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ABSTRACT

Certain substances exhibit mesophases between the solid 
and isotropic liquid phases. In these mesophases the substance 
has anisotropic properties of the solid while simultaneously- 
displaying fluid properties of a liquid. Such substances are 
called liquid crystals. The mesophases are of three types: 
smectic, nematic, and cholesteric, all of which appear in a 
variety of textures, depending on the environment and history 
of the substance. The fundamental difference between the 
mesophases is the type of ordered arrangement of the cigar­
shaped molecules. Optically these substances behave as posi­
tive uniaxial crystals when in the smectic or nematic meso­
phase.

Thermal agitation causes the molecules to fluctuate about 
their equilibrium positions, and since the molecules are asym­
metric, fluctuations of twist, bend, and splay are present. 
These describe fluctuations in orientation of the molecules in 
a volume element with respect to the local molecular orienta­
tion direction. Splay is a fan-like expansion, the spread 
turning away from the equilibrium orientation axis.

Molecular motion of nematic para azoxyanisole is examined 
through light scattering techniques. Three correlation co­
efficients, a^, a2f and a^, corresponding to splay, twist, and 
bend fluctuations, respectively, are measured experimentally. 
They are found to be: a^ = 4.7 x 10 a2 =8.2 x 10 , and 



ag =2.32 x 10 cm^/xec. at 125OC, The temperature variation 

of these parameters is determined throughout the nematic range. 
All three coefficients are found to increase, in general, with 
increasing temperature. The coefficient a^ diverges at the 
nematic-isotropic transition temperature, T , according to the 
relation A|T/Tm - 1|Y where A is empirically found to be 2.5 x

— 6 210 cm /sec and y is -0,17. It is found that a2 also diverges 
but at a temperature, T , approximately four degrees below T^. 
This divergence follows A|T/To - 1|^ where below T , A = 1.5 x 
10 cm^/sec and y = -0.44, while above T , A = 5.5 x 10 cm^ 

/sec and y = -0.1. The coefficient a^ is observed to increase
-5 2 oat a rate of approximately 1.4 x 10 cm /sec/ C.
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CHAPTER I

INTRODUCTION

Matter is generally found in the three states: solid, 
liquid, and gas, each having certain properties characteris­
tic of only that particular phase. Solids, for example, are 
rigid, and may possess anisotropic mechanical and electro­
magnetic properties, a partial consequence of their three 
dimensional molecular order. Simple liquids and gases, on 
the other hand, are easily deformed and have isotropic mechani­
cal and electromagnetic properties, a partial consequence of 
the random nature of their molecular position. Application 
of heat to a solid generally results in direct phase transi­
tions, at specific temperatures, from solid to liquid, liquid 
to gas. There are, however, several exceptions to these laws. 
Three of these exceptions, which are the object of much present- 
day research, are the superfluidity phenomenon, the plasma 
state, and the liquid crystal phenomenon. The liquid crystal 
phenomenon has received comparatively less attention than the 
others.

Unlike usual substances, liquid crystals do not pass di­
rectly from solid to isotropic liquid and back to solid, but 
rather they exhibit mesophases between the solid and isotropic 
liquid states. The term mesophase comes from the Greek mesos 
meaning middle. In these mesophases, the liquid crystal 

1
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displays a definite structure as in the solid phase, but it 
has the rheologic properties of a fluid. More explicitly, 
the mechanical and electromagnetic properties of the meso­
phase are similar to those of a solid, i.e., the substance 
is anisotropic, while the substance is simultaneously fluid 
having a consistency between that of water and honey. It is 
these properties which make liquid crystals fruitful subjects 
of study for increasing our understanding of nature.

The many exotic properties of liquid crystals and their 
possible applications are numerous; however, only a few will 
be mentioned here. Some liquid crystals scatter large amounts 
of light when electric fields are applied.^ Such properties 

are used in devices which electronically control light, and
2m optical display systems.

When exposed to white light, certain liquid crystals 
scattered a preferred color dependent on their temperature. 
These properties have been successfully used in thermal map­
ping by associating the color of light scattered from an area 

. 3with the local temperature.
There are many other applications, but the lack of 

physical and optical data on a large number of known substan­
ces which exhibit mesophases has precluded easy selection of 
a substance for some particular application. The liquid 
crystal state is not rare as it occurs in approximately one 

4of every two hundred organic compounds. Much information 
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about liquid crystals can be gained through the study of light 
scattered by these substances. It is this approach that will 
be taken in this study. There are, of course, other methods. 
The extent of ordering, expecially for liquid crystals in the 
nematic mesophase, is not sufficient to allow much significant 
information to be obtained through X-Ray diffraction studies, 
although some information has been obtained for liquid crys- 

5 tals m the solid and smectic states. Ultraviolet and infra­
red absorption studies were made, but abandoned in the early 
years due to the lack of precision equipment required to make 
such studies. It is probable that measurements using ultra­
violet and infrared will be undertaken now that there is re­
newed worldwide interest in liquid crystals. Recently, NMR 
has been employed in the investigation of the internal molecu- 

7 lar structure.
The discovery of liquid crystals is credited to both 

g 
Reinitzer and Lehmann working independently in 1888. They 
noted the existence of turbidity of a substance at temperatures 
just above the melting point. The turbidity, however, cleared 
at some higher temperature. Many discounted these first ob­
servations and attributed the strange behavior to impurities 
within the sample. After it was established that a new dis­
covery had been made, other observers began the study of 
these compounds, and by the early 1900’s as many as 250 sub­
stances exhibiting the liquid crystal behavior were discovered.



4

In 1922, Friedel succeeded in identifying the three meso-
9 phases characteristic of liquid crystal compounds.

Following Friedel’s mesophase identification, investi­
gations turned to the classifications of the various textures 
of the mesophases. Different textures are observed under a 
microscope for different mechanical environments and prepara­
tions of the samples. The different textures are far too 
numerous to list; however, it should be noted that examination 
of these textures does provide enlightenment concerning the 
quasi-crystaline structures of liquid crystals.

After this period of great interest, the activity in 
this area of study declined, but was renewed at times. One 
effort resulted in an expression for the free energy density 
of a liquid crystal in terms of the molecular orientation. 
The analysis was done first by Oseen, then later critically 
analyzed by Frank.The work of these two individuals also 
categorized the types of curvature which the molecular orien­
tation in a liquid crystal may experience: bend, twist, and 
splay.

Prior work is well summarized in the book by Gray,"*""*■
12 published in 1962, and in the review articles by Brown and

13 Chistyakov published in 1957 and 1967, respectively.
Most of the early examinations of liquid crystals were 

made optically using a microscope, then later more advanced 
techniques using light scattering were employed. In 1948,
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Chatelain made the first observations of angular dependence 
of the scattered light intensity and related his results to

14a theoretical analysis based on the "swarm theory". Work 
similar to that done by Chatelain was performed in the 1960’s 
by Stein. Like Chatelain, Stein considered the angular de­
pendence of the intensity of the scattered light and deter­
mined light scattering was produced primarily by fluctuations 

15m molecular orientation.
There is more information obtainable from the scattered 

light, however. Measurement techniques using light scattering 
have been developed in the study of liquids and solids, and 
among the most powerful of these is the analysis of the spec­
trum of the scattered light. Detailed investigation is 
usually made of a spectrally unshifted peak (Rayleigh lines) 
and two symmetrically shifted peaks (Brillouin lines) of 
scattered light of both polarized and depolarized components, 
and relating the findings to physical constants and nature of 
the scatterer. Significant is the technique advanced by 
Benedek and co-workers, which employs homodyne detection 
utilizing the square law properties of photoelectron emision 
in the determination of the fine structure of the Rayleigh

16 peak. It is not difficult to see how such investigative 
procedures could be used in the study of liquid crystals, 
especially since liquid crystals yield a spectral distribution 
of scattered light similar to that of liquids.
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These techniques were employed by a group of French re­
searchers who, in 1969, measured the angular dependence of 
the width of the Rayleigh peak of the light scattered from 

17 nematic para azoxyanisole. A pure Lorentzian spectral 
density was observed whose bandwidth depended in a unique 
way on the scattering angle. Interpretation of such measure­
ments is indeed difficult, however. The chief drawback is 
the complex anisotropic properties of liquid crystals, which 
are not, in general, homogeneous. A tensor character must be 
assigned to the electric susceptibility to account for these 
properties, and then a direct relation must be provided con­
necting the susceptibility to the orientation of the liquid 
crystal molecules. Thermally excited molecular orientation 
fluctuations can, in this way, be related to the spectral 
density of the anode current fluctuations of the light de­
tecting photomultiplier tube. An analysis of this kind re­
quires full examination of the equations of the motion of the 
liquid crystal and the mechanism of the light scattering, 
light detecting system.

The breadth of such an analysis encompasses two unique 
areas; moreover, each area requires discussion to consider­
able depth. In this thesis, separate chapters will be devoted 
to the following two subjects: dynamics of the thermally 
excited molecular orientation fluctuations, Chapter II; and, 
the theory of light scattering, Chapter III. These two 
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chapters provide the foundation for the interpretation of the 
results of our experimental investigation.

In Chapter II, the equations of motion of nematic liquid 
crystals are presented. They are then solved, using approxi­
mations which are motivated by particular experimental con­
straints, for the correlation in the director, a quantity de­
scribing the instantaneous, local molecular orientation. 
This correlation depends directly on certain viscosity and 
elasticity parameters of the liquid crystal. Chapter III pro­
vides the connection between the spectral density of the 
photomultiplier anode current fluctuations and the correla­
tions in the susceptibility fluctuations, taking into account 
the finite line width of the laser light source and the quan­
tum characteristics of the photodetector. The. results of 
these two lengthy analyses are drawn on in Chapter IV, where 
a direct connection is made between the theoretical formalism 
and the experiment. Here it is shown that the autocorrelation 
in one component of the director is directly related to the 
spectral density of the anode current fluctuations of the 
photomultiplier tube. Therefore, a means is established for 
the determination of the liquid crystal parameters from the 
experimental data.

The depth of the investigation may now be increased to 
the measurement of temperature dependence of the elastic 
moduli and principle viscosities of the liquid crystal.
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Experimentally, this implies a repetition of the procedure at 
each temperature, but the interpretation of the data is again 
a formidable task, since the thermodynamic theory of liquid 
crystal is not easily formulated.

