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Abstract

We present a system that exploits existing video streams from an hospital operat-

ing room (OR) to infer the OR usage state through Bayesian modeling. We define

OR states based on common surgical processes that are relevant for assessing OR

efficiency. The human motion pattern within the OR is analyzed to ascertain usage

states. The system proposed takes advantage of a discriminatively trained part-

based human detector as well as a data association algorithm to reconstruct motion

trajectories. Human motion patterns are then extracted using kernel density esti-

mation and a Bayesian classifier is used to assess OR usage states during testing.

Our model is tested on a large collection of videos and the results show that human

motion patterns provide significant discriminative power in understanding usage of

an OR.
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Chapter 1

Introduction

The Operating Room (OR) is by far the most complex and expensive environment

within any hospital. With the advent of technology and the increase in the number

of minimally invasive surgeries, ORs have become high costs / high revenues assets.

Nonetheless, their effective utilization hasn’t been fully realized. Although no pub-

lished formal data assessing their performance can be found, it was estimated in 2003

that ORs generated almost half of a hospital’s revenues while running at only 68%

of their capacity [1]. Assessing workflow performance would significantly improve

quality of healthcare delivery and increase financial outcomes for a hospital.

Unplanned events, inefficient supply chain management, but most importantly

lack of operational discipline highly affect OR performance. In fact, start-time de-

lays [6, 8, 22], as well as, unregulated turnover time [14, 1] have been identified as

major causes of OR inefficiency. Studies focusing on start-time delays have been

performed in numerous hospitals in Europe and the United States [8]. Does et al. [8]
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focused on the start-time delay of the first operation of the day and harvested 4-weeks

data from 13 hospitals in Belgium and the Netherlands. By defining the start-time

as the time of the first incision they concluded that delays range from 25 min to

103 min [8]. Turnover time or the time-lapse between 2 different surgeries lasts 30

min on average while in best practice it should last only 15 min [1]. Macario esti-

mated in 2010 that in US hospitals a running OR costs about $20/min in material

supplies while generating on average $60/min in revenue [17]. If we approximate

start-time morning delays to be 60 min and the cost of an OR to be $2000/hour,

then a hospital with 10 ORs running 250 days a year, can potentially save 5 million

dollars each year. Optimizing clinical processes within the OR also affects quality

of healthcare delivery. In fact, reducing time loss would allow scheduling of more

surgical procedures and reduce the average waiting time for patient treatment.

According to Ciechanowicz and Wilson [6], regular local audit of OR usage is

important to optimize the clinical processes within the OR and the perioperative

environment. One of the most recent benchmarks involved 22 German hospitals and

more than 20,000 case analysis over a 9-months period [22]. Nonetheless, studies

performed until now have been primarily based on manual data acquisition by nurses.

Daily and automated information about OR efficiency would be of high value at the

administrative level for continuous quality improvement. Furthermore, large scale

robust comparative studies are needed that could be much easily conducted at any

time and for different periods of time.

The more general problem of workflow monitoring is already being addressed in

more constraint industrial environments such as car manufacturing [23]. Various
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solutions have been proposed in the literature for enhancing OR throughput by fa-

cilitating its management. In 2007, one of the systems used at the MIT General

hospital was the OR-Dashboard, which is a solution offered by a company called

LiveData [16]. OR-Dashboard displays information about the patient and the sur-

gical procedure. Other commercial solutions can be found such as ORBIT [15] or

AwareMedia [2]. More recently, in 2011, Niu et al. proposed a simulation model

for performance analysis of the OR [19]. Unfortunately, all these solutions rely

on human intervention and manual data entry. To address this inconvenience, al-

ternative approaches consist of leveraging electronic signals present in the OR in

order to identify automatically its usage state without human intervention. In 2005,

Xiao et al. [24] proposed to use patient’s vital signs in order to monitor when the

subject is in the OR or not. Later on, in 2007, Bhatia et al. [3] designed a system

analyzing video streams and automatically recognizing the OR state using Machine

learning algorithms (SVM and HMM). In 2009, Padoy et al. [20] exploited a multiple-

camera system for extracting low level 3D motion features that are ultimately fed

into a workflow-HMM. In 2010, Lange et al. [15] proposed a phase recognition sys-

tem using sensor technology. Yet, designing a system that doesn’t involve embedded

body-worn sensors is more convenient. In 2011, Nara et al. [18] introduced an ultra-

sonic location aware system that tracks continuously the 3D position of the surgical

staff in order to recognize discriminant human motion patterns.

