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An experimental study is presented of the frequency dependence and damping of the forced volume
oscillations of gas bubbles in liquid-filled tubes. The bubbles occupy the entire section of the tube
and are driven by a needle attached to a loudspeaker cone. The liquids used were water, a water–
surfactant solution, and silicon oil, and the tube diameters were 1 and 3 mm. The results are in
excellent agreement with the theory developed in two earlier papers. This work is motivated by the
possibility of using gas bubbles as actuators in fluid-handling microdevices. ©1999 Acoustical
Society of America.@S0001-4966~99!04807-9#

PACS numbers: 43.35.Pt, 43.20.Ks, 47.55.Dz@HEB#

INTRODUCTION

In two recent papers, a theory was presented for the
natural frequency1 and damping2 of the oscillations of gas
bubbles in liquid-filled tubes. In the present study, we de-
scribe an experimental investigation that is in excellent
agreement with the theoretical predictions.

While an extensive literature exists on the small-
amplitude volume oscillations of gas bubbles in unbounded
liquids ~reviewed, for instance, in Refs. 3–6!, the physics of
bubbles confined in channels and tubes presents such sub-
stantial differences that a specific investigation is necessary.
This statement is especially applicable to the bubbles consid-
ered here, which are large enough to occupy an entire section
of the tube. Indeed, in this case, the inertia of the system is
entirely dependent on the length of the liquid columns on
either side of the bubble, rather than being proportional to
the bubble volume. Furthermore, the liquid flow in the tube
can be strongly affected by viscosity which, for free bubbles,
is usually unimportant except for very small radii.

This work is motivated by the possibility to use gas
bubbles as actuators in the small fluid-handling systems that
advances in silicon manufacturing technology render pos-
sible ~see, e.g., Refs. 7–9!. One of the attractive features of
such an application is that gas bubbles can be powered re-
motely by ultrasonic sources with no need for direct contact
between the actuator and the power supply.

I. EXPERIMENT

Glass tubes with a diameter of 1 and 3 mm were used
with water, silicon oil, and a surfactant solution of 50 ppm
Triton-X-100 in water. This amount is about 37% of the
critical micellar concentration. A drop of liquid was placed
in the desired position in the upper part of the tube by means
of a hypodermic syringe. A second drop was introduced so
as to fill the lower part of the tube, leaving an air gap be-
tween its upper surface and the lower surface of the first
drop. A stainless-steel needle of suitable size, cut perpen-
dicularly to the axis and plugged with silicon glue, was filed
so as to fit snugly, and then inserted into the lower end of the

tube leaving no air gap between its tip and the lower liquid
region. The length of the liquid column separating the needle
tip from the lower surface of the bubble was of the order of
10–20 mm. The needle was attached to a loudspeaker driven
by an amplifier and function generator while the glass tube
was mounted in a fixed plexiglass plate~Fig. 1!.

The objective of the experiment was to determine the
amplitude of oscillation of the gas volume as a function of
frequency. For this purpose, a charge-coupled device~CCD!
camera was used to take digital snapshots of the bubble at
equally spaced time intervals. Since the speed of the camera
was not sufficient to record the necessary number of pictures
during a single cycle, pictures were taken at time intervals
nT1Dt, with T the period of the needle oscillations,n a
suitable integer~such thatnT.500 ms!, and Dt50.1 ms,
which gives 30 to 100 frames per cycle depending on the
driving frequency. Sample sequences of the pictures ac-
quired in this way are shown in Figs. 2–5.

The digital images produced by the CCD camera were
scanned to determine the position of the surface bounding
the gas space. From this digitized version of the bubble sur-
face, with the assumption of axial symmetry, the instanta-
neous bubble volumeV(t) could be computed. The image
processing was carried out automatically in real time during

a!Electronic mail: prosper@titan.me.jhu.edu

FIG. 1. Sketch of the experimental apparatus. The tube containing the two
liquid columns separated by the air bubble is inserted onto a needle fastened
to a loudspeaker cone. The loudspeaker is driven by a function generator
connected through an amplifier.
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the course of the experiment, and there was no need to store
the images.

The bubble volume was converted to an effective length
Le by

Le~ t !5 V~ t !/S, ~1!

whereS is the tube cross-sectional area. Since we did not
correct for refraction, the CCD images are distorted. How-
ever, by comparing the needle image when inside the liquid-
filled tube and in air, we established that the distortion was a
constant independent of the distance from the tube axis,
much in the same way as the effect produced by a lens. Since
S in Eq. ~1! was also measured from the same images, the
final value ofLe is therefore unaffected by the optical dis-
tortion. Before running the experiment, the initial valueL0 of
the effective bubble length was measured in the same way.

