
MINB4IZATI0N PROCEDURE IN THE DESIGN

OF DIGITAL SYSTEMS

A Thesis

Presented to

the Faculty of the Department of Electrical Engineering

The University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Robert Ee Taranto

1966

383693

ACKNOWLEDGMENT

Grateful acknowledgment is made to Professor

T.N. Whitaker and Mr. A.H. McMorris for their counsel

and guidance. The author wishes to thank the many who

were helpful and considerate during the preparation of

this thesis.

MINIMIZATION PROCEDURE IN THE DESIGN

OF DIGITAL SYSTEMS

An Abstract of a Thesis

Presented to

the Faculty of the Department of Electrical Engineering

The University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Robert E. Taranto

1966

V

ABSTRACT

Representing that research resolves itself through

development to beneficial application, this thesis proposes

an advancement in the technique of economical logic design.

While much work has been performed in perfecting

implementation of hardware, existing methods fail to provide

absolute minimality in all applications. The objective is

to provide a procedure for the logic designer to develop

solutions through rapid, error free multi-comparison methods

which provide minimal expression and the proof and record:

thereof.

The presentation considers existing hardware, pre

sent minimization methods and their problems; develops

examples describing the procedure and finally describes a

computer program for economical reliable design.

Time consuming calculations are eliminated through

the development of graphical solutions by computer programs,

rather than existing numerical methods of minimizing the

Boolean expression. The approach reported here utilizes

a combination of present methods, with new interpretations,

to obtain minimized optimum circuitry - while simultaneous

ly displaying the basic characteristics of the Boolean

expression.

I

VI
TABLE OF CONTENTS

CHAPTER Page

I. GENERAL OUTLINE 1

Introduction 1
Review and Definitions 1
Hardware .. 3
Minimization Methods....................... . 4
Procedure Outline 6

II. THE KARNAUGH MAP IN MINIMIZATION............... 12

Description 12
General Rules 13
Five and Six Variable Maps...................... 15
Factoring with Karnaugh Maps.................... 19
Inhibiting in Karnaugh Maps...................... 21
Map to Hardware Implementation................. 23

III. NAND-NOR IMPLEMENTATION26

Equivalent AND-OR Substitution 28
The Transformation by De.Morgan Theorem . . . 31
Earle Transform Method........................... 34
Direct Implementation from Maps................. 37

IV. DECOMPOSITION OF FUNCTIONS 42

Disjunctive Decomposition 43
The Partition Matrix........................ ■ . 46
Minimization by Decomposition 49

V. THE COMPUTER MINIMIZATION PROGRAM............... 52

Purpose ..52
Input........................ 53
Expressing the Function................ . . . 53
Output 55
Execution.. 55
Diagnostic 57
The Algorithm....................................... 57

vii

CHAPTER Page

The Flow Chart...................................... 62
The MAD Program.................................... 67
Print-out for a four Variable function 70
Print-out for a five Variable function 76

VI. SUMMARY AND CONCLUSION.......................... 81

Recapitulation 81
Research Direction.............. 81
Author's Contribution 82

APPENDIX... 83

Postulates............................ 83
Theorems... 83
Logic Functions.................................. 85
Decimal Binary Conversion Table 86

CITED REFERENCE... 88

BIBLIOGRAPHY .. 89

LIST OF FIGURE

Figure Page

1.1 Procedure Flow Diagram a,b,c...................... 8-10

2.1 Three and Four Variable Karnaugh Maps 14

2.2 Five-Variable Maps............................... 16

2.3 Map of a Six Variables Function.............. 18

2.4 Factoring by an '’AND” of two Maps............ 20

2.5 Karnaugh Map Inhibiting........................ 22

2.6 Function Transformation Flow Diagram.......... 24

3.1 Function Equivalents................ 27

3.2 Equivalent AND-OR Circuit 29

3.3 Reduced and Minimal Circuits................... 30

3.4 Implementing with De Morgans Theorem.......... 32

3.5 Conversion to OR-AND FORM...................... 33

3.6 Earle Transforms 35

3.7 Factoring Earle Transforms 36

3.8 NOR/NOR Implementation from Map.............. 38

3.9 NAND/NAND Implementation from Map............ 40

4.1 Partition Matrix of Example Function 45

4.2 Decomposition Chart for the Four Variables
Function... 47

4.3 Logic Network Realization 50

5.1 Format Input Card............................... 61

5.2 Flow Chart a,b,c,d................................. 62-66

1

CHAPTER I

GENERAL OUTLINE

Introduction

The rapid advance of integrated circuit technology

has increased the applications for digital systems, re

quiring the logic designer to solve a variety of problems

of function implementations. Obtaining minimal solutions

requires the use of tedious, time consuming calculations.

While numerical methods and computer programs do

reduce the logic designer's effort, a solution must be ob

tained before the designer will be in the position to op

timize his function implementation. A procedure is required

to permit logic circuit optimization rapidly, reliably,

economically and simply. This procedure must allow the desig

ner to compare the effects of parameter variance, without

resorting to tedious calculations. The procedure described

here utilizes a computer program to achieve the implemen

tation of Boolean functions.

Review and Definitions

Similarities between logic propositions and swit

ching circuits permit use of algebraic logic for analysis,

synthesis and minimization. The algebra of logic uses the

postulates and theorems of appendix I.

2

The following definitions apply throughout this

thesis:

Literal: A variable or its complement,

(A or S).

Minterm or Product term: Literals in a group mul

tiplied together, (A.B.C),

Maxterm or Sum term: Literals summed together,

(A+B+C) .

Canonical term or Standard term: A term containing

exactly one occurrence of the literals,

f (A,B,C) = ABC + ... is an example of a canonical

product term.

Sum of Products form: A function form, where the

product terms are summed, (AB + "KC + BC) .

Product of Sums form:A function form, where the

sum terms are multiplied, (A+B) (A+£) (B+C).

Canonical form or Standard form: A function form,

where all the terms are canonical and appear only

once. The canonical form may be expressed as a

product of sums or as a sum of products, each being

unique.

3

Truth Table or Table of Combinations: A tabular

representation of a function, giving the function

value for each of the possible combinations of the
variables. There are 2n row combinations for a

function of n variables.

Boolean Expression: A function form that describes

some logical properties or a network construction

by Boolean algebra.

Logic Diagram: The logic circuit configuration

implemented from the logic expression.

Analysis: The derivation of the truth tables from

block diagrams or equations.

Synthesis; Deriving equations from truth tables.

Minimization: Manipulation of Boolean functions

culminating with implementation in a block diagram

with some parameters minimized.

Hardware

Hardware representation of present state of the

art appears in the form of monolithic integrated circuit

performs a multitude of logic functions in the form of HAND,

NOR, and EXOR.

The advantages obtained by integrated circuits are:

High speed

High fan-out capability

High noise immunity

Low power dissipation

Moderate cost

Miniaturization

The appendix contains standard logic symbols and

diagrams referring to integrated circuitse

Minimization Methods

The process of finding the form of a given Boolean

function, which may be implemented directly into hardware

at lower cost and increased reliability, is known as

"minimization" in the logic designo Cost and reliability

are directly related to minimality of quantity of standard

logic blocks, switching levels and block interconnections.

Arbitrary application of Boolean algebraic laws to

the manipulations of algebraic representations of logic

functions may result in prohibitive labor to achieve

simplification. A definite need exists for a systematic

simplification procedure. Of the large number of published

methods the majority are oriented to relay circuit minimi

zation and are categorized in three groups:

5

1. An algebraic method for minimization found by

Quine. Any function of any number of variables

can be minimized to a two level minimum expression

by first expanding the function to its canonical

form, comparing each term against the others and

eliminating redundant terms by using the basic

theorem:

AB + A"B = A

A selection must then be made of the fewest number

of irredundant terms (prime implicants) that yield

the function. The two main disadvantages of this

method are that the expression is only the two

level minimum sum of products or product of sums,

possibly far from being the minimum one. The

method is time consuming and prone to errors.

2. Me Cluskey reduced the disadvantage involving time

by using binary numbers. The resulting numerical

method uses the same algorithms as Quine's, where

each term of the canonical expression is represen

ted as a binary number as in;

T= ABCD +.ABCD

T=I(0,15)

Digital computer programs have applied this method

to solve Boolean functions. The minimized function

obtained is a minimum two level expression of sum

6

of products or product of sums. However, it is

not readily adaptable into logic blocks.

3
3. The Graphical method originated by Veitch

has been extended by others, possibly the best

being the Karnaugh maps and partition matrix.

This geometrical representation gives an insight

into the functions and permits acquisition of a

real minimal circuit for the hardware to be used,

as will be seen in the following chapters.

The graphical method is limited inasmuch, as

functions above six variables must be disjunctive

ly treated as two subfunctions, each with six or

less variables. Such occurrences are infrequent.

In most cases digital systems are built as func

tional modules in which the number of variables

is less than six.

Procedure Outline

Briefly, the optimizing procedure is:

1. Engineering and functional specifications are

combined to determine the logic specification

for a system.

2; This specification is then reduced to functionally

related logic subsystems for example decoders,

arithmetic units, input-output, control, etc.

7

3. The logic subsystems are described by Boolean

expressions.

4. Each Boolean expression in punched card form is

read by the computer and the "BOOLEQ" subroutine

is executed.

5. The resulting output includes the information as

shown in figure 1.1.

a) The truth table of the function.
b) The canonical form of the function.
c) The Karnaugh map of the function.
d) The partition matrix of the function.
e) The minimum number of terms.

The procedure now provides three alternatives, de

pending upon the number and grouping of terms. The first

alternative is selected when examination of the Karnaugh map

reveals an approximately equal number of minterms and maxterms

without large groupings. A close examination of the partition

matrix must be made to obtain a disjunctive decomposition

function as explained in Chapter IV. The resultant expression,

if found, is then ready for hardware implementation.

The last two alternative procedures are similar. One

utilizes the minterms and the other utilizes the maxterms.

In both cases a close examination of the Karnaugh maps will

reveal a direct form for hardware implementation. Factoring

may be done, if indicated, and if less hardware is required.

The procedure also provides for inhibiting, intro

ducing new terms and simplification of functions.

