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ABSTRACT

Representing that research resolves itself through 

development to beneficial application, this thesis proposes 

an advancement in the technique of economical logic design.

While much work has been performed in perfecting 

implementation of hardware, existing methods fail to provide 

absolute minimality in all applications. The objective is 

to provide a procedure for the logic designer to develop 

solutions through rapid, error free multi-comparison methods 

which provide minimal expression and the proof and record: 

thereof.

The presentation considers existing hardware, pre­

sent minimization methods and their problems; develops 

examples describing the procedure and finally describes a 

computer program for economical reliable design.

Time consuming calculations are eliminated through 

the development of graphical solutions by computer programs, 

rather than existing numerical methods of minimizing the 

Boolean expression. The approach reported here utilizes 

a combination of present methods, with new interpretations, 

to obtain minimized optimum circuitry - while simultaneous­

ly displaying the basic characteristics of the Boolean 

expression.
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CHAPTER I

GENERAL OUTLINE

Introduction

The rapid advance of integrated circuit technology 

has increased the applications for digital systems, re­

quiring the logic designer to solve a variety of problems 

of function implementations. Obtaining minimal solutions 

requires the use of tedious, time consuming calculations.

While numerical methods and computer programs do 

reduce the logic designer's effort, a solution must be ob­

tained before the designer will be in the position to op­

timize his function implementation. A procedure is required 

to permit logic circuit optimization rapidly, reliably, 

economically and simply. This procedure must allow the desig­

ner to compare the effects of parameter variance, without 

resorting to tedious calculations. The procedure described 

here utilizes a computer program to achieve the implemen­

tation of Boolean functions.

Review and Definitions

Similarities between logic propositions and swit­

ching circuits permit use of algebraic logic for analysis, 

synthesis and minimization. The algebra of logic uses the 

postulates and theorems of appendix I.
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The following definitions apply throughout this 

thesis:

Literal: A variable or its complement, 

(A or S).

Minterm or Product term: Literals in a group mul­

tiplied together, (A.B.C),

Maxterm or Sum term: Literals summed together, 

(A+B+C) .

Canonical term or Standard term: A term containing 

exactly one occurrence of the literals,

f (A,B,C) = ABC + ... is an example of a canonical 

product term.

Sum of Products form: A function form, where the 

product terms are summed, (AB + "KC + BC) .

Product of Sums form:A function form, where the 

sum terms are multiplied, (A+B) (A+£) (B+C).

Canonical form or Standard form: A function form, 

where all the terms are canonical and appear only 

once. The canonical form may be expressed as a 

product of sums or as a sum of products, each being 

unique.
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Truth Table or Table of Combinations: A tabular 

representation of a function, giving the function 

value for each of the possible combinations of the 
variables. There are 2n row combinations for a 

function of n variables.

Boolean Expression: A function form that describes 

some logical properties or a network construction 

by Boolean algebra.

Logic Diagram: The logic circuit configuration 

implemented from the logic expression.

Analysis: The derivation of the truth tables from 

block diagrams or equations.

Synthesis; Deriving equations from truth tables.

Minimization: Manipulation of Boolean functions 

culminating with implementation in a block diagram 

with some parameters minimized.

Hardware

Hardware representation of present state of the

art appears in the form of monolithic integrated circuit 

performs a multitude of logic functions in the form of HAND, 

NOR, and EXOR.



The advantages obtained by integrated circuits are: 

High speed 

High fan-out capability 

High noise immunity 

Low power dissipation 

Moderate cost 

Miniaturization

The appendix contains standard logic symbols and 

diagrams referring to integrated circuitse

Minimization Methods

The process of finding the form of a given Boolean 

function, which may be implemented directly into hardware 

at lower cost and increased reliability, is known as 

"minimization" in the logic designo Cost and reliability 

are directly related to minimality of quantity of standard 

logic blocks, switching levels and block interconnections.

Arbitrary application of Boolean algebraic laws to 

the manipulations of algebraic representations of logic 

functions may result in prohibitive labor to achieve 

simplification. A definite need exists for a systematic 

simplification procedure. Of the large number of published 

methods the majority are oriented to relay circuit minimi­

zation and are categorized in three groups:
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1. An algebraic method for minimization found by 

Quine. Any function of any number of variables 

can be minimized to a two level minimum expression 

by first expanding the function to its canonical 

form, comparing each term against the others and 

eliminating redundant terms by using the basic 

theorem:

AB + A"B = A

A selection must then be made of the fewest number 

of irredundant terms (prime implicants) that yield 

the function. The two main disadvantages of this 

method are that the expression is only the two 

level minimum sum of products or product of sums, 

possibly far from being the minimum one. The 

method is time consuming and prone to errors.

2. Me Cluskey reduced the disadvantage involving time 

by using binary numbers. The resulting numerical 

method uses the same algorithms as Quine's, where 

each term of the canonical expression is represen­

ted as a binary number as in;

T= ABCD +.ABCD 

T=I(0,15)

Digital computer programs have applied this method 

to solve Boolean functions. The minimized function 

obtained is a minimum two level expression of sum 
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of products or product of sums. However, it is 

not readily adaptable into logic blocks.

3
3. The Graphical method originated by Veitch 

has been extended by others, possibly the best 

being the Karnaugh maps and partition matrix. 

This geometrical representation gives an insight 

into the functions and permits acquisition of a 

real minimal circuit for the hardware to be used, 

as will be seen in the following chapters. 

The graphical method is limited inasmuch, as 

functions above six variables must be disjunctive­

ly treated as two subfunctions, each with six or 

less variables. Such occurrences are infrequent. 

In most cases digital systems are built as func­

tional modules in which the number of variables 

is less than six.

Procedure Outline

Briefly, the optimizing procedure is:

1. Engineering and functional specifications are 

combined to determine the logic specification 

for a system.

2; This specification is then reduced to functionally 

related logic subsystems for example decoders, 

arithmetic units, input-output, control, etc.
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3. The logic subsystems are described by Boolean 

expressions.

4. Each Boolean expression in punched card form is 

read by the computer and the "BOOLEQ" subroutine 

is executed.

5. The resulting output includes the information as 

shown in figure 1.1.

a) The truth table of the function.
b) The canonical form of the function.
c) The Karnaugh map of the function.
d) The partition matrix of the function.
e) The minimum number of terms.

The procedure now provides three alternatives, de­

pending upon the number and grouping of terms. The first 

alternative is selected when examination of the Karnaugh map 

reveals an approximately equal number of minterms and maxterms 

without large groupings. A close examination of the partition 

matrix must be made to obtain a disjunctive decomposition 

function as explained in Chapter IV. The resultant expression, 

if found, is then ready for hardware implementation.

The last two alternative procedures are similar. One 

utilizes the minterms and the other utilizes the maxterms. 

In both cases a close examination of the Karnaugh maps will 

reveal a direct form for hardware implementation. Factoring 

may be done, if indicated, and if less hardware is required.

The procedure also provides for inhibiting, intro­

ducing new terms and simplification of functions.
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PROCEDURE FLOW DIAGRAM
Figure 1.1-a
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P2

PROCEDURE FLOW DIAGRAM
Figure le1-b
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NO

________ _______
' PUNCH CARD
WITH MINIMIZED

FUNCTION

N
INPUT TO 
COMPUTER 
PROGRAM

EXECUTE
SIMULATION
SUBROUTINE

NO

INTERCON 
LIST.

ARE FUNCTIONS
THE SAME

YES

PRINT 
HARDWARE

REQ

TIMING 
CHART

END PROCEDURE FLOW DIAGRAM
Figure 1.1-c
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Should satisfactory minimization not be achieved, the 

designer re-examines the print-out.

When the minimized function is obtained, it is 

processed by a computer simulation program. If the output 

does not display the equivalence of the original and mini­

mized functions, an error has occurred and the designer 

must re-examine his work. When the two functions are equi­

valent, the hardware requirements and interconnection list 

may be produced.

Chapter II is wholly devoted to Karnaugh maps and 

the process of factoring, inhibiting and function trans­

formation, while Chapter III explains implementation of 

NAND-NOR logic.
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CHAPTER II

THE KARNAUGH MAP IN MINIMIZATION

A preferred graphical method for minimization is 
4

the Karnaugh map. It achieves simplification of switching 

functions by applying elementary geometrical concepts re­

lated to algebraic properties. With previous experience of 

map handling, a visual inspection can minimize a function 

to two or more levels minimal expression of any form. 

Factoring and inhibiting permits direct implementation of 

the function into integrated circuit logic blocks of the 

form NAND/NAND, NOR/NOR, NOR/OR etc.

Description .

Geometrically, a switching function is expressed 
graphically as a map. Each n variables are allocated 2n 

cells'.s, one for every possible input combination of the 

variables. (See figure 2.1), Functions are represented by 

entering a 1 in the cells which are associated with each 

term in the algebraic function. Cells with 1 are minterms 

to the canonical expression of the function. The map com­

pletely defines the function.

