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Abstract 

To achieve commercialization and wide acceptance in industrial application, 

reliability analysis for complex evolving systems with multiple failure processes becomes 

increasingly important. The common assumption in analyzing reliability of such systems 

is that these multiple failure processes are independent, which may lead to the 

miscalculation of system reliability. To assist engineers with design, manufacturing and 

maintenance of complex systems, new reliability models that account for the dependence 

among multiple failure processes need to be developed to accurately predict the lifetime 

of these systems.  

This research aims to develop probabilistic reliability models and analytical tools for 

systems with dependent competing failure processes, and explore cost-effective 

maintenance policies based on our reliability analysis. Different dependent patterns 

among competing failure processes are explored for single-component systems. When the 

arrival of external shocks diminishes the strength of material, we propose reliability and 

maintenance models for systems with a shifting, dependent hard failure threshold. When 

shocks impact the degradation process in different manners, we model zoned shock 

effects on stochastic degradation, and develop reliability functions for such dependent 

stochastic failure processes. Case studies of micro-electro-mechanical systems and stent 

devices are used to demonstrate our models, where Monte Carlo importance sampling is 

used to estimate system reliability.  

We extend our models on single-component systems to a broader range of multi-

component systems experiencing multiple failure processes, which presents more 

challenges on modeling the interaction and dependence among different components. A 
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new reliability model and a unique condition-based maintenance model are proposed for 

complex systems with dependent components subject to respective degradation processes, 

and the dependence among components is established through environmental factors. 

Another condition-based maintenance policy is developed for power transformers using 

Markov decision processes, where a power transformer with multiple components is 

modeled as a multi-state system.  

The proposed reliability and maintenance models can be implemented to address the 

critical quality and reliability problems of evolving devices and many other systems with 

multiple dependent competing failure processes and multiple dependent components. The 

developed models and analytical tools can facilitate product design, manufacturing and 

maintenance, and enhance system reliability and availability. 
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Chapter 1: Introduction 

The rapid development of novel and evolving technologies brings a broad set of 

reliability challenges. Many aspects of product design and manufacturing are undergoing 

dramatic changes, which has a huge impact on product reliability. Even though the 

performance and complexity of products are increasing, customers have never lowered 

their expectation on product quality and reliability. The downscaling trend in the 

semiconductor industry greatly increases the complexity in design, manufacturing, and 

packaging. Reliability is always a critical factor that manufacturers cannot ignore, with an 

aim to increase their market share and make profit. As the market demand continues to 

push product performance to its technological limits, we need to find the tradeoff 

between product performance and lifetime according to the needs of different market 

segments.  

To be most effective, reliability should be taken into account in the design stage of a 

product and consistently throughout the entire lifetime. Otherwise, companies or 

manufacturers will suffer a huge loss if any reliability problem happens to their products, 

both in profitability and reputation. Reliability has a great impact on the consumers’ 

perception of a manufacturer. For example, consumers’ experience with car recalls, 

repairs and warranties will affect the future sales of that manufacturer [1]. In February 

2010, Toyota recalled 2.3 million vehicles, because they failed to test new cars and car 

parts under varying weather conditions, and the gas-pedal mechanism tended to stick as 

humidity increased. In October 2012, a new recall from Toyota covered more than 7.4 

million cars and trucks worldwide, including 2.5 million in the U.S. The problem is a 
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faulty power master switch that can become sticky. If the wrong kind of lubricant is used 

on the switch, it can be a fire risk. GM has recalled 1.3 million vehicles for the problem 

of the electric power-steering assist that can suddenly stop working, and 2.6 million small 

cars for an ignition switch defect since February 2014. These three cases demonstrate the 

importance of reliability analysis at the early stage of product development.  

Among many quality characteristics, reliability is defined as “quality over time,” 

which is a critical dimension of quality [2]. Figure 1.1 shows the quality effort put in both 

reality and ideal cases during four stages of product life cycle: product development, 

design, manufacturing and assembly, and problem solving. Ideally, including quality at 

the early stage can tremendously reduce future effort on problem solving. However in 

reality, people usually ignore the importance of quality monitoring and only think to 

solve a problem when it occurs. In some cases, the problem can be relatively minor, such 

as a laptop battery causing fire and people suffering minor burns; while in other cases 

such as Toyota recall in 2010, the failure of gas pedal took life of several people 

tragically. Therefore, improving product quality and reliability should be a critical task to 

be implemented as early as possible during the product life cycle. 

 

Figure 1.1: Quality effort in product life cycle 
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Reliability is one of the quality characteristics that consumers desire from the 

manufacturer of products. Nowadays global commercial competition forces 

manufacturers to produce products with high quality and reliability. However, reliability 

is not like other quality characteristics, such as geometric tolerances, weight, etc., which 

can be measured and controlled. It is a time-dependent quality characteristic and can only 

be predicted [3]. 

In traditional reliability study, failure-time-based reliability methods are implemented 

to predict the lifetime of devices, which is a straightforward way. In failure-time-based 

reliability approach, the distribution that fits the failure data needs to be found, which is 

then used to describe the lifetime of the device. To collect failure data, experiments are 

conducted to operate the devices till failure and record the failure time data. However, as 

devices become more reliable, it takes a long time to obtain failure data. In other cases, 

devices are very expensive, it is impossible or impractical to run failure test. Because of 

these challenging issues, degradation and shock based reliability analysis starts to attract 

a lot of attention. In this new approach, physics-of-failure mechanisms are investigated 

and combined into the reliability model. Degradation data is collected at different stages 

during the device operation and then analyzed to predict the overall degradation path and 

eventual failure time. It greatly reduces the time required to conduct the experiments, and 

no real failure is required to be recorded. 

Based on these physics-of-failure mechanisms, our research mainly focuses on 

developing probabilistic models to predict the reliability performance for complex 

systems that may fail due to different types of failure processes, or multiple failure 

processes. Failure of devices may arise from forces generated internally in the devices, or 
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from external sources. Common failure mechanisms and root causes are identified as 

wear degradation, stiction, shock loads, fatigue, etc., in mechanical and electrical systems. 

These multiple failure processes are competing with each other to fail the system, and 

may have some interactions with each other. For example, wear degradation may 

deteriorate the system resistance to future random shock loads. Complex systems usually 

have more than one component, and each of these components has their own failure 

processes. This creates challenging issues we need to address when predicting system 

reliability, such as the dependency among failure times of multiple components in a 

complex system. For example, as a component wears, its temperature increases, which 

causes the ambient temperature increases. In the meanwhile, the dependent components 

degrade over time and their degradation rates increase as the ambient temperature 

increases. Therefore, the degradation processes of the dependent components are 

statistically dependent on the degradation process of the dominant component via the 

environmental factors. It creates an interesting and challenging problem to analyze the 

reliability of the system, which is lacking in the literature. The dependence among 

multiple failure processes and the dependence among multiple components make the 

reliability prediction more complicated and difficult, which requires the assistance of new 

reliability models. 

When a complex system is put into operation, it becomes necessary to conduct 

maintenance activities periodically to ensure continuous function, eliminate potential 

breakdown, and reduce production loss. For systems with multiple components, 

traditional time-based maintenance policies are not cost-effective when the multiple 

components are dependent. Maintenance actions come with costs that depend heavily on 
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the operating condition of the system. Therefore, advanced condition-based maintenance 

policies designed for multi-component systems are greatly needed.  

This chapter starts with the problem statement that describes the emerging reliability 

and maintenance issues and motivation of our research. Literature reviews are 

summarized on reliability modeling for systems experiencing degradation processes, 

random shock modeling, multiple failure processes, and condition-based maintenance 

modeling for systems with multiple failure processes. Finally, objectives and 

contributions of this research are discussed. 

1.1     Problem Statement 

Commercialization for many new and evolving technologies requires impressive 

advancements in materials science, electrical, and mechanical engineering. To achieve 

widespread usage in industrial applications, new devices must be highly reliable. For 

example, MEMS are a relatively new and fast-growing field in microelectronics. MEMS 

devices have diverse applications, ranging from heath care and military to consumer 

electronics and automotive. Each year, numerous MEMS designs and product concepts 

are proposed, among which only a small portion have actually succeeded in 

commercialization. The lack of proper understanding of MEMS reliability is one of the 

major challenges that prevent the commercialization of new product concepts. On the 

other hand, when complex systems are put into field operation, their health condition 

deteriorates over time, and appropriate maintenance strategies need to be designed to 

assist continuous functioning of complex systems. These new challenges need to be 

addressed to support further advancement and wider adoption, which requires industrial 
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engineering skills and capabilities that associate with reliability, maintenance, statistics 

and operation research.  

The goal of our research is to develop new tools and methodologies to understand the 

behavior of new and evolving devices for distinct applications, address critical reliability 

problems that have delayed the commercialization of certain new device types, and 

develop appropriate maintenance strategies to ensure smooth functioning of devices. We 

aim to develop general reliability models, maintenance policies, and analysis tools that 

can be customized and adapted for many existing and emerging design problems. 

In reliability study, degradation is one of the common failure mechanisms that have 

been widely investigated [4-7]. Degradation is the reduction in performance, reliability 

and lifetime of systems. Examples of degradation include the wear on rubbing surfaces of 

a microengine, the decreasing light intensity of vacuum fluorescent displays (VFDs), and 

the growing crack size on microstructures [4]. Degradation-based reliability analysis is 

gaining extensive attention recently because degradation data can provide more 

information than failure time data, and can be used to predict the reliability performance 

even beyond the experiment time.  

Another extensively explored area is the reliability of systems subject to random 

magnitude of shocks at random times. In the literature, four categories of shock models 

are typically proposed: extreme shock model [8-10], cumulative shock model [11, 12], 

run shock model [13, 14], and δ-shock model [15-17]. In general, a random shock 

process causes sudden impact to a system from the internal structure or external 

environment, such as the cyclic shocks due to mechanical operation, thermal shocks, 

random customer insurance claims in finance, etc.   
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With the advance in technology, products are highly integrated to be multifunctional, 

which has greatly benefited our daily life. However, it makes the reliability prediction of 

these products more difficult. Systems with complex structures have multiple failure 

processes and each of them competes with the others to fail the whole system over time. 

This phenomenon has attracted a lot of attention on reliability analysis of systems 

exposed to multiple failure processes. However, multiple failure processes that a system 

experiences are assumed to be independent, which is an appropriate assumption when no 

interaction exists among those multiple failure processes in a system. However, for 

complex systems where one failure process can affect others, the assumption of 

independence among multiple failure processes is not valid, and the reliability models 

may miscalculate the lifetime of the system. Therefore, new reliability models are needed 

to assess the lifetime of systems subject to multiple dependent failure processes, which is 

still lacking in the literature. 

In this dissertation, we mainly focus on the reliability models for systems subject to 

multiple dependent failure processes. These multiple dependent competing failure 

processes include wear degradation processes that can cause soft failure of a system, and 

random shock processes that can cause catastrophic failure or hard failure of a system. 

The random shock process can affect the degradation process by causing abrupt damage 

on the degradation level, which speeds up system soft failure. Based on our reliability 

models, maintenance policies are proposed and compared to see which one is beneficial.  

Furthermore, systems often operate under dynamic environment; therefore their 

degradation paths are stochastic rather than deterministic. Considering the impact of the 

operating environment into our reliability model makes it more flexible and applicable to 



8 

 

cases where the devices are sensitive to their surrounding environment. Stochastic 

processes, such as Gamma process, Brownian motion process, can be used to model the 

stochastic behavior of degradation under dynamic environment. For the shock process, 

homogeneous Poisson process or nonhomogeneous Poisson process can be adopted to 

describe the randomness of the shock process. 

In addition, the interactions between components in a complex multi-component 

system create many challenging research problems. In general, multiple components in a 

system operate under the same environment, which may cause interactions among these 

components. To discover the dependence among multiple components in a system, we 

need to understand the physics-of-failure mechanism of each component, and find the 

linkage of their failure processes. The dependency among multiple components may be 

due to various environmental factors, such as temperature, humidity, and vibration. For 

example, consider a system with multiple components where each component 

experiences its own degradation process. The degradation process of one dominant 

component increases the surrounding environmental temperature, while the elevated 

temperature speeds up the degradation processes of the remaining components. 

Moreover, a complex system has multiple components as well as multiple failure 

processes, and these multiple failure processes damage the health condition of the system 

gradually over time. When the health condition of the system drops to a critical level, the 

system may not be able to perform smoothly and failure will happen sooner or later. 

System failure can cause severe consequences, such as downtime cost, production loss, 

and safety concerns. Therefore, it is essential to conduct maintenance activities on 

complex multi-component systems. However, traditional time-based maintenance 
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policies, such as block replacement policy, do not apply to the complex multi-component 

system cases due to the complex dependency relationship among multiple components. 

Cost effective condition-based maintenance policies should be explored to assist 

continuous functioning of the system in the field. 

Our research focuses on probabilistic reliability modeling for single-unit systems 

subject to different failure processes, and then extends to reliability and condition-based 

maintenance modeling for multi-component systems. Therefore, literature review on 

degradation modeling, random shock modeling, reliability modeling for systems 

experiencing multiple failure processes, and condition-based maintenance modeling is 

summarized as follows.  

1.2     Literature Review 

In this section, we review literatures on reliability modeling for systems experiencing 

degradation processes, random shock processes, and multiple failure processes. 

Literatures on condition-based maintenance policies for multi-component systems are 

also summarized. 

1.2.1     Degradation Modeling 

In the early stage of reliability prediction, reliability testing is conducted under 

normal operating conditions, and the time to failure data of units is collected and 

analyzed to estimate or predict reliability. Along with the development of high 

technologies and improvement of manufacturing processes, products become more 

reliable. We may not observe many failures of the units under normal testing conditions 

over a long period of time. Therefore, researchers have developed accelerated life testing 
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based on the physics of failure of the units: to hasten their failure, units are tested under 

severe stresses until failure occurs or the test is terminated. This accelerated life testing 

approach works successfully for many cases. However for some cases, we may still not 

be able to collect enough failure data or it is very expensive to run the units to failure. 

Consequently, many researchers have been advocating degradation-based techniques as 

an alternative to the failure based approach. Degradation data often provide more 

information than failure time data for predicting the lifetime of the unit. 

Lu et al. compared degradation analysis and traditional failure-time analysis in terms 

of asymptotic efficiency [18]. The comparisons considered a range of practical situations 

and provided an insight into the trade-offs between these two methods of estimating the 

quantiles of the time-to-failure distribution. In both cases, data can be used to assess the 

adequacy of the model within the data range. In terms of statistical efficiency, 

degradation has its advantages when estimating quantiles of failure probabilities beyond 

the range of the data. They suggested that whenever possible, physics of failure should be 

investigated in order to provide more confidence for the degradation models. 

Elsayed classified degradation models as physics-based and statistics-based models 

[3]. The physics-based degradation models are those in which the degradation 

phenomenon is described by a physics-based relationship such as Arrhenius law, 

corrosion initiation equation, or experimentally-based results such as crack propagation 

or crack growth models. Statistics-based degradation models are those in which the 

degradation phenomenon is described by a statistical model such as regression. Their 

comparisons show that, except in extreme cases, degradation analysis provides more 

precision than traditional failure-time analysis does. 
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The limitations of physics-based degradation models are [3]:  

(1) There is no universal physics-based or experimental-based relationship that describes 

the degradation phenomenon of all products, which makes it impossible to develop a 

general degradation model.  

(2) It is time consuming to develop a physics-based (or experimental-based) relationship 

for new products.  

(3) Physics-based (or experimental-based) degradation models may not be suitable for the 

development of closed form reliability functions. This is due to the fact that some of 

the parameters are random variables; the degree of difficulty in deriving a reliability 

function depends on the distribution of these random variables. Except for simple 

cases, the reliability function cannot be easily derived. 

Statistics-based models are more general than physics-based models and have been 

investigated by many researchers in the literature. Lu and Meeker developed statistical 

methods for using degradation measures to estimate a time-to-failure distribution for a 

broad class of degradation models [19]. They used a nonlinear mixed-effects model and 

developed methods based on Monte Carlo simulation to obtain point estimates and 

confidence intervals for reliability assessment. Whitmore et al. presented a model based 

on a bivariate Wiener process, in which one component represents the marker process 

and the second component is a degradation process that is latent and determines the 

failure time [20]. Failure occurs when the latent component crosses a threshold level. 

Since the degradation process is latent or hidden, inference about the degradation process 

must be based on observation on the marker process. Lee and Whitmore used the 

threshold regression method to model the event times by a stochastic process reaching a 
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boundary, which can be used in degradation progression [21].  

Besides the above two types of degradation models, many researchers have 

investigated degradation models through other approaches. Advances in sensor 

technology have led to an increased interest in using degradation based sensory 

information to predict the remaining lives of partially degraded components and systems 

[22]. Gebraeel et al. have conducted experiments on bearing reliability and found out that 

the increase in the degradation signal level on bearing is associated with spall 

propagation along the surface of the raceway. They developed neural-network-based 

models from vibration-based degradation signals to predict bearing failure [23]. Next, 

they proposed two exponential degradation models, one with a random error term and the 

other with a Brownian motion error process [24]. Bayesian updating methods using 

degradation signals are presented to update the stochastic parameters of exponential 

degradation models. Later, they investigated two updating methodologies for computing 

and updating residual life distributions of partially degrading components with 

exponential degradation path [25]. The first method utilizes sensory signal values to 

update the distribution, while the second policy takes into account the entire history of 

sensory information. Elwany and Gebraeel introduced a stochastic degradation modeling 

framework for computing and continuously updating remaining life distributions using in 

situ degradation signals acquired from individual components during their operation [22].  

Another research area is reliability modeling using both failure time and degradation 

data in accelerated life test. Padgett and Tomlinson put forward a general accelerated test 

model, in which failure times and degradation measures can be combined for inference 

about system lifetime, based on a continuous cumulative damage approach with a 
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Gaussian process describing degradation [26]. Park and Padgett presented accelerated 

degradation models for failure based on the geometric Brownian motion or gamma 

process [27]. Both failures and degradation measures were observed in their models and 

considered for parametric inference of system lifetime. Park and Padgett investigated new 

accelerated test models with several accelerating variables for inference based on both 

observed failure values and degradation measurements [28]. New accelerated test models 

were developed based on a generalized cumulative damage approach with a stochastic 

process characterizing a degradation phenomenon. 

Many failure models assume that the operating environment is static, which is not 

applicable to the cases when environment can change and affect physics-of-failure of 

systems. Therefore the impact from dynamic environment has attracted a lot of attention 

in failure models. Singpurwalla gave an overview of failure models based on stochastic 

processes, which are suitable for describing the life length of items that operate in 

dynamic environments [29]. He summarized four strategies involved in failure modeling 

based on a stochastic process: 

1. The item state (or equivalently, its wear) has been described by a diffusion process: 

typically a Wiener process, a gamma process or a deterministic diffusion. 

2. The failure rate (also known as the hazard rate) of the item is described by a 

stochastic process: typically a gamma process, a shot-noise process, a function of a 

Wiener process, or in general, a Levy process. 

3. The damage-causing environment is described by a stochastic process, typically a 

shock-inflicting Poisson process, and the resulting failure models are known as shock 

models. 
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4. A response variable that is strongly correlated with the life length, such as 

temperature, is described by a stochastic process, typically a stationary continuous-

time Gaussian process. 

Kharoufeh considered the reliability of a single-unit system whose cumulative 

damage over time is a continuous wear process that depends on an external environment 

process, and the external environment was modeled as a continuous time stochastic 

process [30]. Kharoufeh and Sipe used sensor data to estimate full and residual lifetime 

distributions for a single-unit system subject to a stochastically evolving environment 

[31]. The evolution of the random environment was characterized as stationary 

continuous-time Markov chain. Gebareel and Pan presented a degradation modeling for 

computing the condition-based residual life distribution of partially degraded systems 

functioning under time-varying environmental and/or operational conditions [32]. They 

modeled degradation-based signals from a population of components using stochastic 

models that combined three main sources of information: real-time degradation 

characteristics of component obtained by observing the component’s in-situ degradation 

signal, the degradation characteristics of the component’s population, and the real-time 

status of the environmental conditions under which the component is operating. 

Kharoufeh et al. extended their previous research on single-unit system reliability models 

under random environment to the case of semi-Markovian environments that place only 

mild restrictions on the dynamics of the evolving environment [33].  