8

PROCEDURE FLOW DIAGRAM
Figure 1.1-a

9
P2

PROCEDURE FLOW DIAGRAM
Figure le1-b

10

NO

________ _______
' PUNCH CARD
WITH MINIMIZED

FUNCTION

N
INPUT TO
COMPUTER
PROGRAM

EXECUTE
SIMULATION
SUBROUTINE

NO

INTERCON
LIST.

ARE FUNCTIONS
THE SAME

YES

PRINT
HARDWARE

REQ

TIMING
CHART

END PROCEDURE FLOW DIAGRAM
Figure 1.1-c

11

Should satisfactory minimization not be achieved, the

designer re-examines the print-out.

When the minimized function is obtained, it is

processed by a computer simulation program. If the output

does not display the equivalence of the original and mini

mized functions, an error has occurred and the designer

must re-examine his work. When the two functions are equi

valent, the hardware requirements and interconnection list

may be produced.

Chapter II is wholly devoted to Karnaugh maps and

the process of factoring, inhibiting and function trans

formation, while Chapter III explains implementation of

NAND-NOR logic.

12

CHAPTER II

THE KARNAUGH MAP IN MINIMIZATION

A preferred graphical method for minimization is
4

the Karnaugh map. It achieves simplification of switching

functions by applying elementary geometrical concepts re

lated to algebraic properties. With previous experience of

map handling, a visual inspection can minimize a function

to two or more levels minimal expression of any form.

Factoring and inhibiting permits direct implementation of

the function into integrated circuit logic blocks of the

form NAND/NAND, NOR/NOR, NOR/OR etc.

Description .

Geometrically, a switching function is expressed
graphically as a map. Each n variables are allocated 2n

cells'.s, one for every possible input combination of the

variables. (See figure 2.1), Functions are represented by

entering a 1 in the cells which are associated with each

term in the algebraic function. Cells with 1 are minterms

to the canonical expression of the function. The map com

pletely defines the function.

Terms are so ordered that any two adjacent cells will

differ in only one variable. The cells along the left-hand

edge are adjacent to the corresponding cells along the

right-hand edge. Similarly, the top edge is adjacent to the

13

bottom edge. This arrangement is refered to as reflected

ordering to differ from the straight binary, where more

than one variable is permitted to change. The adjacency of

opposite ends of row and column can be better observed by

considering the map as being inscribed on a Torus. Close

examination of the map reveals that adjacent cells, either

horizontally or vertically, both having 1, can be grouped

according to the distributive and complementary algebraic

rules:

T = AB + AB

T = A(B-hB) = A

Larger numbers of cells can be grouped if the number of

adjacent 1’s is some power of 2. The terms are defined by

constant variables throughout the group.

General Rules

A good approach for optimum solution is embodied

in the following rules;

1. Computer subroutine plots Karnaugh map.

2. Account for all 1 cells that can be

grouped only one way.

3. Cells that do not combine are prime

implicants.

4. Combine group of two cells. When all

groups of two are exhausted, combine groups

of four and so forth.

14

DC
00101 11 10

BA 0£L3 'T' 0

ol_ ij i 0

11 0 J J 0

10 i 4, 0 (1

T = AC + ABC + BC + CD

MINIMUM SUM OF PRODUCTS

T - (ABC 4-BDC +ADCV
T - (A+B+C)-(B+D+C)•(A+D+C)

MINIMUM PRODUCT OF SUMS
C

T = ABC + ABC + ABC + ABC
T = AB + BC +ABC
T = B (A+C) +ABC

THREE AND FOUR VARIABLE KARNAUGH MAPS

Figure 2.1

15

5. Write the function, taking in account

each group in the form required.

The function obtained is not necessarily the minimal two.

stage algebraic form. Fewer terms and/or variables may

possibly result from grouping 0’s and applying the General

Rules.

The three and four variable maps are illustrated

in the example in figure 2.1. As seen, the minimum sum of

products has more terms than the minimum product of sums,

each function being directly derived from the map by group

ing the 11s or the 0 * s.

T = AC + ABC + BC + CD (From the 1’s)

T = (ABU + "BBC + SDC) 1 (From the 0’s)

T = (K + B + C) . (B + U+ U). (A + U + 5)

Optional terms may be introduced for functions whose

values are not all specified. These terms can be specified

as either 1 or 0.

Five and Six Variable Maps

When minimizing expressions of five variables, two

four variable maps are plotted. The two maps provide the

same information, giving the 32 combinations of the five

variables and their complements. Each map covers the same

four variables, while the fifth variable is assigned

16

T = ABDE_+ A CDS + ACDE + A CD +ABDE +ACDE +ACDE +ABCE
OP = ABODE + ABODE

T=ACD+AD + BDE + ACE
FIVE VARIABLE MAP IMPLEMENTING FROM 1's

T =(A+C+D)•(A+D+E)•(A+B+D)-(C+D+E)-(A+C+D)

FIVE VARIABLE D4PLEMENTING FROM O’s

Figure 2O2

17

0. on the first map and . L on the second map. Adjacency

in each map occurs between the same : cells, on different

maps in addition to the original adjacencies. A five

variable example is shown in figure 2.2. The illustration

demonstrates the advantage of using Karnaugh Map, when

some terms are optional.

Six variables are displayed by plotting four four-

variable maps. Each represents sixteen combinations of the

first four variables, while the fifth and sixth variables

take the values 00, 01, 10, 11 for each consecutive map.

Six variable map minimization requires practice to

obtain proficiency. The four maps are viewed as if there

...were a third dimension map displaying the adjacencies be

tween the maps. The example below shows some of the sim

plification possibilities. The computer program has been

restricted to six variables, usefulness above six being

very limited. Figure 2.3 illustrates a six variable map

and its solution of a function representing the prime bi

nary numbers of the first six digits:

T =£(0,1,2,3,5,7,11,13,17,19,23,29,31,41,43,47)

Where the minimum sum of products from the maps is;

T = CDEF+ADEF+ACDF+ABDF+ABCDF+ABCDE+AGDEF+ABDEF

Or in factored form;
T = AD rBC(E+F)+BC(E+F)l +A(B+C)(DF+DEF)+AC(BDF+DEF)

U J DEF(A+C)

18

MAP OF A SIX VARIABLES FUNCTION

Minimization of a Function representing the Prime
Binary Numbers of the first six digits using Karnaugh
Maps.

T = Z (0,1,2,3,5,7,11,13,17,19,23,29,31,41,43,4?)

T = CDEF+ADEF+ACDF+ABDF+ABCDF+ABCDE-tACDEF+ABDEF
T = AD_[bC(E+F) +BC(E+F)]+ A(B+C) (DF+DEF) +AC(BDF+DEF)
+DEF(A+C)

Figure 2.3

19

Factoring with Karnaugh Maps

The two level minimum product of sums of a

Boolean function is far from being best suited for imple

mentation with standard solid state blocks. Factoring of

common terms, whenever possible, can result in a function

requiring less hardware and interconnections, but increases

the number of levels a signal may pass and therefore the

switching time. General methods for factoring are inap

plicable and each solution must be checked; sometimes re

dundant terms must be introduced to obtain a better result.

The factoring is obvious when a variable is common to more

than one term. Examples:

A minimum sum of products can be written

T = ABU+AEC+AD to T = A.CBU+'EC+D)

or a minimum product of sums

T = (A+B+CD) (A+^-U) to T = A+(B+CD) (1MJ)

The Karnaugh maps are good aids for factoring.

One method selects two functions which, when the outputs

either logically AND or OR together produce the original

function. The example in figure 2.4 results in the product

of a sum of products.

T = AEG + AD + BCD
T = (1st Map). (2nd Map)

T = (A + EC) (D + BC)

20

T = A'BC + AD + BCD

T = (A + BC)(D + BC)

FACTORING BY AN "AND" OF TWO MAPS

Figure 2.4

21
There are no fixed rules regarding the placing of

I's and 0's, however, large groups of 1’s that can be

expressed with one or two variables will minimize the func

tion.

Inhibiting in Karnaugh Maps

This method utilizes considerable redundancy wher

ever advantageous and also applies the full logic power

of the NAND/NAND or the NOR/NOR functions, unavailable in

previous transform methods.

The method is simple. Where a group of 1’s is

upset by a few 0’s, it may be resolved by inhibiting the

0's to achieve the 1’s group. Figure.2.5 shows that the

function may be implemented, as A and not ABC or, C and

not ABC; for example,

T = A. (ABC)'+C. (ABC)'

implemented with four NAND gates. Algebraic factoring and

simplification of the function, without inhibiting, results

in:

T = "KC + A’B + AU

T = SC + A. (13 + U)

thereby requiring five NAND gates. This method of taking

a loop of 1’s (including the bothersome O's) and inter

secting with the complement of the looping produces the form

"product term times the complement of a product", expressible

by a NAND/NAND function.

22

T =A.(ABC) + C. (ABC)

T = AC + AB + AC = AC + A. (B + C)

KARNAUGH MAP INHIBITING

Figure 2e5

23

Map to Hardware Implementation

Any two level function can be expressed in eight

different forms, each tending to directly fit a particular

mode of logic. Consider the three-variables Karnaugh map

in figure 2.1. From the 1 cells the minimum sum of products

can be written:

T = ABC + ABC + ABC + ABC

Where the function is double primed and one prime

moved in, applying De Morgan's theorem results in:

T = (ABC + ABC + ABC + ABC) 1 *
T = [(ABC) ' . (ABC) ' . (ABC) ' . (ABC) '] ’

a NAND/NAND expression of .the function. Move in the primes

around the terms and the function for OR/NAND implemen

tation is obtained:
T = [(A+B+C) (A+B+U) (A+B+U) (S+'ki-C)] '

A NOR/OR function results, if the overall prime is moved in:

T = (A+B+C)' + (A+B+C)' + (A+B+C)' + (A+B+C) '

In the last transformation if the primes of the

terms are moved in, the original function is obtained:

T = ABC + ABC + ABC + ABC

In considering the 0's the function may be initi

ally expressed as NOR/OR

T = (ABC + ABC + ABC + ABC)'

21*

FUNCTION TRANSFORMATION FLCSJ DIAGRAM

Figure 2.6

25

and by moving-in the overall prime, a NAND/AND expression

is seen;

T = (ABC)'. (ABC)*. (ABC)*. (ABC)*

Moving-in the prime of the term, the minimum product of

sums is now identified:

T = (A+B+C) (A+B+C) (A+B+C) (A+B+C)

To obtain the original function, the function is

double primed and one prime is moved in. It is possible to

repeat the same cycle starting with the minimum product of

sums, although there will be different starting points. A

flow diagram of function transformation starting from

Karnaugh Map and moving through each step is illustrated

in figure 2,6.

