34)

By Lemma 2.3.1 we know tr [P1X] ∼ Beta(βFn, βFn), and so we can bound this probability
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using the the probability density function of the beta distribution given in Definition 1.4.5. We see

that

P
{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < |t|} =
1

B(βFn, βFn)

∫ 1
2

+t

1
2
−t

[x(1− x)]βFn−1 dx, (35)

and since x(1− x) ≤ 1
4 for all x ∈ [0, 1] we may bound this integral by

∫ 1
2

+t

1
2
−t

[x(1− x)]βFn−1 dx ≤ 2 |t|
(

1

4

)βFn−1

.

Thus

P
{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < |t|} ≤ 8 |t|
4βFnB(βFn, βFn)

.

Using the lower bound for the beta function given in Lemma 2.3.8 then yields

P
{∣∣∣∣tr [P1X]− 1

2

∣∣∣∣ < |t|} ≤ 4 |t|
√
βFn√
π

. (36)

The result follows from combining equation (33) with inequalities (34) and (36).

The above lemmas and propositions give all the necessary tools to prove that the measurement

Hamming distance concentrates uniformly near its expected value for all pairs in ProjF(1, 2n).

Theorem 2.5.9. Let 0 < δ < 1 be a desired level of concentration and 0 < ρ < 1 be an acceptable

failure probability. If

m ≥ 2δ−2

(
8βFn log

(
96

√
βFn

π
δ−1

)
+ log(2ρ−1)

)

and P = {Pj}mj=1 is a collection of independent uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− ρ

|dP(X,Y )− E [dP(X,Y )]| < δ (37)
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for all X,Y ∈ ProjF(1, 2n).

Proof. Let ε =
√
π

32
√
βFn

δ and let Nε be an ε-net of ProjF(1, 2n) with log |Nε| ≤ 4βFn log(3ε−1) as in

Lemma 2.5.2. By our assumption on m, Proposition 2.5.7 says that

P
{
|dεP(X,Y )− E [dεP(X,Y )]| > δ

2
for some X,Y ∈ Nε

}
≤ ρ

2

and also

P
{∣∣d−εP (X,Y )− E

[
d−εP (X,Y )

]∣∣ > δ

2
for some X,Y ∈ Nε

}
≤ ρ

2
,

and so with probability at least 1 − ρ we have
∣∣d±εP (X,Y )− E

[
d±εP (X,Y )

]∣∣ ≤ δ
2 for all X,Y ∈ Nε

(call this event A).

Suppose that A occurs, and consider an arbitrary pair X,Y ∈ Proj(1, 2n). Let X0, Y0 ∈ Nε

such that ‖X −X0‖ < ε and ‖Y − Y0‖ < ε. By Proposition 2.5.5 we know that

dP(X,Y ) ≤ dεP(X0, Y0) ≤ d2ε
P (X,Y ).

These inequalities together with A holding imply

dP(X,Y ) ≤ dεP(X0, Y0)

≤ E [dεP(X0, Y0)] +
δ

2

≤ E
[
d2ε
P (X,Y )

]
+
δ

2
. (38)

By Proposition 2.5.8 we may bound the difference in expected values of the 2ε-soft Hamming

distance and the measurement Hamming distance by
∣∣E [d2ε

P (X,Y )
]
− E [dP(X,Y )]

∣∣ ≤ 16ε
√
βFn√
π

.

From our choice of ε, this implies

E
[
d2ε
P (X,Y )

]
≤ E [dP(X,Y )] +

δ

2
. (39)
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Together, (38) and (39) show that dP(X,Y ) ≤ E [dP(X,Y )] + δ.

Similarly, using Proposition 2.5.5 again shows that dP(X,Y ) ≥ d−εP (X0, Y0) ≥ d−2ε
P (X,Y ), and

since A holds we have

dP(X,Y ) ≥ d−εP (X0, Y0) ≥ E
[
d−εP (X0, Y0)

]
− δ

2
≥ E

[
d−2ε
P (X,Y )

]
− δ

2
.

Using Proposition 2.5.8 as above but for t = −ε yields dP(X,Y ) ≥ E [dP(X,Y )]− δ.

Bounding E [dP(X,Y )] above by ‖X − Y ‖

Theorem 2.5.9 says that when the measurement projections are chosen uniformly and independently,

then dP(X,Y ) concentrates near its expected value E [dP(X,Y )]. As observed in the proof of

Lemma 2.5.6, E [dP(X,Y )] = P {P ∈ SX,Y }, where P is a single uniformly distributed projection

in ProjF(n, 2n).

When n = 1, then X,Y, and P are all rank-one projections on F2 and if P is uniformly

distributed then it is easy to see that

P {P ∈ SX,Y } ≤ ‖X − Y ‖ .

This section shows that this upper bound holds for arbitrary n and for F = C, see Proposi-

tion 2.5.12. Deriving this bound requires understanding the joint distribution of (tr [PX] , tr [PY ]).

By rotational invariance of the distribution of P we may assume that Ran(X) and Ran(Y ) are

in the two-dimensional subspace spanned by e1 and e2, the first two standard basis vectors. Viewed

as matrices, this means that all entries of X and Y are zero outside of the top-left 2× 2 submatrix.

Furthermore, if P̃ , X̃, and Ỹ are the top-left 2 × 2 submatrices of their respective matrices then

(tr [PX] , tr [PY ]) = (tr
[
P̃ X̃

]
, tr
[
P̃ Ỹ

]
). We study the joint distribution of (tr [PX] , tr [PY ])

through the submatrix P̃ acting on F2.

Since P is Hermitian, so is P̃ . Thus we may write P̃ = λ1E1 + λ2E2 where λ1 ≥ λ2 are the

eigenvalues of P̃ and E1 ⊥ E2 are the projections onto their corresponding eigenspaces. We write
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λ(P̃ ) := (λ1, λ2) ∈ [0, 1]2, and E(P̃ ) := (E1, E2) ∈ ProjF(1, 2) × ProjF(1, 2). By the rotational

invariance of P , E1 and E2 are both uniformly distributed in Proj2(1, 2), but they are not indepen-

dent: E2 = I −E1 since Hermitian matrices have mutually orthogonal eigenspaces. Note also that

λ(P̃ ) and E(P̃ ) are independent of each other by the rotational invariance of P̃ . The distribution

of λ(P̃ ) is given in the following lemma.

Lemma 2.5.10. Let n ≥ 2 and P ∈ ProjF(n, 2n) be uniformly distributed. Then λ(P̃ ) has proba-

bility density function pn on D := {(x, y) ∈ [0, 1]2 : y ≤ x} defined by

pn(x, y) := M−1
n (x− y)2βF [x(1− x)y(1− y)]βF(n−1)−1 ,

with the normalization constant

Mn :=

∫∫
D

(x− y)2βF [x(1− x)y(1− y)]βF(n−1)−1 dxdy =



2
n−1B(n− 1, n− 1) if F = R

1
8n−4B(n− 1, n− 1)2 if F = C.

Proof. The probability density functions are given by [6, Proposition 4.1.4] with p = 2, q = 2n− 2,

r = n− 2 and s = n− 2. It only remains to compute the normalization constants Mn.

Suppose F = R. Then pn(x, y) = M−1
n (x− y) [x(1− x)y(1− y)]

n−3
2 . Define the functions

fn(x, y) = − 1

n− 1
[x(1− x)]

n−3
2 [y(1− y)]

n−1
2

gn(x, y) = − 1

n− 1
[x(1− x)]

n−1
2 [y(1− y)]

n−3
2 .

With these definitions, we have pn = M−1
n (∂gn∂x −

∂fn
∂y ) on D. So by Green’s theorem,

1 =

∫∫
D
pn(x, y) dxdy = M−1

n

∮
∂D
fndx+ gndy,

where ∂D is the boundary of D. Note that fn and gn both vanish on the boundary of D except
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for the diagonal ∆ := {(x, y) ∈ D : x = y}, so we only need to compute the line integral over ∆.