1.2.2     Random Shock Models 

Random shock modeling has also been extensively studied for systems exposed to 
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external shock environments. In the literature, four categories of random shock models 

are typically classified [34, 35]: (i) an extreme shock model, where failure occurs when 

the magnitude of any shock exceeds a specified threshold; (ii) a cumulative shock model, 

where failure occurs when the cumulative damage from shocks exceeds a critical value; 

(iii) a run shock model, where failure occurs when there is a run of k shocks exceeding a 

critical magnitude; and (iv) a δ-shock model, where failure occurs when the time lag 

between two successive shocks is shorter than a threshold δ. The shock arrival process is 

usually modeled into four types: 1) homogeneous Poisson process, that is, the times 

between two consecutive shocks are independent and identically distributed exponential 

random variables; 2) non-homogeneous Poisson process, that is, a counting process null 

at the origin with independent increments where the probability of a shock in (t, t +Δt] is 

λ(t) Δt+o(Δt), while the probability of more than one shock in (t, t +Δt] is o(Δt); 3) non-

stationary pure birth process, that is, a Markov process where, given that k shocks have 

occurred in (0, t], the probability of a shock in (t, t+Δt] is λkλ(t)Δt + o(Δt), while the 

probability of more than one shock in (t, t+Δt] is o(Δt); and 4) renewal process, that is, 

the times between two consecutive shocks are independent and identically distributed 

random variables [36]. 

For the extreme shock model, Gut and Husler derived moment relations and 

asymptotic distribution of time to failure for the extreme shock model [8]. Cirillo and 

Husler introduced a new intuitive approach to generalized extreme shock models using 

urn processes, which can indirectly model the moving risky threshold of generalized 

extreme shock model [9]. Cirillo and Husler proposed an alternative model based on a 

special version of the reinforced urn process. This approach allows performing a 
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Bayesian nonparametric analysis of extreme shocks [10].  

For the cumulative shock model, the life distribution is derived in [37] and shocks 

arrive according to a homogeneous Poisson process. Gut applied the stopped two 

dimensional random walk theory into the cumulative shock model and relaxed the 

assumption of non-negative damage due to the shock process [11].  

For the run shock model, Mallor and Omey presented a model to study systems that 

fail when there are k consecutive shocks with critical magnitudes [13]. They obtained the 

limiting behavior when k tends to infinity or when the probability of entering a critical set 

tends to zero.  

For the δ-shock model, Tang and Lam developed a δ-shock maintenance model for a 

deteriorating system, and assumed that the time lag threshold values of successive shocks 

were geometrically nondecreasing [14]. Bai et al. first stated a δ-shock model, and then 

introduced a generalized framework of shock models based on a cluster point process 

with cluster marks [15]. Li and Zhao proposed some reliability results for the δ-shock 

model of general complex systems with multiple components [17]. Tang and Lam 

proposed a δ-shock maintenance model for a deteriorating system and the shocks arrive 

according to a renewal process [14]. The interarrival time of shocks has a Weibull 

distribution or gamma distribution. Finkelstein discussed shock arrival processes 

following a renewal process and a nonhomogeneous process, respectively [38]. He came 

up with a unique approach to deal with δ-shock model and relaxed the assumption of the 

fixed critical threshold interarrival time between two successive shocks. Li and Zhao 

investigated the δ-shock model of complex systems consisting of n i.i.d. components, and 

considered coherent system structures including series, parallel and k-out-of-n [17].  
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Some mixtures of the classical four shock models are also investigated explicitly in 

the literature. Qian et al. proposed an extended cumulative damage model with two types 

of shocks from a nonhomogeneous Poisson process: one is the fatal shock at which a 

system fails, and the other is damage shock at which the system suffers only damage; 

basically, a combination of extreme shock model and cumulative shock model [39]. 

Mallor and Santos studied a general shock model that extends the extreme, cumulative 

and run shock models, allowing a correlation structure for the variables involved in the 

model definition [36]. The model was governed by a sequence of random vectors of 

correlated variables: the inter-shock time, the magnitude, and the damage caused by the 

shock. In their model, only critical shocks can cause damage, and system fails as soon as 

the additively accumulated damage exceeds a fixed threshold value.  

Gut and Husler considered the generalized extreme shock model, generalized 

cumulative shock model, and generalized mixed shock model [40]. In the generalized 

extreme shock model, a system is harmed by some large but nonfatal shocks, which 

influence the maximum shock load the system can take; in the generalized cumulative 

shock model, only the sum of the most recent shocks implies a system failure; in the 

generalized mixed shock model, they combined both of the above two models with some 

link functions. Wang and Zhang considered a repairable system experiencing both 

extreme shock model and δ-shock model, and applied a replacement policy N based on 

the number of failures into the reliability model [41]. Cha et al. also extended the 

classical shock models to combined/mixed shock models of extreme shock model and 

cumulative shock model, where shocks arrive according to a nonhomogeneous Poisson 

process [42-44]. Finkelsteina and Zarudnij split the initial homogeneous Poisson shock 
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process into three homogeneous Poisson processes: shocks with a small level of damage 

are harmless to a system; shocks with a large level of damage results in the system’s 

failure; and shocks with an intermediate level of damage can result in the system’s failure 

with some probability [45]. Other variations of shock models can be found in [12, 46]. 

1.2.3     Multiple Failure Processes 

In the literature, single failure processes are often considered for complex systems, 

either degradation or random shock processes. The degradation damage may be caused 

by many factors: continuous wear, damage increments due to shocks, aging, etc. Klutke 

and Yang studied systems that deteriorate due to both shocks and graceful degradation, 

but they considered them in one failure process [47]. Shocks occurred according to 

Poisson process and between shocks, deterioration occurred at a constant rate. The 

reliability and availability measures for a single-unit system that suffers degradation due 

to its operating environment and the impact of shocks were also considered in [48]. The 

system experiences a soft failure when its cumulative level of degradation exceeds a 

fixed threshold value. In [49], transient and asymptotic reliability indices for a single-unit 

system were investigated, and the system degrades over time due to normal wear induced 

by its operating environment and randomly occurring shocks that cause additional 

damage to the system.  

However, the single failure process model may not be applicable to systems that can 

fail due to multiple failure processes. Competing risk problems are becoming 

increasingly common and important in practice. Therefore, to make the reliability model 

more general and practical, researchers have started to consider multiple failure processes 

for a complex system. Li and Pham developed a generalized multi-state degraded system 
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reliability model, in which the system was subject to multiple independent competing 

failure processes, including two degradation processes and random shocks [50].  

Noortwijk et al. presented a unique method to combine two stochastic processes of 

deteriorating resistance and fluctuating load for computing the time-dependent reliability 

of a structural component [51]. The deterioration process was modeled as a gamma 

process, which is a stochastic process with independent non-negative increments having a 

gamma distribution with an identical scale parameter. The stochastic process of loads was 

generated by a Poisson process. The variability of random loads was modeled by a peaks-

over-threshold distribution.   

All the above studies share the same assumption that these multiple failure processes 

are independent, which limits their applications in dependent cases. For example, 

according to the reliability tests conducted by Sandia National Laboratories [52], a micro-

actuator system may fail due to two competing yet dependent failure processes: 

catastrophic failures caused by extreme shocks from a random shock process, and a soft 

failures caused by wear degradation and cumulative wear damages from the same random 

shock process [53]. The dependency among the failure processes presents challenging 

issues in reliability modeling. 

Peng et al. developed reliability models for systems subject to multiple dependent 

competing failure processes [54]. Specifically, two dependent/correlated failure processes 

were considered: soft failures caused jointly by continuous smooth degradation and 

additional abrupt degradation damage due to a shock process, and catastrophic failures 

caused by an abrupt and sudden stress from the same shock process. Ye et al. presented a 

convenient means of capturing both shock and degradation in a single model when the 
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extent of degradation and the magnitude of shocks are not observable, but only the failure 

times and the corresponding failure modes are recorded [55]. Reliability models were 

developed considering three failure modes: catastrophic failure, degradation failure and 

failure due to shocks in [56]. The effects of shocks on performance were classified into 

two types: a sudden increase in the failure rate after a shock, and a direct random change 

in the degradation process at the arrival of a shock. They also considered two shock 

scenarios: shocks occur with a fixed time period; shocks occur with varying time periods. 

Further, they extended their work to a reliability model on competitive failure processes 

under fuzzy degradation data [57]. Keedy and Feng proposed a probabilistic reliability 

modeling framework for stent deployment and operation [58]. Two dominating failure 

processes of stents were evaluated: delayed failures or fatigue crack growth due to cyclic 

stresses, and instantaneous failures due to single-event overloads. Wang and Pham 

introduced a time-varying copulas technique into a dependent competing risk model for 

systems subject to multiple degradation processes and random shocks [59]. The proposed 

model allows for a more flexible dependence structure between risks in which (a) the 

dependent relationship between random shocks and degradation processes is modulated 

by a time-scaled covariate factor, and (b) the dependent relationship among various 

degradation processes is fitted using the copula method. 

1.2.4     Condition-based Maintenance Policies 

For deteriorating systems, reliability modeling helps to predict their health condition. 

The next step should be taking maintenance actions to repair or replace the system to 

prevent failure and reduce downtime costs. Maintenance activities come with costs, such 

as repair cost, replacement cost, inspection cost, downtime cost, etc. Therefore, optimal 
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maintenance policies are needed to minimize the cost rate and/or maximize system 

availability. In this section, we present the literature review on condition-based 

maintenance policies for multi-component systems and multi-state systems, based on 

which we will develop our own condition-based maintenance strategies for different 

problems/applications in Chapter 4 and Chapter 5.  

In the maintenance policies for multi-component systems,  three types of dependence 

are typically considered: economic dependence, structural dependence, and failure 

dependence [60, 61]. Economic dependence in maintenance policies for multi-component 

systems considers that there are cost/time-savings to jointly perform maintenance on 

multiple components, instead of on individual components separately. Structural 

dependence implies that the components are structurally connected, and therefore, 

maintenance actions on a failed component require dismantling other components. 

Failure dependence in maintenance policies for multi-component systems refers to the 

dependence between the failure or state of one component and those of other components 

in the system. It also refers to situations when the components suffer from the common-

cause failure from external sources. 

After the first survey paper on maintenance policies for multi-component systems 

conducted by Thomas in 1986 [62], this topic has attracted increasing attention. Cho and 

Parlar [63] conducted a comprehensive survey on maintenance models for multi-

component systems before 1991, including group, block, and opportunistic models. 

Another two survey papers on this topic are provided by Dekker et al. [64] with a focus 

on economic dependence, and Wang [61] with an emphasis on single-component systems. 

More recently, Tian and Liao [65] investigated condition-based maintenance of multi-



22 

 

component systems, where economic dependence exists among different components 

subject to condition monitoring. Castanier et al. [66] considered a condition-based 

maintenance policy for a system with two economically dependent components that 

deteriorate stochastically, independently and gradually. Laggounce et al. [67] proposed a 

preventive maintenance plan for a multi-component series system subject to random 

failures, where economic dependence is considered to reflect the influence of component 

operation/maintenance costs on the overall system costs.  

Maintenance cost depends heavily on the operating condition of the equipment. To 

minimize the maintenance cost, it becomes necessary to have an equipment-state-

dependent maintenance policy. As a matter of fact, maintenance optimization on multi-

state systems has recently attracted a lot of attention in the literature. In Pandey et al. [68], 

a selective maintenance strategy was developed for a series-parallel multi-state system 

(MSS) that consists of multi-state components to maximize system reliability during the 

next mission. Three maintenance actions are considered for a component: do-nothing, 

imperfect maintenance, and replacement. This type of maintenance policy is called 

selective maintenance, because a subset of maintenance actions is performed on selected 

components such that the system is able to meet the next mission requirement. Pandey et 

al. [69] proposed a mathematical model to help in decision making for selective 

maintenance under imperfect repair, while the system and the components under study 

are in binary state, i.e., working or failed. Dao et al. [70] presented a study on selective 

maintenance for multi-state series-parallel systems with economically-dependent 

components. The optimization model takes into account the system reliability in the next 

operating mission, the available budget and the maintenance time for each component 
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from its current state to a higher state.  

Moghaddass et al. [71] studied a device with discrete multi-state degradation, which 

is monitored by a condition monitoring indicator through an observation process, and a 

nonhomogeneous continuous-time hidden semi-Markov process is employed to model 

the degradation and observation processes associated with this type of device. According 

to [71], in a multi-state degradation process, the degradation transition may depend on 

certain factors, such as the two states involved in the transition, the time that the device 

reaches the current state, the time already spent at the current state, the total age of the 

device, or any combination of these factors. A Markovian or a semi-Markovian structure 

can be used to model the degradation transition with the transition dependency on the 

mentioned factors between two states. Other relevant research on maintenance policy for 

multi-state systems can be found in [72-76]. 

1.3     Objectives and Contributions 

In this study, we focus on developing new reliability models and cost-effective 

maintenance strategies for single-component systems with multiple failure processes and 

complex multi-component systems that can be applied to many current and evolving 

devices. Two types of dependency among multiple failure processes are considered: the 

arrival of each shock impacts on multiple failure processes, and the dependency between 

the random shock process and the threshold level of system resistance to shock loads. 

The dependency among multiple components within a complex multi-component system 

via environmental factors is studied, and we take temperature as an example application 

to demonstrate our model. We also study the cost effective maintenance policies and 

implement them based on our new reliability models. The detailed research objectives are 
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listed as below: 

1) Develop new reliability models for single-component systems with multiple failure 

processes. The failure processes can be wear degradation and fracture due to random 

shocks. In the new reliability model in Chapter 2, these two failure processes are 

correlated or dependent in two respects: (a) the arrival of each shock load affects both 

failure processes, and (b) the shock process impacts the hard failure threshold level. 

Three cases of dependency between the shock process and the hard failure threshold 

level are studied. In the future research, we are going to explore other potential 

dependence patterns among multiple failure processes and develop reliability models 

to assist the design, manufacturing and maintenance of systems with similar failure 

mechanisms. 

2) Explore different dependent patterns among multiple failure processes. In Chapter 

3, shocks are categorized into different shock zones which impact degradation 

differently. Three shock zones are considered: safety zone, where shocks with 

magnitude below W0 are considered harmless; damage zone, where shocks with 

magnitude between W0 and WT can cause damage to the system; and fatal zone, where 

shocks with magnitude above WT are considered fatal and fail the system immediately. 

3) Investigate the reliability performance of systems with dependent components via 

environmental factors. In the literature, the dependence among components within a 

complex system via factors, such as the number of external shocks, shock arrival 

times, has been widely studied. However, little research has been done on the 

dependence among components via environmental factors. This becomes a crucial 

and challenging problem to system reliability performance. Chapter 4 presents our 
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work to address this problem, where we consider environmental temperature as the 

linkage among multiple dependent components in a complex system. 

4) Explore and implement advanced maintenance policies based on our developed 

reliability models. Maintenance activities are essential to prevent potential system 

breakdown, reduce downtime cost and eliminate safety concerns. In Chapter 2, two 

classical maintenance strategies, block replacement policy and age replacement 

policy, are studied and compared with each other. Chapter 4 presents a unique 

condition-based maintenance policy designed for systems with multiple dependent 

components with the aim to reduce expected average cost rate. A condition-based 

maintenance model is proposed for the power transformer using Markov decision 

process in Chapter 5, where the deterioration process of the power transformer is 

modeled as multi-state. 

Our proposed reliability and maintenance models can be implemented in applications 

of microelectronic devices and many other systems with similar failure mechanisms. 

They serve as tools in manufacturing industry to facilitate product design and to improve 

its reliability and availability. 

1.4     Organization of the Dissertation  

In Chapter 2, we present reliability and maintenance models for systems subject to 

multiple dependent competing failure processes with a changing, dependent failure 

threshold. In our model, two failure processes are considered: soft failure caused by 

continuous degradation together with additional abrupt degradation due to a shock 

process, and hard failure caused by the instantaneous stress from the same shock process. 

These two failure processes are correlated or dependent in two respects: 1) the arrival of 
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each shock load affects both failure processes, and 2) the shock process impacts the hard 

failure threshold level. Three cases of dependency between the shock process and the 

hard failure threshold level are studied. The first case is that the hard failure threshold 

value changes to a lower level when the first shock is recorded above a critical value, or a 

generalized extreme shock model. The second case is that the hard failure threshold value 

decreases to a lower level when the time lag between two sequential shocks is less than a 

threshold δ, or a generalized δ-shock model. The third case is that the hard failure 

threshold value reduces to a lower level right after m shocks whose magnitudes are larger 

than a critical value, or a generalized m-shock model. Based on degradation and random 

shock modeling, reliability models are developed for these two dependent failure 

processes with a shifting failure threshold. Two preventive maintenance policies are also 

applied and compared to decide which one is more beneficial. Then a Micro-Electro-

Mechanical System example is given to demonstrate the reliability models and 

maintenance polices. 

In Chapter 3, we investigate reliability analysis of a system that experiences two 

dependent competing failure processes. In our new model, shocks are categorized into 

different shock zones which impact degradation differently. These two failure processes 

are a stochastic degradation process and a random shock process, and they are dependent 

because arriving shocks can impact the degradation process in the form of instantaneous 

damage. In our model, only shock loads that are larger than a certain level are considered 

to cause abrupt damages on the degradation process, which makes this new model 

realistic and challenging. Shocks are divided into three zones based on their magnitudes: 

safety zone, where shocks with magnitude below W0 are considered harmless; damage 
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zone, where shocks with magnitude between W0 and WT can cause damage to the 

degradation process; and fatal zone, where shocks with magnitude above WT are 

considered fatal and the system fails immediately. We further model the abrupt damages 

using an explicit function of shock load exceedances (differences between load 

magnitudes and a given threshold). Due to the complexity in modeling these two 

dependent stochastic failure processes, no closed form of the reliability function can be 

derived. Monte Carlo importance sampling is used to estimate the system reliability. 

Finally, two application examples with sensitivity analyses are presented to demonstrate 

our models. 

In Chapter 4, we introduce a new reliability model and a unique condition-based 

maintenance model for complex systems with dependent components subject to 

respective degradation processes, and the dependence among components is established 

through environmental factors. Common environmental factors, such as temperature, can 

create the dependence in failure times of different degrading components in a complex 

system. The system under study consists of one dominant component and n statistically 

dependent components that are all subject to degradation. We consider two aspects that 

link the degradation processes and environmental factors: the degradation of dominant 

component is not affected by the state of other components, but may influent 

environmental factors, such as temperature; and the n dependent components degrade 

over time and their degradation rates are impacted by the environmental factors. Based on 

the thermodynamic study of the relationship between degradation and environmental 

temperature, we develop a reliability model to mathematically account for the 

dependence in multiple components for such a system. Considering the unique dependent 
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relationship among components, a novel condition-based maintenance model is 

developed to minimize the long run expected cost rate. A numerical example is studied to 

demonstrate our models, and sensitivity analysis is conducted to test the impact of 

parameters on the models. 

In Chapter 5, we study the failure modes of power transformers and propose a 

condition-based maintenance policy for power transformers using Markov decision 

processes (MDP). Besides the weather-related random failure mode, we consider another 

three failure modes related to degradation processes: paper winding insulation, bushings, 

and tap-changer. The power transformer is modeled as a multi-state system, including 

four different operating states and four failure states (due to the four failure modes). Four 

maintenance actions are considered in this model: no action (NA), minimal maintenance 

(MM), preventive maintenance (PM), and corrective maintenance (CM). In the proposed 

maintenance strategy, periodic inspections are implemented, and the inspection interval is 

to be determined at each decision epoch. Therefore, the condition-based maintenance 

decision is a combination of two factors: maintenance action and the next inspection 

interval. A policy iteration algorithm is used to find the optimal policy that minimizes the 

average cost in a long run. A numerical example is given to demonstrate the proposed 

condition-based maintenance model. 

