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Abstract

In this dissertation, we have studied the effect of disorder and interaction on some

classes of topological superconductors and semimetals. In the superconducting phase,

we studied various phases and critical phenomena that arise by the effect of disor-

der on the surface states of topological superconductors with different and higher

winding numbers. In particular, we investigated topological protection of topologi-

cal superconductors with effective spin-3/2 systems. Moreover, we have shown that

the almost all the finite-energy states at the surface of topological superconductors in

the presence of disorder are also protected (delocalized) and sit at the spin quantum

plateau transition point without fine tuning. Finally, through the Floquet formalism

we showed that the irradiated Luttinger semimetal is a suitable platform for engi-

neering various Weyl semimetals, from Type-I to type-II as well as single and double

Weyl semimetals.
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Chapter 1

Introduction

The introduction of the concept of topology in band theory is the one of the most

important advances of condensed matter physics, which dominated much of the re-

search areas over past decade. The ”topological states of the matter”, are states

of matter in which their electronic structures are topologically nontrivial. A hall-

mark signature of a topologically non-trivial system is the existence of robust gapless

states at an interface with the trivial vacuum, exposing the information about the

bulk topological invariant to the external world. This classification includes both

gapped and gapless systems. The most famous example of nontrivial topology in

solid state physics is the integer quantum Hall effect (IQHE), in which protected

chiral edge states give rise to a quantized transverse Hall conductivity.

In this dissertation, I focused on topological superconductors and semimetals in three

dimensions. In particular, I study the phases and critical phenomena that result from

the interplay of topology with disorder and interactions. The rest of the dissertation
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is organized as follows: An overview of topological phases with emphasis on some

prominent examples of topological superconductors and semimetals is discussed in

chapter 2. In chapter 3, we discuss the effect of disorder and interaction on the sur-

face states of doped three-dimensional Luttinger semimetal, describing a quadratic

band touching bands of effective spin-3/2 carriers. In chapter 4, I study the dis-

ordered surface state of topological superconductors in class CI and report on the

novel discovery of spin quantum plateau transition in the finite-energy states of these

surfaces. In chapter 5, I discuss the interaction of light with a three-dimensional Lut-

tinger semimetal using Floquet theory. We summarize this dissertation in chapter

6.

Works discussed in this thesis have been published in,

1. Ghorashi, Davis, Foster, PRB, 95, 144503 (2017). (Chapter 3)

2. Roy, Ghorashi, Foster, Nevidomskyy, arXiv:1708.07825. (Chapter 3)

3. Ghorashi, Liao, Foster, arXiv:1711.03972. (Chapter 4)

4. Ghorashi, Hosur, Ting, arXiv:1801.04287. (Chapter 5)
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Chapter 2

Topological phases

In this chapter we present a review of some important concepts that would be useful

for the rest of this thesis.

2.1 Topological Superconductors in 2D

The chiral superconductor in 2D, px + ipy, is the simplest topological system which

can manifest the main properties of a topological system. Its Hamiltonian can be

written as [5, 6],

H =
∑
k

Ψ†hkΨk; hk =
1

2

∑
k

 ε(k) 2i∆(sin(kx) + i sin(ky))

−2i∆∗(sin(kx)− i sin(ky)) −ε(k)


(2.1)
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where Ψk = (Ck, C
†
−k)

T and ε(k) = −2t(cos(kx)+cos(ky))−(µ−4t). In the continuum

limit we can write the above equation in the following form,

hk =
1

2

∑
k

 k2

2m
− µ 2i∆(kx + iky)

−2i∆∗(kx − iky) − k2

2m
+ µ

 (2.2)

with k2 = k2
x + k2

y. The spectrum of continuum model is given as E(k) =

±
√

( k2

2m
− µ)2 + 4|∆|2k2 and is gapped as long as µ 6= 0. In fact, at µ = 0 the

2.2 undergoes a phase transition between topologically trivial (µ < 0) and nontrivial

(µ > 0) cases. Therefore, we can study a domain wall geometry between these two

phases by taking µ = µ(x), such that µ = −µ0 for x < 0 and µ = µ0 for x > 0 for

a positive constant µ0. By keeping the translational invariance in y direction, ky is

still can be considered as good quantum number. Therefore, solving for the quasi-1D

Hamiltonian (up to first order of k) with,

hk =

 −µ(x) 2i|∆|(−i∂x + iky)

−2i|∆|(−i∂x − iky) µ(x)

 , (2.3)

one can find a bound states at the interface of two topologically distinct phases with

µ(x) < 0 and µ(x) > 0, respectively. It can be obtained as,

ψky(x, y) = eikyy
(
− 1

2|∆|

∫ x

0

µ(x′)dx′
)
|φ0〉 (2.4)

where |φ0〉 is a constant normalized spinor. This set of bound states parameterized

by ky as E(ky) = −2|∆|ky is gapless and the group velocity of the quasiparticle

dispersion is always negative and never changes sign (chiral). Next, we compute the
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bulk topological winding number (Chern number). To do so, we rewrite 2.2 as,

hk =
∑
a

da(k).τ̂a;

da(k) =

(
−2|∆|ky,−2|∆|kx,

k2

2m
− µ

)
(2.5)

where τ̂a are Pauli matrices. Now by using unit vector d̂a = da/|d| and employing

following formula,

N̂w =
1

8π

∫
d2pεij d̂.

(
∂ki d̂× ∂kj d̂

)
(2.6)

one can by computing above integral numerically easily find N̂w = 0 and N̂w = 1 for

µ < 0 and µ > 0 respectively.

2.2 Topological superconductivity in 3D: The case

of 3He-B

Now lets turn to an example of topological superconductivity (superfluidity) in three

dimensions. The prototypical example of such a system that is confirmed to be

topological is phase B of 3He, which possess an isotropic p-wave fully gapped pairing

[6, 7]. Moreover, reviewing of the later, it is particularly of interest of this dissertation

because we will going to study the spin-3/2 generalization of 3He-B. The topological

superfluidity of 3He-B is protected by the time-reversal symmetry as well as the

particle-hole symmetry. It can be described by the following Hamiltonian,

hk =

 k2

2m
− µ ∆(k)

∆†(k) − k2

2m
+ µ

 , (2.7)

5



where ∆(k) = ∆piσ
2σ.k and satisfied particle-hole τ 1hk(−k)T τ 1 = −hk(k) and time-

reversal symmetry of σ2h∗k(k)σ2 = hk(k) so it belongs to class DIII ((τ 1)2 = 1 and

(σ2)2 = −1)[9]. τ and σ denotes Nambu and spin spaces, respectively.

Topological invariant for three-dimensional superconductors with chiral symmetry

[9] can be obtained by following steps:

� Diagonalize the Hamiltonian to get Uh eigenvector matrices.

� Build a flat Hamiltonian of Q = U−1
h ΛUh where Λ is the flattened matrix of

eigenvalues.

� Off-diagonalize Q to get, 0 q(k)

q†(k) 0

 ; q†(k)q(k) = 1 (2.8)

� Use following equation to calculate the winding number,

W =
1

24π2

∫
d3kεijk Tr

[
(q−1∂iq)(q

−1∂jq)(q
−1∂kq)

]
; ∂i ≡ ∂ki . (2.9)

It can be applied to (2.7) and one can see that for µ < 0 and µ > 0 give W = 0 and

W = 1, respectively.

The 2D surface states of (2.7) possess the neutral helical Majorana quasiparticles

with the effective Hamiltonian,

ĥS =
∑
k

ξ†(kxσ
1 + kyσ

2)ξ, (2.10)

where ξ = (γk,↑, γk,↓)
T and γkσ satisfies γ†kσ = γ−kσ. The surface states are thus

propagating (nonchiral) Majorana fermions. The surface Hamiltonian must possess
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the same symmetries of the bulk, i.e., particle-hole and time-reversal symmetries

(and their combination: chiral symmetry) so belong to the same symmetry class of

DIII.

2.3 Effect of disorder

In this section we review some of the essential concepts and methods that are used

in the rest of this thesis for treating the effect of disorder on the surface states of

topological superconductors. Anderson theory of localization has been the corner

stone of the disordered physics since 1958 [28].

In three dimensions, it is shown [28] that in the presence of random disorder

wavefunctions show two different behaviors, extended and localized, unlike the one

and two dimensional cases where eigenstates are always localized. However, at the

transition point, wavefunctions are critically delocalized. The probability distribu-

tion in this phase shows ”multifractal” statistics, i.e it contains random peaks while

most of places is zero. However, the hallmark of theses states is the universal prop-

erties in their wavefunction statistical properties. Fig. 2.1, shows an example of a

multifractal state.
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Figure 2.1: Shows probability distribution (no unit) for a sample multifractal wave-

function.

For most of this dissertation we use multifractality as measure of criticality on

the surface state of different topological superconductors. The multifractal spectrum

measures the statistics of the local DoS, which can be measured experimentally by

scanning tunneling microscopy [1].

Figure 2.2: Schematic picture of discretizing space to box sizes of b and system size

of L.
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Here we mention main steps to compute multifractal spectrum numerically. First,

we discretize the space to small boxes of size b << L where L (Fig. 2.2) is the system

size and get box probability as,

µi =

∫
box i

d2r|ψ(r)|2. (2.11)

Then, one can get the Inverse participation ration (IPR),

Pq =
∑
i

µqi ∼
(
b

L

)τ(q)

. (2.12)

τ(q) is the multifractal exponent associated with the qth IPR. We get τ(q) by com-

puting the logarithm of the ratio of two Pq with different box sizes of b. τ(q) is

a self-averaging quantity [2] that satisfies the conditions τ(1) = 0 due to the nor-

malization and τ(0) = −d, where d is system dimension. For simple plane wave

τ(q) = d(q − 1) because the probability of finding a particle is uniform. For the

critical states it is shown to be [10, 11],

τ(q) = (q − 1)(2− θq), |q| ≤ qc =
√

2/θ, (2.13)

where θ can be viewed as the degree of multifractality.

qc denotes the termination threshold which after that τ(q) shows a linear behavior

with respect to q.
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2.4 Gapless topological phases: The case of topo-

logical semimetals

In this section, we review some of the most important properties of gapless topological

phases. In particular, we focus on Weyl semimetals. Weyl semimetals can be seen

as three-dimensional analogs of graphene. The low-energy theory around a Weyl

point can be described by 2 × 2 Hamiltonian of Hw = σ.k = σ1kx + σ2ky + σ3kz.

In the presence of time-reversal and inversion symmetries Weyl points are doubly

degenerate, as guaranteed by Kramers theorem. Therefore, to make Weyl semimetal

we need to break either of time reversal or inversion symmetries.

Without loss of generality we can start from two-band lattice model with breaking

time-reversal symmetry [3],

H(k) = [2t(cos(kz)− cos(k0)) +m(2− cos(ky)− cos(kx)]σ
3 + 2t sin(ky)σ

2 + 2t sin(kx)σ
1,

(2.14)

where by setting t = 1 and m = −2, it has two nodes at (0, 0,±k0). Each node

has chirality denoted by ± in the later. A Weyl point can thus be destroyed only

by annihilating it with another Weyl point of opposite chirality. To characterize

the topological nature of these points we use the Chern number associated to each

node. To get the Chern number (monopole charge) we write the effective low-energy

Hamiltonian as H ∝ n(k).σ and use,

Wn =
1

8π

∫
s

d2kεijkn.(∂jn× ∂kn), (2.15)

where integration is performed over surface S surrounding the node and n is a unit
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vector. Wn is an integer value which can be positive or negative depending on the

chirality of the specific node. So, it is clear that the total Chern number over whole

Brillouin zone is zero. As result of nontrivial topology, the projection of two nodes

with different chirality on the surface, leads to the zero-energy fermi arcs which are

the hallmark of Weyl semimetals. The properties of these fermi arcs are extensively

studied over past couple of years [3].
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Chapter 3

Topological superconductivity in

Spin-3/2 systems

In this Chapter, the topological superconductivity in Luttinger semimetals with ef-

fective spin-3/2 is investigated. To proceed we divided this topic to two parts. First,

we have considered the case were both bands bending in same direction that is rele-

vant to hole-doped semiconductors. Then, as the second part, the case where bands

bending oppositely is studied.

This chapter is mainly adapted from the following published papers: S.A.A. Ghorashi,

S. Davis, M.S. Foster, Phys.Rev. B, 95, 144503 (2017) and B. Roy, S.A.A. Ghorashi,

M.S. Foster, A.H. Nevidomskeyy, arXiv:1708.07825.
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3.1 Introduction

In the past decade there has been an explosion of interest in new forms of topological

matter, driven by the discoveries of topological insulators and gapless topological

phases [4, 5, 6, 7]. Despite this progress, a three-dimensional analog of the IQHE

that ties a robust surface transport signature directly to a bulk winding number

remains lacking. One potentially promising route is to look for a generalization of

Helium 3B (3He-B), the only known bulk topological superfluid predicted to host a

gapless surface fluid of unpaired Majorana fermions [8, 9].

Previous theoretical work [9, 10, 11, 12, 13] has shown that the Majorana surface

fluid of a model spin-1/2 bulk topological superconductor (TSC) can be robust to

both disorder and interaction effects, and should exhibit a universal surface thermal

conductivity proportional to the bulk winding number [13]. In all of these works, the

form of the 2D surface theory was always assumed to be relativistic, with |ν| “colors”

of linearly-dispersing Majorana fermions coupled via interactions and/or quenched

disorder; ν denotes the winding number. A key unanswered question is whether the

physics (e.g., universal thermal conductivity) is tied to this simplifying assumption,

or instead represents a robust aspect of generic bulk TSCs.

Recent theoretical work has turned to higher-spin TSCs, with potential applica-

tions to alkaline and alkaline-earth ultracold atoms [14] or doped semimetals with

spin-orbit coupling [15, 16, 17]. In the first part of this chapter, we consider the sur-

face states of a spin-3/2 generalization of 3He-B with isotropic p-wave pairing [14]. A

novel feature is that the surface Majorana fluid exhibits coexisting linear and cubic
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bands. Cubic surface bands were also predicted in a closely related model [15] that

may be relevant for superconducting half-Heusler alloys, discussed in the second half

of this chapter. Due to the van Hove singularity, one might expect that any residual

interactions between surface Majorana particles would produce a strong instability.

Surprisingly, we show that interactions are only marginally relevant : only attractive

interactions induce spontaneous time-reversal symmetry breaking and lead to a sur-

face thermal quantum Hall effect (TQHE) [9, 10]. This weak instability is tied to

the strong constraints imparted by Pauli exclusion to a Majorana gas, despite the

density of states divergence. Repulsive interactions are marginally irrelevant; their

main effect would be to generate a finite longitudinal surface thermal conductivity

κxx at temperature T > 0 due to inelastic scattering. In the absence of impurity

scattering the ratio κxx/T would diverge as T → 0.

By contrast, nonmagnetic quenched disorder proves to be a strong perturbation.

Using exact diagonalization to study the noninteracting dirty surface, we show that

disorder induces scaling consistent with a critical, exactly solvable conformal field

theory (CFT) SO(n)4 [11]. (Here n→ 0 denotes the number of replicas.) The CFT

governs the divergence of the global density of states and the statistics of the single-

particle wave functions. The level of the current algebra (=4) is also the modulus

of the bulk winding number |ν| for our p-wave model. This is the same result that

obtains for spin-1/2 models of TSC surface states studied previously [11, 13]. In

the spin-1/2 case with winding number ν, the clean surface fluid is a free fermion

(level one) CFT due to the relativistic dispersion. The emergence of another CFT

with level |ν| in the presence of disorder follows from certain rules in these theories
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(conformal embeddings [11, 13]).

Here the situation is very different. The clean Majorana fluid of the spin-3/2

model is not a CFT, as evidenced by the cubic dispersion. Moreover, a standard

derivation of the effective surface theory with disorder would incorrectly predict a

thermal metal with weak antilocalization [24, 11]. Properties of this metal would

depend on the bare disorder strength and would vary slowly with system size. Our

numerics instead show universal scaling that is independent of the disorder strength.

In conjunction with the conformal embedding argument for the spin-1/2 case, the

results obtained here empirically suggest a deep relation between the topology of the

bulk and the CFT describing the disordered surface of a TSC, despite the fact that

the clean surface theories can fundamentally differ. Technically, it means that the

topology precisely tunes the surface field theory to the conformal fixed point made

possible by a Wess-Zumino-Novikov-Witten term [11]. Without this fine-tuning, this

fixed point is unstable to the thermal metal phase (despite the WZNW term) [13].

The SO(n)4 CFT that describes the disordered Majorana surface fluid is known

to be protected against weak interaction effects [11]. We conclude that disorder

stabilizes the surface Majorana fluid for this spin-3/2 model, and this implies that

higher-spin TSCs could be robustly protected. The thermal Hall conductivity κxy

divided by temperature T of the surface TQHE is quantized and universal [18, 19,

20, 21, 22, 23]: κxy = W κ◦, where W ∈ Z is the surface winding number and,

κ◦/T = π2k2
B/6h. (3.1)
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What is more important here is that [9, 13]

lim
T→0

κxx
T

=
|ν|
π

κ◦
T
, κxy = 0, (3.2)

for the disorder-induced surface CFT (which preserves time-reversal symmetry).

Here the winding number ν = 4. Eq. (3.2) implies that the low-temperature thermal

conductivity is quantized by the bulk winding number, independent of both disorder

and interactions. Since disorder stabilizes the surface and induces a quantized ther-

mal conductivity, bulk TSCs appear to be closely analogous to the integer quantum

Hall effect in two dimensions. Our results are summarized by the phase diagram in

Fig. 3.1.
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Critical
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I

Figure 3.1: Schematic renormalization group (RG, left) and parameter (right) phase

diagram: 2D Majorana fermion surface fluid of a bulk spin-3/2 topological super-

conductor with p-wave pairing and winding number ν = 4. The axes denote surface

perturbations: the interaction strength u and quenched disorder strength λ. In the

absence of disorder (λ = 0), the clean surface (“I”) is marginally unstable to sponta-

neous time-reversal symmetry breaking [thermal quantum Hall effect (TQHE) order,

(“III”)] for u > 0. Disorder λ > 0 is a strong perturbation that drives the surface

into a critically delocalized, time-reversal symmetric state [SO(n)4 CFT, “II”]. The

latter is stable against weak interaction effects [11]. Disorder is formally irrelevant

to III because it can be viewed as a gapped, paired Majorana BCS condensate. RG

results near I and II are obtained by analytical and numerical calculations, while

III is confirmed by mean-field theory. The boundary between II and III on the

right likely indicates a first order transition, but neither its nature nor its precise

shape in the λ-u plane is determined here. The surface thermal conductivity is pre-

cisely quantized in both phases II and III: {κxx, κxy} = {4/π, 0}κ◦ in II [9, 13] and

{κxx, κxy} = {0,±2}κ◦ in III [18, 19, 20, 21, 22, 23]. Here κ◦ ≡ π2k2
BT/6h.