Parameterizing ∆ by x(t) = y(t) = 1− t for t ∈ [0, 1], we see

Mn =

∮
∂D
fndx+ gndy = −

∫ 1

0
[fn(x(t), y(t)) + gn(x(t), y(t))] dt

=
2

n− 1

∫ 1

0
tn−2(1− t)n−2 dt

=
2

n− 1
B(n− 1, n− 1).

Next, we consider the case when F = C. Then pn(x, y) = M−1
n (x − y)2 [x(1− x)y(1− y)]n−2.

By symmetry of the distribution under the map (x, y) 7→ (y, x) we see

1 =

∫∫
D
pn(x, y) dxdy

=
1

2

∫∫
[0,1]2

pn(x, y) dxdy

=
M−1
n

2

∫∫
[0,1]2

(x− y)2 [x(1− x)y(1− y)]n−2 dxdy.

Expanding (x − y)2 = x2 − 2xy + y2 and using linearity of the integral and the definition of the

beta distribution, we have

Mn =
(
E
[
b2
]
− E [b]2

)
B(n− 1, n− 1)2

= var(b) ·B(n− 1, n− 1)2

where b ∼ Beta(n− 1, n− 1). By Lemma 2.3.6, this beta-distributed random variable has variance

var(b) = 1
4(2n−1) , which determines Mn.

Let DSep := {(x, y) ∈ D : y < 1
2 < x}. Then λ(P̃ ) ∈ DSep if and only if there exist projections

A,B ∈ ProjF(1, 2) such that P̃ ∈ SA,B. This is true because λ1 = maxA′∈Proj(1,2) tr [PA′] and

λ2 = maxB′∈Proj(1,2n) tr [PB′]. In particular, P ∈ SX,Y requires λ(P̃ ) ∈ DSep. The probability that

λ(P̃ ) ∈ DSep may be computed as follows.
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Lemma 2.5.11. If n ≥ 2, and P ∈ ProjF(n, 2n) is uniformly distributed, then

P
{
λ(P̃ ) ∈ DSep

}
=



B(n−1
2
,n−1

2 )
2nB(n−1,n−1) →

1√
2

if F = R

1
2 + 4n−2

(n−1)224n−4B(n−1,n−1)2
→ 1

2 + 1
π if F = C.

Proof. First, suppose F = R, so pn(x, y) = M−1
n (x− y) [x(1− x)y(1− y)]

n−3
2 . Then,

P
{
λ(P̃ ) ∈ DSep

}
= M−1

n

∫ 1
2

0

∫ 1

1
2

(x− y) [x(1− x)y(1− y)]
n−3
2 dxdy.

By linearity and Fubini’s theorem, we get

∫ 1
2

0

∫ 1

1
2

(x−y) [x(1− x)y(1− y)]
n−3
2 dxdy =

1

4

(
E
[
b | b ≥ 1

2

]
− E

[
b | b ≤ 1

2

])
B

(
n− 1

2
,
n− 1

2

)2

,

where b ∼ Beta
(
n−1

2 , n−1
2

)
. Calculating these conditional expectations as in Corollary 2.3.7 we get

E
[
b | b ≥ 1

2

]
− E

[
b | b ≤ 1

2

]
=

1

(n− 1)2n−3B
(
n−1

2 , n−1
2

) ,
and combining this with Lemma 2.5.10 yields

P
{
λ(P̃ ) ∈ DSep

}
=

B
(
n−1

2 , n−1
2

)
2nB(n− 1, n− 1)

. (40)

Next, suppose F = C, so pn(x, y) = M−1
n (x− y)2 [x(1− x)y(1− y)]n−2. Then,

P
{
λ(P̃ ) ∈ DSep

}
=

∫ 1
2

0

∫ 1

1
2

pn(x, y) dxdy.

By using the expression for Mn given in Proposition 2.5.10, expanding (x − y)2 = x2 − 2xy + y2,

94



and rewriting integrals in terms of expectations of beta-distributed random variables, we see

∫ 1
2

0

∫ 1

1
2

pn(x, y) dxdy =
8n− 4

B(n− 1, n− 1)2

∫ 1
2

0

∫ 1

1
2

(x− y)2 [x(1− x)y(1− y)]n−2 dxdy

= (4n− 2)

(
E
[
b2
]
− E

[
b | b ≥ 1

2

]
· E
[
b | b ≤ 1

2

])

where b ∼ Beta(n− 1, n− 1). We know that E
[
b2
]

= E [b]2 + var(b) = 1
4 + 1

8n−4 by Lemma 2.3.6.

The conditional expectations may be evaluated as in the proof of Corollary 2.3.7 to yield

E
[
b | b ≥ 1

2

]
=

1

2
+

1

(n− 1)22n−2B(n− 1, n− 1)
= 1− E

[
b | b ≤ 1

2

]
.

Thus the product of conditional expectations is

E
[
b | b ≥ 1

2

]
· E
[
b | b ≤ 1

2

]
=

1

4
− 1

(n− 1)224n−4B(n− 1, n− 1)2
.

Putting this all together yields

P
{
λ(P̃ ) ∈ DSep

}
= (4n− 2)

(
1

8n− 4
− 1

(n− 1)224n−4B(n− 1, n− 1)2

)
=

1

2
+

4n− 2

(n− 1)224n−4B(n− 1, n− 1)2
. (41)

The asymptotic limit of P
{
λ(P̃ ) ∈ DSep

}
as n → ∞ follows from the bounds on the beta

function given in Proposition 2.3.8. When F = R, by (40) we have for n ≥ 2 that

1√
2

exp

(
− 1

4(n− 1)

)
≤ P

{
λ(P̃ ) ∈ SSep

}
≤ 1√

2
· exp

(
3

8(n− 1)

)
,

so clearly P
{
λ(P̃ ) ∈ SSep

}
→ 1√

2
.

When F = C, by (41) we have for n ≥ 2 that

1

2
+

2n− 1

2π(n− 1)
· exp

(
− 1

3(n− 1)

)
≤ P

{
λ(P̃ ) ∈ SSep

}
≤ 1

2
+

2n− 1

2π(n− 1)
exp

(
1

12(n− 1)

)
,
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so it follows that P
{
λ(P̃ ) ∈ SSep

}
→ 1

2 + 1
π .

The bound for P {P ∈ SX,Y } in terms of the operator norm distance ‖X − Y ‖ follows by ana-

lyzing the distribution of λ(P̃ ).

Proposition 2.5.12. Let P ∈ ProjF(n, 2n) be uniformly distributed, then for any X,Y ∈ ProjF(1, 2n)

P {P ∈ SX,Y } ≤ ‖X − Y ‖ .

Proof. The case when n = 1 is simple and was mentioned previously, so we consider here n ≥ 2.

Further, without loss of generality, assume Ran(X),Ran(Y ) ⊂ Ran(E) where E is the orthogonal

projection onto span {e1, e2}. By conditioning, P {P ∈ SX,Y } = E
[
P
{
P ∈ SX,Y | λ(P̃ )

}]
. By the

definition of DSep we see that P
{
P ∈ SX,Y | λ(P̃ )

}
= 0 if λ(P̃ ) ∈ DcSep. Hence

E
[
P
{
P ∈ SX,Y | λ(P̃ )

}]
= E

[
P
{
P ∈ SX,Y | λ(P̃ )

}
1DSep

(λ(P̃ ))
]
.