The effective utilization of video streams within the OR hasn’t been fully realized.

A single video can provide cues that can be used to ascertain the usage state. In

this paper, we present a system that exploits existing video streams from an OR
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in order to extract human motion trajectory data and that infers the OR usage

state through Bayesian modeling. Unlike Bhatia et al., we exploit a single feature

that has a physical meaning, the human motion pattern. Further, we do not define

our OR states based on the presence of objects in the scene (second bed, drape on

and off). Phase recognition isn’t based on velocity values as proposed by Padoy et

al. [20], but instead on spatial distribution of the positions occupied by different

staff members. Instead of using a large ultrasonic location-aware system like Nara et

al. [18], we take advantage of a detection algorithm based on a discriminatively

trained part-based upper-body model developed using Felzenswalb et al.’s object

detection framework [11, 10]. We use a data association algorithm based solely on

a 2D geometrical feature. Spatial occupancy of the OR by staff members is then

evaluated using a kernel-based method. Finally, OR usage state is derived from the

density of the detected features, instead of predetermined frame rates.
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Chapter 2

OR Usage-State Model

2.1 Usage-state transition model

Typically, when a patient is admitted in an OR, an anesthesiologist starts admin-

istrating anesthesia. Once the patient is ready, surgeons proceed to the first inci-

sion [22]. At the end of the surgical procedure, all the instruments are wrapped up,

the surgical staff proceeds to clean up and the patient is transfered to the recovery

room. In this paper, we propose a three-stage usage-state transition model. Hu-

man motion patterns vary in the presence or absence of a patient within the OR.

This simple observation is the motivation for the states in our model as shown in

Figure 2.1.

”Setting Up” is the usage state in which the surgical staff is either cleaning-

up or getting the OR ready for surgery while no patient is within the OR. Once
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the patient is introduced in the room and if no surgeon is performing surgery, the

usage state transitions to ”Patient Preparation”. The latter state is distinguishable

from the earlier by the patient-centered movement of the staff members. ”Patient

Preparation” consists of the movement of a great number of persons around the

patient. Once the surgery starts the usage state transitions to ”Ongoing Surgery”.

This state is typically characterized by small movements of a small number of persons

around the OR table: the surgeon(s) and his or her assistants. Finally, when the

surgery is over, the usage state transitions back to the previous states.

Figure 2.1: OR usage state transition model.

2.2 Overview

The following is an overview of the proposed system. Given a camera in an OR, and

assuming we know the underlying usage state, we first detect people using an upper-

body detector. Then, we estimate their position on the ground through camera

calibration (Figure 2.2).
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Projected ground points are used to reconstruct their trajectories over time (Fig-

ure 2.3). Finally, we extract a state model by quantifying how OR space is utilized

by each person over time using Gaussian Kernel Density Estimation (GKDE) (Fig-

ure 2.4). This process is repeated to establish a model for each OR usage states.

Having learned the models, given a new input video stream, we utilize Bayesian

inference to obtain the usage states of the OR (Figure 2.5). In the following, we

provide further details about each of the modules of the proposed approach.
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Figure 2.2: Extraction of detected ground positions from each video.

Figure 2.3: Trajectory reconstruction from ground positions.

Figure 2.4: State Model extraction.
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Figure 2.5: Bayesian inference using new ground positions.
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Chapter 3

Detection & Ground Positioning

3.1 Upper-body Detection

In OR videos, feet and faces are often occluded depending on one’s position and

orientation. Considering an upper-body detector instead of a face detector or a

human-body detector is therefore extremely relevant. Obviously, image parts or

upper-body features such as gloves, masks or head protections are specific to OR

environments.

Using pre-trained human detectors for such an environment tend to be erroneous

and result in large number of false or missed detections (Figure 3.1(a)). Therefore,

we developed our own OR-trained upper-body model based on Felzenswalb et al.’s

part-based detector [11, 10]. Training was done over a manually defined set consisting

of 400 negative samples and 800 positive samples extracted from OR videos in each
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state. We validated our trained model on over 700 images, and 420 images provided

detections. A few bounding boxes defined within others appeared and were ruled

out by exclusion filtering. 587 accurate bounding boxes were detected with no false

detections (Figure 3.1(b)).

The overall efficiency of our upper-body detector achieved was 60%. Further,

more accurate bounding boxes were detected, as can be seen in the example in

Figure 3.1(b). Having obtained the detected bounding boxes in each frame, camera

calibration is used to estimate their position on the ground.
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(a) using a general detector.

(b) using our OR-trained upper-body model.