17



This chapter is organized as follows. In Sec. 3.2, we define the bulk model and

describe the form of the surface states. We then summarize our results regarding the

marginal instability of the clean surface, and the universal quantum criticality of the

disordered one. The rest of the paper explains key technical details. Sec. 3.3 shows

the derivation of the surface state Hamiltonian and the calculation of the surface

winding number in the presence of explicit time-reversal symmetry breaking. The

effects of interactions on the clean surface are treated using one-loop renormalization

and mean field theory. Sec. 3.4 describes the incorporation of disorder, and provides

details of the numerical diagonalization scheme. In Sec. 3.5, a similar analysis

is made for surface states of the doped Luttinger semimetal, where bands bend

oppositely. This model may be relevant to superconductivity in half-Heusler alloys.

3.2 Model and results

3.2.1 Bulk and surface models

We consider a system of spin-3/2 fermions. In the absence of pairing, we assume a

bulk Hamiltonian of the form

H0 =

∫
d3k

(2π)3
c†(k)

[
k2 − γ (S · k)2] c(k), (3.3)

where k = {kx,y,z}. The 4-component fermion field c(k) → cms(k) has Ŝz-label

ms ∈ {3
2
, 1

2
,−1

2
,−3

2
}; S = {Ŝx,y,z} are spin-3/2 operators. Eq. (3.3) is an isotropic

version of the Luttinger Hamiltonian [25] used to model heavy and light hole bands

in zinc-blende semiconductors; the parameter γ measures the strength of effective
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spin-orbit coupling (SOC) amongst the states of the 3/2 multiplet. Here we have set

2m = 1 in the first term (m is the band mass in the absence of SOC). We assume that

γ < 4/9, so that both bands “bend up.” The situation where bands bend oppositely

is relevant for half-Heusler alloys; in that case similar Majorana surface states can

arise with bulk p-wave pairing [15], but the winding numbers differ [26] (see Sec.

3.5).

We assume isotropic p-wave pairing of spin-3/2 fermions [14]:

H =
1

2

∫
d3k

(2π)3
χ†(k) ĥ(k)χ(k), (3.4)

where the 8× 8 Bogoliubov-de Gennes Hamiltonian is

ĥ(k) =
[
k2 − µ− γ (S · k)2] σ̂3 + ∆p (S · k) σ̂2. (3.5)

Here µ is the chemical potential and ∆p the BCS gap parameter. The 8-component

field in Eq. (3.4) has the particle-hole space decomposition

χ(k) ≡

 c(k)

(−iR̂)
[
c†(−k)

]T
 , (3.6)

where T denotes the transpose in spin-3/2 space. The Pauli matrices σ̂1,2,3 in Eq. (3.5)

act on particle-hole space. In Eq. (3.6), R̂ is an antisymmetric 4×4 matrix satisfying

R̂ (S)T R̂−1 = −S, R̂2 = −1̂. (3.7)

The field χ satisfies the “Majorana” condition χ†(k) = i χT(−k) M̂P, where M̂P =

−iσ̂2 R̂ = M̂T
P . This implies the automatic particle-hole symmetry−M̂−1

P ĥT(−k) M̂P =

ĥ(k). Time-reversal invariance is encoded as M̂−1
T ĥT(−k) M̂T = ĥ(k), where M̂T =
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−M̂T
T = σ̂3 R̂. Combining particle-hole and time-reversal [14, 9] gives the effective

chiral condition −σ̂1 ĥ(k) σ̂1 = ĥ(k). With all of these symmetries the model belongs

to class DIII [9]. The bulk winding number is ν = 4 [14] so long as µ > 0 and

γ < 4/9.

The effective surface Hamiltonian obtains by terminating the system in the z-

direction and diagonalizing ĥ(kx, ky,−i∂z). The momentum k = {kx,y} labels prop-

agation parallel to the surface. For k = 0 and hard wall boundary conditions, there

are four zero energy bound states {|ψ0,ms〉}. The most important feature is that the

particle-hole “spin” locks to the physical spin at the surface:

|ψ0,ms〉 = |σ1 = sgn(ms)〉 ⊗ |ms〉 ⊗ |fms〉. (3.8)

The particle-hole spin points along the +σ1 (−σ1) direction for positive (negative)

ms. In Eq. (3.63), 〈z |fms〉 = fms(z) denotes the bound state envelope function.

Since time-reversal gives the effective chiral condition −σ̂1 ĥ(k) σ̂1 = ĥ(k) in the

bulk, the locking condition implies that the effective surface Hamiltonian ĥS satisfies

−τ̂ 3 ĥS(k) τ̂ 3 = ĥS(k), (3.9)

where τ̂ 3 = +1 (−1) for ms > 0 (ms < 0). We introduce two mutually commut-

ing species of Pauli matrices: {τ̂ 1,2} anticommute with τ̂ 3 and act on the sgn(ms)

space, while {κ̂1,2,3} mix the 3/2 and 1/2 states with the same sign. E.g., τ̂ 3 =

diag(1, 1,−1,−1), κ̂3 = diag(1,−1, 1,−1). The matrix R̂ = iτ̂ 1κ̂2. Then the locking

condition implies the automatic surface particle-hole symmetry

−M̂ (S)

P ĥTS (−k) M̂ (S)

P = ĥS(k), M̂ (S)

P = τ̂ 2κ̂2. (3.10)
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The form of ĥS(k) is constrained by Eqs. (3.9) and (3.10), as well as rotational

invariance in the plane. An explicit k·p calculation gives the low-energy form [14]

ĥS(k) = i
4

(
τ̂+κ̂− k− τ̂−κ̂+ k̄

)
+ c

2

(
τ̂+ k2 + τ̂−k̄2

)

=



0 0 c k2 0

0 0 i k c k2

c k̄2 −i k̄ 0 0

0 c k̄2 0 0


. (3.11)

Here, {k, k̄} = kx ∓ iky, τ̂± = τ̂ 1 ± iτ̂ 2, κ̂± = κ̂1 ± iκ̂2, the coefficient for the linear

dispersion is normalized to one, and c is a real constant with units of length. For

weak SOC (0 < γ � 1), it is easy to see that c ∝ γ/∆p. Without SOC, second-order

k·p theory gives c = 0 so that the ms = ±3/2 bands remain flat. Nonzero c is

symmetry-allowed and thus expected in the generic situation; an alternative route

incorporates additional small s-wave pairing. In Eq. (3.11), we neglect terms cubic

in kx,y because these do not modify the low-energy dispersion relations.

In the limit k → 0, Eq. (3.11) exhibits linear and cubic bands [14]:

ε1(k) =
k

2

(√
1 + 4c2k2 + 1

)
' k + O (k)3 ,

ε3(k) =
k

2

(√
1 + 4c2k2 − 1

)
' c2k3 + O (k)5 .

(3.12)

Both bands become quadratic at large k. Due to the cubic band, the system has a

van Hove singularity in the density of states ν(ε→ 0) ∼ ε−1/3.
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3.2.2 Surface perturbations

The Hamiltonian for the surface fermion fluid is given by

H (S)

0 =
1

2

∫
d2r ηT M̂ (S)

P ĥS η, (3.13)

where η → ηms is a four-component Majorana spinor and r is the position vector.

Local bilinear (“potential”) perturbations must obey surface particle-hole symmetry.

There are 6 Hermitian terms without derivatives of the form 1
2

∫
d2r ηT M̂ (S)

P Λ̂ η,

where Λ ∈ {τ̂ 1,2,3} or {κ̂1,2,3} satisfies Eq. (3.10). These are classified by symmetry.

Under planar rotations, τ̂ 3 and κ̂3 are scalars, κ̂1,2 transform like a vector, and

τ̂ 1,2 transform like second-rank tensor components. Only τ̂ 1,2 are time-reversal even

[Eq. (3.10)]; the rest are odd.

A generic combination Λ̂ = m1 τ̂
3 + m2 κ̂

3 breaks time-reversal and induces a

gapped surface thermal quantum Hall (TQH) state [19, 6]. We compute the surface

winding number W using the Green’s function [8]; the result is shown in Fig. 3.2.

The lines m1 = ±m2 are gapless surface plateau transitions. The maximum winding

number and surface gap for fixed
√
m2

1 +m2
2 is achieved for |m1| > |m2|, i.e. τ̂ 3

order. Finally, we note that the spin operator Ŝz corresponds to m1 = 2m2, so that

an external Zeeman field would induce the W = ±2 plateaux.

22



m
1

m
2

2

1

-1
-2

Figure 3.2: Phase diagram of the clean spin-3/2 Majorana surface fluid in the pres-

ence of time-reversal symmetry-breaking mass terms m1 and m2. All states are

TQHE plateaux with winding number as indicated, computed via the surface Green’s

function [8]. The combination m2 = m1/2 corresponds to the spin-3/2 operator Ŝz,

as could be introduced via Zeeman coupling to an external magnetic field. The

conditions m1 = ±m2 are gapless plateau transitions.
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3.2.3 Marginal instability of the clean surface

Although we treat the gapped bulk as an effectively non-interacting mean field Hamil-

tonian, we must consider the effects of residual interactions on the surface Majorana

fluid carefully. This is because the latter is gapless and exhibits a diverging density

of states. In a superconductor, interactions at the surface are expected to be short-

ranged due to screening by the bulk. These residual interactions can be mediated by

virtual fluctuations of the “massive” electromagnetic field. Here we posit the form

of the interactions based on symmetry and Pauli exclusion.

Because η is a four-component Majorana field, there is only a single interaction

term without derivatives that we can write; others with derivatives are less relevant.

Labeling the components as η → η1,2,3,4,

H (S)

I ≡ u
∫
d2r η1η2η3η4

= ∓u
8

∫
d2r (ηT M̂ (S)

P Λ̂ η)2, (3.14)

where the minus (plus) sign corresponds to Λ̂ = τ̂ 3 (κ̂3). Thus u > 0 is an attractive

(repulsive) interaction in the τ̂ 3 (κ̂3) channel. The coupling u has units of length.

The sign of u could be determined by integrating out the bulk superfluid and the

electromagnetic field, but we will not do so here.

Given that the noninteracting surface fluid has coexisting linear and cubic bands,

it is not a priori obvious how to assess the relevance of u from a renormalization

group (RG) perspective. Moreover, the van Hove singularity suggests that nonzero

u will induce bad infrared behavior. In fact one-loop perturbation theory gives the
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simple vertex correction,

Γ(4) = −
[
u+

(
u2/4πc

)
ln(4cΛ)

]
, (3.15)

where Λ is the ultraviolet momentum cutoff. The correction is only logarithmic,

and is cut in the infrared by the length scale c. This immediately implies the beta

function,

dũ

dl
=
ũ2

4π
+ O

(
ũ3
)
, (3.16)

where ũ = u/c is the dimensionless coupling.

The absence of bad infrared behavior in Eq. (3.15) and the weakness of the

ultraviolet singularity is due to Pauli exclusion, i.e. the fact that both linear and

cubic components of the Majorana Green’s function must appear simultaneously

in the loop. Eq. (3.16) implies that u > 0 is a marginally relevant perturbation.

Eq. (3.14) suggests a natural interpretation in terms of TQH order with surface

winding number W = ±2.

We can confirm this picture with a mean-field calculation. We decouple the

interaction in Eq. (3.14) with the order parameter M ≡ (u/2) 〈ηT M̂ (S)

P τ̂ 3 η〉. Zero-

temperature mean-field theory gives

M' 1

c

(
4.4

2π

)3
1

[(2π/ũ)− ln(cΛ)]3
, ũ� 1. (3.17)

Physically we can associate nonzero M with surface “i s” (imaginary s-wave)

pairing of the Majorana particles [10, 11, 27]. This can be understood via the fol-

lowing argument. In the bulk, one can write a local spin singlet, time-reversal odd
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pairing operator

[−ic†R̂
(
c†
)T

+ H.c.] = χ†σ̂1χ. (3.18)

Eq. (3.8) implies that this bilinear projects to ηTM̂ (S)

P τ̂ 3η ∝ M at the surface. On

the other hand, Eq. (3.14) can also be written as proportional to −u
∫
d2r (Ŝz)2,

implying surface magnetic order for u > 0. Indeed, these disparate orders are unified

in the surface fluid, due to the strong spin-orbit coupling in the bulk and the locking

condition [Eq. (3.8)]. We might anticipate a generic order parameter of the form

Λ̂ = m1 τ̂
3 + m2 κ̂

3 [c.f. Fig. 3.2] with |m1| > |m2|. Although we are confident that

the surface resides in the W = +2 or −2 plateau for u > 0, there are hints that

mean-field theory fails to correctly predict the admixture of m1 and m2. For details,

see Sec. 3.3.4, below.

3.2.4 Quenched disorder and universal surface quantum crit-

icality

In a solid state realization, quenched disorder due to impurities and other defects

is inevitable at the sample surface. Now we consider the effects of disorder on the

non-interacting surface states.

We add real disorder potentials that couple to the time-reversal symmetric bilin-

ear perturbations τ̂ 1,2 to Eq. (3.11):

ĥS → ĥS + P1(r) τ̂ 1 + P2(r) τ̂ 2 =
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

0 0 c(−i∂)2 + P(r) 0

0 0 ∂ c(−i∂)2 + P(r)

c(−i∂̄)2 + P̄(r) −∂̄ 0 0

0 c(−i∂̄)2 + P̄(r) 0 0


, (3.19)

where {∂, ∂̄} = ∂x ∓ i∂y and {P, P̄} = P1 ∓ iP2. We consider only time-reversal

invariant disorder; equivalently, we require that there are no magnetic fields or mag-

netic impurities at the surface. We assume Gaussian white noise disorder potentials

P1,2(r) with common variance given by a dimensionless parameter λ. Due to the

cubic dispersion, even weak disorder is expected to produce a strong effect. Indeed,

perturbative renormalization of λ produces a quadratic infrared divergence, and im-

plies that λ/c2 is the effective disorder strength. This has dimension 2 and thus

corresponds to a strongly relevant perturbation of the clean surface band structure.

To treat the disorder nonperturbatively, we diagonalize Eq. (3.19) numerically. The

calculation is performed in momentum space to avoid fermion doubling issues [12].

Details are described in Sec. 3.4.2, below.

In spin-1/2 bulk TSCs with relativistic surface fluids, conformal embedding rules

establish certain 2+0-D conformal field theories (CFTs) as governing the properties

of disordered, noninteracting surface states [11]. For a class DIII bulk with winding

number 4, that theory would predict the surface CFT SO(n)4, where n → 0 counts

replicas. We will demonstrate that this theory also governs the dirty surface states

of the spin-3/2 TSC.

The SO(n)4 theory predicts [11] a diverging low-energy global density of states

(DoS) ν(ε) ∼ ε−1/5. Note that this is a weaker power law than the 1/3 van Hove
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singularity in the clean system. In Fig. 3.3, we compare numerical results for different

disorder strengths to the CFT prediction for the integrated DoS N(ε) ≡
∫ ε

0
dε′ ν(ε′).

We find good agreement irrespective of the disorder strength.

The disorder-induced spatial fluctuations of the critical surface wave functions are

encoded in the multifractal spectrum τ(q). (For a recent review on multifractality

at Anderson metal-insulator transitions, see, e.g., Ref. [28].) The SO(n)4 theory

predicts an exactly quadratic spectrum [11] for the low-energy wavefunctions,

τ(q) = (q − 1) (2− q/2) , |q| ≤ 2. (3.20)

Fig. 3.4 compares Eq. (3.20) to the numerical results.
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N(ε)/N(ε∗)

ε/ε∗

λ = π

λ = 4π/5

λ = 3π/5

λ = 2π/5

λ = π/5

Figure 3.3: Numerical evidence for critical surface delocalization in the presence of

quenched disorder I: Integrated local density of states (IDoS) N(ε). The exact pre-

diction of the SO(n)4 theory gives N(ε) ∼ ε4/5 (blue solid lines). The clean theory

has N(ε) ∼ ε2/3 due to the van Hove singularity. Data (red dotted lines) is obtained

from momentum-space exact diagonalization of the dirty surface Hamiltonian, with-

out interactions. Results are presented for typical realizations of the disorder (i.e.,

there is no disorder-averaging). Curves with different disorder strengths λ are la-

beled and shifted vertically for clarity. The system size consists of an 81 × 81 grid

of momenta. Irrespective of the nonzero disorder strength, the same critical scaling

exponent is observed and is consistent with the SO(n)4 theory.
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q

τ(q)
(i)

(v)

(ii)

(iii)

(iv)

(i) λ = π

(ii) λ = 4π/5

(iii) λ = 3π/5

(iv) λ = 2π/5

(v) λ = π/5

Figure 3.4: Numerical evidence for critical surface delocalization in the presence of

quenched disorder II: Multifractal spectrum (No unit, no unit is reported for the

multifractal spectrum throughout this dissertation). The exact prediction of the

SO(n)4 theory gives Eq. (3.20) (blue). The clean theory would have τ(q) = 2(q− 1).

Data [red, labeled (i)–(v)] is obtained as in Fig. 3.3. The disorder strengths λ are

indicated for the numerical curves. Curves with different disorder strengths are

shifted vertically for clarity. The largest deviation occurs for |q| > qc, where qc = 2 is

the multifractal termination threshold [29, 28, 30]. This is a finite resolution effect,

since the slopes beyond qc are governed by the peaks and valleys of the wave function.

Figs. 3.3 and 3.4 provide strong evidence that the disordered, noninteracting spin-

3/2 Majorana fluid is governed by the SO(n)4 theory. This is surprising because a

standard derivation [24] of the disorder-induced effective field theory would predict

a thermal metal phase exhibiting weak antilocalization. Although the theory in
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[24] should be augmented by a Wess-Zumino-Novikov-Witten term (see Sec. 3.4.1

for details), this term does not alter the tendency towards antilocalization in the

metallic phase [11]. Because the clean density of states diverges for the surface

Majorana fluid studied here, a diffusive metallic state would be generically expected.

Yet this is inconsistent with our numerical results [which instead match the SO(n)4

CFT]. An important technical point is that the CFT is unstable to the thermal metal

phase [see Eq. (3.43)]. It means that the CFT can only be realized if the system is

tuned to the SO(n)4 fixed point. Our numerical results imply that this is exactly

what happens.

The same “fine-tuning” is required for the spin-1/2 TSCs. In that case, how-

ever, there is a nonperturbative argument for it using conformal embedding theory

[11]. Additional evidence in the spin-1/2 case obtains by comparing interaction

(Altshuler-Aronov) corrections to transport via two methodologies: (1) order-by-

order in the interaction strength, in a fixed realization of disorder, and (2) within a

disorder-averaged large winding number expansion. These give the same result only

if the disorder-averaged system is tuned to the CFT (in which case Altshuler-Aronov

corrections vanish) [13]. We do not have the conformal embedding dictionary [11]

utilized for spin-1/2 TSCs, but our numerical results empirically suggest that there

is an equivalence between the bulk topology and the CFT describing the disordered

surface of a TSC [11, 12, 13], despite the fact that the clean surface theories can

fundamentally differ.
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3.2.5 Stability, phase diagram, and quantized thermal con-

ductivity

We have seen that the clean surface is marginally unstable to TQH order. We have

also shown that quenched disorder is a strong perturbation that drives the non-

interacting surface to a phase described by the SO(n)4 CFT. It is known [11] that

interactions are strongly irrelevant to this CFT,

dũ

dl
= − ũ

2
+ O

(
ũ2
)
, (3.21)

where ũ is the dimensionless coupling strength. Although multifractality can some-

times enhance interactions [31, 32, 10], that does not occur here. The reason is

again Pauli exclusion: the interaction and second multifractal moment operators are

distinct due to the complete antisymmetrization of the former [11]. We therefore

conclude that disorder stabilizes the surface Majorana fluid of this spin-3/2 TSC.