Chapter 6 gives the summary and conclusions. Potential future directions are also 

included. 
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Chapter 2: Reliability and Maintenance Modeling for Dependent Competing 

Failure Processes with Shifting Failure Thresholds 

We present reliability and maintenance models for systems subject to multiple 

dependent competing failure processes with a changing, dependent failure threshold. In 

our model, two failure processes are considered: soft failure caused by continuous 

degradation together with additional abrupt degradation due to a shock process, and hard 

failure caused by the instantaneous stress from the same shock process. These two failure 

processes are correlated or dependent in two respects: 1) the arrival of each shock load 

affects both failure processes, and 2) the shock process impacts the hard failure threshold 

level. In previous research, the failure thresholds are fixed constants, which is appropriate 

for most design and reliability problems. However, the nature of the failure threshold has 

become a critical issue for certain classes of complex devices. When withstanding shocks, 

the system is deteriorating, and its resistance to failure is weakening. In this case, it 

becomes more sensitive to hard failure.  

In this chapter, three cases of dependency between the shock process and the hard 

failure threshold level are studied. The first case is that the hard failure threshold value 

changes to a lower level when the first shock is recorded above a critical value, or a 

generalized extreme shock model. The second case is that the hard failure threshold value 

decreases to a lower level when the time lag between two sequential shocks is less than a 

threshold δ, or a generalized δ-shock model. The third case is that the hard failure 

threshold value reduces to a lower level right after m shocks whose magnitudes are larger 

than a critical value, or a generalized m-shock model. Based on degradation and random 
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shock modeling, reliability models are developed for these two dependent failure 

processes with a shifting failure threshold. Two preventive maintenance policies are also 

applied and compared to decide which one is more beneficial. Then a Micro-Electro-

Mechanical System example is given to demonstrate the reliability models and 

maintenance polices [77]. 

ACRONYMS 

MEMS          Micro-Electro-Mechanical Systems 

MDCFP        Multiple dependent competing failure processes 

ARP              Age replacement policy 

BRP              Block replacement policy 

NOTATION 

D1                  Threshold level for hard failures 

D2                  Lower threshold level for hard failures 

D0                Critical value in the m-shock model, i.e., when m shock loads are larger than 

D0, the hard failure threshold level reduces to a lower level 

Dk                  Threshold level for hard failures Dk, k =1 or 2 

Bl                   lth shock inter-arrival time 

δ                    Critical shock inter-arrival time 

N(t) Number of shock loads that have arrived by time t 

λ  Arrival rate of random shocks 

Wi  Size or magnitude of the ith shock load 

FW(w) Cumulative distribution function (cdf) of Wi 

H  Threshold level for wear degradation failures 

X(t)  Wear volume due to continuous degradation at t 

XS(t)  Total wear volume at t due to both continual wear and instantaneous damage 

Yi  Damage size on the wear degradation caused by the ith shock load 

S(t)   Cumulative shock damage size at t 

G(x, t)  cdf of X(t) at t 
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FX(x, t)          cdf of XS(t) at t 

fY(y)  Probability density function (pdf) of Yi  

fY
<k>(y)  pdf of the sum of k independent and identically distributed (i.i.d.) Yi 

variables 

fT(t) pdf of the failure time, T 

ρ Preventive replacement time interval in the block replacement policy 

τ Preventive replacement time interval (or age) in the age replacement policy 

CF Corrective replacement cost 

CR Preventive replacement cost 

    Notation for floor function 

    Notation for ceiling function 

2.1     Introduction 

In this chapter, a new model is presented to predict reliability and optimize 

maintenance when there are competing failure processes, and the failure thresholds can 

shift based on exposure to different patterns of shocks. This is an entirely new model that 

extends previous research in dependent competing failure processes, which offers some 

distinct advantages for design and reliability problems when the component resistance to 

failure reduces. Three different cases of shifting failure thresholds are presented together 

with two different maintenance policies. These developed reliability and maintenance 

models considering dependent competing failure processes can be applied to systems in 

which some components age with continuous degradation while other components are 

more vulnerable to discrete random shocks, as well as systems in which the same 

component experiences both continuous degradation and discrete shocks. 

For complex systems, failure mechanisms and causes include wear-out, corrosion, 

fatigue, fracture, etc., which originate from either internal degradation or external sources. 
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For systems experiencing multiple failure mechanisms, failure processes are often 

dependent in various respects, which generate a set of interesting and challenging issues 

for analyzing system reliability. In this chapter, we study two dependent competing 

failure processes: soft failure caused by continuous degradation and additional abrupt 

degradation damage due to a shock process, and hard failure caused by instantaneous 

stress from the same shock process. These two failure processes are dependent in two 

ways: 1) the arrival of each shock affects both failure processes, and 2) the hard failure 

threshold can shift depending on the pattern of shocks. 

In previous research on competing failure processes [34, 54, 78, 79], the failure 

thresholds are considered to be fixed constants, which is appropriate for most design and 

reliability problems. However, the nature of the failure threshold has become a critical 

issue for certain classes of complex devices, such as Micro-Electro-Mechanical Systems 

(MEMS). When withstanding shocks, the system is deteriorating, and its resistance to 

failure is weakening. For example, a component of a MEMS device becomes more 

sensitive to fracture or hard failure after exposure to a certain number of strong shocks 

[80]. 

In this chapter, we study three different cases of shock patterns that can shift the hard 

failure threshold: 1) a generalized extreme shock model, where the hard failure threshold 

changes to a lower level when the first shock is recorded above a critical value; 2) a 

generalized δ-shock model, where the hard failure threshold decreases when the time lag 

between two sequential shocks is less than δ; and 3) a generalized m-shock model, where 

the hard failure threshold reduces right after exposure to m shocks larger than a critical 

value. Based on degradation and random shock modeling, reliability models are 
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developed for the two dependent failure processes when the hard failure threshold is 

dependent on the shock process. 

2.1.1     Literature Review 

The hard failure threshold essentially represents material strength in reality, and the 

relationship between stress and strength has been extensively studied by dynamic stress-

strength models. Ellingwood and Mori [81] presented a probability-based methodology to 

evaluate the reliability of existing concrete structures in nuclear power plants, which 

includes models to predict structural resistance deterioration due to environmental 

stressors. Huang and Askin [82] proposed a generalized stress-strength interference 

reliability model considering both stochastic loading and strength aging degradation. 

Noortwijk et al. [51] developed a time-dependent reliability model combining two 

stochastic processes of deteriorating resistance and fluctuating load to compute the 

reliability of structural components. Huang and An [83] presented a discrete stress-

strength interference model where the strength is dependent on the stress. 

Many different maintenance strategies have been presented for deteriorating systems 

[61, 84], among which the block replacement policy (BRP) and age replacement policy 

(ARP) are widely studied for non-repairable systems. In the BRP, components are 

replaced at prearranged times preventively, and at failure correctively. As a result, very 

new components can sometimes be replaced if they had just been recently installed in 

response to a failure. To overcome this drawback, Alley and Lin [85] extended the basic 

BRP to a generalized BRP, where the time interval between successive planned 

preventive replacements is divided into two parts: items that fail in the first part are 

replaced with new ones, and items that fail in the second part are replaced with used ones. 
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Barlow and Hunter [86] first put forward the concept of ARP where the replacement age 

of components is a constant. The items are replaced at failure correctively, or at the 

constant age preventively. However, ARP is relatively difficult to implement because the 

time to perform the preventive replacement is not prescribed, and it becomes necessary to 

track the age of components. To address the disadvantages of both policies, Berg and 

Epstein [87] proposed a modified block replacement policy, where the components under 

a certain age are not replaced at prearranged block replacement points. Li [88] presented 

a more general age-dependent block replacement policy with an age limit for preventive 

replacements that allows imperfect repairs at failure. In this chapter, the basic BRP and 

ARP are implemented and applied to an application example to compare which one is 

more advantageous. 

The remainder of this chapter is arranged as follows. Section 2.2 presents the 

reliability models for two dependent failure processes with three special cases of 

dependency between the shock process and the hard failure threshold. In Section 2.3, two 

maintenance strategies are derived based on the developed reliability models. Section 2.4 

uses a numerical example to demonstrate the reliability models, and evaluate the 

maintenance policies. Section 2.5 summarizes the chapter. 

2.2     Reliability Analysis 

As shown in Figures. 2.1, 2.2, and 2.3, the failure of a unit depends on two competing 

dependent failure processes, soft failure and hard failure, whichever occurs first, results 

in failure. The dependence of these two failure processes are represented in two respects. 

1) The two failure processes are dependent due to the same shock process. Soft failure 
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occurs when the total degradation exceeds H, accumulated by continuous degradation 

over time together with abrupt damages due to random shocks. The same random 

shock process can cause hard failure when one shock magnitude exceeds the material 

strength level [54]. 

2) The hard failure threshold is dependent on the shock process. When a unit sustains a 

series of shocks, it becomes more susceptible to hard failure. The hard failure 

threshold decreases according to a generalized extreme shock model, generalized δ-

shock model, or m-shock model, shown in Figures. 2.1, 2.2, and 2.3, respectively. 

This aspect of the model represents a new research contribution that has never been 

adequately considered before. 

 

Figure 2.1: Case 1, generalized extreme shock model 

Additional assumptions for reliability modeling are summarized as follows. 

1) Hard failure occurs when the shock load exceeds the corresponding hard failure 

threshold (maximum strength of material). For the generalized extreme shock model 
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(Case 1), the hard failure threshold decreases from D1 to D2 when the first shock is 

recorded above a critical value D0. For the generalized δ-shock model (Case 2), the 

hard failure threshold decreases from D1 to D2 when the time lag between two 

sequential shocks is less than δ. For the generalized m-shock model (Case 3), the hard 

failure threshold is reduced from D1 to D2 right after m shocks that are larger than a 

critical value D0. 

2) The arrival of random shocks follows a Poisson process. The mean damage size is 

proportional to the mean shock load, i.e., μY = aµW, where a is a known constant. 

3) In general, the wear degradation process can follow various paths. For a specific 

model, we use a linear path to model the wear degradation process. 

4) For the specific model where Wi, Yi, and β are normally distributed random variables, 

their standard deviations are assumed to be substantially smaller than the mean values, 

so that the probability that these random variables are negative values is negligible. 

 
Figure 2.2: Case 2, generalized δ-shock model (B3 < δ) 
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Figure 2.3: Case 3, generalized m-shock model (m = 2) 

In this section, we first model the soft failure that is commonly used for all the three 

cases, followed by the detailed analysis for each of the three cases of hard failure, where 

the system reliability is also derived considering the dependent hard failure and soft 

failure processes. 

2.2.1     Modeling for Soft Failure 

Soft failure occurs when the overall degradation Xs(t) exceeds a threshold level H. 

The graceful degradation due to wear, X(t), may follow various degradation paths. In this 

chapter, a linear degradation path X(t) =φ+βt is applied, where the initial value and 

degradation rate can be constants or random variables [54]. Random shocks arrive 

according to a Poisson process {N(t), t ≥0} with rate λ. Shock damage sizes are used to 

measure the instantaneous increase on degradation, denoted as Yi for i = 1, 2, …, ∞, 

which are assumed to be i.i.d. random variables, independent of the Poisson process. The 

cumulative damage size due to random shocks by time t is given as 

D0 

t 

H Xs(t)
 

D2
 

D1 

t1
 

t2
 

t4
 

t 

W(t) 

W1
 W2

 W3
 

W4
 

Y1 

Y2
 

Y3
 

Y4
 

t1
 

t2
 

t3
 

t4
 

t3
 



38 

 

( )

1
,    if    ( ) 0,

( )  
0,          if     ( ) 0,

N t

i
i

Y N t
S t

N t
=


>= 

 =

∑

                                            

(2.1)

 

which implies a compound Poisson process [84]. The overall degradation of the system is 

Xs(t)= X(t)+S(t). Then the cumulative distribution function (cdf) of Xs(t) can be derived as  
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Furthermore, if G(x,t) denotes the cdf of X(t) at t, fY(y) denotes the pdf of Yi, and 

fY
<k>(y) denotes the pdf of the sum of k i.i.d. Yi variables, then the cdf of Xs(t) can be 

derived using a convolution integral: 

( )0
1

exp( )( )( , ) ( , )exp( ) ( , ) ( ) .
!

ix i
X Y

i

t tF x t G x t t G x u t f u du
i
λ λλ

∞

=

−
= − + −∑ ∫             (2.3) 

If shock damage sizes are i.i.d. normal random variables, Yi ~ N(μY,σY
2), the initial 

value φ is a constant, and the degradation rate β is normally distributed, β~ N(μβ,σβ
2), then 

the cdf of Xs(t) can be derived as 
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                          (2.4) 

where μY = aµW, and a is a known constant. 

2.2.2     Case 1: Generalized Extreme Shock Model 

Figure 2.1 shows a generalized extreme shock model; that is, the hard failure 

threshold value reduces from D1 to D2 when the first shock is greater than D0 [89]. The 

system fails due to fracture when the shock load exceeds the corresponding hard failure 

threshold, Dk, k=1 or 2. The size of the ith shock load is denoted as Wi for i= 1, 2, …,∞, 

which are i.i.d. random variables. The probability that a system survives the applied stress 
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from the ith shock is 

( ) ( ),i k W kP W D F D< =     for 1,2,...,i = ∞ , k =1 or 2,                          (2.5) 

where FW(w) denotes the cdf of Wi. If we assume the Wi follow a normal distribution, Wi 

~ N(μW,σW
2), then the probability of survival in (2.5) is 

( ) ,k W
W k

W

DF D µ
σ

 −
= Φ 

 
    for 1,2,...,i = ∞ , k =1 or 2,                         (2.6) 

where Ф(.) is the cdf of a standard normal random variable. 

For systems that experience the two dependent competing failure processes, the 

reliability at time t is 

0
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which is further derived considering the following situations.  

1) When no shocks occur by time t, or N(t) = 0, 

( ) ( )( | ( ) 0) ( ) ( ) 0 ( ) .SR t N t P X t H N t P X t H= = < = = <  

2)  When there are shocks occurring by time t, or N(t) > 0, there are two mutually 

exclusive scenarios for successful operation without failure that must be considered, 

and their probabilities should be summed together for each possible value of N(t)>0. 

a) No shocks greater than D0, or |SD0| = 0 where SD0 is the set of all shocks greater 

than D0 by time t, 
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b) There exists a Wj  > D0 for j = 1, 2, …, i, or |SD0| > 0,  considering the case that 

the jth shock is the first such shock greater than D0, 
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Therefore, the reliability at time t is derived to be 
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(2.7) 

By using Eqs. (2.3) and (2.7), the system reliability for the general case is 
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When Wi, Yi, and β are normally distributed, the reliability function for the more 

specific case can be expressed as 
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(2.9) 

2.2.3     Case 2: Generalized δ-shock Model 

Figure 2.2 shows a generalized δ-shock model; that is, the hard failure threshold is 

reduced from D1 to D2 when the time lag between two sequential shocks is less than δ. 

The system fails due to fracture when the shock load exceeds the corresponding hard 
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failure threshold, Dk, k = 1 or 2. The probability that a system survives the applied stress 

from the ith shock has the same formula as in Eqs. (2.5) or (2.6). 

In this generalized δ-shock model, we denote the time lag between two sequential 

shocks (or inter-arrival time) as Bj, where Bj =tj+1−tj, and tj is the arrival time of the jth 

shock in the Poisson process for j= 1, 2, …,∞. Therefore, Bj, for j= 1, 2, …,∞ , are i.i.d. 

exponential random variables with distribution parameter λ. For systems that experience 

the two dependent failure processes, the reliability at time t is 
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which is further derived considering the following situations.  

i) When no shocks happen by time t, or N(t) = 0, 

( ) ( )( | ( ) 0) ( ) ( ) 0 ( ) .SR t N t P X t H N t P X t H= = < = = <  

ii) When only one shock happens by time t, or N(t) = 1,  
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iii) When there are more than one shock occurring by time t, or N(t) > 1, we have two 

scenarios to consider for successful operation without failure, and their probabilities can 

be summed together. 

a) No Bj <δ, for j = 1, 2, …, i-1, or |Sδ| = 0, where Sδ denotes the set of all shock 

inter-arrival times less than δ, 
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where /t δ    takes the integer part of t/δ, and it is the maximum number of time 

lags by time t given that all shock inter-arrival times are larger than or equal to δ. 

Accordingly, the maximum number of shocks arrived by time t is / 1t δ +   . 

b) There exists a Bj <δ for j = 1, 2, …, i-1, or |Sδ| > 0,  considering the case that the jth 
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time lag is the first such time interval less than δ. Because it is not possible to 

have more than /t δ    inter-arrival times before t with all Bl≥ δ, j – 1 must be less 

than or equal to /t δ   , or /j t δ≤     when t/δ is not an integer. When t/δ is an 

integer, j–1 should be less than or equal to / 1t δ −   , or / /j t tδ δ≤ =       . To 

consider this range of j in the reliability formulation, we need to split the range of 

i as  
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By considering all situations from i) to iii), we have the reliability function at time t 

as  
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In this reliability formulation, certain combinations of Bl are not possible given the 

condition on N(t) = i. The reliability function in Eq. (2.10) actually provides a close 

approximation by constraining the limits on the sum to prevent combinations that cannot 

happen. By substituting Eq. (2.3) into Eq. (2.10), the system reliability for the two 

dependent failure processes considering the generalized δ-shock model is derived as 
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If we have normally distributed Wi, Yi, and β, the system reliability in Eq. (2.11) is 

expressed as 
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Based on the reliability function in Eq. (2.12), the pdf of the failure time, fT(t), can be 

derived and plotted. 

2.2.4     Case 3: Generalized m-shock Model 

Figure 2.3 shows a generalized m-shock model; that is, the hard failure threshold 

decreases from D1 to D2 right after m shocks larger than a threshold D0. The system fails 

due to fracture when the shock load exceeds the corresponding maximal fracture strength, 

Dk, for k = 1 or 2. The probability that a unit survives the applied stress from the ith shock 

has the same formula as in Eq. (2.5) or Eq. (2.6). 

For systems that experience the two dependent failure processes, the system 

reliability at time t is expressed as 

0
( ) ( | ( ) ) ( ( ) ),

i
R t R t N t i P N t i

∞

=

= = =∑  

which is further derived considering the following situations: 

1) When no shocks occur by time t, or N(t) = 0, 

( ) ( )( | ( ) 0) ( ) ( ) 0 ( ) .SR t N t P X t H N t P X t H= = < = = <  

2) When the number of shocks by time t is between 1 and m, or N(t) = i, 1 ≤ i ≤ m, 
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3) When there are more than m shocks, or N(t) = i > m, the hard failure threshold value 

may or may not reduce from D1 to D2 based on the following two scenarios (see 

Appendix): 

a) Less than m shocks greater than D0, or |SD0| < m, where SD0 is the set of all shocks 

greater than D0, 
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b) More than or equal to m shocks greater than D0, or |SD0| ≥ m, 
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The reliability function by time t is therefore given as 
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By combining Eqs. (2.3) and (2.13), the system reliability for the two dependent 

failure processes considering the generalized m-shock model is derived as 
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When Wi, Yi, and β are normally distributed, the reliability function can be expressed 

as 
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        (2.15) 

Based on Eq. (2.15), the pdf of the failure time, fT(t), can be derived and plotted. 

2.3     Maintenance Policies 

In this section, we consider two preventive maintenance policies: the block 

replacement policy (BRP), and the age replacement policy (ARP). We compare them to 

determine which one is more beneficial for different reliability models. The basic 

assumptions for the two preventive replacement policies include the following. 
 

1) The systems are packaged and sealed together, making it impossible or impractical to 
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repair, e.g., MEMS.  

2) If the system fails, it can be detected immediately, and corrective replacement may 

take place.  

3) Replacement is done instantaneously, and the replacement time is negligible.  

An average long-run maintenance cost rate is implemented to evaluate the 

performance of the maintenance policies, where the maintenance cost considered 

includes the cost of unscheduled corrective replacement, and the cost of scheduled 

preventive replacement. Let C(t) denote the cumulative maintenance cost until time t. 

From renewal theory, the average long-run maintenance cost per unit time, lim( ( ) / ),
t

C t t
→∞

can be evaluated by [54, 90] 

( ) Expected maintenance cost inccured in a cyclelim ,
Expected length of a cyclet

C t
t→∞

  = 
 

                    (2.16) 

where a cycle is defined as either a time interval between the installation of a system and 

the first replacement, or a time interval between two consecutive replacements. The 

successive cycles together with the costs incurred in each cycle constitute a renewal 

process.  

2.3.1     Block Replacement Policy 

Under the BRP, the system is preventively replaced with a new one at pre-scheduled 

times, kρ (k=1, 2…), independent of the failure history of the system. However, if failure 

occurs before a scheduled replacement time, corrective replacement is done. Based on Eq. 