These examples prove that a two level function

may be expressed in eight different ways, resulting in the

practical value that each one suits it-s particular mode

of logic.

26

CHAPTER III

NAND-NOR IMPLEMENTATION

One possible choice of single functional block

implementation is the NAND/NAND function which sometimes

is referred to as the "Stroke Function". As seen before,

a NAND is a logical block whose output is a 0 whenever all

three inputs are 1.

Another choice for single functional block imple

mentation is the dual of the NAND/NAND expression, the

NOR/NOR, sometimes referred to as the "Dagger Function".

Duality provides similarity of implementation tech

niques, for it is proven that by complementing the vari

ables and the function of either will result in the other

function, similar to a change from a positive to a negative

logic.

AlB = Z.l = A7B = A + B

AfB = Z+B = A+B = A.B

Without an established method even the experienced

logic designer will have difficulty recognizing the mini

mality of the circuits. Because most of the digital inte

grated circuits are NAND or NOR gates the functions may be

directly implemented to hardware. (In this example fan-in

and fan-out have been restricted to four and eight).

Four modes of expression transformation will be

discussed:

27

A» B
A + E

A A. B. G
B I-d)— A+B+C
c —a V

THE NOR FUNCTION

A + A=A (NEGATION)

A4-B=A+B (OR)

A+ B= A. B (AND)

NAND FUNCTION EQUIVALENTS OF AND,OR,AND NEGATION

A.A= A (NEGATION)

A.B= A +B (OR)

A.BcA.B (AND)

NOR FUNCTION EQUIVALENTS OF AND,OR,AND NEGATION

Figure 3,1

28

1. Equivalent AND-OR substitution.

2. Transformation by De Morgan theorem.

3. Earle transformation method.

4. Direct implementation from graphical

representation.

Equivalent AND-OR Substitution

The simplest and possibly least used method is the

generation of AND, OR and Negation Function Blocks using

NAND or NOR, illustrated in figure 3.1, directly implemented

into the AND-OR expression. .Figure 3.2 demonstrates a

circuit using this method to implement the function T, using

NAND blocks.

T = AB + ACD + (B+U). (B+C) . (S+B)

It is evident that simplification may be achieved

by eliminating two inverters in series as A = A resulting

in the circuit expressed in figure 3.3; however, a minimal

circuit is not produced. Nine NAND gates appear rather than

seven gates in the minimal circuit. If complemented inputs

are available then

T = (A+"B) 1 +(A+U+U)' +(A+B+C) * +CE+U)'’

resulting in only five gates. The analyst will recognize

that minimal circuits could be achieved by extending the

rules. Further discussion will show that this would result

in effective conversion to another method and would not then

be a true equivalent AND-OR substitution as presented.

29

T=AC +ABD+(B+C)-(A<-C)-(B+C)

EQUIVALEI’IT AND OR CIRCUIT

Figure 3.2

Figure 3,3

31

The Transformation by De Morgan Theorem

This methodical and algorithmic approach to

synthesis is a valuable aid to the logic designer in

solving practical problems. The fact that a single output

exists determines a NAND at the end of the gating and the

De Morgan theorem is applied by working backwards from

the end of the gating. Typically, to implement with MORS:

T = (A + C).(B + D)

at the input of the NOR, (see figure 3.4)

T’ = "K C + "B U

where S G and "B IT are the inputs. At the next level of NORS

the inputs are:

P-L* = (SC) ' = A + U

P2 * = (BD) ' = B + D

where A and 0 are inputs of one gate and B and D of the

other. If 0 is not available, an additional NOR gate is

required to complement C to U.

If the function

T = AC + ‘BC

is implemented with NOR gates the result is

T' = (S+C)(B+C)

Figure 3.5 clearly shows the conflict of the existence of

an AND function at T’ instead of an OR function. A solution

would be the conversion of the equation to an OR-AND form

32

A. C
B. D

(A + C) .(B+D)

FIRST STEP

THIRD STEP

IMPLEMENTING I.’' OR-INVERTERS WITH DE MORGANS THEOREM
Figure 3.4

33

T AC +BC

CONFLICT ILLUSTRATED

CONFLICT RESOLVED

CONFLICT RESOLVED BY TAKING
■COMPLEI4ENT FUNCTION

CONVERSION TO OR-AND FORM

Figure 3.5

34

before starting. A potential pitfail exists in using some

of the theorems converting this expression to OR-AND form,

generally resulting in loss of minimality. The preferred

transformation is from the original Karnaugh map which will

yield the minimal OR-AND expression. Changing the function

to its dual form is not economical in every case. Infre

quently, complementing the output when the complement of

the input is available will be more desirable.

Earle Transform Method

The preceding methods are slow and the total

problem concept is obscured by limiting concentration to

a part at a time; whereas the transform method permits

rapid analysis and implementation, as in AND-OR logic, while

exhibiting the overall problem neatly.

Rules for implementing:

1.
a) For NAND--Factor the Boolean equation to a

form where output is an OR (OR-AND-OR etc.).

Odd levels complemented variables and even

levels uncomplemented variables are desired

objectives.

b) For NOR--Factor to output AND (AND-OR-AND etc.)

achieving the desired levels objective.

35

T=A B + CD

TER14INAL ANALYSIS
NAND/NAND FUNCTION

F = AB + CD

EQUIVALENT OF
NAND/NAND FUNCTION

TERMINAL ANALYSIS
NOR/NOR FUNCTION

EQUIVALENT OF
NOR/NOR FUNCTION

ODD LEVEL GATING
NAND/NAND FUNCTION

' T =C (A + B)

ODD LEVEL GATING
NOR/NORU • FUNCTION

EARLE TRANSFORMS

Figure 3.6

35

T = ABBE + ABCF + ABDF + BODE

FACTORING EARLE TRANSFORMS

Figure 3.7

37

2. Lay out the gating from the equations in AND or

OR format rather than NAND and NOR except that

NAND and NOR variables coming in at odd levels

of gating are complemented, as in figure 3.6.

Use of factoring is suggested when the fan-in of

several blocks is exceeded, when complements are unavail

able or when signals are overloaded.

For example: To implement T using NAND’s (Figure 3.7)

T = ABCDE+ABCE+ABCDE+ABCF+ABDF

The restriction to three input gates results in thirteen

NAND gates total, a requirement of two NAND's per term by

a direct two levels implementation from the Karnaugh Map.

Factoring achieves:

T = BE.(CD + SD) + ABF. (C + D)

A four level equation in AND-OR-AND-OR form, as required,

permitting direct implementation as ANP’s - OR’s with

complementing at odd levels. A reduction of three NAND

less than the first solution.

Direct Implementation from Maps

Perhaps the most natural approach to NAND/NAND

function and the NOR/NOR function is to treat them as

functions in their own right rather than force them into

the form of AMD's and OR's. This renews insight into the

fundamental processes of synthesis and proves the minimality

38

T =[(A+B+D) +(A+C)+(B+C+D) +(A+B+C+D)]*

NOR/NOR IMPLEMENTATION FROM MAP

Figure 3.8

39

of the two previous methods.

1. The NOR/NOR function:

A Karnaugh map using the NOR/NOR function

concludes that:

a) The NOR function is a 1, when, and only

when, the input variables are 0.

b) The.O’s of the Karnaugh map represents

the input terms of the function.

c) To minimize the function the fewest possible

terms and literals are selected, as in

AND-OR expressions.

The example in figure 3.8 shows the implemen

tation of a Karnaugh map to a two level NOR/NOR

function;
T = [(A+M)' + (A+C) ’ + (B+C+IJ)' + (A+B+C+D)'] *

a minimal expression for two levels and checked

by successive substitutions.

2. The NAND/NAND function:

The NAND/NAND function may be implemented in a

similar manner:

a) The term is 1 whenever there is a 1 on the

map.

b) Combining the 0’s of the map results in a 1

whenever any term is 0.

c) The complement of the function may be found

40

DC
00 01 11 10

00 0 ^3- ■y 0

01 T 0 1 0

11 id 1 1 J)

10 0 0 1 0

T= (AB. CD. ABC. ACD)1

NAND/NAND IMPLEMENTATION FROM MAP

Figure 3.9

41

by interchanging I's and O's on the map.

From the map in figure 3.9 and applying the

above rules results in:
T = [(AB) ’ . (CD) ' . (ABC) ' . (ACD) *] '

Previous examples reveal that the NAND/NAND func

tions and the NOR/NOR functions are related in the same

way as the AND and OR functions. Similar interchanges of

I’s and O's, with the functions written from O's, should

give the NOR/NOR function. Since the transformation yields .

minimal equations with identical map configuration, a two

level minimal expression is evident. The previous two

examples could be algebraically verified to establish that

the equations are identical.

In conclusion, it is proven that from one Karnaugh

map, each of the two possible minimal two level equations

in the AND, OR, INVERTED function, the"NAND/NAND function

and the NOR/NOR function may be written. This permits a

nearly simultaneous minimization and cost investigation

of the circuit logic defacto obtainable by Karnaugh maps.

CHAPTER IV

DECOMPOSITION OF FUNCTIONS

The fundamental concept of switching theory is the

possibility of expressing any logic circuit ..as- a Boolean

function. The algebraic properties and postulates provided

the foundations for the graphical Karnaugh method for

minimization employed in the previous chapters.

The question arises whether these algebraic prop

erties are unique. Examination of the general theory of

functions reveals another basic property which should be

considered, that of decomposability, that is, the way it

can be decomposed into a set of simpler functions. In logic

circuits, the prime implicants may be seen as the basic set

of functions forming a minimum sum representation. Further,

a Boolean function implementing a multiple-level logical

circuit may be considered as being decomposed into a set

of simpler functions.