For all frequencies, we took 200 data points and least-
squares fitted them to an expression of the form

L~ t !5AB cos~vt1f!1ct1L8, ~2!

where v is the angular frequency of the driver and
AB , f, c, andL8 are determined from the fit. The largest
difference between the value ofL8 obtained from the fit and
the initial valueL0 was about 1%. The termct was included
to account for any drift due, e.g., to loss of liquid leaking
past the needle, but in all cases it was found to be very small,
with a contribution of the order of 1% or less. After the
determination of the parameters in~2!, an erroreB was com-
puted from

eB5A 1

N21 (
k51

N

@L~ tk!2Le~ tk!#
2, ~3!

with L calculated from~2! and Le the measured data; the
sum is over all the data points.

The same process was carried out to determine the os-
cillation amplitudeAN of the needle and the corresponding
error eN . The total errore affecting the normalized oscilla-
tion amplitude

Z5 AB /AN , ~4!

was compounded quadratically

e5
AeB

21Z2eN
2

AN
. ~5!

This is the length of the error bars shown in the comparison
of data and theory in the following figures.

We found that, if the absolute amplitude of the volume
oscillations was too large, surface instabilities@see, e.g., the
right surface of the bubble in frame 5 of Fig. 2~b!# tended to
disrupt the bubble and to cause significant error in the data.
Also at large amplitudes, sometimes the bubble surface loses
its definition @see, e.g., the left surfaces in frame 4 of Fig.
2~a! and frames 4 and 5 of Fig. 2~b!# and the edge-detection
algorithm fails.~This situation was only encountered in the
1-mm-diameter tube with water, which is the reason we also
used the surfactant solution in this tube.! Similarly, when the
drive was too weak, the quality of the data was also poor.
For this reason, as the frequency was varied, the driving

amplitude was continuously adjusted so as to avoid these two
extreme conditions. To test for hysteresis effects, the experi-
ment was run by starting the frequency sweeps both from
below and above the resonance frequency of the bubble. The
results were, however, the same with the two procedures.

II. THEORY

As in Ref. 2, the bubble is schematized as a cylinder the
length of which varies in the course of the oscillations. It was
shown in Ref. 1 that, as far as the effective ‘‘mass’’ and
‘‘spring’’ of the equivalent oscillator are concerned, this is
an excellent approximation even for bubbles that do not quite
occupy the entire cross section of the tube, provided the
length of the liquid columns is not too small. As far as ther-
mal effects are concerned, the neglect of the curvature of the
liquid–gas interface has the effect of slightly underestimat-
ing the area available for heat transfer. This might by unde-
sirable for very short bubbles, but not here, where most of
the bubble surface area actually consists of the lateral tube
surface. Thus, we believe the model to be applicable, which,
as will be seen later, is confirmed by the comparison with the
data.

The situation considered here exhibits minor differences
with respect to that of Ref. 2, and it is therefore necessary to
modify slightly the relations derived there.

Let x(t) denote the position of the liquid column sepa-
rating the bubble from the ambient, andxN(t) the position of
the liquid column forced by the needle, both measured from
the respective equilibrium positions. The instantaneous
length of the bubble is

x~ t !2xN~ t !5L0@11X~ t !#, ~6!

whereL0 is the undisturbed initial length andX(t) the di-
mensionless amplitude of oscillation. The pressure in the
bubble can be assumed spatially uniform and is written as

p~ t !5p0@12FX~ t !#, ~7!

wherep0 is the equilibrium~ambient! pressure andF a com-
plex quantity, explicitly given in Ref. 2, dependent on the
ratio g of the gas specific heats and on the parameters

A511
L0

R
, V5

v

4D~1/L011/R!2
, ~8!

in which v52p f is the angular frequency of the driver,R
the radius of the tube, andD the gas thermal diffusivity. The
real and imaginary parts ofF are shown as functions ofV in
Fig. 12 forg51.4 and for aspect ratiosA56 and 12, which
are close to those occurring in the experiments.