Suppose now that λ(P̃ ) ∈ DSep, and first consider the case when F = R. Then ProjR(1, 2)

can be viewed as S1
R

with its opposite points identified, and E(P̃ ) is a (uniformly distributed)

random pair of antipodal points in this quotient space. Letting E1 = e1e
∗
1 and E2 = e2e

∗
2, we may

parameterize ProjR(1, 2) by φ ∈ [−π
2 ,

π
2 ] via φ 7→ Eφ := (cos(φ)e1+sin(φ)e2)(cos(φ)e1+sin(φ)e2)∗ =

cos2(φ)E1+sin2(φ)E2+sin(φ)(cos(φ)(e1e
∗
2+e2e

∗
1). We see that tr

[
P̃Eφ

]
= λ1 cos2(φ)+λ2 sin2(φ) =

λ1 − (λ1 − λ2) sin2(φ). Since tr
[
P̃E0

]
= λ1 > 1

2 and tr
[
P̃Eπ

2

]
= λ2 < 1

2 , there exists some

φh ∈ (0, π2 ) such that tr
[
P̃Eφh

]
= tr

[
P̃E−φh

]
= 1

2 . In fact, φh = arcsin

(√
λ1− 1

2
λ1−λ2

)
. We see that

tr
[
P̃Eφ

]
> 1

2 for φ ∈ (−φh, φh), and tr
[
P̃Eφ

]
< 1

2 for φ ∈ [−π
2 ,−φh) ∪ (φh,

π
2 ]. In our quotient

space picture, E−φh is the reflection of the point Eφh across the vertical line between E1 and E2.

All of this goes to show that λ(P̃ ) determines φh, which along with the orientation of E1 de-

termines which rank-one projections in Ran(E) that P separates. In the quotient space picture,

the open arc between Eφh and E−φh containing E1 represents the rank-one projections with mea-

surements greater than 1
2 , and the other arc represents those with measurements less than 1

2 . Let
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w = min{2φh, π − 2φh}, which is the length of the smallest of these two arcs. If w ≤ θ, then

P
{
P ∈ SX,Y | λ(P̃ )

}
= 2w

π ≤
2
πθ. If w > θ, then P

{
P ∈ SX,Y | λ(P̃ )

}
= 2θ

π . So

E
[
P
{
P ∈ SX,Y | λ(P̃ )

}
1DSep

(λ(P̃ ))
]
≤ E

[
2θ

π
1DSep

(λ(P̃ ))

]
=

2θ

π
P
{
λ(P̃ ) ∈ DSep

}
≤ ‖X − Y ‖ .

Next, we consider the case when F = C, in which case ProjC(1, 2) can be identified with the

Bloch sphere [17]. By rotational invariance, E(P̃ ) is a pair of (uniformly distributed) antipodal

points on the sphere, and λ(P̃ ) determines which pairs of projections are separated by P . If e1 and

e2 satsify e1e
∗
1 = E1 and e2e

∗
2 = E2, and eφ,ψ := cos(φ2 )e1 + eiψ sin(φ2 )e2 for φ ∈ [0, π], ψ ∈ [0, 2π],

then Eφ,ψ lies on the circle of points in the Bloch sphere at an angle of φ from E1. Moreover, this

parameterization shows that tr
[
P̃Eφ,ψ1

]
= tr

[
P̃Eφ,ψ2

]
for all φ, ψ1, and ψ2. By continuity, there

must exist some φh ∈ [0, π] such that tr
[
P̃Eφh,ψ

]
= 1

2 for all ψ ∈ [0, 2π]. In fact, we can calculate

φh = 2 arcsin(

√
λ1− 1

2
λ1−λ2 ). The open spherical cap centered at E1 of angle φh consists exactly of those

projections A ∈ ProjC(1, 2) such that tr
[
P̃A
]
> 1

2 , and the complimentary cap consists of those

for which tr
[
P̃A
]
< 1

2 . See Figure 2.5.2 for an illustration.

Conditioning on λ(P̃ ) determines the opening angles of these two spherical caps, which are

oriented along a random diameter determined by E(P̃ ). The projections X,Y are two fixed points

on the Bloch sphere at an angle of 2θ, and are separated by P if and only if they are not in the same

cap. Let w = min{φh, π − φh}, which is the smallest opening angle of these two caps. If w ≤ θ,

then any cap of angle w containing X cannot contain Y (and vice versa), so P
{
P ∈ SX,Y | λ(P̃ )

}
is just twice the normalized area of a cap of angle w (which is just its normalized height), i.e.,

P
{
P ∈ SX,Y | λ(P̃ )

}
= 1− cos(w) ≤ 1− cos(θ) ≤ sin(θ) = ‖X − Y ‖ .

If w > θ, then it is possible for both X and Y to be in a cap of opening angle w. In this case,
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Figure 2: The submatrix P̃ divides ProjF(1, 2) into two disjoint sets based on whether the Hilbert-
Schmidt inner product with P̃ is greater or less than 1

2 (Left: F = R; Right: F = C).

P
{
P ∈ SX,Y | λ(P̃ )

}
is just the normalized area of the symmetric difference of spherical caps of

angle w centered at X and Y . The intersection of these two caps contains a spherical cap of angle

w − θ centered at the geodesic midpoint of X and Y , so for this case

P
{
P ∈ SX,Y | λ(P̃ )

}
≤ cos(w − θ)− cos(w) ≤ sin(θ) = ‖X − Y ‖ .

where the last inequality follows since w ≤ π
2 . Thus we have

E
[
P
{
P ∈ SX,Y | λ(P̃ )

}
1DSep

(λ(P̃ ))
]
≤ ‖X − Y ‖P

{
λ(P̃ ) ∈ DSep

}
≤ ‖X − Y ‖ .

A uniform bound for the measurement Hamming distance in terms of the operator norm distance

now follows directly by combining Theorem 2.5.9 with Proposition 2.5.12.

Corollary 2.5.13. Let δ > 0 be a desired level of uniform concentration and 0 < ρ < 1 be an
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acceptable failure probability. If

m ≥ 1

2
δ−2

(
8βFn log

(
96

√
βFn

π
δ−1

)
+ log(2ρ−1)

)
,

and P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− ρ

dP(X,Y ) ≤ ‖X − Y ‖+ δ

for all X,Y ∈ ProjF(1, 2n).

Uniform guarantee for accurate recovery

Uniformly accurate one-bit phase retrieval follows from the uniform concentration of the measure-

ment Hamming distance given by Theorem 2.5.9 and the uniform bound in terms of operator norm

from Corollary 2.5.13.

Theorem 2.5.14. Let 0 < δ < 1 be a desired level of uniform accuracy, 0 < ρ < 1 be an acceptable

failure probability, and set ε = (µ1−µ2)
8 δ. If

m ≥ 2ε−2

(
8βFn log

(
96

√
βFn

π
ε−1

)
+ log(4ρ−1)

)
(42)

and P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− ρ ∥∥∥X̂ −X∥∥∥ < δ

for all X ∈ Proj(1, 2n), where X̂ is the solution to PEP with input ΦP(X).

Proof. Let Nε be an ε-net for ProjF(1, 2n) such that log |Nε| ≤ 4βFn log(3ε−1) as in Lemma 2.5.2.

By our choice of m, Lemma 2.5.3 says that with probability greater than 1− ρ
2 we have for all all

X ∈ Nε that
∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≤ ε (call this event A). Also by our choice of m, Corollary 2.5.13
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says that with probability at least 1− ρ
2 we have dP(X,Y ) ≤ ‖X − Y ‖+ε for all X,Y ∈ ProjF(1, 2n)

(call this event B).