This is our most important result. We note that Eq. (3.21) technically obtains from

the dynamical version of the SO(n)4 theory. This is a 2+1-D theory of Majorana

fermions propagating in space and time, whose disorder-averaged spatial correla-

tions and dynamical scaling exponent are governed by the 2+0-D replicated CFT,

see [11] for details. Thus in Fig. 3.1, “SO(n)4” really refers to this dynamical hybrid

theory, which can also be expressed as a Wess-Zumino-Novikov-Witten Finkel’stein

nonlinear sigma model (WZNW-FNLsM) [11, 13].

The thermal conductivity of the WZNW-FNLsM receives no quantum interfer-

ence corrections due to disorder [9, 13] at the conformal fixed point. Interaction-

mediated Altshuler-Aronov corrections also vanish to at least order 1/|ν|, where ν
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is the bulk winding number. The absence of Friedel oscillations in any Majorana

surface “density” implies that these should be absent to all orders [13]. Since the

spin-3/2 Majorana surface fluid studied here realizes the SO(n)4 theory in the pres-

ence of disorder, we conclude that the ratio of the longitudinal thermal conductivity

and temperature is precisely quantized as T → 0 [Eq. (3.83)].

3.3 Ideal (clean) surface states and interactions

3.3.1 Derivation of the surface Hamiltonian Eq. (4.1)

3.3.1.1 Luttinger Hamiltonian bulk

To obtain the surface Hamiltonian, we consider a bulk superconductor in the half

space z ≥ 0 with hard wall boundary conditions. We divide Eq. (3.3) into two parts:

ĥ = ĥ0(−i∂z) + ĥ1(k,−i∂z),

ĥ0 = σ̂3 (−∂2
z − µ) + σ̂2

[
∆pŜ

z (−i∂z) + ∆s

]
, (3.22a)

ĥ1 = σ̂3

{
k2 − γ

[
1
2

(
Ŝ+k + Ŝ−k̄

)
+ Ŝz(−i∂z)

]2
}

+ σ̂2 ∆p

2

(
Ŝ+k + Ŝ−k̄

)
,(3.22b)

where k = {kx,y} is the momentum parallel to the surface, {k, k̄} = kx ∓ iky, and

Ŝ± = Ŝx ± iŜy are spin-3/2 raising and lowering operators. In Eq. (3.22a), we have

added a time-reversal symmetric s-wave pairing term proportional to ∆s. We will

utilize this below in the case of vanishing bulk spin-orbit coupling (SOC). Energies

like ∆s and µ have units of 1/(length)2, while ∆p has units of 1/length.

In this subsection we will ignore s-wave pairing (∆s = 0) and we will treat the
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SOC term proportional to γ as a small perturbation (although this is not necessary).

The surface eigenstates of ĥ0 with zero transverse momentum satisfy ĥ0|ψ0,ms〉 = 0

and take the form shown in Eq. (3.8),

ψ0,ms(z) = fms(z)

 1

sgn(ms)

 |ms〉, fms(z) = 1√
Nms

exp
(
−∆p|ms|z

2

)
×

sin

[
z

√
µ− ∆2

pm
2
s

4

]
. (3.23)

Here the explicit 2-component spinor resides in particle-hole (σ) space; the four zero

energy states are distinguished by their Ŝz eigenvalues ms ∈ {±3
2
,±1

2
}. The particle-

hole spinor is “locked” to the physical spin, as it points along the +σ1 (−σ1) direction

for positive (negative) ms. The form of the envelope function fms(z) is appropriate

for the weak pairing limit, (3∆p/4)2 < µ.

To obtain the effective surface Hamiltonian for nonzero transverse momentum, we

diagonalize ĥ1 in the basis of zero modes given by Eq. (3.23). The only non-vanishing

elements obtain from

ĥ1 → σ̂2 ∆p

2

(
Ŝ+k + Ŝ−k̄

)
− σ̂3 γ

4

[
(Ŝ+)2k2 + (Ŝ−)2k̄2

]
. (3.24)

The first term connects the ±1/2 states, giving the {k, k̄}-linear terms in Eq. (3.11).

The second term mixes the {3/2,−1/2} and {1/2,−3/2} states, giving the {k2, k̄2}

terms in Eq. (3.11). The parameter c ∝ −γ/∆p.

3.3.1.2 Vanishing SOC in the bulk

If the SOC parameter γ = 0, then the ±3/2 surface bands remain flat in degenerate

perturbation theory. Another way to get nonzero c in Eq. (3.11) is by incorporating
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an additional weak s-wave pairing amplitude ∆s, as in Eq. (3.22a). Then the zero

energy surface eigenstates with vanishing transverse momentum again take the form

shown in Eq. (3.23), but with the modified envelope function

fms(z) = 1√
Nms

exp
(
−∆p|ms|z

2

)
sinh

[
z

√
∆2
pm

2
s

4
− µ− i∆s sgn(ms)

]
. (3.25)

Here we assume that 0 < ∆s � ∆2
p (so as to remain in the bulk topological phase

with winding number ν = 4 [14]). For convenience, we also assume intermediate

strength pairing such that 0 < µ < (∆p/4)2; in this case there is only one branch of

bulk scattering states.

To obtain the effective surface Hamiltonian for nonzero transverse momentum,

we use k·p theory. The matrix elements of ĥ1 [Eq. (3.22b) with γ = 0] give the

{k, k̄}-linear terms in Eq. (3.11), which connect the ms = ±1/2 states. To connect

the ±3/2 states to the former, one has to go to second order. This yields the matrix

elements [34]

−〈ψ0,ms|ĥ1(k) P̂ ĥ−1
0 P̂ ĥ1(k)|ψ0,m′

s
〉, (3.26)

where P̂ projects out of the degenerate zero mode space. Eq. (3.26) can be expressed

using the basis of bulk scattering states with zero transverse momentum:

〈ψ0,ms|ĥ1(k) P̂ ĥ−1
0 P̂ ĥ1(k)|ψ0,m′

s
〉 =

∑
m′′
s

∫∞
0

dq
εm′′

s
(q)
〈ψ0,ms|ĥ1(k)|ψq,m′′

s
〉×

〈ψq,m′′
s
|ĥ1(k)|ψ0,m′

s
〉+ 〈ψ0,ms|ĥ1(k) σ̂2R̂|ψ∗q,m′′

s
〉×

〈ψ∗q,m′′
s
|σ̂2R̂ ĥ1(k)|ψ0,m′

s
〉 (3.27)

where |ψq,m′′
s
〉 denotes a scattering state with standing wave momentum q (oscillation

in the z-direction), Ŝz-eigenvalue m′′s , and gapped positive energy eigenvalue εm′′
s
(q),
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while σ̂2R̂|ψ∗q,m′′
s
〉 is the (negative energy) particle-hole conjugate of |ψq,m′′

s
〉. The

matrix R̂ was introduced in Eq. (3.7).

The scattering states take the form

ψq,ms(z) =
1√
Nq,ms

{
α̂q,ms

[
cos(qz)− e−λq,msz

]
+ β̂q,ms sin(qz)

}
|ms〉, (3.28)

where α̂q,ms and β̂q,ms are 2-component spinors in particle-hole space. The expressions

for these and λq,ms are unwieldy so we omit them here.

Finally, one computes Eq. (3.27) using Eqs. (3.8), (3.25), and (3.28). This second-

order result vanishes for ∆s = 0. Nonzero c in Eq. (3.11) is symmetry allowed, and

thus expected in the generic situation. The simplest way to get it is by retaining

nonzero ∆s in the bound states {|ψ0,ms〉}, but neglecting it in the scattering states

{|ψq,ms〉} (which become very complicated for ∆s 6= 0). This gives nonzero terms

mixing the {3/2,−1/2} and {1/2,−3/2} states proportional to k2 and k̄2 in ĥS (above

and below the diagonal, respectively, consistent with planar rotational invariance).

Without loss of generality, we can take the coefficients to be real and positive since

the phases can be removed with a unitary transformation.

3.3.2 Calculation of the surface winding number in Fig. 3.2

We compute the surface winding number W for the clean, noninteracting Majorana

surface fluid perturbed by time-reversal breaking “mass” terms. The Hamiltonian is

ĥm1,m2(k) ≡ ĥS(k) +m1 τ̂
3 +m2 κ̂

3, (3.29)

36



where ĥS was defined by Eq. (3.11). The energy bands of ĥm1,m2(k) are gapped for

non-zero values of m1,2 unless m1 = ±m2, in which case a gapless linear Dirac point

appears at k = 0.

Because the mass terms break surface time-reversal symmetry [Eq. (3.9)], the

surface theory resides in class D [9]. In 2D, this class can exhibit a thermal quantum

Hall effect [18, 19, 20], where edge states carry a quantized energy current. The

thermal Hall conductivity κxy can be expressed in terms of a winding number W via

[21, 6]

κxy = W κ◦, (3.30)

where κ◦ was defined by Eq. (3.81). In terms of the surface Green’s function

Ĝ(ω,k,m1,m2) ≡
[
−i ω 1̂ + ĥm1,m2(k)

]−1

, (3.31)

the winding number is given by [8]

W (m1,m2) ≡ εαβγ
3!(2π)2

∫ ∞
−∞

dω

∫
R2

d2k Tr
[(
Ĝ−1∂αĜ

)(
Ĝ−1∂βĜ

)(
Ĝ−1∂γĜ

)]
,(3.32)

where Tr denotes the trace over spin-3/2 components and α, β, γ ∈ {ω, kx, ky}. Nu-

merical evaluation of Eq. (3.32) using Eqs. (3.29) and (3.31) leads to the winding

number results shown in Fig. 3.2.

3.3.3 Perturbative vertex renormalization

The imaginary time action for the clean, time-reversal invariant, interacting Majo-

rana surface theory implied by Eqs. (3.11) and (3.14) is given by

S =
1

2

∫
dω d2k

(2π)3
ηT(−ω,−k) M̂ (S)

P

[
−iω + ĥS(k)

]
η(ω,k) +

u

4!

∫
dτ d2r εi1i2i3i4 ηi1 ηi2 ηi3 ηi4 ,
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(3.33)

where we have antisymmetrized the four-fermion interaction using the fourth-rank

Levi-Civita tensor. Repeated indices are summed.

To one loop, the bare vertex function evaluates to

(Γ(4))i1i2i3i4 = −u εi1i2i3i4 +
u2

2
[εi1i2j1j2εj3j4i3i4 + εi1i3j1j2εj3j4i4i2 + εi1i4j1j2εj3j4i2i3 ]

×
∫

dω d2k
(2π)3

[
ĜM̂ (S)

P

]
j1j3

(ω,k)
[
ĜM̂ (S)

P

]
j4j2

(ω,k),

(3.34)

valid in the limit of vanishing external frequencies and momenta. The three double

Levi-Civita terms in the square brackets correspond to the three loop corrections

shown in Fig. 3.5. We emphasize that the sign of each diagram has to be carefully

determined using Wick’s theorem for the Majorana fermion field. The Green’s func-

tion Ĝ(ω,k) is given by Eq. (3.31) with m1 = m2 = 0, while M̂ (S)

P was defined by

Eq. (3.10).

Figure 3.5: Feynman diagrams for the one-loop vertex corrections.

We define

D(ω, k) ≡ c4k8 + 2c2k4ω2 + k2ω2 + ω4
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and

Ni1i2i3i4(ω, k) ≡
∫ 2π

0

dφkD
2(ω, k)

[
ĜM̂ (S)

P

]
i1i2

(ω, k, φk)
[
ĜM̂ (S)

P

]
i3i4

(ω, k, φk),(3.35)

where we have switched to polar momentum coordinates k → (k, φk). Next we

compute

1

2
[εi1i2j1j2εj3j4i3i4 + εi1i3j1j2εj3j4i4i2 + εi1i4j1j2εj3j4i2i3 ]Nj1j3j4j2(ω ≡ ck2x, k)

= −4c4k10π
[
x2 + c2k2(1 + x2)2

]
εi1i2i3i4 . (3.36)

Thus Eq. (3.34) reduces to

(Γ(4))i1i2i3i4 = −εi1i2i3i4
{
u + u2

∫∞
−∞ dx

∫ Λ

0
dk (ck3)4c4k10π

23π3

[x2+c2k2(1+x2)2]
D2(ck2x,k)

}
= −εi1i2i3i4

{
u + u2

4πc
ln
[√

(2cΛ)2 + 1 + 2cΛ
]}

, (3.37)

where Λ denotes the ultraviolet momentum cutoff. Taking the limit cΛ � 1 gives

Eq. (3.15).

3.3.4 Mean-field theory: surface thermal quantum Hall plateaux

The interaction strength u is enhanced (suppressed) by quantum fluctuations for

u > 0 (u < 0) [Eq. (3.16)]. In Eq. (3.14) and the text following, it is noted that

u > 0 is an attractive (repulsive) interaction in the “τ̂ 3” (“κ̂3”) channel, where

these matrices specify mass terms used to construct the thermal quantum Hall phase

diagram shown in Fig. 3.2. We therefore expect that spontaneous symmetry breaking
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due to quantum fluctuations for positive u can be characterized by an order parameter

M≡ u

2(1− 2α)

〈
ηT M̂ (S)

P Λ̂α η
〉
, (3.38)

where

Λ̂α ≡ (1− α)τ̂ 3 + ακ̂3 (3.39)

and α is a real variational parameter. In terms of Majorana (spin-3/2) components,

1

2
ηT M̂ (S)

P Λ̂α η = η1η4 + (1− 2α) η3η2. (3.40)

The interaction in Eq. (3.14) can be written as

H (S)

I = −(1− 2α)

2u

∫
d2r

{
M+

[
u

2(1− 2α)
ηT M̂ (S)

P Λ̂α η −M
]}2

. (3.41)

The interaction is attractive for u > 0 so long as 0 ≤ α < 1/2. Precisely for α = 1/2,

Eq. (3.40) implies that
(

1
2
ηT M̂ (S)

P Λ̂α η
)2

= 0 due to Pauli exclusion (neglecting

nontrivial anticommutators). In this case the interaction cannot be written as the

square of the bilinear.

The zero temperature mean-field condensation energy density is given by

∆E(M) = (1− 2α)M
2

u
− 1

2π

∫ Λ

0
kdk {[ε1(k,M)− ε1(k, 0)] + [ε3(k,M)− ε3(k, 0)]} ,

(3.42)

where ε1(k,M) and ε3(k,M) denote the linear and cubic surface band energies

modified by the addition of the term M Λ̂α to ĥS in Eq. (3.11); ε1(k, 0) and ε3(k, 0)

are the unperturbed, gapless linear and cubic dispersion relations [Eq. (3.12)].
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Setting α = 0 (such that Λ̂α = τ̂ 3) and extremizing ∆E(M) with respect to M

leads to the mean-field result in Eq. (3.17), valid in the weak coupling limit u � c.

Since quantum fluctuations enhance positive u and the interaction is attractive in

the Λ̂α channel only for 0 ≤ α < 1/2, we expect that the order is weighted towards τ̂ 3

instead of κ̂3; the surface winding number W = +2 throughout this range (Fig. 3.2).

A curious aspect of Eq. (3.42) is the following. By choosing α arbitrarily close

to 1/2, we can suppress the contribution of the first term on the right-hand side of

Eq. (3.42). This allows us to take larger and larger values forM so as to enhance the

negativity of the second term. Yet it cannot be that the system wants to condense

with the bilinear with Λ̂α = (τ̂ 3 + κ̂3)/2, because the interaction cannot even be

written in terms of its square (as discussed above). This suggests that the true

admixture of τ̂ 3 and κ̂3 order [i.e., the value of α in the expectation value of M

defined by Eq. (3.38)] cannot be determined by mean-field theory. This warrants

further investigation, but we will not pursue it here.

3.4 Quenched disorder

3.4.1 The “standard” theory for a disordered class DIII sys-

tem: thermal metal

Next we comment on the physics of the noninteracting, disordered Majorana surface

fluid. Since the spin-3/2 model with surface Hamiltonian given by Eq. (3.11) has a

cubic van Hove singularity, one would naively expect the “standard program” [35]
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for deriving the effective low-energy field theory in the presence of disorder would

apply. The steps in this program are

1. Write a (replicated) Grassmann path integral in order to compute disorder-

averaged products of retarded and advanced Green’s functions.

2. Average over the disorder potentials P1,2(r) in Eq. (3.19) with variance λ.

3. Decouple the four-field term using an unconstrained matrix field Q̂.

4. Integrate out the Grassmann field.

5. Compute the saddle-point configuration of Q̂, the strength of which is the

self-consistent Born approximation for the elastic scattering rate. This should

smear out the van Hove singularity in the clean density of states.

6. Perform a gradient expansion and integrate out massive modes to get the non-

linear sigma model for the constrained matrix field Q̂ in the appropriate sym-

metry class. Fluctuations due to quantum interference are controlled by the

(inverse of the) coupling constant G, which is the dimensionless charge, spin, or

thermal longitudinal dc conductance (depending upon the class and context).

For a gapless, 2D class DIII Majorana system as described here, this program

was carried out in a nontopological context in [24]. The resulting theory has the

thermal conductance determined by the bare strength of the disorder G ∝ 1/λ, and

G grows with increasing system size due to weak antilocalization. Although the

global density of states (DoS) diverges and wave functions are weakly multifractal,

neither are universal.
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Our numerical results in Figs. 3.3 and 3.4 instead imply universal behavior in the

disorder-averaged DoS and multifractal spectrum for the spin-3/2 surface Majorana

fluid, consistent with the SO(n)4 conformal field theory. Interestingly, the latter

has a sigma model description (non-abelian bosonization) that is almost identical to

the one obtained by the “standard program,” but augmented with a Wess-Zumino-

Novikov-Witten term [11]. Yet the key point is that the coupling strength is pinned

to a special value equal to the winding number 4, times a universal constant. Since

the winding number is not large, the field theory is strongly coupled. This is in part

why the standard program fails in this case. For the spin-1/2 TSC models studied

previously [10, 11, 13], a nonperturbative derivation was possible using conformal

embedding theory. This is not possible in the present case, since the clean surface

with Hamiltonian given by Eq. (4.1) is not a conformal field theory (as evidenced by

the fact that c has units of length).

