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ABSTRACT

Representing that research resolves itself through
development to beneficial application, this thesis proposes
an advancement in the technique of economical logic design.

While much work has bgen performed in perfecting
implementation of hardware, existing methods fail to provide
absolute minimality in all applications. The objective is
"to provide a procedure for the logic designer to develop
solutions through rapid, error free multi-comparison methods
which provide minimal expression and the proof and record’
thereof.

The presentation considers existing hardware, pre-
sent minimization methods and their problems; develops
exémples describing the procedﬁre and finally describes a
computer program for economical reliable design.

Time consuming calculations are eliminated through
the development of graphical solutions by computerprograms,
rather than existing numerical methods of minimizing the
Boolean expression, The approach reported here utilizes
a combination of present methods, with new interpretations,
to obtain minimized optimum circuitry - while simultaneous-
ly displaying the basic characteristics of the Boolean

expression.
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CHAPTER I

GENERAL OUTLINE

Introduction

The rapid édvance of integrated circuit technology
'has increased the applications for digital systems, re- -
quiring the logic designer to solve a variety of problems
of function implementations, Obtaining minimal solutions
'requires the use of tedious, time consuming calculations.
While numerical methods and computer programs do
reduce the logic designer's effort, a solution must be ob-
tained before the designer will be in the position to op-
timize his fpnction implementation. A procedure is required
to permit logic circuit optimization rapidly, reliably,
economically and simply. This procedure must allow the desig-
ner to compare the effects of parameter variance, without
resorting to tedious calculations. The procedure described
here utilizes a computer program to achieve the implemen-

tation of Boolean functions.

Review and Definitions

Similarities between logic propositions and swit-
ching circuits permit use of algebraic logic for analysis,
synthesis and minimization. The algebra of logic uses the

postulates and theorems of appendix I.



. The following definitions apply throughout this

thesis:

Literal: A variable or its complement,
(A or B).

Minterm or Product term: Literals in a group mul-

tiplied together, (A.B.C).

Maxterm or Sum term: Literals summed together,

(A+B+C).

Canonical term or Standard term: A term containing

exactly one occurrence of the literals,
£ (A,B,C) = ABC + ... is an example of a canonical

prbduct term,

Sum of Products form: A function form, where the

product terms are summed, (AB + AC + BC).

Product of Sums form:A function form, where the

sum terms are multiplied, (A+B) (A+C) (B+C).

Canonical form or Standard form: A function form,

where all the terms are canonical and appear only
once, The canonical form may be expressed as a
product of sums or as a sum of products, each being

unique.



Truth Table or Table of Combinations: A tabular

representation of a function, giving the function
value for each of the possible combinations of the
variables. There are 2" row combinations for a

function of n variables,

Boolean Expression: A function form that describes
some logical properties or a network construction

by Boolean algebra,

Logic Diagram: The logic circuit configuration

implemented from the logic expression.

Analysis: The derivation of the truth tables from

block diagrams or equations,
Synthesis: Deriving equations from truth tables,

Minimization: Manipulation of Boolean functions

culminating with implementation in a block diagram

with some parameters minimized.
Hardware

Hardware representation of present state of the
art appears in the form of monolithic integrated circuit
- performs a multitude of logic functions in the form of NAND,

NOR, and EXOR.
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The advantages obtained by integrated circults are:

High speed

High fan-out capability

High noise immunity

Low power dissipation

Moderate éost

Miniaturization
The appendix contains standard logic symbols and

- diagrams referring to integrated circuits.,

Minimization Methods

The process of finding the form of a given Boolean
function, which may be implemented directly into hardware
at lower cost and increased reliability, is known as
"minimization" in the logic design. Cost and reliability
are directly related to minimality of quantity of standard
logic blocks, switching levels and block interconnections,

Arbitrary application of Boolean algebraic laws to
the manipulations of algebraic representations of logic
functions may result in prohibitive labor to achieve
simblificétién. A definite need exists for a systematic
simplification procedure, Of the 1argé number of published
methods the majority are oriented to relay circuit minimi-

zation and are categorized in three groups:



1.

An algebraic method for minimization found by
Quine. 1 Any function of any number of variables
can be minimized to a two level minimum expression
by first expanding the function to its canonical
form, comparing each term against the others and
‘eliminating redundant terms by using the basic
theorem:- A .