Terms are so ordered that any two adjacent cells will 

differ in only one variable. The cells along the left-hand 

edge are adjacent to the corresponding cells along the 

right-hand edge. Similarly, the top edge is adjacent to the 
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bottom edge. This arrangement is refered to as reflected 

ordering to differ from the straight binary, where more 

than one variable is permitted to change. The adjacency of 

opposite ends of row and column can be better observed by 

considering the map as being inscribed on a Torus. Close 

examination of the map reveals that adjacent cells, either 

horizontally or vertically, both having 1, can be grouped 

according to the distributive and complementary algebraic 

rules:

T = AB + AB

T = A(B-hB) = A

Larger numbers of cells can be grouped if the number of 

adjacent 1’s is some power of 2. The terms are defined by 

constant variables throughout the group.

General Rules

A good approach for optimum solution is embodied 

in the following rules;

1. Computer subroutine plots Karnaugh map.

2. Account for all 1 cells that can be 

grouped only one way.

3. Cells that do not combine are prime 

implicants.

4. Combine group of two cells. When all 

groups of two are exhausted, combine groups 

of four and so forth.
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DC 
00101 11 10

BA 0£L3 'T' 0

ol_ ij i 0

11 0 J J 0

10 i 4, 0 (1

T = AC + ABC + BC + CD

MINIMUM SUM OF PRODUCTS

T - (ABC 4-BDC +ADCV
T - (A+B+C)-(B+D+C)•(A+D+C)

MINIMUM PRODUCT OF SUMS
C

T = ABC + ABC + ABC + ABC
T = AB + BC +ABC
T = B (A+C) +ABC

THREE AND FOUR VARIABLE KARNAUGH MAPS

Figure 2.1
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5. Write the function, taking in account 

each group in the form required.

The function obtained is not necessarily the minimal two. 

stage algebraic form. Fewer terms and/or variables may 

possibly result from grouping 0’s and applying the General 

Rules.

The three and four variable maps are illustrated 

in the example in figure 2.1. As seen, the minimum sum of 

products has more terms than the minimum product of sums, 

each function being directly derived from the map by group­

ing the 11s or the 0 * s.

T = AC + ABC + BC + CD (From the 1’s)

T = (ABU + "BBC + SDC) 1 (From the 0’s)

T = (K + B + C) . (B + U+ U). (A + U + 5)

Optional terms may be introduced for functions whose 

values are not all specified. These terms can be specified 

as either 1 or 0.

Five and Six Variable Maps

When minimizing expressions of five variables, two 

four variable maps are plotted. The two maps provide the 

same information, giving the 32 combinations of the five 

variables and their complements. Each map covers the same 

four variables, while the fifth variable is assigned
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T = ABDE_+ A CDS + ACDE + A CD +ABDE +ACDE +ACDE +ABCE 
OP = ABODE + ABODE

T=ACD+AD + BDE + ACE
FIVE VARIABLE MAP IMPLEMENTING FROM 1's

T =(A+C+D)•(A+D+E)•(A+B+D)-(C+D+E)-(A+C+D)

FIVE VARIABLE D4PLEMENTING FROM O’s

Figure 2O2
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0. on the first map and . L on the second map. Adjacency 

in each map occurs between the same : cells, on different 

maps in addition to the original adjacencies. A five 

variable example is shown in figure 2.2. The illustration 

demonstrates the advantage of using Karnaugh Map, when 

some terms are optional.

Six variables are displayed by plotting four four- 

variable maps. Each represents sixteen combinations of the 

first four variables, while the fifth and sixth variables 

take the values 00, 01, 10, 11 for each consecutive map.

Six variable map minimization requires practice to 

obtain proficiency. The four maps are viewed as if there 

...were a third dimension map displaying the adjacencies be­

tween the maps. The example below shows some of the sim­

plification possibilities. The computer program has been 

restricted to six variables, usefulness above six being 

very limited. Figure 2.3 illustrates a six variable map 

and its solution of a function representing the prime bi­

nary numbers of the first six digits:

T =£(0,1,2,3,5,7,11,13,17,19,23,29,31,41,43,47)  

Where the minimum sum of products from the maps is;

T = CDEF+ADEF+ACDF+ABDF+ABCDF+ABCDE+AGDEF+ABDEF

Or in factored form;
T = AD rBC(E+F)+BC(E+F)l +A(B+C)(DF+DEF)+AC(BDF+DEF)

U J DEF(A+C)
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MAP OF A SIX VARIABLES FUNCTION

Minimization of a Function representing the Prime 
Binary Numbers of the first six digits using Karnaugh 
Maps.

T = Z (0,1,2,3,5,7,11,13,17,19,23,29,31,41,43,4?)

T = CDEF+ADEF+ACDF+ABDF+ABCDF+ABCDE-tACDEF+ABDEF
T = AD_[bC(E+F) +BC(E+F )]+ A(B+C) (DF+DEF) +AC(BDF+DEF) 
+DEF(A+C)

Figure 2.3
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Factoring with Karnaugh Maps

The two level minimum product of sums of a 

Boolean function is far from being best suited for imple­

mentation with standard solid state blocks. Factoring of 

common terms, whenever possible, can result in a function 

requiring less hardware and interconnections, but increases 

the number of levels a signal may pass and therefore the 

switching time. General methods for factoring are inap­

plicable and each solution must be checked; sometimes re­

dundant terms must be introduced to obtain a better result. 

The factoring is obvious when a variable is common to more 

than one term. Examples:

A minimum sum of products can be written 

T = ABU+AEC+AD to T = A.CBU+'EC+D) 

or a minimum product of sums

T = (A+B+CD) (A+^-U) to T = A+(B+CD) (1MJ) 

The Karnaugh maps are good aids for factoring.

One method selects two functions which, when the outputs 

either logically AND or OR together produce the original 

function. The example in figure 2.4 results in the product 

of a sum of products.

T = AEG + AD + BCD
T = (1st Map). (2nd Map)

T = (A + EC) (D + BC)
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T = A'BC + AD + BCD

T = (A + BC)(D + BC)

FACTORING BY AN "AND" OF TWO MAPS

Figure 2.4
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There are no fixed rules regarding the placing of 

I's and 0's, however, large groups of 1’s that can be 

expressed with one or two variables will minimize the func­

tion.

Inhibiting in Karnaugh Maps

This method utilizes considerable redundancy wher­

ever advantageous and also applies the full logic power 

of the NAND/NAND or the NOR/NOR functions, unavailable in 

previous transform methods.

The method is simple. Where a group of 1’s is 

upset by a few 0’s, it may be resolved by inhibiting the 

0's to achieve the 1’s group. Figure.2.5 shows that the 

function may be implemented, as A and not ABC or, C and 

not ABC; for example,

T = A. (ABC)'+C. (ABC)' 

implemented with four NAND gates. Algebraic factoring and 

simplification of the function, without inhibiting, results 

in:

T = "KC + A’B + AU

T = SC + A. (13 + U) 

thereby requiring five NAND gates. This method of taking 

a loop of 1’s (including the bothersome O's) and inter­

secting with the complement of the looping produces the form 

"product term times the complement of a product", expressible 

by a NAND/NAND function.
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T =A.(ABC) + C. (ABC)

T = AC + AB + AC = AC + A. (B + C)

KARNAUGH MAP INHIBITING

Figure 2e5
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Map to Hardware Implementation

Any two level function can be expressed in eight 

different forms, each tending to directly fit a particular 

mode of logic. Consider the three-variables Karnaugh map 

in figure 2.1. From the 1 cells the minimum sum of products 

can be written:

T = ABC + ABC + ABC + ABC

Where the function is double primed and one prime 

moved in, applying De Morgan's theorem results in:

T = (ABC + ABC + ABC + ABC) 1 *
T = [ (ABC) ' . (ABC) ' . (ABC) ' . (ABC) ' ] ’

a NAND/NAND expression of .the function. Move in the primes 

around the terms and the function for OR/NAND implemen­

tation is obtained:
T = [ (A+B+C) (A+B+U) (A+B+U) (S+'ki-C) ] '

A NOR/OR function results, if the overall prime is moved in: 

T = (A+B+C)' + (A+B+C)' + (A+B+C)' + (A+B+C) '

In the last transformation if the primes of the 

terms are moved in, the original function is obtained:

T = ABC + ABC + ABC + ABC

In considering the 0's the function may be initi­

ally expressed as NOR/OR

T = (ABC + ABC + ABC + ABC)'
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FUNCTION TRANSFORMATION FLCSJ DIAGRAM

Figure 2.6
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and by moving-in the overall prime, a NAND/AND expression 

is seen;

T = (ABC)'. (ABC)*. (ABC)*. (ABC)* 

Moving-in the prime of the term, the minimum product of 

sums is now identified:

T = (A+B+C) (A+B+C) (A+B+C) (A+B+C)

To obtain the original function, the function is 

double primed and one prime is moved in. It is possible to 

repeat the same cycle starting with the minimum product of 

sums, although there will be different starting points. A 

flow diagram of function transformation starting from 

Karnaugh Map and moving through each step is illustrated 

in figure 2,6.