A theory of the temperature dependence of the elastic 
moduli of nematic liquid crystals, based on a statistical

18 molecular theory, was proposed by Saupe in 1960. The 
theory predicts a unique temperature variation in these co­
efficients through the molecular volume and a molecular order­
ing parameter. Verification of the theory has been made 
through direct measurement of the elastic moduli as a function

19 of temperature for a magnetically oriented crystal. A 
somewhat similar approach was taken by Helfrich in his in­
vestigation of certain viscosity coefficients; unfortunately, 
he limited his discussion of the model to a comparison with

20 experimental results at one temperature. Nevertheless, his 
theory does predict a unique temperature dependence for the 
coefficients. Some viscosity coefficients have been experi­
mentally studied throughout the nematic range by direct mea­
surement, but they are not directly related to those defined

21by Helfrich. Our measurements can provide a quantitative 
determination of the temperature dependence of two of 
Helfrich's viscosities with the aid of independent data on 
the elastic moduli. A discussion in Chapter VI comparing 
our experimental results to these theories completes this 
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report on this study of liquid crystals in the nematic state.



CHAPTER II

LIQUID CRYSTALS

NATURE OF LIQUID CRYSTALS
It has been brought out in the introduction that liquid 

crystals have certain properties which make them profuse 
light scatterers. Before presenting the theory of light 
scattering from these substances and, most important, before 
an attempt is made to interpret the data, the nature of the 
liquid crystal mesophase must be examined in greater detail. 
The discussion will be restricted to two main topics: first 
a general description of the liquid crystal state will serve 
to define terminology and explain the general characteris­
tics of liquid crystals; second, since the experiment deals 
with the light scattering properties of liquid crystals, the 
optical properties will also be discussed along with the me­
chanics of the thermally excited fluctuations which cause 
light scattering.

A detailed description of the liquid crystal mesophase 
is far beyond the scope of this paper. There are, however, 
certain salient features which, when presented, can give a 
relatively clear picture of this complicated state of matter 
Between the amorphous solid state and the isotropic liquid 
state of certain special substances, there exist three pos­
sible mesophases: smectic, nematic, and cholesteric. Which

10
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mesophase the substance assumes depends upon: 1) the sub­
stance itself, (the substance may exhibit only one or two 
of these mesophases); 2) the temperature, past and present; 
and 3) the electromagnetic environment. The temperature

22 history may affect the mesophase as shown in Figure 2.1. 
There is no known substance which exhibits both a cholesteric 

23 and nematic mesophase.
Each mesophase may also appear in a variety of textures 

depending mainly upon the surfaces with which the liquid crys­
tal is in contact and again on the history of the substance. 
The nature of the bounding surface may sometimes strongly 
affect the appearance of the mesophase, while in other cases 
the effect may be extremely weak. The textures, as they are 
called, are named for their appearance under a microscope. 
There are many similarities between certain textures of dif­
ferent mesophases and because of this, confusion sometimes 
arises. Each mesophase also has optical properties which are 
characteristic of that mesophase. In general, liquid crys­
tals behave optically as uniaxial crystals; however, biaxial

24 behavior has been reported.
The molecules are long, thin, and essentially ellipsoidal 

in shape. Van der Waals forces largely control the way in 
which the molecules arrange themselves to give rise to a 
particular mesophase. The shape itself has little to do with 
the liquid crystal phenomenon, for there exist substances
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’MESOPHASE

SOLID

MESOPHASE

^►MESOPHASE ISOTROPIC
LIQUID

SOLID MESOPHASE ^ISOTROPIC
LIQUID

FIGURE 2.1,  Three Possible Sequences in the Change 
of State of Thermotropic Liquid Crystals, The

Arrows Indicate the Permissible Transition
Directions. Temperature Increases to the Right 
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with long, thin molecules which exhibit no mesophases, and 
conversely, there exist substances with disk-like molecules

25 which do exhibit types of mesophases. In each mesophase, 
there is no regular three dimensional order as in a crystal, 
with the exception of the cholesteric mesophase. The smectic 
mesophase is characterized by side-by-side alignment of the 
molecules as shown in Figure 2.2. The molecular groups aligned 
side-by-side form layers (horizontal in the figure), but 
there is little correlation in the position of the molecules 
from layer to layer,, (vertically in the figure) . There is 
quasi-crystalization in two dimensions and the adjacent lay­
ers may easily slide on one another. There are three textures 
associated with this mesophase and each texture has a markedly 
different appearance under a microscope. The nematic meso­
phase is characterized by end to end "attachment" of the mole­
cules as shown in Figure 2.3. With reference to the figure’s 
directions, there is correlation horizontally but little ver­
tically and in the direction perpendicular to the page. There 
is quasi-crystalization in one dimension. The nematic meso­
phase has four textures associated with it. Lastly, the 
cholesteric mesophase is a special, but unique, variation of 
the nematic mesophase. This mesophase has a three dimensional 
order not found in any other texture of the other mesophases. 
Here the molecules are arranged end to end as in Figure 2.2 
except successive planes (vertically in the figure) have
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////////////////,
/^//////////////^

FIGURE 2.2.  The Molecular Arrangement in the Smectic Mesophase.
The Angle 6 Characterizes Smectic Types

A, B, and C,

FIGURE 2.3.  The Molecular Arrangement in the
Nematic Mesophase.

FIGURE 2.4. The Twist in Successive Nematic-Like
Planes of the Cholesteric Mesophase.
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their molecules rotated at some particular angle with respect 
to the plane of the page. This three dimensional structure 
is shown in Figure 2.4. This three dimensional order gives 
this particular texture high optical rotary power, and tem­
perature dependent Bragg reflection properties. The cholesteric 
mesophase is not of interest here. For a more complete dis­
cussion, see the review by Chistyakov.

The ellipsoidal molecules of liquid crystals have the 
ability to be polarized by the action of an external electric 
field. The molecules appear to be symmetric with respect to 
the long axis of the molecule and the polarizability seems 
to share this symmetry. However, the axis of electric sym­
metry need not correspond to the axis of geometric symmetry 
of the molecule. This fact complicates the matter of re­
lating the scattered light to the molecular motion. For sim­
plicity in this discussion, it will be assumed that the geometric 
and electric symmetries coincide. The molecules are relatively 
large along the long axis of the molecule, thus any orienting 
force, such as an externally applied electric or magnetic 
field, can easily produce large torques on the molecule. The 
molecules can therefore be oriented by moderate electric or 
magnetic fields. When the molecules in a particular sample 
are all oriented in a preferred direction, the macroscopic 
polarizability is highly anisotropic, and this anisotropy 
exists even for optical frequencies. It is clear then, that 
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these optical properties along with the capability to change 
them through a change in molecular orientation by an external 
electromagnetic field make liquid crystals possible materials 
for use in electro-optic devices. Some of the properties of 
the liquid crystal which affect the motion of the molecules 
can be determined from the data obtained in this study.

The description of liquid crystals is exceedingly com­
plicated, first, due to a lack of regular order in the molecu­
lar arrangement (a consideration making description of liquids 
difficult) and second, due to the additional degrees of free­
dom of the system introduced by considering the molecular 
structure. The development of a mathematical model which 
accounts for the character of liquid crystals has been the 
subject of research by those interested in mechanical analysis, 
and we draw on the results of these workers in arriving at 
equations of motion for an oriented nematic liquid crystal. 
These equations can then be solved for the autocorrelation in 
the molecular orientation. The development of the equations 
describing liquid crystals is far beyond the scope of this 
paper, and so , the major results of other authors will 
simply be quoted and used as a starting point for the follow­
ing analysis.

Let us begin with a brief description of the basic de­
formations which a liquid crystal may experience. In ad­
dition to the behavior of a pure liquid, liquid crystals may 
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undergo changes in molecular orientation. These distortions, 
generally referred to as curvatures, fall into three classes: 
bend, twist, and splay.

Considering a unit vector 3, which is parallel to the 

local molecular alignment, the curvature can be described by 
changes in 3 from the preferred orientation. For convenience, 

let the preferred direction be the x3 direction. The curvature, 
as depicted in Figure 2.5, can then be described by six co- 

. 26efficients:
splay: s^ = dd^/dx^, s2 = 3d2/dX2
twist: t^ = -9d2/dx^, t2 = dd^/dX2 (2.1)
bend: b^ = dd^/dx^, b2 = dd2/dx3 e
It was postulated by Oseen, through a generalization of

Hooke's law, that the free energy density must be a quadratic 
27function of these curvatures. Reducing the general form, 

through symmetry arguments, Oseen and Frank found the free 
energy density for nematic liquid crystals to be expressible 
in terms of three fundamental elastic moduli, each associated 
with a particular curvature: splay; k22 twist; and k^.
bend. In an arbitrary coordinate system, for nematic liquid 
crystals, the Oseen-Frank equation reads:

2pF = k22 + (k1:L - k22 - k24) d

+ (k33 - k22) dj^d. dk(i dk j + k24 d.zj dj(i (2.2) 
where F is the free energy density, d^ is the i-th- component 
of the unit vector 3 which describes the molecular orientation
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FIGURE 2.5. The Three Curvatures of the Molecular
Orientation in Liquid Crystals
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e 28at point x, and the k’s are the elastic moduli. The

elastic modulus is not independent and is zero for planar
29 structures. The notation u'j standard in continuum

mechanics and means 3U/3x.. In this equation, and
all others in this section, it is understood that repeated
indices are to be summed over from 1 to 3 unless otherwise
specified. For example. the quantity th,jj is given by

3 3 2U.
Ui'jj =j=i ' (2.3)

The form of the constitutive equations for liquid crys­
tals was arrived at by Leslie in his study of anisotropic 

30 31fluids. ' Leslie’s description begins by letting x^ de­
note the position of a typical particle at the present time, 

it , and denote its position at a previous time, t, where

^itt) = x2r x3' t f t) / xi = ) f
-=° < t - t*.  (2.4)

The components of the velocity are defined by
Vilt) = gl 5i(t) (2.5)

where x^ and t*  are kept fixed during the differentiation. 
In addition, Leslie associates with each particle a director, 
d^, defined in a way similar to the particle position, and 
with a corresponding velocity given by

wi(t) “ al di(t)- (2'6)

With these definitions, the following equations are pro­
posed for a nematic liquid crystal under the assumption that
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0 (2.7 azb)

(2.7 c)Pldt
where F. is is the
external density.the

di-the
are given by

(2.8)d. ji
and

d.

where F is density, P is the hydrostatic pres­
is thesure, and
by■Kronecker stress

N.

(2.10)d.+

constants which take the form of
The velocity gradientsviscosity coefficients

(2.11)3,1

damping

(2.12)N.

N.Jd.P 1

where through pg are
"6

6j

a, a.

dk

and

= U1 a.