(2.16), the average maintenance cost per unit time over an infinite time horizon for BRP, 

B(ρ), is given by [91, 92], 
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ρ
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                                    (2.17) 

where M(ρ) is the expected number of failures or unscheduled replacements within ρ, i.e., 

the renewal equation [91]: 

0

( ) ( ) ( ) ( ) ,M F M u f u du
ρ

ρ ρ ρ= + −∫                                     (2.18) 

where F(ρ) is the cdf of the failure time by ρ, and f(ρ) is the pdf of the failure time at ρ.  

A closed form solution for the renewal equation M(ρ) is difficult to obtain for most 

failure time distributions. Various methods have been proposed to approximate the 

solution of the renewal equation [93, 94]. In this chapter, we apply the approximation 

method for the renewal equation in Bartholomew [93] as  

2

0 0
( ) ( ) ( ) ( ) .M F F t dt R t dt

ρ ρ
ρ ρ= + ∫ ∫                                   (2.19) 

By minimizing B(ρ) in Eq. (2.17), the optimal solution of the fixed time interval ρ can 

be obtained, i.e., 

{ }* arg min ( )Bρ ρ= .
                         

(2.20) 

There are many optimization methods to solve this unconstrained nonlinear 

optimization problem, such as line search methods, gradient methods, Newton’s method, 

and Quasi-Newton methods [95, 96]. BFGS Quasi-Newton method is one of the most 

popular methods for unconstrained nonlinear optimization problems, and has been used 

in our maintenance optimization. 

2.3.2     Age Replacement Policy 

Under the age replacement policy (ARP), the system is preventively replaced at its 

age τ, or correctively replaced at failure, whichever occurs first. Based on Eq. (2.16), the 



49 

 

average maintenance cost per unit time over an infinite time horizon for ARP, A(τ), takes 

the form  

Expected cost incurred in a cycle [ ]( ) .
Expected renewal cycle [ ]

E TCA
E U

τ = =
                           

(2.21) 

From [5, 91, 92], we have 

( )[ ] 1 ( ) ( ),F RE TC C R C Rτ τ= − +  

0 0

[ ] ( ) ( ) ( )E U R tf t R t dt
τ τ

τ τ= + =∫ ∫ . 

Then the optimal solution at age τ can be found by minimizing A(τ): 

{ }* arg min ( ) [ ] [ ]A E TC E Uτ τ= = .
                            

(2.22) 

We again use the BFGS Quasi-Newton method to solve this unconstrained nonlinear 

optimization problem. 

2.4     Numerical Examples 

A micro-engine developed at Sandia National Laboratories consists of orthogonal 

linear comb drive actuators mechanically connected to a rotating gear [80, 97]. The linear 

displacement of the comb drives is transformed into the rotation of the gear via a pin joint. 

The gear rotates about a hub, which is anchored to the substrate. Wear of rubbing 

surfaces is the dominant mode of failure for the micro-engine, especially the rubbing 

surface between the gear and the pin joint, which usually causes a broken pin. Micro-

engine shock experiments show debris on the surface of the die when exposed to shocks, 

and the gear hub is broken when the magnitude of the shock is above a certain level [80]. 

Therefore, the micro-engine experiences two competing failure processes: soft failures 

due to the wear degradation and debris from external shocks, and hard failures due to hub 
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fracture. Before the hub is broken, the shocks it sustains may initiate cracks in the hub, 

which reduces the material strength to survive further shocks, i.e., the dependency 

between the shock process and hard failure threshold. The values for the parameters in 

Eqs. (2.9), (2.12), and (2.15) for reliability analysis are given in Table 2.1.  

Table 2.1: Parameter values for microengine reliability analysis 

Parameters Values Sources 

H 0.00125μm3 Tanner and Dugger 
[97] 

D0 1.2Gpa Assumption 
D2 1.4Gpa Assumption 

D1 
1.5Gpa (for polysilicon material used for the 

hub) 
Tanner and Dugger 

[97] 

φ 0 Tanner and Dugger 
[97] 

β ~ N(μβ,σβ
2) 

μβ = 8.4823×10-9μm3 and σβ = 6.0016×10-10μm3 

Tanner and Dugger 
[97] 

& Peng et al. [54] 
λ 5×10-5/ revolutions Assumption 

Yi 
~ N(μY,σY

2) 
μY = 1.2×10-4μm3 and σY = 2×10-5μm3 Assumption 

Wi 
~ N(μW,σW

2) 
μW = 1.2Gpa  and σW=0.2Gpa Assumption 

a 1.0×10-4μm3/Gpa Assumption 
m 2 Assumption 
δ 0.2×104 revolutions Assumption 

2.4.1     Reliability Analysis for Case 1 

For the generalized extreme shock model, the reliability function R(t) in Eq. (2.9) and 

the pdf of failure time fT(t) are calculated and plotted in Figure 2.4. A sensitivity analysis 

was performed to evaluate the effects of the model parameters on R(t) and fT(t). The 

model parameters evaluated include the ratios of D0/D1, and D2/D1. The results are shown 

in Figure 2.5, and Figure 2.6, respectively. 
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Figure 2.4: Plots of R(t) and fT(t) for Case 1 

 
Figure 2.5: Sensitivity analysis of R(t) and fT(t) on D0/D1 for Case 1 (D1=1.5GPa) 

In Figure 2.5, the ratio between the critical threshold and the hard failure threshold, 

D0/D1, has a significant impact on both R(t) and fT(t). When the ratio D0/D1 increases (D0 

rises from 1.0Gpa to 1.4Gpa at a fixed D1 of 1.5Gpa), R(t) shifts to the right, and  fT(t) is 

smaller first and then larger after a critical point. This result indicates that a larger ratio 

D0/D1 ensures a better reliability performance. 

In Figure 2.6, we can observe that both R(t) and fT(t) are susceptible to the ratio 

between the reduced hard failure threshold and the regular hard failure threshold, D2/D1. 

When the ratio D2/D1 increases (D2 increases from 1.2Gpa to 1.5Gpa at a fixed D1 of 
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1.5Gpa), R(t) shifts to right, and  fT(t) gets smaller first and then larger after a critical 

point. Therefore, units with a larger ratio D2/D1 can have a better reliability performance. 

 
Figure 2.6: Sensitivity analysis of R(t) and fT(t) on D2/D1 for Case 1 (D1=1.5Gpa) 

 
Figure 2.7: Plots of R(t) and fT(t) for Case 2 

2.4.2     Reliability Analysis for Case 2 

For the generalized δ-shock model, the reliability function R(t) in Eq. (2.12), and the 

pdf of failure time fT(t), are calculated and plotted in Figure 2.7. To assess the effects of 

the model parameters on R(t) and fT(t), a sensitivity analysis was performed. The model 

parameters assessed include the critical time interval δ, and the ratio between the reduced 

hard failure threshold and the regular hard failure threshold D2/D1. The results are shown 
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in Figure 2.8, and Figure 2.9, respectively. 

From Figure 2.8, we can see that the time interval threshold, δ, has a significant 

impact on both the reliability function and the failure time distribution. When δ increases 

from 0.1×104 to 2.0×104 revolutions, both R(t) and fT(t) are sensitive to δ: R(t) shifts to 

the left, and  fT(t) is smaller first and then larger after a critical point. This result implies 

that the reliability performance is better when δ is smaller, because the hard failure 

threshold is less likely to reduce from D1 to D2. 

 
Figure 2.8: Sensitivity analysis of R(t) and fT(t) on δ for Case 2 

 
Figure 2.9: Sensitivity analysis of R(t) and fT(t) on D2/D1 for Case 2 (D1=1.5Gpa) 

Figure 2.9 shows that both R(t) and fT(t) are sensitive to D2/D1. When the ratio D2/D1 
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increases (D2 raises from 1.2Gpa to 1.5Gpa at a fixed D1 of 1.5Gpa), both R(t) and fT(t) 

are sensitive to D2: R(t) shifts to right, and fT(t) is smaller first and then larger after a 

critical point, which means that the reliability performance is better when the ratio D2/D1 

gets larger. Especially, when D2 equals D1 (1.5Gpa), plots of both R(t) and fT(t) are the 

same as those in Peng et al. [54], in which the hard failure threshold value remains 

constant. 

2.4.3     Reliability Analysis for Case 3 

For the generalized m-shock model, the reliability function R(t) in Eq. (2.15) and the 

pdf of failure time fT(t) are plotted in Figure 2.10. A sensitivity analysis was also 

conducted. The model parameters assessed include the number of shocks greater than a 

critical threshold m, and the ratios D0/D1 and D2/D1. The results are shown in Figures 

2.11-2.13, respectively. 

From Figure 2.11, we can see that the number of shocks greater than D0, m, has a 

significant impact on both the reliability function and the failure time distribution. When 

m increases from 1 to 5, both R(t) and fT(t) are sensitive to m: R(t) shifts to right, and  fT(t) 

is smaller first and then larger after a critical point. This result indicates that a larger m 

ensures better reliability performance. In addition, when m is greater than 3, both R(t) and 

fT(t) tend to be almost the same shape, which is related to the average shock arrival rate of 

5×10-5/ revolutions.  



55 

 

 
Figure 2.10: Plots of R(t) and fT(t) for Case 3 

 
Figure 2.11: Sensitivity analysis of R(t) and fT(t) on m for Case 3 

 
Figure 2.12: Sensitivity analysis of R(t) and fT(t) on D0/D1 for Case 3 (D1=1.5Gpa) 
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Figure 2.13: Sensitivity analysis of R(t) and fT(t) on D2/D1 for Case 3 (D1=1.5Gpa) 

In Figure 2.12, the ratio D0/D1, has a great impact on both R(t) and fT(t). When the 

ratio D0/D1 increases (D0 rises from 0.6Gpa to 1.4Gpa at a fixed D1 of 1.5Gpa), both R(t) 

and fT(t) are sensitive to D0: R(t) shifts to right, and  fT(t) is smaller first and then larger 

after a critical point. This result implies that, when the ratio D0/D1 is larger, the system 

reliability performance improves. 

In Figure 2.13, we can observe that both R(t) and fT(t) are susceptible to the ratio 

D2/D1: R(t) shifts to right, and fT(t) is smaller first and then larger after a critical point. 

Therefore, systems with a larger D2/D1 can have a better reliability performance. 

2.4.4     Optimal Maintenance Policies 

Optimal maintenance decisions were determined for all cases under both maintenance 

policies. The results indicate that the new model can provide meaningful, useful 

reliability assessments for a new class of reliability problems with a behavior not 

adequately addressed previously. 

For an example set of cost parameters, CF=$1, CR=$0.2, so CR/CF =0.2, we solve the 

unconstrained nonlinear problems for BRP in Eq. (2.17), and ARP in Eq. (2.21), using 
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BFGS Quasi-Newton method. The optimal solutions obtained for each case under each 

maintenance policy are shown in Table 2.2. For the three cases, age replacement policy 

provides a lower maintenance cost rate between two successive preventive replacements. 

Therefore, the age replacement policy outperforms the block replacement policy for the 

three cases. 

Table 2.2: Optimal solutions for maintenance strategies (CF=$1, CR=$0.2) 

 
Generalized Extreme 
Shock Model (Case 1) 

Generalized δ-shock 
model (Case 2) 

Generalized m-shock 
model (Case 3) 

BRP 
ρ*=57193.1128,  

B(ρ*)= $9.3643×10-6 
ρ*= 58843.9306,  

B(ρ*)= $7.3129×10-6 
ρ*= 58835.4787,  

B(ρ*)= $7.5807×10-6 

ARP 
τ*= 56937.9021,  

A(τ*) =$9.0026×10-6 
τ*= 59387.3750,  

A(τ*) =$7.0233×10-6 
τ*= 59301.6819,  

A(τ*) = $7.2728×10-6 

A sensitivity analysis for Case 1-3 was performed to analyze the effects of the cost 

parameters, CR/CF, on the optimal solutions of the maintenance models. Because the 

patterns in the sensitivity analysis are similar for the three cases, only the results for Case 

2 are presented for BRP, and ARP in Figures 2.14, and 2.15, respectively. 

 
   Figure 2.14: Sensitivity analysis of B(ρ*) and ρ* on CR/CF  
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Figure 2.15: Sensitivity analysis of A(τ*) and τ* on CR/CF 

When the ratio CR/CF changes from 0.1 to 0.9 (CR increases from $0.1 to $0.9 while 

CF=$1), the minimum cost rate of the block replacement policy B(ρ*) increases from 

$5.54×10-6 to $1.75×10-5, and the optimal fixed replacement interval ρ* increases from 

53,589 to 77,239 revolutions. Similarly, for the age replacement policy, the minimum 

cost rate A(τ*) increases from $5.46×10-6 to $1.29×10-5, and the optimal system age τ* 

increases from 53,261 to 128,570 revolutions. This result implies that the unit should be 

replaced more frequently when the ratio CR/CF gets smaller. Besides, under the same 

failure replacement cost and preventive replacement cost, the optimal block replacement 

cost rate is always larger than the age replacement cost rate, and the optimal fixed 

replacement interval in BRP is always less than the optimal system replacement age in 

ARP.  

2.5     Conclusions 

In this chapter, we proposed new models to predict reliability and optimize 

maintenance for MDCFP when the failure thresholds can shift according to the patterns 
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of shocks. This work is an entirely new research area that extends our previous work in 

dependent competing failure processes, which offers some distinct advantages for design 

and reliability problems when the component tolerance or resistance to failure reduces.  

The two dependent failure processes considered in the MDCFP are soft failure caused 

by continuous degradation together with additional abrupt degradation due to a shock 

process, and hard failure caused by the instantaneous stress from the same shock process. 

These two failure processes are correlated or dependent in two ways: 1) the two failure 

processes are dependent due to the same shock process, and 2) the hard failure threshold 

level is dependent on the shock process. Most previous research considers constant 

failure thresholds, which may not be appropriate for some devices that are deteriorating 

due to shocks and degradation. In this chapter, three cases of dependency between the 

shock process and the hard failure threshold level are studied: 1) the hard failure 

threshold value changes to a lower level when the first shock is recorded above a critical 

value, or a generalized extreme shock model; 2) the hard failure threshold value 

decreases to a lower level when the time lag between two sequential shocks is less than a 

threshold, or a generalized δ-shock model; and 3) the hard failure threshold value reduces 

to a lower level right after m shocks larger than a threshold, or a generalized m-shock 

model. Reliability models are then developed for these three cases. 

For maintenance models, we apply both block and age replacement policies to each of 

the three cases. Based on reliability analysis, the average long-run cost rate is evaluated 

and optimized for each policy. A numerical example is then used to demonstrate the 

reliability and maintenance models. From the optimization results, we can see that age 

replacement policy is better than the block replacement policy in all cases. 
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Chapter 3: Modeling Zoned Shock Effects on Stochastic Degradation in Dependent 

Failure Processes 

In this chapter, we study a system that experiences two dependent competing failure 

processes, and in our new model, shocks are categorized into different shock zones which 

impact degradation differently. These two failure processes are a stochastic degradation 

process and a random shock process, and they are dependent because arriving shocks can 

impact the degradation process in the form of instantaneous damage. In existing studies, 

every shock causes an abrupt damage to the degradation process. However, this may not 

be the case when shock loads are small and within the tolerance of system resistance. In 

our model, only shock loads that are larger than a certain level are considered to cause 

abrupt damages on the degradation process, which makes this new model realistic and 

challenging. Shocks are divided into three zones based on their magnitudes: safety zone, 

where shocks with magnitude below W0 are considered harmless; damage zone, where 

shocks with magnitude between W0 and WT can cause damage to the degradation process; 

and fatal zone, where shocks with magnitude above WT are considered fatal and the 

system fails immediately. We further model the abrupt damages using an explicit 

function of shock load exceedances (differences between load magnitudes and a given 

threshold). Due to the complexity in modeling these two dependent stochastic failure 

processes, no closed form of the reliability function can be derived. Monte Carlo 

importance sampling is used to estimate the system reliability. Finally, two application 

examples with sensitivity analyses are presented to demonstrate our models. 

NOTATION 

Xs(t)  Overall degradation at time t 
X(t)                  Continuous degradation at time t 
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 H  Soft failure threshold 
Wi  Magnitude of the ith shock load 

W0  Safety zone threshold 
Di  Load exceedance (difference between Wi and W0) 
Yi  Damage on the wear degradation caused by the ith shock load 

WT  Hard failure threshold 
b  Coefficient in the linear relationship between Di  and Yi 

fWi(wi)  Probability density function (pdf) of Wi 
FWi(wi)  Cumulative distribution function (cdf) of Wi 
gWi(wi)  pdf of Wi that is larger than W0 
FYi(yi)  cdf of Yi 
λ  Arrival rate of random shocks 
N(t)  Number of all shocks arrived by time t 
N1(t)  Number of shocks arrived in the damage zone by time t 
N2(t)  Number of shocks arrived in the fatal zone by time t 
p1  Probability of a shock arriving in the damage zone 
p2  Probability of a shock arriving in the fatal zone 

3.1     Introduction 

A complex device can fail due to multiple failure processes induced by internal and 

external sources, such as corrosion, fatigue, wear, and external shocks. These failure 

processes may practically interact in one way or another, and compete with each other to 

cause the system to fail. For instance, external shocks can impact a wear process by 

causing sudden increase in wear volume. This interaction between external shocks and 

graceful degradation has been studied as part of multiple dependent competing failure 

processes in the literature [54, 77, 98, 99]. However, not every shock has an impact on 

the degradation process, because devices in general have some resistance against small 

shock loads due to material strength and structures. Therefore, shock loads under a 



62 

 

certain magnitude may not cause any additional degradation. For example, when 

microengines were tested at different levels of shocks at Sandia National Laboratories, 

they exhibited no damage and functioned smoothly under a low level of shock loads [80]. 

In this chapter, we conduct new reliability analyses of multiple dependent competing 

failure processes by considering that only shocks with magnitude larger than a certain 

threshold can impact the degradation process. This assumption is realistic for many 

applications with high reliability (e.g., microengines), and leads to new and useful 

reliability analysis models. 

The dependency among failure processes presents challenging issues in reliability 

modeling. Extensive research has been performed concerning reliability analysis on 

dependent competing failure processes. Wang and Pham [100] studied an imperfect 

maintenance policy for systems subject to the dependent competing risks of degradation 

wear and random shocks. Two types of shocks are considered in their work: fatal shocks 

that can cause the immediate failure of the system, and nonfatal shocks that increase the 

system degradation level by the shock magnitude. Huynh et al. [101] developed a 

condition-based periodic inspection/replacement policy for single-unit systems that are 

subject to competing and dependent failures due to degradation and traumatic events. 

These two failure processes are dependent in a way that the shock arrival time is modeled 

by a nonhomogeneous Poisson process with a stochastically-increasing intensity that 

depends on the degradation level. Using the same dependency pattern between 

degradation and shock processes, Huynh et al. [102] studied two age-based maintenance 

policies with age-based minimal repairs and degradation-based minimal repairs for 

systems subject to competing and dependent failure processes.  
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There are two unresolved challenging issues in the exiting literature:  

(1) Most previous research on dependent failure processes assumes that all shocks can 

affect the degradation process by causing an instantaneous increase to the degradation 

amount [54, 56, 77, 98, 99, 103]. However, shock loads with small magnitude may 

not impact the degradation process at all, because devices are typically designed to 

resist against small shock loads.  

(2) Existing studies have not addressed the direct dependence between the abrupt damage 

and the shock magnitude in an explicit manner [54, 56, 77, 98, 99, 103]. In [54, 56, 

77, 98, 99, 103], shocks can cause random damage on the degradation process, but no 

correlation is indicated between the damage size and shock load. The shock damage 

is mostly modeled by a normal distribution that is independent of the shock 

magnitude. Keedy and Feng [104] took a step further to model the relationship 

between the mean values of damage size and shock magnitude, by assuming that the 

mean damage size is proportional to the difference between the mean shock 

magnitude and a threshold W, only when the mean shock is greater than W. Although 

it is intuitive that the damage size caused by a shock is determined by the shock 

magnitude, no explicit model has been proposed to describe the mathematical 

relationship between these two random variables. 

