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DEDICATION

My mom did not get a chance for an education, but made sure her six kids did. I

remember once trying to explain to her why I liked math so much, by describing

prime numbers. It wasn’t working, my mom was smart but did not know how to

multiply. Then I had an idea. I handed my mom some dollar bills and asked,

”See if you can give the same number of bills to each person in the room, if you

can have as many people as you would like in the room.” She immediately started

counting the stack of bills and imagined passing out the money.

”If you can only do this by giving each person a dollar, then we call that special

number of bills you have a prime number.” She got it, explain any problem in terms

of money, and my mom was like John Nash.

For mom - (1944-2013)
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ABSTRACT

In this dissertation, we describe a paper [HR16] that improves on the conditions that

imply holomorphic curves and integral points are degenerate or not Zariski-dense.

Specifically, we show that for a holomorphic curve into a projective variety

of dimension n intersecting q divisors in subgeneral position whose sum is

equidegreelizable, if q is greater than or equal to n2, then the curve is degenerate.

This is an improvement from 2n2 under the same conditions in paper [Ru15a]. To

achieve this result, we borrow methods from [SR15] that combine divisors in pairs

and uses a joint filtration result from linear algebra. Lastly, a pointwise filtration

approach, first considered by Corvaja, Levin, and Zannier [PCZ09], is used to give

further improvements such that if q is greater than or equal to n2−n, then the curve

is degenerate. This pointwise filtration may be constructed by using linear algebra

on the power series locally representing the sections.
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Chapter 1

Introduction and Background

This chapter describes some of the key results in Diophantine Approximation and

Nevenlinna theory that have led to the paper [HR16] discussed in chapters two and

three. We begin with a summary of the main results of [HR16] and how they relate

to similar work in [Ru15a], [Ru15b], and [MR16].

§1.1 Introduction

Let X be a complex projective variety and let D be an effective Cartier divisor on

X. A continuous metric ‖·‖ on the line bundle associated to D, OX(D), determines

the Weil function for D

λD(x) = − log ‖sD(x)‖,

where sD is the canonical section of OX(D), that is D = (sD).

Let f : C → X be a holomorphic map whose image is not contained in the
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1.1. INTRODUCTION

support of divisor D on X. The proximity function of f with respect to D is defined

by

mf (r,D) =

∫ 2π

0

λD(f(reiθ))
dθ

2π
,

where λD is the Weil function associated to D. The counting function of f with

respect to D is defined by

Nf (r,D) =

∫ r

1

nf (t,D)

t
dt

where nf (t,D) is the number of zeros of ρ◦f inside {|z| < t}, counting multiplicities,

where ρ is a local defining function of D. The height or characteristic function of f

with respect to D is given by

Tf,D(r) := mf (r,D) +Nf (r,D).

Let D1, . . . , Dq be effective divisors on a projective variety X. We say D1, . . . , Dq

are in m-subgeneral position on X if for any subset I ⊆ {1, . . . , q} with |I| ≤ m+ 1,

dim
⋂
i∈I

Supp Di ≤ m− |I|,

where dim ∅ = −1. In particular, the supports of any m+ 1 divisors in m-subgeneral

position have empty intersection. If m = dimX, then we say the divisors are in

general position on X.

For a divisor D on a projective variety X of dimension n, we denote h0(D) :=

dimH0(X,OX(D)). We will use the standard notion of intersection theory (see

[Ful98] for a thorough modern account or [Laz04]). The notation Dn denotes the

intersection number of the n-fold intersection of D with itself. A divisor D on a

projective variety X is said to be numerically effective, or nef, if D.C ≥ 0 for any

2



1.1. INTRODUCTION

closed integral curve C on X, and D is said to be big if there are positive integers

c1, c2 such that c1N
n ≤ dimH0(X,OX(ND)) ≤ c2N

n for N big enough. For an

equivalent definition of big for a nef divisor, we have the following lemma.

Lemma 1.1.1 ([Laz04], Corollary 1.4.41). Suppose D is a nef Cartier divisor on a

projective variety X with dimX = n. Then for any positive integer N ,

h0(ND) =
Dn

n!
Nn +O(Nn−1).

In particular, D is big if and only if Dn > 0. See Theorem 2.2.16 in [Laz04].

The following definition is from Levin [Lev09].

Definition 1.1.2 ([Lev09], Definition 9.6). Let X be a complex projective variety

of dimension n and let D = D1 + · · ·+Dq be a sum of effective divisors on X. Then

D is said to have equidegree with respect to D1, . . . , Dq if

Di.D
n−1 =

1

q
Dn

for 1 ≤ i ≤ q. We say that D is equidegreelizable (with respect to D1, . . . , Dq) if there

exist real numbers ri > 0 such that if D′ = r1D1 + · · ·+rqDq, then D′ has equidegree

with respect to r1D1, . . . , rqDq (where we extend intersections to R-divisors in the

canonical way).

Note that, in general, divisors rD and D have the same support for any divisor D

and real number r. Our main use of equidegree depends on the following lemma.

Lemma 1.1.3 ([Lev09], Lemma 9.7). Let X be a projective variety of dimension n.

3



1.1. INTRODUCTION

If Dj, 1 ≤ j ≤ q, are big and nef, then
∑q

j=1Dj is equidegreelizable with respect to

D1, . . . , Dq.

The following two theorems for divisors in subgeneral position on a complex

projective variety make use of the concept of equidegree.

Theorem A ([Ru15a], Theorem 5.6). Let X be a complex projective variety of

dimension n ≥ 2 and D = D1 + · · · + Dq a sum of big and nef Cartier divisors, in

m-subgeneral position on X. Let ri > 0 be real numbers such that D′ :=
∑q

i=1 riDi

has equidegree (such numbers exist due to Lemma 1.1.3). We further assume there

exists a positive integer N0 such that the linear system |NDi| (i = 1, . . . , q) is

base-point free for N ≥ N0. Let f : C → X be a Zariski dense holomorphic map.

Then, for ε > 0 small enough,

q∑
j=1

rjmf (r,Dj) ≤
(

2mn

q
− ε
)( q∑

j=1

rjTf,Dj(r)

)
‖E,

where ‖E means the inequality holds for all r > 0 except for a possible set E with

finite Lebesgue measure.

Under the additional assumption that divisors are without irreducible common

components, Charles Mills and Min Ru [MR16] gave the following result.

Theorem B ([MR16], Analytic Main Theorem). Let X be a complex projective

variety of dimension n ≥ 2 and D1, . . . , Dq big and nef Cartier divisors in

m-subgeneral position on X. Let ri > 0 be real numbers such that D := r1D1 +

· · · + rqDq has equidegree (such real numbers exist due to Lemma 1.1.3). Assume

4



1.1. INTRODUCTION

there exists a positive integer N0 such that the linear system |NDi| (i = 1, . . . , q)

is base-point free for N ≥ N0. We further assume D1, . . . , Dq have no irreducible

components in common. Let f : C→ X be a Zariski dense holomorphic map. Then

q∑
j=1

rjmf (r,Dj) ≤
(

[(m+ 1)/2]

(1 + α)

2n

q

)( q∑
j=1

rjTf,Dj(r)

)
‖E,

where [x] denotes the greatest integer ≤ x and α > 0 is a constant.

In chapter two, using methods borrowed from [SR15], we prove the following theorem.

Main Theorem. (Analytic Part) Let X be a complex projective variety of

dimension n ≥ 2 and D1, . . . , Dq big and nef Cartier divisors in m-subgeneral position

on X. Let ri > 0 be real numbers such that D := r1D1 + · · ·+ rqDq has equidegree

(such real numbers exist due to Lemma 1.1.3). Assume there exists a positive integer

N0 such that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0.

Let f : C→ X be a Zariski dense holomorphic map. Then

mf (r,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
Tf,D(r)

holds for all r > 0 outside a set of finite Lebesgue measure, where

C =
min1≤j≤q {Dn−2.(rjDj)

2}
6qn24nDn

> 0.

Let f : C → X be a holomorphic map and D a divisor on X. The Nevanlinna

defect of f with respect to D is

δf (D) := lim inf
r→∞

mf (r,D)

Tf,D(r)
.

5



1.1. INTRODUCTION

The defect measures the extent to which the counting function of f Nf (r,D) is smaller

than the maximum indicated by the First Main Theorem Tf,D(r) = mf (r,D) +

Nf (r,D) +O(1).

Corollary 1.1.4 (Defect Relation). Assume the conditions of the Main Theorem.

The defect relation is then

δf (D) ≤ m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
.

If δf (D) < 1, then every holomorphic map f : C→ X\D is not Zariski-dense.

Corollary 1.1.5. Let X be a complex projective variety of dimension n ≥ 2 and

D = D1 + · · · + Dq a sum of big and nef Cartier divisors in general position on X.

If q ≥ n2, then every holomorphic mapping f : C→ X\D must be constant.

Proof. By the First Main theorem, δf (D) = 1. Now assume f is also Zariski-dense

and q ≥ n2. Then by the Main Theorem defect relation, since m = n and C >

0, δf (D) <
n2

q
≤ 1, a contradiction, and so f is not Zariski-dense. Therefore,

f(C) = Y ⊆ X for some proper subvariety Y of X with dimY = k < n. Since

D1, . . . , Dq are in general position on X and Di ∩ Y = ∅, 1 ≤ i ≤ q, D1, . . . , Dq

are in n-subgeneral position on Y . So repeating the steps on the holomorphic map

f : C→ Y , dim f(C) < k, and by induction dim f(C) = 0. Thus f(C) = {x}, i.e., f

is constant.

Theorem A, Theorem B, and the Main Theorem above have counterparts in

Diophantine Approximation, so we recall some standard notations in Diophantine

6



1.1. INTRODUCTION

Approximation. Let k be a number field and let Ok be the ring of integers of k.

We have a set Mk of absolute values, or places, of k consisting of one place for each

nonzero prime ideal p of Ok, one place for each real embedding σ : k → R, and one

place for each pair of conjugate embeddings σ, σ : k → C. The completion of k with

respect to v is denoted by kv. We normalize our absolute values so that

‖p‖v = p−[kv :Qp]/[k:Q]

if v corresponds to p and p|p,

‖x‖v = |σ(x)|1/[k:Q]

if v corresponds to the real embedding σ, and

‖x‖v = |σ(x)|2/[k:Q]

if v corresponds to the pair of conjugate embeddings σ, σ. Let D be a Cartier divisor

on a projective variety X, both defined over a number field k. Let v ∈ Mk. We

denote by λD,v the Weil function for D relative to v.

Theorem C ([Ru15b], Theorem 4.1). Let k be a number field and S ⊆Mk a finite set

containing all archimedean places. Let X be a projective variety of dimension n ≥ 2

and D = D1, . . . , Dq a sum of big and nef Cartier divisors in m-subgeneral position on

X, both defined over k. Let ri > 0 be real numbers such that D′ := r1D1 + · · ·+rqDq

is equidegree (such numbers exist due to Lemma 1.1.3). We further assume there

exists a positive integer N0 such that the linear system |ND| is base-point free for

N ≥ N0. Then, for ε > 0 small enough,

q∑
j=1

rjmS(P,Dj) ≤
(

2mn

q
− ε
)( q∑

j=1

rjhDj(P )

)

7



1.1. INTRODUCTION

holds for all P ∈ X(k) outside a proper Zariski closed subset of X.