F. + Q . . .I 31,3

of the director, and is given by

A.. = (v.
ij i

dj + v2

. a , ' TTZ- d

director body force per unit mass, p is

The quantity, N., contains the term describing the viscous

-P6. .13

dF
p ad. .1,3

the free energy

+ p3 ai

the are constants. The factor
delta. The extra

. . dW
P1

and is a constant. The

a . . =31

IT . . =31

G. + g .1 
the external

stress tensor, o.. and' 3i

+ v4 A.j + Ps

■ aF
p 3dk,j

it is incompressible: 
. dv.

iP

a . . *31

are defined by

co. . = H (v.13 • 1

6 . . , 
13

0^ J, is given
d.3

rector stress tensor, it . .’ 3i

+ IT . .31,3
body force per unit mass, G.
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The intrinsic director body force, is determined from 
ar A91 = y di - 6. di,. - p J>-+ g.- (2.13)

where
Si*  = X1 Ni + X2 d. Aj. (2.14)

and y is a constant. For convenience, the following quanti­
ties have been defined:

— Vgz ^2 ^5 *"  ^5*  (2,15)

The director, d^, in these equations is restricted to be of 
unit length; this restriction does not, however, change any 
assumptions or restrictions concerning the liquid crystal, it 
merely causes a transfer of certain dependences to other 
variables.

This entire group of equations, (2.7) through (2.15) , 
forms a complete set describing the motion of the liquid 
crystal. It is this set which is to be solved for the auto­
correlation in d^. Finding a general solution is a formidable 
task; however, the liquid crystal may be constrained in a man­
ner which greatly simplifies the description, making possible 
the solution of the equations.

FLUCTUATION DYNAMICS OF THE MOLECULAR ORIENTATION IN A NEMATIC
MELT
The equations of motion describing a nematic liquid crys­

tal have been set forth in the preceding section. The object 
here is to solve these equations for the correlation in the 
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director, while keeping in mind the experimental configuration. 
The experimental restrictions imposed on the crystal allow 
simplifying approximations to be made permitting solution of 
the equations.

In view of these restrictions (see Chapter V) it can be 
noted first that no body forces exist; thus and in (2.7) 
vanish. Second, the liquid crystal is oriented, therefore, in 
equilibrium, the director is fixed in a certain direction, 

which is taken to be the x^ direction in this analysis, and 
thermal agitation causes fluctuations, d^ and d2, in the direc­
tor from its equilibrium position. It shall be assumed that 
these fluctuations are small relative to unity. (These 
quantities are, of course, random variables.) This assumption 
is made in anticipation of neglecting certain nonlinear terms 
in the equations of motion.

Before making any approximations, however, let us con­
centrate on the entirety of Equation (2.7c). Making all the 
substitutions from the equations of the first section, (2.7c) 
becomes 

dW.
<■1 cnr = -(k33 - k22> dk,i dk,j dj + A1 Ni + X2 dj Aji

+ k22 di,jj + (kll " k22 “ k2p dl, li

+ (k22 " k24) (dl,j dj di,l + dl dj,j di,l

+ dl dj di,lj) + 35 k24(di,jj + dj,ij} + ^.(2.16) 

Note that the terms containing do not enter into the above 
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equations. Considering now only the fluctuations, restrict 
the subscript i in (2.16) to only the values 1 and 2. Two 
simplifications can now be made. First, since the deflec­
tions are small, dj in the equation may be replaced by 5jg 
(where <5^ is the Kronecker delta) , as this is the equilibrium 
value of the director. Second, quadradic terms in the direc­
tor and its gradients may also be neglected.

A third approximation may also be made based on an 
a priori knowledge of the final results. The experimental 
spectral density as examined in Chapter IV assumes the form 
of a single Lorentzian; thus the return of the director to 
equilibrium is purely relaxational. The inertial term, 
P1 dW^/dt, is therefore not too large, for if it were, the 
Lorentzian would not be centered about zero frequency. More­
over, if this term were indeed significant, yet not large 
enough to cause oscillatory molecular motion, the empirical 
spectral density would be expected to appear as the sum of 
two Lorentzians. It is assumed, therefore, that the inertial 
term in (2.16) is entirely negligible.

In view of the above three simplifications, (2.16) re­
duces to

X1 Ni + X2 A3i + {k22 + ?5k24) (di,ll + di, 22)
+ (k33 + ^24^ di, 33

+ (ki;L - k22 - J5k24) + d2,2i) = 0 (2.17)

i = 1,2 ,
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where

Ni = 3E di “3i • <2-18>

The equations (2,17) are two linear, coupled equations in 
the director fluctuations. Note, however, that the particle 
velocity also enters the equations through the velocity 
gradients, . , in N. and . . These terms must be investi- •5 -L «L -j 2L
gated before (2.17) is investigated further; therefore the 
velocity equation of motion will now be considered.

Equation (2.7b) is the velocity equation of motion, which 
in its present form is far too complex with which to deal.
Yet, the same approximations used above may be applied to 
(2.7b) to reduce the relation to a usable form. Upon doing 
this (2.7b) may be written 

. dv^
p ”3t = "P,3 + P1 A33,3 + p3(dl,l + d2,2 + “31,1 + 0J32,2) 

+ y5 (A31,1 + A32,2 + A33,3) + y4 (A31,1 + A32,2) 

+ (p4 + p5) A33#3 (2.19)
. dv^

p "3t = - P,i + p2 di,3 + y2 u3i,3 + p4 (Ai,ll + Ai,22)

+ (p4 + p5) ^,33, i = 1,2. (2.20)

If the Fourier transform of these equations is taken by multi­
plying by exp(iq*x)  and integrating over the volume of the 
liquid crystal, then the solution will be of the form

v 2.v (q,t) e" p q r (2.21)

where
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v (q,t) = / v(x,t) eiq’x d3x (2.22)

provided that pressure gradients, P,i, and terms in the di­
rector and its derivatives are disregarded.

This temporal dependence corresponds to a spectrum in 
the frequency domain of width comparable to 2y/p centered a- 
bout zero frequency. As shall be seen later, in a rigorous 
analysis, the director has a similar dependence, with a cor­
responding spectral width of 2k/p. Taking the approximate 
values k = 10 dyne, p = 1 centipoise, and p = 1 gram/cm3, 

it is found that the spectral width associated with the velo­
city fluctuations is of the order of one hundred times smal­
ler than the width associated with the director fluctuations.
Thus, in the time domain, the return of the molecular orien­
tation to the equilibrium direction is much faster than the 
rate at which the velocity fluctuations relax to zero. There­
fore, during the time in which the director returns to equi­
librium, the velocity can be considered essentially constant 
in (2.17). The correlation <^di (x,t)v_. ,k(x' ,t')^ can then be
considered to be zero.

Qualitatively then, it appears that the molecular orien­
tation is strongly held to the equilibrium direction by large 
elastic restoring forces, whereas the linear motion of the 
molecule is associated with large inertial energy which is dis­
sipated by weak viscous damping. It may also be surmised
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that the molecular orientation fluctuations correlate over a 
relatively small volume, while the velocity fluctuations are 
correlated over a relatively large, massive molecular aggre­
gate. It is clear that these ideas may be linked to the quasi- 
crystaline nature of nematic liquid crystals.

Although this velocity correlation will .be disregarded 
in the following analysis, it should be mentioned that this 
does warrant further investigation. A large amplitude noise 
spectrum appearing below about 100 Hz is observed experimen­
tally; however, this spectrum may arise from a variety of 
causes (see for example Chapter III, Equation (3.28) and the 
discussion following). For spectral densities of the director 
correlation with width in the range of 1000 Hz., the preceding 
discussion predicts a spectral width associated with the ve­
locity fluctuations to be of the order of 10 Hz. The presence 
of this spectrum has no effect on data taken above 100 Hz, 
consequently; it may be ignored hereafter.

In view of the previous discussion, the velocity terms 
in (2.17) can be deleted; then when this is done, two equations 
are obtained which assume the form of diffusion equations.

3^- d. + a,d, ,, + aod. + aodn + bdo = 0 (2.23)
dt 1 1 1,11 2 1,22 3 1,33 2,21

(2.24)

where
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Xla3 k33 + 35 k24f kll “ k22 “ k24*  (2*25)

Note that b is not independent and may be determined through
b = a^ ~ a.2 (2.26)

and, therefore, only three elastic constants are needed here 
to describe the nematic liquid crystal.

These equations are solved in the following way. They 
will be solved for the autocorrelation in the fluctuation 
d2 since this is what is experimentally measured. Clearly 
though, the equations are symmetric in d^ and d2» Multiply- 

1
ing (2.24) by d2 = d2(x,,tl) and taking the ensemble average, 
the following differential equation is obtained for the cor­
relation:

(2.27)

where
d2(x,t) d2(x

spatial arguments. Moreover, since the liquid crystal is not 

and the bracketsdenote the ensemble average. Since the 

. a2 , . .2
+ a ---y/^dodo > + b t-- ir-. v 2 \ 2 2/ ax, d x 

3x3 1

medium is homogeneous due to special sample preparation, the 
correlation ^2^2^ Can nOt depend on the origin of coordinates 

and must, therefore, depend only on the difference in the 

8 / • gyt \d2d2/ + al : 7 
dx2

a2 / "2 : 2" vs'^2 
dx^ \ *
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in motion, the process is stationary and this correlation
can not depend directly on time, but only on the time dif- 

»
ference t - t = t. Thus the correlation is a function only
of u = x - x, and t, so (2.27) becomes

+ a, -2-^.<dodo>+ b —A;-- <d1do>= 0.3 2 \ 2 2/ 9uq 3un \ 1 2/
d “

(2.28)

In anticipation of taking the Fourier transform, it is 
desirable to incorporate the initial conditions of the problem 
into the differential equation, thereby eliminating any 
auxiliary conditions. Assume then, that the initial condition 
can be specified by substituting the quantity Co 6 (u) 6(t), 

where 6 is the Dirac delta function, in place of zero on the 
. 32right hand side of (2.28). Now, take the Fourier trans­

form by multiplying this equation by exp |L(q«u - cot)] and in­

tegrating over u over the limits of the volume, and over t 

from -=° to <». The fact that, in this case, the volume of the 
liquid crystal is much greater than the correlation volume 
allows two approximations to be made. First, the limits of 
the spatial integration may be extended to infinity without 
seriously affecting the value of the integrals. Second, when 
integration by parts is performed, the integrated parts vanish 
since the correlation must vanish for |u^| = », or t = “. 