After extensive research at Harvard University,

based on the above properties of Boolean functions, R.L.

Ashenhurst presented his paper "The Decomposition of .nSwitching Functions" in a Bell Laboratory report. The

Ashenhurst theory and its application to minimization of

logical integrated circuit blocks is the subject of this

chapter.

Disjunctive Decomposition
43

It is interesting to examine the conditions in

which a Boolean function may be expressed with one or more

subfunctions. Given the Boolean function f with m + p va

riables: Xp X2, .xm, yp y2» .Ypo The function is

said to be decomposable where it can be represented in the

form: f = (x1, x2, .xm, yj,, y2> yp) = F
.... xm, I (yp y2, yp)j .

It appears obvious that any Boolean function of n

xn

variables a. function is said to be disjunctive decomposable

variables may be written in this form, where (|> will be a
one variable function: f (xp X2, ...» xp) = F £xp X2, ...,

For any sequence of configurations of the

if at least one subset is different from the preceding

trivial case.

A convenient abbreviation of the above notation

provides that a, b, c, ... represents the subsets of the

variables xj, ..., xn with the only stipulation being

that the subsets are mutually exclusive. In this condition

it may be said that a disjunctive decomposition of f (a, b)

in terms of a and <|> (b) exists and results in:
f (a,b) = F £a, | (b)J .

The notation of disjunctive decomposition may

easily be analytically formulated. In a four variables

44

Boolean function f (a, b, c, d) where it is desired to

determine if a disjunctive decomposition exist of the form:
f (a, b, c, d) = F a, b, | (c, d)J e

Any function of four variables may be expressed in

the partially factored form, where capital A, B, C, D re

presents any subsets of the two variables c and d,

f (a,b,c,d) = a.b.A (c,d)+a.b,B (c,d)+aob,C (c,d)+a.b.D (c,d).

These subsets are uniquely determining f. However,

where A,B,C and D can be expressed in terms of some single

function <| (c,d), that is, if they assume only values

chosen from the set | (c,d), (c,d), 0 and 1, there then

exists disjunctive decomposition, being the necessary as

well as sufficient condition. Example:

T = abed + abed + abed + abed

T = ab (cd -i- cd) + ab (cd + cd) , where

cd + cd = (cd + cd)*

T = ab (c,d) + ab tj)’ (c,d), where <|> = cd + cd.

In this case A (c,d) = |, B (c,d) = 0, C (cjd) = 0

and D = (j)* (c,d) by the general partial factored form and

is disjunctive decomposable having only one function (<j>)

its complement (<|»’) and

The algebraic method followed in this example may

always be applied to any function. To determine a decompo

sition, the partial factored form expression for all the

possible partionings of the variables requires Examination

of the literals to detect disjunctive decomposition.

45

c'd'
0 0

c* d
0 1

c d'
1 0

c d
1 1

a ’b* 00
PO

o
Pl

0
P2

0
P3

CD A

a 'b 01

P4

0

P5

0

P6

0

P7

0 B

a b' 10

P8

0

P9

0

PIO

0

Pll

0 C

a b 11

P12

0

P13 P14

Cl)
P15

0 D

T = ABCD + ABCD + ABCD + ABCD

PARTITION MATRIX OF EXAMPLE FUNCTION

Figure 4.1

46

The Partition Matrix

Fortunately, this tedious algebraic manipulation

is replacible by simple graphics. Visual inspection of a

set of partition matrices may reveal disjunctive decompo

sition.

Figure 4.1 being an output of the computer program

"BOLEQ.", used in the minimization procedure, shows no need

for reflected ordering to detect decomposition as in the

Karnaugh map. The columns and rows are arranged in straight

binary to facilitate implementation (ordering is really

of no consequence). Each product is represented by a cell

in which 0 or a 1 represents the output and a P with a

subscript, identifies the binary variables in dyadic form.

For example, P 10, is the product term a F c cF. The P^ are

arranged in the map so that each appears in a column headed

by the combination of c and d that it contains, and in a

row headed by the combination of a and b that it contains.

The first row therefore has the combination with the terms

ab A (c,d) in the equation of partially factored form, the

second row contains ab B (c,d) and so forth. By employing

the function of the previous example, .the map usage may

be illustrated.

The standard sum of products.form of the above

function is as follows:

T =£ (0,3,11,14)

D C

B A

ro

DC DB DA

DECOMPOSITION (0,5,6,7,10,11,12,13)CHART FOR THE FUNCTION T =

CTO
C •
H
(D

DCBA(5) 1 2 3 4 © ©. 8 9 © © © 14 15

CBA© 1 2 3 4 © ©
8 9 © © © 14 15

DCA
(0) 1 4 8 9 13

2 3 © © © 15

DBA
1 2 3 8 9 ©

4 © © © 14 15

DCB
2 4 © 8 © 14

1 3 © © 9 © © 15

CB
© 2 4 ©

1 3 © ©

8 © 14

9 S) 15

CA@ 1 4 ©

2 3 © ©

8 9 ©

© 11) 14 15

BA@ 1 2 3

4 © © ©

8 9 © ©

© 14 15

48

This function has the value 1 for the combinations Pq, P?,

Pg and P^4, and the value 0 for the rest of the sixteen

combinations. Accordingly, there is a 1 or 0 in each block.

The 1’s in the first row correspond to the terms of A (c,d)

and those in the second, third and fourth row are B (c,d),

C (c,d) and D (c,d) respectively. The fact that the fourth

row has the complement of 1's and 0’s of the first row,

results in D (c,d) = A' (c,d). The fact that the second

and third rows do not "contain a 1 implies that B (c,d) =

C (c,d) = 0; if all the combinations in a row were 1’s, it

will imply that the function associated with the row is equal

to 1.

A given configuration of 1’s and 0’s in a row is

called a Pattern. A row where the 1’s and 0’s are the com

plement of the pattern is called the Inverse of P.. Rows of

all 1’s or all 0’s are called Trivial.

Using the above terminology a function is disjunc

tively decomposable in the term ab and <J» (c,d):

” Should a pattern P appear in a row, then a

decomposition of this form exist and only if

every other row exhibits the pattern P, or its

inverse, or one of the trivial patterns11.

Where the numbers of 1’s and 0’s are equal, pattern

and inverse selections are totally arbitrary and can be

reversed without detriment.

Corresponding maps should be examined to determine

49
whether decomposition of terms of different partition of

variables exists. Examination of seven maps row-wise and

column-wise will determine complete function decomposa

bility for a four variable function. (See figure 4.2).

Minimization by Decomposition

The characteristic of a disjunctively decomposed

function is the possibility of realizing a minimum logical

network. Generally, the circuit realized by a decomposition

utilizes fewer logical blocks than circuits derived by the

methods of the previous Chapters. For example the function

T =£(0,5,6,7,10,11,12,13) of four variables takes the

unity value for all the combinations of the variables

0,5,6,7,10,11,12 and 13, and the zero value for all other.

From the Karnaugh map in figure 4.3 the function may be

minimized to a minimum sum of products:

T = ABCD + ACD + ECU + BUD + 'BCD

T = ABCB + BCD + BUD + CU. (A+B)

The corresponding logic network for this function

requires six "NAND” circuits and twenty-two interconnec

tions. The same function is also disjunctive and decompos

able in terms of c and (a,b,d). This is seen from the

decomposition chart in figure 4.2. The form of subfunctions

can be read directly from the chart c - dba;
T (a,b,c,d) = F [c I (a,b,d)J

T= ABCD 4-BCD +ACD ■+ BCD +BCD

MINIMUM SUM FROM KARNAUGH MAP

T.= CD.(A+B)4-ABCD+BCD+BCD

LOGIC NETWORK DERIVED FROM MINIMUM SUM

D
W

>

LOGIC NETWORK REALIZATION BY DECOMPOSITION

Figure 4.3

51

T = c. 4> + c. ip, where

= ABD + ABD + ABD and simplified to

<J> = ABD + BD

T = C. (ABD+BD) + C. (ABD+BD) *

The total implementation of the decomposed function

requires only four logical blocks (three NAND’s and one

EXOR) , a reduction in hardware by one third compared to

the previous logical network. The number of interconnections

(ten) represents a reduction of 55 per cent. To simplify

the minimum sum of products to four gates, it would be

necessary to recognize that, ABD + BD is the complement of

AU + BU + "BD, which is most unlikely to be found by simple

algebraic simplification.

The minimization procedure outlined in Chapter I

includes the search for disjunctive decompositions. The

time required for inspection of the partition matrix is

only a few seconds and short for the minimality obtained.

A disadvantage in the use of the disjunctive function is

the increased propagation time, but this is the case in

factoring a minimum sum of products also.

52

CHAPTER V .

THE COMPUTER MINIMIZATION PROGRAM

The majority of the Boolean function minimization

work is performed by a digital computer, thereby relieving

the logic designer from tedious operation, but insuring a

minimized equivalent function capable of direct implemen

tation into integrated circuit blocks.

It is not necessary that the program user have

knowledge of computer programming, as complete information

will be presented in this chapter to plan ?nput, output

and execution. A section describing the exact methods em-
fs ployed, together with the flow chart and the MAD program10-

is provided for the logic designer familiar with pro

gramming and interested in the algorithm.

Purpose

For a given Boolean Function the subroutine

”BOOLEQ" will compute and print.

1. The Truth Table of all possible combinations.

2. The Canonical expressions in the dyadic fora.

3. A comment defining which Canonical form has

less terms and their number.

4. The number of Karnaugh Maps required.

5. The Partition Matrix.

53

6, The comparison of input unit hardware

function and comment equivalent or error

definition.

Input

The Boolean functions to be minimized are punched

according to the following card format. (See figure 5.1).

1. Columns 1 to 10 are left blank, spaces are not

relevant,

2. Column 11 is used to designate continuation of

the Boolean function (0,1,2,...,9).

The function is interpreted by card order

sequence and is not affected by the order of

the digit; however any one function may not

exceed ten cards.

3. Columns 12 to 72 are for the function statement

which may start or finish within these limits

and spaces may be inserted without relevance.