Theorem D ([MR16], Arithmetic Main Theorem). Let k be a number field and

S ⊆Mk a finite set containing all archimedean places. Let X be a projective variety,

defined over k, of dimension n ≥ 2, and let D1, . . . , Dq be big and nef Cartier divisors

on X, defined over k. Let ri > 0 be real numbers such that D := r1D1 + · · ·+ rqDq

has equidegree (such real numbers exist due to Lemma 1.1.3). Assume there exists

a positive integer N0 such that the linear system |NDi| (i = 1, . . . , q) is base-point

free for N ≥ N0 and that D1, . . . , Dq are in m-subgeneral position on X. We further

assume D1, . . . , Dq have no irreducible components in common. Then

q∑
j=1

rjmS(P,Dj) ≤
(

[(m+ 1)/2]

(1 + α)

2n

q

)( q∑
j=1

rjhDj(P )

)
,

holds for all P ∈ X(k) outside a proper Zariski closed subset of X, where α > 0 is a

constant.

Main Theorem. (Arithmetic Part) Let k be a number field and S ⊆ Mk a finite

set containing all archimedean places. Let X be a projective variety, defined over k,

of dimension n ≥ 2, and let D1, . . . , Dq be big and nef Cartier divisors on X, defined

over k. Let ri > 0 be real numbers such that D := r1D1 + · · ·+ rqDq has equidegree

(such real numbers exist due to Lemma 1.1.3). Assume there exists a positive integer

N0 such that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0

and that D1, . . . , Dq are in m-subgeneral position on X. Then

mS(P,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
hD(P )

8



1.1. INTRODUCTION

holds for all P ∈ X(k) outside a proper Zariski closed subset of X, where

C =
min1≤j≤q {Dn−2.(rjDj)

2}
6qn24nDn

> 0.

To compare Theorem A, Theorem B, and the Analytic Main Theorem,

δf (D) <



2mn
q
, Theorem A [Ru15a]

m(m−1)
(m+n−2)

2n
q
, Main Theorem [HR16]

[
m+1

2

]
2n
q

=


(m+1)n

q
, odd m

mn
q
, even m

, Theorem B [MR16].

Since (m−1)
(m+n−2)

< 1 for 2 ≤ n ≤ m, [HR16] gives a sharper result than [Ru15a]. The

even case for [MR16] gives a sharper result than [HR16] and [Ru15a], as expected,

since Theorem B has an extra condition on the divisors. The odd case depends on

the specific values.

9
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If we assume D1, . . . , Dq are in general position on X, then m = n, and so

δf (D) <



2n2

q
, Theorem A [Ru15a]

n2

q
, Main Theorem [HR16]

[
n+1

2

]
2n
q

=


(n+1)n

q
, odd n

n2

q
, even n

, Theorem B [MR16].

Thus [HR16] gives a sharper result or as good as [Ru15a] and [MR16] in the general

position case.

10



1.2. BACKGROUND MATERIAL

§1.2 Background Material

As first noticed by Charles Freeman Osgood in 1981 and then further developed by

Paul Vojta in 1987, there is a formal analogy between Nevanlinna theory in complex

analysis and certain results in Diophantine Approximation in number theory. The

correspondence can be described in both a qualitative and quantitative way. As

a simple example of a qualitative correspondence, Siegel’s Theorem and the Little

Picard theorem will first be described in their respective section.

§1.2.1 Diophantine Approximation

In number theory, the field of Diophantine Approximation, named after Diophantus

of Alexandria, deals with the approximation of real numbers by rational numbers.

Let α be an algebraic number of degree d over Q and let ε > 0. In 1921, Carl

Ludwig Siegel proved there are only finitely many pairs of relatively prime integers

a and b (b > 0) satisfying the inequality∣∣∣α− a

b

∣∣∣ < 1

b2
√
d+1+ε

.

Using this result, Siegel in 1929 proved the following.

Theorem 1.2.1 (Siegel’s Theorem). Let C be a smooth algebraic curve of genus one

defined over a number field k. Then all sets of integral points on C are finite.

In 1955, Klaus Roth [Rot55] improved on Siegel’s inequality, resulting in the best

possible approximation by rationals of this form. That is, Roth’s theorem fails when

11



1.2. BACKGROUND MATERIAL

ε = 0 by Gustav Dirichlet’s approximation theorem (1840).

Theorem 1.2.2 (Roth’s Theorem). Let α be an algebraic number over Q and let

ε > 0. Then there are only finitely many pairs of relatively prime integers a and b

(b > 0) satisfying the inequality

∣∣∣α− a

b

∣∣∣ < 1

b2+ε
.

By taking the log of both sides, the statement may be restated as

log
1

α− a
b

< (2 + ε) log b

holds for all but finitely many pairs of relatively prime integers a and b (b > 0).

Roth’s theorem can be generalized to any number field k.

Theorem 1.2.3 ([Ru01] Theorem B1.2.7, Roth). Let k be a number field with

extension degree d = [k : Q] and let S ⊆Mk be a finite set containing all archimedean

places. Let a1, . . . , aq ∈ k be distinct. Then, for any ε > 0,

q∑
j=1

mS(x, aj) ≤ (2 + ε)h(x)

holds for all but finitely many x ∈ k, where

h(x) =
1

d

∑
v∈Mk

log+ ‖x‖v

and

mS(x, aj) =
1

d

∑
v∈S

log+ 1

‖x− aj‖v
.

12



1.2. BACKGROUND MATERIAL

In 1972, Wolfgang Schmidt gave a higher-dimensional generalization of Roth’s

theorem. Let k be a number field with extension degree d = [k : Q]. The logarithmic

height of x = [x0 : · · · : xn] ∈ Pn(k) is defined by

h(x) =
1

d

∑
v∈Mk

log+ ‖x‖v =
1

d

∑
v∈Mk

log+

(
max
0≤i≤n

{‖xi‖v}
)
.

Let H = {[x0 : · · · : xn] ∈ Pn(k) | a0x0 + · · ·+anxn = 0} be the projective hyperplane

defined by the coefficient vector a = (a0, . . . , an) ∈ kn+1. On x ∈ Pn(k)\H, the Weil

function for H relative to v ∈ S is defined by

λH,v(x) =
1

d
log

(n+ 1) ‖a‖v ‖x‖v
‖a0x0 + · · ·+ anxn‖v

.

Using these definitions, the following is Schmidt’s subspace theorem, as generalized

by Paul Vojta in 1997.

Theorem 1.2.4 ([Voj97] Schmidt’s Subspace Theorem). Let k be a number field

and let S ⊆ Mk be a finite set containing all archimedean places. Let H1, . . . , Hq

be hyperplanes in Pn(k) with corresponding Weil functions λH1,v, . . . , λHq ,v for each

v ∈ S. Then there exists a finite union of hyperplanes Z ⊆ Pn(k), depending only

on H1, . . . , Hq (and not k or S), such that for any ε > 0,

∑
v∈S

max
J

∑
j∈J

λHj ,v(x) ≤ (n+ 1 + ε)h(x)

holds for all x ∈ Pn(k)\Z, where the max is taken over all subsets J ⊆ {1, . . . , q}

such that the hyperplanes Hj, j ∈ J , are in general position on Pn(k).

In 2002, Pietro Corvaja and Umberto Zannier gave a new proof [CZ02] of Siegel’s

theorem using Schmidt’s Subspace Theorem. Corvaja and Zannier further developed

13



1.2. BACKGROUND MATERIAL

their method to higher dimensions in 2004 ([CZ04a], [CZ04b]). To describe one

application of their method, it is convenient to borrow a definition from Aaron Levin

[Lev09]. Let X be a smooth projective variety over a number field k and let D be a

divisor on X. Also, let k(X) denote the function field of X over k and let L(D) be

the k-vector space L(D) = {f ∈ k(X) | (f) ≥ −D}.

Definition 1.2.5 ([Lev09] Definition 8.1). Let D be an effective divisor on a smooth

projective variety X defined over a number field k. Then D is called a very large

divisor on X if for every P ∈ D, there exists a basis B of L(D) such that∑
f∈B

ordE(f) > 0

for every irreducible component E of D passing through P . An effective divisor D

is called large if it has the same support as some very large divisor on X.

Theorem 1.2.6 ([Lev09] Theorem 8.3A, Corvaja-Zannier). Let X be a smooth

projective variety over a number field k and let S ⊆Mk be a finite set containing all

archimedean places. Let D be a large divisor on X. Then any set of (D,S)-integral

points on X is not Zariski-dense.

Corvaja and Zannier also proved in 2004 an extension of Schmidt’s Subspace

Theorem with polynomials of arbitrary degree instead of linear forms. Their result

states that the set of solutions in Pn(k) (k a number field) of the inequality being

considered is not Zariski-dense ([CZ04a] Theorem 3).

Jan-Hendrik Evertse and Roberto Ferretti in 2008 [EF08] generalized the results

of Corvaja and Zannier in which the solutions are taken from an arbitrary

14
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projective variety instead of Pn. By a projective variety of Pn, we mean a

geometrically irreducible Zariski-closed subset of Pn. The following theorem is a

slight reformulation of their main result by Levin in 2014.

Theorem 1.2.7 ([Lev14] Theorem 3.1, Evertse-Ferretti). Let X be a projective

variety of dimension n and let D1, . . . , Dq be Cartier divisors in general position on

X, all defined over a number field k. Let S ⊆ Mk be a finite set containing all

archimedean places. Assume there exist an ample divisor A on X, defined over k,

and positive integers di such that Di ∼ diA for all i. Then, for every ε > 0,

q∑
j=1

mS(P,Dj)

dj
≤ (n+ 1 + ε)hA(P )

holds for all k-rational points P ∈ X outside a proper Zariski closed subset of X.

Levin in his 2014 paper also proves Theorem 1.2.7 remains true if we replace

linear equivalence by numerical equivalence ([Lev14] Theorem 3.2).

15
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§1.2.2 Nevanlinna Theory

In the field of complex analysis, Nevanlinna theory is part of the theory of

meromorphic functions. Developed by brothers Rolf and Frithiof Nevanlinna in

the 1920s, it deals with the distribution of values of holomorphic and meromorphic

functions. We can think of the original Nevanlinna theory as a generalization of

Emile Picard’s classic Little Picard Theorem.

Theorem 1.2.8 (Little Picard Theorem). Let f : C → P1(C) = C ∪ {∞} be a

meromorphic function. If the image of f omits three distinct points in P1(C), then

f must be constant.

Remark 1.2.9. Siegel’s theorem 1.2.1 may be used to state a result similar to the

Little Picard’s theorem but in the context of a number field.

To state Nevanlinna’s results for a meromorphic function f : C → C, we first

need to define three functions.

Definition 1.2.10. Let f : C → C be a meromorphic function. The proximity

function of f is defined by

mf (r) =

∫ 2π

0

log+ |f(reiθ)|dθ
2π

for all r > 0. Also, define

mf (r,∞) = mf (r) and mf (r, a) = m 1
f−a

(r)

when a ∈ C.
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For r > 0, let nf (r) be the number of poles of f in the open disc |z| < r of radius

r, counted with multiplicity, and let nf (0) be the order of the pole at z = 0.

Definition 1.2.11. Let f : C → C be a meromorphic function. The counting

function of f is defined by

Nf (r) =

∫ r

0

(nf (t)− nf (0))
dt

t
+ nf (0) log r.