The resulting equation is algebraic, taking the form
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ia2>=co' (2-29>

where the tilde denotes the Fourier transformed quantity and 
a(q) is given by

3 7a(q) = I a.q.Z . (2.30)
i=l 1 1

<IX d^c^^niay be determined in a similar 
manner. By multiplying (2.23) by d2 and taking the ensemble 

average, then following the same procedure that was used to 
obtain (2.29), assuming no initial correlation between d^ and 
d2, one obtains the relation

!X / 1 X
d,d9\- bq,q9 <d9d9 5= 0, (2.31)J- X J. fc*  Z*  X

Eliminating from (2.29) using (2.31), the Fourier
transform of the desired correlation is found to be

/ *,  C
<dodo>= ---------- 2----  ---- , (2.32)\ 2 2/ (bq-j^) 2

-a (q) + iio - ----------
-a (q) + iu)

2The second term in the denominator, (bq-j^) /(-a(q) + ico) , 
represents the nonzero correlation between the fluctuation d^ 
and the fluctuation d2« Although this correlation is important 
it does not contribute, to a great extent, to the experimental 
measurements. In the first scattering configuration (see 
Chapter V, Figure 5.1), q2 is identically zero, as fixed by 
this geometry; therefore, the second term in the denominator 
of (2.32) vanishes. In the second scattering configuration

<ix
d2d2Z " bqlq2
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(see Figure 5.2 of Chapter V), neither nor q2 is zero.
4 -1Nevertheless, since q, is of the order of 2.2 x 10 cm and 1

4 -1q2 does not exceed 1.2 x 10 cm , and the coefficients a^ 
and a2 are of the order of 5 x 10 and 2.5 x 10 cm^/sec, 

respectively, then the second term in the denominator is 
considerably less than the first term. On these bases, then, 
the Fourier transform of the director correlation can be ap­
proximated by

c
\d2d2/ = ---------- (2.33)

-a (q) + ia)
where a(q) is defined in (2.30).

This relation will be discussed more in Chapter IV where 
it will be shown that the form of (2.33) implies a Lorentzian 
spectral density of the correlation in the photomultiplier 
anode current fluctuations. It will also be shown how the 
coefficients a^, a2, and a^ are determined from the experi­
mental data.



CHAPTER III

THEORY OF LIGHT SCATTERING

REVIEW OF LIGHT SCATTERING FROM LIQUIDS
This experimental study utilizes the effect of the motion 

of the molecules of the liquid crystal on the light passing 
through the sample. Systematic investigation of this perturbed 
light yields information about the scatterer. Before proceed­
ing to investigate the scattering theory in liquid crystals, 
a brief review of light scattering from liquids will be pre­
sented. Liquids rather than solids are discussed because of 
the greater similarity of liquid crystals to pure liquids 
rather than solids. This discussion will serve to introduce 
the problem and to clarify terminology.

In a pure isotropic liquid not near a critical point, 
the condition for Bragg scattering can not be satisfied for 
light waves, implying therefore, no scattered light. This is 
obviously not the case and early experiments showed the pres­
ence of scattered light. Guided by a suggestion of Von 
Smoluchowski, Einstein calculated the scattered field and 
intensity due to fluctuations of the dielectric permittivity 

33 about an equilibrium value. He then went on to relate the 
permittivity fluctuations to thermodynamic quantities by con­
sidering the permittivity as a function of density and tempera­
ture.

31
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Explicitly, Einstein found the.scattered field of wave 

i , -yvector k at a distance R from the scattering volume to be 

. a) 2 . i(8 - o)ot)
E(R,q,t) = - E (^) S----- ------- (2tt) 3/26 e (q, t)

(3.1) 
where q = it’ - it, it is the incident wave vector, and <|> is the 

angle between the incident polarization and the direction of 
it1. <S£(q,t) is the fluctuation in the permittivity. This 

result shows an intimate connection between the scattered 
field and the permittivity fluctuations. Since 6e(q,t) is a 
scalar, the equation predicts the polarization of the scattered 
field to be the same as the polarization of the incident 
field. The average intensity is simply the average of the 
square of (3.1) and is proportional to ^|<Se(q,t) |2^> where 

the brackets denote the average. Einstein evaluated 
<2\|<SE(q,t) | /in terms of temperature and isothermal compres­
sability for q = 0. His results were later extended by 

<i i2\|<Se(q,t) I / 
34 on q.
Following this theoretical work, much experimental work 

was devoted to the study of light scattering by liquids. One 
of the more important contributors of that time was Gross 
whose careful observations revealed a triplet of lines in the 

35 spectrum of the scattered light. The center line was un­
shifted in frequency with respect to the illuminating light
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frequency while the other two formed a pair of lines symmetric­
ally shifted with respect to the center line. Gross’ obser­
vation revealed the angular dependence of the shift of the 
displaced lines; the shift increased with increasing scatter­
ing angle. He explained this phenomenon in terms of thermally 
excited acoustic waves which propagated throughout the liquid. 
This confirmed the prediction made earlier by Brillouin.

In early terminology, the center line was called the 
Rayleigh line and the symmetrically spaced doublet was termed 
the "wings of the Rayleigh line". The group of three lines 
was also referred to as the Rayleigh triplet. Now it is more 
common to refer to the unshifted central peak as the Rayleigh 
line and the shifted components due to acoustic waves*  as 
Brillouin lines.

*as opposed to shifted components of Raman scattering, a 
result of a change in’ the internal molecular energy.

The results of Gross1 experiments were not borne out in 
Einstein's evaluation of 6e since the choice of the independent 
thermodynamic variables density and temperature did not allow 
identification of the Rayleigh and Brillouin components. The 

36proper choice was made by Landau and Placzek. Their choice 
of entropy and pressure allowed the identification and calcu­
lation of the intensity of the Rayleigh and Brillouin components. 
They argued that scattering due to local entropy fluctuations 
gave rise to the Rayleigh line since local entropy fluctuations 
do not propagate in normal liquids and the Brillouin lines are 
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a result of local pressure fluctuations which propagate 
throughout the liquid. (Quantum mechanically, it can be seen 
that a shift in frequency in scattered light can only be 
caused by a propagating acoustic wave (precluding Raman scat­
tering) and no frequency shift implies no acoustic wave, only 
relaxational motion. This is all implied in the conservation 
of momentum relation q = it’ - it where it' is the scattered 
wave vector, it is the incident wave vector, and q is the a- 

coustic wave vector.)
All of the theory presented heretofore is not the complete 

picture. Early investigations by Gross and others revealed 
the presence of a depolarized field of scattered light having 
a spectral structure similar to that of the polarized compo- 

37nent. These results are obviously inconsistent with the 
previous theory which predicts a completely polarized scat­
tered field. The presence of the depolarized field has been 
explained in the following way: although a liquid is macro­
scopically isotropic, its molecules have a definite structure 
and, in general, will not be isotropic. Thermal agitation 
not only causes local pressure and entropy fluctuations, but 
also local fluctuations in molecular orientation causing a 
depolarization of the scattered field. The presence of the 
Brillouin doublet in the depolarized field was theoretically 
investigated by Leontovich who predicted a coupling between

38 the molecular orientation and acoustic shear waves. The 
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depolarized Rayleigh component has been attributed to molecular 
motion of a purely relaxational nature. The same situation 
also exists in the spectrum of light scattered by liquid crys­
tals except that the intensity of the depolarized component 
is of comparable magnitude to that of the polarized component. 
This is a consequence of the large molecular anisotropy and 
the quasi-crystaline nature of liquid crystals. Moreover, 
the amount of scattering is much greater in the case of liquid 
crystals than for pure liquids. These facts make the acquisi­
tion of data on these substances relatively easy through light 
scattering.

Frequently mentioned, but seldom discussed, is the pres­
ence of a broad continuous background of scattered light whose 
breadth extends beyond the Brillouin components and appears 
in both the polarized and depolarized fields. A recent in­
vestigation has suggested that molecular repositioning con­
tributes to this broad background and to the other components 

39 as well.
The previous discussion has seemed to stress a connection 

between the scattered light and thermodynamic quantities. It 
is important to recognize other theories besides the thermo­
dynamic approaches and to utilize them in obtaining information 
about molecular fluctuations. Such nonthermodynamic theories 
have been developed by Rytov and others and consider the 

40 statistics of the fluctuations in the permittivity. Such 
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approaches find great utility in the investigations of light 
scattering by liquid crystals where thermodynamic quantities 
can not easily be connected to the fluctuations in orientation 
and position.

The seemingly complicated spectrum of light scattered by 
a liquid is summarized in Figure 3.1. The three peaks and 
broad background are present in both the polarized and de­
polarized fields. The central, unshifted Rayleigh peak is 
associated with purely relaxational molecular motion, while 
the symmetrically shifted Brillouin components are associated 
with propagating acoustic waves. (The spectrum does not show 
Raman lines which arise from changes in the internal states 
of the molecule. This type of scattering will not be considered 
in this study.)

Much information about the scattering liquid can be gained 
from studying the fine structure of the Rayleigh and Brillouin 
lines. For example, the width of the Brillouin line is di­
rectly related to the acoustic absorption at the frequency e- 
qual to the shift of the Brillouin line from the incident fre­
quency. This fact has made the study of Brillouin scattering 
a popular tool in the study of hypersonic waves. The laser 
has made such studies possible since the laser linewidth is, 
in general, much less than the spacing of the Brillouin com­
ponents. Such studies usually use a scanning Fabry-Perot 
interferometer.



FIGURE 3.1. The Spectrum of Light Scattered by a Pure Liquid. 
toQ is the mean frequency of the incident light, is the 
mean frequency of the phonons causing the Brillouin scat­
tering. This spectrum appears in both the polarized and 
depolarized components of the scattered field.
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The Rayleigh line may be studied in the same way; however, 

a development of Benedek and coworkers has made analyzation 
of the Rayleigh line relatively easy. They have used a spec­
trum analyzer to obtain the spectral density of the current 
of a photomultiplier tube illuminated by the light scattered 
from a liquid. Benedek argues that the system operates be­
cause of the heterodyne action of the Fourier frequency com­
ponents of the light with themselves in the photomultiplier 
(hence the name homodyne spectrometer). A careful theoreti­
cal analysis of this scheme was undertaken recently by Mandel 
in which the effect of the laser linewidth is considered.
His analysis justifies the equations used by others in study­
ing light scattering by analysis of photomultiplier currents, 
while simultaneously pointing out the consequences of assum­
ing (erroneously) that the laser light is perfectly monochro­
matic. The spectrometer used in this experimental study is 
similar to that described by Benedek.

LIGHT SCATTERING FROM A SUBSTANCE HAVING AN ANISOTROPIC 
SUSCEPTIBILITY

From the previous introduction it is clear that light 
scattering has been a useful tool for many years in the study 
of liquids. The polarization and frequency shift of the 
scattered light have been associated with certain classes of 
molecular motion and quantitative results have been used to 
calculate sound velocity and absorption, and other properties 
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of the scattering medium. However, as previously mentioned, 
there is more information to be obtained from the scattered 
light than early technology allowed. One of the technological 
drawbacks was the lack of an intense monochromatic source of 
light which would enable, simultaneously, easy observation of 
the scattered light and perfect coherence of the incident light 
as assumed in the theory. A great advance, of course, came 
with the laser; however, the laser is not monochromatic as is 
sometimes assumed. Nevertheless, the use of this new device 
enables acquisition of more information than previously ob­
tainable.