Finally, we stress an important technical point. The CFT is an unstable fixed

point of the sigma model. In the absence of interactions, the sigma model is charac-

terized by a single coupling strength λ, which can be understood as the dimensionless

thermal resistance of the system. In the large winding number limit |ν| � 1, it is

possible to compute the beta function for λ, incorporating the WZNW term. The

result is [13]

dλ

dl
= −2λ2

[
1− (|ν|λ)2

]
, (3.43)

valid for λ ≤ |ν|. The CFT has λ = 1/|ν|, and this remains a fixed point to all

orders in λ. However, any λ < 1/|ν| flows to ever smaller λ; this is the signal for weak

antilocalization in the thermal metallic phase [24]. The fact that our numerical results
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for the spin-3/2 Majorana surface fluid studied in this work coincide with the SO(n)4

fixed point implies that the topology “fine tunes” λ to its fixed point value. Since

λ is an inverse conductance, it implies the quantization of the thermal conductivity

[Eq. (3.2)], which remains true even when interaction (Altshuler-Aronov) corrections

are taken into account [13].

3.4.2 Momentum space exact diagonalization

We consider the effective surface Hamiltonian in the presence of the most general

form of time-reversal invariant disorder, as given in Eq. (3.19). For a system of finite

size L, the Hamiltonian can be expressed as a sum over discrete points in momentum

space:

H =
1

2

∫
d2r ηT(r) M̂ (S)

P

[
ĥS + τ̂ ·P(r)

]
η(r) =

1

2

∑
n,m

ηT−m M̂ (S)

P [ĥ(P )

S ]m,n ηn,

[ĥ(P )

S ]m,n ≡ δm,n ĥS

(
k = 2π

L
n
)

+ τ̂ ·P(m−n), (3.44)

with the Fourier conventions

ηn =
1

L

∫
d2r e−i

2π
L
n·r η(r), η(r) =

1

L

∑
n

ei
2π
L
n·r ηn,

Pµ,n =
1

L2

∫
d2r e−i

2π
L
n·r Pµ(r), Pµ(r) =

∑
n

ei
2π
L
n·r Pµ,n.

In these equations n ∈ {Z,Z} and the components of Pµ are µ ∈ {1, 2}.

For exact diagonalization, we choose a momentum cutoff Nk and keep only those

points n in momentum space with −Nk ≤ ni ≤ Nk, for i = 1, 2. This choice corre-

sponds to an energy cutoff of Λ = 2πNk/L. We also approximate the Gaussian white
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noise disorder potentials Pµ,n with random-phase Gaussian amplitude distributions

via

Pµ,n ⇒
√
λ

L
exp

(
−π

2

L2
ξ2n2 + i θµ,n

)
, (3.45)

where λ is the dimensionless variance of the disorder, ξ is a short-distance correlation

length of the order L/Nk, and θµ,n ∈ [0, 2π) is a uniformly distributed random phase

angle. Because Pµ(r) is a real-valued disorder potential, the phases are taken to

satisfy θµ,n = −θµ,−n. The random-phase approach is equivalent to the disorder-

average up to finite-size corrections [12]. The resulting approximate Hamiltonian

[ĥ(P )

S ]m,n is a dense numerical matrix acting on a 4(2Nk + 1)2-dimensional Hilbert

space that we diagonalize to obtain the energy values and eigenstate wave functions.

In the plots shown in Figs. 3.3 and 3.4, we set ξ = 0.25 (L/Nk) and c = 0.078 (L/Nk)

(such that 2πNkc/L = 0.49 for Nk = 40). Our results are robust with respect to

variation of the system size Nk, the correlation length ξ, and c. In our calculations,

we have retained Pµ,0 given by Eq. (3.45) with θµ,0 = 0. This represents a nonzero

average disorder strength proportional to
√
λ. The associated matrix bilinears τ̂ 1,2

break rotational invariance. Thus, our numerical results show good agreement with

the CFT even when we incorporate nonzero (but weak) average anisotropy. We have

also performed calculations with Pµ,0 = 0. The results are indistinguishable.
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3.5 Odd-parity pairing in the Luttinger semimetal

In this section and hereafter, we present the case of odd-parity topological super-

conductivity in the Luttinger semimetal where bands bending oppositely [26]. To

motivate and clarify more on the Luttinger model itself, we reintroduce the model

in more detail here again.

Quadratic touching of Kramers degenerate valence and conduction bands at an

isolated point [taken to be the Γ = (0, 0, 0) point] in the Brillouin zone in three

spatial dimensions can be captured by the k · p Hamiltonian

HL =

∫
d3k

(2π)3
Ψ†k ĥL(k) Ψk, (3.46)

where the four-component spinor Ψk is defined as

Ψ>k =
(
ck,+ 3

2
, ck,+ 1

2
, ck,− 1

2
, ck,− 3

2

)
. (3.47)

Here ck,ms is the band electron annihilation operator with spin projection ms ∈

{3/2, 1/2,−1/2,−3/2}. Such quadratic touching is protected by the cubic symmetry,

which restricts the form of the Luttinger Hamiltonian [36, 37] operator to

ĥL(k) =

(
k2

2m0

− µ
)

Γ0 −
1

2m1

3∑
a=1

da(k)Γa

− 1

2m2

5∑
a=4

da(k)Γa, (3.48)

where µ is the chemical potential measured from the band touching point. The d-

vector appearing in the Luttinger Hamiltonian is given by d(k) = k2 d̂(k̂), where
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d̂(k̂) is a five-dimensional unit vector that transforms in the l = 2 (“d-wave”) rep-

resentation under orbital SO(3) rotations. Its components can be constructed from

the spherical harmonics Y m
l=2(θ, φ). While Γ0 is a four-dimensional unit matrix, the

five mutually anti-commuting matrices appearing in the Luttinger Hamiltonian are

given by

Γ1 = κ3σ2, Γ2 = κ3σ1, Γ3 = κ2,

Γ4 = κ1, Γ5 = κ3σ3.

(3.49)

Two sets of Pauli matrices {κα} and {σα}, with α = 0, 1, 2, 3 operate respectively

on the sign [sgn(ms)] and the magnitude [|ms| ∈ {1/2, 3/2}] of the spin projection

ms. The Γ matrices provide a basis for a symmetric traceless tensor operator formed

from bilinear products of j = 3/2 matrices, and transform in the j = 2 representation

of the spin SU(2). Consequently, the Hamiltonian in Eq. (3.48), is an A1g quantity

in a cubic environment. For m1 = m2, ĥL(k) exhibits continuous SO(3) rotational

invariance.

Besides five mutually anticommuting Γ matrices and the identity matrix (Γ0),

we can define ten commutators as Γab = [Γa,Γb] /(2i) ≡ −iΓaΓb for a, b = 1, · · · , 5

with a 6= b that together close the basis for all four dimensional matrices. The ten

commutators are the generators of a (fictitious) SO(5) symmetry. Since d(k) =

0 at the Γ point of the Brillouin zone k = 0, the four degenerate bands possess

an emergent SU(4) symmetry at this point. However, at finite momentum such

symmetry gets reduced to SU(2) × SU(2), stemming from the Kramers degeneracies

of the valence and conduction bands. In addition, the Luttinger Hamiltonian is

invariant under the time reversal transformation: k → −k and Ψk → Γ13Ψ−k. The
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anti-unitary time-reversal symmetry operator is given by T = Γ1Γ3K, where K is

the complex conjugation and T 2 = −1. The Kramers degeneracy is protected by

inversion symmetry P : k→ −k.

Without any loss of generality, but for the sake of technical simplicity, we work

with the isotropic Luttinger model for which m1 = m2 ≡ m. The Luttinger Hamil-

tonian then has the alternative representation,

ĥL(k) =

[(
λ1 +

5

2
λ2

)
k2 − µ

]
Γ0 − 2λ2 (J · k)2 , (3.50)

with J = (Jx, Jy, Jz) and k = (kx, ky, kz). Here Jx,y,z are SU(2) generators in the 3/2

representation. The correspondence between Eqs. (3.48) and (3.50) is λ1 = (2m0)−1,

λ2 = (4m)−1. The Luttinger Hamiltonian can be diagonalized as D†ĤL(k)D, with

the energy spectra

ε±,σ(k) =

(
k2

2m0

− µ
)
± k2

2m
. (3.51)

Here + (−) corresponds to the |ms| = 1/2 conduction (|ms| = 3/2 valence) band. We

have assumed that m0 > m1, so that these two bands bend oppositely. The “band

pseudospin” index σ ∈ ±1, and independence of ε±,σ(k) on σ specifies the Kramers

degenerate states in each band. For a given k, one possible choice is σ = sgn(J · k)

(i.e. pseudospin-momentum locking), but we will not need to fix this basis. The

diagonalizing matrix D is given by [37]

D =
1[

2
(

1 + d̂5

)]1/2

[(
1 + d̂5

)
Γ0 + i

4∑
a=1

Γa5

]
. (3.52)

The pseudospin locking in the valence and conduction bands becomes transparent

48



with a specific choice of the momentum k = (0, 0, kz) for which the Luttinger Hamil-

tonian from Eq. (3.48) readily assumes a diagonal form

ĥL(kz) = Diag.

[
− k2

z

2m−∗
,
k2
z

2m+
∗
,
k2
z

2m+
∗
,− k2

z

2m−∗

]
− µ, (3.53)

in the spinor basis defined in Eq. (3.47), where m±∗ = m0m/|m0 ± m|. Therefore,

for m0 > m the first and fourth (second and third) entries yield Kramers degenerate

spectra for the valence (conduction) band. Hence, the pseudospin projection on the

valence (conduction) band is |ms| = 3/2 (1/2).

In the previous sections, also look at [38], we investigated exactly these ques-

tions in the Luttinger Hamiltonian [Eqs. (3.46) and (3.50)] with isotropic p-wave

pairing, but with one crucial difference. In Ref. [38], we assumed that m > m0,

i.e., that both bands in Eq. (3.51) “bend together”, as in the light and heavy hole

bands of GaAs [37]. Assuming that both bands participate in superconductivity, the

bulk winding number ν = 4 in that case, and the surface Majorana fluid exhibits

coexisting linear and cubic dispersing branches [14]. We showed that interactions

can destabilize the clean fluid [38], inducing spontaneous time-reversal symmetry

breaking and surface thermal quantum Hall order1 [19, 9, 22, 23].

By contrast, we demonstrated that quenched surface disorder is a strong per-

turbation that induces critical Anderson delocalization, with multifractal surface

wave functions and a power-law divergence of the disorder-averaged density of states.

These results were obtained numerically via exact diagonalization, and were found

to agree very well with the predictions of a certain 2D conformal field theory (CFT).

The CFT is the current algebra SO(n)ν (with ν = 4), where n→ 0 is a replica index

1We note that such surface order can also arise in the presence of p+ is pairing in the bulk [39].

49



[11]. We concluded that the surface states are governed by this CFT in the pres-

ence of arbitrarily weak disorder. Moreover, in a separate work we established that

the class DIII SO(n)ν theory is stable against the effects of residual quasiparticle-

quasiparticle interactions [11]. The main takeaway of Ref. [38] was that disorder can

enhance topological protection at the surface of a higher-spin TSC.

The SO(n)ν CFT can be “derived” via certain conformal embedding rules for

surface states of model spin-1/2 TSCs [11]. In the case of the Luttinger semimetal

(LSM) with p-wave pairing studied here and for the closely related model in [38],

these rules do not obviously apply. In particular, the conformal embedding argument

assumes that the clean limit is also a CFT, i.e., free relativistic fermions (in 2 + 0

dimensions; in the absence of interactions, we can study the problem at a fixed

single particle energy [11]). By contrast, the clean surface states of higher-spin

TSCs typically have higher (e.g., cubic) dispersion [15, 14], and are not conformally

invariant.

Here we consider the problem in the LSM, where electron and hole bands bend

oppositely. This gives rise to a different winding number (ν = 3) and different surface

states, depending on the doping. In fact, we invent here a generalized surface model

(see Sec. 3.5.3) that allows us to efficiently simulate noninteracting surface states

corresponding to a bulk TSC in class DIII with arbitrary integer winding number ν.

The model has ν-fold dispersion, such that the large-ν limit corresponds to a highly

flattened surface band with a strongly diverging clean DoS.

On physical grounds, the most general expectation for class DIII in this case

would be that disorder induces a surface thermal metal [28].
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In two spatial dimensions, the thermal metal phase in class DIII is stable due to

weak antilocalization. Moreover, the SO(n)ν CFT fixed point, while stable against

interactions, is technically unstable towards flowing into the thermal metal [38]; see

Fig. 3.6.

Despite this, in Ref. [38] for winding number ν = 4 and here for generic ν ≥ 3, we

provide strong numerical evidence that any disorder induces the quantum critical

scaling associated to SO(n)ν , with universal predictions for experiment that depend

only on ν. These include power-law scaling for the tunneling density of states, a

quantized thermal conductivity divided by temperature [13, 38], and a universal

multifractal spectrum of local DoS fluctuations. These states are also robust against

interactions for any ν [11].
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with ν-dispersion

Thermal 
metal

SO(n)ν
(Critical
Delocalization)

Topology-tuned
RG Flow to CFT

Figure 3.6: Schematic phase diagram for the noninteracting 2D surface states of a class

DIII bulk topological superconductor. The fixed point representing the clean surface band

structure (red dot) is unstable in the presence of time-reversal preserving quenched disorder

for any ν ≥ 3, where ν is the integer bulk winding number. The precise form of the clean

limit depends on details. For a spin-1/2 bulk, one can have ν species of massless relativistic

Majorana fermions, with disorder that enters as a nonabelian gauge potential scattering

between these [11]. For isotropic p-wave pairing in the LSM studied here with winding

number ν = 3, the surface states in the hole-doped case consist of a single two-component

surface fermion with cubic dispersion, see Fig. 3.7 (a) and Eq. (3.64) [15], c.f. Refs. [14, 38].

Our generalized surface theory in Eq. (3.76) has ν-fold dispersion for the corresponding

winding number. The disordered system should be described by a class DIII non-linear

sigma model with a Wess-Zumino-Novikov-Witten (WZNW) term. The WZNW term

prevents Anderson localization [28, 11]. This theory has a stable thermal metal phase

(green dot) and an unstable, critically delocalized fixed point. The latter (yellow dot) is

governed by the SO(n)ν CFT [11, 13]. Our numerical results are generally consistent with

the SO(n)ν theory, see Figs. 3.8–3.10, implying that the renormalization group trajectory

away from the clean limit is fine-tuned by the topology to flow into the CFT (solid vertical

flow), instead of flowing into the thermal metal (dashed flow). The same conclusion was

reached for a model with ν = 4 in Ref. [38].
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Our results suggest a deep connection between the bulk topology of three-dimensional

TSC and the universal physics of the quench-disordered two-dimensional Majorana

surface fluid, despite the fact that key attributes of the clean surface depend on

details of the bulk. In particular, it suggests a topological generalization of the con-

formal embedding rule [SO(nν)1 ⊃ SO(n)ν⊕SO(ν)n] used to link ν clean relativistic

Majorana fermions to the SO(n)ν CFT in the presence of disorder [11]. This topo-

logical generalization should apply in the replica limit n → 0 to any surface band

structure for any strong class DIII TSC with winding number ν ≥ 3, subject to

time-reversal invariant quenched disorder.

Beyond fundamental interest, the Eliashberg calculations in Ref. [40] suggest

that isotropic p-wave pairing gives the dominant non-s-wave channel in a hole-doped

LSM due to optical-phonon–mediated pairing. For this reason we focus mainly on

the hole-doped model in the following, which has ν = 3 (see below).

3.5.1 Bulk and surface theory

We write the Luttinger Hamiltonian in terms of the Nambu spinor defined as,

H =
1

2

∫
d3k

(2π)3
Ψ†N(k) ĥ(k) ΨN(k), (3.54)

where the 8× 8 Bogoliubov-de Gennes (BdG) Hamiltonian is

ĥ(k) = ĥL(k) τ3 + ∆p (J · k) τ1. (3.55)

Here ĥL is the Luttinger operator from Eq. (3.50) and J denotes the vector of spin-

3/2 generators. The Pauli matrices {τµ} act on the particle-hole (Nambu) space.
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The parameter ∆p is the real p-wave pairing amplitude; with this choice, Eq. (3.55)

is time-reversal invariant [see Eq. (3.57)]. It also satisfies the particle-hole condition

in Eq. (3.56).

−M̂P ĥ
T(−k) M̂P = ĥ(k), M̂P = τ2 Γ13, (3.56)

−M̂S ĥ(k) M̂S = ĥ(k), M̂S = τ2. (3.57)

We assume weak BCS pairing so that µ > 0 (µ < 0) describes superconduc-

tivity in the |ms| = 1/2 conduction (|ms| = 3/2 valence) band of the Luttinger

Hamiltonian. The physical bulk quasiparticle energy spectrum of Eq. (3.55) is fully

gapped,

E±(k) =

√
(|λ1 ± 2λ2|k2 − |µ|)2 +

[(
2∓1

2

)
∆pk

]2
, (3.58)

where 2λ2 > λ1 is required so that conduction and valence bands bend oppositely

[or m0 > m in Eq. (3.51)], and E+ (E−) corresponds to superconductivity in the

conduction (valence) band. The assumption of weak BCS pairing around a finite

Fermi surface means that we can project the BdG Hamiltonian into the |ms| = 1/2

conduction or |ms| = 3/2 valence band. The results are

ĥ1/2(k) =
[
(λ1 + 2λ2)k2 − µ

]
τ3 +

∆p

2

−kz − k̄2

k

−k2

k̄
kz

 τ1,

ĥ3/2(k) =
[
(λ1 − 2λ2)k2 − µ

]
τ3

+
∆p

α(k)

−kz β(k) k̄3

k3 kz β(k)

 τ1, (3.59)
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where k ≡ kx − iky, k̄ = k∗, and

α(k) =
2

3

(
4k2

z + |k|2
)
, β(k) =

(
4k2

z + 3|k|2
)
. (3.60)

Here we have diagonalized (J · k)2 but not (J · k), so that the matrix elements are

rational functions of the momentum components. This is essential for obtaining a

local surface theory, derived below.
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Figure 3.7: Surface Majorana fluid band structure (no unit) for the Luttinger Hamil-

tonian with isotropic p-wave pairing. This is a class DIII, strong topological super-

conductor with winding number |ν| = 3 for pairing arising from either the conduc-

tion or valence bands. Results shown here are obtained from a lattice regulariza-

tion and termination of Eq. (3.55). The top panel (a) shows the cubic-dispersing

two-dimensional surface states obtained for hole-doping, see Eq. (3.64). The BdG

parameters are ∆p = 1, λ1 = 0.1, λ2 = 0.5 and µ = −1. The bottom panel (b) shows

a relativistic cone centered at k = 0 and a gapless ring in the electron-doped case.

The parameters are the same as for (a), except that µ = +1.

We employ the winding number defined by Schnyder et al. [9] to characterize the
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topology of the bulk. After rotating τ3 → τ2, one introduces the matrix 4× 4 matrix

Q(k) = U−1(k) ΛU(k), where U(k) diagonalizes ĥ|ms|(k), and Λ = diag(1, 1,−1,−1)

is the flattened matrix of energy eigenvalues. Then Q is off-diagonal,

Q =

 0 q

q−1 0

 , (3.61)

and the winding number is given by

ν =

∫
d3k

24π2
εijk Tr

[
(q−1∂iq)(q

−1∂jq)(q
−1∂kq)

]
, (3.62)

with repeated indices summed. We find that |ν| = 3 for the valence and conduction

bands. From here on we ignore sgn(ν), which can only be important at an interface

(e.g., a physical surface) where this sign flips. Our winding number is in agreement

with Ref. [15] for the |ms| = 3/2 band, but differs from that obtained for the |ms| =

1/2 band, in which ν = 1 was claimed. We show below that surface state calculations

support our results. We believe that the discrepancy comes from the fact the authors

of Ref. [15] used a Fermi surface winding number method [41], which gives the correct

winding number only if the system is non-degenerate.