Also, define

Nf (r,∞) = Nf (r) and Nf (r, a) = N 1
f−a

(r)

when a ∈ C.

Now, using the previous two definitions, we have the last of the definitions needed.

Definition 1.2.12. Let f : C → C be a meromorphic function. The characteristic

(height) function of f is the function Tf : (0,∞)→ R defined by

Tf (r) = mf (r) +Nf (r).

Theorem 1.2.13 (Nevanlinna’s First Main Theorem). Let f : C → C be a

non-constant meromorphic function and let a ∈ C. Then

Tf (r) = mf (r, a) +Nf (r, a) +O(1),

where the constant O(1) depends only on f and a.

Remark 1.2.14. The First Main Theorem gives an upper bound on the counting

function Nf and can be thought of as a generalization of the fundamental theorem

of algebra.
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Theorem 1.2.15 (Nevanlinna’s Second Main Theorem). Let f : C → P1(C) be a

non-constant meromorphic function and let a1, . . . , aq ∈ P1(C) be distinct. Then, for

every ε > 0,
q∑
j=1

mf (r, aj) ≤ (2 + ε)Tf (r)

holds for all r > 0 outside a set of finite Lebesgue measure.

Remark 1.2.16. Nevanlinna’s Second Main Theorem corresponds to Roth’s theorem

1.2.3 and may be used to prove the Little Picard theorem.

Nevanlinna’s First and Second Main theorems give us quantitative descriptions

of the theory while the Little Picard theorem is an example of a qualitative view

of the same basic theory. Since most of the time in applications, qualitative results

suffice, the following definition is convenient.

Definition 1.2.17. Let f : C → P1(C) be a meromorphic function and let a ∈

C ∪ {∞}. The defect of a is defined by

δf (a) = lim inf
r→∞

mf (r, a)

Tf (r)
.

By the First Main Theorem, 0 ≤ δf (a) ≤ 1 for every a ∈ C ∪ {∞}, so by the

Second Main theorem, ∑
a∈C

δf (a) ≤ 2.

In 1933, Henri Cartan [Car33] gave a higher dimensional generalization of

Nevanlinna’s Second Main theorem. To state this theorem, we need to define the

Nevanlinna functions with respect to a holomorphic curve f : C → Pn(C) and a

18
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hyperplane H ⊆ Pn(C). So let H = {[z0 : · · · : zn] ∈ Pn(C) | a0z0 + · · · + anzn = 0}

be the projective hyperplane defined by the coefficient vector a = (a0, . . . , an) ∈ Cn+1

and let f : C→ Pn(C) be a holomorphic curve with f(C) 6⊆ H. For z ∈ C, the Weil

function of f with respect to H is defined by

λH(f(z)) = log
‖f(z)‖ ‖a‖
|〈f(z), a〉|

.

The proximity function of f with respect to H is defined by

mf (r,H) =

∫ 2π

0

λH(f(reiθ))
dθ

2π
.

For r > 0, let nf (r,H) be the number of zeroes of 〈f(z), a〉 in the open disc |z| < r

of radius r, counted with multiplicity, and let nf (0, H) = limt→∞ nf (t,H). Then the

counting function of f with respect to H is defined by

Nf (r,H) =

∫ r

0

(nf (t,H)− nf (0, H))
dt

t
+ nf (0, H) log r.

So, the height of f with respect to H is defined as Tf,H(r) = mf (r,H) + Nf (r,H).

The First Main Theorem may be shown to hold for hyperplanes in projective space,

so the height of f , denoted by Tf (r), depends on a hyperplane only up to a constant

O(1). Finally, with these definitions, the following is Cartan’s Second Main Theorem,

as generalized by Paul Vojta in 1997.

Theorem 1.2.18 ([Voj97] Theorem 1, Cartan’s Second Main Theorem). Let f :

C → Pn(C) be a linearly non-degenerate holomorphic curve (i.e., the image of f is

not contained in any proper subspace of Pn(C)) and let H1, . . . , Hq be hyperplanes

in Pn(C). Then, for every ε > 0,∫ 2π

0

max
J

∑
j∈J

λHj(f(reiθ))
dθ

2π
≤ (n+ 1 + ε)Tf (r)
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holds for all r > 0 outside a set of finite Lebesgue measure, where the max is taken

over all subsets J ⊆ {1, . . . , q} such that the hyperplanes Hj, j ∈ J , are in general

position on Pn(C).

Remark 1.2.19. Cartan’s Second Main Theorem corresponds to Schmidt’s Subspace

Theorem 1.2.4.

In 2004, Min Ru generalized Cartan’s Second Main Theorem to non-linear

hypersurfaces. To state this result, we need the Nevanlinna functions with respect

to a holomorphic curve f : C → Pn(C) and a hypersurface D ⊆ Pn(C). So let

f : C→ Pn(C) be a holomorphic curve and without loss of generality, assume its set

of entire component functions f0, . . . , fn have no common zeros. For z = reiθ ∈ C,

the height function of f is defined by

Tf (r) =
1

2π

∫ 2π

0

log
∥∥f(reiθ)

∥∥dθ,
where

‖f(z)‖ = max {|f0(z)|, . . . , |fn(z)|}.

Let D ⊆ Pn(C) be a hypersurface of degree d defined by a homogeneous polynomial

Q : Pn(C)→ C. The proximity function of f with respect to D is defined by

mf (r,D) =

∫ 2π

0

log

∥∥f(reiθ)
∥∥d

|Q(f)(reiθ)|
dθ

2π
.

Theorem 1.2.20 ([Ru04] Main Theorem). Let f : C → Pn(C) be an algebraically

non-degenerate holomorphic curve and let D1, . . . , Dq be hypersurfaces in Pn(C) of
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degree d1, . . . , dq in general position. Then, for every ε > 0,

q∑
j=1

mf (r,Dj)

dj
≤ (n+ 1 + ε)Tf (r)

holds for all r > 0 outside a set of finite Lebesgue measure.

Let f and D be as specified in the theorem. Define the defect

δf (D) = lim inf
r→∞

mf (r,D)

dTf (r)
.

Then the theorem gives us the defect relation

q∑
j=1

δf (Dj) ≤ n+ 1

where we assume all hypersurfaces have the same degree d.

Remark 1.2.21. The above defect relation proves a conjecture made by Bernard

Shiffman in 1979 and corresponds to the work of Corvaja and Zannier ([CZ04a]

Theorem 3). Phillip Griffiths conjectures the following sharp defect relation holds in

this setting,
q∑
j=1

δf (Dj) ≤
n+ 1

d
,

where we assume all hypersurfaces have the same degree d.

In 2009, Ru further generalized Theorem 1.2.20, giving a defect relation

for algebraically non-degenerate holomorphic mappings into an arbitrary smooth

complex projective variety, rather than just the projective space, intersecting possible

nonlinear hypersurfaces.
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Theorem 1.2.22 ([Ru09] Main Result Theorem). Let V ⊆ PN(C) be a smooth

complex projective variety of dimension n and let D1, . . . , Dq be hypersurfaces in

PN(C) of degree d1, . . . , dq in general position in V . Let f : C→ V be an algebraically

non-degenerate holomorphic map. Then, for every ε > 0,

q∑
j=1

mf (r,Dj)

dj
≤ (n+ 1 + ε)Tf (r)

holds for all r > 0 outside a set of finite Lebesgue measure.

Remark 1.2.23. The above result corresponds to Evertse-Ferretti Theorem 1.2.7.
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§1.2.3 Complex Geometry

In this section, we gather some definitions and examples in complex analysis and

geometry useful to Diophantine Approximation and Nevanlinna Theory.

Let X be a complex manifold.

Definition 1.2.24. A holomorphic line bundle over X is a complex manifold L

together with a surjective holomorphic map π : L → X satisfying the following

conditions:

(i) For each x ∈ X, the fiber Lx = π−1(x) over x is endowed with the structure of

a one-dimensional complex vector space.

(ii) There exists an open covering {Ui} of X and biholomorphic maps

φi : π−1(Ui)→ Ui × C

called local trivializations of L over Ui satisfying the following conditions:

(a) πUi ◦ φi = π where πUi : Ui × C→ Ui is the projection map;

(b) for each q ∈ Ui, the restriction of φi to Lq is a vector space isomorphism

from Lq to {q} × C ∼= C.

Definition 1.2.25. Let π : L → X be a holomorphic line bundle over X and let

{Ui} be an open covering of X. Suppose φα : π−1(Uα)→ Uα×C and φβ : π−1(Uβ)→

Uβ × C are local trivializations of L with Uα ∩ Uβ 6= ∅. Then the composition map

φα ◦ φ−1
β : (Uα ∩ Uβ)× C→ (Uα ∩ Uβ)× C
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given by φα ◦ φ−1
β (x, z) = (x, gαβ(x)z) induces a non-vanishing holomorphic function

gαβ : Uα ∩ Uβ → C∗ called a transition function of L.

The transition function system {gαβ} clearly satisfies the following cocycle conditions:

(i) gαα(x) = 1 for every x ∈ Uα

(ii) gαβgβγ = gαγ on Uα ∩ Uβ ∩ Uγ

Conversely, given a system of non-vanishing holomorphic functions {gαβ} satisfying

the cocycle conditions, {Ui, gαβ} represents a holomorphic line bundle over X, where

{Ui} is an open covering of X. Explicitly, let L = (
⋃
i Ui × C)/ ∼, where ∼ is the

equivalence relation defined by (xα, zα) ∼ (xβ, zβ) ⇐⇒ xα = xβ, zα = gαβ(x)zβ on

Uα ∩ Uβ. Then the holomorphic map π : L → X defined by L([x, z]) = x is clearly

surjective and so is a holomorphic line bundle over X.

Example 1.2.26. The projection map p1 : X × C → X is clearly a holomorphic line

bundle. This is called the trivial line bundle, denoted by OX .

The set of all holomorphic line bundles over X forms a group.

Definition 1.2.27. Let π1 : L1 → X and π2 : L2 → X be holomorphic line bundles

over X. A biholomorphic map f : L1 → L2 is called a line bundle isomorphism and

L1 is said to be isomorphic to L2 if π1 = π2 ◦ f and the restriction of f to each fiber

is linear. The set of all such isomorphism classes of holomorphic line bundles over X

forms an abelian group with the group operation the tensor product ⊗ and is called

the Picard group of X, denoted by Pic(X). Line bundles isomorphic to the trivial
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line bundle OX is the zero element of this group.

Definition 1.2.28. Let π : L → X be a holomorphic line bundle over X. A

holomorphic section of L is a holomorphic map s : X → L such that π ◦ s = IdX .

This means s(x) is an element of the fiber Lx = π−1(x) for each x ∈ X. If a section

is defined only on an open subset U ⊆ X, then it is called a holomorphic local

section of L over U . The zero section of L is the holomorphic section of L defined

by s(x) = 0 ∈ Lx for each x ∈ X.

The set of all holomorphic sections of L forms a complex vector space denoted by

H0(X,L). Let s ∈ H0(X,L) and let {Ui, gαβ} represent the holomorphic line bundle

L. Then there exists a set of holomorphic functions {si} such that sα = gαβsβ on

Uα ∩ Uβ. To demonstrate this, the concept of local frames are needed.