These examples prove that a two level function 

may be expressed in eight different ways, resulting in the 

practical value that each one suits it-s particular mode 

of logic.
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CHAPTER III

NAND-NOR IMPLEMENTATION

One possible choice of single functional block 

implementation is the NAND/NAND function which sometimes 

is referred to as the "Stroke Function". As seen before, 

a NAND is a logical block whose output is a 0 whenever all 

three inputs are 1.

Another choice for single functional block imple­

mentation is the dual of the NAND/NAND expression, the 

NOR/NOR, sometimes referred to as the "Dagger Function".

Duality provides similarity of implementation tech­

niques, for it is proven that by complementing the vari­

ables and the function of either will result in the other 

function, similar to a change from a positive to a negative 

logic.

AlB = Z.l = A7B = A + B

AfB = Z+B = A+B = A.B

Without an established method even the experienced 

logic designer will have difficulty recognizing the mini­

mality of the circuits. Because most of the digital inte­

grated circuits are NAND or NOR gates the functions may be 

directly implemented to hardware. (In this example fan-in 

and fan-out have been restricted to four and eight).

Four modes of expression transformation will be

discussed:
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A» B
A + E

A A. B. G
B I-d )— A+B+C
c —a V

THE NOR FUNCTION

A + A=A (NEGATION)

A4-B=A+B (OR)

A+ B= A. B (AND)

NAND FUNCTION EQUIVALENTS OF AND,OR,AND NEGATION

A.A= A (NEGATION)

A.B= A +B (OR)

A.BcA.B (AND)

NOR FUNCTION EQUIVALENTS OF AND,OR,AND NEGATION

Figure 3,1
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1. Equivalent AND-OR substitution.

2. Transformation by De Morgan theorem.

3. Earle transformation method.

4. Direct implementation from graphical 

representation.

Equivalent AND-OR Substitution

The simplest and possibly least used method is the 

generation of AND, OR and Negation Function Blocks using 

NAND or NOR, illustrated in figure 3.1, directly implemented 

into the AND-OR expression. .Figure 3.2 demonstrates a 

circuit using this method to implement the function T, using 

NAND blocks.

T = AB + ACD + (B+U). (B+C) . (S+B)

It is evident that simplification may be achieved 

by eliminating two inverters in series as A = A resulting 

in the circuit expressed in figure 3.3; however, a minimal 

circuit is not produced. Nine NAND gates appear rather than 

seven gates in the minimal circuit. If complemented inputs 

are available then

T = (A+"B) 1 +(A+U+U)' +(A+B+C) * +CE+U)'’ 

resulting in only five gates. The analyst will recognize 

that minimal circuits could be achieved by extending the 

rules. Further discussion will show that this would result 

in effective conversion to another method and would not then 

be a true equivalent AND-OR substitution as presented.
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T=AC +ABD+(B+C)-(A<-C)-(B+C)

EQUIVALEI’IT AND OR CIRCUIT

Figure 3.2



Figure 3,3
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The Transformation by De Morgan Theorem

This methodical and algorithmic approach to 

synthesis is a valuable aid to the logic designer in 

solving practical problems. The fact that a single output 

exists determines a NAND at the end of the gating and the 

De Morgan theorem is applied by working backwards from 

the end of the gating. Typically, to implement with MORS:

T = (A + C).(B + D)

at the input of the NOR, (see figure 3.4)

T’ = "K C + "B U

where S G and "B IT are the inputs. At the next level of NORS 

the inputs are:

P-L* = (SC) ' = A + U

P2 * = (BD) ' = B + D 

where A and 0 are inputs of one gate and B and D of the 

other. If 0 is not available, an additional NOR gate is 

required to complement C to U.

If the function

T = AC + ‘BC

is implemented with NOR gates the result is

T' = (S+C)(B+C)

Figure 3.5 clearly shows the conflict of the existence of 

an AND function at T’ instead of an OR function. A solution 

would be the conversion of the equation to an OR-AND form
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A. C
B. D

(A + C) .(B+D)

FIRST STEP

THIRD STEP

IMPLEMENTING I.’' OR-INVERTERS WITH DE MORGANS THEOREM
Figure 3.4
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T AC +BC

CONFLICT ILLUSTRATED

CONFLICT RESOLVED

CONFLICT RESOLVED BY TAKING
■COMPLEI4ENT FUNCTION

CONVERSION TO OR-AND FORM

Figure 3.5
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before starting. A potential pitfail exists in using some 

of the theorems converting this expression to OR-AND form, 

generally resulting in loss of minimality. The preferred 

transformation is from the original Karnaugh map which will 

yield the minimal OR-AND expression. Changing the function 

to its dual form is not economical in every case. Infre­

quently, complementing the output when the complement of 

the input is available will be more desirable.

Earle Transform Method

The preceding methods are slow and the total 

problem concept is obscured by limiting concentration to 

a part at a time; whereas the transform method permits 

rapid analysis and implementation, as in AND-OR logic, while 

exhibiting the overall problem neatly.

Rules for implementing:

1.
a) For NAND--Factor the Boolean equation to a 

form where output is an OR (OR-AND-OR etc.). 

Odd levels complemented variables and even 

levels uncomplemented variables are desired 

objectives.

b) For NOR--Factor to output AND (AND-OR-AND etc.) 

achieving the desired levels objective.
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T=A B + CD

TER14INAL ANALYSIS
NAND/NAND FUNCTION

F = AB + CD

EQUIVALENT OF 
NAND/NAND FUNCTION

TERMINAL ANALYSIS 
NOR/NOR FUNCTION

EQUIVALENT OF 
NOR/NOR FUNCTION

ODD LEVEL GATING 
NAND/NAND FUNCTION

' T =C (A + B)

ODD LEVEL GATING 
NOR/NORU • FUNCTION

EARLE TRANSFORMS

Figure 3.6
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T = ABBE + ABCF + ABDF + BODE

FACTORING EARLE TRANSFORMS

Figure 3.7



37

2. Lay out the gating from the equations in AND or 

OR format rather than NAND and NOR except that 

NAND and NOR variables coming in at odd levels 

of gating are complemented, as in figure 3.6.

Use of factoring is suggested when the fan-in of 

several blocks is exceeded, when complements are unavail­

able or when signals are overloaded.

For example: To implement T using NAND’s (Figure 3.7)

T = ABCDE+ABCE+ABCDE+ABCF+ABDF

The restriction to three input gates results in thirteen 

NAND gates total, a requirement of two NAND's per term by 

a direct two levels implementation from the Karnaugh Map. 

Factoring achieves:

T = BE.(CD + SD) + ABF. (C + D)

A four level equation in AND-OR-AND-OR form, as required, 

permitting direct implementation as ANP’s - OR’s with 

complementing at odd levels. A reduction of three NAND 

less than the first solution.

Direct Implementation from Maps

Perhaps the most natural approach to NAND/NAND 

function and the NOR/NOR function is to treat them as 

functions in their own right rather than force them into 

the form of AMD's and OR's. This renews insight into the 

fundamental processes of synthesis and proves the minimality
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T =[(A+B+D) +(A+C)+(B+C+D) +(A+B+C+D)]*

NOR/NOR IMPLEMENTATION FROM MAP 

Figure 3.8
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of the two previous methods.

1. The NOR/NOR function:

A Karnaugh map using the NOR/NOR function 

concludes that:

a) The NOR function is a 1, when, and only 

when, the input variables are 0.

b) The.O’s of the Karnaugh map represents 

the input terms of the function.

c) To minimize the function the fewest possible 

terms and literals are selected, as in 

AND-OR expressions.

The example in figure 3.8 shows the implemen­

tation of a Karnaugh map to a two level NOR/NOR 

function;
T = [(A+M)' + (A+C) ’ + (B+C+IJ)' + (A+B+C+D)' ] * 

a minimal expression for two levels and checked 

by successive substitutions.

2. The NAND/NAND function:

The NAND/NAND function may be implemented in a 

similar manner:

a) The term is 1 whenever there is a 1 on the 

map.

b) Combining the 0’s of the map results in a 1 

whenever any term is 0.

c) The complement of the function may be found
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DC 
00 01 11 10

00 0 ^3- ■y 0

01 T 0 1 0

11 id 1 1 J)

10 0 0 1 0

T= (AB. CD. ABC. ACD)1

NAND/NAND IMPLEMENTATION FROM MAP 

Figure 3.9
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by interchanging I's and O's on the map. 

From the map in figure 3.9 and applying the 

above rules results in:
T = [ (AB) ’ . (CD) ' . (ABC) ' . (ACD) * ] ' 

Previous examples reveal that the NAND/NAND func­

tions and the NOR/NOR functions are related in the same 

way as the AND and OR functions. Similar interchanges of 

I’s and O's, with the functions written from O's, should 

give the NOR/NOR function. Since the transformation yields . 

minimal equations with identical map configuration, a two 

level minimal expression is evident. The previous two 

examples could be algebraically verified to establish that 

the equations are identical.