The object here is to relate information acquired about 
the statistics of the scattered light to the statistics of the 
molecular motion. With this end in view, the following analy­
sis will relate the statistical quantities measured by the 
laboratory instruments to statistics of the molecular motion. 
The measurable quantity for the experimental technique used 
is the spectral density, S(x,co), of the correlation function 
of the light intensity taken at the same observation point x, 
but at different times. The scatterer is represented by its 
susceptibility x(x,t), a tensor whose components are random 
functions of position in the scattering volume and time. The 
tensoral representation of the susceptibility reflects the 
fact that the molecules are not isotropic.

The analysis to follow parallels that given by Mandel in
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a recent paper with a few exceptions: first is the tensoral
rather than scalar characteristics of the susceptibility;
second, the scattered light is passed through an analyzer 
which selects a particular polarization of the scattered 
field; third, the Fourier transform of the intensity cor­
relation is taken since the photocurrent at frequency to is 
measured.

If the incident laser field is Eo(x,t), then the induced 
polarization per unit volume dV is

P(x,t) dV = ^(Xft) EQ(x,t) dV (3.2)

The susceptibility(x,t) may be written
X*(x,t)  =<(T/>+ Ax(x,t) (3.3)

where by^x^we mean the tensor whose components ( X )^j = 
/x^j^z wheredenotes the ensemble average. Since the li­
quid crystal is oriented, ^x^is the same for all points 

within the scattering volume and is also independent of time.
This diffracted field resulting from the induced polarization 
^X^EQ(x,t) is not of interest here. Of importance is the 

scattered field radiated by the induced polarization,
Ax (x,t) EQ(x,t) . (3.4)

The real laser field is represented by

E (x,t) = X J d3k 
s k, s

(3.5) 

where c.c. denotes the complex conjugate of the quantity on

v ei(R.x - ckt) + c,c_ 
. "*k,s



41

the left in the brackets, is the unit polarization vector 
k, s

of mode k of polarization s, and v is the amplitude of 
it,s 

that mode.
The scattered field may be calculated using the well 

known dipole formula^

Es = - 1 A - V<|> (3.6)

where
A(x,t) = Jv ~ [pJ dV (3.7)

<|> (x,t) = J { [p] • V i + -S, • [p] } dV (3.8)
V R cR2

The dots above quantities indicate time differentiation; the 
bracket [ ] indicates the argument of the enclosed quantity 

is to be evaluated at the retarded time, t-R/c, where R = 
x - x*  and R = | x - x I . The integrals are taken over the 

scattering volume; and P(x',t) = Ax(x*,t)  Eo(x’,t). (3.10)

* k,s
(3.10)

Examination of the relative magnitudes of the terms in­
volved shows that the only terms of significance are those 
involving spatial or temporal derivatives of Eo(x',t - R/c) 
in the integrals. Retaining only these terms, it is found 
that

Es(x,t) = J y / d3kk2 Ax(x',t - §) 
vs k, s

P . (Ax(X*  ,t - -) )
k, s

* y x Pel(k-x' - ck(t - j)+ c-c 
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where p = R/R = x/R, since the distance to the observation 
point will be much larger than the linear dimensions of the 
scattering volume. Note that p is a unit vector lying along 
the direction of the wave vector of the scattered light.
This expression may be simplified further by noting that Ax 
operating on g reflects only a change in polarization in 
the far field component of the scattered light. Therefore,

p • (Ax(x*,t  - ^) e ) = 0 (3.11)
k,s

and so

E (x,t) = J /d3kk2(Ax(x',t - |) )
v s k,s

(v^ ei(S’S' " ck(t - R/c)) + c.c.) . (3.12)
k, s

For a single mode laser, k is nearly a constant during the 
integration and may therefore be removed from under the inte­
gral provided it is replaced by the mean wave number of the 
mode, Jc . The desired relation between the scattered field 
and incident laser field is

8s(x,t) = ko2 / »X($', t - 6o(x',t - |). (3.13)

It is desirable to express Es(x,t) in terms of an analy­
tic signal since a simple description of the photodetection 
process exists in terms of this quantity rather than §s(x,t) 

44 • ■ -titself. The transition is carried out by writing Ax and
in terms of their Fourier transforms and supressing the 
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negative frequencies of the entire transform, thus assuring 
a complete description of 6g(x,t) solely in terms of positive 

Fourier frequency components. Following this prescription we 
write

Es(x,t) = ko2' J J / U(x', a,'’)

+ a)")(t - R/c) da)l dw,, dv, (3.14)

then, make the substitution w1 = oi + w1 ’ . This can be 
written

Eg(x,t) = ko2 / i- /dm Jdw” "xU’, to - co”) e1 03 (t “ ^dV*  

(3.15) 
where QO >

T(x,u)) = J Ax(x',t) e-10jt dt (3.16)

and

U(x’,w) = 27 J Eo(x’,t) e"la)t dt. (3.17)

First, note that U(x,,co”) in the integral differs from zero 
only for values of co” large and positive, i.e., near the 
optical frequency of the laser. This fact allows disregarding 
negative co” in the integral. Second, note that the fluctu­
ations Ax(x,t) are relatively slowly varying functions of time; 
therefore, x^(x*  , co - o”) differs appreciably from zero only 

for values of (co - co”) near zero. Therefore, negative values 
of co may also be disregarded. The desired analytic signal is
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V (x,t) = k 2 /"-p / du, / du)” ^(x’ ,u) - u)')*
S ° V K 0 0

• U(x’,a>”) elw(t - R//c) (3.18)

Now, making the inverse transform to = m' + to’’, this becomes

co co
V (x,t) = k 2 / 2V j dti), J da),,

S ° V K -co" 0

. eiw’ " R/c> (^(x^co") eiM'* (t-R/c) (3.19)

The facts mentioned above also allow extension of the integral
over co1 from -» to «>. Recognizing the Fourier transform of 
Ax and the integral over co" as the analytic signal repre­
sentation of the incident laser field, the expression for the 
analytic signal of the scattered field can be written

V (x,t) = k 2 J —- Ax(x',t - R/c) V (x’,t - R/c) (3.20)
o O ix O

where VQ is the analytic signal representation of the incident 
laser field.

It is well known that

3 ($,t) = t I 15 e1(iV$ " + 6 Cx,t)) (3 21)
o ' o

where I is the laser light intensity and g(x,t) is a random 
variable uniformly distributed between 0 and 2it. This ex­
pression reflects the constant intensity, quasimonochromaticity 

45 ->of the laser. e is the unit polarization vector of the 
laser field. When this expression for VQ is placed in the 
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the previous expression for the scattered field, it can be 
approximated that g(x',t - R/c) is almost constant during the 
integration provided the physical extent of the scattering 
volume is small compared to the coherence length of the inci­
dent laser light. Therefore, under these conditions, one may 
write

. 2 if? (x ,t - R /c) r dV’ f*  t । 4. r> / x V (x,t) = I k e o' o' ' J—p- Ax(x',t - R/c)
o O O yj jx

• e ei^o’^ " cko^t "" R/c) (3.22)

where xQ is the mean position of the scattering volume and 
Ro=l$-$ol-

The scattered light then passes through an analyser 
which selects the portion of the scattered light which lies 
parallel to the analyser axis, a. The analytic signal arriv­
ing at the detector at point x is then

Vd($,t) - l/ ko2 e16($o't - Ro/C) " R/c)

• ei(So " x' " cko(t " R/c)) (3.23)

where
p(x,t) = a • (Ax(x,t) ?). (3.24)

Here p can be any selected linear combination of the elements 
of Ax by proper selection of a and

The intensity correlation function is

<I(x,t) I(x,t + t)^> = <y*(x,t)  Vd(x,t) Vd(x,t + t) Vd(x,t + t)'
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2 , 8 f dVl dV2 dV3 dV4 
o o rR1 R2 R3 R4

*X^xl,t ” Rj/C) p (x2,t - R2/c)

• p(x3,t - Rg/c + t) p(x4,t - R4/c

. e"1 8O-(51 - 52 + S3 ' S4) 

• e-1 ko* El R2 + R3 R4)• (3.25)

Since Ax is assumed to be a normal random variable, then p
is a normal random variable, also, and the Gaussian moment

46 theorem may be applied to the above ensemble average. This
allows writing

If the scattering medium is homogeneous, the ensemble averages
of the type <Qi(x^,t - R^/c) p(x2,t - R2/c)^/ can only depend
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upon the relative position of points 1 and 2, that is upon 
the vector Moreover, if the scattering material is
in thermodynamic equilibrium, then the process is stationary. 
Therefore, these correlations can depend only on the difference 
in the arguments; more explicitly, one can write, for example,

Ai(x1,t - Rj^/c) p(x2,t - R2/c)<2' = CT (x1 - x2, ------ -) .
(3.27)

The slowly varying nature of Ax and- p have been brought out 
before; however, this property may be utilized again to justi­
fy neglecting the argument (R2 - R^)/c in a for small scat­
tering volume. Making these approximations, the intensity 
correlation becomes 

<I(x,t) I(x,t + t£> = io2 :

•(a(x1 - x2,0) o(x3

+ a - x4, t) a (x2

-ik (R. - Rn + Ro• e o 1 2 3
Taking the Fourier transform of
spectral density, S(x,u)), of th

Q dV. dVo dV^ dV.
o f 1 Z J 4

O R^ R2 Rg r<4

, 0 ) + (T (Xj_ — Xg , T )

xi “ik • (x, - x„ + xo - x.- Xg, t) } e o 1 2 -■ 3 4

R4) (3.28)

this expression gives the
i intensity correlations. Note

that the first term in the brackets {} does not depend on ai, 
therefore it contributes only at zero frequency. This term 
is not of interest here and will be disregarded. The spectral 
density for or > 0 is then,
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9 “ .. :d.v:9. ;av dv.
S(xr0)) Io ko / / — — — (a(x1 - x3,t)

~oo v 1 2 3 4

• a(x2 - x4,t) + gCx-l - x4,t) a (x2 - x3,t)}

. e“iJo -($1 ~ 52 + $3 " i4> e"iko(Rl " R2 + R3 " R4)

• e-lt0T dT. (3.29)

This expression can be simplified further. First, note that 
through R4 in the denominator are approximately equal to 

the mean distance from the scattering volume to the detector. 
These factors may, therefore, be replaced by this mean distance 
Ro. Furthermore, the quantity in the exponent containing R^ 
through R4 may be approximated by

kR^klxl-kp-x*  (3.30)-o o1 1 o
where, as before, p = x/R. Letting it" = j< (it1 is the wave 

vector of the scattered light), the spectral density is then
T 2 . 8) Ik”