Definition 1.2.29. Let π : L → X be a holomorphic line bundle over X and let

U ⊆ X be open. Then a local frame for L over U is a nowhere zero holomorphic

local section of L over U . The value of the local frame at each x ∈ U serves as a basis

for each fiber Lx and so must be nonzero. If there exists a nowhere zero holomorphic

section of L over all of X, then the section is called a global frame.

Example 1.2.30. Let p1 : X×C→ X be the trivial line bundle. Then the holomorphic

section e : X → X ×C defined by e(x) = (x, 1) is clearly a global frame for this line

bundle. Now let π : L→ X be a holomorphic line bundle and let U ⊆ X be open. If

φ : π−1(U)→ U ×C is a local trivialization of L over U , then the holomorphic local

section eU : U → L defined by eU(x) = φ−1(x, 1) is a local frame for L over U .
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Let s ∈ H0(X,L) and let {Ui, gαβ} represent the holomorphic line bundle L. Also,

let φα : π−1(Uα)→ Uα×C be a local trivialization of L over Uα and let eα : Uα → L

be the local frame for L over Uα described in the last example. For each x ∈ Uα,

eα(x) is a basis for fiber Lx, so we can locally write s = sαeα where sα : Uα → C is

some holomorphic function. Since

eβ(x) = φ−1
β (x, 1) = φ−1

α ◦ (φα ◦ φ−1
β (x, 1)) = φ−1

α (x, gαβ(x))

= gαβ(x)φ−1
α (x, 1)

= gαβ(x)eα(x),

then for x ∈ Uα ∩ Uβ,

s(x) = sα(x)eα(x) = sβ(x)eβ(x) = sβ(x)gαβ(x)eα(x).

But the local frame eα is nowhere zero, so

sα(x) = gαβ(x)sβ(x).

So each s ∈ H0(X,L) induces a set of holomorphic functions {si} on {Ui}.

Definition 1.2.31. Let π : L→ X be a holomorphic line bundle over X represented

by {Ui, gαβ}. A holomorphic section s ∈ H0(X,L) inducing a set of meromorphic

functions {si} on {Ui} such that sα = gαβsβ on Uα ∩ Uβ is called a meromorphic

section of L.

Definition 1.2.32. A base-point of a holomorphic line bundle π : L→ X over X is

a point x ∈ X where for every s ∈ H0(X,L), s(x) = 0. A holomorphic line bundle

without any such points is called base-point-free.
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Let π : L → X be a holomorphic line bundle over X represented by {Ui, gαβ}

and let {s0, . . . , sN} be a basis for the vector space of sections H0(X,L). If L is

base-point-free and φα : π−1(Uα)→ Uα×C is a local trivialization of L over Uα, then

Φα : Uα → Pn(C) defined by Φα(x) = [φα(s0(x)) : · · · : φα(sN(x))]

is a holomorphic map since for any section s ∈ H0(X,L),

φα ◦ s : Uα → Uα × C is given by φα ◦ s(x) = (x, z),

so each x ∈ Uα passes through the map Φα unchanged. The line bundle L is

base-point-free, so the set of local trivializations of L gives a well-defined holomorphic

map from all of X to Pn(C).

Definition 1.2.33. The vector space H0(X,L) associated to a base-point-free

holomorphic line bundle π : L → X is called a complete linear system. The line

bundle is called very ample if the map Φα : Uα → Pn(C) described above is a

holomorphic embedding and ample if the nth tensor product of L, denoted L⊗n, is

very ample for some n ∈ N.

Definition 1.2.34. Let {Ui} be an open covering of X and let ψα : Uα → C be a

non-vanishing meromorphic function on each Uα. If the ratio

ψα/ψβ : Uα ∩ Uβ → C∗

is a holomorphic function for every α and β, then {(Ui, ψi)} is called a Cartier divisor

D on X. If each function ψα is holomorphic, then D is called effective.
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Assume all the conditions in the above definition and let gαβ = ψα/ψβ. Since

each function gαβ satisfies the cocycle conditions, {Ui, gαβ} defines a holomorphic

line bundle over X, denoted by OX(D).

A different notion of a divisor is defined (locally) by the set of zeros of a

holomorphic function f : U → C, i.e., DU = {x ∈ U | f(x) = 0}, where U ⊆ X is

open. To fully define this divisor, we first need a couple of definitions.

Definition 1.2.35. A hypersurface of X is a subset of X, locally given as the zero

set of a holomorphic function (called a local defining function), and is of codimension

one. A hypersurface that can not be written as the union of two proper hypersurfaces

is called an irreducible hypersurface. So every hypersurface is a union of its irreducible

hypersurfaces.

Definition 1.2.36. A Weil divisor on X is a formal linear combination

D =
∑

niYi

of irreducible hypersurfaces Yi (called prime divisors) of X. We assume the sum is

locally finite, i.e., for any x ∈ X, there exists an open neighborhood U of x such that

only finitely many ni 6= 0 with Yi ∩ U 6= ∅. A prime divisor Yi with ni 6= 0 is called

a (irreducible) component of D and the support of D, denoted by Supp D, is the

union of these components. The set of all Weil divisors on X, denoted by Div(X),

is a group under addition. If every integer ni ≥ 0, then D is called effective and is

written D ≥ 0.

Let D =
∑
niYi be a Weil divisor on smooth X. Then there exists an open
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covering {Ui} of X such that each irreducible hypersurface Yi is locally defined by

some holomorphic function fiα : Uα → C, i.e., Yi ∩ Uα = {x ∈ Uα | fiα(x) = 0}.

Set fα =
∏
i

fniiα : Uα → C∗. Then fα is a non-vanishing meromorphic function with

fα/fβ : Uα ∩ Uβ → C∗ a holomorphic function for every α and β. Thus {(Ui, fi)}

defines a Cartier divisor on X.

Definition 1.2.37. Let f : X → C be a meromorphic function. The Weil divisor

associated to f is

(f) =
∑
Y⊆X

ordY (f)Y

where the sum is over all irreducible hypersurfaces Y ⊆ X. The order of f along

Y , denoted by ordY (f), is the largest integer n such that f = gnh where g is a local

defining function for Y and h is a holomorphic function not zero on Y . A divisor

of this form is called principal. Two divisors D1 and D2 are said to be linearly

equivalent, denoted by D1 ∼ D2, if D1 −D2 is a principal divisor.

IfD1 andD2 are linearly equivalent divisors onX, thenOX(D1) ∼= OX(D2). Also,

a divisor D on X is principal if and only ifOX(D) ∼= OX . Thus Pic(X) ∼= Div(X)/ ∼.

Let {(Ui, ψi)} be a Cartier divisor on X. Then ψα : Uα → C is a non-vanishing

meromorphic function and ψα/ψβ : Uα ∩ C∗ is a holomorphic function for every α

and β. So for any irreducible hypersurface Y ⊆ X with Y ∩Uα∩Uβ 6= ∅, ordY (ψα) =

ordY (ψβ). Thus the order is well-defined for each Y ⊆ X, so D =
∑

Y⊆X ordY (ψY )Y

is a Weil divisor on X.

Let π : L→ X be a holomorphic line bundle over X represented by {Ui, gαβ} and
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let s ∈ H0(X,L) be a non-zero section. The induced set of holomorphic functions

{si} satisfy sα = gαβsβ on Uα ∩ Uβ for every α and β. So (s) = {(Ui, si)} defines a

Cartier divisor on X with L ∼= OX((s)). Conversely, let D = {(Ui, fi)} be an effective

Cartier divisor on X. Since D is effective, each fi is a holomorphic function and

OX(D) is represented by {Ui, fα/fβ}. The holomorphic functions {fi} are induced

by a non-zero section s ∈ H0(X,OX(D)) with D = (s).

Definition 1.2.38. The section s ∈ H0(X,OX(D)) with D = (s) described above

is called the canonical section and is denoted by sD.

Definition 1.2.39. Let D be a divisor on X. The complete linear system of D,

denoted |D|, is the set of effective divisors linearly equivalent to D. A base-point of

|D| is a point x ∈ X such that x ∈ Supp D′ for every D′ ∈ |D|.

Example 1.2.40. Let s ∈ H0(X,OX), i.e., a section of the trivial line bundle p1 :

X × C → X. Then there exists some holomorphic function f : X → C such that

s : X → X × C is given by s(x) = (x, f(x)).

Example 1.2.41. Let X = Pn(C) and let

H = {[z0 : · · · : zn] ∈ Pn(C) | a0z0 + · · ·+ anzn = 0}

be the projective hyperplane defined by the coefficient vector a = (a0, . . . , an) ∈ Cn+1.

The standard open covering of Pn(C) is {Ui}ni=0 with

Ui = {[z0 : · · · : zn] ∈ Pn(C) | zi 6= 0}, i = 0, . . . , n.
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For each i = 1, . . . , n, define the holomorphic function fi : Ui → C by

fi([z0 : · · · : zn]) =
a0z+ · · · anzn

zi
.

The hyperplane divisor H is locally defined by the zero set of each fi. The

holomorphic line bundle over Pn(C), OX(H), has transition functions gij = fi
fj

=
zj
zi

on Ui ∩ Uj.

Definition 1.2.42. The holomorphic line bundle over Pn(C) described in the last

example for any hyperplane H represents the isomorphism class of line bundles called

the hyperplane line bundle, denoted by OPn(1).

Example 1.2.43. Let

L = {([x0 : · · · : xn], (z0, . . . , zn)) ∈ Pn(C)× Cn+1 | (z0, . . . , zn) ∈ [x0 : · · · : xn]}

and let π : L → Pn(C) be defined by π(x, z) = x. Also, let {Ui} be the standard

open covering of Pn(C). For each i = 0, . . . , n, define the map φi : π−1(Ui)→ Ui×C

by φi([x0 : · · · : xn], (z0, . . . , zn)) = ([x0 : · · · : xn], zi). Notice

φ−1
j ([x0 : · · · : xn], 1) = ([x0 : · · · : xn], (z0, . . . , zn)/zj),

so

φi ◦ φ−1
j ([x0 : · · · : xn], 1) = φi([x0 : · · · : xn], (z0, . . . , zn)/zj)) = ([x0 : · · · : xn], zi/zj).

So the functions gij = zi
zj

on Ui ∩ Uj define a holomorphic line bundle over Pn(C),

denoted OPn(−1), and is called the tautological line bundle. It is the dual of OPn(1).

31



Chapter 2

An Improved Defect Relation in

Nevanlinna Theory

In this chapter, we prove the Analytic Main Theorem in [HR16]. First, we collect

lemmas used in this chapter and the next.

§2.1 Common Lemmas

Lemma 2.1.1 ([Aut09], Lemma 4.2). Suppose E is a big and base-point free Cartier

divisor on a projective variety X of dimension n, and let F be a nef Cartier divisor

on X such that F − E is also nef. Let β > 0 be a positive real number. Then for

any positive integers N,m with 1 ≤ m ≤ βN , we have

h0(NF −mE) ≥ F n

n!
Nn − F n−1.E

(n− 1)!
Nn−1m

+
(n− 1)F n−2.E2

n!
Nn−2 min {m2, N2}+O(Nn−1)
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where O depends on β.

Let D1 and D2 be two effective divisors on X. We define

lcm (D1, D2) =
∑
E

max {ordE D1, ordE D2}E,

where the sum runs over all prime divisors E on X.