In this chapter, we address these two challenging issues by focusing on the influential 

large shocks, and explicitly modeling the dependence between the random damage size 

and shock magnitude. We study a system that fails when either of the two dependent 

failure processes reaches the respective failure threshold. The shock process impacts the 

degradation process, in a way that only shocks greater than a certain threshold can cause 
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an instantaneous damage to the degradation process. The difference between the shock 

magnitude and the threshold is called the exceedance over the threshold [15]. By using 

the peaks-over-threshold (PoT) method [105] in extreme-value analysis, we explicitly 

model the abrupt damages as a linear function of shock load exceedances. Since a 

generalized Pareto distribution is typically used in the PoT method to model the 

exceedance over the threshold, the resulting shock damage follows a truncated 

generalized Pareto distribution, other than a normal distribution commonly used for 

shock damage in the literature [1-4]. If other distributions (e.g., exponential or gamma 

distribution) are selected to model the shock damage Y, the reliability function can be 

derived using convolution method. However, the truncated generalized Pareto 

distribution for the shock damage leads to a complicated reliability function that does not 

have a closed form. In addition, we use the gamma process to model the degradation in 

order to capture the temporal variability and the property of non-negative increments, 

which creates another dimension of complexity in modeling the reliability. 

The remainder of this chapter is arranged as follows. Section 3.2 describes the system 

of interest in terms of the stochastic degradation process, shock damages and shock 

arrivals. Section 3.3 discusses the reliability modeling of systems subject to degradation 

and random shock processes, when only large shocks can impact on the degradation 

process. In Section 3.4, two application examples are presented to implement our models 

and sensitivity analysis is also discussed. Section 3.5 summarizes this chapter with 

concluding remarks. 
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3.2     System Description 

As shown in Figure 3.1, we consider a system that experiences two dependent 

competing failure processes: soft failure due to degradation and hard failure due to 

random shocks. These two failure processes are dependent, because they are subject to 

the same random shock process. The system fails when the overall stochastic degradation 

exceeds the soft failure threshold level H, or when the magnitude of a shock is larger than 

the hard failure threshold level WT. 

 

Figure 3.1: Relationship of two failure processes simulated for microengine example: (a) 
Continuous degradation, (b) Overall degradation process, (c) Random shock 

process 

Figure 3.1(b) shows the overall degradation Xs(t) that is composed of continuous 

degradation over time X(t) (e.g., wear degradation, crack growth), and instantaneous 

increase of degradation (or shock damage) due to random shocks Yi. The continuous 
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degradation is simulated by a gamma process in Figure 3.1(a). The instantaneous damage 

only occurs when the magnitude of a shock is greater than a critical threshold W0. The 

resulting damage size Yi depends on the shock magnitude, Wi. Specifically, Yi is 

proportional to the difference between Wi and W0, or the shock load exceedance, Di. Soft 

failure occurs when the overall degradation exceeds the failure threshold H.  

As shown in Figure 3.1(c), hard failure occurs when a shock that is larger than the 

hard failure threshold WT arrives. Random shocks arrive according to a homogeneous 

Poisson process (HPP) with a rate λ, and the shock size/magnitude, Wi, is an independent 

and identically distributed (i.i.d.) random variable. We classify shocks into three zones 

according to their magnitudes: safety zone, where shocks with magnitude below W0 are 

considered harmless; damage zone, where shocks with magnitude between W0 and WT 

cause damage to the degradation process; and fatal zone, where shocks with magnitude 

above WT are considered fatal and cause the system to fail immediately. 

3.2.1    Stochastic Processes for Continuous Degradation 

Under dynamic environmental conditions, a degradation process is stochastic and 

subject to influence from various factors, such as temperature, humidity, work load, etc. 

For systems operated under dynamic environments, a stochastic process is commonly 

used to describe the degradation process. Deterioration is usually regarded as a Markov 

process, where the future state of a process only depends on the current state, and is 

independent of the past states [84]. To model degradation processes, two general classes 

of Markov processes can be used: discrete-time Markov processes with a finite or 

countable state space (Markov Chains), and continuous-time Markov processes with 

independent increments such as Brownian motion with drift, the compound Poisson 
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process, and the gamma process. Brownian motion with drift can have positive and 

negative increments alternately, which is inappropriate in modeling degradation that 

progresses in one direction, i.e., monotonic. The compound Poisson process can be used 

to model a stochastic process with i.i.d. jumps that occur according to a Poisson process. 

The gamma process is an effective and natural choice for describing degradation that 

progresses in one direction, because of its property of independent and non-negative 

increments [27, 84].  

The gamma process has been widely used to model stochastic degradation processes 

in the literature. Tsai et al. [106] proposed a method to optimize the design of 

degradation tests based on a gamma degradation process with random effects. For a 

bivariate degradation involving two performance characteristics, Pan and Balakrishnan 

[107] applied a bivariate Birnbaum-Saunders distribution and its marginal distributions to 

approximate the reliability function, where the degradation is considered to be a gamma 

process. Tsai et al. [108] introduced a mixed gamma process to describe the degradation 

path of a product and presented a burn-in policy for highly reliable products. Park and 

Padgett [28] developed a new accelerated test model based on a generalized cumulative 

damage approach with a stochastic process characterizing a degradation phenomenon, 

where the degradation processes are described by Brownian motion, geometric Brownian 

motion, and gamma process for different conditions. van Noortwijk et al. [51] presented a 

method to predict reliability of systems with a gamma degradation process and a 

stochastic process of loads.  

In our model, the overall degradation, Xs(t), is a combination of continuous 

degradation, X(t), and instantaneous shock damages from shocks in damage zone, Yi: 
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= + ∑ , where X(t) and Yi are independent and N1(t) is the number of 

shocks that have arrived in the damage zone by time t. We use a gamma process to 

describe the continuous degradation at time t, X(t), with the pdf:  
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             (3.1) 

where u >0 is the scale parameter, and v(t) >0 is the shape parameter. The gamma process 

with positive scale and shape parameters is a continuous-time stochastic process with the 

following properties [51]: 

1) X(0)=0 with probability of one, 

2) X(τ) − X(t) ~ Ga(v(τ)−v(t), u) for all τ > t ≥ 0, and 

3) X(t) has independent increments. 

The expectation and variance of the gamma process are: 

( ) ( ) 2

( ) ( )( ) ,     Var ( ) .v t v tE X t X t
u u

= =                                     (3.2) 

The expected or mean degradation path is a key in modeling the trend of a 

degradation process that can follow various shapes, such as linear, exponential, or power 

law shape. For some degradation measures such as fatigue crack growth, the expected 

degradation at time t often follows a power law empirically [51]: 

( ) ( )( ) ,v t tE X t
u u

θα
= =                                                  (3.3) 

where α, θ, and u are positive constants. When θ = 1, it reduces to a linear degradation 

path, e.g., wear amount on rubbing surfaces. 

Let Tl denote the first time the continuous degradation level reaches the degradation 

level l. Then the distribution of a gamma degradation process is  
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where 1( , ) e da t

x

a x t t
∞

− −Γ = ∫  is the incomplete gamma function for x ≥ 0 and a > 0. Gamma 

function ( )aΓ  is obtained when we set x=0, namely ( ) ( ,0)a aΓ = Γ . 

 

Figure 3.2: Relationship of two failure processes simulated for stent example: (a) 
Continuous degradation, (b) Overall degradation process, (c) Random 

shock process 

For simulation of gamma processes, three methods are available: gamma-increment 

sampling, gamma-bridge sampling and approximating a gamma process as a limit of a 

compound Poisson process [84]. The last method is not efficient because there are 

infinitely many jumps in each finite time interval in a gamma process. Gamma-increment 

sampling and gamma-bridge sampling are better approaches to use, since they simulate 
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independent increments with respect to very small units of time. Gamma-increment 

sampling is more straightforward, while gamma-bridge sampling allows the accuracy to 

be pre-defined and the old iteration results can still be used if we want to increase the 

accuracy [51]. We choose gamma-increment sampling to simulate two gamma processes 

in Figures 3.1(a) and 3.2(a) for the microengine and stent examples, respectively (see 

Section 4). In Figure 3.1(a), without the abrupt shock damages, the expected degradation 

is linear in time t, describing the increasing wear volume in microengines [97]. In Figure 

3.2(a), without the abrupt shock damages, the expected degradation over time has a 

power law shape, which is appropriate for fatigue crack growth in stents [109, 110].  

3.2.2     Truncated Generalized Pareto Distribution for Shock Damages 

The continuous degradation over time experiences instantaneous damage from each 

shock load that is greater than W0. The instantaneous damage size on degradation Yi 

depends on the magnitude of the shock load Wi. We explicitly model Yi as a linear 

function of the exceedances over the threshold, Di: 

0 0( ),    for ,i i i iY bD b W W W W= = − >                                  (3.5) 

where Di = Wi − W0 is the exceedance over the threshold, which represents the shock 

loads with magnitude above the safety zone.  

Extreme value analysis is commonly used to determine the probability distribution of 

the exceedance over the threshold, which generally has two approaches: block maxima 

(maxima in a given time period), and peaks over a given threshold [111]. The block 

maxima method is straightforward because it is applied to the variable of interest – block 

maxima. The observed maximal values are modeled by a generalized extreme value 
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distribution. Due to the small number of observed block maxima, however, the obtained 

estimates may be sensitive to outliers [111]. In PoT method, the estimates of extreme 

values are based on all values that exceed a threshold, which takes advantage of all useful 

information leading to higher accuracy. When the PoT method is implemented, some 

parameters are required and often they are selected based on judgments that should 

consider the nature of the design and corresponding failures, e.g., the threshold W0. There 

are often no general rules on how to choose them because the parameters are dependent 

on the characters of the studied system [111]. 

PoT method is widely used in extreme value analysis with applications to insurance, 

finance, hydrology and other fields [105]. van Noortwijk et al. [51] proposed a method to 

combine two stochastic processes of deteriorating resistance and fluctuating load for 

computing the time-dependent reliability of structural components, in which the 

magnitude of random loads is modeled by a PoT distribution. Katz et al. [112] 

summarized statistics of extremes used in hydrology, including a point process model 

that combines the block maxima and PoT techniques. Kysely et al. [113] presented a 

methodology for estimating high quantiles of distributions for daily temperature in a non-

stationary context, based on the PoT analysis with a time-dependent threshold expressed 

in terms of regression quantiles.  

A generalized Pareto distribution is typically used in the PoT method. We assume that 

shock loads Wi follow a generalized Pareto distribution with scale parameter σ (σ > 0) and 

shape parameter c. The pdf of Wi takes the form [51]: 
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The complementary cumulative distribution function (cdf) is: 
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where Wi >0 for c ≤ 0, and 0 < Wi < σ/c for c > 0.  

Therefore, the Wi that is larger than W0 follows a truncated generalized Pareto 

distribution with a pdf 
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Because of the linear relationship between Wi and Yi for Wi > W0 in Eq. (3.5), Yi also 

follows a truncated generalized Pareto distribution, and its pdf is derived based on Eqs. 

(3.5)-( 3.8): 
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The cdf of Yi is derived to be: 
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where Yi >0 for c ≤ 0, and 0 < Yi < b(σ/c – W0) for c >0. 

3.2.3     Decomposition of Homogeneous Poisson Process for Shock Arrivals 

We consider random shocks that arrive according to a homogeneous Poisson process 

(HPP) with a rate λ. Let N(t) denote the number of all random shocks arrived by time t.  

The probability of exactly n shocks occurring in the time interval [0, t] is  

( )( ( ) ) , 0,1,...,
!

t ne tP N t n n
n

λ λ−

= = =                                         (3.11) 

where we assume that no shock arrives at time zero.  

We then use N1(t) and N2(t) to denote the numbers of shocks arrived in the damage 

zone and the fatal zone by time t, respectively. For an arriving shock, the probability it 

falls into the damage zone is p1 = P(W0 < Wi < WT) = FWi(WT) − FWi(W0), and the 

probability it is in the fatal zone is p2 = P(Wi > WT) = 1 − FWi(WT). Based on the 

decomposition of Poisson process [114], we have that the arrival of shocks in the damage 

zone follows a HPP with a rate λp1, and the arrival of shocks in the fatal zone follows a 

HPP with a rate λp2. Accordingly, the arrival of shocks in the safety zone follows a HPP 

with a rate λ(1−p1−p2). We also prove that N1(t) and N2(t) are independent of each other. 

3.3     Reliability Analysis of Dependent Failure Processes 

For a system that experiences two dependent failure processes: soft failure due to 
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degradation and hard failure due to random shocks, we develop and analyze the reliability 

function in this section. 

3.3.1     Development of Reliability Function 

In order to keep functioning, the system should experience no fatal shocks and the 

degradation level should be within its threshold. The reliability of the system by time t 

can be derived as 
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The last step is valid because N2(t) is independent of N1(t). If we denote the 

conditional pdf of Xs(t) given time t and N1(t)=n to be ( , )
sX sf x t n , we have  
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where p1 = P(W0 < Wi < WT) = FWi(WT) − FWi(W0) and p2 = P(Wi > WT) = 1 − FWi(WT). 

Next, we need to find ( , )
sX sf x t n  to solve this reliability function. The distributions 

of Yi, i=1, … n, and X(t) are assumed to be known, and we denote their summation 

1
( )

n

i
i

X t Y
=

+∑  to be Xs. The distribution of Xs can be found by using the change-of-variable 

technique. By introducing a new set of variables Zi, i=1, … n, we can get n+1 equations 
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with n+1 unknown variables. Because the transformation is one-to-one, we can solve for 

X(t) and Yi, i=1, … n, in terms of Xs and Zi, i=1, … n: 
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Given the number of shocks in the damage zone, N1(t)=n, the joint pdf of Xs and Zi, 

i=1, … n, is 
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where J is the Jacobian determinant,  
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Then considering the case that c > 0, we can find the pdf of ( , )
sX sf x t n  by  

0 0 0

1

0 0 0

1 2

( ) ( ) ( )

, ,..., 1 1 2
0 0 0

( ) ( ) ( )

1 2 ( ) 1 2 1 2
0 0 0

( , ) ... ( , ,..., )d d ...d

... ( ) ( ) ( ) ( ... )d d .

s s n

n

b W b W b W
c c c

X s X Z Z s n n

n fold

b W b W b W
c c c

Y Y Y n X t s n

n fold

f x t n f x z z z z z

f z f z f z f x z z z z z

σ σ σ

σ σ σ

− − −

−

− − −

−

=

= ⋅⋅⋅ − − − −

∫ ∫ ∫

∫ ∫ ∫





..d .nz

(3.16) 

There is no closed form of this reliability function in Eq. (3.13). We can use 
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numerical analysis method to find the solution, and Monte Carlo simulation is one of the 

most effective and efficient numerical analysis methods to solve this problem. 

3.3.2    Simulation of Reliability Function 

Monte Carlo sampling is generally used to solve multiple integral problems [115]. 

Due to its important role in numerical analysis, extensive research has been dedicated to 

reducing Monte Carlo sampling errors and improving its efficiency [115-117]. We use 

one of the most commonly used Monte Carlo methods, variance reduction through 

importance sampling, to estimate the result. For an integral ( )
D

A f x dx= ∫ , the 

importance sampled Monte Carlo estimate can be written as follows [116]: 

~

1

( )1
( )

N
i

N
i i

f xA
N h x=

= ∑ ,   ~ ( )iX h x ,                                     (3.17) 

where h(·) is an importance function that mimics the behavior of f(·) over D, and it is 

either integrable analytically or can be easily integrated numerically. Also h(·) should be 

normalized to have ( ) 1
D

h x dx =∫ . The sampling procedure is then altered to generate points 

distributed according to h(·) instead of points that are uniformly distributed [116]. 

To solve our reliability function in Eq. (3.13), we first use Monte Carlo importance 

sampling to estimate ( , )
sX sf x t n  in Eq. (16), where Zi, i=1, … n, follows the truncated 

generalized Pareto distribution on (0, b(σ/c – W0)). By applying Eq. (3.17) to Eq. (3.16), 

the importance sampled Monte Carlo estimate of ( , )
sX sf x t n  is given as: 
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Next, the integral of the estimated ( , )
sX sf x t n  can be further simplified by 

exchanging the order of summation and integral: 
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                     (3.19) 

The last step is based on Eq. (3.4). Thus, we can estimate the reliability function in Eq. 

(13) by substituting the integral of the estimated ( , )
sX sf x t n  in Eq. (3.19). 

3.4     Case Study 

To demonstrate our reliability model, two application examples are given in this 

section. The first example is on a microengine developed at Sandia National Laboratories, 

which consists of orthogonal linear comb drive actuators mechanically connected to a 

rotating gear [80, 97]. The second example is on stents implanted in human body, which 

are subject to failure due to a variety of overloads and cyclic stresses in manufacturing, 

deployment and operation phases [104]. Sensitivity analysis is also performed to analyze 

the effects of the model parameters on the system reliability in both examples. 
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Case 1: Micro-Electro-Mechanical System (MEMS) Devices 

According to experimental studies conducted at Sandia National Laboratories, wear 

of rubbing surfaces between the gear and the pin joint is the dominant mode of failure for 

microengines, which usually causes a broken pin. In shock experiments on microengines, 

debris appears on the surface of the die when shocks larger than a certain threshold occur, 

and the gear hub is observed to be broken when the magnitude of the shock is above a 

certain level [80]. Therefore, the microengine experiences two competing failure 

processes: soft failures due to the wear degradation and debris from external shocks, and 

hard failures due to hub fracture.  

In this example, the parameters in the model and their values are given in Table 3.1. 

The stochastic degradation process and random shock process are simulated in Matlab 

R2010a and shown in Figure 3.1, where the gamma process is simulated using gamma-

increment sampling, and the shock magnitudes are simulated from a generalized Pareto 

distribution. The stochastic non-negative increments represent the graceful degradation, 

and the step increases are the shock damages from shocks larger than W0. In this example 

presented in Figure 3.1, two out of six simulated shocks are greater than W0, 

corresponding to two exceedances over threshold. Using Monte Carlo simulation, we 

obtain the plot of the importance sampled Monte Carlo estimate of ( , )
sX sf x t n  in Eq. 

(3.18). We also conduct the sensitivity analysis on parameters of interest: the safety zone 

threshold W0, soft failure threshold H, and shock arrival rate λ.  
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Table 3.1: Parameter values in microengine example 

Parameters Values 
H 0.00125 μm3 
λ 2.5×10-5 
u 1.2×104 
θ 1.0 
α 1.02×10-4 
c 0.055 
b 0.0004 
σ 0.33 

W0 0.2 Gpa 
WT 1.2 Gpa 

 

 

Figure 3.3: Probability plot of Xs at t=50,000.        

 

Figure 3.4: Sensitivity analysis of R(t) on W0. 
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The estimated ( , )
sX sf x t n  is plotted in Figure 3.3 at t=50,000 revolutions under 

different numbers of exceedance occurrences, n. As shown in the figure, the plot shifts to 

the right when n increases, implying that the system is more prone to soft failure when 

more shock load exceedances arrive. 

In Figure 3.4, we can see that the safety zone threshold W0 has a great impact on the 

system reliability. When W0 increases from 0.1 to 0.4, the probability of shocks falling 

into the safety zone increases from 26.33% to 71.48%, indicating the improved reliability 

performance. 

 

Figure 3.5: Sensitivity analysis of R(t) on H.  

 

Figure 3.6: Sensitivity analysis of R(t) on λ. 
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Figure 3.5 indicates that the soft failure threshold H has a significant effect on the 

reliability function. R(t) shifts to right when H increases from 1.20×10-3μm3 to 1.35×10-

3μm3, which implies that a larger value of H ensures better reliability performance. Figure 

3.6 shows that the shock arrival rate, λ, has an inverse relationship with the system 

reliability. When λ increases from 2.0×10-5 to 3.5×10-5, R(t) shifts to the left, which 

indicates that a smaller value of λ provides better reliability performance. 

Case 2: Stent Devices 

A stent is a small wire mesh tube that acts as a scaffold to provide support inside 

arteries in treating coronary artery diseases. When implanted in human body, it 

experiences a variety of overloads and cyclic stresses. The overloads (e.g., external forces 

during stent deployment, patient excessive activities) can lead to immediate fracture of 

stents; and the cyclic stresses (e.g., contractions and dilations due to heartbeat) can lead 

to the generation of accumulated fatigue damage that may eventually result in the 

propagation of fatigue cracks [109, 110]. Experimental study of stent failure processes 

indicates that the crack growth of stents is not only the effect of fatigue stress, but also 

the result of single-event overloads in a form of sudden step increase of crack for certain 

patients who have excessive activities [104].  