Suppose that A and B both occur, which happens with probability at least 1 − ρ via a union

bound, and consider an arbitrary X ∈ ProjF(1, 2n). We know from (27) in the proof of Theo-

rem 2.4.4 that ∥∥∥X̂ −X∥∥∥ ≤ 2(µ1 − µ2)−1
∥∥∥Q̂P(X)−Q(X)

∥∥∥ . (43)

To bound the right-hand side of this last inequality we pass to the ε-net Nε by picking X0 ∈ Nε

with ‖X −X0‖ < ε. Then by the triangle inequality

∥∥∥Q̂P(X)−Q(X)
∥∥∥ ≤ ∥∥∥Q̂P(X)− Q̂P(X0)

∥∥∥+
∥∥∥Q̂P(X0)−Q(X0)

∥∥∥+ ‖Q(X0)−Q(X)‖ . (44)

Next, we examine each of the three terms on the right side of (44). To bound the first term,

note that
∣∣∣{j : P̂j(X) 6= P̂j(X0)

}∣∣∣ = m · dP(X,X0). By this identity and the triangle inequality,

we have

∥∥∥Q̂P(X)− Q̂P(X0)
∥∥∥ =

∥∥∥∥∥∥ 1

m

∑
j:P̂j(X)6=P̂j(X0)

P̂j(X)− P̂j(X0)

∥∥∥∥∥∥
≤ 1

m

∑
j:P̂j(X) 6=P̂j(X0)

∥∥∥P̂j(X)− P̂j(X0)
∥∥∥

= dP(X,X0),

and since A holds we have

dP(X,X0) ≤ ‖X −X0‖+ ε < 2ε.

Since B holds and X0 ∈ Nε, we can bound the second term of (44) by
∥∥∥Q̂P(X0)−Q(X0)

∥∥∥ ≤ ε.
Lastly, Corollary 2.3.7 gives Q(X)−Q(X0) = (µ1 − µ2)(X −X0), and so we can bound the third

term by

‖Q(X0)−Q(X)‖ = (µ1 − µ2) ‖X −X0‖ ≤ (µ1 − µ2)ε.
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Figure 3: Plot showing the empirical accuracy of recovery versus the theoretical error bound from
Theorem 2.5.14 for 15000 random vectors in R16 using PEP with a fixed collection of 2 · 106

measurement projections.

Using these three bounds together in (44) along with our choice of ε gives

∥∥∥Q̂P(X)−Q(X)
∥∥∥ ≤ 3ε+ (µ1 − µ2)ε ≤ 1

2
(µ1 − µ2)δ,

which substituted into (43) yields
∥∥∥X̂ −X∥∥∥ < δ.

See Figure 3 for a plot showing how our bound on the sufficient number of measurements to

achieve a uniform accuracy of δ relates to experimental results. The single line separate from the

cluster represents the upper bound on δ given by Theorem 2.5.14. The MATLAB code used to

generate this plot is included in Appendix A.2.

As in the pointwise case, Theorem 2.5.14 allows control over the probability of failure by ad-

justing the value of ρ in (42). In particular, letting ρ = exp (−2n) ensures that the generated

projections allow uniformly accurate one-bit phase retrieval with overwhelming probability with

respect to the dimension of the input signals, i.e., the failure rate decays exponentially with respect

to 2n. In the pointwise case, this resulted in gaining an additional factor of n in the number of
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measurement projections, see Corollary 2.4.8. In the uniform case, however, the asymptotics re-

main the same. This is stated as a corollary, and follows by the fact that (µ1 − µ2)−1 = O(
√
n)

from Lemma 2.3.9.

Corollary 2.5.15. Let 0 < δ < 1 be a desired level of uniform accuracy. There exists a constant

C such that if

m ≥ Cδ−2n2 log(δ−1n)

and P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in ProjF(n, 2n),

then with probability at least 1− exp (−n)

∥∥∥X̂ −X∥∥∥ < δ

for all X ∈ Proj(1, 2n), where X̂ is the solution to PEP with input ΦP(X).
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Chapter 3

Noisy One-Bit Phase Retrieval

Chapter 2 provided solutions to Problem 1.3.6 and Problem 1.3.7, the fixed input and uniform one-

bit phase retrieval problems with noiseless measurements, in Theorem 2.4.4 and Theorem 2.5.14

respectively. In Section 1.3 we also stated versions of these problems in the presence of bit-flip

errors that result in a noisy phaseless binary measurement. Problem 1.3.8 states the fixed input

one-bit phase retrieval problem in the presence of adversarial noise, and Problem 1.2.7 states the

analogous problem for uniformly accurate recovery with adversarial noise. This chapter provides

solutions to both of these problems as corollaries to Theorem 2.4.4 and Theorem 2.5.14 respectively,

see Section 3.2 below. These error bounds for adversarial noise were included in [38] in the case of

a complementary magnitude comparison measurement associated to half-dimensioned projections.

Section 1.5 provided motivation from rate-distortion theory for looking at a second noise model:

random bit-flips where each bit in the phaseless binary measurement is flipped independently

with some fixed probability τ . Using the mean squared error as a measure of distortion by the

measurement and reconstruction scheme, Section 3.3 provides a solution to Problem 1.5.1 below.

3.1 Reconstruction from noisy measurements

Both the adversarial noise model discussed in Section 1.3 and the random bit-flip noise model

discussed in Section 1.5 are formulated in terms of a bit-flip map FT which flips all entries of the

phaseless binary measurement ΦP which have indices in T ⊂ {1, . . . ,m}. Once an input signal X

is measured to obtain the noisy phaseless binary measurement FT (ΦP(X)), PEP can be used as

defined in Section 2.2 to estimate X. The recovery constructs an auxiliary matrix analogous to the
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empirical average Q̂P(X) and then finds its principal eigenspace.

Definition 3.1.1. Given an input signal X ∈ ProjF(1, d), a magnitude comparison measurement

ΦP associated to orthogonal projections P = {Pj}2mj=1, and a bit-flip subset T ⊂ {1, . . . ,m}, define

the bit-flipped empirical average of the proximal projections to be

Q̂P,T (X) :=
1

m

∑
j∈T

[ΦP(X)jPm+j + (1− ΦP(X)j)Pj ] +
∑
j∈T c

P̂j(X)

 .
Observe that Q̂P,T (X) is just Q̂P(X) with the summands with indices in j ∈ T flipped from Pj

to Pm+j and vice versa. If ΦP is the complementary magnitude comparison measurement associated

to orthogonal projections P = {Pj}mj=1, then

Q̂P,T (X) =
1

m

∑
j∈T

(I − P̂j(X)) +
∑
j∈T c

P̂j(X)


With the bit-flipped empirical average Q̂P,T (X), the noisy reconstruction algorithm R is defined

as in Definition 2.2.2 by setting X̂T := R(FT (ΦP(X))) to be the maximizer of

maximize
Y

tr
[
Q̂P,T (X)Y

]
subject to Y � 0, tr [Y ] ≤ 1.

(45)

This is the same optimization problem as in the noiseless case, so it is still referred to as Principal

Eigenspace Programming, or PEP. The maximizer X̂T of (45) is the rank-one orthogonal projection

onto the principal eigenspace of the bit-flipped empirical average Q̂P,T (X).

3.2 Adversarial noise

With high probability, the phaseless binary measurements ΦP studied in Theorem 2.4.4 and the

recovery algorithm PEP defined in Section 3.1 are robust to adversarial bit-flip errors in the bi-

nary measurement of a fixed input signal. This can be seen via a small addition to the proof of
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Theorem 2.4.4.

Corollary 3.2.1. Let X ∈ ProjF(1, d) be fixed and ΦP be a magnitude comparison measurement

as in Proposition 2.3.2 or a complementary magnitude comparison measurement as in Proposi-

tion 2.3.4. Then with probability at least

1− 2d exp

(
− (µ1 − µ2)2δ2m

8 max(µ1 − µ2
1, µ2 − µ2

2) + 8
3 max(µ1, 1− µ2)(µ1 − µ2)δ

)

we have ∥∥∥X̂T −X
∥∥∥ ≤ δ + 2(µ1 − µ2)−1 |T |

m

for all T ⊂ {1, . . . ,m}, where X̂T is the projection onto the principal eigenspace of Q̂P,T (X) and

µ1, µ2 are the eigenvalues of Q(X).