Lemma 2.1.2. Let D1, . . . , Dq be effective divisors in m-subgeneral position on

a projective variety X of dimension n ≥ 2. Then for any subset of m divisors

{Di1 , . . . , Dim} ⊆ {D1, . . . , Dq},

m∑
µ,ν=1
µ 6=ν

lcm (Diµ , Diν ) ≥ (m+ n− 2)
m∑
α=1

Diα .

Proof. Fix µ ∈ {1, . . . ,m}. We will first show that every irreducible component E

of Diµ can belong to at most m − n divisors Diν , ν 6= µ. For sake of contradiction,

assume there exists an irreducible element E of Diµ belonging to at least m− n+ 2

divisors Diα . Then

E ⊆
⋂
α

Supp Diα ,

with α indexing the divisors E belongs to, so

dim
⋂
α

Supp Diα ≥ dimE = n− 1 > m− (m− n+ 2) = n− 2.

This contradicts D1, . . . , Dq are in m-subgeneral position. So any irreducible

component E of Diµ can belong to at most m− n divisors Diν , ν 6= µ, and so

m∑
ν=1
ν 6=µ

lcm (Diµ , Diν ) ≥ (m− 1− (m− n))Diµ +
m∑
ν=1
ν 6=µ

Diν
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= (n− 1)Diµ +
m∑
ν=1
ν 6=µ

Diν .

Summing over all µ proves the claim.

Let D be a divisor on a projective variety X. Let σ0 be the set of all prime

divisors occurring in D. Write

D =
∑
E∈σ0

(ordE D)E.

We call ordE D the coefficient of E in D.

Lemma 2.1.3. Let D1, . . . , Dq be effective divisors in m-subgeneral position on a

projective variety X of dimension n ≥ 2 and let σ0 be the set of all prime divisors

occurring in D1, . . . , Dq. Then for each

σ ∈ Σ =

{
σ ⊆ σ0 |

⋂
E∈σ

E 6= ∅

}
,

there are m divisors

Di1 , . . . , Dim ∈ {D1, . . . , Dq}

such that the prime divisors E ∈ σ only occur in {Di1 , . . . , Dim}.

Proof. Let σ be a subset of all prime divisors occurring in D1, . . . , Dq with
⋂
E∈σ

E 6= ∅.

To the contrary, assume there are not m divisors

Di1 , . . . , Dim ∈ {D1, . . . , Dq}

such that the prime divisors E ∈ σ only occur in {Di1 , . . . , Dim}. Since
⋂
E∈σ

E 6= ∅

with the prime divisors E ∈ σ occurring in at least m+ 1 of the divisors D1, . . . , Dq,

this contradicts D1, . . . , Dq being in m-subgeneral position on X.
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Lemma 2.1.4 ([CZ04b], Lemma 3.2). Let V be a vector space of finite dimension

d. Let V = W1 ⊃ W2 ⊃ · · · ⊃ Wh and V = W ∗
1 ⊃ W ∗

2 ⊃ · · · ⊃ W ∗
h∗ be two filtrations

of V. Then there exists a basis v1, . . . , vd of V which contains a basis of each Wj and

W ∗
j .

§2.2 Main Theorem

We make use of the following generalized Cartan’s Second Main Theorem for

holomorphic curves.

Theorem 2.2.1 ([Ru97] Theorem 2.1, [Voj97] Theorem 1). Let f : C → Pn(C) be

a linearly non-degenerate holomorphic curve and H1, . . . , Hq hyperplanes in Pn(C)

with corresponding Weil functions λH1 , . . . , λHq . Then for any ε > 0,∫ 2π

0

max
J

∑
j∈J

λHj(f(reiθ))
dθ

2π
≤ (n+ 1 + ε)Tf (r)

holds for all r > 0 outside a set of finite Lebesgue measure, where the max is taken

over all subsets J ⊆ {1, . . . , q} such that the hyperplanes Hj, j ∈ J , are in general

position on Pn(C).

We also need a lemma from Vojta.

Lemma 2.2.2 ([Voj07], Lemma 20.7). Let X be a complex projective variety and

D an effective divisor on X. Write

D =
∑
E∈σ0

(ordE D)E
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and let

Σ :=

{
σ ⊆ σ0 |

⋂
E∈σ

E 6= ∅

}
.

For each σ ∈ Σ, let

Dσ :=
∑
E/∈σ

(ordE D)E.

Choose a Weil function for each such Dσ. Then there exists a constant C0, depending

only on X and D, such that

min
σ∈Σ

λDσ(x) ≤ C0

for all x ∈ X.

We are now ready for the proof. For the convenience of the reader, we restate the

Main Theorem.

Main Theorem. Let X be a complex projective variety of dimension n ≥ 2 and

D1, . . . , Dq big and nef Cartier divisors in m-subgeneral position on X. Let ri > 0

be real numbers such that D := r1D1 + · · ·+ rqDq has equidegree (such real numbers

exist due to Lemma 1.1.3). Assume there exists a positive integer N0 such that the

linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. Let f : C→ X be

a Zariski dense holomorphic map. Then

mf (r,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
Tf,D(r)

holds for all r > 0 outside a set of finite Lebesgue measure, where

C =
min1≤j≤q {Dn−2.(rjDj)

2}
6qn24nDn

> 0.
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Proof. Let

α =
min1≤j≤q {Dn−2.(rjDj)

2}
3n34nDn

.

Notice α > 0 by Lemma 1.1.1, since Dj, 1 ≤ j ≤ q, are big and nef, and so

min
1≤j≤q

{Dn−2.(rjDj)
2} ≥ min

1≤j≤q
{(rjDj)

n} > 0.

Since D has equidegree with respect to r1D1, . . . , rqDq,

riDi.D
n−1 =

1

q
Dn, 1 ≤ i ≤ q.

So by the density of Q in R, choose (positive) rational numbers a1, . . . , aq such that

both

|aj − rj| ≤
δ1

2

(
min

1≤i≤q
ri

)
min

1,
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

, 1 ≤ j ≤ q, (2.2.1)

and ∣∣∣∣ D′n

aiDi.D′n−1
− q
∣∣∣∣ < δ2, 1 ≤ i ≤ q, D′ = a1D1 + · · ·+ aqDq, (2.2.2)

where δ1 and δ2 will be chosen later such that δ1, δ2 ≤ 1. Note that

|aj − rj| ≤
δ1

2

(
min

1≤i≤q
ri

)
min

1,
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

 ≤ 1

2
rj, 1 ≤ j ≤ q,

so

D′n ≥ 1

2n
Dn and D′n ≤ 2nDn. (2.2.3)

To clear out the denominators, define the divisor D̃ = dD′, where d is the product

of the denominators of a1, . . . , aq. Notice that

D̃n

daiDi.D̃n−1
=

(dD′)n

daiDi.(dD′)n−1
=

dnD′n

dn(aiDi).D′n−1
=

D′n

aiDi.D′n−1
,
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so by (2.2.2), ∣∣∣∣∣ D̃n

daiDi.D̃n−1
− q

∣∣∣∣∣ < δ2 1 ≤ i ≤ q. (2.2.4)

Let x = f(z) ∈ X. By Lemma 2.2.2, there exists a divisor D̃σ on X and a Weil

function λD̃σ such that

λD̃σ(x) ≤ C0, (2.2.5)

where σ is some subset of prime divisors occurring in D̃ with
⋂
E∈σ E 6= ∅ and C0 is

a positive constant depending only on X and D̃. Write

D̃ = D̃0 + D̃σ =
∑
E∈σ

(ordE D̃)E + D̃σ

and select Weil functions for D̃ and D̃0. Then by (2.2.5) and the additivity of Weil

functions,

λD̃(x) = λD̃0
(x) + λD̃σ(x) = λD̃0

(x) +O(1). (2.2.6)

Select Weil functions for each Di, i = 1, . . . , q, and for each prime divisor E ∈ σ.

Since D1, . . . , Dq are in m-subgeneral position, then by Lemma 2.1.3, there are

D1,z, . . . , Dm,z ∈ {D1, . . . , Dq}

such that the prime divisors E ∈ σ only occur in D1,z, . . . , Dm,z. So by (2.2.6) and

the additivity of Weil functions,

q∑
j=1

dajλDj(x) = λD̃(x) = λD̃0
(x) +O(1) (2.2.7)

=
∑
E∈σ

(ordE D̃)λE(x) +O(1)
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≤
m∑
α=1

daα,zλDα,z(f(z)) +O(1).

Also, by Lemma 2.1.2, for each z ∈ C, {D1,z, . . . , Dm,z},

m∑
µ,ν=1
µ6=ν

lcm (daµ,zDµ,z, daν,zDν,z) ≥ (m+ n− 2)
m∑
α=1

daα,zDα,z. (2.2.8)

Select Weil functions for each divisor lcm (daµ,zDµ,z, daν,zDν,z), µ, ν = 1, . . . ,m, µ 6=

ν. Then by (2.2.7), (2.2.8), and the additivity of Weil functions,

q∑
j=1

dajλDj(x) ≤
m∑
α=1

daα,zλDα,z(f(z)) +O(1)

≤ 1

m+ n− 2

m∑
µ,ν=1
µ6=ν

λlcm (daµ,zDµ,z ,daν,zDν,z)(f(z)). (2.2.9)

Fix Dµ,z ∈ {D1,z, . . . , Dm,z}. Then for N ≥ N0, consider the following filtration for

the vector space H0(X,OX(ND̃)),

H0(X,OX(ND̃)) = W0 ⊃ W1 ⊃ · · · ⊃ Wi ⊃ · · · ⊃ WN ⊃ WN+1 ⊃ · · · ⊃ {0},

where Wk = H0(X,OX(ND̃ − kdaµ,zDµ,z)). Let B be a basis of H0(X,OX(ND̃))

associated to this filtration. Also, let ϕND̃ : X → PM(C) be the canonical morphism

associated to ND̃ and let M = h0(ND̃) − 1. Since φ∗
ND̃
OPM (1) = OX(ND̃),

every section s ∈ H0(X,OX(ND̃)) corresponds to a hyperplane H ⊆ PM(C) such

that ϕ∗
ND̃

H = (s). Note when we write s ∈ H0(X,OX(ND̃ − kdaµ,zDµ,z)) ⊆

H0(X,OX(ND̃)), we mean s⊗skdaµ,zDµ,z
∈ H0(X,OX(ND̃)) where sDµ,z is the canonical

section of OX(Dµ,z), so

ϕ∗
ND̃

H = (s) ≥ kdaµ,zDµ,z. (2.2.10)
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Let Hµ be the set of hyperplanes (also depending on z) corresponding to the

basis B. Since B is a basis of H0(X,OX(ND̃)), the hyperplanes in Hµ are in general

position. Then by (2.2.10),∑
H∈Hµ

ϕ∗
ND̃

H ≥

(
∞∑
k=0

k dim (Wk/Wk+1)

)
daµ,zDµ,z =

(
∞∑
k=1

dimWk

)
daµ,zDµ,z

=

(
∞∑
k=1

h0(ND̃ − kdaµ,zDµ,z)

)
daµ,zDµ,z. (2.2.11)

Now applying Lemma 2.1.1, with F = D̃, E = daµ,zDµ,z, and β := D̃n

nD̃n−1.(daµ,zDµ,z)
,

gives us

∞∑
k=1

h0(ND̃ − kdaµ,zDµ,z) (2.2.12)

≥
[βN ]∑
k=1

(
D̃n

n!
Nn − D̃n−1.(daµ,zDµ,z)

(n− 1)!
Nn−1k +

A

n!
Nn−2 min {k2, N2}

)
+O(Nn)

≥

(
D̃n

n!
β − D̃n−1.(daµ,zDµ,z)

(n− 1)!