To obtain the effective surface Hamiltonian we follow the conventional approach of

terminating in the z-direction and diagonalizing ĥ|ms|(k, kz → −i∂z) where k = kx, ky

denotes momentum parallel to the surface. For the |ms| = 3/2 valence band, applying

hard-wall boundary conditions we obtain zero energy surface states at k = 0 of the

form

|ψ0,ms〉 = |τ2 = sgn(ms)〉 ⊗ |ms〉 ⊗ |fms〉. (3.63)
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The particle-hole spin locks along the +τ2 (−τ2) direction for positive (negative) ms

[14, 38]. In Eq. (3.63), 〈z |fms〉 = fms(z) denotes the bound state envelope function.

Using first-order k · p perturbation theory we obtain the surface effective Hamil-

tonian,

ĥ(S)

3/2(k) ∝ ∆p

k2
F

 0 ik̄3

−ik3 0

 . (3.64)

Eq.(3.64) satisfies the projected version of the particle-hole symmetry in Eq. (3.56),

−M̂ (S)

P

[
ĥ(S)

3/2

]T
(−k) M̂ (S)

P = ĥ(S)

3/2(k), M̂ (S)

P = σ1, (3.65)

and the projected time-reversal symmetry [Eq. (3.57)]

−M̂ (S)

S ĥ(S)

3/2(k) M̂ (S)

S = ĥ(S)

3/2(k), M̂ (S)

S = σ3. (3.66)

Here the matrices {σµ} act on the components ms = ±3/2.

Fig. 3.7 shows the clean Majorana surface bands obtained numerically from a

lattice regularization of Eq. (3.55) for (a) |ms| = 3/2 valence-band–hole and (b)

|ms| = 1/2 conduction-band–electron superconductivity. Below we focus on the hole-

doped case in which the surface fluid has cubic dispersion [Eq. (3.64)]. The surface

fluid in the electron-doped case is depicted in Fig. 3.7 (b), and exhibits a linear

Majorana cone around k = 0 and a zero-mode ring at finite surface momentum; the

latter structure is inconsistent with ν = 1 [15, 14].
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3.5.2 Quenched surface disorder, class DIII SO(n)ν confor-

mal field theory, and numerical results

We now turn to perturbations of the surface theory, focusing on the cubic-dispersing

Majorana fluid that arises from hole-doped superconductivity. We can write the

surface Hamiltonian as

H (S)

0 =
1

2

∫
d2r ηT M̂ (S)

P

(
σ− ∂

3 − σ+ ∂̄
3
)
η, (3.67)

where η → ηms is a two-component Majorana spinor and r is the position vector.

The chiral derivative operators are {∂, ∂̄} ≡ (1/2)(∂x ∓ i∂y), while σ± ≡ σ1 ± iσ2.

Here we have set the prefactor of Eq. (3.64) equal to one.

The simplest class of surface perturbations are constant bilinears. Such an oper-

ator can be written as ηTM̂ (S)

P Λη, with Λ a 2×2 Hermitian matrix. The only bilinear

that satisfies particle-hole in Eq. (3.65) (i.e., which does not vanish under Pauli ex-

clusion) is the mass term Λ = σ3 ' Jz. This is the projection of the spin operator

perpendicular to the surface. The nonzero expectation value of this term (due e.g.

to a coupling with an external Zeeman field) would open a surface energy gap and

signal time-reversal symmetry breaking. The time-reversal broken state would reside

in a plateau of a surface thermal quantum Hall effect [19, 9, 22, 23].

These considerations are almost identical to 3He-B [8, 9], which has spin-1/2 and

ν = 1. The only difference is that the derivatives in Eq. (3.67) appear to the first

power for ν = 1, whereas here we get the ν = 3 power for the spin-3/2 bulk.

Residual quasiparticle-quasiparticle interactions should be short-ranged (due to
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screening by the bulk superfluid). Since η is a two-component Majorana field, the

most relevant interaction that we can write down is

H (S)

I = u

∫
d2r η1∇η1 · η2∇η2. (3.68)

The coupling strength u has dimensions of length for cubic dispersion and is therefore

irrelevant in the sense of the renormalization group (RG) [15].

Finally we turn to quenched disorder, which is always present at the surface of a

real sample. We assume the disorder is non-magnetic, but may arise due to neutral

adatoms, charged impurities, grain boundaries, etc. In other words, any time-reversal

invariant surface potential perturbation is allowed. Since the only bilinear without

derivatives is the massive, time-reversal odd Jz operator discussed above, we must

broaden the search to include bilinears with derivatives. The most relevant possible

potential can be encoded in the Hamiltonian

H (S)

D = − i
2

∫
d2r

ηT(r) M̂ (S)

P σα

←→
∂

∂xβ
η(r)

Pαβ(r). (3.69)

In this equation repeated indices are summed, α, β ∈ {x, y}. We assume that Pαβ(r)

is a white-noise-correlated random potential with variance λ. Then λ has dimensions

of 1/(length)2 and is a relevant perturbation to the clean cubic band structure.

Similar to the previous sections, The effects of disorder cannot be treated per-

turbatively. The standard procedure would produce a disorder-averaged nonlinear

sigma model in class DIII, which possesses a stable thermal metal phase [24, 28].

Although the thermal metal is perturbatively accessible in the sigma model with the

WZNW term, the critical SO(n)ν CFT fixed point is not, except for the limit of large
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ν. Therefore we resort to numerics in the remainder of this section. The question we

want to answer is whether disorder flows into the SO(n)ν CFT or the thermal metal,

see Fig. 3.6.

The noninteracting BdG Hamiltonian implied by Eqs. (3.67) and (3.69) has mo-

mentum space matrix elements

[
ĥS

]
k,k′

=

 0 ik̄3

−ik3 0

δk,k′ + (kx + k′x)

0 1

1 0

Px(k− k′)

+ (ky + k′y)

0 −i

i 0

Py(k− k′), (3.70)

where we have taken Pαβ(r) to be diagonal in its lower indices. Gaussian white

noise disorder can be efficiently simulated in momentum space using a random phase

method [12],

Pα(k) =

√
λ

L
eiθα(k) exp

(
−k

2ξ2

4

)
, (3.71)

where θα(−k) = −θα(k), but these are otherwise independent, uniformly distributed

random phases. The parameters L, ξ and λ denote the system size, correlation length,

and disorder strength respectively. For exact diagonalization, we choose periodic

boundary conditions so that k = (2π/L)n, and the components of n ∈ {Z,Z} run

over a square with −Nk ≤ ni ≤ Nk, for i = 1, 2. Here Nk determines the size of the

vector space in which we diagonalize, which is 2(2Nk + 1)2. Although the choice of

L is arbitrary, we use it to fix the ultraviolet momentum cutoff Λ = 2πNk/L. The

correlation length ξ and the dimensionful disorder strength λ are then measured in

terms of powers of Λ. The random-phase approach is equivalent to the disorder-

average up to finite-size corrections [12]. We perform the calculations in momentum
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space in order to avoid fermion doubling.

Similar to the case of ν = 4 of previous sections and [38], to characterize the

disordered surface theory, we study the scaling of the disorder-averaged DoS %S(ε)

and wave function multifractality, measures that are expected to show universal

behavior at the SO(n)3 fixed point. The clean surface has %S(ε) ∝ |ε|−1/3 due to the

cubic dispersion. For winding number ν, in the presence of time-reversal preserving

disorder the SO(n)ν theory predicts the scaling behavior of the disorder-averaged DoS

[42, 11] to be %S(ε) ∝ |ε|−1/(2ν−3). In the case of the hole-doped LSM with ν = 3,

the clean and dirty CFT predictions coincide. For the generalized surface theory

introduced below [defined via Eq. (3.76)] or the ν = 4 model studied in Ref. [38], the

clean and dirty predictions differ, so that the DoS provides a useful diagnostic. We

will plot the integrated density of states (IDoS) N(ε). For the SO(n)ν theory

N(ε) ≡
∫ ε

0

dε′ %S(ε′) ∼ |ε|(2ν−4)/(2ν−3). (3.72)

For TSC surface states, the multifractal spectrum τ(q) is expected to have the

form [29, 11, 12]

τ(q) =


(q − 1)(2− θν q), q < |qc|,

(
√

2−
√
θν)

2q, q > qc,

(
√

2 +
√
θν)

2q, q < −qc,

(3.73)

where

qc ≡
√

2/θν . (3.74)

The spectrum is quadratic below the termination threshold q = ±qc, beyond which

it is linear [29, 28, 30].
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For disordered class DIII surface states and winding number ν, the SO(n)ν theory

predicts [11]

θν =
1

ν − 2
, ν ≥ 3. (3.75)

Eqs. (3.72) and (3.75) are exact results that obtain from the primary field spectrum

of SO(n)ν in the replica n → 0 limit. Isotropic p-wave pairing in the Luttinger

semimetal gives ν = 3, so that θν = 1 and qc =
√

2 ' 1.4. This corresponds to quite

strong multifractality, which presents some difficulties as we will see. By contrast,

large ν gives θν � 1 and qc � 1, corresponding to weakly multifractal (nearly

plane-wave) states.

Fig. 3.8 depicts our numerical results for the τ(q) spectrum for two different

disorder strengths, and the IDoS N(ε) for one disorder strength. As mentioned

above, the IDoS is not particularly useful for ν = 3 because the clean and dirty CFT

predictions coincide. Moreover, the strong divergence in the corresponding DoS %(ε)

makes it difficult to get sufficient resolution in the peak itself.
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Figure 3.8: Numerical results for the surface states of the hole-doped Luttinger semimetal

with isotropic p-wave pairing in the bulk and time-reversal symmetry preserving disorder on

the surface. The winding number of the bulk is ν = 3. The left plot shows the multifractal

spectrum [Eqs. (3.73)] for two typical lowest energy surface wave functions in fixed disorder

realizations. The dotted red curves are the numerical results, while the solid blue curve is

the analytical prediction from the SO(n)3 CFT [Eqs. (4.3)–(3.75)]. The curves marked (i)

and (ii) correspond to two different disorder strengths λ; the second one is shifted vertically

for clarity. Because λ has dimensions of 1/(length)2, it is measured in units of the squared

momentum cutoff Λ2 (see text). The system size is a 109×109 grid of momenta. Box sizes

b=1 and b=5 are used to extract τ(q) [see Eqs. (2.11) and (2.12)]. The right plot shows

the integrated density of states N(ε) (No unit). In this case, both the clean limit and the

SO(n)3 theory predict N(ε) ∼ ε2/3 [Eq. (3.72)]. For ν = 3 the effects of disorder are strong,

as indicated by the analytical result for the universal multifractal spectrum (blue curves,

left panel). It is almost “frozen” [a frozen state has τ(q) = 0 for q > qc [29, 43, 44, 45, 12]].

This means that the typical wave function consists of a few rare peaks with arbitrarily

large separation, see Fig. 1(b) in Ref. [12] for an example. We expect that finite size effects

are quite severe in this case, responsible for the deviation between the analytical prediction

and numerics. See Figs. 3.9 and 3.10 for higher ν, which give much better agreement.
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We find that the multifractal spectrum becomes disorder-independent for suffi-

ciently large disorder strengths. This is important, because the thermal metal phase

should exhibit weak multifractality and a weak DoS divergence, but both features

would be disorder- and scale-dependent due to weak antilocalization [24]. We observe

rough agreement between the analytical SO(n)3 CFT prediction [Eqs. (3.73)–(3.75)]

and the numerics. This should be compared to the ν = 4 model studied in Ref. [38],

wherein quite good agreement was obtained. Even better results are found for the

higher-ν model explicated in the next section, see Figs. 3.9 and 3.10.

We attribute the relatively poor fit for τ(q) in Fig. 3.8 to the strong multifractality

predicted by SO(n)3. This is indicated by the solid blue curve in the top panel of

Fig. 3.8. The analytical τ(q) is almost “frozen.” A frozen state has τ(q) = 0 for q >

qc ≥ 1 [29]. A critically delocalized, but frozen state consists of a few rare probability

peaks, with arbitrarily large separation between these [29, 43, 44, 45, 12]. The peaks

are sufficiently rare that their heights do not scale with a power of the system size L,

similar to an Anderson localized state. (The term “frozen” originates via a mapping

to the classical glass transition in the random energy model [29, 44, 45].) Frozen

states also resemble the “random singlet” wave functions of the Jordan-Wignerized

random bond XY model in 1D, which have the quality of random telegraph signals

[46]. In a previous study [12], we found that the momentum space method does not

scale well for frozen states, and we believe this is the source of the relatively poor fit

in Fig. 3.8.
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3.5.3 Generalized surface: Higher winding numbers and nu-

merical results

If we believe that finite size effects are responsible for the relatively poor fit between

numerics and the SO(n)3 CFT in Fig. 3.8, the obvious way to improve is to increase

the system size. Instead of doing this (which requires more computer memory), we

take another approach.

We conjecture that the Majorana surface fluid of a class DIII TSC with bulk

winding number ν ∈ 2Z + 1 (odd) can be captured by the generalized 2× 2 surface

model

[
ĥ(ν)

S

]
k,k′

=

 0 ik̄ν

−ikν 0

δk,k′ + (kx + k′x)σ1 Px(k− k′)

+ (ky + k′y)σ2 Py(k− k′). (3.76)

For ν = 1 we get the spin-1/2 surface states of 3He-B, while ν = 3 corresponds to

the hole-doped LSM [Eq. (3.70)]. Again taking Px,y to be random phase, white noise

variables as in Eq. (3.71), the disorder strength λ is relevant for any ν ≥ 3, while it

is irrelevant for 3He-B.

How do we know that the surface Hamiltonian in Eq. (3.76) can be taken to

represent a TSC, without connecting it to a bulk model for general ν? Certainly the

clean limit of this model is artificial and extremely unstable (to both disorder and

interactions) for large ν. Both attributes follow from the strongly diverging clean
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DoS,

%(ε) ∼ |ε|−(ν−2)/ν . (3.77)

However, if the “topological tuning” scenario articulated in Fig. 3.6 is correct, then

any clean starting point should lead to the same disordered fixed point, the SO(n)ν

CFT [11].

We can infer the bulk winding number ν by computing the surface winding num-

ber WS. This obtains by adding the homogeneous time-reversal symmetry-breaking

mass term mσ3 to the clean band structure in Eq. (3.76), and computing [8]

WS(m) =
εαβγ

3!(2π)2

∫ ∞
−∞

dω

∫
d2k Tr

[(
Ĝ−1∂αĜ

)
×
(
Ĝ−1∂βĜ

)(
Ĝ−1∂γĜ

)]
, (3.78)

where Tr denotes the trace over the two spinor components, and α, β, γ ∈ {ω, kx, ky}

(repeated indices are summed). The surface state Green function’s Ĝ(ω,k,m) is

given by

Ĝ(ω,k,m) ≡
[
−i ω 1̂ + ĥm(k)

]−1

, (3.79)

where ĥm = ĥ(ν)

S |Pα=0 + mσ3 is the clean, gapped surface Hamiltonian. The surface

winding number determines the thermal Hall conductivity [18, 19, 20, 21, 22, 23]

κxy =WS κ◦, (3.80)

κ◦ =π2k2
BT/6h. (3.81)

Here h is Planck’s constant.
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It is easy to check that

WS(m) = (ν/2) sgn(m). (3.82)

For ν = 1 this is the standard “half-integer” (shifted) surface quantum Hall effect

familiar from 3He-B and topological insulators [8, 9]. For a relativistic Majorana

surface fluid, it can be shown that the maximum possible value of WS is the bulk

winding number divided by two [11]. We conclude that the surface Hamiltonian

in Eq. (3.76) is a representative surface band structure for a class DIII TSC with

winding number ν.

Following the same logic of the previous section, we compare the numerical diag-

onalization of Eq. (3.76) in momentum space to the predictions of the SO(n)ν CFT.

Results for ν = 5 and ν = 7 are shown in Figs. 3.9 and 3.10, respectively. In these

cases, the multifractal spectrum τ(q) and the IDoS N(ε) match very well the corre-

sponding CFT predictions in Eqs. (3.73)-(3.75) and (3.72), respectively. The reason

for the better matching is the weaker multifractality of the critical wave functions

with increasing ν, as predicted by the CFT.
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Figure 3.9: Same as Fig. 3.8, but for the generalized surface model in Eq. (3.76) with

ν = 5. Numerical results are shown as red dotted curves, while analytical predictions

(blue solid curves) for τ(q) and N(ε) obtain from the SO(n)5 CFT. Box sizes b=3

and b=6 are used to extract τ(q). The disorder strength λ formally has units of

1/(length)6, hence proportional to the sixth power of the momentum cutoff Λ. The

absolute disorder strength is of the same order as in Fig. 3.8, with the same system

size. The termination threshold qc =
√

6 ' 2.45 [see Eq. (3.74)].
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Figure 3.10: Same as Fig. 3.8, but for the generalized surface model in Eq. (3.76)

with ν = 7. Numerical results are shown as red dotted curves, while analytical

predictions (blue solid curves) for τ(q) and N(ε) obtain from the SO(n)7 CFT. Box

sizes b=3 and b=6 are used to extract τ(q). The disorder strength λ formally has

units of 1/(length)10, hence proportional to the tenth power of the momentum cutoff

Λ. The absolute disorder strength is of the same order as in Fig. 3.8, with the same

system size. The termination threshold qc =
√

10 ' 3.16 [see Eq. (3.74)].

The SO(n)ν fixed point is stable against residual quasiparticle-quasiparticle in-

teractions [11]. In addition to universal energy scaling of the DoS and wave function

multifractality (both which could be detected via STM), the ratio of the thermal

conductivity to temperature T is predicted to be quantized in the T → 0 limit:

[9, 13]

lim
T→0

κxx
T

=
|ν|
π

κ◦
T
, (3.83)

where κ◦ was defined by Eq. (3.81).
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3.6 Summary

In summary, we have studied the topological superconductivity in Luttinger model

for two different orientations of bands.

For the case where both bands bend in same direction we have derived surface states

and surface effective Hamiltonian for a spin-3/2 time-reversal invariant topological

superconductor that hosts a cubic dispersion coexisting with the conventional linear

Majorana cone. We have shown that in the clean limit, unlike the spin-1/2 case [33],

interactions are marginally relevant and lead to a BCS-type instability that gaps out

the surface and induces a thermal quantum Hall effect (TQHE) plateau. By contrast,

quenched disorder gives the SO(n)4 theory previously predicted for a spin-1/2 TSC

with winding number 4; this theory is stable to interaction effects. We conclude that

disorder enhances topological protection. In the low-temperature limit, the ratio of

the longitudinal thermal conductivity to temperature is predicted to be quantized

and proportional to the bulk winding number, as shown in Eq. (3.83).