Let l be the length of the liquid column above the
bubble. The equation of motion of this liquid column is

mẍ522bvẋ2p0SFX, ~9!

wherem5 lSr ~with r the liquid density! is the mass of the
liquid, S the cross-sectional area of the tube, andbv the
viscous damping parameter specified below. Upon substitut-
ing ~6!, we then have

L0mẌ12bvL0Ẋ1p0SFX52mẍN22bvẋN . ~10!
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The viscous damping parameterbv is discussed in Ref.
2, where it is argued that it can be approximately calculated
from

bv5
nm

S K E
S
F ]

]r S u

ẋ
D G 2

dSL , ~11!

wheren is the liquid kinematic viscosity, the angle brackets
denote the average over a cycle, the integration is over the
cross section of the tube,r is the radial coordinate, andu is
given by the solution of the Navier–Stokes equations for
fully developed oscillatory flow~see, e.g., Ref. 10!. The in-
tegral cannot be evaluated in closed form and it is graphed in
Fig. 8 of Ref. 2. Asymptotic approximations are readily
available for conditions in which the viscous penetration
length,An/v, is either much smaller or much larger than the
tube radiusR. In the former case~high frequency!, dissipa-
tion occurs in a thin boundary layer and the result is

bv5mApnv

2S
, ~12!

which is accurate forRAv/n.30, approximately. At low
frequency (RAv/n,3), on the other hand, one finds

bv54
nm

R2
, ~13!

in agreement with the result for Poiseuille flow.
It should be noted that viscosity is not the only dissipa-

tive mechanism affecting the oscillations. The phase lag be-
tween the volume pulsations and the temperature oscillations
in the gas causes a thermal damping that enters Eq.~10!
through the imaginary part ofF. As will be seen in the next
section, this contribution to the damping can be far more
significant than the viscous one.

For steady sinusoidal forcingxN5AN expivt, Eq.~10! is
readily solved. The dimensionless oscillation amplitudeZ
defined in~4! is found to be

Z5
L0m~v222ibvv!

p0SF12iL 0bvv2L0mv2
. ~14!

FIG. 2. Sample sequences of gas-bubble oscillations at 150 Hz~a! and 200 Hz~b! for pure water in the 1-mm-diameter tube. The bubble resonance frequency
is 173 Hz. Other parameter values are given in Table I. The graphs above the photographic sequences show the position of each frame in the oscillation cycle.
The data presented below are based on 200 such images. Timet50 corresponds to the maximum upward displacement of the needle. Gravity acts from left
to right. The needle is outside the frame to the right. The position of the contact line is clearly visible. Note the small drops on the glass surface, indicating
that it is not covered by a liquid film. The bright bands along the sides of the tube are due to refraction in the glass.
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III. RESULTS

Typical sequences of the pictures on which our data are
based are shown in Figs. 2–5. The needle is on the right
outside the field of view and the graph above each photo-
graphic sequence shows the position of each frame in the
oscillation cycle. In these graphs,t50 corresponds to the
maximum upward displacement of the needle.

In interpreting these images, it should be kept in mind
that the white stripes along the cylindrical body of the
bubbles are not a residual liquid film, but an artifact due to
refraction in the glass. The lateral boundary of the bubbles
always appears to be the inner surface of the tube. For the
case of water, this fact is confirmed by the tiny liquid drops
visible in Figs. 2 and 3 on the tube surface. In some images
of the water cases~Figs. 2, 3, and 4! the liquid–glass contact
line is quite evident. The situation is not as clear for the
silicon oil case of Fig. 5. As a matter of fact, we were unable
to take data with silicon oil in the larger tube, because a thin
liquid film was observed to flow from the upper to the lower
bubble surface along the tube wall. The effect, if present at
all, was much smaller for the 1-mm-diameter tube shown in
Fig. 5 as no difference between the length of the liquid col-

umn above the bubble before and after the experiment could
be measured.

In the pictures of Fig. 2 one can observe a very slight
movement of the contact line. The effect is due to an exci-
tation amplitude larger than that normally used to take data
so as to illustrate more clearly the oscillation cycle. In all the
other experiments, the amplitude of oscillation was small
enough that the~dynamic! advancing and receding contact
angles were not exceeded and the contact line was not ob-
served to move.

Figures 2~a! and ~b! have been taken with water in the
1-mm-diameter tube, below and above the resonance fre-
quency of the bubble, respectively. This circumstance is evi-
dent from the fact that the liquid surfaces in Fig. 2~a! move
in phase, while they have opposite phase in Fig. 2~b!. A
similar pattern is visible in Fig. 3 taken in the 3-mm-
diameter tube. Several frames of Fig. 3 show evidence of the
appearance of capillary waves on the bubble upper surface
~on the left of the pictures!. These waves are probably the
result of a Faraday-type parametric amplification mecha-
nism.