Proof. By Lemma 2.4.3, we have

∥∥∥X̂T −X
∥∥∥ = (µ1 − µ2)−1 tr [Q(X)(A−B)] ,

where X − X̂T =
∥∥∥X − X̂T

∥∥∥ (A − B) is the spectral decomposition given by Lemma 1.3.5. Since

X̂T is the projection onto the principal eigenspace of Q̂P,T (X), we have

tr
[
Q̂P,T (X)(X̂T −X)

]
≥ 0 =⇒ (µ1 − µ1)−1 tr

[
Q̂P,T (X)(B −A)

]
≥ 0.

Thus we have an upper bound for
∥∥∥X̂T −X

∥∥∥ given by

∥∥∥X̂T −X
∥∥∥ ≤ (µ1 − µ2)−1 tr

[
(Q(X)− Q̂P,T (X))(A−B)

]
(46)

≤ 2(µ1 − µ2)−1
∥∥∥Q̂P,T (X)−Q(X)

∥∥∥ . (47)

By the triangle inequality, it follows that

∥∥∥Q̂P,T (X)−Q(X)
∥∥∥ ≤ ∥∥∥Q̂P,T (X)− Q̂P(X)

∥∥∥+
∥∥∥Q̂P(X)−Q(X)

∥∥∥ .
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The normalized Hamming distance between ΦP(X) and FT (ΦP(X)) is equal to |T |m , which implies

∥∥∥Q̂P,T (X)− Q̂P(X)
∥∥∥ =

∥∥∥∥∥∥ 1

m

∑
j∈T

(2ΦP(X)j − 1)(Pm+j − Pj)

∥∥∥∥∥∥
≤ 1

m

∑
j∈T
‖(2ΦP(X)j − 1)(Pm+j − Pj)‖

≤ |T |
m
.

The result follows by using Lemma 2.4.1 to bound the probability that
∥∥∥Q̂P(X)−Q(X)

∥∥∥ ≥ 1
2(µ1−

µ2)δ.

Corollary 3.2.1 shows that recovery via PEP from these types of phaseless binary measurements

provide one-bit phase retrieval of a fixed input signal in the presence of adversarial bit-flips, solving

Problem 1.3.8. Corollaries 2.4.5, 2.4.6, and 2.4.7 may be used to show how the number of bits

required for the noisy measurement depends on the dimension, desired accuracy, and probability

of failure, for three specific phaseless binary measurements. In the notation of Problem 1.3.8, by

restricting to bit-flip sets of size at most τm then Corollary 3.2.1 gives an adversarial bit-flip error

term that depends on τ of the form r(τ) = 2(µ1 − µ2)−1τ . The spectral gap µ1 − µ2 depends

on the type of phaseless binary measurement used and the ranks of the random projections. As

shown in Corollary 2.3.3 and Corollary 2.3.5, the maximal spectral gap for the measurements we

considered occurs when either independent or complementary pairs of half-dimensioned projections

are used for a magnitude comparison measurement. In these cases, the spectral gap is µ1 − µ2 =

O( 1√
d
), which implies that a ratio of τ = O( 1√

d
) adversarial bit-flips can occur and PEP will still

recover X accurately. For a magnitude comparison measurement with independent pairs of rank-

one projections, the spectral gap is µ1 − µ2 = O(1
d), meaning only a ratio τ = O(1

d) bit-flips can

be corrected to ensure accurate recovery.

As in the pointwise case, the proof of Theorem 2.5.14 can be modified to show that uniform

recovery using PEP is also robust to adversarial bit-flip errors occurring in a noisy measurement.
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Recall that Theorem 2.5.14 worked with a specific phaseless binary measurement: the complemen-

tary magnitude comparison measurement associated to a collection of half-dimensioned projections.

Corollary 3.2.2. Let δ, ρ, m, {Pj}mj=1, and ΦP be as in Theorem 2.5.14. Then with probability

at least 1− ρ, for all X ∈ ProjF(1, 2n)

∥∥∥X̂T −X
∥∥∥ ≤ δ + 2(µ1 − µ2)−1 |T |

m
,

for all T ⊂ {1, . . . ,m}, where X̂T is the output of PEP applied to the bit-flipped empirical average

Q̂P,T (X) and µ1, µ2 are the eigenvalues of Q(X).

Proof. Following the same steps as in Corollary 3.2.1, we arrive at (46) which says

∥∥∥X̂T −X
∥∥∥ ≤ 2(µ1 − µ2)−1

∥∥∥Q̂P,T (X)−Q(X)
∥∥∥ .

Using the triangle inequality, we expand

∥∥∥Q̂P,T (X)−Q(X)
∥∥∥ ≤ ∥∥∥Q̂P,T (X)− Q̂P(X)

∥∥∥+
∥∥∥Q̂P(X)−Q(X)

∥∥∥
≤ τ +

∥∥∥Q̂P(X)−Q(X)
∥∥∥ .

Bounding the probability that
∥∥∥Q̂P(X)−Q(X)

∥∥∥ < 1
2(µ1 − µ2)δ for all X with high probability

proceeds exactly as in Theorem 2.5.14.

Corollary 3.2.2 shows that our measurement and reconstruction scheme provides uniform one-

bit phase retrieval in the presence of adversarial bit-flips, solving Problem 1.3.9. If a maximum of

τm bit-flips are allowed, then Corollary 3.2.2 gives an adversarial bit-flip error term that depends

on τ of the form r(τ) = 2(µ1−µ2)−1τ as in the pointwise case. This implies that (µ1−µ2) = O( 1√
n

)

adversarial bit-flips may be allowed in the phaseless binary measurement of any signal and PEP

will still provide accurate reconstruction.
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3.3 Random independent bit-flips

This section addresses the noise model outlined in Section 1.5, where each bit in the phaseless

binary measurement is flipped independently with a fixed probability τ . The mean squared error

is computed for the measurement and reconstruction scheme that uses the complementary magni-

tude comparison measurement associated to a random collection of half-dimensioned projections

as defined in Definition 2.1.6 and the noisy reconstruction algorithm given by PEP in Section 3.1.

First, the expectation of the bit-flipped empirical average Q̂P,T (X) is computed. Its spectral

decomposition in a similar form as that of Q(X) = E
[
Q̂P(X)

]
given in Corollary 2.3.7, but the

eigenvalues and spectral gap depend on the bit-flip probability τ in addition to the dimension of

the input signals.

Proposition 3.3.1. Let X ∈ ProjF(1, 2n) be a fixed input signal and 0 ≤ τ < 1
2 be the probability

of a bit-flip. If P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in

ProjF(n, 2n) and T ⊂ {1, . . . ,m} is binomially distributed with probability τ and independent of P,

then

QT (X) := E
[
Q̂P,T (X)

]
= γ1X + γ2(I −X),

where

γ1 = (1− 2τ)µ1 + τ, γ2 = (1− 2τ)µ2 + τ.

Here, µ1, µ2 are the eigenvalues of Q(X) given in Corollary 2.3.7. In particular, the spectral gap

of QT (X) is

γ1 − γ2 = (1− 2τ)(µ1 − µ2).

Proof. By definition of the bit-flipped empirical average, independence of P and T , and linearity
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of expectation, we have

E
[
Q̂P,T (X)

]
= ET

EP
 1

m

∑
j∈T

(I − P̂j(X)) +
∑
j∈T c

P̂j(X)

 ∣∣∣∣ T


= ET

 1

m

∑
j∈T

(
I − EP

[
P̂j(X)

])
+
∑
j∈T c

EP
[
P̂j(X)

] .
Since the projections Pj are i.i.d., and E

[
P̂j

]
= Q(X) by definition, it follows that

1

m

∑
j∈T

(
I − E

[
P̂j(X)

])
+
∑
j∈T c

E
[
P̂j(X)

] =
|T |
m

(I −Q(X)) +
m− |T |
m

Q(X).