On the other hand, when bands bend oppositely, we have investigated the effects of

disorder on the cubically dispersing surface states that arise from odd-parity, fully

gapped p-wave pairing (as in 3He-B). Using a generalized surface model with ν-fold

dispersion for winding number ν ≥ 3, we demonstrated excellent agreement between

numerical results and the conformal field theory (CFT) SO(n)ν for higher ν. The

CFT characterizes the critical delocalization of the surface in the presence of disor-

der, whilst the naively expected thermal metal phase is absent in our numerics. This

suggests a deep connection between the bulk topology on one hand, and the disor-

dered surface physics on the other, reminiscent of key aspects of the integer quantum
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Hall effect. A key open question is whether there exists a topological generalization

of the conformal embedding rule [SO(nν)1 ⊃ SO(n)ν⊕SO(ν)n], employed to explain

the robustness of CFT results in the case of spin-1/2 topological superconductors

[11].
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Chapter 4

Percolation all the way down on

the surface of topological

supercondutors

This chapter is mainly adapted from the following published paper: S.A.A. Ghorashi,

Y. Liao, M.S. Foster, arXiv:1711.03972.

4.1 Introduction

When fluid floods a landscape, the percolation threshold is the stage at which travel

by land or by sea becomes equally difficult. Percolation ideas can be applied to

the quantum Hall effect, wherein the sea level corresponds to the Fermi energy and
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the landscape is the electrostatic impurity potential [47]. The critical wave function

that sits exactly at the plateau transition corresponds to the percolation threshold,

while closed contours that encircle isolated lakes or islands correspond to Ander-

son localized states within a plateau. Although the critical statistics of the usual

plateau transition differ [48, 28], the plateau transition in the spin quantum Hall ef-

fect (SQHE) [49, 50, 51, 52, 53, 54, 55, 56] can be mapped exactly to classical perco-

lation [50]. The SQHE was introduced in the context of spin singlet, two-dimensional

(2D) superconductivity. The idea is that unpaired gapless quasiparticles can conduct

a spin current, and under the right conditions (broken time-reversal symmetry but

negligible Zeeman coupling, as in a d+id superconductor [51]), the spin Hall conduc-

tance within the spin Hall plateau is precisely quantized. The SQHE belongs to the

Altland-Zirnbauer class C [28].

For both classical percolation and the plateau transition in the SQHE, the “sea

level” has to be fine-tuned to the percolation threshold; in the SQHE, this means

that almost all states are Anderson localized, except those at the transition. In this

chapter, we uncover a new realization of 2D critical percolation that requires no fine-

tuning. In particular, we provide numerical evidence for an energy band of states,

where each state exhibits statistics consistent with critical percolation. We show

that this band of percolative states appears at the surface of a three-dimensional

(3D) topological superconductor in class CI, subject to quenched surface disorder

that preserves spin SU(2) symmetry and time-reversal invariance.
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Our results are important because they suggest an unexpected, direct link be-

tween 3D time-reversal invariant topological superconductors (TSCs) and 2D quan-

tum Hall effects. We employ a generalized class CI surface model that works for any

bulk winding number, but we find the same “percolative” states at finite energy in all

cases. Together with previous results for a particular winding number in class AIII

[57, 58, 12], it is natural to conjecture that the three classes of 3D TSCs (CI, AIII,

DIII [9, 59]) possess surface states that at finite energy and (almost) any winding

number are equivalent to the corresponding plateau transitions of the SQHE (class

C), integer quantum Hall effect (class A), and thermal quantum Hall effect (class D).

The band of plateau transition states found here will dominate finite-temperature

surface state response (a “multifractal spin metal”).

Surface states of bulk TSCs are known to exhibit unusual properties in the pres-

ence of quenched disorder [9, 10, 11, 38, 26]. Effective field theories for TSC surface

states were studied two decades ago [57, 60, 61, 62, 63] as examples of exactly solv-

able, critical delocalization in 2D. Only recently was it understood that these must

be attached to a higher-dimensional bulk, owing to certain anomalies [9, 22, 23].

TSC surface states can appear as multiple species of 2D Dirac or Majorana fermions

[9]. In class CI these are Dirac, not Majorana, owing to the conservation of spin

SU(2), the z-component of which plays the role of a U(1) “electric” charge. Non-

magnetic intervalley impurity scattering takes the form of an SU(2) vector potential,

due to the anomalous version of time-reversal symmetry [10, 11]. The exact solv-

ability (and proof of critical delocalization) holds at only one single-particle energy

in these theories [60, 61, 62, 63].
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The conventional notion of topological protection is that at least one surface or

edge state in the bulk gap of a topological insulator or superconductor must evade

Anderson localization in the presence of (non-magnetic) quenched disorder [9]; this

was made precise in [64], building off of [8, 65]. For a class CI TSC surface, the zero-

energy wave function is critically delocalized, with statistics that are exactly solved

by a certain conformal field theory (CFT) [66, 10]. The standard symmetry-based

argument [28, 64] would imply that all finite-energy states of a class CI Hamiltonian

should reside in the “orthogonal” metal class (AI), which is known to possess only

Anderson-localized states in 2D [28]. Let us examine the grounds for this belief.

A superficial argument can be given for why any nonstandard class (such as CI)

with a special chiral or particle-hole symmetry becomes a standard Wigner-Dyson

class (here AI) at finite energy: Adding the energy perturbation to the Hamiltonian

matrix ĥ→ ĥ− ε 1̂ breaks the special symmetry for any ε 6= 0. This logic is flawed,

however, because ε couples to the identity operator 1̂, which commutes with ĥ. The

argument works for a random symmetry-breaking perturbation ε → ε(r) (r is the

position vector), but that is a different problem.

A physical argument for the reduction to Wigner-Dyson is the following. Non-

standard class models can be realized as Bogoliubov-de Gennes Hamiltonians for

quasiparticles in superconductors [9, 28]. For single-particle energies much larger

than the BCS gap, it is clear that the wave functions should resemble those of the

parent normal metal, while ε = 0 is the only symmetry-distinguished energy. How-

ever, TSC surface states can evade this argument as well, since the bulk gap is the

maximum allowed surface state energy; above this, 2D surface states can hybridize
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with the 3D bulk. All TSC surface states are (Andreev) bound states.

We find energy stacks of delocalized class C, SQHE plateau transition states for

any bulk TSC winding number. The SQHE states are identified by their multifractal

spectrum [54, 55, 28]. The absence of Anderson localization throughout the surface

energy spectrum is qualitatively similar to 1D edge states of quantum Hall, as well

as edge and surface states of 2D and 3D topological insulators. Our work suggests

that this may be a general principle of fermionic topological matter.

Our results generalize a previous observation for a simpler model in class AIII.

This model consists of a single 2D Dirac fermion coupled to abelian vector potential

disorder; it is critically delocalized and exactly solvable at zero energy [57]. It can

also be interpreted as the surface state of TSC with winding number ν = 1 [9, 11]. It

was later claimed [58] that all finite-energy states of this model should reside at the

plateau transition of the (class A) integer quantum Hall effect, and this was verified

numerically [12]. The same logic employed by Haldane [67] and Pruisken [68] implies

that there should be an “even-odd” effect whereby AIII surface states for a TSC

with even winding number are localized at finite energy, while those with odd form

stacks of critical plateau-transition states [58]. Here we find critical delocalization

for all class CI winding numbers, with no “even-odd” effect.
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4.2 Model and numerical approach

We employ a k-generalized two-species Dirac model to capture the surface states of

a class CI TSC with even winding number ν = 2k,

ĥS =

 0 (−i∂)k + Aa τ̂a + A0

(−i∂̄)k + Āa τ̂a + Ā0 0

 , (4.1)

where ∂ ≡ ∂x − i∂y and A ≡ Ax − iAy, with ∂̄ and Ā respective complex conjugates

of these.

For k = 1, this is the surface theory for the lattice model in [66]. Quenched

disorder enters via the abelian vector potential A0(r) or the nonabelian SU(2) vector

potential Aa(r) τ̂a, where r = {x, y} is the position vector, and τ̂ 1,2,3 denotes Pauli

matrices acting on the space of the two species. The case with k > 1 was inspired

by higher-dispersion surface bands obtained in spin-3/2 class DIII TSC models [15,

14, 38, 26]. The bulk winding number can be inferred by turning on the time-

reversal symmetry-breaking mass term and calculating the surface Chern number

[8, 38]. For k > 1, Eq. (4.1) is not gauge invariant, but this is of no consequence

because the vector potentials merely represent the most relevant type of quenched

disorder allowed by symmetry. Class CI has P 2 = −1 particle-hole symmetry [9]. In

order to realize P , we take A0 = 0 for odd k, while we take A3 = 0 for even k 4.4.

Time-reversal invariance is equivalent to the block off-diagonal form of ĥS [10, 11].

We analyze ĥS in Eq. (4.1) numerically via exact diagonalization. Calculations

are performed in momentum space q = {qx, qy} to avoid fermion doubling of the

continuum surface theory [12, 38, 26]. The Fourier components of any nonzero vector
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potential A0,1,2,3
x,y (q) are parameterized via (same method of disorder as chapter 3)

A(q) =
(√

λ/L
)

exp
[
iθ(q)− q2ξ2/4

]
, (4.2)

where θ(q) = −θ(−q), but these are otherwise independent, uniformly dis-

tributed random phases. Here L, ξ and λ denote the system length, correlation

length, and disorder strength respectively; the latter is dimensionless for k = 1. We

choose periodic boundary conditions so that qi = (2π/L)ni, with −N ≤ ni ≤ N ,

for i ∈ {x, y}. Here N determines the size of the vector space, which is 4(2N + 1)2.

The inverse correlation length ξ−1 is measured in units of the ultraviolet momen-

tum cutoff Λ = 2πN/L. This approach is equivalent to the disorder-averaging, up

to finite-size corrections [12]. The drawback is that our matrices are dense, which

limits our system sizes.

We reconstruct each real space eigenstate ψ(r) and examine |ψ|2(r) to look for

Anderson localization. Except for the states in the high-energy “Lifshitz tails” (see

the numerical density of states plots in Fig. 4.2), we find no evidence of localization,

although we cannot rule it out for much larger system sizes. Localization at high

energies is not unexpected, because the model is not terminated in a physical way

(which would instead involve hybridizing the 2D surface with the 3D bulk).

All of the states that we find in the bulk of the surface energy spectrum look

“critically delocalized,” i.e., |ψ|2(r) is small over most of the surface, but is sporadi-

cally punctuated by probability peaks of variable height. The main quantative tool

we use to characterize these states is multifractal analysis [48, 54, 55, 28, 57, 61, 62,

10, 11, 12, 38, 26]. One breaks the system up into boxes of size b, and defines the
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box probability µn and inverse participation ratio (IPR) Pq via µn =
∫
An d

2r |ψ(r)|2,

Pq ≡
∑

n µ
q
n, where An denotes the nth box. The multifractal spectrum τ(q) governs

the scaling of the IPR, Pq ∼ (b/L)τ(q).

For critically delocalized states, the form of τ(q) is expected to be self-averaging

in the infinite system size limit [29]. For class CI surface states at zero energy (class C

SQHE plateau transition states), the spectrum is exactly (to a good approximation)

parabolic, and is given by

τ(q) =

 (q − 1)(2− θ q), q < |qc|,(√
2− sgn(q)

√
θ
)2

q, |q| > qc,
(4.3)

where qc ≡
√

2/θ. The parameter θ determines the degree of critical rarification:

θ = 0 (θ > 0) for a plane wave (multifractal) state. In the above, qc denotes the

termination threshold [29, 30]; the spectrum is linear for |q| > qc, and the slopes

govern the scaling of the peaks and valleys of |ψ|2(r) for q > qc and q < −qc, respec-

tively. Note that an accurate calculation of τ(q) for negative q requires significant

coarse-graining, since it entails taking negative powers of a function that is small

almost everywhere. For this reason negative-q results are always worse than positive

q (and are often not reported).

For class CI, the Sp(2n)k CFT predicts that θk = 1/2(k+ 1) [10]. Analytical and

numerical results on the SQH plateau transition instead give θ ' 1/8 [54, 55].
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4.3 Numerical Results

In Fig. 4.1, we plot the anomalous (non-plane-wave) part of the multifractal spectrum

∆(q) ≡ τ(q) − 2(q − 1) for k = 1 (a,b), k = 7 (c,d), and k = 8 (e,f). The class CI

and class C (percolation) analytical predictions are respectively depicted as blue

dot-dashed and green dashed lines.

In Fig. 4.1(a,c,e), we plot the numerical result for the low-energy states of the

spectrum, which show good agreement with the k-dependent class CI prediction.

Calculations are performed for a typical realization of the random phase disorder,

without disorder-averaging, over an 81 × 81 grid of momenta (N = 40). The solid red

line in each panel is obtained by averaging over a narrow energy bin of 36 consecutive

low-energy states. For k = 7, 8 these correspond to the lowest positive energies in

the spectrum, while for k = 1 we neglect states very close to zero energy, keeping

those in the energy bin (0.01-0.0141) (see Fig. 4.2 for the numerical density of states

versus energy). The average plus or minus the standard deviation is indicated by

the light red shaded region in each panel. We plot the deviation only for |q| < qc,

where qc is the termination threshold for the low-energy class CI prediction (a,c,e) or

finite-energy SQHE class C prediction (b,d,f,g). Since the spectrum becomes linear

outside of this range, the error in a given ∆(q) for a particular wave function also

grows linearly for |q| > qc, but only the slope discrepancy near q = ±qc is meaningful.

Figs. 4.1(b,d,f) show the corresponding results for finite-energy states. Again the

solid red curve in each panel corresponds to an average over a narrow energy bin

of 36 states, with good agreement for k = 1 (b) k = 7 (d) and k = 8 (f) with the
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k-independent, class C prediction (dashed green curve). The finite-energy bin for

each k is selected as the one with the highest percentage of states matching the spin

quantum Hall prediction, as indicated by a certain fitness criterion described below.

(a) (c) (e) (g)

(b) (d) (f)

Figure 4.1: Anomalous part of the multifractal spectrum ∆(q) ≡ τ(q)− 2(q − 1) for

low-energy (a,c,e) and finite-energy (b,d,f) states, for the class CI TSC surface state

model in Eq. (4.1) with k = 1 (a,b), k = 7 (c,d), and k = 8 (e,f). The solid red curves

obtain from momentum-space exact diagonalization [12]. The blue dot-dashed curve

(green dashed curve) is the k-dependent (independent) class CI (class C SQH plateau

transition) prediction. The solid red curve in each panel is obtained by averaging

over states within a narrow energy bin (see text); the shaded red region shows the

standard deviation amongst the states within the bin. Finally, (g) shows the same

for low-energy states when time-reversal symmetry is broken explicitly, while spin

SU(2) (particle-hole) symmetry is preserved. The system is a (2N + 1) × (2N + 1)

grid of momenta; here N = 40. The disorder strength λ = 1.6π (16π) for k = 1

(7, 8). Parameters for (g) and box sizes are specified in 4.6.

Finally, Fig. 4.1(g) shows the low-energy spectrum of the k = 1 model, but
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now with time-reversal symmetry broken explicitly. This is obtained by turning

on random mass and nonabelian potential terms with vanishing average value, but

nonzero variance [49] and 4.5. These perturbations preserve spin SU(2) symmetry.

A nonzero average mass corresponds to a “spin Hall Chern insulator”; tuning this

to zero while retaining a nonzero variance was expected to give the SQHE plateau

transition [66, 22]. Indeed Fig. 4.1(g) matches the states in Figs. 4.1(b,d,f).

In Fig. 4.2, we compare the computed τ(q) spectrum for every state in regularly

spaced energy bins to the class CI and C predictions, for k = {1, 7, 8}. We introduce

a “fitness” criteria, defined as follows. For each eigenstate ψ(r), we compute the error

between the numerical spectrum [≡ τN(q)] and the appropriate analytical prediction

[≡ τA(q)], error(q) ≡ |τN(q) − τA(q)|/τA(q). If the error is less than or equal to 6%

for 75% of the evaluated q-points in the interval 0 ≤ q ≤ qc, we keep the state.

We consider bins of 36 states each; the states within each bin have consecutive

eigenenergies. The height of each bar marked “EWZNW” (“EP”) denotes the percentage

of eigenstates in the bin starting with energy E that match the class CI (class C)

prediction. The energies in each left panel of Fig. 4.2 should be compared to the

numerical density of states shown in the corresponding right panel.
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Figure 4.2: Population statistics for critically delocalized eigenstates. The bars in

each graph give the percentage of states with consecutive energy eigenvalues lying

within a narrow energy bin that match a certain fitness criterion. The bar labeled

“EWZNW” (“EP”) denotes the percentage of eigenstates in the bin beginning with

energy E that match the class CI (class C) prediction for the multifractal spectum

(see text for details). The bar energy labels should be compared to the corresponding

density of states (DoS). All plots are for N = 40 except the bottom, which has

N = 46. In the latter case even the lowest energy bin has more class C than class

CI states.
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Fig. 4.2 indicates that most of the lowest energy states match the predictions of

class CI (bin EWZNW), except for k = 1. In this case, the lower percentage is due

to the strong disorder strength that we chose, λ = 1.6π [c.f. Ref. [12]]. By contrast,

for k = 1 the finite energy states match well the class C SQH prediction (bins EP

with E ∈ {0.4, . . . , 0.7} for N = 40). With stronger disorder, we convert more

of the spectrum to class C for a fixed system size N . The plots for k = 7 and 8

also show bands of finite energy states that match class C, but possessing narrower

bandwidths. Here we choose λ = 16π, but we stress that the effective dimensionless

disorder strength grows weaker for larger k [26].

The energy-averaged finite-energy results for τ(q) shown in Fig. 4.1(b,d,f) were

obtained from the bin with the highest percentage of states matching the class C

SQH prediction for each value of k. I.e., for k = 7, the red solid curve in Fig. 4.1(d)

was obtained by averaging over states in the bin starting with energy E = 2.1. We

emphasize that while the fitness criterion introduced above is arbitrary, the trends

are not 4.8.