β2

2
+
A

n!
g(β)

)
Nn+1 +O(Nn)

=

(
β

2
+

A

D̃n
g(β)

)
D̃nN

n+1

n!
+O(Nn)

≥
(
β

2
+ α̃

)
D̃nN

n+1

n!
+O(Nn),

where A := (n− 1)D̃n−2.(daµ,zDµ,z)
2, α̃ =

min1≤j≤q {D̃n−2.(dajDj)
2}

D̃n
g(β), and

g : R+ → R+ is the function defined by

g(x) =


x3

3
, 0 < x ≤ 1

x− 2
3
, x ≥ 1.

Returning to (2.2.4),

D̃n

D̃n−1.(daµ,zDµ,z)
=

D̃n

(daµ,zDµ,z).D̃n−1
> q − δ2
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implies

β =
D̃n

nD̃n−1.(daµ,zDµ,z)
>
q − δ2

n
. (2.2.13)

Since D̃n ≥ D̃n−1.(daµ,zDµ,z), then β ≥ 1
n
, so g(β) ≥ 1

3n3 . Also, since D̃ = dD′,

(2.2.3) implies

α̃ =
min1≤j≤q {D̃n−2.(dajDj)

2}
D̃n

g(β) ≥ min1≤j≤q {D′n−2.(ajDj)
2}

3n3D′n

≥ min1≤j≤q {Dn−2.(rjDj)
2}

3n34nDn
= α. (2.2.14)

Using (2.2.13) and (2.2.14), we can write (2.2.12) as

∞∑
k=1

h0(ND̃ − kdaµ,zDµ,z) ≥
(
β

2
+ α̃

)
D̃nN

n+1

n!
+O(Nn)

>

(
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn),

and using this inequality in (2.2.11),

∑
H∈Hµ

ϕ∗
ND̃

H ≥

(
∞∑
k=1

h0(ND̃ − kdaµ,zDµ,z)

)
daµ,zDµ,z

>

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daµ,zDµ,z.

Fix another Dν,z ∈ {D1,z, . . . , Dm,z}. Then similar steps give us

∑
H∈Hν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daν,zDν,z.

Consider the two filtrations of H0(X,OX(ND̃)) coming from looking at the order

of vanishing along Dµ,z and Dν,z, as described previously. Let B be the basis of

H0(X,OX(ND̃)) that Lemma 2.1.4 gives with respect to these two filtrations. Let
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Hµ,ν be the corresponding set of hyperplanes in PM(C). Then by the definition of B

and similar steps as before,

∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daµ,zDµ,z

and ∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daν,zDν,z.

It follows that

∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
lcm (daµ,zDµ,z, daν,zDν,z).

By the additivity of Weil functions,

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z))

>

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
λlcm (daµ,zDµ,z ,daν,zDν,z)(f(z)),

and summing over all m(m− 1) distinct µ, ν ∈ {1, . . . ,m},((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

) m∑
µ,ν=1
µ6=ν

λlcm (daµ,zDµ,z ,daν,zDν,z)(f(z))

<

m∑
µ,ν=1
µ 6=ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z)) ≤ m(m− 1)

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z))


or

m∑
µ,ν=1
µ6=ν

λlcm (daµ,zDµ,z ,daν,zDν,z)(f(z))

<
m(m− 1)(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z))

 .
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Using this result, (2.2.9) becomes

q∑
j=1

dajλDj(x)

≤ 1

m+ n− 2

m∑
µ,ν=1
µ6=ν

λlcm (daµ,zDµ,z ,daν,zDν,z)(f(z)) (2.2.15)

<
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)
max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z))

 .

LetHz =
m⋃

µ,ν=1
µ6=ν

Hµ,ν for each z ∈ C and denoteHT =
⋃
z∈C

Hz. Then by the functoriality

of Weil functions, for any z ∈ C,

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H(f(z)) ≤ max
J

∑
H∈J

λϕ∗
ND̃

H(f(z)) = max
J

∑
H∈J

λH((ϕND̃ ◦ f)(z)),

where the max is taken over all subsets J ⊆ HT consisting of hyperplanes in general

position on PM(C). Hence (2.2.15) can be written as

q∑
j=1

dajλDj(x)

<
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

) (max
J

∑
H∈J

λH((ϕND̃ ◦ f)(z))

)
.

We can finally integrate both sides and apply Cartan’s Theorem 2.2.1 (with ε = 1)

to the curve ϕND̃ ◦ f : C→ PM(C) and to the set of hyperplanes HT , so

q∑
j=1

dajmf (r,Dj) <
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)(M + 2)Tϕ
ND̃
◦f (r)

(2.2.16)

holds for all r > 0 outside a set of finite Lebesgue measure.
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Using Lemma 1.1.1,

M + 1 = h0(ND̃) =
D̃n

n!
Nn +O(Nn−1),

so by the functoriality of height functions,

(M + 2)Tϕ
ND̃
◦f (r) = (M + 2)Tf,ND̃(r)

= N(M + 2)Tf,D̃(r)

=

(
D̃n

n!
Nn+1 +O(Nn) +N

)
Tf,D̃(r).

Thus, by (2.2.16),

q∑
j=1

dajmf (r,Dj) <
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)(M + 2)Tϕ
ND̃
◦f (r)

=

(
m(m− 1)

(m+ n− 2)

) D̃n

n!
Nn+1 +O(Nn) +N(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

Tf,D̃(r)

holds for all r > 0 outside a set of finite Lebesgue measure.

Now, choose N ≥ N0 such that

q∑
j=1

dajmf (r,Dj) <

(
m(m− 1)

(m+ n− 2)

) D̃n

n!
Nn+1 +O(Nn) +N(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

Tf,D̃(r)

=

(
m(m− 1)

(m+ n− 2)

)
1 +O( 1

N
) +O( 1

Nn )(
q−δ2
2n

+ α
)

+O( 1
N

)

q∑
j=1

dajTf,Dj(r)

≤
(

m(m− 1)

(m+ n− 2)

)
1(

q−δ2
2n

+ 2
3
α
) q∑
j=1

dajTf,Dj(r).

Let δ2 = min {1, nα
3
}. Notice δ2 > 0 since we saw earlier that α > 0. Now,

q∑
j=1

dajmf (r,Dj) <

(
m(m− 1)

(m+ n− 2)

)
1(

q−δ2
2n

+ 2
3
α
) q∑
j=1

dajTf,Dj(r)
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≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

dajTf,Dj(r),

and after canceling d on both sides,

q∑
j=1

ajmf (r,Dj) <
m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajTf,Dj(r). (2.2.17)

To write this result in terms of divisor D = r1D1 + · · ·+ rqDq, note (2.2.1) gives us

q∑
j=1

rjmf (r,Dj) ≤
q∑
j=1

ajmf (r,Dj) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

mf (r,Dj)

and

q∑
j=1

ajTf,Dj(r) ≤
q∑
j=1

rjTf,Dj(r) +
δ1

2

(
min

1≤i≤q
ri

)
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

q∑
j=1

Tf,Dj(r).

Using these two inequalities, along with (2.2.17) and the First Main Theorem,

q∑
j=1

rjmf (r,Dj) ≤
q∑
j=1

ajmf (r,Dj) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

mf (r,Dj)

<
m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajTf,Dj(r) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

Tf,Dj(r)

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajTf,Dj(r) +
δ1

2

q∑
j=1

rjTf,Dj(r)

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

)
 q∑

j=1

rjTf,Dj(r) +
δ1
2

(min1≤i≤q ri)
m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

q∑
j=1

Tf,Dj(r)


+
δ1

2

q∑
j=1

rjTf,Dj(r)

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

rjTf,Dj(r) +
δ1

2

q∑
j=1

rjTf,Dj(r) +
δ1

2

q∑
j=1

rjTf,Dj(r)
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=

 m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1

 q∑
j=1

rjTf,Dj(r).

To write this inequality in a form useful for the defect relation, let

q∑
j=1

rjmf (r,Dj) <

 m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1

 q∑
j=1

rjTf,Dj(r)

≤ m(m− 1)

(m+ n− 2)

2n

q

1

(1 + nα
2q

)

q∑
j=1

rjTf,Dj(r).

That is,

m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1 ≤
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + nα
2q

)
,

so let

δ1 = min

{
1,

m(m− 1)

(m+ n− 2)

2n

q

(
1

1 + nα
2q

− 1

1 + nα
q

)}
.

Again, we saw that α > 0, so δ1 > 0. Thus

q∑
j=1

rjmf (r,Dj) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)

q∑
j=1

rjTf,Dj(r)

or

mf (r,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
Tf,D(r)

holds for all r > 0 outside a set of finite Lebesgue measure, where

C =
nα

2q
=

min1≤j≤q {Dn−2.(rjDj)
2}

6qn24nDn
> 0.
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Chapter 3

An Improved Height Inequality in

Diophantine Approximation

In this chapter, we prove the Arithmetic Main Theorem in [HR16]. The proof

is similar to the analytic case in the previous chapter. In general, using Vojta’s

dictionary [Voj07], statements in Nevanlinna Theory may be translated into

Diophantine Approximation and vice versa, including the proofs in some cases.

§3.1 Main Theorem

We make use of the following generalized Schmidt’s Subspace Theorem (see [Voj97]).

Theorem 3.1.1. Let k be a number field and S ⊆ Mk a finite set containing all

archimedean places. Let H1, . . . , Hq be hyperplanes in Pn(k) with corresponding Weil

functions λH1 , . . . , λHq . Then there exists a finite union of hyperplanes Z ⊆ Pn(k),
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3.1. MAIN THEOREM

depending only on H1, . . . , Hq (and not k or S), such that for any ε > 0,

∑
v∈S

max
J

∑
j∈J

λHj ,v(P ) ≤ (n+ 1 + ε)h(P )

holds for all P ∈ Pn(k)\Z, where the max is taken over all subsets J ⊆ {1, . . . , q}

such that the hyperplanes Hj, j ∈ J , are in general position on Pn(k).

We also need a lemma from Vojta.

Lemma 3.1.2 ([Voj07], Lemma 20.7). Let X be a projective variety over a number

field k and let D be an effective divisor on X. Write

D =
∑
E∈σ0

(ordE D)E

and let

Σ :=

{
σ ⊆ σ0 |

⋂
E∈σ

E 6= ∅

}
.

For each σ ∈ Σ, let

Dσ :=
∑
E/∈σ

(ordE D)E.

For each place v ∈ Mk, choose a Weil function for each such Dσ. Then there exists

a Mk-constant (Cv)v∈Mk
, depending only on X and D, such that

min
σ∈Σ

λDσ ,v(P ) ≤ Cv

for all P ∈ X(Cv) and all v ∈Mk.