AB + AE = A
A selection must then be made of the fewest number
of irredundant terms (prime implicants) that yield
the fungtion. The two main disadvantages of this
method are that the expression is only the two
level minimum sum of products or product of sums,
possibly far from being the minimum one., The

method is time consuming and prone to errors.

Mc Cluskey reduced the disadvantage involving time
by using binary numbers, 2 The resulting numerical
method uses the same algorithms as Quine's, wheré
each term of the canonical expression is represen-
ted as a binafy number as-in:

T= ABCD +.ABCD .

T=5(0,15)
Digital computer programs have applied this method"
to solve Boolean functions, The minimized function

obtained is a minimum two level expression of sum



of products or product of sums. However, it is

not readily adaptable into logic blocks,

3. The Graphical method originated by Veitch 3
has been extended by others, possibly the best
being the Karnaugh maps and partition matrix.
This geometrical representation gives an insight
into the functions and permits acquisition of a
real minimal circuit for the hardware to be used,
as will be seen in the following chapters.,
The graphical method is limited inasmuch, as
functions above six variables must be disjunctive-
ly treated as two subfunctions, each with six or
less variables., Such occurrences are infrequent.
In most cases digital systems are built as func-
tional modules in which the number of variables

is less than six.

Procedure OQOutline

Briefly, the optimizing procedure is:

1. Engineering and functional specifications are
combined to determine the logic specification
for a system.

2;'This specification is then reduced to functionally
related logic subsystems fér example decoders,

arithmetic units, input-output, control, etc.



3. The logic subsystems are described by Boolean
expressions.

4, Each Boolean expreésion in punched card form is
read by the computer and the '""BOOLEQ" subroutine
is executed.

5. The resulting output includes the information as
shown in figure 1.1,

a) The truth table of the function.

- b) The canonical form of the function.
c) The Karnaugh map of the function.
d) The partition matrix of the function.
e) The minimum number of terms.

The procedure now provides three alternatives, de-
pending upon the number and grouping of terms. The first
alternative is selected when examination of the Karnaugﬁ map
reveals an approximately equal number of minterms and maxterms
without large groupings. A close examination of the partition
matrix must be made to obtain a disjungtive decomposition
function as explained in Chapter IV. The resultant expression,
if found, is then ready for hardware implementation.

The last two alternative procedures are similar, One
utilizes the minterms and the other utilizes the maxterms.

In both cases a close examination of the Karnaugh maps will
reveal a direct form for hardware implementation. Factoring
may be done, if indicated, and if less hardware is required.

The procedure also provides for inhibiting, intro-

ducing new terms and simplification of functions,
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Should satisfactory minimization not be achieved, the
designer re-examines the print-out,

When the minimized function is obtained,Ait is
processed by a computer simulation program. If the output
does not display the equivalence of the original and mini-
mized functions, an error has occurred and the designer
must re-examine his work, When the two functions are equi-
valent, the hardware requirements and interconnection list
may be produced.

Chapter II is wholly devoted to Karnaugh maps and
the process of factoring, inhibiting and function trans-
formation, while Chapter III explains implementation of

NAND-NOR logic.

11
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CHAPTER II

THE KARNAUGH MAP IN MINIMIZATION

A preferred graphical method for minimization is
the Karnaugh map. 4 It acﬁieves simplification of switching
functions by applying elementary geometrical concepts re-
lated to algebraic prcperties, With previous experience of
map handling, a visual inspection can minimize a function
to two or more levels minimai expression of any form,
Factoring and inhibiting permits direct implementation of
the function into integrated circuit logic blocks of the

form NAND/NAND, NOR/NOR, NOR/OR etc.

Description .

Geometrically, a switching function is expressed
graphically as a map. Each n variables are allocated 2"
cells-z, one for every possible input comblnatlon of the
variables, (See figure 2,1), Functions are represented by
entering a 1 in the cells which are associated with each
term in the algebraic function., Cells with 1 are minterms
to the canonical expression of the function. The map com-
pletely defines the function.

| Terms are so ordered that any two adjacent cells will
differ in only one variabie. The cells along the left-hand
edge are adJacent to the corresponding cells along the

right-hand edge. Similarly, the top edge is adjacent to the



13
bottom edge. This arrangement is refered to as reflected
ordering to differ from the straight binary, where more
than one variable is permitted to change. The adjacency of
opposite ends of row and column can be better observed by
considering the map as being inscribed on a Torus. Close
examination of the map reveals that adjacent cells, either
horizontally or vertically, both having 1, can be grouped
according to.the distributive and complementary algebraic

rules:

AB + AB
A(B+B) = A

. T
T

Larger numbers of cells can be grouped if the number of
adjacent 1's is some power of 2, The terms are defined by

constant variables throughout the group.