(b) (d)

Figure 4.3: Same as Figs. 1(b) and 1(d), but for N = 46.
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Results for a larger system (N = 46) appear at the bottom of Fig. 4.2 and in

Fig. 4.3. We show finite-size trends in Fig. 4.4. Here we plot ∆(q) for q = 2, 3,

which are well-distinguished for the class CI (low-energy) and class C (finite-energy)

analytical predictions [10, 55]. Although we are limited to relatively small sizes

due to dense matrices and full diagonalization, the trends for increasing N suggest

convergence towards the analytical results 4.8.

q=2

q=3

q=2

q=3

2 3 4 N

q=2

1.0
0.8
0.6
0.4
0.2
0.0
0.4
0.2
0.0

(q
)

(q
)

q=

0.0

(q
)

0.2
0.4
0.6
0.8
1.0

k = 7, Low-energy states

k = 7, Finite-energy states

k = 1, Finite-energy states

Figure 4.4: Finite-energy and low-energy ∆(q) as in Figs. 4.1 and 4.3, but for fixed

q = 2, 3 and for varying system sizes N . The intrinsic disorder correlation length

and strength are kept fixed 4.6. The blue and green lines are the exact analytical

predictions for ∆(2, 3) [10, 55]. The solid points show the average, while error bars

indicate the standard deviation within the energy bin. The main effect of increasing

N is to reduce the fluctuations, although the reduction is slower for q closer to the

termination threshold qc (= 4 for class C). Full ∆(q) and population statistics (as in

Fig. 4.2) are presented in 4.8.
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4.4 Particle-hole symmetry for odd and even k

The Hamiltonian ĥS can be succinctly encoded by introducing an additional species

of Pauli matrices σ̂1,2,3 as a basis for the decomposition in Eq. (4.1). Then

ĥS =
1

2

[
σ̂+ (−i∂)k + σ̂−

(
−i∂̄

)k]
+ σ̂ ·Aa(r) τ̂a + σ̂ ·A0(r), (4.4)

where σ̂± ≡ σ̂1 ± iσ̂2 and σ̂ ·A = σ̂1Ax + σ̂2Ay. Physical time-reversal invariance is

encoded in the chiral condition [9, 10, 11]

−M̂S ĥS M̂S = ĥS, M̂S = σ̂3. (4.5)

For class CI, particle-hole symmetry P must involve an antisymmetric matrix

M̂P = −M̂T
P (“P 2 = −1”) [9]. The particle-hole condition is

−M̂P ĥ
T
S M̂P = ĥS, (4.6)

where T denotes the transpose operation and it is understood that derivative oper-

ators are odd under transposition: (∂x,y)
T = −∂x,y.

For k ∈ {1, 3, 5, . . . } (odd), we take [10, 11]

M̂ (odd)

P = σ̂1τ̂ 2. (4.7)

Eq. (4.4) is invariant under Eq. (4.6) with this choice provided we set the abelian

vector potential equal to zero, A0 = 0. For k ∈ {2, 4, 6, . . . } (even), we take

M̂ (even)

P = σ̂2τ̂ 1. (4.8)

Eq. (4.4) is invariant under Eq. (4.6) with this choice provided we set the third

component of the SU(2) vector potential equal to zero, A3 = 0.
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4.5 Class C model with broken TRI

In Fig. 4.1(g), we exhibit the low-energy anomalous multifractal spectrum ∆(q) =

τ(q) − 2(q − 1) for the k = 1 class CI model in Eq. (4.4), except that we have now

explicitly broken time-reversal symmetry (in every fixed realization of disorder, but

not on average). The Hamiltonian in this case resides in class C [49],

ĥC ≡ ĥS +m(r) σ̂3 + va(r) τ̂a, (4.9)

where a ∈ {1, 2, 3}. The mass m(r) and nonabelian valley potentials v1,2,3(r) break

physical time-reversal symmetry [Eq. (4.5)], but preserve P 2 = −1 particle-hole

[Eqs. (4.6) and (4.7) for k = 1]. The latter is tantamount to spin SU(2) invariance.

4.6 Parameter specification for the numerics

The numerical results presented in Figs. 4.1-4.4 were obtained via the exact diago-

nalization of ĥS in Eq. (4.1). Calculations are performed in momentum space. All

disorder potentials are parameterized as described in the text, i.e.

Aµi (q) =

√
λ

L
exp

[
i θµi (q)− q2ξ2

4

]
, (4.10)

where i ∈ {x, y} and µ ∈ {0, 1, 2, 3}. The phases θµi (q) = −θµi (−q), but are other-

wise identical, independent random variables uniformly distributed over [0, 2π). We

assign the same disorder strength λ to all nonzero components of the abelian A0

and nonabelian A1,2,3 vector potentials. We choose λ = 1.6π (16π) for the k = 1

(k = 7, 8) calculations with N = 40 [except Fig. 4.1(g), described below].
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The arbitrary dimensionful system length L determines the ultraviolet cutoff

Λ = 2πN/L. The correlation length of the impurity potentials is chosen to be

ξ = 0.25(L/N) [12]. For N 6= 40 ≡ N0 (Figs. 4.2-4.4), we rescale the disorder

parameter λ → (N/N0)2(k−1)λ, which corresponds to fixing the intrinsic disorder

strength relative to the appropriate power of the momentum cutoff.

The multifractal spectra exhibited in Fig. 4.1(a,b,g), (c,d), and (e,f) are extracted

using box sizes b = 2 and b = 8 (k = 1), b = 3 and b = 10 (k = 7), and b = 5 and

b = 10 (k = 8), respectively. Box sizes for Fig. 4.3(b,d) are b = 2 and b = 13 (k = 1)

and b = 2 and b = 31 (k = 7).

For the low-energy states in class C with k = 1 [Fig. 4.1(g)], in addition to

the nonabelian vector potentials A1,2,3
x,y , we include random mass m(r) and (valley-

graded) scalar potential v3(r) disorders, see Eq. (4.9). The disorder strengths are

λA = λv3 = 0.8π, while the mass variance is λm = 16π. We neglect the off-diagonal

potentials v1,2(r) = 0 [Eq. (4.9)].

4.7 Sigma models for class CI TSC surface states

and the class C SQHE

The nonlinear sigma model representations for (a) the class CI conformal field theory

describing zero-energy TSC surface state wave functions and (b) the class C spin
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quantum Hall effect are captured by the following actions [69, 11, 70],

SCI =
k

8π

∫
d2r Tr

[
∇q̂† ·∇q̂

]
+ i

ω

2

∫
d2r Tr

[
Λ̂
(
q̂ + q̂†

)]
− i k

12π

∫
d2r dR εabc Tr

[(
q̂†∂aq̂

) (
q̂†∂bq̂

) (
q̂†∂cq̂

)]
, (4.11a)

SC =
σ11

8

∫
d2r Tr [∇q̂ ·∇q̂] + i ω

∫
d2r Tr

[
Λ̂ q̂
]
− σ12

8

∫
d2r εij Tr [q̂ ∂i q̂ ∂j q̂] .

(4.11b)

In Eq. (4.11a), q̂(r) is a 4n × 4n unitary matrix field that is also a Sp(4n) group

element; r = {x, y} is the position vector that spans over the 2D TSC surface.

We assume that disorder-averaging has been accomplished with the replica trick;

n → 0 counts the number of replicas [35]. Here and in Eq. (4.11b), ω is a real

parameter that denotes the ac frequency of the spin conductivity that the sigma

model is designed to compute [70, 35]. The matrix Λ̂ is diagonal and equal to

Λ̂ = diag(1, 1, . . . , 1,−1,−1, . . . ,−1) [2n (+1)s and 2n (-1)s]. The last term in

Eq. (4.11a) is the Wess-Zumino-Novikov-Witten (WZNW) term. This term is de-

fined over a three-dimensional ball (coordinates {r, R}, 0 ≤ R ≤ 1), such that

q̂(r, R = 1) = q̂(r) is the field on the 2D surface, while q̂(r, R) for R < 1 is a smooth

deformation of this into the ball interior. The WZNW term ensures that the action

in Eq. (4.11a) is conformally invariant for ω = 0 [11, 71]. In the context of a 3D

topological superconductor, the ball can be identified with the bulk if the surface has

genus zero [72].

The structure of the first two terms of the class C sigma model can be obtained

from the corresponding ones in class CI by imposing the additional constraint on
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q̂(r) by hand,

q̂†(r) = q̂(r). (4.12)

The matrix q̂(r) now belongs to the space Sp(4n)/U(2n) [69, 28]. The last term in

Eq. (4.11b) is the Pruisken or theta term, which assigns winding numbers to different

topological sectors of the q̂-field and evaluates to a pure imaginary phase [35]. The

coefficients of the first and third terms in Eq. (4.11b) are respectively proportional

to the longitudinal conductivity σ11 and Hall conductivity σ12; the class CI WZNW

model has σ11 = k/π and σ12 = 0 (in units of the spin conductance quantum) [9, 11].

When the constraint in Eq. (4.12) is imposed on q̂(r) in Eq. (4.11a), we can show

that the WZNW term in the latter becomes the theta term in Eq. (4.11b), with

σ12 = k/2. (4.13)

However, we stress that in the context of the finite-energy TSC surface states dis-

cussed in this paper, there is no reason to trust this assignment of σ12, because it

does not follow from a physical RG flow. As emphasized at the end of the main

text, the only statement we can make is that the energy perturbation (the operator

coupling to ω 6= 0) is relevant, and breaks the symmetry of the class CI model from

G×G down to G, where G = Sp(4n) [73].

If ω 6= 0 induces a flow to the class C SQHE plateau transition, it is must be due

to the effect of the WZNW term on the RG. Without the WZNW term, the class CI

model describes (gapless) quasiparticles in an ordinary (non-topological) spin-singlet

superconductor, and the single-particle wave functions must become those of the
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orthogonal metal class AI at large energies. Moreover, in this case all states (at zero

and finite energy) are localized in 2D for arbitrarily weak disorder [69, 28].

4.7.1 From WZNW to theta

The derivation of Eq. (4.13) requires a little care, since the restriction in Eq. (4.12)

induces topologically distinct sectors of the q̂-matrix; this is why the theta term

in Eq. (4.11b) can produce an effect. It means that the field q̂(r, R) appearing in

the WZNW term of Eq. (4.11a) cannot be strictly restricted in this way, because

otherwise it is not possible to deform generic q̂(r, R < 1) in the interior to some par-

ticular q̂(r, R = 1) at the surface. Here we show how the WZNW term in Eq. (4.11a)

becomes the theta term in Eq. (4.11b), employing the method used in Ref. [74].

We extend q̂(r) on the 2D surface to q̂(r, R) on the three-dimensional ball through

the following equation:

q̂(r, R) = −i cos
(
πR
2

)
1̂ + sin

(
πR
2

)
q̂(r), 0 ≤ R ≤ 1. (4.14)

In this extension scheme, we have q̂(r, R = 0) = −i1̂ (where 1̂ is the identity) and

q̂(r, R = 1) = q̂(r). Note that, unlike q̂(r) on the surface, q̂(r, R) does not obey the

restriction in Eq. (4.12).

Inserting Eq. (4.14) into the WZNW term of Eq. (4.11a), the latter reduces to

−k
8

∫
d2r dR εabc Tr [q̂(r)∂bq̂(r)∂cq̂(r)] sin2

(
πR
2

)
∂aR

= −k
8

∫
d2r dR εabc Tr

{
∂a
[
q̂(r)∂bq̂(r)∂cq̂(r)

(
R
2
− 1

2π
sin(πR)

)]}
= − k

16

∫
d2r εij Tr [q̂(r)∂iq̂(r)∂j q̂(r)] , (4.15)
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where in the second equality we have used the divergence theorem and the fact

that R = 1 on the 2D surface. Comparing this expression with the theta term in

Eq. (4.11b), one obtains Eq. (4.13).

4.8 Additional numerical results

4.8.1 Density of states

The numerical density of states (DoS) is depicted via the histograms in the right

panels of Fig. 4.2 for k ∈ {1, 7, 8}. The DoS shows a “dip” upon approaching zero

energy E = 0. This is expected for the critically delocalized class CI surface states,

where the Sp(2n)k conformal field theory predicts universal scaling for the DoS ν(E)

[42, 10]

ν(E) ∼ |E|1/(4k+3), (4.16)

a result that is independent of the multifractal spectrum [10, 11]. In Fig. 4.5, we

compare the numerical integrated density of states N (E) ≡
∫ E

ν(E′) dE′ to the class

CI prediction, and observe good agreement for k = {1, 7, 8} (N = 40).
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Figure 4.5: Log-log plot of the integrated density of states N (E) obtained via exact

diagonalization of ĥS in Eq. (4.1), versus the exact analytical prediction of the class CI

conformal field theory [42, 10]. Results are shown for k = {1, 7, 8}, with parameters

chosen the same as in Figs. 1 and 2 (N = 40).

4.8.2 Alternative fitness threshold

To obtain the population statistics exhibited in Fig. 4.2, we employ an arbitrary

“fitness” criteria, described in the main text. While the exact percentages of states

above the fitness threshold (encoded in the bar heights in Fig. 2) depend somewhat

sensitively on these criteria, the overall trends as a function of energy E do not. In

Fig. 4.2, we replot the same data as in k = 7 panel of Fig. 4.2, but for the criterion

that a state is kept if it matches the appropriate analytical prediction for τ(q) with

no more than 7% error, over 75% or more of the q-values in the range 0 ≤ q ≤ qc.
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Figure 4.6: The same as the second left-hand panel of Fig. 4.2 (k = 7), but with a 7%

error threshold for states matching the class CI (“WZNW”) or C (“P”) prediction

for the multifractal spectrum τ(q), over the range 0 ≤ q ≤ qc.

4.8.3 Finite-size trends for k = 1 and k = 7

Here we plot the anomalous spectrum ∆(q) = τ(q) − 2(q − 1) for low- and finite-

energy states as in Figs. 4.1 and 4.3, as well as the population statistics and numerical

density of states as in Fig. 4.2, for the full range of N used to obtain the results shown

in Fig. 4.4. Box sizes for multifractal analysis are chosen to be almost commensurate

with the linear system size 2N + 1.
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Figure 4.7: k = 1, N = 24. Box sizes b = 2, 6.

Figure 4.8: k = 1, N = 28. Box sizes b = 2, 8.
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Figure 4.9: k = 1, N = 32. Box sizes b = 2, 8.

Figure 4.10: k = 1, N = 34. Box sizes b = 2, 23.
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Figure 4.11: k = 1, N = 36. Box sizes b = 3, 6.

Figure 4.12: k = 1, N = 38. Box sizes b = 2, 7.
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Figure 4.13: k = 1, N = 42. Box sizes b = 2, 14.

Figure 4.14: k = 1, N = 44. Box sizes b = 2, 22.
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Figure 4.15: k = 1, N = 46. Box sizes b = 2, 13.

Figure 4.16: k = 7, N = 24. Box sizes b = 3, 12.
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Figure 4.17: k = 7, N = 28. Box sizes b = 4, 8.

Figure 4.18: k = 7, N = 32. Box sizes b = 4, 8.
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Figure 4.19: k = 7, N = 34. Box sizes b = 4, 17.

Figure 4.20: k = 7, N = 36. Box sizes b = 3, 12.
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Figure 4.21: k = 7, N = 38. Box sizes b = 2, 19.

Figure 4.22: k = 7, N = 42. Box sizes b = 3, 21.
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Figure 4.23: k = 7, N = 44. Box sizes b = 2, 29.

Figure 4.24: k = 7, N = 46. Box sizes b = 2, 31.
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4.9 Conclusion and open questions

The class CI CFT governing the zero energy state can be formulated as a nonlinear

sigma model with a Wess-Zumino-Novikov-Witten (WZNW) term [10, 11]. The

energy perturbation breaks the symmetry from G×G down to G, where G = Sp(4n)

(using replicas, with n→ 0). This perturbation is relevant, and presumably induces a

renormalization group (RG) flow to another sigma model with lower symmetry. This

argument is insufficient to choose between the orthogonal metal class AI [manifold

Sp(4n)/Sp(2n) × Sp(2n)] and class C [manifold Sp(4n)/U(2n)] [28]. If the class CI

model is deformed to class C “by hand,” the WZNW term becomes a theta term (with

theta proportional to k). Because this deformation does not necessarily correspond

to a physical RG flow, it does not pin the physical value of theta.

The most important open question is how much of the physics linking TSCs to

quantum Hall plateau transitions can be directly understood in terms of topology?

105



Chapter 5

Irradiated Luttinger semimetal: A

factory for engineering Weyl

semimetal

This chapter is mainly adapted from ”S.A.A. Ghorashi, P. Hosur, C.S. Ting, arXiv:1801.04287”

5.1 Introduction

Topological phases of matter have attracted tremendous interest since the discovery

of topological insulators. Topological protection of their edge and surface states

is the hallmark of these systems, and leads to applications ranging from quantum

computation to robust transport and exotic superconductivity [4, 6]. In contrast

to topological insulators, which are gapped phases of matter like most topological

106



phases, it has been shown recently that gapless phases of matter can be topological

as well [8, 75, 76, 77, 78, 79, 80]. Among them, Weyl semimetals (WSMs) have

been particularly attractive due to their unconventional properties such as the chiral

anomaly [82, 83], negative magnetoresistance [81, 82] and anomalous Hall effect [76,

79]. Experimental observation of these phases in TaAs [82, 84, 85] and photonic

crystals [86] has ignited further interest in exploring these systems.

Very recently, new types of WSMs, namely, type-II and multi-WSMs were also

discovered [87, 89, 90, 91]. The defining feature of type-II Weyl points is that the

dispersion around them is strongly anisotropic, such that the slope changes sign along

some directions. As a result, the Weyl nodes become the touching points between

electron and hole Fermi surfaces, and result in properties different from those of

type–I WSMs. For example, there are indications that the chiral anomaly depends

on the relative direction of the magnetic field and the tilt of the cone, but the issue

is still under debate [87, 88]. Moreover, unlike in type-I WSMs, the anomalous Hall

effect can survive in type-II WSMs under certain conditions even when the nodes are

degenerate [92]. On the other hand, multi-WSMs occur when the monopole charges

of Weyl points are higher than 1, and can be either type-I or type-II [89, 90, 91].

In general, the search for Weyl semimetallic phases has been a vigorous field of

research lately, and proposals have been put forth to engineer these phases in a

tunable way by shining light on Dirac semimetals [99, 100], band insulators [101],

stacked Graphene [102], line-nodal semimetals [100, 103] and crossing-line semimetals

[96, 97]. Finally, proposals have been made to create tunable WSMs in pyrochlore

iridates with Zeeman fields. [109, 115].
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Phase I-1(2)&2

Critical line

(Isotropic limit)
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A
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Figure 5.1: Phase diagram for 3D Floquet Luttinger semimetal (with respect to field

strength with dimension of momentum see text (no unit)). Critical line (Isotropic

limit): diagonal red line with two lower (wl) and two higher (wh) Weyl points on the

kz axis; phase I: 4wl + 2wh , blue, where for bands bending oppositely (similarly),

the 4wl are type-I (type-II) denoted by phaseI − 1(2)&2. The notation 1(2) denotes

type-I (type-II) Weyl nodes in the respective phase. The first number is the type of

lower and the second number after & indicates the type of the higher nodes. Phase

III: 4wh + 2wl, orange, where for bands bending oppositely (similarly), the 2wl are

type-I (type-II) and denoted by phaseIII − 1(2)&2. Phase II, green, shows the

transient phases between phase I and III where the flat bands in the kz-direction

(kx − ky plane) for bands bending in opposite (same) directions, as well as merging

and splitting of lower and upper nodes in ky − kz and kx − kz planes, respectively,

occur. ”TPD” denotes the triply degenerate point, which exists only for circular

light.
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In this chapter, we expand the horizons for creating tunable WSMs, by computing

the band structure of a three-dimensional Luttinger semimetal with quadratic band

touching irradiated by elliptically polarized light using Floquet theory. We find Weyl

nodes of different charges (±1 and ±2), Weyl nodes of different types (type-I and

type-II), and several phases which contain more than one class of Weyl nodes. We

also stumble upon a situation where a pair of Weyl nodes form at infinity, and rapidly

come in and merge with other nodes at finite k. In a regularized lattice model, this

pair would form at the edge of the Brillouin zone. Crucially, given the bare band

structure, all these phases can be accessed by simply changing the properties of the

light, making this system highly tunable. Fig. 5.1 summarizes the results of this

paper. We expect these results to hold for real systems described by the Luttinger

Hamiltonian [36], such as the zinc-blend semiconductors GaAs, HgTe, α-Sn etc. and

a class of pyrochlore iridates [37, 104, 105, 25] studied recently.