In conclusion, it is proven that from one Karnaugh 

map, each of the two possible minimal two level equations 

in the AND, OR, INVERTED function, the"NAND/NAND function 

and the NOR/NOR function may be written. This permits a 

nearly simultaneous minimization and cost investigation 

of the circuit logic defacto obtainable by Karnaugh maps.



CHAPTER IV

DECOMPOSITION OF FUNCTIONS

The fundamental concept of switching theory is the 

possibility of expressing any logic circuit ..as- a Boolean 

function. The algebraic properties and postulates provided 

the foundations for the graphical Karnaugh method for 

minimization employed in the previous chapters.

The question arises whether these algebraic prop­

erties are unique. Examination of the general theory of 

functions reveals another basic property which should be 

considered, that of decomposability, that is, the way it 

can be decomposed into a set of simpler functions. In logic 

circuits, the prime implicants may be seen as the basic set 

of functions forming a minimum sum representation. Further, 

a Boolean function implementing a multiple-level logical 

circuit may be considered as being decomposed into a set 

of simpler functions.

After extensive research at Harvard University, 

based on the above properties of Boolean functions, R.L. 

Ashenhurst presented his paper "The Decomposition of .nSwitching Functions" in a Bell Laboratory report. The 

Ashenhurst theory and its application to minimization of 

logical integrated circuit blocks is the subject of this 

chapter.
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It is interesting to examine the conditions in

which a Boolean function may be expressed with one or more 

subfunctions. Given the Boolean function f with m + p va­

riables: Xp X2, .xm, yp y2» .Ypo The function is 

said to be decomposable where it can be represented in the 

form: f = (x1, x2, .xm, yj,, y2> yp) = F 
.... xm, I (yp y2, yp)j .

It appears obvious that any Boolean function of n

xn

variables a. function is said to be disjunctive decomposable

variables may be written in this form, where (|> will be a
one variable function: f (xp X2, ...» xp) = F £xp X2, ..., 

For any sequence of configurations of the

if at least one subset is different from the preceding 

trivial case.

A convenient abbreviation of the above notation

provides that a, b, c, ... represents the subsets of the 

variables xj, ..., xn with the only stipulation being 

that the subsets are mutually exclusive. In this condition 

it may be said that a disjunctive decomposition of f (a, b) 

in terms of a and <|> (b) exists and results in:
f (a,b) = F £a, | (b)J .

The notation of disjunctive decomposition may 

easily be analytically formulated. In a four variables



44

Boolean function f (a, b, c, d) where it is desired to 

determine if a disjunctive decomposition exist of the form: 
f (a, b, c, d) = F a, b, | (c, d)J e

Any function of four variables may be expressed in 

the partially factored form, where capital A, B, C, D re­

presents any subsets of the two variables c and d, 

f (a,b,c,d) = a.b.A (c,d)+a.b,B (c,d)+aob,C (c,d)+a.b.D (c,d).

These subsets are uniquely determining f. However, 

where A,B,C and D can be expressed in terms of some single 

function <| (c,d), that is, if they assume only values 

chosen from the set | (c,d), (c,d), 0 and 1, there then

exists disjunctive decomposition, being the necessary as 

well as sufficient condition. Example:

T = abed + abed + abed + abed

T = ab (cd -i- cd) + ab (cd + cd) , where 

cd + cd = (cd + cd)*

T = ab (c,d) + ab tj)’ (c,d), where <|> = cd + cd.

In this case A (c,d) = |, B (c,d) = 0, C (cjd) = 0 

and D = (j)* (c,d) by the general partial factored form and 

is disjunctive decomposable having only one function (<j>) 

its complement (<|»’) and

The algebraic method followed in this example may 

always be applied to any function. To determine a decompo­

sition, the partial factored form expression for all the 

possible partionings of the variables requires Examination 

of the literals to detect disjunctive decomposition.
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c'd' 
0 0

c* d 
0 1
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a 'b 01

P4

0
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0
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P8

0

P9

0

PIO

0

Pll

0 C

a b 11

P12

0

P13 P14

Cl)
P15

0 D

T = ABCD + ABCD + ABCD + ABCD

PARTITION MATRIX OF EXAMPLE FUNCTION

Figure 4.1
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The Partition Matrix

Fortunately, this tedious algebraic manipulation 

is replacible by simple graphics. Visual inspection of a 

set of partition matrices may reveal disjunctive decompo­

sition.

Figure 4.1 being an output of the computer program 

"BOLEQ.", used in the minimization procedure, shows no need 

for reflected ordering to detect decomposition as in the 

Karnaugh map. The columns and rows are arranged in straight 

binary to facilitate implementation (ordering is really 

of no consequence). Each product is represented by a cell 

in which 0 or a 1 represents the output and a P with a 

subscript, identifies the binary variables in dyadic form. 

For example, P 10, is the product term a F c cF. The P^ are 

arranged in the map so that each appears in a column headed 

by the combination of c and d that it contains, and in a 

row headed by the combination of a and b that it contains. 

The first row therefore has the combination with the terms 

ab A (c,d) in the equation of partially factored form, the 

second row contains ab B (c,d) and so forth. By employing 

the function of the previous example, .the map usage may 

be illustrated.

The standard sum of products.form of the above 

function is as follows:

T =£ (0,3,11,14)
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This function has the value 1 for the combinations Pq, P?, 

Pg and P^4, and the value 0 for the rest of the sixteen 

combinations. Accordingly, there is a 1 or 0 in each block. 

The 1’s in the first row correspond to the terms of A (c,d) 

and those in the second, third and fourth row are B (c,d), 

C (c,d) and D (c,d) respectively. The fact that the fourth 

row has the complement of 1's and 0’s of the first row, 

results in D (c,d) = A' (c,d). The fact that the second 

and third rows do not "contain a 1 implies that B (c,d) = 

C (c,d) = 0; if all the combinations in a row were 1’s, it 

will imply that the function associated with the row is equal 

to 1.

A given configuration of 1’s and 0’s in a row is 

called a Pattern. A row where the 1’s and 0’s are the com­

plement of the pattern is called the Inverse of P.. Rows of 

all 1’s or all 0’s are called Trivial.

Using the above terminology a function is disjunc­

tively decomposable in the term ab and <J» (c,d):

” Should a pattern P appear in a row, then a 

decomposition of this form exist and only if 

every other row exhibits the pattern P, or its 

inverse, or one of the trivial patterns11.

Where the numbers of 1’s and 0’s are equal, pattern 

and inverse selections are totally arbitrary and can be 

reversed without detriment.

Corresponding maps should be examined to determine 
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whether decomposition of terms of different partition of 

variables exists. Examination of seven maps row-wise and 

column-wise will determine complete function decomposa­

bility for a four variable function. (See figure 4.2).

Minimization by Decomposition

The characteristic of a disjunctively decomposed 

function is the possibility of realizing a minimum logical 

network. Generally, the circuit realized by a decomposition 

utilizes fewer logical blocks than circuits derived by the 

methods of the previous Chapters. For example the function 

T =£(0,5,6,7,10,11,12,13) of four variables takes the 

unity value for all the combinations of the variables 

0,5,6,7,10,11,12 and 13, and the zero value for all other. 

From the Karnaugh map in figure 4.3 the function may be 

minimized to a minimum sum of products:

T = ABCD + ACD + ECU + BUD + 'BCD

T = ABCB + BCD + BUD + CU. (A+B)

The corresponding logic network for this function 

requires six "NAND” circuits and twenty-two interconnec­

tions. The same function is also disjunctive and decompos­

able in terms of c and (a,b,d). This is seen from the 

decomposition chart in figure 4.2. The form of subfunctions 

can be read directly from the chart c - dba;
T (a,b,c,d) = F [ c I (a,b,d)J



T= ABCD 4-BCD +ACD ■+ BCD +BCD

MINIMUM SUM FROM KARNAUGH MAP

T.= CD.(A+B)4-ABCD+BCD+BCD

LOGIC NETWORK DERIVED FROM MINIMUM SUM

D
W

>

LOGIC NETWORK REALIZATION BY DECOMPOSITION

Figure 4.3
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T = c. 4> + c. ip, where

= ABD + ABD + ABD and simplified to

<J> = ABD + BD

T = C. (ABD+BD) + C. (ABD+BD) *

The total implementation of the decomposed function 

requires only four logical blocks (three NAND’s and one 

EXOR) , a reduction in hardware by one third compared to 

the previous logical network. The number of interconnections 

(ten) represents a reduction of 55 per cent. To simplify 

the minimum sum of products to four gates, it would be 

necessary to recognize that, ABD + BD is the complement of 

AU + BU + "BD, which is most unlikely to be found by simple 

algebraic simplification.

The minimization procedure outlined in Chapter I 

includes the search for disjunctive decompositions. The 

time required for inspection of the partition matrix is 

only a few seconds and short for the minimality obtained. 

A disadvantage in the use of the disjunctive function is 

the increased propagation time, but this is the case in 

factoring a minimum sum of products also.
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CHAPTER V .