4. Columns 73 to 80 are not used by the computer

and may be well employed as function and pro

ject identifier.

Expressing the Function

The MAD language and subroutine require definite

rules to express the Boolean functions.

54

1. The letters for the input variables are A,B,C,

D,E,F.

2. The input constants can be only 0 B for false

statements and 1 B for true.

3. The Boolean operators available are: .NOT., .OR.,

‘.AND., .THEN., .EXOR. and ,EQV. corresponding to

the symbol: -, +, ., 0, v,‘and =. See appendix

for table of symbols.

4. The letter T followed by an equal sign (=)

starts any function, whereever T has the value

binary 0 or 1 representing the function.

5. Parentheses have the same symbol and are used to

specify the order of the computation. Redundant

parentheses are allowed.

6. The sequence of computation is the same as in

Boolean algebra, unless otherwise indicated by

parentheses. The order being: .NOT., .AND., .OR.,

.EXOR., .THEN., .EQV. and =.

To illustrate the function:

T = (ABU + ^DC + ADC) '

will be expressed in MAD as follows:

T = .NOT. (A. AND. B. NOT. G. OR. .NOT. B.

AND. D. AND. C. OR. .NOT. A. AND. D.

AND. 0)

55

For further examples see Input functions to computer pro

gram on page 71.

Output

Maximum effort has been made to present the output

data in clear and explicit form. The truth table is

printed for any function and for any number of variables

up to six. The computer program output shows different

truth tables for four, five and six variables. Following,

the standard sum of products or the standard product of

sums are printed in dyadic form;

SUM = 0, 4, 14, 15

PROD = 8, 9, 12, 14

A., comment is printed to show which standard function has

•fewer terms deciding if implementation should be done from

1’s or 0 * s.

The final output contains a map (or maps) of the

function. Each new column, square or map is identified to

facilitate direct implementation. (See "page 74.). An error

comment will be printed upon failure of an error check

involving the new minimized function and standard sum

mation.

Execution

The subroutine "BOOL-EQ" has been written as an

56

external function and can be called for execution by any

"MAD” program with the following statement:

EXECUTE BOOLEQ. (V,I1,I2,I3)

The names in parentheses are the dummy arguments, where:

V = the number of variables in the Boolean

function.

11 = is a flag with the value of 0, when sub

routine should find equivalence of two

Boolean functions, otherwise should be 1.

12 = is a flag, if 0 suppresses output print of

the Boolean function, otherwise should be a 1.

13 = is a flag to the subroutine, if 0 suppresses

the print of Karnaugh maps, otherwise should

be a 1.

The Boolean function to be minimized is a separate

external function FUN. with the following program state

ments:

EXTERNAL FUNCTION (A,B,C,D,E,F,T)

ENTRY TO FUN.

... The Boolean functions

FUNCTION RETURN

END OF FUNCTION

57

The usage of external functions provides maximum

flexibility, allowing for the subroutine to be incorporated

as part of a large program or as a Library Subroutine.

Diagnostic

The subroutine has been checked with many variations

of Boolean functions and found to perform as specified. If

an error is encountered in the input function due to illegal

operation or misspelling, the subroutine will not execute

and a comment will be printed identifying the type of error.

The Algorithm

The program uses the same algebraic topological

formulation covered in the previous Chapters for the

minimization of the switching function. The computation

method of this program wi 1 be described in terms of the

flow chart in figure 5.2 and the MAD program shown on

page 67. The program contains the following sections:

1. The entry to the subroutine '’BOOLEQ" also de

fines the number of variables (V) and the three

flags for suppressing different sections of the

program.

2. Normal mode is integer except that Boolean

function variables and the Boolean vector (TV)

58

are in the Boolean mode.

3. There are three vectors: TV, the binary outputs

of the input combinations; SUM; and PROD. The

latter two vectors being the canonical form of

the function.

4. The next group of statements forms and prints

the title and header of the Truth Table. A set

of conditional statements is incorporated to

control the printing of the number of letters.

5. A nested Loop (W) of six iteration statements

assign the values of binary 0 and 1. to the six

Boolean variables of the function. There are
62 possible combinations which the variables can

take, giving a maximum of 64 iterations.

6. "FUN” is executed and the value of the Boolean

function (T) assumes a new value depending upon

the present values of the input variables

(A,B,G,D,E,F). The output (T) is transferred

to the Boolean vector (TV). The counter I re

presenting the term in dyadic form is incremented

by 1.

7. A conditional statement defines the branching,

where output (T)= 1 a set of statements introduce

a new term in the sum of products. Where the

output (T) = 0 the product of the sums is

59

introduced by a new term. With the addition of

the term in the dyadic form the number of term

counters M or N are incremented by one.

8. A set of conditional and print statements

control the printing of one line from the truth

table. Different print format statements are

used depending on the number of variables.

9. The number of iterations of the section described

in point 6, 7 and 8 are dependent on the number

of Boolean variables (V). A set of conditional

statements transfers the program out of the loop,
when the number of iteration (I) is equal to 2^.

10. Once out of the loop (W), the canonical form of

the function is printed. A conditioned statement

defines which expression has fewer terns (M.L.N)

and prints a comment of minimality.

11. A loop LI controls the number of Karnaugh maps

to be printed dependant on the number of vari

ables (V).

12. Another loop (L2) nested in LI iterates and prints

one row of a map four times. A set of instructions

compute the index for a reflected ordering of

terms.

13. The four partition matrices of eight by two are

printed. The TV vector is indexed directly.

60

14. The three partition matrices of four by four are

printed, using the same TV vector. Vector

indexing is performed directly.

15. The subroutine has now been executed and re

turns to the Main program.

The program described requires 2,034 memory loca

tions and subroutine execution time is approximately
.2^ x .250 m/seconds where V = number of variables.

61

)

oCO
FUNCTION

IDENTIFICATION
CO

O1

BOOLEAN FUNCTION

Ol

h CONTINUATION
o

NOT USED

NUMBER OF COLUMN-^

PUNCH CARD FORMAT

Figure 5,1

62
ENTRY

FORM HEADER FOR
TRUTH TABLE

HINT TRUTH TABLE
< REQUIRED?

NO

TV(I)*- T
TRANSFER VALUE

TO THE TV VECTOR

Figure 5e2-a

sum(m) *- I

V# 6

NO

GENERATE A NEW
TERM IN SUM OF

PRDniT^T.^

J2

PRINT ONE LINE
TRUTH TABLE

(SIX VARIABLES)

PROD(N) I
N— N J

GENERATE A NEW
TERM IN PROD.

OF SUM

63

1
PRINT ONE LINE
TRUTH TABLE

(FIVE VARIABLES)

64

I*- 14- 1
STEP UP I
COUNTER

,MM = 0

v N0
PRODUCT OF SUM
HAS LESS TERMS
PROD (0). . JM).

YES

Figure 5.2-c

65

Figure 502~d

Figure 5.2-e

66

E COMPILE MAD

D (01 OCT 1965/VERSI0M. PROGRAPI LI S TI NG' . .. 7,. ..
67---

SUBRCUTIME FOR MINIMIZING BOOLEAN FUNCTIONS

EXTERNAL FUNCTION {V,11,I 2,I 3)
NORMAL MODE IS INTEGER
DIMENSION TV(64),SUM(64),PR0D(64)
BOOLEAN A,B,C,D,E,F,._ . T,TV,FUN.

........................ ..ENTRY. TO ,_BOOLEQ.
,I=0_
M=0 ______________ __
N = 0
bl=$_______$;_________________________
Al = $ A$

_____________81 = E_______ B.$
____________ C.1 = S______ C$ _____

Dl=$ D$
 El=$ E$

____________________ Fl = F
____________ ti=5 ___ t$:______

_ . ______________ WHE.NEVE.R _V_. G...5,1RANSFER._TQ_JJ
_______ F.1=BL _____ ___ L__________ ; ______ _______

. .J WHENEVER. V..G.4, TRANSFER_TO_jj
 E1=BL

WHENEVER.. V . G. 3., TRANS_FER__TO_J J
________________ di=bl ;
.... J J CONTINUE
... PR I NT. FORMAT, T.I TLE

 PRINT. FORMAT ...HEADER, Fl , El, DI ,C1 ,B1, Al, 11
 ..THROUGH W, FOR .VALUES. OF, F.=.OB., IB

J .THROUGH, W, FOR ..VALUES OF E = OB,1B l__________________
 THROUGH,W,.. FOR. .VALUES . OF_D=OB, IB.

THROUGH,W , FQR_VALUES_ OF_C=OB ,..1B
THROUGH. W, FOR.. VALUES. OF, B=OB,1.B „

 THROUGH. W , F O R V A L U.E S __0 F A.= O.B , 1 B
 EXECUTE FUN.(A,B,C,D,E ,F ,T)

 JV(.I)=I _
WHENEVER,.1.1... E. 1,TRANSFER_TOLJ1

_EXECUT.E_MUN. (A, B, C., D, E , F, T) .
WHENEVER TV(I).E.T,TRANSFER T0.J3

... .PRINT .COMMENT $ ERROR IN IMPLEMENTATION $
J 3 .. ^CONTINUE _
JI CONTINUE .

WHENEVER TV (I) . E . OB , TRANSF ER JO J4 •_ ■
.SUM(M). = I
M=M+1 . . .