Figure 3.1: Upper-body Detections.
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3.2 Calibration

Calibration is laborious on these kind of images. In fact, usually a calibration checker-

board is integrated in the scene. In this paper, we assume that images are obtained

by perspective projection so that we can define a projection matrix and homogra-

phies. The method we use is based on Criminisi et al. and Hoeim et al.’s [7, 13]

work on Single View Metrology.

3.2.1 Reference plane calibration

The reference plane is considered to be the ground (Figure 3.2). Reference plane

calibration is done on a carefully selected image of an Empty OR from our dataset.

Selecting an image that offers as many lines on the floor as possible was required.

Lets suppose we have N corresponding points

(
Ui, Xi

)
. Let Ui =

[
ui, vi, 1

]>
be

the homogenous coordinates of point i in the image plane and Xi =

[
xi, yi, 1

]>
its

homogenous coordinates on the ground plane. We want to compute the homography

matrix H such that:

∀1 ≤ i ≤ N, Xi = HUi where H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 and h33 = 1 (3.1)

The system of 2N linear equations can be rewritten as follows: Ah = b, where:

– h =

[
h11 h12 h13 h21 h22 h23 h31 h32

]>
is a vector of length 8.
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– b =

[
x1 y1 x2 y2 x3 y3 x4 y4 ...

]>
is a vector of length 2N .

– A =



u1 v1 1 0 0 0 −x1u1 −x1v1

0 0 0 u1 v1 1 −x1u1 −x1v1

u2 v2 1 0 0 0 −x2u2 −x2v2

0 0 0 u1 v1 1 −x2u2 −x2v2
...

...
...

...
...

...
...

...


is a matrix of size 2N × 8

As there are 8 unknowns and 2N equations introduced by the corresponding

points, a minimum of 4 independent points are required. In our case, we identified

6 corresponding points as defined on Figure 3.4. The problem is solved using the

least square minimization method presented in Hartley and Zisserman [12]. And, we

finally get:

h = (A>A)−1A>b (3.2)
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3.2.2 Parallel plane calibration

Our next step is to find an estimate of the image coordinate of a person’s feet

(
ub, vb

)
on the floor based on the detected upper-body bounding box. Hoeim et al. [13],

offer a solution that allows us to get, knowing the image coordinates of a pixel that

lies on the parallel plane, its corresponding image coordinates once projected on the

reference plane (Figure 3.3). Defining top

(
ut, vt

)
and bottom

(
ub, vb

)
points of

known objects allows us to retrieve the camera height (Figure 3.5). Indeed, if we

know the height of the object, then the camera height yc can be approximated as

follows, where v0 is the horizon line computed from the homography matrix H [7]:

yc = h
(v0 − vb)
(vt − vb)

(3.3)

We selected an image that contains one or several height references such as tables

or beds. We computed several camera heights and finally computed the average to

be yc = 2.3 m which is plausible. The simplified version of the formula is generally

applied to outdoor scenes where the camera tilt is very small. In our indoor situation,

we get an overhead view of the scene. The camera tilt cannot be neglected and

therefore the formula involves the focal length f . Various assumptions were made.

First, we consider the mid-upperside of the bounding box to be the top of the head(
ut, vt

)
. Then, we assume that the person stands straight, and their feet can be

estimated along the vertical line ub = ut. We also assume that the average height of

a person is yp = 1.65 m. As suggested by Hoeim et al. [13], we estimate the focal

length as being 1.4 times the image height and we adjust vc. Finally, we compute an

15



estimate of the image coordinate vb of the person’s feet as follows:

vb =
A+ v0yp
A+ yp

where A =
yc

(1 + (vc−v0)(vc−vt)
f2 )

(3.4)

Using camera calibration information, we project the detections in each frame

to estimate the corresponding ground position. For a sample video depicting each

of the distinct OR usage states, the ground projections are as shown in Figure 3.6.

Now that we have the detections and the projection of the position of each person

onto the floor, we want to identify the trajectory of each person as represented by

the different colors in Figure 3.6.
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Figure 3.2: From image plane to reference plane.

Figure 3.3: From parallel plane to reference plane.
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(a) Ground plane outline.

(b) OR dimensions in meters.

Figure 3.4: Reference plane calibration.
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(a) Calibration using height references (bed, leg, chair).

(b) Resulting table projection onto the ground plane.