THE COMPUTER MINIMIZATION PROGRAM

The majority of the Boolean function minimization 

work is performed by a digital computer, thereby relieving 

the logic designer from tedious operation, but insuring a 

minimized equivalent function capable of direct implemen­

tation into integrated circuit blocks.

It is not necessary that the program user have 

knowledge of computer programming, as complete information 

will be presented in this chapter to plan ?nput, output 

and execution. A section describing the exact methods em- 
fs ployed, together with the flow chart and the MAD program10- 

is provided for the logic designer familiar with pro­

gramming and interested in the algorithm.

Purpose

For a given Boolean Function the subroutine 

”BOOLEQ" will compute and print.

1. The Truth Table of all possible combinations.

2. The Canonical expressions in the dyadic fora.

3. A comment defining which Canonical form has 

less terms and their number.

4. The number of Karnaugh Maps required.

5. The Partition Matrix.



53

6, The comparison of input unit hardware 

function and comment equivalent or error 

definition.

Input

The Boolean functions to be minimized are punched 

according to the following card format. (See figure 5.1).

1. Columns 1 to 10 are left blank, spaces are not 

relevant,

2. Column 11 is used to designate continuation of 

the Boolean function (0,1,2,...,9).

The function is interpreted by card order 

sequence and is not affected by the order of 

the digit; however any one function may not 

exceed ten cards.

3. Columns 12 to 72 are for the function statement 

which may start or finish within these limits 

and spaces may be inserted without relevance.

4. Columns 73 to 80 are not used by the computer 

and may be well employed as function and pro­

ject identifier.

Expressing the Function

The MAD language and subroutine require definite 

rules to express the Boolean functions.
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1. The letters for the input variables are A,B,C, 

D,E,F.

2. The input constants can be only 0 B for false 

statements and 1 B for true.

3. The Boolean operators available are: .NOT., .OR., 

‘.AND., .THEN., .EXOR. and ,EQV. corresponding to

the symbol: -, +, ., 0, v,‘and =. See appendix 

for table of symbols.

4. The letter T followed by an equal sign (=) 

starts any function, whereever T has the value 

binary 0 or 1 representing the function.

5. Parentheses have the same symbol and are used to 

specify the order of the computation. Redundant 

parentheses are allowed.

6. The sequence of computation is the same as in 

Boolean algebra, unless otherwise indicated by 

parentheses. The order being: .NOT., .AND., .OR., 

.EXOR., .THEN., .EQV. and =.

To illustrate the function:

T = (ABU + ^DC + ADC) '

will be expressed in MAD as follows:

T = .NOT. (A. AND. B. NOT. G. OR. .NOT. B. 

AND. D. AND. C. OR. .NOT. A. AND. D. 

AND. 0)
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For further examples see Input functions to computer pro­

gram on page 71.

Output

Maximum effort has been made to present the output 

data in clear and explicit form. The truth table is 

printed for any function and for any number of variables 

up to six. The computer program output shows different 

truth tables for four, five and six variables. Following, 

the standard sum of products or the standard product of 

sums are printed in dyadic form;

SUM = 0, 4, 14, 15

PROD = 8, 9, 12, 14

A., comment is printed to show which standard function has 

•fewer terms deciding if implementation should be done from 

1’s or 0 * s.

The final output contains a map (or maps) of the 

function. Each new column, square or map is identified to 

facilitate direct implementation. (See "page 74.). An error 

comment will be printed upon failure of an error check 

involving the new minimized function and standard sum­

mation.

Execution

The subroutine "BOOL-EQ" has been written as an 
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external function and can be called for execution by any 

"MAD” program with the following statement:

EXECUTE BOOLEQ. (V,I1,I2,I3)

The names in parentheses are the dummy arguments, where:

V = the number of variables in the Boolean 

function.

11 = is a flag with the value of 0, when sub­

routine should find equivalence of two 

Boolean functions, otherwise should be 1.

12 = is a flag, if 0 suppresses output print of

the Boolean function, otherwise should be a 1.

13 = is a flag to the subroutine, if 0 suppresses

the print of Karnaugh maps, otherwise should 

be a 1.

The Boolean function to be minimized is a separate 

external function FUN. with the following program state­

ments:

EXTERNAL FUNCTION (A,B,C,D,E,F,T)

ENTRY TO FUN.

... The Boolean functions

FUNCTION RETURN

END OF FUNCTION
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The usage of external functions provides maximum 

flexibility, allowing for the subroutine to be incorporated 

as part of a large program or as a Library Subroutine.

Diagnostic

The subroutine has been checked with many variations 

of Boolean functions and found to perform as specified. If 

an error is encountered in the input function due to illegal 

operation or misspelling, the subroutine will not execute 

and a comment will be printed identifying the type of error.

The Algorithm

The program uses the same algebraic topological 

formulation covered in the previous Chapters for the 

minimization of the switching function. The computation 

method of this program wi 1 be described in terms of the 

flow chart in figure 5.2 and the MAD program shown on 

page 67. The program contains the following sections:

1. The entry to the subroutine '’BOOLEQ" also de­

fines the number of variables (V) and the three 

flags for suppressing different sections of the 

program.

2. Normal mode is integer except that Boolean 

function variables and the Boolean vector (TV)
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are in the Boolean mode.

3. There are three vectors: TV, the binary outputs 

of the input combinations; SUM; and PROD. The 

latter two vectors being the canonical form of 

the function.

4. The next group of statements forms and prints 

the title and header of the Truth Table. A set 

of conditional statements is incorporated to 

control the printing of the number of letters.

5. A nested Loop (W) of six iteration statements 

assign the values of binary 0 and 1. to the six 

Boolean variables of the function. There are
62 possible combinations which the variables can 

take, giving a maximum of 64 iterations.

6. "FUN” is executed and the value of the Boolean 

function (T) assumes a new value depending upon 

the present values of the input variables 

(A,B,G,D,E,F). The output (T) is transferred

to the Boolean vector (TV). The counter I re­

presenting the term in dyadic form is incremented 

by 1.

7. A conditional statement defines the branching, 

where output (T)= 1 a set of statements introduce 

a new term in the sum of products. Where the 

output (T) = 0 the product of the sums is 
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introduced by a new term. With the addition of 

the term in the dyadic form the number of term 

counters M or N are incremented by one.

8. A set of conditional and print statements 

control the printing of one line from the truth 

table. Different print format statements are 

used depending on the number of variables.

9. The number of iterations of the section described 

in point 6, 7 and 8 are dependent on the number 

of Boolean variables (V). A set of conditional 

statements transfers the program out of the loop, 
when the number of iteration (I) is equal to 2^.

10. Once out of the loop (W), the canonical form of 

the function is printed. A conditioned statement 

defines which expression has fewer terns (M.L.N) 

and prints a comment of minimality.

11. A loop LI controls the number of Karnaugh maps 

to be printed dependant on the number of vari­

ables (V).

12. Another loop (L2) nested in LI iterates and prints 

one row of a map four times. A set of instructions 

compute the index for a reflected ordering of 

terms.

13. The four partition matrices of eight by two are 

printed. The TV vector is indexed directly.
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14. The three partition matrices of four by four are 

printed, using the same TV vector. Vector 

indexing is performed directly.

15. The subroutine has now been executed and re­

turns to the Main program.

The program described requires 2,034 memory loca­

tions and subroutine execution time is approximately 
.2^ x .250 m/seconds where V = number of variables.
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65

Figure 502~d



Figure 5.2-e
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E COMPILE MAD

D (01 OCT 1965/VERSI0M. PROGRAPI LI S TI NG' . .. 7,. ..
67---

SUBRCUTIME FOR MINIMIZING BOOLEAN FUNCTIONS

EXTERNAL FUNCTION {V,11,I 2,I 3)   
NORMAL MODE IS INTEGER
DIMENSION TV(64),SUM(64),PR0D(64) 
BOOLEAN A,B,C,D,E,F,._ . T,TV,FUN.

........................ ..ENTRY. TO ,_BOOLEQ.
,I=0_ 
M=0 ______________ __
N = 0
bl=$_______$;_________________________  
Al = $ A$

_____________81 = E_______ B.$
____________ C.1 = S______ C$   _____

Dl=$ D$
  El=$ E$   

____________________ Fl = $F$
____________ ti=5 ___ t$:______ 

_ . ______________ WHE.NEVE.R _V_. G...5,1RANSFER._TQ_JJ
_______ F.1=BL  _____ ___ L__________ ;  ______ _______

. .J WHENEVER. V..G.4, TRANSFER_TO_jj  
 E1=BL  

WHENEVER.. V . G. 3., TRANS_FER__TO_J J  
________________ di=bl ;
.... J J CONTINUE
...  PR I NT. FORMAT, T.I TLE  

 PRINT. FORMAT ...HEADER, Fl , El, DI ,C1 ,B1, Al, 11  
 ..THROUGH W, FOR .VALUES. OF, F.=.OB., IB  

J .THROUGH, W, FOR ..VALUES OF E = OB,1B l__________________
 THROUGH,W,.. FOR. .VALUES . OF_D=OB, IB.