We are now ready for the proof. For the convenience of the reader, we restate the

Main Theorem.
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3.1. MAIN THEOREM

Main Theorem. Let k be a number field and S ⊆ Mk a finite set containing all

archimedean places. Let X be a projective variety, defined over k, of dimension

n ≥ 2, and let D1, . . . , Dq be big and nef Cartier divisors on X, defined over k. Let

ri > 0 be real numbers such that D := r1D1 + · · · + rqDq has equidegree (such real

numbers exist due to Lemma 1.1.3). Assume there exists a positive integer N0 such

that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0 and that

D1, . . . , Dq are in m-subgeneral position on X. Then

mS(P,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
hD(P )

holds for all P ∈ X(k) outside a proper Zariski closed subset of X, where

C =
min1≤j≤q {Dn−2.(rjDj)

2}
6qn24nDn

> 0.

Proof. Let

α =
min1≤j≤q {Dn−2.(rjDj)

2}
3n34nDn

.

Notice α > 0 by Lemma 1.1.1, since Dj, 1 ≤ j ≤ q, are big and nef, and so

min
1≤j≤q

{Dn−2.(rjDj)
2} ≥ min

1≤j≤q
{(rjDj)

n} > 0.

Since D has equidegree with respect to r1D1, . . . , rqDq,

riDi.D
n−1 =

1

q
Dn, 1 ≤ i ≤ q.

So by the density of Q in R, choose (positive) rational numbers a1, . . . , aq such that

both

|aj − rj| ≤
δ1

2

(
min

1≤i≤q
ri

)
min

1,
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

, 1 ≤ j ≤ q, (3.1.1)
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3.1. MAIN THEOREM

and ∣∣∣∣ D′n

aiDi.D′n−1
− q
∣∣∣∣ < δ2, 1 ≤ i ≤ q, D′ = a1D1 + · · ·+ aqDq, (3.1.2)

where δ1 and δ2 will be chosen later such that δ1, δ2 ≤ 1. Note that

|aj − rj| ≤
δ1

2

(
min

1≤i≤q
ri

)
min

1,
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

 ≤ 1

2
rj, 1 ≤ j ≤ q,

so

D′n ≥ 1

2n
Dn and D′n ≤ 2nDn. (3.1.3)

To clear out the denominators, define the divisor D̃ = dD′, where d is the product

of the denominators of a1, . . . , aq. Notice that

D̃n

daiDi.D̃n−1
=

(dD′)n

daiDi.(dD′)n−1
=

dnD′n

dn(aiDi).D′n−1
=

D′n

aiDi.D′n−1
,

so by (3.1.2), ∣∣∣∣∣ D̃n

daiDi.D̃n−1
− q

∣∣∣∣∣ < δ2, 1 ≤ i ≤ q. (3.1.4)

Let P ∈ X(Mk). By Lemma 3.1.2, for each v ∈ S, there exists a divisor D̃σ on

X and a Weil function λD̃σ ,v such that

λD̃σ ,v(P ) ≤ Cv, (3.1.5)

where σ is some subset of prime divisors occurring in D̃ with
⋂
E∈σ E 6= ∅ and Cv is

a Mk-constant depending only on X and D̃. Write

D̃ = D̃0 + D̃σ =
∑
E∈σ

(ordE D̃)E + D̃σ
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and select Weil functions for D̃ and D̃0. Then by (3.1.5) and the additivity of Weil

functions,

λD̃,v(P ) = λD̃0,v
(P ) + λD̃σ ,v(P ) = λD̃0,v

(P ) +OS(1). (3.1.6)

Select Weil functions for each Di, i = 1, . . . , q, and for each prime divisor E ∈ σ.

Since D1, . . . , Dq are in m-subgeneral position, then by Lemma 2.1.3, P is v-adically

close to at most m of the divisors Di, i = 1, . . . , q, so there are

D1,v, . . . , Dm,v ∈ {D1, . . . , Dq}

such that the prime divisors E ∈ σ only occur in D1,v, . . . , Dm,v. So by (3.1.6) and

the additivity of Weil functions,

q∑
j=1

dajλDj ,v(P ) = λD̃,v(P ) = λD̃0,v
(P ) +OS(1) (3.1.7)

=
∑
E∈σ

(ordE D̃)λE,v(P ) +OS(1)

≤
m∑
α=1

daα,vλDα,v ,v(P ) +OS(1).

Also, by Lemma 2.1.2, for each v ∈ S, {D1,v, . . . , Dm,v},
m∑

µ,ν=1
µ6=ν

lcm (daµ,vDµ,v, daν,vDν,v) ≥ (m+ n− 2)
m∑
α=1

daα,vDα,v. (3.1.8)

Select Weil functions for each divisor lcm (daµ,vDµ,v, daν,vDν,v), µ, ν = 1, . . . ,m, µ 6=

ν. Then by (3.1.7), (3.1.8), and the additivity of Weil functions,

q∑
j=1

dajλDj ,v(P ) ≤
m∑
α=1

daα,vλDα,v ,v(P ) +OS(1)

≤ 1

m+ n− 2

m∑
µ,ν=1
µ6=ν

λlcm (daµ,vDµ,v ,daν,vDν,v),v(P ). (3.1.9)
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Fix Dµ,v ∈ {D1,v, . . . , Dm,v}. Then for N ≥ N0, consider the following filtration for

the vector space H0(X,OX(ND̃)),

H0(X,OX(ND̃)) = W0 ⊃ W1 ⊃ · · · ⊃ Wi ⊃ · · · ⊃ WN ⊃ WN+1 ⊃ · · · ⊃ {0},

where Wk = H0(X,OX(ND̃ − kdaµ,vDµ,v)). Let B be a basis of H0(X,OX(ND̃))

associated to this filtration. Also, let ϕND̃ : X → PM(k) be the canonical morphism

associated to ND̃ and let M = h0(ND̃) − 1. Since φ∗
ND̃
OPM (1) = OX(ND̃),

every section s ∈ H0(X,OX(ND̃)) corresponds to a hyperplane H ⊆ PM(k) such

that ϕ∗
ND̃

H = (s). Note when we write s ∈ H0(X,OX(ND̃ − kdaµ,vDµ,v)) ⊆

H0(X,OX(ND̃)), we mean s⊗skdaµ,vDµ,v
∈ H0(X,OX(ND̃)) where sDµ,v is the canonical

section of OX(Dµ,v), so

ϕ∗
ND̃

H = (s) ≥ kdaµ,vDµ,v. (3.1.10)

Let Hµ be the set of hyperplanes (also depending on v) corresponding to the

basis B. Since B is a basis of H0(X,OX(ND̃)), the hyperplanes in Hµ are in general

position. Then by (3.1.10),

∑
H∈Hµ

ϕ∗
ND̃

H ≥

(
∞∑
k=0

k dim (Wk/Wk+1)

)
daµ,vDµ,v =

(
∞∑
k=1

dimWk

)
daµ,vDµ,v

=

(
∞∑
k=1

h0(ND̃ − kdaµ,vDµ,v)

)
daµ,vDµ,v. (3.1.11)

Now applying Lemma 2.1.1, with F = D̃, E = daµ,vDµ,v, and β := D̃n

nD̃n−1.(daµ,vDµ,v)
,

gives us

∞∑
k=1

h0(ND̃ − kdaµ,vDµ,v) (3.1.12)

52



3.1. MAIN THEOREM

≥
[βN ]∑
k=1

(
D̃n

n!
Nn − D̃n−1.(daµ,vDµ,v)

(n− 1)!
Nn−1k +

A

n!
Nn−2 min {k2, N2}

)
+O(Nn)

≥

(
D̃n

n!
β − D̃n−1.(daµ,vDµ,v)

(n− 1)!

β2

2
+
A

n!
g(β)

)
Nn+1 +O(Nn)

=

(
β

2
+

A

D̃n
g(β)

)
D̃nN

n+1

n!
+O(Nn)

≥
(
β

2
+ α̃

)
D̃nN

n+1

n!
+O(Nn),

where A := (n − 1)D̃n−2.(daµ,vDµ,v)
2, α̃ :=

min1≤j≤q {D̃n−2.(dajDj)
2}

D̃n
g(β), and

g : R+ → R+ is the function defined by

g(x) =


x3

3
, 0 < x ≤ 1

x− 2
3
, x ≥ 1.

Returning to (3.1.4),

D̃n

D̃n−1.(daµ,vDµ,v)
=

D̃n

daµ,vDµ,v.D̃n−1
> q − δ2

implies

β =
D̃n

nD̃n−1.(daµ,vDµ,v)
>
q − δ2

n
. (3.1.13)

Since D̃n ≥ D̃n−1.(daµ,vDµ,v), then β ≥ 1
n
, so g(β) ≥ 1

3n3 . Also, since D̃ = dD′,

(3.1.3) implies

α̃ =
min1≤j≤q {D̃n−2.(dajDj)

2}
D̃n

g(β) ≥ min1≤j≤q {D′n−2.(ajDj)
2}

3n3D′n

≥ min1≤j≤q {Dn−2.(rjDj)
2}

3n34nDn
= α. (3.1.14)

Using (3.1.13) and (3.1.14), we can write (3.1.12) as

∞∑
k=1

h0(ND̃ − kdaµ,vDµ,v) ≥
(
β

2
+ α̃

)
D̃nN

n+1

n!
+O(Nn)
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>

(
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn),

and using this inequality in (3.1.11),

∑
H∈Hµ

ϕ∗
ND̃

H ≥

(
∞∑
k=1

h0(ND̃ − kdaµ,vDµ,v)

)
daµ,vDµ,v

>

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daµ,vDµ,v.

Fix another Dν,v ∈ {D1,v, . . . , Dm,v}. Then similar steps give us

∑
H∈Hν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daν,vDν,v.

Consider the two filtrations of H0(X,OX(ND̃)) coming from looking at the order

of vanishing along Dµ,v and Dν,v, as described previously. Let B be the basis of

H0(X,OX(ND̃)) that Lemma 2.1.4 gives with respect to these two filtrations. Let

Hµ,ν be the corresponding set of hyperplanes in PM(k). Then by the definition of B

and similar steps as before,

∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daµ,vDµ,v

and ∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
daν,vDν,v.

It follows that

∑
H∈Hµ,ν

ϕ∗
ND̃

H >

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
lcm (daµ,vDµ,v, daν,vDν,v).

By the additivity of Weil functions,

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P )
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>

((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

)
λlcm (daµ,vDµ,v ,daν,vDν,v),v(P ),

and summing over all m(m− 1) distinct µ, ν ∈ {1, . . . ,m},((
q − δ2

2n
+ α

)
D̃nN

n+1

n!
+O(Nn)

) m∑
µ,ν=1
µ6=ν

λlcm (daµ,vDµ,v ,daν,vDν,v),v(P )

<
m∑

µ,ν=1
µ 6=ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P ) ≤ m(m− 1)

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P )


or

m∑
µ,ν=1
µ6=ν

λlcm (daµ,vDµ,v ,daν,vDν,v),v(P )

<
m(m− 1)(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P )

 .

Using this result, (3.1.9) becomes

q∑
j=1

dajλDj ,v(P )

≤ 1

m+ n− 2

m∑
µ,ν=1
µ6=ν

λlcm (daµ,vDµ,v ,daν,vDν,v),v(P ) (3.1.15)

<
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)
max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P )

 .