Figure 3.5: Parallel plane calibration.
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(a) Setting Up (b) Patient Preparation

(c) Ongoing Surgery

Figure 3.6: Ground positions (each color represents different staff members).
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Chapter 4

Trajectory Reconstruction

4.1 Assignment problem

In order to extract trajectories from our video, we first compute tracklets by solving a

frame to frame assignment problem using the Hungarian algorithm. A mathematical

formulation is presented by Pentico in his survey on assignment problems [21].

If we consider 2 consecutive frames (Figure 4.1), l with n detections and l + 1

with m detections, we can compute a distance matrix C = (cij) where cij represents

the distance between object i in frame l and object j in frame l+ 1. The Hungarian

algorithm then solves the problem by minimizing the following objective function:

n∑
i=1

m∑
j=1

cijxij (4.1)
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under the following constraints, where xij = 1 if the bounding box i in frame l is

assigned to bounding box j in frame l + 1 and xij = 0 if not:

n∑
i=1

xij = 1 j = 1 ... m,
m∑
j=1

xij = 1 i = 1 ... n (4.2)

Hence, IDs are assigned to one or several bounding boxes as they move along

time. When a bounding box is detected in one frame and is not detected in the next

frame then a gap occurs (in blue Figure 4.1). We would like to avoid obtaining false

new tracks. Therefore, a nearest neighbor algorithm [4] deals with gaps by linking

tracks that break. Tracklet end points are linked to following tracklet start points in

order to form trajectories.

Figure 4.1: 2 consecutive frames l and l + 1 containing several bounding boxes.
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4.2 Tracks clustering using DBSCAN

As there are mis-detections and because of the fact that people move out of the

camera field of view, the data association solution can result in multiple tracklets for

the same person. In order to deal with that, we further cluster tracklets using the

DBSCAN clustering algorithm [9]. We’ve chosen this algorithm as it has a physical

meaning when it comes to clustering points. In fact, DBSCAN, Density-Based Spa-

tial Clustering, finds clusters based on density reachability. Two parameters have to

be specified: minPts, the minimum number of points that belong to a cluster and ε

the radius around a point that the algorithm has to look at for merging. Centroids

– that is, mean positions over time of data points associated to each single track –

are considered for clustering. We set the minimum number of centroids to form a

cluster to be minPts = 1 and the radius to be ε = 0.5 meters (Figure 3.6). This

technique allows us to reduce the number of trajectories to build our state model.
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Chapter 5

Models Extraction

5.1 Bivariate Gaussian Kernel Density Estimation

If we consider the 2D histogram representing the spatial distribution of points, we

can account for the fact that there are areas where people stay the most or simply

move through. A Kernel Density Estimator [4] provides a non-parametric estimate of

the probability density function (pdf) gik(X) over each trajectory Xk =

[
xk1 . . . xkN

]
associated to a state S = i as follows, where states 1, 2 and 3 are respectively ”Setting

Up”, ”Patient Preparation”, and ”Ongoing Surgery”:

gik(X) =
1

N

N∑
n=1

1

2πh2
exp{−

∥∥∥∥X− xkn∥∥∥∥2
2h2

} (5.1)

Basically, xkn’s are successively occupied ground position throughout time by a
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single staff member. Each and every one of them lie at the center of a hypercube

(here a square) of side h to which we associate a kernel function. Choosing a Gaussian

kernel function results in a smoother density model where h represents the standard

deviation of the Gaussian components. The bandwidth h is selected as suggested by

Bowman and Azzalini [5].

5.2 Model construction

The K previously computed pdfs gik(X) are then combined to give the pdf fi(X)

characterizing the usage state S = i as follows, where
K∑
k=1

πk is the total number of

data points associated to state S = i and πk the number of points in trajectory Xk:

∀i = 1 ... 3, fi(X) = p(X|S = i) =
1

K∑
k=1

πk

K∑
k=1

πkgik(X) (5.2)

We end up with models characterizing each state as seen in Figure 5.1. In Fig-

ure 5.1(a), occupancy is spread all over the room except for the upper left corner of

the room due to the presence of diagnostic tools. In Figure 5.1(b), staff members

tend to have a patient centered activity, and one can easily notice the anesthesiol-

ogist’s position behind the OR table. Finally, in Figure 5.1(c), 2 surgeons on both

sides of the OR table, as well as an assistant on the lower right (handing out surgical

tools) adopt more constrained motion pattern around assigned positions.
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(a) Setting Up. (b) Patient Preparation.

(a) OngoingSurgery.