S(x,0)) = -2-—— J / dv dV2 dV3 dV4 {0(5^ - x3,t) 
q V

• a (x2 - x4,t) + a (x-L - x4,t) a (x2 - x3,t)}

i(k' - k ) • (xn - x- + x-, - x.) -ilot .• e o 1 2 3 4  e dr*
(3.31)

For integration for the first term in the brackets, the sub­
stitutions xa = x^ - x3, x^ = x2 - x4 can be made. Similarly, 
for the second term, one can substitute x = x, - x. and' a 1 4
x^ = x2 - x3. Making these substitutions and performing some 
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integrals, the following expression is obtained for the 
spectral density:

r 2 v 8. I . . k o ”S(x,a>) = -2---O-V2 / / dVa dVb a($a,T) a(xb,T)
R "oo Vo

. " $b> e-^dT {1 + 4 / ei25'(*3  " 54>
V2 V

• dV3 dvp (3.32)
where q = it*  - i<o. Since o(x,t) is .a correlation function be­

tween two points in a homogeneous medium separated by x, it 
is reasonable to assume o(x,t) = o(-x,t). Also, if the de­
tector is not placed too close to the axis, i.e., if q is not 
too small, then the second term in the brackets is negligible 
compared to unity. Making these changes and approximations.
then replacing xb by “Xb, it is found that

I 2 k 8 V2 oo
S(x,t) = —------_ J J a(x' , t) eiq x

R -=o Vo

2 .
■3 -r 7 I ” 1 (1) T jdV1 e d t•

(3.33)
What is actually measured is the square root of the ab­

solute value of the above quantity, that is the output of 
the spectrum analyser is proportional to

co . -> ->

{ / / a (x* ,t) elq x
-oo v

dV’ expi(wt) dx }2 (3.34)

the proportionality constant including the square root of the

product of the quantum efficiency and gain of the photo 
multiplier tube. It is sufficient to note here that the
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spectral density S(xfio) is related to the correlation function

o(xrT) = ^a*  (Ax (xlf t) e) a’fAxC^ + x,t + (3.35)

through a four dimensional space-time Fourier transform. It 
is possible to find this correlation function by knowing the 
absolute value of the spectral density of the scattered light.



CHAPTER IV

LIGHT SCATTERED FROM AN ORIENTED NEMATIC LIQUID CRYSTAL
AND THE SPECTRUM OF THE

PHOTOMULTIPLIER ANODE CURRENT FLUCTUATIONS

The results of the preceding two chapters permit a di­
rect connection between the spectral density of the photo­
multiplier anode current fluctuations and physical constants 
of the liquid crystal provided that a quantitative relation 
exists between the director, 2, and the dielectric suscep­
tibility, x? The purpose of this chapter is to formulate an 

explicit relation between the parameters of the liquid crys­
tal and the experimental data. To do so, the relation between 
the fluctuations in the director and the susceptibility will 
be established. It is convenient to also use this chapter 
for a general examination of the experimental results and 
the theory in order to first, justify the assumptions made in 
the previous chapters, and, second, to point out some general 
features of the observations. This will be done later in the 
chapter where examples of the observed Lorentzian spectral

2 density and q dependence of the Lorentzian linewidth will be 
given.

To provide the relation between and x^r return to the 

model of & nematic liquid crystal as proposed in Chapter II, 
It is assumed that the director lies along the long axis of 
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the molecule and the molecule has cylindrical symmetry about 
this axis. Moreover, it is assumed that the molecular polariz­
ability shares this same symmetry and that the susceptability

in a coordinate system in which the Xg axis lies along the 
director.

can be represented by the tensor

X

x2
'= 0

0

x2

0
0 (4.1)

0 0 xl_

When thermal agitation causes a deviation in the local
molecular orientation from the preferred orientation direction, 
the susceptibility can no longer be represented by the above 
tensor in a coordinate system fixed to the preferred orientation 
direction. A representation of x*  in this latter coordinate 
system may be found by performing a transformation on x*  (as 

given in (4.1)) which constitutes a coordinate rotation. The 
transformation may be uniquely determined in terms of the 
components of 3. As a first step in using Euler angles, it

47 is found that

(4.2)

The Euler angle (j), is not defined by this relation; however, 
it is eliminated by requiring that when d^ = dg = 0, the x^
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and x2 axes of the coordinate system fixed to the molecule 
coincide with the corresponding axes of the system fixed to 
the preferred molecular orientation direction. Carrying out 
the transformation, using Euler angles as an intermediate 
step, it is found that the change in susceptibility due to 
a local change in orientation from that of the preferred 
direction is given by

in the coordinate system fixed to the preferred orientation

a 2 dl dld2 dld3

Ax = AP dld2 2 d2 d2d3 (4.3)

dld3 d2d3 1" d3l

direction of the liquid crystal. Here AP is equal to the dif­
ference - X2*  Restricting 3 to be of unit length and con­

sidering small fluctuations, the following approximations can 
be made:

17 2 di dld2 dl

Ax = AP dld2 a 2 d2 d2 (4.4)

dl d2 2 2dl + d2_

where the x^ axis is taken to coincide with the equilibrium 
director direction. This is the desired result. The sus­
ceptibility fluctuations are uniquely related to the fluctu­
ations, d^ and dgy in the director through (4.4).

The preceding work has connected the results of Chapters 
II and III; therefore, some salient features of the experimental
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results may now be examined which justify the approximations 
and assumptions made in the theoretical development. We be­
gin by reiterating the results of Chapters II and III and 
examining more closely the significance of the equations. 
Consider the correlation d2(x,,t'^ since this is,

in fact, the correlation which is measured in the experiment. 
The results of Chapter II imply that the Fourier transform of 
this quantity is given by

<d2i$',t' d2($' + $,t +T)>= ^a(q) ; .m <4.5)

where a is given by (as in Chapter II)
2 2 2a(q) = a1q1 + a2q2 + a3q3 (4.6)

where q is the Fourier wave vector and a^ through a3 are the 
constants describing the behavior of the liquid crystal (cf. 
Chapter II);

The susceptibility fluctuation selected by the experi­
mental geometry is

Ax A = AP do (4.7)Ameasured 2
and then, the parameter, a, of chapter III becomes

o(x,t) = (AP) 2 <^2 (x*  , t) d2(x' + x,t + (4.8)

Therefore, the spectral density of the photomultiplier anode 
current fluctuations reduces to (as calculated in Chapter III)

. e-^’di (4.9)

t + T )S (q,a)) = const x
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The quantity \d2d2 as ^erive<^ in Chapter II, is already 
in a Fourier transform form, but it may be inverted in its 
temporal dependence, permitting substitution into (4.9). The 
quantity within the absolute value symbols in the above ex­
pression is, then, equal to

/ ^^(x^t) d2(x*  + x,t + t e"*" u)Tda) = (4.10)

from (4.5). Placing this in the integral for the spectral 
density, it is found that (4.9) assumes the form

S(q,a)) = (4.11)
(2a(q))Z + a)z 

where f is a function of q, but not of co. Thus, the spectral 
density of the anode current fluctuations has the form of a 
Lorentzian spectral distribution with a half-width, given 
by

a)HW = 2|a(q) | . ‘ (4.12)
Measurement of this width then yields data necessary to de­
termine a (q) .

Now that the theoretical formalism has been directly re­
lated to the experimental procedure, our attention can turn 
to some examples of the empirical spectral density and its q 
dependence. Figure 4.1 is typical of the spectra recorded 
on the recording wave analyzer. The dots along the curve 
follow a perfect Lorentzian curve as generated by a computer 
fit to the experimental data. The curves exhibited here are,
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FIGURE 4.1. An Output Spectrum of the Wave Analyzer.
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in actuality, square roots of Lorentzians since the rectifier 
in the wave analyzer is a linear full-wave detector which pro­
vides an output proportional to the square root of the input 

4- 48power spectrum.
The width of the Lorentzian spectrum is a function of q 

through equations (4.12) and (4.6), and has a q dependence, 
where, as defined in Chapter II, q is the difference between 
the wave vector of the scattered light and the wave vector of 
the incident light, both in the scattering medium. Figure 4.2 
shows a typical example of the dependence of the Lorentzian 
width on the Fourier wave vector q. The solid lines are com­
puter generated curves which give a best fit of a(q) to the 
data. The two parts of the figure are for the two different 
scattering geometries used in the experimental investigation. 
Examination of this dependence then allows determination of 
the parameters a^, a2, and a^. Note that the form of a(q) per­
mits the determination of these parameters without the need 
of exploring all of q space. It is only necessary to vary q 
over two orthogonal planes to completely determine a(q). The 
correlation coefficients a^, , and a^ may, of course, be
associated vzith the elastic and viscosity coefficients in 
Leslie’s equations and in the Oseen-Frank equation. This 
shall not be done here, however, since it is more convenient 
to discuss only a^, a2, and a^. The next major concern is 
the temperature dependence of these quantities. This will be
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discussed in Chapter VI.



CHAPTER V

THE EXPERIMENT

SELECTION OF THE SCATTERING GEOMETRIES
In Chapters II and III, expressions were obtained for 

the correlation function of the molecular orientation and the 
relation between the statistics of the scattered light inten­
sity and the susceptibility. These results have been tied to­
gether in Chapter IV in order to provide a means for inter­
preting the results of the experimental investigation. The 
task now is to select scattering configurations which provide 
the connections between the scattered light and the molecular 
orientation fluctuations which correspond to the theory. In 
the following paragraphs, two scattering configurations will 
be described which permit this.

The basis for the selection of a scattering geometry is 
the equation from Chapter III:

o(x,t) =<^a*  (Ax (x* , t) e) a*(Ax(x'  + x,t + t)e)^>. (5.1)

The vectors a and ? describe the direction of the analyzer 

and the incident polarization, respectively. It must be 
noted that the position of the detector determines uniquely 
the Fourier vector, q, and the position of the analyzer, a. 
The description of the analyzer in the above equation must 
be referred to the coordinate system fixed to the preferred 
direction of the liquid crystal. However, for experimental 
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convenience, a is usually described by its position with re­
spect to the detector. Since the detector position changes, 
a is likely to change also; yet, certain scattering geometries 
allow changing the scattering angle (i.e., changing q) without 
changing the description of the analyzer that must be used in 
(5.1). Two such geometries will now be described.