Since E [|T |] = τm by definition of the binomial distribution with probability τ , we have

E
[
Q̂P,T (X)

]
= ET

[
|T |
m

(I −Q(X)) +
m− |T |
m

Q(X)

]
= τ(I −Q(X)) + (1− τ)Q(X)

= (1− 2τ)Q(X) + τI.

The spectral decomposition of QT (X) then follows by using the spectral decomposition of Q(X)

given in Corollary 2.3.7.

The next lemma computes the concentration of the bit-flipped empirical average around its

expectation.

Lemma 3.3.2. Let X ∈ ProjF(1, 2n) be a fixed input signal and 0 < τ < 1
2 be the probability

of a bit-flip. If P = {Pj}mj=1 is an independent sequence of uniformly distributed projections in

ProjF(n, 2n) and T ⊂ {1, . . . ,m} is binomially distributed with probability τ and independent of P,

then

E
[∥∥∥Q̂P,T (X)−QT (X)

∥∥∥] ≤√2 log(4n)

m
+

log(4n)

3m
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and

P
{∥∥∥Q̂P,T (X)−QT (X)

∥∥∥ ≥ t} ≤ 4n exp

(
−mt

2

3

)
Proof. Define random matrices Sj depending on the random projections P and the random subset

T by

Sj =


1
m((I − P̂j(X))−QT (X)) if j ∈ T

1
m(P̂j(X)−QT (X)) else.

Then the Sj ’s are independent by the independence of P and T , and Z :=
∑m

j=1 Sj = Q̂P,T (X)−

QT (X). Also, the Sj ’s are mean-zero since

E [Sj ] =
1

m
EP
[
τ((I − P̂j(X))−QT (X)) + (1− τ)(P̂j(X)−QT (X))

]
=

1

m
[(1− 2τ)Q(X) + τI −QT (X)]

= 0,

where the last equality follows from the spectral decomposition for QT (X) given in Proposi-

tion 3.3.1. Using the triangle inequality, we may obtain the bound E [‖Sj‖] ≤ 1
m , and we can

bound the matrix variance of the sum by observing

∥∥S2
j

∥∥ = ‖Sj‖2 ≤
1

m2
,

and hence by the fact that the Sj ’s are i.i.d. and Jensen’s inequality we have

var(Z) =

∥∥∥∥∥∥
m∑
j=1

E
[
S2
j

]∥∥∥∥∥∥ = m
∥∥E [S2

j

]∥∥ ≤ mE
[∥∥S2

j

∥∥] ≤ 1

m
.

The expectation and probability bounds then follow from applying the matrix Bernstein inequality,

Theorem 1.4.15.

Now the mean squared error of the noisy measurement and recovery scheme may be computed.
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Theorem 3.3.3. Let 0 ≤ τ < 1
2 be a bit-flip probability and assume

m ≥ 24(1− 2τ)−2(µ1 − µ2)−2 log(4n).

If X ∈ ProjF(1, 2n) be uniformly distributed, P = {Pj}mj=1 is a sequence of uniformly distributed

orthogonal projections in ProjF(n, 2n), and T ⊂ {1, . . . ,m} is binomially distributed with probability

τ , then

EX,T,P
[∥∥∥X̂T −X

∥∥∥2
]
≤

12 log
(
e
3mn(1− 2τ)2(µ1 − µ2)2

)
m(1− 2τ)2(µ1 − µ2)2

where X̂T is the solution to PEP applied to the bit-flipped empirical average Q̂P,T (X).

Proof. By the same argument as in Lemma 2.4.3, we have

∥∥∥X̂T −X
∥∥∥ = (γ1 − γ2)−1 tr [QT (X)(A−B)] ,

where X − X̂T =
∥∥∥X̂T −X

∥∥∥ (A − B) is the spectral decomposition given by Lemma 1.3.5. Since

X̂T is the projection onto the principal eigenspace of Q̂P,T (X), for any X,P, and T we have

tr
[
Q̂P,T (X)(X̂T −X)

]
≥ 0 =⇒ tr

[
Q̂P,T (X)(A−B)

]
≥ 0

=⇒ (γ1 − γ2)−1 tr
[
Q̂P,T (X)(A−B)

]
≥ 0.

Thus we have an upper bound that holds for all X,P, and T given by

∥∥∥X̂T −X
∥∥∥ ≤ 2(γ1 − γ2)−1

∥∥∥Q̂P,T (X)−QT (X)
∥∥∥ . (48)

Now we begin to compute the mean squared error. First, observe by conditioning on X that

EX,T,P
[∥∥∥X̂T −X

∥∥∥2
]

= EX
[
ET,P

[∥∥∥X̂T −X
∥∥∥2
| X
]]
.

Given X, let At be the event that
∥∥∥X̂T −X

∥∥∥ < t for some parameter t ∈ [0, 1] to be optimized
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over later. By conditioning on At, we have

ET,P
[∥∥∥X̂T −X

∥∥∥2
]
≤ t2 + P {Act} .

From Lemma 3.3.2 and the upper bound in (48) we know that

P {Act} = P
{∥∥∥X̂T −X

∥∥∥ ≥ t}
≤ P

{
2(γ1 − γ2)−1

∥∥∥Q̂P,T (X)−QT (X)
∥∥∥ ≥ t}

≤ P
{∥∥∥Q̂P,T (X)−QT (X)

∥∥∥ ≥ 1

2
(γ1 − γ2)t

}
≤ 4n exp

(
−m(γ1 − γ2)2t2

12

)
.

This yields for all t ∈ [0, 1] that

ET,P
[∥∥∥X̂T −X

∥∥∥2
]
≤ t2 + 4n exp

(
−m(γ1 − γ2)2t2

12

)
. (49)

Define f(t) = t2 + 4n exp
(
−m(γ1−γ2)2t2

12

)
. We want to minimize f on [0, 1] to yield an optimal

upper bound. We accomplish this through basic calculus. First, observe that the derivative of f is

f ′(t) = 2t− 8αtn exp
(
−αt2

)
,

where α = 1
12m(γ1 − γ2)2. We see that f ′(0) = 0 and f ′(t) = 0 for t 6= 0 if and only if

2t− 8αtn exp
(
−αt2

)
= 0 ⇐⇒ 2t = 8αtn exp

(
−αt2

)
⇐⇒ 1

4αn
= exp

(
−αt2

)
⇐⇒ log(4αn) = αt2.
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By assumption 4αn ≥ 1, so this equation has one positive solution given by

t0 =

√
log(4αn)

α
,

and t0 ≤ 1 since α ≥ 2 log(4n). The same algebraic manipulations shows us that f is decreasing on

the interval

(
0,

√
log(4αn)

α

)
and increasing on the interval

(√
log(4αn)

α ,∞
)

, so the minimum value

of f on [0, 1] occurs at t0 = min

(√
log(4αn)

α , 1

)
. Plugging this optimal parameter into (49) yields

ET,P
[∥∥∥X̂T −X

∥∥∥2
]
≤ t20 + 4n exp

(
−m(γ1 − γ2)2t20

12

)
≤ log(4eαn)

α
.

Since this bound holds for all X ∈ ProjF(1, 2n), it follows that

EX
[
ET,P

[∥∥∥X̂T −X
∥∥∥2
| X
]]
≤ EX

[
log(4eαn)

α

]
=

log(4eαn)

α
.