THROUGH,W , FQR_VALUES_ OF_C=OB ,..1B  
THROUGH. W, FOR.. VALUES. OF, B=OB,1.B „   

 THROUGH. W , F O R V A L U.E S __0 F A.= O.B , 1 B
 EXECUTE FUN.(A,B,C,D,E ,F ,T) 

 JV(.I )=I  _
WHENEVER,.1.1... E. 1,TRANSFER_TOLJ1    

_EXECUT.E_MUN. ( A, B, C., D, E , F, T) .  
WHENEVER TV(I).E.T,TRANSFER T0.J3  

... .PRINT .COMMENT $ ERROR IN IMPLEMENTATION $  
J 3 .. ^CONTINUE   _
JI  .. .. CONTINUE .  

WHENEVER TV ( I ) . E . OB , TRANSF ER JO J4 •_ ■
.SUM(M). = I  
M=M+1 . . .

_________________ TRANSFE.R_f.0_J2__________________________________

J4 .. .. PROD(N) = I■  
N = N+1__

 J2 CONTINUE  

 
WHENEVER V. NE . 6 , TRANSFER _TO_S1

• PRINT FORMAT TAB1,F,E,D,C,B,A, T  
WHENEVER I . E.63,TRANSFER TO J10  

 TRANSFER TO FIN  
   



51 WHENEVER V.NE.5,TRANSFER T0 S2
PRINT FCRMAT T AE2 , E, D, C, o, A, T _ _ _ __ _ 
WHENEVER JIE . 3 1, TR ANSF E_R TO J16  68
TRANSFER TO FIN ’

52 WHENEVER V.NE.4,TRANSFER TO S3
PRINT FORMAT TAE3,D,C,3,A,T __ .
WHENEVER I.E.15,TRANSFER TO J1O 
TRANSFER TO FIN

53 PRINT FORMAT T A34, C , 8, A, T   _
_ WHENEVER I . E. 7, TRANSFER, TO j 10    _   '

FIN CONTINUE  
 1 = 1 + 1  

W  CONTINUE
J10 CONTINUE   ■  _Z _Z _J " 1

 
WHENEVER 12. E . 6 , TRANSFER, T0_J5 ’

________  WHENEVER* N. L . M , TRANSFER, JO J6 _ ’ " / "
______ PRINT COMMENT_$1_ SUM OF PRODUCTS HAS LESS TERMS, $ ™

PRINT FORMAT MTERM.M "   ' ' 

* PRINT FORMAT SU, SUM ( 0 ) . . . S"UM ( M-1") ~ ^2 __  2 Z  2
TRANSFER TO " J5 Z   Z Z_  Z ZZ ZZ'_

J6__ _ _____2_PRI'JL_CbMMENT_'si_____ PRODUCT OF SUMS HAS LESS’ TER'mS* $ ___ _
PRINT FCRMAT22NTERM,N j_ _Z ' Z 2 Z
PRINT FORMAT PRO , PROD (_0 )./. P^DJ N-jj

J5 PRINT FCRMAT_TOT,TV(O)...TV(1-1)
WHENEVER I 3 . E. 0 , TRANSFER TO J7  * ”__Z 2Z_ 

____ WHENEVER V. E .6 , V = 7~__________ 2_______ :_____ 22____ "‘ Z _ ZZ__ Z 
____________mm=o___________________________________ 2________________2_  Z 2 " ”Z 2

THROUGH LI,FOR K = 4,1,K.G.V _________________" 2Z2Z  Z
____PRINT FORMAT MAPI "____________ 2  __ Z2Z 22_ 

________________ PR I NT F ORM Af Jm AP 2 , D ASH ( 0).DASHlf)________________ " “ 

 
T H R OUGH2 L 2 , F 0 R K K = 0f, KK .G.3 ____________________ 2Z_Z_ 2

  M 1= KM AP ( 0 + KK ) + MM '___ 2 2
 M2 = K M *A P ( l'+KK*4")"+MM ______ Z___ 2

___ ____________'M3 = KMAP ( 2 + KK*4 )+m’m____________________ 22______ Z____________  
* M4=KMAP ( 3 + KK»4J"+MZ Z2Z 

__ _ PRINT FORMAT,MAP7‘,,M21,M2_,_M3,M4_______ "___________________________ 2__ Z______ Z_
1   PRINT F0RMAT,HAP3 _2___________________2 2______Z 2_______ 2_2 

 _______ 2 PR I NT F_ORMATZM AP23____________________ ___________ ____ _ _ _____  
PRINT__F0RMA2t MAP5,MK(KK)",fV(Ml) ,TV(M2) ,tV(M3) ,TV(M4) ‘ ____________
THROUGH* L4 , FOR IL=l,iZTi ^ZZZ * ~ ZZZ_Z Z 2_________________

L 4 P R IN T_ F 0 R M A T__M A P 3 2 2   *
L 2  PR IN* T*F OR MAT MAP 4, D A SJft 0) . ..DASH (7 ) . 2_______________

 
________________ i d=i v+*<l1Z8____  ■ Z"________ 2__________________________ 2_

______________ PRINT FORMAT MAP6 , MAP ID "(ID ) * *___
 MM=MM+f6**

 PR I NT FORMAT LOM,I DM(6),I DM(7j 
 "PRINT FORMAT" EDM, T V ( 0 ) , T V ( 2 ) , T V ( 4 ) , TV (6 ) , TV"( 8l, TV ( 10 f, TVCl 2 ) , TV ( 14)

"PRINJ FORMAT 'DDM.TVCl") ,TVC3) ,TV( 5) ,TV(7) ,TV(9) ,TV(11) , T V ( 13 ) , T V ( 15 j" 
 

LI  CONTINUE______________________________________________________________ __ _____________
J 7 CONTINUE

PRINT FORMAT NPG
PRINT FORMAT LDM,IDM(O),IDM(1)
PRINT FORMAT EDM,TV(O)...TV(7)
PRINT FORMAT DDM,TV(8)...TV(15)
PRINT FORMAT LDM,IDM(2),IDM(3)
PRINT FORMAT EDM,TV(O)...TV(3),TV(8)...TV(11)

_____ _ PRINT
PRINT

FORMAT 
FORMAT"

DOM,TV(4)...TV(7),TV(12)...TV(15) 
LDM,iDM(4),IDM(5)

PRINT FORMAT EDM,TV(O),TV(1),TV(4),TV(5),TV(8),TV(9),TV(12),TV(13)
PRINT FORMAT DDM,TV(2) ,TV( 3) ,TV(6) , TV ( 7 ) , T V ( 10 ) , T V ( 11 j ,’TV ( 14 ) , TV (15 )



PRIMT FORMAT LDM,I DM(8),I DM(9)   .
PRINT FORMAT FDM,TV(0)...TV(3) _   
PRINT FORMAT F DM , T V ( 4) . ... T V ( 7 ) .  69
PRINT FORMAT FDM,TV(8)...TV(11) '   

PRINT FORMAT FDM , TV ( 12 ) . . . TV ( 15 )    • _‘
PRI»T FORMAT LDM,I DM(10) ,I DM(1 1)
PRINT FORMAT FDM,TV(0),TV(1) ,TV(4),TV(5j .. "

PRINT FORMAT FDM,TV(2) , TV(3),TV(6),TV(7)
PRINT FORMAT FDM,TV(8) ,TV(9) , TV(12 ) ,TV(13)
PRINT FORMAT FDM,TV(10),TV(11),TV(14),TV(15)
PRINT FORMAT L DM , I DM ( 1 2 ) , I DM, ( 13 ) .
PRINT FORMAT FDM,TV(0),TV(2),TV(4),TV(6)
PRINT FORMAT FDM,TV(1),TV(3),TV(5),TV(7)
PRINT FORMAT FDM,TV(8),TV(10),TV(12),TV(14)_ _____ _ _ ____
PRINT FORMAT. FDM,TV( 9) , T V ( 11 ) , TV ( 13) ,TV( 15)  
VECTOR VALUES_TITLE=$1H1,S45,13H_TRUTH TABLE *$   ■

...VECTOR. VALUES _HEADER = $lH0,S20,7C6/_»_$  
VECTOR VALUES TAB1=$1H ,S20,7I6»$ _ _  
VECTOR VALUES TAB2 = $1H .,520,56,616*$.... 
VECTOR VALUE5_TAS3=$1H ,532,516*$   
VECTOR VALUES _TAB4 = $1H 538,4I6»$_
VECTOR VALUES. MTERM, = $1HO,510,16HNUMB. OF MIDTERM , I 5* $ 
VECTOR VALUES SU = $5H SUM={16(I 2,1H,))*$  
VECTOR VALUES NTERM= $ 1 HO , S 10,16HNU.M3 . OF _MAX TERM , I5*$  
VECTOR VALUES_PR0=$6H PROD=(16(I 2,1H,))* $   
VECTOR VALUES TCT=$6H TVAL=(16(12,1H,))»$_     \

.VECT0R_.VALUES_M,APl = $lHl,S2O,2HDC,S3,2H0O,S16,2H61,sio,2Hll,Sld,2HlO»$_ 
VECTOR VALUES MAP2 = $1H0,S14,2HBA,S4,8C6,1H + *$L
VECTOR VALUES MAP3 = $ 1H S20,5 ( 1H I , SI 1) »$  _ '

.VECTOR VALUES _MAP5 = $1H ,S14,C2,54,4(1HI,S5,I 1,S5),1HI»$ 
...VECTOR. VALUES MAP4 = $1H , 520,8C6 ,lH + ».$   

VECTOR. VALUES_M.AP6= $ 1H0., 528,1.3HKARNAUGH .MAP . , C4* $ 
 V E CT 0 R.  V A L U E S__M A P 7_= $ 1H  , .5.2 0,4 ( 1H. I,. I 2,5 9)., 1HI * $ ____________________

....VECTOR. VALUES_MAP I D.=.$ $ , S-E-F $ , $-£..?$ , $ E-F $ ,.$_E_ F

__.V ECTOR_VALUE 5.. KMAP=0,4., 12,8., 1., 5,13,9,3 ,.7,15 ,.l 1,2,6 ,.14,10 
VECTOR .VALUES—MK_=$OO$ ,..$0 1$ ,$ l l.$.,_$10$ .