The first scattering configuration is shown in Figure 5.1.
The Xg axis is aligned with the preferred orientation direction, 
3o, of the liquid crystal and x^ lies along the wave vector 

of the incident light, ]<o. The scattering plane is the x^ - 
Xg plane and icg, kQ, q, and "e lie in this plane. The analyzer 
direction is chosen perpendicular to the scattering plane, i.e., 
in the X2 direction, and is clearly independent of the position 
of the detector. Clearly then, for this configuration, the 
relation for o reduces to

<j(x,t) = (AP) ^dgCx^t) dgtx*  + x,t + (5.2)

and a (q), as defined in Chapter II, can be determined for any 
q^ and q3, but with equal to zero. Thus, the correlation 
coefficients, a^ and ag, may -be determined from measurements 
made using this geometry.

The second scattering configuration is shown in Figure
5.2. This is the same as the configuration just described ex­
cept the scattering plane is now the x^ - plane, e is in 
the scattering plane in the Xg direction, and the analyzer is 
in the Xg direction. Clearly, a, referred to the coordinate
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FIGURE 5.1. The First Scattering Geometry.

FIGURE 5.2. The Second Scattering Geometry
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system which is fixed to the preferred orientation direction 
of the liquid crystal (the system shown in the figure) always 
remains in the direction. For this configuration, the re­
lation for cr reduces to

o(x,t) = (AP) x/d^Cx’ft) d2 (x*  + x,t + (5.3)

which is the same as before, except the vector, q, is different. 
In this case, a(q) can be determined for any q^ and q2, but 
for q^ equal to zero; therefore, the correlation coefficients 
a^ and a2 can be determined from measurements taken using 
this scattering geometry.

Note that in both cases, the correlation in d2 is measured 
regardless of the value of q, provided q is restricted to the 
proper plane in q space. The quantity of interest, d2, has 
.thereby been isolated from the geometrical factors of the 
measurement, and no correction need be made nor scattering 
angle limitations imposed. These two scattering geometries 
are the ones used in the experimental measurements.

GROWTH OF ORIENTED NEMATIC LIQUID CRYSTALS
The experimental study performed here requires a preferred 

molecular orientation throughout the scattering volume since 
the interest here is in the fluctuations in molecular orienta­
tion about some known equilibrium direction. To fix this pre­
ferred direction, the sample of liquid crystal to be studied 
is prepared in a special way. The method that will be described 
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has not been found to work with all liquid crystals; experi­
ments with cholesteryl nonanoate indicate that the molecules 
can not be made to align parallel to a contacting surface; 
however, the method works well with para azoxyanisole.

The azoxyanisole samples used in this experiment are 
held between a specially prepared glass microscope slide and 
coverslip. After the glass and coverslip are prepared, the 
coverslip is placed on top of the glass slide with the treated 
faces in contact. The sizes are selected so that the cover­
slip is slightly smaller than the slide so that part of the 
glass slide is not covered by the coverslip. It is on this 
portion of the slide that the solid liquid crystal is placed. 
This ensemble is then placed in the scattering cell and heated 
to the desired temperature. When the liquid crystal melts, 
it is drawn into the space between the slide and coverslip by 
capillary action. This aids in filtering out large foreign 
particles which may be present in the unmelted solid. It also 
seems to provide a more uniform sample than if the liquid crys­
tal were allowed to melt while between the slide and the 
coverglass.

To prepare the slide and coverslip so that the crystal 
vill be oriented parallel to the glass, the microscope slide 
and coverglass are, first, cleaned using acetone or some simi­
lar agent. The glass and coverslip are handled only with 
forceps during this cleaning. The glass is then allowed to 
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dry. Mo other chemical cleaning is done. Next, the glass and 
coverslip are rubbed in one direction on a piece of typewriter 
paper. To insure that the rubbing is uniform and in one di­
rection only, the paper is placed on a flat, smooth, hard sur­
face and the glass slide or coverglass is moved back and forth 
on the paper with one edge forced firmly against a straight 
guide. A convenient guide is a piece of glass held firmly 
down, securing the paper beneath it. Forty or fifty up and 
back strokes is more than adequate to prepare the surface. 
During the rubbing, the rubbed glass is held through a tissue 
to prevent grease from the hands from contaminating the sur­
face. After the rubbing operation is completed, the rubbed 
surfaces of the slide and coverglass are placed in contact 
with each other, taking care to align the directions of the 
rubbing. The solid crystal is placed on the glass as described 
above and then melted. A nematic melt of para azoxyanisole 
prepared in this way will have its molecules parallel to the 
glass and the direction of rubbing.

Allowing the liquid crystal to return to the solid state 
will tend to deteriorate the aligning effects of the surface;
therefore, if the sample is allowed to cool to the solid state, 
a new sample must be prepared and the old one discarded. New 
glass slides and coverslips are used for each newly prepared 
sample, thereby insuring that no effect of the previous pre­
paration procedure will alter the new sample. Alignment of 
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the nematic melt is checked by viewing the crystal through 
two polaroids at various angles in white light.

THE EXPERIMENTAL PROCEDURE
The scattering geometries required to select the desired 

components of the susceptibility tensor have been described 
in Section 2.1. These descriptions, along with that of the 
light detection scheme of Benedek (see Chapter III), form a 
complete prescription for the experimental arrangement. The 
light source for our study is a Spectra-Physics Model 122 
He-Ne laser. Light from this source passes through a tempera­
ture controlled scattering cell, which contains the liquid 
crystal. The scattered light exits the cell in the forward 
direction and is intercepted by a screen which contains a 
pinhole aperture. In this way, only the light scattered at 
a particular angle is passed through to the.analyzer and 
photomultiplier tube. Fixing the aperture position uniquely 
determines the Fourier wave vector, q. The anode current of 
the photomultiplier, an RCA 1P21, is observed by monitoring 
the voltage which appears across the anode load resistor. 
The spectrum of this noise voltage is then measured by a 
General Radio 1910A recording wave analyser, set at 10 Hz. 
bandwidth.

The requirements on the design of the scattering cell are 
stringent in that the cell must provide a constant temperature 
environment for the liquid crystal, while simultaneously 
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allowing the passage of light in and out of the cell. The 
cell is machined from solid brass and has two cavities, one 
for the liquid crystal with apertures front and back to 
allow the passage of light, and another for the electric 
heating element. The front, and larger access to the cavity 
for the liquid crystal is sealed off using electrically 
heated conducting glass, while the rear, and small access 
hole is sealed by a microscope coverglass. The cell tempera­
ture is controlled by an automatic electronic device which 
supplies the heating element with a corrected voltage propor­
tional to the error in resistance of a resistance wire thermo­
meter from a predetermined value.

DATA PROCESSING
After the essential data has been acquired, it must be 

reduced to a form permitting relation to the quantities in 
the equations set forth in Chapter II and III. The three 
major steps in the data reduction are as follows: first, q 
inside the scattering volume must be determined through know­
ledge of the pinhole aperture position, the incident polari­
zation, and the analyzer direction; second, the Lorentzian 
half-width must be computed from the whole of the spectrum ■ 
recorded on the wave analyzer; and third, the parameters in 
a (q) must be determined from the q dependence of the spectral 
width.

In the calculation of the vector q = kg - kQ, the values 
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of kg, the scattered wave vector, and ko, the incident wave 
vector, must be corrected for inside the scattering medium; 
for although only single scattering has been assumed in Chapter 
III, both the incident and scattered fields experience an 
average susceptibility , throughout the scattering volume 
through which they propagate. Therefore, ]<s and it must be 

corrected using knowledge of the refractive index of the ordi­
nary or extraordinary waves and the components of these wave 
vectors outside the scattering volume. Envoking Snell's law 
and the condition that the incident and refracted wave vectors 
and the interface normal are coplanar, it is found that

^lln = 61.1. (5'41

and
2 2 2 2 2k±n + ko = V + ko n (5*5)

where kQ is the mean free space wave number of the incident 
laser light, n is the index of refraction of the liquid crys­
tal for the polarization of interest, and the subscript, n, 
indicates those quantities within the liquid crystal volume. 
Those quantities without the subscript n are outside the scat­
tering volume. In addition, the subscripts 11 and _L indi­
cate those components which are parallel and perpendicular, 
respectively, to the interface plane between the liquid crys­
tal and the surrounding space. The indices of refraction used 
in these equations are determined, through linear interpolation, 
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from the refractive index data of Chatelain, for the polari- 
50 zatron, temperature, and wavelength of interest.

Having the knowledge of q, the next requirement is to 
determine the Lorentzian half-width from the spectral data. 
The recorded spectrum of the photomultiplier anode current is 
not normalized and may contain a small amount of white noise. 
The data is fit, by the least mean square error criterion, to 
the square root of a normalized Lorentzian by numerically 
minimizing the function

- (AVi - B) }2
F(a),A,B) = i------------- ---------- (5.6)

{ Dtcu,^) r

with respect to the unknown parameters, oo, the Lorentzian 
half-width. A, the normalization factor, and B, the noise 
level. The summations in (5.6) are over all data points: the 
recorder voltages, at frequency f^, where f is in Hertz 
for convenience. The function D(u)ITTT,f) is the Lorentzian form

= < ■ r.V ' (5-7>TTL(2lTf) + J

The normalization constant and noise level are determined 
analytically and uniquely for a particular to through

3F n , 0F _ n 9A 0 and 9B 0

respectively; thus the computer need only search along a line 
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(oi) to determine the minimum of F in (5.6). The denominator 
of this function is included to prevent the computer from 
drifting to to 0, A -> 0, or to -»■<», A 0 and overlooking the 
proper minimum. After the minimization is complete, numeri­
cal values for A, and B are obtained for the particular 
q and temperature at which the spectrum was observed. Similar 
data reduction techniques are used to determine a^, a2 and a^ 
through the empirical values of to^ as a function of q at 
some specified temperature.



CHAPTER VI

EMPIRICAL TEMPERATURE DEPENDENCE
OF THE CORRELATION COEFFICIENTS

INTRODUCTION
The theory of the dynamics of the fluctuations in molecu­

lar orientation has been derived from Leslie’s equations and 
the Oseen-Frank equation. These equations contain elastic 
moduli and viscosity coefficients which are functions of 
temperature. However, the theories consider macroscopic be­
havior; consequently no investigation is made of the tempera- 
ature dependence of these parameters. In proposing a model 
for such an investigation, one must view the liquid crystal 
on a microscopic level describing, in some way, the inter- 
molecular forces. A statistical molecular theory was developed 
in this way by considering primarily dipole-dipole interaction.
This theory predicts a unique temperature dependance of the 

elastic moduli ^22' anc^ ^33 Explicitly, it is found
(both in the theory and in the experimental verification) that

51 52 each elastic modulus follows the foirm '
k - S2 c
k * Ck (6.1)

where V is the mole volume, is a constant, and S is an 
ordering parameter which depends on V and the temperature 
through an implicit relation. The ratio of the elastic moduli 
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is then independent of temperature and is empirically found 
to fit (for para-azoxyanisole)

k22 : kll ! k33 = le0 : 1*6 : 3,8 (6,2)

A statistical approach was also taken by Helfrich in his 
53study of certain viscosity coefficients. Taking a model of 

the molecular interaction as osculating ellipsoids, the theory 
predicts to follow

T35
X, = C. (6.3)

v *
where T is the temperature in degrees Kelvin, and.is a 
constant. Unfortunately, Helfrich limited the comparison of 
his theory with the measured values to one temperature, infer­
ring the value of from dielectric measurements on flowing,

54magnetically oriented para-azoxyanisole. Further checks 
made on the theory indicate that (6.3) predicts the proper 
trend. Saupe’s and Helfrich’s theories, therefore, provide 
a reasonably verified theoretical dependence of the ratio
k/X^, (where k is k^^, k22^ ^33) on temperature.