Figure 5.1: Estimated distribution of trajectories over the three states (as seen on
color bar: High Occupancy in red, Low Occupancy in blue).
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Chapter 6

Experiments & Results

6.1 State prediction - Bayesian Inference

Having learned a model for each usage state, a Bayesian classifier is used for inference

of a new video such that we can make a state decision based on maximum likelihood

estimation. The idea is that, assuming that we know the model for each state, new

temporal observations X = Ot can be used to obtain evidence about the underlying

state they characterize.

p(S = i|X = O1:n) ∝ p(X = O1:n|S = i)× p(S = i) (6.1)

If we assume p(S = i) to be same for all states i, then:

p(S = i|X = O1:n) ∝ p(X = O1:n|S = i) (6.2)
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If we assume that observations are conditionally independent, then:

p(X = O1:n|S = i) =
n∏

t=1

p(X = Ot|S = i) =
n∏

t=1

fi(Ot) (6.3)

And finally:

S = argmax
i

p(S = i|X = O1:n) = argmax
i

n∏
t=1

fi(Ot) (6.4)

6.2 Video database

Results presented in this paper are based on videos taken by a single camera at differ-

ent moments in the same OR. All usage states of the OR are shown in Table 6.1. To

ease our work, videos were converted into a set of frames with a rate of 10 frames/sec.

States Setting Up Patient Preparation Ongoing Surgery

Time length 12min31sec 75min12sec 57min35sec
Number of frames 7510 45125 34552

Table 6.1: Video database.

In order to develop a system that recognizes the OR usage state, models discrim-

inating each of them have to be extracted from our videos. We now want to assess

the accuracy of our model. For that, we performed a 10-fold Cross Validation by

considering 60% of our data for training and 40% for testing.
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6.3 Training and Testing dataset definition

To extract the state models, trajectories have to be computed. Therefore, we need

to consider consecutive frames as our training set. If a set of frames in our data is of

length L, we randomly select an integer n in the 40th percentile. Then, we consider

to be our training set the following interval: [n, bn+ 60%×Lc]. The remaining data

is then used for testing.

6.4 Testing

For testing, state decision is either based on data within a sliding temporal window

or based on a minimum number of data points (point density). For each usage state

model, we draw the accuracy of the system either as a function of the window size or

the point density (Figures 6.1). Window size is defined as the number of consecutive

frames after which the system makes a state decision. When looking at Figure 6.1(a),

the total accuracy of our system increases with the increase in window size. Point

density is defined as the number of consecutive data points after which our system

makes a state decision. With approximately 85% accuracy, the ”Ongoing Surgery”

state has the best recognition rates whether we consider window size or point density

(table 6.2). If we base state decision on point density, a significant positive slope of

the ”Patient Preparation” state curve appears and results in improved performances.

In fact, ”Patient Preparation” and ”Ongoing Surgery” recognition rates tend to be

similar with the increase in point density. Hence, better performance is achieved by
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considering point density. However, our system performs poorly for the ”Setting-Up”

state recognition for both window size and point density. In this case, results still

need to be investigated as human motion is spread out all over the room. Basically,

staff members cross over wider or smaller areas but at a constant recording frame

rate. Therefore, considering window size overlooks the plasticity of the occurrences

of the detections that vary significantly depending on the usage state. Nevertheless,

the results of the system proposed in this article are encouraging since it offers

approximately 70% overall accuracy.

Optimal Value Setting Up Patient Preparation Ongoing Surgery Total Accuracy

Window size 40% (±11%) 67% (±7%) 87% (±5%) 67%
Point density 40% (±16%) 74% (±10%) 83% (±5%) 69%

Table 6.2: Usage state inference optimal accuracies and standard deviations.
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(a)

(b)

Figure 6.1: 10-fold Cross validation (60% training /40% testing).
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Chapter 7

Conclusion

We presented a system that exploits existing video streams from an OR to infer

the OR usage state through Bayesian modeling. We defined our OR states based on

common surgical processes that are relevant for assessing OR efficiency. For this pur-

pose, we exploited a single feature that has a physical meaning, the human motion

pattern. We took advantage of a detection algorithm based on a discriminatively

trained part-based upper-body model. We used a data association algorithm based

solely on a geometrical feature to reconstruct trajectories. Spatial occupancy of the

OR by staff members was then evaluated using a kernel based method. Finally,

encouraging results were achieved by considering density of the detected features,

instead of predetermined frame rates.
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Future work would involve enhancing trajectory reconstruction by exploiting im-

age features. Further, the independence assumption made in using the Bayes classi-

fier is rather simplistic. Therefore, taking advantage of the established usage state

transition models, such as a Hidden Markov Model (HMM), would be a good next

step.
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