A striking qualitative difference between the two water

FIG. 3. Sample sequences of gas-bubble oscillations at 100 Hz~a! and 150 Hz~b! for pure water in the 3-mm-diameter tube. The bubble resonance frequency
is 124 Hz. Other parameter values are given in Table I. The graphs above the photographic sequences show the position of each frame in the oscillation cycle.
Time t50 corresponds to the maximum upward displacement of the needle. Gravity acts from left to right. The needle is outside the frame to the right. The
position of the contact line is clearly visible. Note the capillary waves on the left~upper! surface of the bubble.
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cases~Figs. 2 and 3! and the water–Triton and silicon ones
~Figs. 4 and 5! is that, on average, the surface curvature
seems to be much larger for the latter. This feature is a con-
sequence of the difference in advancing and receding contact
angles between the two systems. To illustrate the point, for
pure water and the surfactant solution in the 1 mm-diameter
tube, we show in Figs. 6 and 7 pairs of images: the upper one
shows the bubble pushed into the tube by insertion of the
needle, and the bottom one the equilibrium bubble shape
before the sound is turned on. It is seen here, e.g., that the
receding contact angle~at the top of the bubble, i.e., on the
left of the images! is much larger for pure water than for the
solution. It is therefore clear that, when the bubble stops
~lower image in each pair!, the pure water is much less
curved than the Triton–water one. These static bubble shapes
are essentially the average interface shape around which the
bubble oscillates, and explain therefore the qualitative differ-
ence between the curvatures observed in Figs. 2, 4, and 5.
Another interesting remark to be made, especially in connec-

tion with Fig. 6, is the strong difference between the~appar-
ent! contact angles at the leading and trailing edges of the
bubble. This is graphic evidence of the prevalence of a
strong contact-angle hysteresis, which explains why the con-
tact line does not move in the course of the oscillations.

Typical experimental results for the normalized oscilla-
tion amplitudes are compared with theory in Figs. 8 and 9

FIG. 4. Sample sequences of gas-bubble oscillations at 150 Hz for the
water–Triton-X-100 solution in the 1-mm-diameter tube. The bubble reso-
nance frequency is 189 Hz. Other parameter values are given in Table I. The
graphs above the photographic sequences show the position of each frame in
the oscillation cycle. Timet50 corresponds to the maximum upward dis-
placement of the needle. Gravity acts from left to right. The needle is out-
side the frame to the right. The position of the upper contact line is clearly
visible on the left in frames 1, 2 , and 5. The slight curvature on the tube
wall ~upper right in the picture! is an optical artifact from an imperfection of
the glass tube.

FIG. 5. Sample sequences of gas-bubble oscillations at 180 Hz for silicon
oil in the 1-mm-diameter tube. The bubble resonance frequency is 235 Hz.
Other parameter values are given in Table I. The graphs above the photo-
graphic sequences show the position of each frame in the oscillation cycle.

FIG. 6. The upper frame shows an air bubble as it is being pushed by the
needle into the 1-mm-tube for pure water. The lower image is the same
bubble at equilibrium. Note the marked difference between the advancing
and receding contact angles in the upper image.
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~water!, 10 ~Triton-X-100 solution!, and 11~silicon oil!. The
relevant parameter values are given in Table I. It may be
observed here that the experiments cover a range of the di-
mensionless frequencyV where thermal effects in the
bubble are significant, as can be seen from Fig. 12. Further-
more, while the high- and low-frequency approximations
~12! and ~13! are applicable to the 3-mm-diameter tube and
the silicon oil cases, the range of dimensionless viscous pen-
etration lengths for water and the surfactant solution in the
1-mm-diameter tube falls outside the limits of validity of the
approximations, and the complete expression must be used.
Thus, we feel that the present experiments constitute a mean-
ingful test of the theory.

The two water cases of Figs. 8 and 9 display an excel-
lent agreement with theory. Data acquisition is easier for the
larger tube~Fig. 9!, which accordingly has smaller error bars.

A very simplified theory of the phenomenon under con-
sideration can be formulated neglecting thermal effects alto-
gether and assuming an isothermal or adiabatic behavior of
the gas. We show in Fig. 13 a comparison between the exact

FIG. 7. The upper frame shows an air bubble as it is being pushed by the
needle into the 1-mm-tube for the water–triton solution. The lower image is
the same bubble at equilibrium. The difference between the advancing and
receding contact angles is less in this case, but they are both smaller than in
the pure-water case of the previous figure.