It is unfortunate that no data is available on k24«
While it does appear in the theory, Frank mentions that it is 
zero for "planar structures". Some have asserted that this 
parameter has no meaning and was included by Frank through

55an oversight, while others ignore k24 entirely. Although 
there is confusion concerning this elastic modulus, the pur­
pose in mentioning it is not to attempt to resolve the issue, 
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but rather to point out that if is indeed nonzero, then 
the theory, for our purpose/ is incomplete. This shall be 
discussed later. First, it is desirable to discuss results 
at some specified temperature.

VALUES OF a1, a2, AND a3 AT 125°C

There have been experimental measurements taken which 
allow the determination of the parameters k22f ^33 f an<^ 

(either directly or by inference). We wish to compare 
these results to the values of a^, a2, and a^ obtained in this 
study. This comparison shall be made at 125°C. Values of the 
elastic moduli have been obtained by Saupe^ and by Zwetkoff^^ 

while may be inferred from the dielectric anisotropy of a
5 8 flowing, oriented nematic melt. Table 1 is a summary of the 

data on k^ and and includes values of a^ calculated from 
this data. For comparison, the value of a^ obtained by direct 
measurement is also included.

*k^ X^ a^ calc. a^ meas.
7 2 5 5xio' xlO xlO. xlO

Saupe 6.08 1.81
3,35 0.466

Zwetkoff 4.5 1.34
*Anisotropy data of Marinin and Zwetkoff yra the theory 

of Helfrich

TABLE I 
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The measured value is about one third to one fourth the value 
calculated from the published data. Although agreement is 
fair, it is most likely that if an error exists in the pub­
lished data, the value of is the most doubtful since it has 
not been as extensively verified as the elastic moduli.

There is another alternative to the comparison. From 
Saupe’s elastic moduli data and our a^, one finds that =

— 613.0 centipoise. Then taking k2^ = 2.3 x 10 dyne, we find
-5 -5that a2 = 1.2 x 10 and a^ = 2.0 x 10 . These values are

in reasonably good agreement with the measured values a2 = 
—5 -5 •?0.82 x 10 and a^ = 2.32 x 10 cmz/sec. The comparison is 

not as good if k2^ is taken to be zero.
From this presentation, it can be concluded that the re­

sults of this experimental study compare favorably with those . 
of other investigators at 125°C. The next concern is of the 

temperature dependence of the parameters a^, a2f and a^. This 
interest is primarily of the form of the variation with tem­
perature rather than the actual magnitude of the coefficients.

TEMPERATURE DEPENDENCE OF a^^, a2, AND a3
The theory predicts that the values of these coefficients 

should monotonically decrease with increasing temperature. 
In addition, it is noted that this temperature dependence 
is followed by a^, a2, and a^ as calculated from the empirical 
values of the elastic moduli and the dielectric anisotropy 
measurements. Yet, the dependence observed in this study is. 
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in general, an increase in these parameters with increasing 
temperature; a direct contrast to the expected variation. 
Moreover, the coefficients are observed to experience an 
anomalous change near 128°C. At this temperature a^ reverses 
its trend, and above 128°C it decreases with increasing tem­

perature. The parameter a2 experiences what appears to be a 
discontinuity, diverging to large values at this same point. 
Divergence of the coefficients is also observed as the nematic- 
isotropic transition is approached—a trend indicated in the 
published data but not fully investigated by these authors. 
Let us begin the detailed presentation by examining the tem­
perature dependence of a^.

It has been mentioned previously that a^ increases with 
increasing temperature and, as the nematic-isotropic transition 
is approached, this parameter diverges to large values.
Figure 6.1 displays the variation in a^ with temperature through­
out the entire nematic range. The solid line in the figure is 
a plot of f(T) fitted to the data, where f(T) is given by

f(T) = A|T/t - 1|y (6.4)

The melting point temperature, T , is taken to be 132.0°C. 

It is found from this fit that y is approximately equal to 
-0.17, Note how closely a^ follows this assumed curve over 
the entire nematic region; the fit to a straight line when 
In(a^) is plotted versus In(T^ - T) is remarkably good, es­
pecially for values within a few degrees of the melting point.
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FIGURE 6.1. The Temperature dependence of
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It can be seen from this curve that although a^ does not fol­
low the predicted dependence, a smooth, upward trend in a^ 
with increasing temperature is indicated.

The dependence of a^ shares a similar trend, as shown in 
Figure 6.2, with the exception of a change in slope near 128°C. 

Unfortunately, the data obtained for a^ does not make obvious 
a likely analytic form for the temperature dependence of this 
quantity. Nevertheless, some qualitative observation can be 
made. It is clear from the figure that a^ increases, in gen­
eral, with increasing temperature. This trend continues up 
at a rate of approximately 1.4 xlO ^/°C to approximately 128°C, 

above which a possible downward trend is indicated. The up­
ward trend of a^ apparent here is again in contrast with the 
expected temperature variation. Little else can be said con­
cerning a^ at the present time.

The quantity a2 has a completely anamalous, yet consis­
tent behavior. Above the solid-nematic transition temperature, 
a2 experiences an increase with increasing temperature. 
However, a divergence of this parameter is observed near 128°C; 

a2 tends to large values as this temperature is approached 
from either side. This behavior is indeed present at a tem­
perature below the nematic-isotropic transition temperature 
since the values of a^ taken in conjunction with a2 follow 
those taken in conjunction with a^. The measured quantity 
common to both scattering configurations, a^, varies smoothly
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through 128°C, diverging at the higher transition temperature. 

This indicates the existence of the anomaly at approximately 
four degrees below the nematic-isotropic transition tempera­
ture. The divergence of a2 at this temperaturer which we now 
denote as T , is assumed to follow o

a2 (T) A|T/To - 1| y (6.5)

Figure 6.3 displays the temperature dependence of a2f with the 
solid lines being, as usual, the fitted curve following the 
assumed form of the variation with temperature. Below T , it 

-6 2is found that A is approximately equal to 1.5 x 10 cm /sec 
and y is approximately -0.44, while for above this temperature, 

— 6 2A is approximately 5.5 x 10 cm /sec and y is -.10. For the 
best fit of the assumed curves, T is found to be 128.7°C.

This striking difference in the temperature dependence of a2 
from the expected variation seems to indicate that these mea­
surements reveal more character of the liquid crystal than is 
discernible through less direct measurement methods.

DISCUSSION AND CONCLUSION
Several marked differences are noted between the results 

obtained in this study and in the theoretical and experimental 
results obtained by others. It is the purpose here to discuss 
these differences and suggest both experimental and theoreti­
cal areas in need of further investigation. First,, the anomaly 
at temperature Tq will be considered.



1.8 -r-

FIGURE 6.3. The Temperature Dependence of a2«

co 
o



81
The observed variation of a2 exhibits marked divergence 

at Tq, with the divergence fitting A|T/T -1|Y. Moreover, the 

trend of a^ indicates a possible change in slope at this same 
temperature. Since Tq is within the nematic range, it must 
be concluded that a type of second order phase transition 
occurs at this temperature. This transition is categorized 
as a "type" of second order transition since the divergence 
of ao at T is not common to the other coefficients. Obser- 
vations made by others on the temperature dependence of the 
scattered light spectrum for temperatures above the nematic 
isotropic transition indicate that a second order transition 
does take place at a temperature slightly below the nematic- 

59 isotropic phase transition. It must be noted that the theory 
of Saupe does not predict a second order phase transition in 
the range in which the liquid crystal is nematic. The possi­
bility of such transitions should be considered in the light 
of the results of this experiment.

Experimental results of other authors to which we have 
previously referred indicate that a^, a2, and a^ decrease ra­
ther than increase as the temperature is raised. Yet, the 
measurements on X made by these researchers necessitates a 
flowing melt. Since the flow through parallel plates or capil­
lary tubes can not be expected to be with uniform cross-sec­
tional velocity, it is apparent that the substance under study 
is not in thermodynamic equilibrium. Although bulk continuum 
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properties were measured in these experiments, it seems un­
likely that they bear a connection to fundamental thermodynamic 
properties of the nematic melt. It is also possible that, if 
second order phase transitions do take place, they would be 
difficult to observe under such circumstances. Light scat­
tering measurements, like those made in this study, provide 
the means to determine these latter properties.

It is, of course, expected that the parameters a^, a2, 
and a^ will experience a discontinuity at the nematic-iso- 
tropic transition temperature. This is apparent in the data 
of a^ which diverges to large values at the transition point 
following A|T/Tm-1|Y. it is less obvious in the trend of a^ 
and to an even lesser extent in . Examination of Figure 6.3 
reveals that the temperature dependence of a2 is dominated by 
the second order transition; thus details of the nematic- 
isotropic transition are not discernible in this figure. The 
same conditions also apply in Figure 6.2; however, a trend to 
small values of a^ at the isotropic transition may be indi­
cated. Finally, it may be said that, although the temperature 
dependence of a^ is rather vague, the behavior of a^ and a2 
are clearly indicated in the results presented in Figures 6.1 
and 6.3. As has been indicated, these results are unique and 
warrant further study.

In conclusion, it is desirable that some comments be made 
about further experimental investigation. The method of data 
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acquisition used in this study requires a relatively long 
measurement time at one temperature. This has two undesirable 
features. First, for example with a3, approximately fifty 
hours of spectra recording are required to take the data dis­
played in Figure 6.2. Clearly, changes could take place during 
this time which obscure the true trend of the measured parameters. 
Second, the taking of a plethora of data which may be averaged 
is precluded, thus no reasonable estimate of the experimental 
error can be determined. Part of the solution is obtaining 
the correlation given in (4.10) in real time, a process taking 
fractions of a second as opposed to many minutes. Real time 
correlation should be the next step in any continued research. 
Such procedures would allow greater detail of the temperature 
variation of a^, and a^ to be determined.
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