Substituting α = 1
12m(γ1 − γ2)2 and using the fact that γ1 − γ2 = (1 − 2τ)(µ1 − µ2) by Proposi-

tion 3.3.1 gives the desired bound on the mean squared error.

See Figure 4 for a plot showing how this bound for mean squared error relates to experimental re-

sults. The dashed line represents the theoretical mean squared error bound given by Theorem 3.3.3.

The MATLAB code used to generate this plot is included in Appendix A.3.

For a fixed bit-flip probability τ and a fixed dimension 2n, Theorem 3.3.3 says that the mean

squared error of this measurement and reconstruction scheme decays on the order of log(m)
m . The

following corollary gives a more precise bound on how large m must be in order to achieve a mean

squared error of δ.
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Figure 4: Plot showing the empirical mean squared error of recovery for 1000 random collections
of 2j rank-4 projections on R8 for j = 7, . . . , 20 versus the theoretical error bound given in Theo-
rem 3.3.3.

Corollary 3.3.4. Let δ > 0 be a desired mean squared error distortion, 0 ≤ τ < 1
2 be a bit-flip

probability, and assume

m ≥ 24δ−1(1− 2τ)−2(µ2 − µ2)−2 log(4en).

If X ∈ ProjF(1, 2n) is uniformly distributed, P = {Pj}mj=1 is a sequence of uniformly distributed

orthogonal projections in ProjF(n, 2n), and T ⊂ {1, . . . ,m} is binomially distributed with probability

τ , then

EX,T,P
[∥∥∥X̂T −X

∥∥∥2
]
≤ δ + δ

log(2δ−1)

2 log(4en)
,

where X̂T solution to PEP applied to the bit-flipped empirical average Q̂P,T (X).
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Proof. By our choice of m, we may apply Theorem 3.3.3 to see

12 log
(
e
3mn(1− 2τ)2(µ1 − µ2)2

)
m(1− 2τ)2(µ1 − µ2)2

≤ log(8enδ−1 log(4en))

2δ−1 log(4en)

=
log(4en)

2δ−1 log(4en)
+

log(2δ−1 log(4en))

2δ−1 log(4en)

=
δ

2

[
1 +

log(log(4en))

log(4en)
+

log(2δ−1)

log(4en)

]
≤ δ + δ

log(2δ−1)

2 log(4en)
.

In particular, for δ > 1
n choosing m ≥ Cδ−1(1−2τ)−2n log(4en) random projections is sufficient

to achieve a mean squared error on the order of δ. In other words, a complementary magnitude

comparison measurement associated to uniformly distributed half-dimensioned projections requires

m
2n ≥ Cδ−1(1 − 2τ)−2 log(4en) bits-per-dimension for accurate encoding and decoding via PEP of

input signals. This shows that the number of bits-per-dimension grows only logarithmically as the

dimension grows.
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Appendix A

MATLAB Code

A.1 Empirical results - Pointwise error

The following code was used to generate the plot in Figure 1, which shows how the theoretical

pointwise error bound from Theorem 2.4.4 relates to empirical results for complementary magnitude

comparison measurements associated to half-dimensioned projections.

1 % [n] = half the dimension of the input signal.
2 n = 8;
3

4 % [X] = the input signal to be measured. Without loss of generality, X is
5 % assumed to be the rank-one projection onto the first standard basis vector.
6 I = eye(2*n, 2*n);
7 x = I(:,1);
8 X = x*x';
9

10 % [steps] = total number of steps. Maximum number of projections is
11 % [step factor]ˆ[steps].
12 %
13 % [step factor] = number of projections to use for the measurement is
14 % multiplied by this factor at each step.
15 %
16 % [samples] = number of independent collections of projections that are
17 % generated and used for reconstruction at each step.
18 steps = 63;
19 step factor = 1.2;
20 samples = 7200;
21 m values = ceil(10*1.2.ˆ1:steps);
22

23 % [errors] = array that stores the error of reconstruction for each sample
24 % of each random choice of projections.
25 errors = zeros(steps, samples);
26

27

28 for it = 1:samples
29 % [m] = number of projections to use for measurement and reconstruction
30 % in this step.
31
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32 % [Q hat] = the empirical average of proximal projections, for this
33 % sample of projections.
34 Q hat = zeros(2*n, 2*n);
35 m total = 0;
36

37 % Compute the empirical average of proximal projections and use it for
38 % reconstruction, keeping track of the reconstruction error along the
39 % way.
40 for j=1:steps
41 batch end = m values(j);
42 if j==1
43 batch start = 1;
44 else
45 batch start = m values(j-1)+1;
46 end
47 batch size = batch end - batch start;
48

49 Q hat = m total/(m total + batch size) * Q hat;
50

51 for k = 1:batch size
52 % [P] = a uniformly distributed rank-[n] projections
53 A = randn(2*n, n);
54 P = A*(A'*A)ˆ(-1)*A';
55

56 % Compute the phaseless measurement, quantize it, and assemble
57 % the empirical average of proximal projections [Q hat].
58 if (trace(P*X) > .5)
59 Q hat = Q hat + 1/(m total + batch size)*P;
60 else
61 Q hat = Q hat + 1/(m total + batch size)*(I - P);
62 end
63 end
64

65 % [X hat] = the projection onto the principal eigenspace of [Q hat],
66 % which is the estimate for [X] using PEP.
67 [x hat,e] = eigs(Q hat,1);
68 X hat = x hat*x hat';
69

70 % Store the reconstruction error for this step of this sample.
71 errors(j, it) = norm(X hat - X);
72

73 m total = m total + batch size;
74 end
75 end
76

77 loglog(m values'.*ones(steps, 1), errors)

A.2 Empirical results - Uniform error

The following code was used to generate the plot in Figure 3, which shows how the theoretical

uniform error bound from Theorem 2.5.14 relates to empirical results for complementary magnitude
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comparison measurements associated to half-dimensioned projections.

1 % [n] = half the dimension of the input signal.
2 n = 8;
3 I = eye(2*n, 2*n);
4

5 % [steps] = total number of steps. Total number of projections is
6 % 10*[step factor]ˆ[steps].
7 %
8 % [step factor] = number of projections to use for the measurement is
9 % multiplied by this factor at each step.

10 %
11 % [input samples] = number of random input signals used to test the
12 % reconstruction error of a fixed collection of projections
13 steps = 30;
14 step factor = 1.5021;
15 input samples = 15000;
16 m values = ceil(10*step factor.ˆ1:steps);
17

18 % [m max] = total number of projections.
19 %
20 % [projs] = random collection of [m max] independent, uniformly distributed
21 % rank-[n] projections.
22 m max = ceil(10*step factorˆsteps);
23 projs = zeros(2*n, 2*n, m max);
24 for j=1:m max
25 A = randn(2*n, n);
26 projs(:,:,j) = A*(A'*A)ˆ(-1)*A';
27 end
28

29 % [errors] = array that stores the error of reconstruction for each random
30 % signal at each step.
31 errors = zeros(steps, input samples);
32

33 for it = 1:input samples
34 % [X] = uniformly distributed rank-one projections, i.e., a random input
35 % signal.
36 x = randn(2*n,1);
37 x= x/norm(x);
38 X = x*x';
39

40 % [Q hat] = empirical average of proximal projections for the input
41 % signal [X].
42 Q hat = zeros(2*n, 2*n);
43 m total = 0;
44

45 % Compute the empirical average of proximal projections in batches and
46 % use it for reconstruction, keeping track of the reconstruction error
47 % along the way.
48 for j=1:steps
49 batch end = m values(j);
50 if j==1
51 batch start = 1;
52 else
53 batch start = m values(j-1)+1;
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54 end
55 batch size = batch end - batch start;
56 batch projs = projs(:,:,batch start:batch end);
57

58 Q hat = m total/(m total + batch size) * Q hat;
59

60 for k = 1:batch size
61 P = batch projs(:,:,k);
62 % Compute the phaseless measurement, quantize it, and assemble
63 % the empirical average of proximal projections [Q hat].
64 if (trace(P*X) > .5)
65 Q hat = Q hat + 1/(m total + batch size)*P;
66 else
67 Q hat = Q hat + 1/(m total + batch size)*(I - P);
68 end
69 end
70

71 % [X hat] = the projection onto the principal eigenspace of [Q hat],
72 % which is the estimate for [X] using PEP.
73 [x hat,e] = eigs(Q hat,1);
74 X hat = x hat*x hat';
75

76 % Store the reconstruction error for this step of this input signal.
77 errors(j, it) = norm(X hat - X);
78

79 m total = m total + batch size;
80 end
81 end
82

83 loglog(m values'.*ones(steps, 1), errors)

A.3 Empirical results - Mean squared error

The following code was used to generate the plot in Figure 4, which shows how the theoretical mean

squared error bound from Theorem 3.3.3 relates to empirical results for complementary magnitude

comparison measurements associated to half-dimensioned projections.