_________________ TRANSFE.R_f.0_J2__________________________________

J4 PROD(N) = I■
N = N+1__

 J2 CONTINUE

WHENEVER V. NE . 6 , TRANSFER _TO_S1

• PRINT FORMAT TAB1,F,E,D,C,B,A, T
WHENEVER I . E.63,TRANSFER TO J10

 TRANSFER TO FIN

51 WHENEVER V.NE.5,TRANSFER T0 S2
PRINT FCRMAT T AE2 , E, D, C, o, A, T _ _ _ __ _
WHENEVER JIE . 3 1, TR ANSF E_R TO J16 68
TRANSFER TO FIN ’

52 WHENEVER V.NE.4,TRANSFER TO S3
PRINT FORMAT TAE3,D,C,3,A,T __ .
WHENEVER I.E.15,TRANSFER TO J1O
TRANSFER TO FIN

53 PRINT FORMAT T A34, C , 8, A, T _
_ WHENEVER I . E. 7, TRANSFER, TO j 10 _ '

FIN CONTINUE
 1 = 1 + 1

W CONTINUE
J10 CONTINUE ■ _Z _Z _J " 1

WHENEVER 12. E . 6 , TRANSFER, T0_J5 ’

________ WHENEVER* N. L . M , TRANSFER, JO J6 _ ’ " / "
______ PRINT COMMENT_$1_ SUM OF PRODUCTS HAS LESS TERMS, $ ™

PRINT FORMAT MTERM.M " ' '

* PRINT FORMAT SU, SUM (0) . . . S"UM (M-1") ~ ^2 __ 2 Z 2
TRANSFER TO " J5 Z Z Z_ Z ZZ ZZ'_

J6__ _ _____2_PRI'JL_CbMMENT_'si_____ PRODUCT OF SUMS HAS LESS’ TER'mS* $ ___ _
PRINT FCRMAT22NTERM,N j_ _Z ' Z 2 Z
PRINT FORMAT PRO , PROD (_0)./. P^DJ N-jj

J5 PRINT FCRMAT_TOT,TV(O)...TV(1-1)
WHENEVER I 3 . E. 0 , TRANSFER TO J7 * ”__Z 2Z_

____ WHENEVER V. E .6 , V = 7~__________ 2_______ :_____ 22____ "‘ Z _ ZZ__ Z
____________mm=o___________________________________ 2________________2_ Z 2 " ”Z 2

THROUGH LI,FOR K = 4,1,K.G.V _________________" 2Z2Z Z
____PRINT FORMAT MAPI "____________ 2 __ Z2Z 22_

________________ PR I NT F ORM Af Jm AP 2 , D ASH (0).DASHlf)________________ " “

T H R OUGH2 L 2 , F 0 R K K = 0f, KK .G.3 ____________________ 2Z_Z_ 2

 M 1= KM AP (0 + KK) + MM '___ 2 2
 M2 = K M *A P (l'+KK*4")"+MM ______ Z___ 2

___ ____________'M3 = KMAP (2 + KK*4)+m’m____________________ 22______ Z____________
* M4=KMAP (3 + KK»4J"+MZ Z2Z

__ _ PRINT FORMAT,MAP7‘,,M21,M2_,_M3,M4_______ "___________________________ 2__ Z______ Z_
1 PRINT F0RMAT,HAP3 _2___________________2 2______Z 2_______ 2_2

 _______ 2 PR I NT F_ORMATZM AP23____________________ ___________ ____ _ _ _____
PRINT__F0RMA2t MAP5,MK(KK)",fV(Ml) ,TV(M2) ,tV(M3) ,TV(M4) ‘ ____________
THROUGH* L4 , FOR IL=l,iZTi ^ZZZ * ~ ZZZ_Z Z 2_________________

L 4 P R IN T_ F 0 R M A T__M A P 3 2 2 *
L 2 PR IN* T*F OR MAT MAP 4, D A SJft 0) . ..DASH (7) . 2_______________

________________ i d=i v+*<l1Z8____ ■ Z"________ 2__________________________ 2_

______________ PRINT FORMAT MAP6 , MAP ID "(ID) * *___
 MM=MM+f6**

 PR I NT FORMAT LOM,I DM(6),I DM(7j
 "PRINT FORMAT" EDM, T V (0) , T V (2) , T V (4) , TV (6) , TV"(8l, TV (10 f, TVCl 2) , TV (14)

"PRINJ FORMAT 'DDM.TVCl") ,TVC3) ,TV(5) ,TV(7) ,TV(9) ,TV(11) , T V (13) , T V (15 j"

LI CONTINUE__ __ _____________
J 7 CONTINUE

PRINT FORMAT NPG
PRINT FORMAT LDM,IDM(O),IDM(1)
PRINT FORMAT EDM,TV(O)...TV(7)
PRINT FORMAT DDM,TV(8)...TV(15)
PRINT FORMAT LDM,IDM(2),IDM(3)
PRINT FORMAT EDM,TV(O)...TV(3),TV(8)...TV(11)

_____ _ PRINT
PRINT

FORMAT
FORMAT"

DOM,TV(4)...TV(7),TV(12)...TV(15)
LDM,iDM(4),IDM(5)

PRINT FORMAT EDM,TV(O),TV(1),TV(4),TV(5),TV(8),TV(9),TV(12),TV(13)
PRINT FORMAT DDM,TV(2) ,TV(3) ,TV(6) , TV (7) , T V (10) , T V (11 j ,’TV (14) , TV (15)

PRIMT FORMAT LDM,I DM(8),I DM(9) .
PRINT FORMAT FDM,TV(0)...TV(3) _
PRINT FORMAT F DM , T V (4) T V (7) . 69
PRINT FORMAT FDM,TV(8)...TV(11) '

PRINT FORMAT FDM , TV (12) . . . TV (15) • _‘
PRI»T FORMAT LDM,I DM(10) ,I DM(1 1)
PRINT FORMAT FDM,TV(0),TV(1) ,TV(4),TV(5j .. "

PRINT FORMAT FDM,TV(2) , TV(3),TV(6),TV(7)
PRINT FORMAT FDM,TV(8) ,TV(9) , TV(12) ,TV(13)
PRINT FORMAT FDM,TV(10),TV(11),TV(14),TV(15)
PRINT FORMAT L DM , I DM (1 2) , I DM, (13) .
PRINT FORMAT FDM,TV(0),TV(2),TV(4),TV(6)
PRINT FORMAT FDM,TV(1),TV(3),TV(5),TV(7)
PRINT FORMAT FDM,TV(8),TV(10),TV(12),TV(14)_ _____ _ _ ____
PRINT FORMAT. FDM,TV(9) , T V (11) , TV (13) ,TV(15)
VECTOR VALUES_TITLE=$1H1,S45,13H_TRUTH TABLE *$ ■

...VECTOR. VALUES _HEADER = $lH0,S20,7C6/_»_$
VECTOR VALUES TAB1=$1H ,S20,7I6»$ _ _
VECTOR VALUES TAB2 = $1H .,520,56,616*$....
VECTOR VALUE5_TAS3=$1H ,532,516*$
VECTOR VALUES _TAB4 = $1H 538,4I6»$_
VECTOR VALUES. MTERM, = $1HO,510,16HNUMB. OF MIDTERM , I 5* $
VECTOR VALUES SU = $5H SUM={16(I 2,1H,))*$
VECTOR VALUES NTERM= $ 1 HO , S 10,16HNU.M3 . OF _MAX TERM , I5*$
VECTOR VALUES_PR0=$6H PROD=(16(I 2,1H,))* $
VECTOR VALUES TCT=$6H TVAL=(16(12,1H,))»$_ \

.VECT0R_.VALUES_M,APl = $lHl,S2O,2HDC,S3,2H0O,S16,2H61,sio,2Hll,Sld,2HlO»$_
VECTOR VALUES MAP2 = $1H0,S14,2HBA,S4,8C6,1H + *$L
VECTOR VALUES MAP3 = $ 1H S20,5 (1H I , SI 1) »$ _ '

.VECTOR VALUES _MAP5 = $1H ,S14,C2,54,4(1HI,S5,I 1,S5),1HI»$
...VECTOR. VALUES MAP4 = $1H , 520,8C6 ,lH + ».$

VECTOR. VALUES_M.AP6= $ 1H0., 528,1.3HKARNAUGH .MAP . , C4* $
 V E CT 0 R. V A L U E S__M A P 7_= $ 1H , .5.2 0,4 (1H. I,. I 2,5 9)., 1HI * $ ____________________

....VECTOR. VALUES_MAP I D.=.$ $, S-E-F $, $-£..?$, $ E-F $,.$_E_ F

__.V ECTOR_VALUE 5.. KMAP=0,4., 12,8., 1., 5,13,9,3 ,.7,15 ,.l 1,2,6 ,.14,10
VECTOR .VALUES—MK_=OO ,..$0 1$,$ l l.$.,_$10$.

.... VECTOR. V ALUE.5_DA5H = $+----------- $, i $±t
1 ,$+----------- $,

VECTOR .VALUES_NPG = $ 1H1,520 ,_14HPART I ON_MAJR.I X*$
VECTORVAL.UE5-LDM = $ 1H0,5 16 , C4,54, C40_»$

-VECTOR. VALUE S_EDM=_$.1H _rS20., 812*3:
...VECTOR. VALUES..D.DM=$1H_,520,812*$ ____
.._ _V E C T 0 R—V A L U E 5 F D M = $ 1H , .5 2.0 ,. 4 I 2 » $
 V E C T 0 R._ V A L U E 5. J D M = $ D $, $C BA $, $C.$, $.0.8 A $,. $ B $, .$ DC A $, $ A $, .$ DC B $,
0__DC, BA, DBr_CA, DA,.$C_B.$

FUNCTION RETURN •
...END OF FUNCTION.

70
. 131246 131246 131246 131246 131246 131246. 131246

$ COMPILE-MAD, EXECUTE

AD (01 OCT 1965 VERSION) PROGRAM LISTING .

T E S T I NG._B00L E AN _.EXTE.RNAL . FUNC T10N

NORMAL MODE„IS INTEGER
EXECUTE BOCLEC.(4,0,1 ,1)
END OF_.PROG.RAM

71

$ COMPILE MAD

MAD (01 OCT "1965 VERSION) PRCGRA?^TfsfING ^.7'7...’ ...

EXTERNAL FUNCTION (A , B, C ,.D., E ,F , T)
N 0 R M A L_ M 0 D E ._I S .BOOLEAN____________

 ENTRY TO FUN.
 T=.NGT.A.AND..NOT.B.AND..MOT.C.AND..NOT.D.OR.

0 A.AND..NOT.B.AND.C.AND..NOT.D.OR.
1 .NOT.A.AND.B.AND.C.AND..NOT.D.OR.
3 A.AND.B.AND.C.AND..NOT.D.OR. _
4. .NOT.A.AND.B.AND..NOT.C.AND.D.OR.
5 A.AND.B.AND..NOT.C.AND.D.OR.
6 .NOT. A. AND. . NOT . B . AND. C . AND-. D. OR.
7 A.AND..NOT.B.AND.C.AND.D

FUNCTION RETURN

 FUNCTION RETURN __________
END. OF.. FUNCTION_____ :_________________________

ENTRY TO MUN..,,___________________
T = .NOT.A.AND..NOT.B.AND. 0. OR.