For stent crack propagation, the fatigue-crack growth can be well described in terms 

of a Paris power law formulation [109, 110]. The mean degradation path in Eq. (3.3) for 

the gamma process is conveniently used to describe the crack growth. 
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Table 3.2: Parameter values in stent example 

Parameters Values 
H 5.0 
λ 1.0×10-8 
u 20 
θ 2.5 
α 2.4×10-20 
c 0.3 
b 0.15 
σ 4 

W0 2 
WT 12 

The parameters and their values for the stents example are listed in Table 3.2. The 

crack propagation process and random shock process are simulated in Matlab R2010a 

and shown in Figure 3.2. In this example, three shocks out of nine simulated shocks are 

larger than W0, and cause step increases on the crack growth. 

 

Figure 3.7: Probability plot of Xs at t=2×108. 
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Figure 3.8: Sensitivity analysis of R(t) on W0. 

 

Figure 3.9: Sensitivity analysis of R(t) on H. 

 

Figure 3.10: Sensitivity analysis of R(t) on λ. 



84 

 

The estimated ( , )
sX sf x t n  is plotted in Figure 3.7 at t=2×108 under different numbers 

of exceedance occurrences, n. As shown in the figure, the plot shifts to the right when n 

increases, meaning that soft failure has a higher chance to occur when more shock load 

exceedances arrive, similar to Figure 3.3 in MEMS devices case. Sensitivity analysis are 

conducted on parameters of interest: the safety zone threshold W0, soft failure threshold H, 

and shock arrival rate λ. In Figure 3.8, we can see that the safety zone threshold W0 has a 

great impact on the system reliability, similar to the MEMS example. When W0 increases 

from 1 to 4, the probability of shocks falling into the safety zone increases from 22.88% 

to 69.54%, which results in improved reliability performance. The results of sensitivity 

analysis on parameters H and λ (Figure 3.9 and 3.10) are similar to those in the MEMS 

example. 

3.5     Discussion and Conclusions 

In this chapter, we propose a reliability model for systems subject to degradation and 

random shock processes. These two failure processes are dependent because shock loads 

can cause instantaneous damage on the degradation process. To make the model more 

realistic, we consider that only shocks larger than a certain value can affect the 

degradation process, since systems usually have some resistance against small shock 

loads due to material strength and system structures.  

Gamma process is used to model the stochastic degradation process, because it has 

non-negative increments properties. Peaks-over-threshold method is used to model 

random shock loads, where shock arrivals follow a homogeneous Poisson process. 

Because there is no closed form for the reliability function, we use Monte Carlo 
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simulation method to estimate the results. Two application examples are given to 

illustrate our model, and sensitivity analysis is conducted to analyze the effects of 

parameters on system reliability performance. 

The concept of three-zone shock effects resembles the three outcomes in the fault 

coverage model [118-120], although these two models are essentially not relevant from 

physics-of-failure and application point of view. In the imperfect fault coverage model, 

with the occurrence of a fault, transient restoration takes place when the fault is transient 

and can be handled without discarding any components; permanent coverage occurs 

when the fault is determined to be permanent and the offending component is isolated 

and discarded; single-point failure happens when the fault causes the system to fail. In 

our model, shocks in the safety zone are considered harmless and no actions need to be 

taken to recover the system, which is different from the transient restoration; shocks in 

the damage zone cause abrupt damage to the degradation process and no actions are taken 

here, which is also different from the permanent coverage; shocks in fatal zone cause 

system failure immediately, which is similar to the single-point of failure. Overall, the 

imperfect fault coverage model is used for systems with multiple components and each 

component can recover from a fault with certain probability. No recovery from faults is 

considered in our zoned shock model. 

The shock damage effect on degradation considered in our model occurs 

instantaneously when the shock arrives in the damage zone. For the examples in this 

chapter, we do not consider the delayed damage that may potentially occur at a later time 

after the occurrence of damage shocks. The notion of delayed damage from shocks is an 

interesting and relevant idea that we will incorporate into extended versions of the model 
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in future research. If the delay times are deterministic and equal, then this can be readily 

incorporated into an extended version of this chapter by a simple time transformation. If 

the delay times are changing and/or probabilistic, then this still could be incorporated into 

an extended version of the model using simulation or an additional level of conditioning 

and integration. 
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Chapter 4: Reliability Analysis and Condition-based Maintenance of Systems with 

Dependent Degrading Components based on Thermodynamic Physics-of-Failure 

In this chapter, we present a new reliability model and a unique condition-based 

maintenance model for complex systems with dependent components subject to 

respective degradation processes, and the dependence among components is established 

through environmental factors. Common environmental factors, such as temperature, can 

create the dependence in failure times of different degrading components in a complex 

system. The system under study consists of one dominant component and n statistically 

dependent components that are all subject to degradation. We consider two aspects that 

link the degradation processes and environmental factors: the degradation of dominant 

component is not affected by the state of other components, but may influent 

environmental factors, such as temperature; and the n dependent components degrade 

over time and their degradation rates are impacted by the environmental factors. Based on 

the thermodynamic study of the relationship between degradation and environmental 

temperature, we develop a reliability model to mathematically account for the 

dependence in multiple components for such a system. Considering the unique dependent 

relationship among components, a novel condition-based maintenance model is 

developed to minimize the long run expected cost rate. A numerical example is studied to 

demonstrate our models, and sensitivity analysis is conducted to test the impact of 

parameters on the models. 

NOTATION 

H              Threshold level for wear degradation failures 

X(t)              Wear volume due to continuous degradation at time  t 
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β              Degradation rate  

ΔT              Temperature rise at the interface during steady state operation 

ri(t)              Resistance of thin film resistor i at time t 

ρi                     The degradation rate of thin film resistor i 

τ              Periodic inspection interval 

D              Warning limit 

NPM The inspection count at which a preventive maintenance/replacement is 

implemented 

Tx                               The time of the degradation path reaching a threshold x 

4.1     Introduction 

Complex systems, such as micro-electro-mechanical systems (MEMS), operate under 

dynamic environmental stresses that impair their functionality and life. Maintenance 

activities are essential to prevent unexpected sudden failures, and reduce downtime cost 

and production loss. For maintenance purposes, reliability analysis of such systems 

should incorporate an accurate description of the degradation evolution under these 

conditions [121], especially when the degradation processes of different components are 

not independent under common environmental conditions. In this chapter, we analyze the 

reliability of complex systems with failure-dependent components subject to respective 

degradation processes, where the dependence among components is established through 

environmental factors, such as temperature. Using the reliability analysis results, a unique 

condition-based maintenance scheme is developed for the complex system with an aim to 

minimize the expected total cost rate. 

The degradation of many components can be affected by environmental factors, such 

as temperature and humidity, which either affect the degradation rate or change the 
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relative frequency of different failure modes of sensitive components. On the other hand, 

environmental conditions are subject to change due to the degradation of certain 

components. For instance, the friction of two sliding surfaces in a component can cause 

wear degradation in the form of material loss in the wear tracks, and dissipation of 

frictional energy can result in the increase in local temperature [122]. Consequently, the 

elevated temperature can accelerate the degradation process of nearby temperature-

sensitive components, such as resistors. This causal relationship generates a set of 

interesting and challenging research problems in reliability analysis and maintenance 

modeling of systems. In this chapter, based on the study of physics-of-failure 

mechanisms and the relationships between degradation and environmental factors, we 

analyze the reliability of complex systems with dependent components subject to 

respective degradation processes, and the dependency among components is established 

via environmental factors. 

Reliability analysis for systems experiencing degradation has been extensively 

studied [5, 7, 19, 28]. For systems involving both degradation and shocks, Klutke and 

Yang [47] proposed a limiting average availability model for systems that deteriorate due 

to both shocks and graceful degradation. Wang et al. [78] derived a reliability model for 

systems involving dependent and competitive degradation and shocks. Peng et al. [54] 

proposed reliability models for systems subject to multiple dependent competing failure 

processes (MDCFP). Jiang et al. [77, 89] have done further research on reliability 

analysis for systems with dependent failure processes and dependent failure threshold. 

Rafiee et al. [99]  proposed reliability models for devices subject to dependent competing 

failure processes of degradation and random shocks with a changing degradation rate 
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according to four random shock patterns: generalized extreme shock model, generalized 

δ-shock model, generalized m-shock model, and generalized run shock model. Song et al. 

[98] extended the reliability study to multi-component systems with multiple dependent 

competing failure processes. 

Extensive research has also been devoted to dependent components for systems. 

Schottl [123] developed a reliability model for systems with dependent components, 

where the dependence is caused by random environmental effects concerning all 

components, such as number of shocks, cracks or dust particles in the considered time 

interval. Coit and English [124] introduced a system reliability model based on 

proportional hazards models where components are dependent because of the shared 

environmental exposure within a system. Zhang and Horigome [125] presented reliability 

and availability analysis of systems that endure environmental shocks, which can result in 

the failure of one or more components due to a cumulative shock-damage process. Kotz 

et al. [126] investigated how the degree of correlation affects the increase in the mean 

lifetime for parallel redundant systems  when the two components are positively quadrant 

dependent. Burkschat [127] proposed a model for describing the lifetimes of coherent 

systems, in which the failures of components may have an impact on the lifetimes of the 

remaining components. 

Various types of dependence among components have been studied in the literature. 

However, very little research has been devoted to study the dependence among degrading 

components when the degradation processes, and therefore, the failure times of 

components are dependent due to environmental factors. In this chapter, we study a 



91 

 

system with multiple components that include one dominant component and n 

statistically dependent components. The dominant component degrades over time, and its 

degradation rate or lifetime distribution is not affected by the state of other components. 

However, the degradation process of the dominant component may cause the change in 

environmental conditions, such as temperature. For example, as the component wears, its 

temperature increases, which causes the ambient temperature to increase. In the 

meanwhile, the dependent components degrade over time and their degradation rates 

increase as the ambient temperature increases. Therefore, the degradation processes of 

the dependent components are statistically dependent on the degradation process of the 

dominant component via the environmental factors. The dependence among different 

components creates an interesting and challenging problem to analyze the reliability of 

this type of system, which is lacking in the literature. In this chapter, we attempt to fill 

this void by investigating the inter-dependence between the degradation processes 

through the analysis of physics-of-failure mechanisms, especially thermodynamic 

analyses, and developing the reliability and maintenance models for such systems. 

For systems with deteriorating components, maintenance activities are essential to 

prevent potential system breakdown, reduce downtime cost and eliminate safety concerns. 

Although the maintenance modeling of systems with single components has been 

extensively studied in the literature, the research on maintenance modeling of systems 

with multiple components is limited. The latter topic is more interesting and practical to 

industry applications, yet much more difficult due to the dependence among these 

components. As mentioned earlier in Section 1.2.4, there are three types of dependences 

considered in the maintenance policies for multi-component systems: economic 
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dependence, structural dependence, and failure dependence [61, 62]. Most of the 

literature on maintenance policies for multi-component systems studies the economic 

dependence among the components. The failure dependence has rarely been considered 

in maintenance policies for multi-component systems. In this chapter, we develop a 

unique condition-based maintenance model for a complex system with multi-components 

that are failure dependent. Each of the components is subject to a respective degradation 

process and the dependence among the components is established through environmental 

factors.  

The remaining sections are arranged as follows. Section 4.2 describes the 

thermodynamic study in analyzing the relationships between wear degradation and 

temperature. Section 4.3 presents the system reliability model. The proposed condition-

based maintenance model for multi-component systems is introduced in Section 4.4. 

Section 4.5 gives a numerical example to demonstrate our models with the sensitivity 

analyses. Concluding remarks are summarized in Section 4.6. 

4.2     Thermodynamic Study for Physics-of-Failure 

For a system consisting of one dominant component and n statistically dependent 

components that are all subject to degradation, we consider two aspects that link the 

degradation processes and environmental factors [128]: 

• The dominant component degrades over time, and its degradation rate or lifetime 

distribution is not affected by the state of other components. However, the 

degradation process of the dominant component may influent environmental 
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factors, such as temperature. For example, the wear degradation of a microengine 

increases ambient temperature. 

• The n dependent components degrade over time and their degradation rates are 

impacted by the environmental factors. For instance, the elevated temperature 

accelerates the degradation of resistors. 

To demonstrate the thermodynamic analysis and reliability modeling, we use an 

example application. The dominant component in an example system is a microengine 

that experiences wear degradation over time, and the wear-out process increases the 

ambient temperature. In the system, there are n temperature-sensitive thin-film resistors 

whose resistances increase over time, and the degradation rates increase as the 

temperature elevates due to the wear-out process of the microengine. In order to analyze 

reliability performance of this system, we need to understand physics-of-failure 

mechanisms for these degradation processes, specifically through the study of 

thermodynamics. 

The relationship between wear degradation and temperature has been of great interest 

to many researchers in thermodynamics. Bryant et al. [129] developed a thermodynamic 

characterization of degradation dynamics, which employs entropy, a measure of 

thermodynamic disorder, as the fundamental measure of degradation. Ramalho and 

Miranda [130] conducted experimental studies on the relationship between wear and 

dissipated energy in sliding systems using the energetic approach, and the results show 

that the dissipated energy is linearly related to wear volume. The experimental work on 

the relationship between wear and thermal response in sliding systems from Amiri et al. 

[131] shows that the temperature rise is linearly correlated with the material loss, and the 
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slope of the linear relationship is a measure of the wear coefficient. On the other hand, 

the impact of elevated temperature on component degradation is usually modeled by the 

Arrhenius relationship in the literature. Tencer et al. [132] presented a method of 

assessing the effective temperature essential for predicting the temperature acceleration 

of the wear-out mechanism using the Arrhenius equation. Kuehl [133] developed a 

method for prediction of resistive value changes due to aging for any relevant condition 

in the temperature-time expanse, and the method is based on and derived from the 

Arrhenius equation. 

4.2.1    Wear Degradation and Thermal Response 

The degradation due to wear over time can follow various degradation path models, 

such as a linear degradation path with random coefficients or a randomized logistic 

degradation path [54]. For the dominant component (e.g., a microengine), we assume its 

wear degradation X(t) follows a linear degradation path, X(t) = φ+βt+ε0, where the initial 

value φ is a constant. The degradation rate β follows a normal distribution, β ~ N(μβ,σβ
2), 

characterizing the unit-to-unit variability; and ε0 is the random error term following a 

normal distribution, ε0 ~ N(0,σε0
2), capturing the temporal variability. The microengine is 

considered to be failed when the wear degradation is greater than a failure threshold value 

H. 

The degradation of the dominant component leads to the rise of ambient temperature. 

According to Amiri et al. [131], the temperature rise ΔT at the interface during steady 

state operation has a linear relationship with the wear degradation rate: 
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T β
ξ
Ψ

∆ = ,                                                        (4.1) 

where ξ is a constant, 
ave

K
h

ξ
ηµ

= , K is the wear coefficient, η is the heat partitioning 

factor, μave is the friction coefficient, h is the material hardness, and Ψ is a constant. 

Because β follows a normal distribution, β ~ N(μβ,σβ
2), the temperature rise ΔT at the 

steady state is also a normal random variable with mean of μβΨ/ξ and variance of σβ
2Ψ2/ξ2. 

4.2.2 Arrhenius Relationship 

Similar to the degradation process modeling of the dominant component, we want to 

incorporate both unit-to-unit variability and temporal variability in the degradation 

process modeling of the dependent components as well. For the n dependent components, 

such as thin film resistors, the resistance ri(t) increases linearly over time, ri(t)=r0i+ρit+εi, 

where r0i is the initial resistance of component i, ρi is the degradation rate of component i, 

εi is the random error with a normal distribution, εi ~ N(0,σεi
2) for component i, i=1, 2, ..., 

n. It is known that the degradation rate ρi is affected by the temperature via the Arrhenius 

relationship [132, 133]: 
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,                                                    (4.2) 

where Ea is the activation energy in eV, k is the Boltzmann constant, T is the temperature 

in Kelvin, and A is an experimental constant. Therefore, the resistance is expressed as 
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A thin film resistor is considered to be failed when the resistance is beyond the failure 

threshold value, Li, i=1, 2, ..., n. Figure 4.1 shows 30 pairs of simulated degradation 

processes of a dominant component and a dependent component. We can notice that the 

lifetime of the dependent component has a much larger variance than that of the dominant 

component, because the degradation rate of the dominant component significantly affects 

the degradation rate of the dependent component. For a series system with dependent 

components, we develop its reliability function and a unique condition-based 

maintenance policy in the following sections. 

 

Figure 4.1: Simulation of the stochastic degradation processes for dominant and 
dependent components 

4.3     System Reliability Modeling 

Consider a series system with one dominant component and n dependent components, 
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e.g., a microengine and n thin-film resistors connected in series. System reliability at time 

t is the probability that it survives by time t, that is, the degradation level of each 

component should be less than the corresponding failure threshold level [128]: 

( )1 1( ) ( ) , ( ) ,..., ( )n nR t P X t H r t L r t L= < < < .                                      (4.4) 

Because the degradation processes of these components are dependent through 

temperature change, we need to compute it by finding the conditional probability given 

ΔT. Based on the law of total probability, we then integrate this conditional probability 

multiplied by the probability density function (pdf) of ΔT to derive the system reliability, 

as shown in Eq. (4.5): 
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where the conditional probabilities of  X(t) and ri(t) given ΔT are derived, respectively: 
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The temperature rise ΔT is a normal random variable with mean of μβΨ/ξ and 

variance of σβ
2Ψ2/ξ2, and its pdf can be expressed as 

/
( ) .

/T

s
f s β

β β

µ ψ ξξ φ
σ ψ σ ψ ξ∆

 −
=   

 
                                               (4.8) 

Finally, the reliability function in (4.5) is expressed as 
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4.4     Condition-based Maintenance Modeling 

Due to the unique relationship between the dominant and dependent components and 

their characteristics, we propose a new maintenance model for this type of system. Since 

the dominant component plays a key role in this system and it is typically expensive, we 

consider the case when the replacement cost of the dominant component is much higher 

than the replacement cost of all the dependent components combined (or the subsystem). 

We assume that the system is non-repairable or not worth repairing rather than replacing. 
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The replacement time for the whole system and the subsystem of all dependent 

components is negligible. With more attention on the expensive dominant component, the 

proposed maintenance strategy is designed as follows and illustrated in Figure 4.2: 

 

Figure 4.2: Proposed condition-based maintenance model 

 Periodic inspection of length τ is carried out to observe or measure the degradation 

level X(t) of the dominant component. If the degradation level is less than a warning 

limit, D, no action is taken; and if the degradation level is between the warning limit 

D and the failure threshold H, preventive replacement takes place. 

 If the dominant component fails (the degradation level is beyond the failure threshold 

H) between two inspection actions, it is self-announcing and corrective replacement 

is implemented. 

 Every time the dominant component is replaced preventively or correctively, the 

whole subsystem of dependent components is replaced preventively for the purpose 
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of saving time/labor, shown as ‘PM’ in Figure 4.2.  

 The conditions of dependent components are not checked during the periodic 

inspection actions. However, the failure of any dependent component is self-

announcing. If one of the dependent components in the subsystem fails, we replace 

the whole subsystem correctively for the purpose of saving time/labor. 

To determine the inspection interval τ and the warning limit D, we need to derive and 

optimize the expected total maintenance cost per unit of time: 

Expected cost per cycle (Total Cost)Expected cost rate=
Expected cycle length (Cycle Length)

E
E

= .              (4.10) 

As illustrated in Figure 4.2, a renewal cycle of the dominant component can be 

terminated due to a preventive replacement (the degradation level is between D and H) or 

a corrective replacement (the degradation level is beyond H). To find the expected cost 

per renewal cycle and the expected renewal cycle length, we need to consider these two 

cases.  

4.4.1     Renewal Cycle Terminated due to Preventive Replacement 

We start with the case that a renewal cycle is terminated when the degradation level 

exceeds the warning limit, and therefore, preventive replacement is performed for the 

dominant component. Let NPM denote the inspection count at which a preventive 

maintenance/replacement is implemented. The probability of performing preventive 

replacement is derived as follows. 