.... VECTOR. V ALUE.5_DA5H = $+----------- $ , i $±t  
1 ,$+----------- $,  

VECTOR .VALUES_NPG = $ 1H1,520 ,_14HPART I ON_MAJR.I X*$
VECTORVAL.UE5-LDM = $ 1H0,5 16 , C4,54, C40_»$ 

-VECTOR. VALUE S_EDM=_$.1H _rS20., 812*3:
...VECTOR. VALUES..D.DM=$1H_,520,812*$ ____
.._ _V E C T 0 R—V A L U E 5  F D M = $ 1H , .5 2.0 ,. 4 I 2 » $  
  V E C T 0 R._ V A L U E 5. J D M = $ D $ , $C BA $ , $C.$ , $ .0.8 A $,. $ B $, .$ DC A $ , $ A $ , .$ DC B $ ,  
0__$DC$, $BA$, $DB$r_$CA$, $DA$,.$C_B.$

FUNCTION RETURN •   
...END OF FUNCTION.   
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. 131246 131246 131246 131246  131246 131246. . . ... 131246

$ COMPILE-MAD, EXECUTE

AD (01 OCT 1965 VERSION) PROGRAM LISTING .

T E S T I NG._B00L E AN _.EXTE.RNAL . FUNC T10N  
  

NORMAL MODE„IS INTEGER    
EXECUTE BOCLEC.(4,0,1 ,1)
END OF_.PROG.RAM 
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$ COMPILE MAD

MAD (01 OCT "1965 VERSION) PRCGRA?^TfsfING ^.7'7...’ ...

EXTERNAL FUNCTION ( A , B, C ,.D., E ,F , T)  
N 0 R M A L_ M 0 D E ._I S .BOOLEAN____________

 ENTRY TO FUN.   
 T=.NGT.A.AND..NOT.B.AND..MOT.C.AND..NOT.D.OR.

0 A.AND..NOT.B.AND.C.AND..NOT.D.OR.  
1 .NOT.A.AND.B.AND.C.AND..NOT.D.OR. 
3 A.AND.B.AND.C.AND..NOT.D.OR. _  
4. .NOT.A.AND.B.AND..NOT.C.AND.D.OR.  
5 A.AND.B.AND..NOT.C.AND.D.OR.  
6 .NOT. A. AND. . NOT . B . AND. C . AND-. D. OR.
7 A.AND..NOT.B.AND.C.AND.D   

FUNCTION RETURN   

 FUNCTION RETURN __________
END. OF.. FUNCTION_____ :_________________________    

  
  

 

 
 

 

  

   
    

    
 

 
 

 
 

ENTRY TO MUN..,,___________________
T = .NOT.A.AND..NOT.B.AND. 0. OR.

1 .NOT.A.AND. C.AND..NOT.D. OR. 
2 A.AND..NOT.C.AND..NOT.D. OR . 
3 .NOT.A.AND. C. AND..NOT.D. OR. 
4 A.AND. B.AND. D. OR. 
5 A.AND..NOT.C.AND. D. OR. 
6 A.AND. C.AND. D. OR.
7 A.AND..NOT.B.AND..NOT.C 



72

- - : - --------- --- _ _ ------- TRUTH TABLE - - - — ----

D c B A T

ERROR IN IMPLEMENTATION
0 0 0 0 0

ERROR IN IMPLEMENTATION
0 0 0 1 1
0 0 1 0 0

ERROR IN IMPLEMENTATION
0 0 1 1 1

ERROR IN IMPLEMENTATION
0 1 0 0 1

ERROR IN IMPLEMENTATION
0 1 0 1 0
0 1 1 0 1

ERROR IN IMPLEMENTATION
0 1 1 1 0

ERROR IN IMPLEMENTATION
1 0 0 0 1

ERROR IN IMPLEMENTATION
1 0 0 1 1

ERROR IN IMPLEMENTATION
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1

• 1 1 1 0 0
ERROR IN IMPLEMENTATION

1 1 1 1 1
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SUM CF.PRODUCTS HAS LESS TERMS

_?JUMB. OF MIDTERM 8
SUM= 0, 5, 6, 7,10,11,12,13,  
TVAL= 1, 0, C, _0, 0,. 1, 1, 1, 0, 0, 1,. 1, ._1,_ 1, Or
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KARNAUGH MAP
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PARTITION MATRIX

D CbA
1 0 0 0 0 1 1 1
0 0 1.1 11 0 0

C DBA
1 0 0 0 0 0 1_1_ 
0.1 1_1_ 1_ 1 0 0_

 
B DCA   

10010011 
0. 0 11.1.10.0  

A "PCB 
i_O_O_l_O 1_JL_O   

 0.0. l__l__O_ 1. _l_0  
   

 DC BA   
 1 0 0_0  

Q„l„l_.l  
_0_0_l_l ;___________  
1.10.0   

   
 DB CA•_______________ _______

.1 0_0_l _ ___________________________________________
__O_O„_l_l :__________________________________________

 0 O_l _l _

 
1 l_0_0

 .DA CB __
 l._O_O_l

 _______ o_o_i_i

0 _1 _l_0
0_l l_0 _____________________________
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$ COMPILE MAD, E <lCU1F___ ’ ________ __________

mad' (o"i"cict 1965 "VTRS.ia'xi "A'rcgrav' Lj.SfTNGSZt •’ •^*Z_Z* TJ'J.~ ZL I1ZZZJ"2
  

   

"2T_ ^fE S rriG'TgIlTa \r~E X T E R NAL^'f'u X C~fTo N  

 
N'aRMAL~M~0DT IS INTEGER ~~ - — _ ■ —

7_ _ 2 EXECUTE b(?GLEO. ( 5,0,1, 1)____

 

  

EXTERNAL FUNCTION (A,B,C

   
  

  

,D,E,F,T)
NORMAL MODE IS BOOLEAN
ENTRY TO FUN.
T = .NOT.A.AND..NOT.B.AND. D.AND..NOT.E.OR.

1 .NOT.A.AND. C.AND. .NOT.D.AND. E.CR.
2 A. A?sD. .NOT. C.AND. .NOT.D.AND. E.OR.
3 .NOT.A.AND. C.AND. .NOT.D. OR.
A A.AND. d.AND. D.AND..NOT.E.OR.
5 A.AND..NOT.C.AND. D.AND..NOT.E.OR.
6 A.AND. C.AND. D.AND. E.OR.
8 A.AND..NJT.B.ANO.C.AND.D .AND..NOT.E.OR.
9 A . AND . 13. AND . . NO 1. C . AND . D .AND.E.OR.
7 A.AND..NOT.8.AND. .NOT.C.AND. E

FUNCTION RETURN
ENTRY TO MUN.
T=.NOT.A.AND.C.AND..NOT. D.OR.