1 .NOT.A.AND. C.AND..NOT.D. OR.
2 A.AND..NOT.C.AND..NOT.D. OR .
3 .NOT.A.AND. C. AND..NOT.D. OR.
4 A.AND. B.AND. D. OR.
5 A.AND..NOT.C.AND. D. OR.
6 A.AND. C.AND. D. OR.
7 A.AND..NOT.B.AND..NOT.C

72

- - : - --------- --- _ _ ------- TRUTH TABLE - - - — ----

D c B A T

ERROR IN IMPLEMENTATION
0 0 0 0 0

ERROR IN IMPLEMENTATION
0 0 0 1 1
0 0 1 0 0

ERROR IN IMPLEMENTATION
0 0 1 1 1

ERROR IN IMPLEMENTATION
0 1 0 0 1

ERROR IN IMPLEMENTATION
0 1 0 1 0
0 1 1 0 1

ERROR IN IMPLEMENTATION
0 1 1 1 0

ERROR IN IMPLEMENTATION
1 0 0 0 1

ERROR IN IMPLEMENTATION
1 0 0 1 1

ERROR IN IMPLEMENTATION
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1

• 1 1 1 0 0
ERROR IN IMPLEMENTATION

1 1 1 1 1

73

SUM CF.PRODUCTS HAS LESS TERMS

_?JUMB. OF MIDTERM 8
SUM= 0, 5, 6, 7,10,11,12,13,
TVAL= 1, 0, C, _0, 0,. 1, 1, 1, 0, 0, 1,. 1, ._1,_ 1, Or

11 10DC 00 _ 01

____ 8A_ +----------
"io"

---— ' i V — 112"'—
------- 4-------

f 8
■+ ______ __
f

00

I
I
I "1

i
i
i o"

I_
I
I T ~

I
I_
I

0

J
I
I

I i

'
i

u1
i

I I
I i I I I
I i I I I
+---------- —+--------- ----------+------- --------4.------ ■ +
I 1 I 5 I 13 I 9 i 11

i
;

i»-i

I I I I I
I I I I I

01 I 0 I 1 I i I 0 I
I I I I

iii

!
i

! J

I I I I I
I I I I I
+---------- ----+---------- --------- +------- ------- 4.------ • +
I 3 I 7 115 Ill I
I I I I I
I I I I I

11 I 0 I 1 I 0 I 1 I
I I I I I
I I I I I
I I I I I
+---------- —+--------- ----------+------- ------- 4.------ • +

• I 2 I 6 I 14 110 I
I I I I I
I I I I I

10 I 0 I 1 I 0 I 1 I
I I I I I
I I I I I
I I I I I
4------------ —+--------- ----------+------- ------- 4------- • +

KARNAUGH MAP

75

PARTITION MATRIX

D CbA
1 0 0 0 0 1 1 1
0 0 1.1 11 0 0

C DBA
1 0 0 0 0 0 1_1_
0.1 1_1_ 1_ 1 0 0_

B DCA

10010011
0. 0 11.1.10.0

A "PCB
i_O_O_l_O 1_JL_O

 0.0. l__l__O_ 1. _l_0

 DC BA
 1 0 0_0

Q„l„l_.l
_0_0_l_l ;___________
1.10.0

 DB CA•_______________ _______

.1 0_0_l _ ___
__O_O„_l_l :__

 0 O_l _l _

1 l_0_0

 .DA CB __
 l._O_O_l

 _______ o_o_i_i

0 _1 _l_0
0_l l_0 _____________________________

76

$ COMPILE MAD, E <lCU1F___ ’ ________ __________

mad' (o"i"cict 1965 "VTRS.ia'xi "A'rcgrav' Lj.SfTNGSZt •’ •^*Z_Z* TJ'J.~ ZL I1ZZZJ"2

"2T_ ^fE S rriG'TgIlTa \r~E X T E R NAL^'f'u X C~fTo N

N'aRMAL~M~0DT IS INTEGER ~~ - — _ ■ —

7_ _ 2 EXECUTE b(?GLEO. (5,0,1, 1)____

EXTERNAL FUNCTION (A,B,C

,D,E,F,T)
NORMAL MODE IS BOOLEAN
ENTRY TO FUN.
T = .NOT.A.AND..NOT.B.AND. D.AND..NOT.E.OR.

1 .NOT.A.AND. C.AND. .NOT.D.AND. E.CR.
2 A. A?sD. .NOT. C.AND. .NOT.D.AND. E.OR.
3 .NOT.A.AND. C.AND. .NOT.D. OR.
A A.AND. d.AND. D.AND..NOT.E.OR.
5 A.AND..NOT.C.AND. D.AND..NOT.E.OR.
6 A.AND. C.AND. D.AND. E.OR.
8 A.AND..NJT.B.ANO.C.AND.D .AND..NOT.E.OR.
9 A . AND . 13. AND . . NO 1. C . AND . D .AND.E.OR.
7 A.AND..NOT.8.AND. .NOT.C.AND. E

FUNCTION RETURN
ENTRY TO MUN.
T=.NOT.A.AND.C.AND..NOT. D.OR.

1

iar
C
D

a

o<

c

2 .NOT.S.AND.0.AND..NOT.E. OR.
3 A.AND..NOT.C.AND.E

FUNCTION RETURN -

END OF FUNCTION

 77

 TRUTH TAELE

' J____/_______ £_______ D C 8 " ' A " T " _______ ’ _

ZZ_ o 0 o o o ° ZrZ-_-I L L”

”__ 1__ J ZA”_______P_______ 0______ 0__ _ i ______"'
600 1 ' cT " 0 ' _____ Z o "o " 6 i____________i_____ "o'______ 1

__ _________________________o g i_______ o ______o______ i
___________________________ 0 0 1______ 0 1 0_________A ______

o o i i d 1
__ " 0 "o' 1 1 1 ~ o' ""_____

__ Z 0_______1 __ 0______ 0________ 0_______ 1_____ ___ " 2J___1
__ I__ 0____ 1 " 0 1_____ J_____ ’ A ' _____

_ Z_____ ;______ o " i g____ ________l-°_ Ljp._____L ______ _ A"o i g i__ ’ i" i " "_______2 L'_
0 110 0 1

"________________________o ____i_________ i_______d____ _'i 2__J____ 2_ _"Z 2___ 2_
___________________ g i. i i _____ o o'____ 2_ 1_J_____

_____ . _____ o2_l i i i____ i i_______ 2________
___________________________ i o o "o_______ o d__________ ""

1 0 0 0_______ 1 1___________
 i d o ioo

i o o "i i i
 1 0 1 0 0 1

___________________ j_______i o "io i o ___'"
______ 2___________________ 1 o_______ 1_______ 1 "o_______ 1____________________

1 0________ 1_______ 1 1 0
 1 1 0 0 0 0

1 1 0 0 1 • 1
___ '_________ _____________ i_______ i " o i -d_______d 2__
______________ _____________i___ __i____ o i_______ i________i______ " ___2____
___________________________ i_______ i_______ i_______doo_________2_____
_____________________ i______________i_______ i o_______ i _ i__________ 21_____
_________'_______________ __ 1______ 1________ 1_______ 1_______ 0_______ 0_____________ "J____

1 1 1 ■ 1 1 " 1

78

SUM OF P^CDUOTS HAS LESS TEEMS

•\UMb. OF /UL'TLHM 16
SU.M= V, "6', 8," 9,1 1,12, 13,15, 17, 19,20,22,25,27,29,31,
TVAL= 0, 0, 0, 0, 1, U, 1, C, 1, 1, 0, 1, 1, 1, 0, 1,
0, 1,0,1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,

79

1011

I 16 120
----- —

128
—

124 I
I I I I I
I I I I I
I 0 I 1 I 0 1 0 I
I I I I I
I I I I I
I I I

i !

117 121 129 125 1
I I I I I
I I I I I
I 1 I 0 I 1 I 1 I
I I I I I
I ' I I I I
I

1 1 ।

i 1 1 i 1

I I I

U9 123
—

131

“l27‘ ~ I
I I I I I
I I I I I
I 1 I 0 I 1 I l I
I " I I I I
I I I I I
I I I I I
+------------------ --------+--------- ------- +---------- —+--------------------------+

I 18 122 130 126 I
I I I I I
I I I I I
I 0 I 1 I 0 I 0 I
I I I I I
I I I I I
I I I I I

KARNAUGH MAP E

80

KARNAUGH MAP -E

- — DC CO— ------ _ - - - 01 11 - - - 10 _ —------------

r:A +--------- ---------+ - ---------+------- -----------4.

I 0 I 4 I 12 1 8 I
I I I I I
I I I I I

0 3 I 0 I 1 I 1 I 1 I
I I I I I
I I I I I
I I I I ri 1

+--------- ---------+ . - -------+------- -----------4.------ ----------- 4.

I 1 I 5 113 I 9 I
I I I I I
I I I I I

01 I 0 I 0 I 1 I 1

111i
1

I I I I I
I I I 1 I
I I • I I I
+--------- —.— --------- 4.------- -----------4------- ----------- 4.

I 3 I 7 115 Ill I
I I I I I
I I I I I

11 I 0 I 0 I 1 I 1 I
I I I I I
I I I I I
I I I I I
+--------- ---------+. ---------+------- -----------4.------ ----------- 4-

I 2 1 6 I 14 I 10 I
I I I I I
I I I I I

10 I 0 I 1 I 0 I 0 I
1 I I I I
I I I I I
I I I I I
+--------- ---------+. --------- 4-------- -----------4------- ------------4-

81

CHAPTER VI

SUMMARY AND CONCLUSION

Recapitulation

Many logic designers use a pragmatic approach when

simplifying switching circuits for digital applications.