1) The preventive replacement is performed at the 1st inspection, or NPM = 1:  
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2) The preventive replacement is performed at the ith inspection, or NPM = i > 1:  
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     (4.12) 

4.4.2     Renewal Cycle Terminated due to Corrective Replacement 

When the degradation level of the dominant component exceeds the failure threshold 

H, a renewal cycle is terminated and corrective replacement is performed. To find the 

probability of performing corrective replacement upon failure, we need to derive the 

failure time distribution of the dominant component. The degradation process X(t) 

follows a normal distribution with mean ( )X t tβµ ϕ µ= + , and variance 
0

2 2 2 2
( )X t tβ εσ σ σ= + . 

If we denote Tx as the time of the degradation path reaching a threshold x, then the 

cumulative distribution function (cdf) of TD is 
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Its pdf can be calculated by taking the first derivative of the cdf with respect to t, which is 

( ) ( ) ( )
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3/22 2 2 2 2 2
.
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D tD tdP T t
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                 (4.14) 

In the case of a failure occurring between inspections, it indicates that at the previous 

inspection the degradation level of the dominant component does not reach the warning 

limit D yet. We need to include this condition in our derivation of the failure distribution 

for the dominant component. The cdf of the failure time TH conditioning on TD is  

( ) ( ) ( )
( )

0 0 0

0

0

0

| ( ) | ( ) ( ) ( )

( )

( )
1 ,

( )

H DP T t T t P X t H X t D P X t X t H D
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µ
σ

< = = > = = − > −

= − > −

 − − −
= −Φ  − 

        (4.15) 

Similarly, the pdf of the failure time TH conditioning on TD can be derived as 
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                             (4.16) 

4.4.3     Optimization Model 

The dominant component is either preventively replaced at inspection or correctively 
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replaced upon failure between inspections. Based on Eqs. (4.11)-( 4.16), the expected 

renewal cycle length can be found as: 

0
| 0 0 01 1 ( 1)

(Cycle Length) ( ) ( | ) ( )
H D D

i i

PM T T Ti i i t
E i P N i t f t t dt f t dt

τ τ

τ
τ∞ ∞

= = −
= = + ⋅ ⋅∑ ∑ ∫ ∫ .    (4.17) 

The overall maintenance cost includes preventive and corrective replacement costs 

for the dominant component, CPI and CCI, preventive and corrective replacement costs for 

the subsystem of all dependent components, CPD and CCD, and the inspection cost CI. The 

system downtime cost is not considered, as we assume that the time for maintenance 

actions, such as inspection and replacement, is negligible.  

When a renewal cycle is terminated at the ith inspection due to preventive replacement, 

the incurred cost includes the preventive replacement cost of the dominant component, 

CPI, the preventive replacement cost of the subsystem, CPD, the cost for i inspection 

actions, and the cost to correctively replace the subsystem before iτ. The subsystem can 

be correctively replaced multiple times whenever one of the dependent components fails 

before iτ. The number of corrective replacements (or the number of failures) of the 

subsystem prior to iτ can be calculated by the renewal function, M(t), which is derived in 

the next section. When a renewal cycle is terminated between (i−1)τ and iτ due to failure, 

the incurred cost includes the corrective replacement cost of the dominant component, 

CCI, the preventive replacement cost of the subsystem, CPD, the cost for i−1 inspection 

actions before failure, and the cost to correctively replace the subsystem before failure. 

Then the expected total maintenance cost is derived to be: 
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(4.18) 

Based on Eqs. (4.17) and (4.18), we propose the following constrained non-linear 

optimization problem for the maintenance optimization: 

max

(Total Cost)Min    ( , )
(Cycle Length)

Subject to:      0
                       0 ,

Ec D
E

D H
t

τ

τ

=

< <
< <

                                    (4.19) 

where tmax is the allowed upper bound of the inspection interval. The Sequential 

Quadratic Programming algorithm (Matlab optimization toolbox) is used to solve this 

constrained non-linear optimization problem. 

4.4.4     Renewal Function of the Subsystem 

To calculate the expected total cost per cycle, we need to have the number of 

corrective replacements (or the number of failures) of the subsystem in a renewal cycle, 

namely, the renewal function, which requires the reliability function of the subsystem of 

dependent components, RSub(t): 
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(4.20) 
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The renewal function is calculated to be 
0

( ) ( ) ( ) ( )
t

Sub SubM t F t M t u f u du= + −∫ , where 

FSub(t) and fSub(t) are the cdf and pdf of the subsystem, respectively. It is difficult to 

derive the closed form of the renewal function given the complicated subsystem 

reliability function. Estimation of the renewal function is typically applied [93]: 

2

0

0

( )( ) ( )
( )

t Sub
Sub u

Sub

F uM t F t du
R v dv

= + ∫
∫

.  

Even using the estimate of the renewal function, the complex non-linear optimization 

model is still difficult to solve mathematically. One approach demonstrated in the 

numerical example is to simplify the subsystem reliability function by fitting it to a 

simple regression model that could lead to a closed-form renewal function. For example, 

when the failure time follows an exponential distribution with arrival rate λ, its renewal 

function is simply M(t)= λt. 

4.5     Numerical Example 

In this numerical example, a system consisting of one microengine (the dominant 

component) and two identical resistors (dependent components) is studied. The three 

components are dependent because the degradation of the microengine causes the 

temperature rise in the surrounding environment, while the temperature rise accelerates 

the degradation of both resistors. For this type of system, we are interested in determining 

reliability over time and the optimal maintenance strategies using the reliability and 

maintenance models that we developed. Figure 4.3 plots the reliability of the system over 

time. The parameters and their values used in our models are listed in Table 4.1. 
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Figure 4.3: System reliability over time 

Table 4.1: Parameters and values 

Parameters Values Sources 
k 8.6171×10-5 eV/K  
Ea 1.29 eV (for TaN) [134] 
A 1.162×108 (for TaN) [134] 
T0 293 K  
h 11.5 Gpa [135] 
K 1×10-4 [135] 

μave 0.7 [135] 
η 0.5 [131] 
ξ 2.484×10-14/pa Calculation 
Ψ 4.55×1014 K/W Assumption 
H 0.005 μm3 Assumption 
β ~ N(μβ,σβ

2) 
μβ = 8.4823×10-9 μm3/time unit 
σβ = 6.0016×10-10 μm3/time unit 

[52, 54] 

φ 0 Assumption 
ε0 ~ N(0,σε0

2) 
σε0 = 5.0000×10-5μm3 

Assumption 

ε1 ~ N(0,σε1
2) 

σε1= 5.0000×10-1 Ω 
Assumption 

ε2 ~ N(0,σε2
2) 

σε2= 5.0000×10-1 Ω 
Assumption 

r01, r02 250.48 Ω [134] 
L1, L2 300.58 Ω [134] 
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For the condition-based maintenance model, we assume that the preventive and 

corrective replacement costs for the subsystem of two dependent components are 40 and 

50, respectively. Because the replacement cost of the dominant component is far more 

expensive than that of the dependent components, the preventive and corrective 

replacement costs for the dominant component are 400 and 500, respectively. The 

inspection cost is 10 per inspection for the dominant component.   

It becomes difficult and inefficient to directly solve the optimization problem, 

because of the complex form of the subsystem reliability function and the resulting 

renewal function. An alternative way is to simplify the subsystem reliability function by 

using a regression model to approximate it. Using the set of parameter values provided in 

Table 4.1, we find that the exponential regression model fits the subsystem reliability 

well, as shown in Figure 4.4. The fitted exponential model is 
61.332 10ˆ tR e
−− ×=  and the 

corresponding R2 value is 0.9869. 

After fitting the subsystem reliability to an exponential regression model, the renewal 

function has a simple form, which is M(t)= 1.332×10-6t. Then we use the Sequential 

Quadratic Programming algorithm (in Matlab R2013a) to solve this constrained nonlinear 

optimization problem in (4.19) and obtain the minimum expected cost rate, 8.98×10-4, 

when τ*= 5.57×105 and D*= 0.0025. The expected cost rates at different τ and D levels 

are plotted in Figure 4.5. 
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Figure 4.4: The subsystem reliability and exponential regression model 

 

Figure 4.5: 3D plot of the expected cost rate vs τ and D 
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4.5.1     Sensitivity Analysis 

Sensitivity analysis is conducted to see the sensitivity of the optimal results to the 

change of parameter values. The parameters of interest are the degradation failure 

threshold H, the ratio of resistor failure threshold to its initial value L/r0, the ratio of 

preventive replacement cost for the dominant component to the preventive replacement 

cost for the subsystem of all dependent components CPI/CPD, the ratio of inspection cost 

to preventive replacement cost for the subsystem of all dependent components CI/CPD. 

The sensitivity analysis results are listed in Tables 4.2-4.5 and plotted in Figures 4.6-4.8. 

Table 4.2: Sensitivity analysis result on H 

H(μm3) τ* D* Min Expected Cost rate 
0.0030 3.34E+05 1.51E-03 1.46E-03 
0.0035 3.90E+05 1.76E-03 1.26E-03 
0.0040 4.45E+05 2.01E-03 1.11E-03 
0.0045 5.01E+05 2.25E-03 9.91E-04 
0.0050 5.57E+05 2.50E-03 8.98E-04 
0.0055 6.13E+05 2.75E-03 8.22E-04 
0.0060 6.68E+05 3.00E-03 7.59E-04 
0.0065 7.24E+05 3.25E-03 7.06E-04 
0.0070 7.80E+05 3.50E-03 6.60E-04 

 

  

Figure 4.6: Sensitivity analysis of τ* and D* on H 
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Table 4.2 shows the values of the optimal inspection interval τ* and warning limit D*, 

the minimum expected cost rate at different H values from 0.003 to 0.007. When H 

increases from 0.003 to 0.007, τ* and D* linearly increases (also shown in Figure 4.6), 

while the minimum expected cost rate decreases. This is reasonable, since a higher failure 

threshold means the system can survive longer, requiring less frequent inspections and a 

higher warning limit, leading to a reduced cost. 

Table 4.3: Sensitivity analysis result on L/r0 

L/r0 L λ τ* D* Min Expected Cost rate 
1.10 275.53 2.6810E-06 5.57E+05 2.50E-03 9.65E-04 
1.15 288.05 1.7720E-06 5.57E+05 2.50E-03 9.20E-04 
1.20 300.58 1.3320E-06 5.57E+05 2.50E-03 8.98E-04 
1.25 313.10 1.0650E-06 5.57E+05 2.50E-03 8.85E-04 
1.30 325.62 8.8640E-07 5.57E+05 2.50E-03 8.76E-04 
1.35 338.15 7.5940E-07 5.57E+05 2.50E-03 8.69E-04 
1.40 350.67 6.6440E-07 5.57E+05 2.50E-03 8.65E-04 

In this numerical example, we consider two dependent resistors with identical failure 

threshold L and initial resistance r0. The change of L/r0 affects the subsystem reliability 

and further the fitted regression model parameter λ, shown in Table 4.3. From the 

sensitivity analysis result, we can see that the increase of the ratio of L to r0 does not 

affect τ* and D*. This result implies that the L/r0 of dependent components has no impact 

on determining τ* and D* on the dominant component. 

In the sensitivity analysis on CPI/CPD, CPD is fixed and the value of CPI is changed, 

while maintaining the ratio of CPI to CCI at 4/5 (when CPI increases, CCI increases 

accordingly). In Table 4.4, when the ratio of CPI to CPD increases, τ* decreases and the 

minimum expected cost rate increases (shown in Figure 4.7), while D* stays at a constant 



111 

 

value of 0.0025. With the increasing costs of preventive and corrective replacement, 

inspections should be performed more frequently to prevent failure and reduce cost. 

However, the increasing cost does not affect the optimal warning limit D* notably. 

Table 4.4: Sensitivity analysis result on CPI/CPD 

CPI/CPD CPI CCI τ* D* Min Expected Cost rate 
4 160 200 5.65E+05 2.50E-03 4.51E-04 
5 200 250 5.62E+05 2.50E-03 5.26E-04 
6 240 300 5.60E+05 2.50E-03 6.00E-04 
7 280 350 5.59E+05 2.50E-03 6.75E-04 
8 320 400 5.58E+05 2.50E-03 7.49E-04 
9 360 450 5.57E+05 2.50E-03 8.24E-04 
10 400 500 5.57E+05 2.50E-03 8.98E-04 
11 440 550 5.56E+05 2.50E-03 9.72E-04 
12 480 600 5.56E+05 2.50E-03 1.05E-03 
13 520 650 5.56E+05 2.50E-03 1.12E-03 
14 560 700 5.56E+05 2.50E-03 1.20E-03 
15 600 750 5.55E+05 2.50E-03 1.27E-03 

 

 

Figure 4.7: Sensitivity analysis of τ* and D* on CPI/CPD 
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Table 4.5: Sensitivity analysis result on CI/CPD 

CI/CPD CI τ* D* Min Expected Cost rate 
0.1 4 5.55E+05 2.50E-03 8.88E-04 
0.2 8 5.56E+05 2.50E-03 8.95E-04 
0.3 12 5.57E+05 2.50E-03 9.01E-04 
0.4 16 5.59E+05 2.50E-03 9.07E-04 
0.5 20 5.60E+05 2.50E-03 9.13E-04 
0.6 24 5.61E+05 2.50E-03 9.19E-04 
0.7 28 5.63E+05 2.50E-03 9.25E-04 
0.8 32 5.65E+05 2.50E-03 9.31E-04 
0.9 36 5.67E+05 2.50E-03 9.37E-04 
1.0 40 5.69E+05 2.50E-03 9.42E-04 

The sensitivity analysis result in Table 4.5 shows that when the ratio of CI to CPD 

increases, τ* and the minimum expected cost rate increase (also shown in Figure 4.8), 

which indicates that the inspection cost has great impact on the optimal maintenance 

strategies. However, the inspection cost change has no impact on the optimal warning 

limit D*. 

 

Figure 4.8: Sensitivity analysis of τ* and D* on CI/CPD 
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4.6     Conclusions 

In this chapter, we study a complex system with dependent components subject to 

respective degradation processes, and the dependency among components is established 

via environmental factors. We develop a new reliability model for this type of system and 

use temperature as an example application to demonstrate our model. Relationships 

between degradation and environmental temperature are studied, and then, the reliability 

function is derived for such a system. Based on the unique dependent relationship among 

components within the system and the reliability analysis, a novel condition-based 

maintenance model is developed to assist system maintenance and minimize cost. To 

illustrate our reliability and maintenance models, a numerical example is used and 

sensitivity analysis is also conducted to test the model sensitivity to parameter changes.  
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Chapter 5: Condition-based Maintenance for Power Transformer using Markov 

Decision Process 

In the previous chapters, we study reliability models and cost-effective maintenance 

policies for single-component systems and multi-component systems that have multiple 

failure processes. The degradation processes are usually modeled as linear paths that are 

the cases for many applications. However, when the degradation process has multiple 

states and the linear degradation path model is no longer applicable, new approaches 

should be studied to accurately predict system reliability and develop appropriate 

maintenance policies, such as Markov chain.  

In this chapter, we study the failure modes of power transformers and propose a 

condition-based maintenance policy for power transformers using Markov decision 

processes (MDP). Power transformer is one of the most expensive assets in a power 

distribution system, and its health is very important to ensure continuous operation of the 

whole system. Failure mechanisms and reliability issues of power transformers have been 

studied in the literature, but research work on maintenance policies for power 

transformers is still lacking. Due to the increasing failure risk caused by their aging and 

deterioration global weather, there is an urgent need for maintenance actions to be taken 

on power transformers.  

MDP method divides the system condition into different states, and dynamically 

determines the actions to take at the end of each decision epoch according to the current 

system state. This feature of MDP method is very useful, because an effective 

maintenance decision should be made based on the actual system condition revealed by 
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periodic inspection. For systems with multiple failure processes/modes, we can use MDP 

method by adding additional failure states caused by these multiple failure 

processes/modes.  

Power transformers can experience sudden failure due to weather-related random 

events. In addition, three major failure modes related to degradation processes have been 

identified: paper winding insulation, bushings, and tap-changer. The power transformer is 

modeled as a multi-state system, including four different operating states and four failure 

states (due to the four failure modes). Four maintenance actions are considered in this 

model: no action (NA), minimal maintenance (MM), preventive maintenance (PM), and 

corrective maintenance (CM). In the proposed maintenance strategy, periodic inspections 

are implemented, and the inspection interval is to be determined at each decision epoch. 

Therefore, the condition-based maintenance decision is a combination of two factors: 

maintenance action and the next inspection interval. A policy iteration algorithm is used 

to find the optimal policy that minimizes the average cost in a long run. A numerical 

example is given to demonstrate the proposed condition-based maintenance model. 

NOTATION 

S  Set of different states in the Markov Chain 

Sf Set of failure states where Sf  ⊂ S 

Sr Set of failure states where the system condition is revealed without 

inspection, Sr ⊂ S 

Ms Set of different maintenance actions in the Markov decision process 

qss′(m)          Probability that performing the maintenance action m changes the system 

from state s to state s′ 

pij(t) Probability that the system deteriorates to state j by time t, when the initial 

state is i 
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τij(t) Expected time that the system stays in state j, when the initial state is i 

P(s, s′, a)        Probability that performing action a brings the system from state s to state 

s′ 

r(s, a) Expected cost of performing action a in state s 

y(s, a)  Expected transition time of performing action a in state s 

CM(s, a)          Cost of performing a maintenance action a ∈ A in state s 

CF(s)  One time cost of failure Sf  ⊂ S 

CI(s)  Cost of inspection in state s ∈ S 

CS(s) Cost of staying in state s per unit of time, s ∈ Sf, s ∉ Sr 

5.1     Introduction 

For mechanical equipment based processes, when the output of the process depends 

on the proper functioning of the equipment, an effective maintenance policy is necessary 

to ensure the smooth operation of that equipment. Power transformer is one such piece of 

mechanical equipment where power distribution eventually depends on the proper 

functioning of the transformer, which in turn, depends on the maintenance actions 

implemented to ensure the optimal functioning. The power transformer is a crucial 

component of the power grid, and is often mentioned in relation to quality or capacity 

issues [136]. According to the failure statistics reported in [137], the main failure 

mechanisms of power transformers are related to: tap-changer (41%), windings (19%), 

leakage, bushings (13%), core (3%) and accessories (12%). Any failure to the 

transformer can lead to power outage, which causes financial losses and inconvenience to 

users. For the smooth operation of a transformer, it is imperative to have an effective 

maintenance policy to minimize unexpected failures and the losses due to these failures. 

In some critical applications, such as wind turbine, Markov decision process has been 
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widely applied, because it takes into consideration various states of a system and different 

maintenance actions that can be taken for each state. Therefore, it is a useful approach to 

determine a cost effective maintenance policy that can be implemented to reduce the cost. 

Byon et al. [138] presented a condition-based maintenance policy for multi-state 

deteriorating wind turbines subject to several failure modes. Considering the dynamic 

weather conditions, the problem is formulated as a partially observed Markov decision 

process with heterogeneous parameters. Byon et al. [139] derived an optimal 

maintenance policy to minimize the expected average cost over an infinite horizon using 

a partially observed Markov decision process, and several critical factors unique to wind 

farm operations are considered, such as weather conditions, lengthy lead times, and 

production losses. Using Markov decision process, Amari et al. [140] provided an 

optimal cost-effective maintenance decision based on the condition revealed at the time 

of inspection.  

The reliability issues of another important application in energy field, power grid, 

have attracted a lot of attention from researchers in electrical engineering due to the 

increasing failure risk caused by its aging and deterioration global weather. Schijndel et 

al. [136] developed an integral lifetime model for power transformer considering three 

failure modes that are related to the degradation of winding insulation, bushings, and tap-

changers. Zhou et al. [141] presented two methods to model the failure rate of overhead 

distribution lines under weather impact: (1) a Poisson regression model to capture the 

counting nature of failure events of overhead distribution lines; and (2) a Bayesian 

network model uses conditional probabilities of failure given different weather states. Du 

et al. [142] took the weather impact into the reliability assessment of the power grid, and 
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divided the weather state into normal weather, bad weather and catastrophic weather. 