5.2 Model and formalism

We begin with an isotropic version of the Luttinger Hamiltonian [36],

H =
1

2

∫
k

c†(k)

(
(λ1 +

5

2
λ2)k2 − 2λ2(J.k)2 − µ

)
c(k), (5.1)

where λ1,2 are positive constants, k = {kx, ky, kz}, c(k) = (c3/2k, c1/2k, c−1/2k, c−3/2k)T ,

J = {Jx, Jy, Jz} are effective spin-3/2 operators, and cmk denotes a fermion annihila-

tion operator with momentum k and Jz quantum number m. The energy dispersions

are E(k) = (λ1 ∓ 2λ2)k2 − µ for the j = 3/2 and the j = 1/2 bands, respectively.

Time-reversal and inversion symmetries ensure that the four bands come in doubly
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degenerate pairs due to Kramer’s theorem. The degenerate pairs of bands curve the

same (opposite) way for λ2 < 2λ1 (λ2 > 2λ1), as depicted in Fig. 5.2. When both

bands bend the same way, Eq. (5.1) is widely used to model heavy- and light-hole

bands in zinc-blende semiconductors [25]. Many properties of such a dispersion have

been studied in the literature, including a recent study on the realization of fully

gapped topological superconductivity with p-wave pairing which has states with ex-

otic cubic and linear dispersions coexisting on the surface [14, 38]. On the other

hand when bands bend oppositely, the above model is relevant for certain pyrochlore

iridates as well as for some doped half-Heusler alloys such as LaPtBi [106, 107, 108].

Various aspects of this scenario have been explored as well, such as the phase dia-

gram in the presence of electronic interactions [109], the effect of anisotropy [110]

and superconductivity [111, 26]. Systems with higher effective spins and winding

numbers have also attracted interest in the context of multi-Weyl phases [112] and

the investigation of the spin quantum Hall plateau transition on the surface of topo-

logical superconductors with general winding numbers [113].
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Figure 5.2: Energy dispersion of Eq. (5.1) for (a) λ1 = 0.1 and λ2 = 0.5 with J = 3/2

(red) bending down J = 1/2 (blue) bending up, and (b) λ1 = 1.8 and λ2 = 0.5 where

both bands bend up. Note that the bands are doubly degenerate.
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Here, we study another aspect of this model. By employing machinery from

Floquet theory, we investigate light-matter interactions in this model in both band-

bending scenarios. We consider periodic driving induced by laser light with a general

vector potential A(t) = (Ax cos(ωt), Ayη sin(ωt), 0) , where η = ±1 corresponds to

right-handed and left-handed polarizations of the light, respectively, and Ai ∝ Ei/ω,

where Ei is its electric field. The time-dependent Hamiltonian can be written as

H(k, t) =
∑

nHn(k)einωt, where H±n(k) = 1
T

∫ T
0
H(k, t)e±inωt.

The effective time-independent Hamiltonian in the high frequency limit, as dictated

by Floquet theory, is [95, 98],

Heff (k) = H0 +
∑
n≥1

[H+n, H−n]

nω
+O

(
1

ω2

)
. (5.2)

where,

H1 = (λ1 +
5

2
λ2)k.A− 2λ2{J.k,J.A} (5.3)

H2 =
1

4
((λ1 +

5

2
λ2)A2 − 2λ2(J.A)2) (5.4)

H−n =H†n, (5.5)

and A = (Ax, iηAy, 0). The Floquet perturbation series is controlled by parameter

γ = λe2E2/~ω3, where λ is either λ1 or λ2 which are of the same order of magnitude

and have units of inverse mass, E is the magnitude of the electric field of the inci-

dent light and c is the speed of light in the medium. Clearly, γ � 1 at high enough

frequencies, thus controlling the Floquet expansion. We discuss the estimation of

this parameter in the real experiments in the concluding section. In the meantime,

we work in the units e = ~ = 1. We first analyze the limit of circular polarization,

which is the only case can be fully studied analytically. Then, we analyze the general
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case of elliptical polarization.

5.3 Circularly polarized light

.

Because H is quadratic in k, Hn = 0 for n > 2 in Eq. (5.2). The terms com-

ing from n = ±2 are momentum-independent, and it is their competition with the

k-dependent terms arising from n = ±1 that proves to be essential in realizing the

various WSMs. In other words, the leading order correction in A is insufficient, and

it is necessary to go to a higher order. For circularly polarized light, rotational sym-

metry ensures that Weyl points appear only on the kz axis, which makes extracting

the salient features of the model analytically possible. For kx = ky = 0, the effective

Hamiltonian reads

Heff (kz) = H0(kz)+
2iηA2λ2

2

ω

(
− k2

z [{Jx, Jz}, {Jy, Jz}] (5.6)

+
A2

8
[ J2

y − J2
x , {Jx, Jy}]

)
, (5.7)

with dispersions of E1,± = (λ1 + 2λ2)k2
z ± (3A2λ2

2η(A2 − 8k2
z))/2ω − µ and E2,± =

(λ1 − 2λ2)k2
z ± (3A2λ2

2η(A2 + 8k2
z))/2ω − µ. Note that introduction of circularly

polarized light has broken time-reversal symmetry and lifted the double degeneracy

of the bands. Inversion symmetry survives, though, because only even powers of the

light amplitude enter Heff . The four non-degenerate bands intersect in various pairs,

giving rise to Weyl nodes at K1 = (0, 0,±A/2
√

2) and K2 = (0, 0,∓A2
√

3λ2/ω/2).
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We can compute the monopole charge of each node by writing an effective low energy

Hamiltonian around in the form Hk ∝ n(k) · σ and using,

Wn =
1

8π

∫
S

d2kεijkn.(∂jn× ∂kn) (5.8)

where n is a unit vector and the integration is over a surface S surrounding the node.

We obtain Wn = ±1 and Wn = ±2 for K1 and K2 respectively. This is a remarkable

result, that single and double-Weyl nodes coexist at different energies, thus allowing

us to access both dynamically by tuning the chemical potential. As is clear, the

positions of single Weyl points are only a function of the light parameters while the

locations of the double-Weyl points also depend on the band structure parameter,

λ2. Moreover, for circularly polarized light, there is a special point in parameter

space, namely, Am = ±
√
ω/6λ2 where the two types of nodes merge and form a

triply degenerate point (TDP).
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Figure 5.3: Evolution of the Weyl nodes with light amplitude A. (a)-(d) show

A = 2, 2.58, 2.7 and 3, respectively for bands bending oppositely. For (e)-(h), we used

A = 2, 2.58, 2.7 and 5, respectively, to show the type-II to type-I phase transition for

high enough intensity with both bands bending in same direction. λ1 = 0.1, λ2 = 0.5

(λ1 = 1.8, λ2 = 0.5) are used for bands bending oppositely (similarly). ω = 20, µ = 0

and η = 1 is used for all of the plots.
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Fig. 5.3(a-d) shows the evolution of the band structure with the light intensity,

for a representative set of parameters with ηλ2 > 0 in a scenario with bands bending

oppositely. This corresponds to evolution along the Ax = Ay line in Fig. 5.1. Two

pairs of nodes appear (Fig. 5.3a) as soon as light is turned on. The nodes higher

(lower) in energy are type-II (type-I), have monopole charge ±1 (±2) and occur at K1

(K2). On increasing A, the lower nodes flatten along kz (not shown) and transition

into type-II nodes, before merging with the upper nodes at the TDP at A = Am

(Fig. 5.3b). On further increasing A, the bands cross, and the charge ±2 nodes end

up being higher in energy than the charge ±1 nodes (Fig. 5.3c). The latter then

transitions back from type-II to type-I (Fig. 5.3d). In summary, the upper nodes

are always type-II, while the lower nodes evolve from type-I to type-II and back to

type-I. Naturally, the bands hosting the lower Weyl nodes flatten twice during this

evolution, once at each transition between type-I and type-II characters. The charges

are ±1 (±2) for the upper (lower) nodes for low intensity, and the correspondence

gets reversed as A is tuned across the TDP.

Fig. 5.3(e-h) show the evolution when the bare bands bend the same way. It

shows the same trend as the case where the bare bands bend oppositely, except that

all the nodes are type-II. Moreover, there is a type-II to type-I transition at high

intensity, as shown in Figs. 5.3(g) and 5.3(h).
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5.4 Elliptically polarized light

Now, we turn to the more general case of elliptically polarized light, i.e, Ax 6= Ay.

The phase diagram is much richer when the incident light is anisotropic in the field’s

amplitudes. In the following, we analyze various driven phases in the two band-

bending possibilities shown in Fig. 5.2.

Let us first study Eq. (5.4) when the bands are bent oppositely. The phase

evolution for this case is depicted in Fig. 5.4. In describing the evolution, we keep

Ay fixed at a high or a low value, and tune Ax from 0 to Ay.
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Figure 5.4: (a)-(e) show the kx = ky = 0 cut for Ay = 4 and Ax = 1, 1.48, 1.68, 1.8, 4

respectively. λ1 = 0.1, λ2 = 0.5, ω = 20, η = 1 and µ = 0 (µ = 4) for (a)-(d)((e))

Let us first look at high Ay. For large anisotropy with Ay � Ax, there are 4

type-I nodes of unit monopole charge in the ky − kz plane and 2 type-II nodes of

charge ±2 at higher energies on the kz-axis (Fig. 5.4a and 5.6a). On increasing

Ax, the two higher nodes split into four type-II nodes of unit charge in the kx − kz
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plane (Fig. 5.4b and 5.6b). On further increasing Ax a pair of type-II nodes of unit

charge come in on the kz axis from kz = ±∞ while there are still 4 nodes in ky − kz

plane (Fig. 5.4c and 5.5a). The new node at kz > 0 presumably has a monopole

charge opposite to that of the two nodes in the ky−kz plane at kz > 0; an analogous

condition holds for kz < 0 with all monopole charges reversed. Finally, the nodes in

each triplet merge to yield two type-II nodes of charge ±1 (Fig. 5.5) on the kz axis.

These nodes change character from type-II to type-I, accompanied by the flattening

of one of the bands participating in the nodes (Fig. 5.4d), and survive in this form

up to the circularly-polarized limit (Fig. 5.4e). In the meantime, the four higher

nodes remain type-II with unit charge, but merge into two type-II, charge ±2 nodes

in the limit of Ax = Ay. Therefore we end up of 2 higher (type-II, ±2) and lower

(type-I, ±1) nodes as explained in the previous section (Fig. 5.4e). It should be

noted that the TDPs are absent for elliptical polarization.

However, for lower Ay, situation is different. In this case the situations of Fig. 5.4(b-

d) do not happen. In another words, for lower Ay, the upper nodes do not split,

while the merging of lower four points happens near the isotropic limit. Moreover,

no flat-line occurs, and the upper nodes (type-II) have charge ±1 and lowers (type-I)

have ±2 charges.
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(a)

(b)

(c)

Figure 5.5: Appearance of type-II node from infinity (a) while there are two nodes

on the ky − kz plane. The node from infinity moves towards origin (b) and merges

with two other nodes on the kz axis (c). (a)-(c) we used fixed Ay = 4 and Ax =

1.68, 1.72, 1.85, respectively. To increase the resolution only evolution of the nodes

between two relevant bands is depicted. Also, only one side of plot is shown.

When both bare bands bend in same direction, the phase diagram undergoes

almost the same evolution as the case with bands bent oppositely. In particular, it
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starts with four lower and two higher nodes, which, after a series of merging and

splitting, yields a phase with two lower and four higher nodes. Finally, in the cir-

cular polarization limit, the higher nodes merge, leaving only two lower and two

higher nodes. However, there are couple of differences. Firstly, as we mentioned

in the previous section, nodes are type-II for most amplitude ranges. The second,

instead of a flat line along kz, there is a ”flat-band” in the kx − ky plane for the

lower nodes (Fig. 5.6c). The flat-line along kz does happen, but only for very large

Ay. This is consistent with the type-II to type-I transition that was found to occur

at high intensities in the isotropic limit for bare bands bending in the same direction.
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(a)

(c)

Figure 5.6: Representative 3D plots: (a) shows a representative plot in phase (I)

illustrating four nodes in the ky − kz plane with Ay = 4 and Ax = 1, (b) shows a

representative plot in phase (III) illustrating four nodes in kx−kz plane with Ay = 4

and Ax = 2. Red rings denote nodes in the upper bands. (c) shows a representative

plot of the flat-bands in kx − ky in the scenario with both bands bending in same

direction (Fig. 2.2b) with Ay = 4 and Ax = 1.6. We used ω = 20, η = 1 and µ = 0

for (a)-(c).
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5.5 Discussion, experimental considerations and

concluding remarks

In this chapter we have studied the Floquet theory of the three-dimensional Luttinger

semimetal with quadratic band touching points. We have found that depending

on the orientation of bands and light parameters, both type I and II Weyl nodes

with single and double monopole charges at different energies can be generated. In

particular we arrive at the following main results:

� When the incident light is circularly polarized, we have solved the problem

analytically and have obtained two nodes with charge ±1 and two other nodes

with ±2 at different energies. For both band bending scenarios, the higher

nodes are always type-II while the lower ones can be type-I or II depending

on light parameters. We found that at a certain light intensity, both pairs of

nodes merge to form two TDPs. This is a special point which exists only for

circularly polarized light and is a function of both light and band structure

parameters.

� For the elliptically polarized light, we have only solved system numerically. For

both bands bending scenarios, for large anisotropy, Ax � Ay, there are two

higher nodes on the kz axis and four lower nodes in ky − kz plane. Then, when

the Ay is held fixed at a small value and Ax is increased, the four lower nodes

merge around Ax ∼ Ay. However, for high enough Ay, on increasing Ax, the

lower Weyl nodes merge and then tilt back and turn into a flat-line (flat-band)
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for bare bands bending oppositely (similarly) and make two nodes. On the

other hand the higher nodes deform to nearly flat lines and then split to four

nodes in kx − kz plane which finally merge at isotropic limit.

Therefore, we conclude that the Luttinger semimetal with parabolic dispersion pro-

vides a master platform for realizing various types of WSMs from type I to type II

with four nodes or two nodes, as well as single and double monopoles. Remarkably,

we found that single and double-Weyl can coexist at different energies, so either ones

can be accessed through controlled doping of the system and tuning of laser light.

To the best of our knowledge this is the only system that reported so far with this

level of tunability for broad range of possible Weyl phases. In addition, irradiated

Luttinger semimetals is the only example so far discovered with Weyl node with

different monopole charges coexist, making it feasible for the possible applications

of both single and double WSMs. To the best of our knowledge our work is the

only example that can generate such a broad range of WSMs from a system with

no Weyl nodes. There have been some recent studies [96, 97], where photo-induced

multi-Weyl phases were generated from crossing-line systems.

The Luttinger Hamiltonian describes a wide range of materials from semicon-

ductors to pyrochlore iridates and half-Heuslers which are accessible experimentally,

unlike the other semimetals such as Dirac, loop-node, or linked semimetals, where

experimental examples are rare or non-existent. Therefore, this work might facili-

tate the experimental realizations of photoinduced WSMs. Using λ2 = 4.2/m0 for

HgTe, where m0 is the bare electron mass, ~ω = 120meV and an electric field of

E0 = 2.5× 107V/m – typical values for pump-probe experiments [114] – we estimate
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the perturbation parameter γ = λe2E2/~ω3 ∼ 10−10, so the Floquet expansion is cer-

tainly well-controlled. The only word of caution is that, as with all three-dimensional

Floquet systems, our proposal only works for films thin enough for the electric field

to penetrate the system substantially.
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Chapter 6

Conclusion

In dissertation we studied the several phases and critical phenomena in topological

superconductors and semimetals. In particular, we investigated various aspects of a

class of materials with effective spin of 3/2, so-called Luttinger semimetal.

In chapter 3, we showed that p-wave topological superconductivity of J = 3/2 (spin-

3/2 generalization of 3He-B) lead to a surface states which a linear and cubic disper-

sions coexisting with bulk winding number 4. We showed that in the clean limit that,

unlike the spin-1/2 case, the only short-range interaction is marginally relevant, so it

spontaneously breaks time-reversal symmetry and opens a gap on the surface leading

to the thermal quantum Hall effect. In the dirty limit, however, we have proven that

surface flows to a critical phase governed by CFT SO(n → 0)4 where longitudinal

thermal conductivity is quantized universally, the same CFT class that describes the

dirty surface of spin-1/2 systems. Therefore, we concluded that disorder stabilizes

the surface.
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Next, motivated by recent studies suggesting non-s-wave pairing superconductivity

in hole-doped half Heusler systems, we turned on the spin-orbit coupling leading to

Luttinger Hamiltonian with quadratic band touching where bands bend oppositely.

In this case, depending on doping on the valence or conduction bands, we get two

different surface states, with same bulk winding number ν = 3 though. In this disser-

tation, we focused on the hole-doped scenario where surface possess cubic dispersion.

In this case interaction is irrelevant in clean limit, and we performed the same dis-

order analysis of previous case without spin-orbit coupling. We again showed that

same CFT theory is resulted by adding non-magnetic disorder. As a follow-up to

this project, one could study the electron-doped case where surface show a linear

dispersion at Γ point and a zero-energy ring states at finite-momentum.

In chapter 4, we studied surface states of three-dimensional superconductors in class

”CI” with the goal to investigate the idea of topological protection for the case of

finite-energy states. In this case we showed that, surprisingly, the finite-energy states

show critical delocalization with a different multifractal spectrum, corresponding to

spin quantum plateau transition of ”class C”, which is known to be mapped to clas-

sical percolation in 2D. Moreover, we showed that unlike the common believe that

the percolation transition happens at fine-tuned values of the energy, on the surface

state of topological superconductors almost all the states with finite-energy sit at the

plateau transition without fine-tuning. We expect that finite-temperature physics of

these surface states be governed by percolation. As the continuation of this work

one could study the other symmetry classes. In particular class DIII which is ex-

perimentally more relevant. However, less is known about the thermal Hall plateau
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transition of class ”D”.

Finally, in chapter 5, we studied the interaction of light with Luttinger semimetal.

Via Floquet theory formalism, we showed that irradiated three-dimensional Lut-

tinger semimetal is a factory for engineering various Weyl semimetals. Both the

limit of circular and elliptical polarized lights investigated. We showed that one can

get both type-I and type-II as well as single and double Weyl semimetals. Moreover,

we showed that irradiated Luttinger semimetal provides a highly tunable setup for

tuning between various Weyl phases.
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