(3.1.16)

Let HP =
m⋃

µ,ν=1
µ6=ν

Hµ,ν for each P ∈ X(Mk) and denote HT =
⋃

P∈X(Mk)

HP . Then by the

functoriality of Weil functions, for any P ∈ X(Mk),

max
Hµ,ν

∑
H∈Hµ,ν

λϕ∗
ND̃

H,v(P ) ≤ max
J

∑
H∈J

λϕ∗
ND̃

H,v(P ) = max
J

∑
H∈J

λH,v(ϕND̃(P )),
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where the max is taken over all subsets J ⊆ HT consisting of hyperplanes in general

position on PM(k). Hence (3.1.15) can be written as

q∑
j=1

dajλDj ,v(P )

<
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

) (max
J

∑
H∈J

λH,v(ϕND̃(P ))

)
.

We can finally sum over the places v ∈ S on both sides and apply Schmidt’s Theorem

3.1.1 (with ε = 1) to PM(k) and to the set of hyperplanes HT , so

q∑
j=1

dajmS(P,Dj) <
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)(M + 2)h(ϕND̃(P ))

(3.1.17)

holds for all ϕND̃(P ) ∈ PM(k)\Z, where Z is a finite union of hyperplanes in PM(k)

depending only on HT , not k or S.

Using Lemma 1.1.1,

M + 1 = h0(ND̃) =
D̃n

n!
Nn +O(Nn−1),

so by the functoriality of height functions,

(M + 2)h(ϕND̃(P )) = (M + 2)hND̃(P )

= N(M + 2)hD̃(P )

=

(
D̃n

n!
Nn+1 +O(Nn) +N

)
hD̃(P ).

Thus, by (3.1.17),

q∑
j=1

dajmS(P,Dj) <
m(m− 1)

(m+ n− 2)
((

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

)(M + 2)h(ϕND̃(P ))
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=

(
m(m− 1)

(m+ n− 2)

) D̃n

n!
Nn+1 +O(Nn) +N(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

hD̃(P )

holds for all ϕND̃(P ) ∈ PM(k)\Z, where Z is a finite union of hyperplanes in PM(k)

depending on N .

Now, choose N ≥ N0 such that

q∑
j=1

dajmS(P,Dj) <

(
m(m− 1)

(m+ n− 2)

) D̃n

n!
Nn+1 +O(Nn) +N(

q−δ2
2n

+ α
)
D̃nNn+1

n!
+O(Nn)

hD̃(P )

=

(
m(m− 1)

(m+ n− 2)

)
1 +O( 1

N
) +O( 1

Nn )(
q−δ2
2n

+ α
)

+O( 1
N

)

q∑
j=1

dajhDj(P )

≤
(

m(m− 1)

(m+ n− 2)

)
1(

q−δ2
2n

+ 2
3
α
) q∑
j=1

dajhDj(P ).

Let δ2 = min {1, nα
3
}. Notice δ2 > 0 since we saw earlier that α > 0. Now,

q∑
j=1

dajmS(P,Dj) <

(
m(m− 1)

(m+ n− 2)

)
1(

q−δ2
2n

+ 2
3
α
) q∑
j=1

dajhDj(P )

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

dajhDj(P ),

and after canceling d on both sides,

q∑
j=1

ajmS(P,Dj) <
m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajhDj(P ). (3.1.18)

To write this result in terms of divisor D = r1D1 + · · ·+ rqDq, note (3.1.1) gives us

q∑
j=1

rjmS(P,Dj) ≤
q∑
j=1

ajmS(P,Dj) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

mS(P,Dj)

and

q∑
j=1

ajhDj(P ) ≤
q∑
j=1

rjhDj(P ) +
δ1

2

(
min

1≤i≤q
ri

)
1

m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

q∑
j=1

hDj(P ).
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Using these two inequalities, along with (3.1.18) and the First Main Theorem,

q∑
j=1

rjmS(P,Dj) ≤
q∑
j=1

ajmS(P,Dj) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

mS(P,Dj)

<
m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajhDj(P ) +
δ1

2

(
min

1≤i≤q
ri

) q∑
j=1

hDj(P )

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

ajhDj(P ) +
δ1

2

q∑
j=1

rjhDj(P )

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

)
 q∑

j=1

rjhDj(P ) +
δ1
2

(min1≤i≤q ri)
m(m−1)
(m+n−2)

2n
q

1

(1+nα
q )

q∑
j=1

hDj(P )


+
δ1

2

q∑
j=1

rjhDj(P )

≤ m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) q∑
j=1

rjhDj(P ) +
δ1

2

q∑
j=1

rjhDj(P ) +
δ1

2

q∑
j=1

rjhDj(P )

=

 m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1

 q∑
j=1

rjhDj(P ).

To write this inequality in a form useful for the defect relation, let

q∑
j=1

rjmS(P,Dj) <

 m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1

 q∑
j=1

rjhDj(P )

≤ m(m− 1)

(m+ n− 2)

2n

q

1

(1 + nα
2q

)

q∑
j=1

rjhDj(P ).

That is,

m(m− 1)

(m+ n− 2)

2n

q

1(
1 + nα

q

) + δ1 ≤
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + nα
2q

)
,

so let

δ1 = min

{
1,

m(m− 1)

(m+ n− 2)

2n

q

(
1

1 + nα
2q

− 1

1 + nα
q

)}
.
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Again, we saw that α > 0, so δ1 > 0. Thus

q∑
j=1

rjmS(P,Dj) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)

q∑
j=1

rjhDj(P )

or

mS(P,D) <
m(m− 1)

(m+ n− 2)

2n

q

1

(1 + C)
hD(P )

holds for all P ∈ X(k) outside a Zariski closed subset of X, where

C =
nα

2q
=

min1≤j≤q {Dn−2.(rjDj)
2}

6qn24nDn
> 0.
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Chapter 4

Other Approaches

§4.1 Further Improved Qualitative Results

In 2009, Corvaja, Levin, and Zannier [PCZ09] introduced a new approach to the

problem of degeneracy of holomorphic curves and integral points.

In Nevanalinna Theory, they proved the following statement.

Theorem 4.1.1. Let X be a complex projective variety of dimension n > 2 and let

D1, . . . , Dq be ample Cartier divisors such that D1 + · · · + Dq is a reduced normal

crossings divisor. Assume q > n2 − n. Then there does not exist a holomorphic

map f : C → X with Zariski dense image. Furthermore, there exists a proper

Zariski-closed subset Y ⊆ X such that the image of any non-constant holomorphic

map f : C→ X is contained in Y .
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4.2. POINTWISE FILTRATION

The corresponding statement in Diophantine Approximation is the following:

Theorem 4.1.2. Let k be a number field and S ⊆ Mk a finite set containing all

archimedean places. Let X be a projective variety, defined over k, of dimension

n > 2, and let D1, . . . , Dq be ample Cartier divisors on X, defined over k, such that

D1 + · · · + Dq is a reduced normal crossings divisor. Assume q > n2 − n. Then no

set of (D,S)-integral points of X is Zariski dense in X. Furthermore, there exists

a proper Zariski-closed subset Y ⊆ X, independent of k and S, such that X\Y has

only finitely many (D,S)-integral points of X.

These qualitative results, however, appear to not have a corresponding second main

theorem type of statement as of yet.

§4.2 Pointwise Filtration

We saw in chapter two, using the joint filtration lemma 2.1.4, for q ≥ n2, every

holomorphic mapping f : C→ X\D must be constant. Theorem 4.1.1 improves this

result to q > n2 − n for varieties of dimension > 2 by using what the authors call a

pointwise filtration approach.

In the proof of the Analytic Main Theorem in chapter two, the filtrations involved

sections which vanish to a high order along divisors which contain a given point. In

[PCZ09], sections are considered which vanish to a high order along the intersection

of divisors. Imposing vanishing conditions at a point is significantly less restrictive

than imposing vanishing along whole divisors.
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4.2. POINTWISE FILTRATION

This pointwise filtration works by constructing a basis for H0(X,OX(D)) which

consists of sections that ”on average” vanish at a point. This vanishing implies that

certain linear forms corresponding to this basis take small values at a point, which

allows the successful application of Diophantine Approximation/Nevanlinna Theory.

These filtrations may be constructed by using linear algebra on the power series

locally representing the sections.

62



Bibliography

[Aut09] P. Autissier. Geometries, points entiers et courbes entieres. (French). Ann.
Sci. Ec. Norm Super, 4(42):221–239, 2009.

[Car33] H. Cartan. Sur les zeros des combinaisons lineaires de p fonctions
holomorphes donnees. Mathematica (Cluj), 7:5–29, 1933.

[CZ02] P. Corvaja and U. Zannier. A subspace theorem approach to integral points
on curves. C. R. Math. Acad. Sci. Paris, 4(334):267–271, 2002.

[CZ04a] P. Corvaja and U. Zannier. On a general Thue’s equation. Amer. J. Math.,
5(126):1033–1055, 2004.

[CZ04b] P. Corvaja and U. Zannier. On integral points on surfaces. Ann. of Math.,
2(160):705–726, 2004.

[EF08] J.H. Evertse and R. Ferretti. A generalization of the Subspace Theorem
with polynomials of higher degree. In Diophantine approximation of Dev.
Math., 16:175–198, 2008.

[Ful98] W. Fulton. Interesection Theory. Second ed., Ergeb. Math. Grenzgeb.
Springer-Verlag, New York, 1998.

[HR16] S. Hussein and M. Ru. A general defect relation and height inequality for
divisors in subgeneral position. To be submitted, 2016.

[Laz04] R. Lazarsfeld. Positivity in algebraic geometry I. Springer-Verlag, Berlin,
2004.

[Lev09] A. Levin. Generalizations of Siegel’s and Picard’s theorems. Ann. of Math.,
2(170):609–655, 2009.

[Lev14] A. Levin. On the Schmidt Subspace Theorem for Algebraic Points. Duke
Math. Journal, 15(163):2841–2885, 2014.

63



BIBLIOGRAPHY

[MR16] C. Mills and M. Ru. An improved defect relation for holomorphic curves
in projective varieties. To be submitted, 2016.

[PCZ09] A. Levin P. Corvaja and U. Zannier. Integral points on threefolds and other
varieties. Tohoku Math Journal, pages 589–601, 2009.

[Rot55] K.F. Roth. Rational approximations to algebraic numbers. Mathematika,
2(168):1–20, 1955.

[Ru97] M. Ru. On a general form of the Second Main Theorem. Transactions of
the American Mathematical Society, 349(12):5093–5105, 1997.

[Ru01] M. Ru. Nevanlinna theory and its relation to Diophantine approximation.
World Scientific Publishing Co. Inc., River Edge, NJ, 2001.

[Ru04] M. Ru. A defect relation for holomorphic curves intersecting hypersurfaces.
Amer. J. Math., 1(126):215–226, 2004.

[Ru09] M. Ru. Holomorphic curves into algebraic varieties. Ann. of Math.,
2(169):255–267, 2009.

[Ru15a] M. Ru. A defect relation for holomorphic curves intersecting general divisors
in projective varieties. Submitted, 2015.

[Ru15b] M. Ru. A general Diophantine inequality. Submitted, 2015.

[SR15] L. Shi and M. Ru. An improvement of Chen-Ru-Yan’s degenerated Second
Main Theorem. Science in China, first online: 15 October 2015.

[Voj97] P. Vojta. On cartan’s theorem and cartan’s conjecture. Amer. J. Math.,
1(119):1–17, 1997.

[Voj07] P. Vojta. Diophantine approximation and nevanlinna theory. CIME notes,
231 pages, 2007.

64