Alvehag et al. [143] proposed a reliability model for power distribution systems, which 

counts in the stochastic nature of the severe weather intensity and duration to model 

variations in failure rate and restoration time. A non-homogeneous Poisson process 

(NHPP) is also applied to model the occurrence of severe weather. Although extensive 

research has been done on the topic of power grid reliability, none of them considers the 

maintenance actions for the power grid based on mathematical analysis. To fill the void, 

we introduce a semi-Markov decision process for the condition-based maintenance of 

power transformer by determining the optimal policy to reduce maintenance cost.  

The remaining sections of this chapter are arranged as follows. The detailed study on 

the power transformer failure modes is given in Section 5.2. Section 5.3 describes the 

proposed condition-based maintenance for the power transformer application. Section 5.4 

presents the Markov decision process methodology and the policy iteration algorithm to 

find the optimal policy. A numerical example is used to demonstrate our model in 

Section 5.5. Finally, Section 5.6 gives the conclusion. 

5.2     Failure Modes of Power Transformer 

Power grid is an electrical transmission and distribution network system that provides 

customers secure and reliable electricity. It consists of a variety of power components, 

including transformers, generators, and overhead lines. According to [144], power 

systems generally have two types of failure: (1) an insulation failure resulting in a short-

circuit fault, which can occur as a result of insulation degradation over time or due to a 

sudden overvoltage condition; and (2) a failure that results in a cessation of current flow 
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or an open-circuit fault. The majority of short-circuit faults are weather related followed 

by equipment failure. The weather factors that usually cause short-circuit faults are: 

lightning strikes, accumulation of snow or ice, heavy rain, strong winds or gales, salt 

pollution depositing on overhead lines and in substations, floods and fires adjacent to 

electrical equipment, etc. [144].  

As one of the most expensive assets in a power distribution system, the health of 

power transformer is critical to ensure continuous functioning. Besides the weather 

related random failure mode, three degradation processes are considered for transformer 

failure: paper winding insulation, bushings, and tap-changer, identified in the study of 

[136]: 

• Paper insulation – transformer paper provides electrical insulation between windings. 

The quality of the electrical insulation is mainly determined by its mechanical 

strength. The ageing of the paper is accelerated by high temperature, high water 

content, and acidity. 

• Bushing – the high voltage conductor is insulated from its surroundings by a bushing. 

Within the bushing the electrical fields are capacitively controlled to prevent 

breakdown. Breakdown may occur due to insulation degradation and subsequent 

short circuits in between the capacitive layers. Another potential hazard is over-

heating by increasing bushing losses. 

• Tap-changer – with the tap-changer the output voltage of the transformer can be 

regulated. Its functioning may be endangered by unsynchronized switching of the tap-

selector and power-switch due to a broken axis or malfunctioning engine. 

To prevent the failure of power transformer and reduce the loss, we study a condition-
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based maintenance policy using a semi-Markov decision process with the aim to 

minimize the average cost in a long run in the following sections. 

5.3     Condition-based Maintenance Model 

We consider a system with M failure modes, and its deterioration level can be divided 

into a finite number (L) of conditions. Then the system health condition can be 

categorized into a series of states, 1, …, M+L [138]. For the instance of a power 

transformer, it has 4 failure modes (paper winding insulation, bushings, tap-changer, and 

random failure). We assume that it has 4 deterioration levels. Then 8 states are used to 

describe the system health condition: State 1 stands for the new condition, while State 4 

denotes the most deteriorated operating condition before the transformer fails; State 5, 6, 

7, and 8 represent four failure states due to four different failure modes, i.e., paper 

insulation failure, bushing failure, tap-changer failure, and random failure, respectively.  

Based on the physical relationships between different states, we propose the system 

state transition diagram illustrated in Figure 5.1. In this figure, the symbol on the arrow 

denotes the transition rate from the current state to the next state connected by an arrow. 

For example, λ1 denotes the transition rate from State 1 to State 2. From State 1, 2, 3, or 4, 

the system can transit to State 8 with transition rate λ0, indicating that the system 

experiences a sudden failure. 

For this multi-state deterioration model, we introduce condition-based maintenance 

concepts by using periodic inspections and deterioration state-based maintenance actions 

including no action (NA), minimal maintenance (MM), preventive maintenance (PM), 

and corrective maintenance (CM). For the perfect state 1, the maintenance action is NA. 
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For failure state 5-8, CM is performed, and the corrective maintenance cost may be 

different depending on the failed part. While the random failure state 8 is self-announcing, 

the failure in State 5-7 is assumed to be non-self-announcing, and the downtime cost 

should be considered for State 5-7. The resulting state after a maintenance action does not 

need to be deterministic, and may depend on various factors that cannot be fully 

controlled. Therefore, there can be a set of possible system states that can be reached 

after a maintenance action [140]. Besides, the inspection interval is not fixed and needs to 

be determined at each decision epoch. Therefore, the condition-based maintenance 

decision is a combination of two factors: maintenance action and the next inspection 

interval.  

 

Figure 5.1: System state transition diagram 

Different costs associated with different maintenance actions are considered in this 

model: inspection cost, minimal maintenance cost, preventive maintenance cost, 

corrective maintenance cost, failure cost, and downtime cost associate with State 5-7. The 

maintenance actions for State 1, 5-8 are predetermined; we need to determine the 

maintenance actions for State 2-4 and the inspection schedule for all the states. 

1 2 3 4 

5 

6 

7 

8 

λ1 λ2 λ3 

λ45 

λ46 

λ47 

λ0 λ0 λ0 
λ0 



122 

 

5.4     Semi-Markov Decision Process 

With continuous inspection intervals, standard Markov decision processes do not 

apply. We use a semi-Markov decision process (semi-MDP) for this type of CBM 

problem by applying the well-proven algorithms in [140]. In the semi-MDP, to find the 

optimal maintenance policy, we first need to compute the transition probability P(s, s′, a), 

expected transition time y(s, a), and expected cost r(s, a) for all s, s′ ∈ S and all a. Since 

the resulting state after a maintenance action is not deterministic, P(s, s′, a) is a product 

of maintenance action probability, qsk(m), and state transition probability, pk s′(t), for all k 

∈ S. The detailed calculation steps are given in the following algorithm: 

1. For each state s, select N values for the next inspection interval that are equally 

distributed over a possible range. Let Ts be the set of possible values in state s. 

2. Solve the Markov Chain for pij(t) and τij(t) where 

pij(t): P(state j at time t | initial state is i) 

τij(t): E(time spent in state j in (0, t) | initial state is i). 

3. Each CBM action a in state s is a combination of maintenance action m ∈ Ms, and the 

next inspection time t ∈ Ts. Hence, a = (m, t). Let As be the set of all possible CBM 

actions in state s: size(As)=size(Ms)·size(Ts). 

4. For s, s′ ∈ S, a = (m, t) ∈ Ai; compute P(s, s′, a): ( ) ( ) ( )', ', sk ks
k S

P s s a q m p t
∈

= ⋅∑ . 

5. For s ∈ S, a = (m, t) ∈ Ai; compute y(s, a): ( ) ( ) ( )'
' , '

,
r

sk ks
s S s S k S

y s a q m tτ
∈ ∉ ∈

= ⋅∑ ∑ . 

6. For s ∈ S, a = (m, t) ∈ Ai; compute r(s, a):  
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M F
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r s a C s m P s s a C s
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7. Using P(s, s′, a), y(s, a), and r(s, a), compute the optimal policy using policy iteration 

algorithm. 

Standard Semi-MDP Solution 

Let the policy π be a mapping from s ∈ S to a ∈ As, π(s) = a. The objective is to find 

the optimal policy π* that obtains the minimum average cost ρ in a long run [140]. Rπ(s) 

denotes the average cost associated with policy π in state s. Rπ(s) and ρ are different, as 

Rπ(s) is the average cost in state s, while ρ is the minimum average cost across all the 

states. Using the calculated P(s, s′, a), y(s, a), and r(s, a), a policy iteration algorithm is 

adopted to determine the optimal maintenance actions and the optimal inspection interval 

for each state.  

Policy Iteration Algorithm [140]: 

1. Select an arbitrary policy: π = π0. 

2. Value determination: arbitrarily select a state s0 ∈ S and set Rπ(s0) = 0. Solve the 

following equations for unknowns: ρπ and Rπ(s), s ∈ S, s ≠ s0. 

( ) ( ) ( )
'

( ) , ( ) , ( ) , ', ( ) ( '),    .
s S

R s r s s y s s P s s s R s s Sπ π ππ ρ π π
∈

= − ⋅ + ⋅ ∈∑  

3. Policy improvement: for each s ∈ S, determine the alternative action that yields 

( ) ( ) ( ) ( )
' '

arg min , ' , ' , ', ' ' ,    .
a s S

r s a y s a P s s a R s s Sπ πρ
∈

 
− ⋅ + ⋅ ∈ 

 
∑  
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4. The resulting optimum action for state s ∈ S constitutes the new policy π′. If π and π′ 

are identical, π is the optimum. Otherwise, set π = π′, and go to Step 2. 

5.5     Numerical Example 

For the studied power transformer, we consider three degradation processes (i.e., 

paper insulation, bushing and tap-changer) and a random failure process. As shown in 

Figure 5.1, there are 8 states to represent the health condition of the power transformer 

system. State 1 stands for the new condition, while State 4 denotes the most deteriorated 

operating condition before the transformer fails; State 5, 6, 7, and 8 represent four failure 

states due to four different failure modes, i.e., paper insulation failure, bushing failure, 

tap-changer failure, and random failure, respectively. We assume that the failure rates are: 

λ0=0.001/yr, λ1=λ2=λ3=0.1/yr, λ45=0.33/yr, λ46=0.22/yr, λ47=0.44/yr. The maintenance 

action related costs are: 

[0 0 0 0 500 500 500 500] ,
[0 0 0 0 20 20 20 0],
[10 10 10 10 10 10 10 0],
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=
=
=
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In this model, we consider four maintenance actions: NA, MM, PM, and CM. The 

maintenance actions in States 1, 5, 6, 7, and 8 are predetermined, where M1 = {NA}, M5 = 

M6 = M7 = M8 = {CM}. The possible maintenance actions in States 2, 3, and 4 are: M2 = 

M3 = M4 = {NA, MM, PM}. Regarding the resulting effect of different maintenance 

actions, NA brings no effect to the system state, and MM can improve the system 

condition by reducing one state, while PM and CM can bring the system to the perfect 
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state. Namely, 

'

1   for ',
( )

0   for ',ss

s s
q NA

s s
=

=  ≠
  

'

1   for ' 1,
( )

0  for ' 1,ss

s s
q MM

s s
= +

=  ≠ +
 

' '

1   for ' 1,
( ) ( )

0   for ' 1.ss ss

s
q PM q CM

s
=

= =  ≠
 

For the inspection interval, we consider 12 interval lengths, from 1 month up to 1 

year, i.e. t ∈ Ts = {1, 2, …, 12}. The initial policy is π(s)=(NA, 1) for s=1, 2, 3, 4, and π(s) 

= (CM, 1) for s=5, 6, 7, 8. Using the given policy iteration algorithm, the solution is 

stabilized after four iterations. Table 5.1 shows the optimal policy. The minimum average 

cost ρ is 10.4838 per month. 

Table 5.1: The optimal condition-based maintenance policy 

State Optimal Maintenance Action Optimal Inspection Interval 
1 NA 9 months 
2 MM 9 months 
3 MM 4 months 
4 PM 9 months 
5 CM 9 months 
6 CM 9 months 
7 CM 9 months 
8 CM 9 months 

The optimal policy indicates: 

1) If the system is in State 1, NA is taken and the next inspection interval is 9 months.  

2) If the system is in one of the failed states, 5-8, CM is taken and brings the system 

state to the perfect state 1.  Therefore the next inspection interval is 9 months as well.  

3) If the system is in State 2, MM is taken and brings the system state to the perfect state 
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1. Therefore the next inspection interval is 9 months again; 

4) If the system is in State 3, MM is taken and brings the system state to a lower state 2. 

Then the next inspection interval is 4 months, shorter than that for the system starting 

from the perfect state 1; 

5) If the system is in State 4, PM is taken and brings the system state to the perfect state 

1. Therefore the next inspection interval is 9 months. 

5.6     Conclusions 

In this chapter, the failure modes of power transformer are investigated and a 

condition-based maintenance policy for power transformer using a semi-Markov decision 

process is proposed. Three degradation processes as potential causes of transformer 

failure are studied: paper winding insulation, bushings, and tap-changer. A weather-

related random failure is also considered. The power transformer is modeled as a multi-

state system, including four different operating states and four failure states due to the 

four failure modes. The proposed maintenance strategy has periodic inspection, and the 

inspection interval needs to be determined at each decision epoch. Therefore, the 

condition-based maintenance decision is a combination of two factors: maintenance 

action and the next inspection interval. A policy iteration algorithm is used to find the 

optimal policy that minimizes the average cost in a long run. A numerical example is 

given to demonstrate the proposed condition-based maintenance model. 

This chapter is our attempt to fill the void of lack maintenance policies for power grid 

systems, where we implement Markov decision process in the condition-based 

maintenance modeling for such critical systems. To make the model more general and 
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practical, there are many improvements that can be done for the future research. For 

example, some of the degradation processes, such as paper insulation, can be accelerated 

by high environmental temperature, and environmental temperature can be affected by 

seasonal weather. It is interesting and challenging to incorporate the impact of dynamic 

weather into the maintenance modeling for power transformers. For systems experiencing 

external sudden shocks, the shocks may speed up the degradation process in a way that 

the system state transfers to a more deteriorated state when a shock arrives, which is also 

very interesting to consider for power transformer maintenance modeling. 
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Chapter 6: Summary and Conclusions 

In this dissertation, we focus on the reliability analysis and maintenance modeling for 

single component systems and multi-component systems. The proposed new models and 

analysis tools can be readily applied or customized to assist manufacturing and 

maintenance of evolving devices. The resulting models and optimization approaches 

represent fundamental research advancements that can be transformed or extended to 

other developing technologies, where traditional reliability methods do not apply.  

6.1     Summary and Research Contributions 

Chapter 2 to Chapter 5 discusses our work in detail. The main contributions of our 

work are summarized in the following. 

In Chapter 2, new models are proposed to predict reliability and optimize 

maintenance for MDCFP when the failure thresholds can shift according to the patterns 

of shocks. In our model, two failure processes are considered: soft failure caused by 

continuous degradation together with additional abrupt degradation due to a shock 

process, and hard failure caused by the instantaneous stress from the same shock process. 

Three cases of dependency between the shock process and the hard failure threshold level 

are studied. This work is an entirely new research area that extends our previous work in 

dependent competing failure processes, which offers some distinct advantages for design 

and reliability problems when the component tolerance or resistance to failure reduces. 

For maintenance models, both block and age replacement policies are applied to each of 

the three cases. Based on reliability analysis, the average long-run cost rate is evaluated 
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and optimized for each policy. 

In Chapter 3, a reliability model is presented for systems subject to degradation and 

random shock processes. These two failure processes are dependent because shock loads 

can cause instantaneous damage on the degradation process. To make the model more 

realistic, we consider that only shocks larger than a certain value can affect the 

degradation process, since systems usually have some resistance against small shock 

loads due to material strength and system structures. Shocks are divided into three zones 

based on their magnitudes: safety zone, damage zone, and fatal zone. We further model 

the abrupt damages using an explicit function of shock load exceedances. Gamma 

process is used to model the stochastic degradation process, because it has non-negative 

increments properties. Peaks-over-threshold method is used to model random shock loads, 

where shock arrivals follow a homogeneous Poisson process. Due to the complexity in 

modeling these two dependent stochastic failure processes, no closed form of the 

reliability function can be derived. Monte Carlo importance sampling is used to estimate 

the system reliability. 

In Chapter 4, a complex system with dependent components subject to respective 

degradation processes is studied, and the dependency among components is established 

via environmental factors. We develop a new reliability model for this type of system and 

use temperature as an example application to demonstrate our model. Based on the 

thermodynamic study of the relationship between degradation and environmental 

temperature, a reliability model is developed to mathematically account for the 

dependence in multiple components for such a system. A novel condition-based 



130 

 

maintenance model is proposed based on the unique dependent relationship among 

components in the system. 

In Chapter 5, the failure modes of power transformer are investigated and a condition-

based maintenance policy for power transformer using a semi-Markov decision process is 

presented. Besides a weather-related random failure process, three degradation processes 

as potential causes of transformer failure are studied: paper winding insulation, bushings, 

and tap-changer. The power transformer is modeled as a multi-state system, including 

four different operating states and four failure states due to the four failure modes. In the 

proposed maintenance strategy, periodic inspections are implemented, and the inspection 

interval is to be determined at each decision epoch. Therefore, the condition-based 

maintenance decision is a combination of two factors: maintenance action and the next 

inspection interval. A policy iteration algorithm is used to find the optimal policy that 

minimizes the average cost in a long run.  

6.2     Future Directions 

Based on our research results, several research directions can be explored for the 

future work: 

1. For multi-component devices that experience multiple failure processes, explore the 

reliability and maintenance problems for a broader range of complex and 

sophisticated devices, including multi-component systems with independent 

heterogeneous components, and systems with dependent homogeneous or 

heterogeneous components. 

2. In the dynamic environment, the dependency among components in a system can be 
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attributed to different factors, such as temperature, humidity and random external 

shocks. In the future research work, it is necessary to investigate the physics of failure 

involving the impact from the dynamic environment on components’ degradation 

behaviors and develop practical reliability models to facilitate manufacturing and 

maintenance in industry. 

3. Incorporate the impact of dynamic weather into the maintenance modeling for power 

transformers and other critical devices/infrastructures.  

4. Consider the effect of shocks on the degradation process in multi-state systems. For 

systems experiencing external sudden shocks, the shocks may speed up the 

degradation process in a way that the system state transfers to a more deteriorated 

state when a shock arrives. This is the case for power grid systems and other critical 

devices/infrastructures that operate under harsh environments. 
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Appendices 

Appendix I: Derivation of System Reliability Function for Case 3 in Chapter 2 

To derive the system reliability function for the generalized m-shock model in Case 3, 

we consider the following three situations based on the number of shocks arrived at t, 

N(t).  

1) When N(t)=0,  no shock happens, and 

( ) ( )( | ( ) 0) ( ) ( ) 0 ( ) .SR t N t i P X t H N t P X t H= = = < = = <
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3) When N(t)>m, the hard failure threshold value may reduce from D1 to D2 based on 

the following two scenarios. 

a) If there are no m shocks larger than D0 (N(t) = i > m),  then we design the 

following table to facilitate our derivation of the reliability function.  

List of scenarios when no m shocks are larger than D0 

Scenarios 
Number of 

combinations 

For each combination, the 
probability that the system survives 

by the time t given this scenario 
Number of 
shocks >D0 

Number of 
shocks <D0 
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For example, when only one shock is over D0 and the remaining N(t)-1 shocks are 

less than D0 (the second to the last row), the number of possible combinations is given in 

the third column. Assuming the first shock is greater than D0 for i=m+1, m+2, …, ∞, we 
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have 
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Because all the shock magnitudes are independent and identically distributed, the 

formula in the last step remains unchanged for each of the combinations.  

Considering all the scenarios in this table, when there are no m shocks larger than D0 

for i=m+1, m+2, …, ∞,  the reliability that the system survives by time t is  
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b) If there exist m shocks larger than D0 (N(t) = i > m), we design the following table 

to facilitate our derivation of the reliability function.  

List of scenarios when there are  m shocks that are larger than D0 

Scenarios  
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of 
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In the above table, the jth shock is defined as the mth shock larger than D0. For 

example, j = N(t) - 1 implies that N(t) - 1 is the mth shock beyond the critical value D0. 
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Therefore, m-1 shocks larger than D0 occur by the N(t) - 2 shock, and the number of 

possible combinations is given in the fourth column. Consequently, for the last shock, the 

failure threshold value decreases from D1 to D2. Without loss of generality, we assume 

that all the first m-1 shocks are greater than D0, and then for i=m+1, m+2, …, ∞, we have 
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which is the formula given in the last column for j=N(t) - 1. 

The occurrence of m - 1 shocks larger than D0 in the first N(t) - 2 shocks does not 

impact the formula because the shock magnitudes are independent and identically 

distributed. Therefore, for the scenario of j=N(t) - 1, we have  
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for i= m+1, m+2,…, ∞. 

Considering all the scenarios in this table, when there exist m shocks larger than D0 

for i=m+1, m+2, …, ∞,  the probability that the system survives by time t is  
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Finally, the reliability function of the system by time t is  
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