1

iar 
C
D 

a
 

o<
 

c

2 .NOT.S.AND.0.AND..NOT.E. OR.
3 A.AND..NOT.C.AND.E

FUNCTION RETURN -

 

END OF FUNCTION
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 TRUTH TAELE

' J____/_______ £_______ D C 8 " ' A " T " _______ ’ _

     
ZZ_ o 0 o o o ° ZrZ-_-I L L” 

”__ 1__ J  ZA”_______P_______ 0______ 0__ _ i ______"'  
600 1 ' cT " 0  ' _____ Z o "o " 6 i____________i_____ "o'______ 1  

__ _________________________o g i_______ o ______o______ i    
___________________________ 0 0 1______ 0 1   0_________A ______   

o o i i d 1    
____________________________________________________________________________________________ " 0 "o' 1 1 1 ~ o'   ""_____

__ Z 0_______1 __ 0______ 0________ 0_______ 1_____ ___ " 2J___1 
__ I__ 0____ 1 " 0 1_____ J_____ ’ A ' _____  

_ Z_____ ;______ o " i g____ ________l-°_ Ljp._____L ______ _   A"o i g i__ ’ i" i " "_______2 L'_
0 110 0 1  

"________________________o ____i_________ i_______d____ _'i 2__J____ 2_ _"Z 2___ 2_
___________________ g i. i i _____ o o'____ 2_ 1_J_____  

_____ . _____ o2_l i i i____ i i_______ 2________  
___________________________ i o o "o_______ o d__________ "" 

1 0 0 0_______ 1 1___________
 i d o ioo

i o o "i i i 
 1 0  1 0 0 1

___________________ j_______i o "io i o ___'"  
______ 2___________________ 1 o_______ 1_______ 1 "o_______ 1____________________ 

1 0________ 1_______ 1 1 0  
 1 1 0 0 0 0 

1 1 0 0 1 • 1 
___ '_________ _____________ i_______ i " o i -d_______d 2__  
______________ _____________i___ __i____ o i_______ i________i______ " ___2____   
___________________________ i_______ i_______ i_______doo_________2_____  
_____________________ i______________i_______ i o_______ i _ i__________ 21_____  
_________'_______________ __ 1______ 1________ 1_______ 1_______ 0_______ 0_____________ "J____  

1 1 1 ■ 1 1 " 1
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SUM OF P^CDUOTS HAS LESS TEEMS

•\UMb. OF /UL'TLHM 16
SU.M= V, "6', 8," 9,1 1,12, 13,15, 17, 19,20,22,25,27,29,31, 
TVAL= 0, 0, 0, 0, 1, U, 1, C, 1, 1, 0, 1, 1, 1, 0, 1, 
0, 1,0,1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,
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1011
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I I I I I 

KARNAUGH MAP E
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KARNAUGH MAP -E

- — DC CO— ------ _ - - - 01 11 - - - 10 _ —------------

r:A +--------- ---------+ - ---------+------- -----------4.
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CHAPTER VI

SUMMARY AND CONCLUSION

Recapitulation

Many logic designers use a pragmatic approach when 

simplifying switching circuits for digital applications. 

That is so because no firmly established routine covers 

all aspects of minimization. The procedure, described in 

this paper, may be utilized as a simplification - implemen­

tation tool by any engineer acquainted with switching 

circuitry. Further, the computer program may be adapted as 

a subroutine within the framework of a bigger logic design 

and implementation program.

Research Direction

Computers have been successfully applied to a 

variety of problems by adapting the revelant data to a 

computer language. Algorithmic iterative minimization 

methods are developed having computer languages in mind. 

Nevertheless, a manual-visual task, like that of minimi­

zation by graphical methods, may be as efficient as any 

other if a computer is utilized as a logic designer's 

tool.

The procedure described in this paper may be further 

automated, provided enough high speed random access storage 

is available for manipulating the parameters involved.
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Author's Contribution

This research resulted in a procedure for minimi­

zation of Boolean functions aided by a computer program. 

Included in this procedure are original techniques for 

direct map to multi-level NAND/NOR implementation.
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Postulates

A = 1 or else A = 0

1.1 = 1 0 + 0 = 0

1.0 II o
 + n + o
 

o
II o
1!

0.0 = 0 1 + 1 = 1

T = 0 0 = 1

Theorems

la. 0.A = 0 lb. 1 + A = 1

2a. l.A = A 2b. 0 + A = A

3a. A A = A 3b. A + A = A

4a. A A = 0 4b. A + A = 1

5a. A B = BA 5b. A + B = B + A

6a. ABC = (AB)C = A (BC)

6b. A + B + G = (A + C) + G = A + (B + G)

7a. AB... C = A + B +. . T + C

7b. A + B +... + C = A B...C

8. r ( A,B,...,C,.,+) = f CS,E,...,U,+ ,.)

9a. A B + A 0 = A (B + 0)

9b. (A + B)(A + G) = A + BG

10a. A B + A "B = A

10b. (A + B)(A + B) = A

Ila. A + A B = A

11b. A (A + B) = A
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Theorems

12a. A * "SB = A + B

12b. A (3 + B) = AB

12a. AC + "SBC = AC + BC

12b. (A + C)CA + B + C) = (A + C)(A + B)

13a. AB + 3C + BC = AB = "AC

13b. (A + B)fA + C)(B + C) = (A + B)C5 + C)

14a. AB + TfC = (A + C) (A + B)

14b. (A + B)(A + C) = AC + AB

15a. A-f (A,A,B,...,C) = A’f (1,0,B,...,C)

15b. A + f (A,A,B,...,C) = A + f (0,1,B,...,C)

16a. f (A,A,B,...,C) = A-f (1,O,B,...,C) + A-f (0,1,B,...,C)

16b. f (A,A,B,...,C)

=(A + f(O,l,B,...,C)) (A + f(l,O,B,...,C))



LOGIC FUNCTIONS

NAME LOGIC SYMBOL MAD LANGUAGE TRUTH TABLE LOGIC DIAGRAM

NEGATION 
COMPLEMENT 
or PRIME

“or ' TV or A’
~ -A

.NOT.

.NOT.A J 
0 
1

T__
1
0

A-Cj )^=S

A

AND 
or 
INTERSECTION

. A . B

A v B

.AND.

A.AND.B

A.B
00 
01 
10
1.1

T__
0
0
0
1

A —1 . T=A.J
B —1 V

OR 
or 
UNION

+ A + B 

v A v B

.OR.

A.OR.B

A+B 
00 
01 
10 
11

T__
0
1
1
1

A ---T°A+I
b —

EXCLUSIVE OR 
or 

SYMETRIC 
DIFFERENCE

0 A € B

A B

.EXOR.

A.EXOR.B

A -QB 
00 
01 
10 
11

T__
0
1
1
0

A -V-^\t=a6b 
b -4

NAND 
or 

STROKE

CT = E + B 

a|b
.NOT.(A.AND.B)

Z?, B
00
01
10
11

T
1
1
1
0

A —1 \T=CT
B -- 1

NOR 
or 
DAGGER

CT = CT

AfB

.NOT.(A.OR.B)
A+B
00 
01 
10 

________u_

T
1
0 
0
_Q______

A —5 X T=CT’ 
B—q v” 00 

Ul
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f e d c b a f e d c b a

ABCDEF 0 0 0 0 0 0 0 ABCDEF 1 6 0 1 0 0 0 0

-Zbcdef 1 0 0 0 0 0 1 ABCDEF 1 7 0 1 0 0 0 1

ABCDEF 2 0 0 0 0 1 0 ABCDEF 1 8 0 10 0 10

ABCDEF 3 0 0 0 0 1 1 ABCDEF 1 9 0 10 0 11

ABCDEF 4 0 0 0 1 0 0 ABCDEF 2 0 0 10 10 0

Abcdef 5 0 0 0 1 0 1 ABCDEF 2 1 0 10 10 1

ABCDEF 6 0 0 0 1 1 0 ABCDEF 2 2 0 10 110

ABCDEF 7 0 0 0 1 1 1 ABCDEF 2 3 0 10 111

ABCDEF 8 0 0 10 0 0 ABCDEF 2 4 0 110 0 0

ABCDEF 9 0 0 10 0 1 ABCDEF 2 5 0 110 0 1

ABCDEF 1 0 0 0 10 1 0 ABCDEF 2 6 0 110 10

ABCDEF 1 1 0 0 10 1 1 ABCDEF 2 7 0 110 11

ABCDEF 1 2 0 0 11 0 0 ABCDEF 2 8 0 1110 0

ABCDEF 1 3 0 0 11 0 1 ABCDEF 2 9 0 1110 1

ABCDEF 1 4 0 0 11 1 0 ABCDEF 3 0 0 11110

ABCDEF 1 5 0 0 11 1 1 ABCDEF 3 1 0 11111

DECIMAL-BINARY CONVERSION TABLE



87

f e d c b a f e d c b a

ABCDEF 3 2 100000 ABCDEF 4 8 1 1 0 0 0 0

ABCDEF 3 3 100001 ABCDEF 4 9 1 1 0 0 0 1

ABCDEF 3 4 100010 ABCDEF 5 0 110 0 10

ABCDEF 3 5 100011 ABCDEF 5 1 110 0 11

ABCDEF 3 6 100100 ABCDEF 5 2 110 10 0

ABCDEF 3 7 100101 ABCDEF 5 3 110 10 1

ABCDEF 3 8 100110 ABCDEF 5 4 110 110

ABCDEF 3 9 100111 ABCDEF 5 5 110 111

ABCDEF 4 0 101000 ABCDEF 5 6 1110 0 0

ABCDEF 4 1 101001 ABCDEF 5 7 1110 0 1
ABCDEF 4 2 101010 ABCDEF 5 8 1110 10
ABCDEF 4 3 101011 ABCDEF 5 9 1110 11
ABCDEF 4 4 101100 ABCDEF 6 0 11110 0
ABCDEF 4 5 101101 ABCDEF 6 1 11110 1
ABCDEF 4 6 101110 ABCDEF 6 2 111110
ABCDEF 4 7 101111 ABCDEF 6 3 111111

DECIMAL-BINARY CONVERSION TABLE
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