That is so because no firmly established routine covers

all aspects of minimization. The procedure, described in

this paper, may be utilized as a simplification - implemen

tation tool by any engineer acquainted with switching

circuitry. Further, the computer program may be adapted as

a subroutine within the framework of a bigger logic design

and implementation program.

Research Direction

Computers have been successfully applied to a

variety of problems by adapting the revelant data to a

computer language. Algorithmic iterative minimization

methods are developed having computer languages in mind.

Nevertheless, a manual-visual task, like that of minimi

zation by graphical methods, may be as efficient as any

other if a computer is utilized as a logic designer's

tool.

The procedure described in this paper may be further

automated, provided enough high speed random access storage

is available for manipulating the parameters involved.

82

Author's Contribution

This research resulted in a procedure for minimi

zation of Boolean functions aided by a computer program.

Included in this procedure are original techniques for

direct map to multi-level NAND/NOR implementation.

APPENDIX 83

Postulates

A = 1 or else A = 0

1.1 = 1 0 + 0 = 0

1.0 II o
 + n + o

o
II o
1!

0.0 = 0 1 + 1 = 1

T = 0 0 = 1

Theorems

la. 0.A = 0 lb. 1 + A = 1

2a. l.A = A 2b. 0 + A = A

3a. A A = A 3b. A + A = A

4a. A A = 0 4b. A + A = 1

5a. A B = BA 5b. A + B = B + A

6a. ABC = (AB)C = A (BC)

6b. A + B + G = (A + C) + G = A + (B + G)

7a. AB... C = A + B +. . T + C

7b. A + B +... + C = A B...C

8. r (A,B,...,C,.,+) = f CS,E,...,U,+ ,.)

9a. A B + A 0 = A (B + 0)

9b. (A + B)(A + G) = A + BG

10a. A B + A "B = A

10b. (A + B)(A + B) = A

Ila. A + A B = A

11b. A (A + B) = A

84

Theorems

12a. A * "SB = A + B

12b. A (3 + B) = AB

12a. AC + "SBC = AC + BC

12b. (A + C)CA + B + C) = (A + C)(A + B)

13a. AB + 3C + BC = AB = "AC

13b. (A + B)fA + C)(B + C) = (A + B)C5 + C)

14a. AB + TfC = (A + C) (A + B)

14b. (A + B)(A + C) = AC + AB

15a. A-f (A,A,B,...,C) = A’f (1,0,B,...,C)

15b. A + f (A,A,B,...,C) = A + f (0,1,B,...,C)

16a. f (A,A,B,...,C) = A-f (1,O,B,...,C) + A-f (0,1,B,...,C)

16b. f (A,A,B,...,C)

=(A + f(O,l,B,...,C)) (A + f(l,O,B,...,C))

LOGIC FUNCTIONS

NAME LOGIC SYMBOL MAD LANGUAGE TRUTH TABLE LOGIC DIAGRAM

NEGATION
COMPLEMENT
or PRIME

“or ' TV or A’
~ -A

.NOT.

.NOT.A J
0
1

T__
1
0

A-Cj)^=S

A

AND
or
INTERSECTION

. A . B

A v B

.AND.

A.AND.B

A.B
00
01
10
1.1

T__
0
0
0
1

A —1 . T=A.J
B —1 V

OR
or
UNION

+ A + B

v A v B

.OR.

A.OR.B

A+B
00
01
10
11

T__
0
1
1
1

A ---T°A+I
b —

EXCLUSIVE OR
or

SYMETRIC
DIFFERENCE

0 A € B

A B

.EXOR.

A.EXOR.B

A -QB
00
01
10
11

T__
0
1
1
0

A -V-^\t=a6b
b -4

NAND
or

STROKE

CT = E + B

a|b
.NOT.(A.AND.B)

Z?, B
00
01
10
11

T
1
1
1
0

A —1 \T=CT
B -- 1

NOR
or
DAGGER

CT = CT

AfB

.NOT.(A.OR.B)
A+B
00
01
10

________u_

T
1
0
0
_Q______

A —5 X T=CT’
B—q v” 00

Ul

86

f e d c b a f e d c b a

ABCDEF 0 0 0 0 0 0 0 ABCDEF 1 6 0 1 0 0 0 0

-Zbcdef 1 0 0 0 0 0 1 ABCDEF 1 7 0 1 0 0 0 1

ABCDEF 2 0 0 0 0 1 0 ABCDEF 1 8 0 10 0 10

ABCDEF 3 0 0 0 0 1 1 ABCDEF 1 9 0 10 0 11

ABCDEF 4 0 0 0 1 0 0 ABCDEF 2 0 0 10 10 0

Abcdef 5 0 0 0 1 0 1 ABCDEF 2 1 0 10 10 1

ABCDEF 6 0 0 0 1 1 0 ABCDEF 2 2 0 10 110

ABCDEF 7 0 0 0 1 1 1 ABCDEF 2 3 0 10 111

ABCDEF 8 0 0 10 0 0 ABCDEF 2 4 0 110 0 0

ABCDEF 9 0 0 10 0 1 ABCDEF 2 5 0 110 0 1

ABCDEF 1 0 0 0 10 1 0 ABCDEF 2 6 0 110 10

ABCDEF 1 1 0 0 10 1 1 ABCDEF 2 7 0 110 11

ABCDEF 1 2 0 0 11 0 0 ABCDEF 2 8 0 1110 0

ABCDEF 1 3 0 0 11 0 1 ABCDEF 2 9 0 1110 1

ABCDEF 1 4 0 0 11 1 0 ABCDEF 3 0 0 11110

ABCDEF 1 5 0 0 11 1 1 ABCDEF 3 1 0 11111

DECIMAL-BINARY CONVERSION TABLE

87

f e d c b a f e d c b a

ABCDEF 3 2 100000 ABCDEF 4 8 1 1 0 0 0 0

ABCDEF 3 3 100001 ABCDEF 4 9 1 1 0 0 0 1

ABCDEF 3 4 100010 ABCDEF 5 0 110 0 10

ABCDEF 3 5 100011 ABCDEF 5 1 110 0 11

ABCDEF 3 6 100100 ABCDEF 5 2 110 10 0

ABCDEF 3 7 100101 ABCDEF 5 3 110 10 1

ABCDEF 3 8 100110 ABCDEF 5 4 110 110

ABCDEF 3 9 100111 ABCDEF 5 5 110 111

ABCDEF 4 0 101000 ABCDEF 5 6 1110 0 0

ABCDEF 4 1 101001 ABCDEF 5 7 1110 0 1
ABCDEF 4 2 101010 ABCDEF 5 8 1110 10
ABCDEF 4 3 101011 ABCDEF 5 9 1110 11
ABCDEF 4 4 101100 ABCDEF 6 0 11110 0
ABCDEF 4 5 101101 ABCDEF 6 1 11110 1
ABCDEF 4 6 101110 ABCDEF 6 2 111110
ABCDEF 4 7 101111 ABCDEF 6 3 111111

DECIMAL-BINARY CONVERSION TABLE

88

CITED REFERENCES

1
W,V,O. Quine, "A Way to Simplify Truth Functions,"

American Mathematical Monthly, Vole 62, 1955, pp, 627-631,

2
E.J, McCluskey, Jr., "Minimization of Boolean

Functions," Bell System Technical Journal, Vol. 35,
Nov. 1956, pp, 141/-1444,

3
E.W. Veitch, "A Chart Method for Simplifying

Truth Functions," Proceedings of Association for Computing
Machinery, Pi11sburg, Pennsylvania, Meeting May-2 and 3,
T952, pp. 127-133.

4
M. Karnaugh, "The Map Method for Synthesis of

Combinational Logic Circuits," Transactions AIEE, Part 1,
Communications and Electronics, Vol. 72, "Nov. 1953,
pp. 593-599.

5
J.M. Copri, "Symbolic Logic," New York, Dover

Publications, Inc.

6
Earle, "Synthesizing Minimal Stroke and Dagger

Function." IRE Convention 1960.

7
R.L. Ashenhurst, "The Decomposition of Switching

Functions" Bell Laboratories, Report 1953 & 1956.

8
B. Arden, B. Gauer, R. Graham, "The Michigan.

Algorithm Decoder." The University of Michigan Publishing
Center, 1962,

89

BIBLIOGRAPHY

1. Abhyankar, S, "Minimal ’Sum of Products of Sums’
Expressions of Boolean Functions," IRE Trans
actions on Electronic Computers, Vol# EC-7, Mo. 4,
(December 1958).

2. Burgess, R. Charles "Boolean Algebra Minimizer,"
SHARE PROGRAM LIBlSHY_C^ep^emb"ef"T5”"'19'6'l'J'

3. Caldwell, S.H. "Switching Circuits and Logical Design,”
John Wiley &r Sons, Inc. (1958)"."

4. Curtis, Allen H. "A New Approach to the Design of
Switching Circuits," DV Van l^ostrand Company,Inc.
•(Tg^zy;-------------

5. Ewing, Ann "PK MIN 4," SHARE PROGRAM LIBRARY
(March 3, 1961).

6. Hurley, R.B.."Transistor Logic Circuits," John Wiley
& Sons, Inc.“'-C-l-96"I)".

7. Maley and Earle "The Logic Design of Transistor Di
gital Computers," Englewood Cliffs, N.Y. (T963).

8. Markus, M. "Switching Circuits for Engineers.”
Prentice-Hall, Inc. (1962).

9. Nasiin, P. "Circuits a Relais et Automatismes a Se
quences ," Dunod, Paris (1958).

10. Quine, W.V. "The Problem of Simplifying Truth Func
tions." American Mathematical Monthly, Vol. 59,
No. 8, (October 1952).

11. Roth, J.P. "Algebraic Topological Methods for the
Synthesis of Switching Systems I," Transactions
American Mathematical Society, Vol. 88 No. 2,
XTu fy"I9"5'"8)". -

12. Rothmeier, J.J. "An Algorithm for Boolean Simplifi
cation," Cornell Aeronautical Lab.. Inc., Box 235,
Buffalo 21, New York.

13. Urbano, R.H., and Mueller, R.K.A. "A Topological Method
for the Determination of the Minimal Forms of a
Boolean Function," IRE TRANSACTIONS, Vol. EC-5,
(September 1956).