1 % [n] = half the dimension of the input signal.
2 %
3 % [tau] = bit-flip probability.
4 n = 4;
5 tau = 1/16;
6

7 % [X] = the input signal to be measured. Without loss of generality, X is
8 % assumed to be the rank-one projection onto the first standard basis
9 % vector.

10 I = eye(2*n, 2*n);
11 x = I(:,1);
12 X = x*x';
13
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14 % [steps] = total number of steps. Maximum number of projections is
15 % [step factor]ˆ[steps].
16 %
17 % [step factor] = number of projections to use for the measurement is
18 % multiplied by this factor at each step.
19 %
20 % [samples] = number of independent collections of projections that are
21 % generated and used for reconstruction at each step.
22 steps = 20;
23 step factor = 2;
24 samples = 1000;
25

26 % [errors] = array that stores the error of reconstruction for each sample of
27 % each random choice of projections.
28 errors = zeros(samples, steps);
29

30 % [m values] = array that stores the number of projections used for the
31 % phaseless measurement at each step.
32 m values = zeros(1, steps);
33

34

35

36 for it=1:steps
37 % [m] = number of projections to use for measurement and reconstruction
38 % in this step.
39 m = step factorˆit;
40 m values(it) = m;
41

42 % Generate [samples] independent collections of [m] projections and use
43 % them for noisy measurement and recoery
44 for s = 1:samples
45

46 % [Q T] = the bit-flipped empirical average of proximal
47 % projections, which is computed during this for-loop.
48 Q T = zeros(2*n ,2*n);
49

50 % Generate [m] random projections, measure [X], and assemble the
51 % bit-flipped empirical average of the proximal projections.
52 for j=1:m
53

54 % [P] = a uniformly distributed rank-[n] projection.
55 A = randn(2*n, n);
56 P = A*(A'*A)ˆ(-1)*A';
57

58 % Compute the phaseless measurement, quantize it, and apply a
59 % bit-flip with probability [tau]. The outcome of this
60 % bit-flipped binary question is used to assemble the empirical
61 % average [Q T].
62 if trace(P*X) > .5
63 if rand() > tau
64 Q T = Q T + P/m;
65 else
66 Q T = Q T + (I - P)/m;
67 end
68 else
69 if rand() > tau
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70 Q T = Q T + (I - P)/m;
71 else
72 Q T = Q T + P/m;
73 end
74 end
75 end
76

77 % [X T] = the projection onto the principal eigenspace of [Q T],
78 % which is the estimate for [X] using PEP.
79 [x T, e] = eigs(Q T, 1);
80 X T = x T*x T';
81

82 % Store the squared error of reconstruction for this sample of
83 % projections.
84 errors(s, it) = norm(X - X T)ˆ2;
85 end
86 end
87

88 % [mean squared errors] = vector of empirical averages of the squared error
89 % of reconstruction, for each of the [steps] values of [m] considered.
90 mean squared errors = 1/samples*sum(errors);
91

92 loglog(m values, mean squared errors)
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[30] Casazza, P. G., and Kovačević, J. Equal-norm tight frames with erasures. Advances in
Computational Mathematics 18, 2-4 (2003), 387–430.

[31] Casazza, P. G., and Kutyniok, G. Frames of subspaces. Contemporary Mathematics 345
(2004), 87–114.

[32] Casazza, P. G., and Kutyniok, G. Finite frames: Theory and applications. Springer,
2012.

123



[33] Casazza, P. G., Kutyniok, G., and Li, S. Fusion frames and distributed processing.
Applied and Computational Harmonic Analysis 25, 1 (2008), 114–132.

[34] Casazza, P. G., and Woodland, L. M. Phase retrieval by vectors and projections. In
Operator methods in wavelets, tilings, and frames, vol. 626 of Contemp. Math. Amer. Math.
Soc., Providence, RI, 2014, pp. 1–17.

[35] Conca, A., Edidin, D., Hering, M., and Vinzant, C. An algebraic characterization of
injectivity in phase retrieval. Appl. Comput. Harmon. Anal. 38, 2 (2015), 346–356.

[36] Cvetkovic, Z. Source coding with quantized redundant expansions: Accuracy and recon-
struction. In Proceedings DCC’99 Data Compression Conference (Cat. No. PR00096) (1999),
IEEE, pp. 344–353.

[37] Demanet, L., and Hand, P. Stable optimizationless recovery from phaseless linear mea-
surements. Journal of Fourier Analysis and Applications 20, 1 (2014), 199–221.

[38] Domel-White, D., and Bodmann, B. G. Phase retrieval by random binary questions:
Which complementary subspace is closer?, 2019.

[39] Donoho, D. L. Compressed sensing. IEEE Transactions on Information Theory 52, 4 (2006),
1289–1306.

[40] Donoho, D. L., and Elad, M. On the stability of the basis pursuit in the presence of noise.
Signal Processing 86, 3 (2006), 511–532.

[41] Dragotti, P. L., Kovačević, J., and Goyal, V. K. Quantized oversampled filter banks
with erasures. In Proceedings DCC 2001. Data Compression Conference (2001), IEEE, pp. 173–
182.

[42] Duffin, R. J., and Schaeffer, A. C. A class of nonharmonic fourier series. Transactions
of the American Mathematical Society 72, 2 (1952), 341–366.

[43] Edidin, D. Projections and phase retrieval. Applied and Computational Harmonic Analysis
42, 2 (Mar 2017), 350–359.

[44] Eldar, Y. C., and Kutyniok, G. Compressed sensing: theory and applications. Cambridge
University Press, 2012.

[45] Elser, V. Phase retrieval by iterated projections. JOSA A 20, 1 (2003), 40–55.

[46] Ephraim, Y., and Malah, D. Speech enhancement using a minimum-mean square error
short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal
Processing 32, 6 (1984), 1109–1121.

[47] Feller, W. An introduction to probability theory and its applications. Vol. I. Third edition.
John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[48] Fienup, C., and Dainty, J. Phase retrieval and image reconstruction for astronomy. Image
Recovery: Theory and Application 231 (1987), 275.

124



[49] Fienup, J. R. Reconstruction of an object from the modulus of its fourier transform. Opt.
Lett. 3, 1 (Jul 1978), 27–29.

[50] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 15 (1982),
2758–2769.

[51] Folland, G. B. A course in abstract harmonic analysis, vol. 29. CRC Press, 2016.

[52] Foucart, S., and Rauhut, H. A mathematical introduction to compressive sensing. Bull.
Am. Math 54 (2017), 151–165.
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[54] Goyal, V. K., Kovačević, J., and Kelner, J. A. Quantized frame expansions with
erasures. Applied and Computational Harmonic Analysis 10, 3 (2001), 203–233.
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