FIG. 8. Comparison between theory~solid line! and experiment for pure
water in the 1-mm-tube. The normalized amplitudeZ is defined in~4!.

FIG. 9. Comparison between theory~solid line! and experiment for pure
water in the 3-mm-tube. The normalized amplitudeZ is defined in~4!.

FIG. 10. Comparison between theory~solid line! and experiment for the
water–Triton-X solution in the 1-mm-tube. The normalized amplitudeZ is
defined in~4!. Note that, in contrast to the previous two cases, the maximum
falls below the theoretical prediction, indicating the presence of additional
dissipation due to surface effects not included in the theory.

FIG. 11. Comparison between theory~solid line! and experiment for the
silicon oil in the 1-mm-tube. The normalized amplitudeZ is defined in~4!.
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theory of Sec. II with three versions of a simplified theory
for the case of Fig. 9. The solid line is the same as that
shown in Fig. 9 and represents the complete theory. The
dotted and dot-and-dash lines show the results obtained by
neglecting thermal dissipation and assuming the gas to be-
have isothermally or adiabatically, respectively. The dashed
line neglects thermal dissipation, but includes thermal effects
in the calculation of the gas stiffness. It can be seen here that
thermal effects play a substantial role not only in limiting the
peak response through their effect on dissipation, but also in
determining the gas stiffness and therefore the position of the
resonance frequency.

Figure 10 is for the 50-ppm Triton-X-100 solution. In
plotting the theoretical result, no account was taken of the
presence of the surfactant and the same theory as for water
was used. It is seen that, while this theory agrees with the
data away from resonance, it overpredicts the resonant re-
sponse. If one tries to fit the data by adjusting the liquid
viscosity, a viscosity value about 40% greater than that of
water would be necessary. This is completely unrealistic for
the small concentrations used in the experiment. The Ma-
rangoni stresses set up by the inability of the surfactant con-
centration to follow the surface motion11 at these relatively
high frequencies are probably responsible for the additional
dissipation encountered here. A more detailed investigation
of this phenomenon falls outside the scope of the present
study.

The bubble response in the highly viscous silicon oil is
much smaller than in the water cases. The error bars appear
therefore bigger, although in relative terms, around the maxi-
mum, they are comparable to those in the other figures. It
may be observed that the model captures correctly the
marked change of behavior between the low- and high-
viscosity cases.

IV. CONCLUSIONS

In the present paper, we have compared experimental
results for the forced oscillations of gas bubbles in tubes with

TABLE I. Parameter values for the cases illustrated in the figures;l is the length of the upper liquid column,
L0 the undisturbed bubble length, and the dimensionless frequencyV is defined in~8!.

Figure
no.

l
~mm!

L0

~mm! A
Res. freq.

~Hz! Vmin Vmax RAvmin /n RAvmax/n

2~a!,~b! 16.5 6.30 13.6 173 ¯ ¯ ¯ ¯

3~a!,~b! 20.0 11.0 8.33 124 ¯ ¯ ¯ ¯

9 14.7 5.23 11.5 202 0.74 4.4 8.86 21.7
10 14.5 7.0 5.67 183 5.4 32.4 26.6 65.1
4, 11 15.0 5.85 12.7 189 0.75 4.5 8.86 21.7
5, 12 22.0 5.85 12.7 235 0.75 4.5 1.25 3.07

FIG. 12. Graph of the real~a! and imaginary~b! parts of the functionF
defined in Eq.~27! of Ref. 2 forg51.4 and aspect ratiosA56 ~solid! and
12 ~dashed!. The dimensionless frequencyV is defined in~8!.

FIG. 13. Normalized oscillation amplitude as predicted by several theories.
The solid line is the same one as shown in Fig. 9 and is the prediction of the
complete theory. The dotted and dot-and-dash lines show the results ob-
tained by neglecting thermal dissipation and assuming the gas to behave
isothermally or adiabatically, respectively. The dashed line includes thermal
effects in the calculation of the bubble stiffness, but neglects their contribu-
tion to energy dissipation.
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a theory developed in two earlier studies. An excellent agree-
ment has been found which, among other features, illustrates
the importance of thermal phenomena in determining the
bubble response.

An interesting side observation that can be made from
the photographs taken in the course of the experiment is the
graphic illustration of contact-angle hysteresis and its role in
determining the equilibrium bubble shape and the lack of
motion of the gas–liquid–glass contact line.
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