General Rules

A good approach for optimum solution is embodied
in the following rules:

1, Computer subroutine plots Karnaugh map.

2, Account for all 1 cells that can be
grouped only one way. ‘

3. Cells that do not combine are prime
implicants.,

4, Combine group of two cells, When all
groups of two are exhéusted,'combine groups

of four and so forth.
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5. Write the function, taking in account
each group in the form required,

The function obtained is not necessarily the minimal two
stage algebraié form, Fewer terms and/or variables may
possibly result from grouping 0's and applying the General
Rules., |

The three and four variable maps are illustrated
in the example in figure 2.1, As seen, the minimum sum of
products has more terms than the minimum product of sums,
each function being directly derived from the map by group-

ing the 1's or the 0's,

T = AC + ABC + BC + CD (From the 1's)
T = (ABC + BDC + ADC)' (From the 0's)
T=F+B+C. B+D+0C). (A+7D+ 70T

Optional terms may be introduced for functions whose
values are not all specified. These terms can be specified

as either 1 or O.

Five and Six Variable Maps

When minimizing eXpressionsiof five variables, two
four variable maps are plotted. The two maps provide the
same information, giving the 32 combinations of the five.
variables and their complements. Each ﬁap covers the same

four variables, while the fifth variable is assigned
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T = ABDE +ACDE + ACDE +ACD +ABDE +ACDE +ACDE + AECE
OP = AECDE +ABCDE

DC x x! DCx x?
s Q0 pili1 10 - pa 00 bil1y 10
oo |o JWIf [1) oofo [Wo |o
e Y _% e Y
o1 o |o e ]s orfr o I |[]
11 jo |o ol 1| - 111,0l1 b_=_7,
10 [o ) oo ‘100 |1)o |o
I 1, 1,
x X X x
E E
T = ACD +AD + BDE + ACE
FIVE VARIABLE MAP IMPLEMENTING FROM 1's
DC
. X X
"o holo1 11 10
1O HEE
o1 ljo |o) ¢ |1
1 flo o) 1]
10 [ 1 /o [ o)
Lol
x X' _¥ y

B

T = (A+C+D) -(A+ﬁ+§) -(A+B+D) - (C+D+E) - (A+C+D)

FIVE VARIABLE IMPLEMENTING FROM O's

Figure‘ 2,2




17
= 0 on the first map and :1. on the second map. Adjacency
in each map occurs between the same : cells. on different
maps in addition to the original adjacencies, A five
variable example is shown in figure 2.2, The illustration
demonstrates the advantage of using Karnaugh Map, when
some terms are optional,

Six variables are displayed by plotting four four-
variable maps. Each represents sixteen combinations of the
first four vafiables, while the fifth and sixth variables
take the values 00, 01, 10, 11 for each consecutive map,

Six variable map minimization requires practice to
obtain proficiency. The four maps are viewed as if there
.wére a third dimension map displaying the adjacencies be-
tween the maps. The example below shows some of the sim-
plification possibilities. The computer program has been.
restricted to six variables, usefulness above six being
very limited, Figure 2,3 illustrates a six variable map
and its solution of a function representing the prime bi-
nary numbers of the first six digits:

T =Z(0,1,2,3,5,7,11,13,17,19,23,29,31,41,43,47)
Where the minimum sum of products from the maps 1is:

T = CDEF+ADEF+ACDF+ABDF+ABCDF+ABCDE+ACDEF+ABDEF
Or in factored form:

T = AD [EC(E+F)+BE(E+F)]~+A(B+6)(BF+DEF)+AC(E§E+DEF)
DEF (A+C)
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Figure 2,3
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Factoring with Karnaugh Maps

The two level minimum product of sums of a
Boolean function is far from being best suited for imple-
mentation with standard solid state blocks. Factoring of
common terms, whenever possibie, can result in a function
requiring less hardware and interconnections, but increases
the number of levels a signal may pass and therefore the
switching time. General methods for factoring are inap-
plicable and each solution must be checked; sometimes re-
dundant terms must be introduced to obtain a better result.
The factoring is obvious when a variable is common to more
than one term., Examples:
A minimum sum of products can be written
T = ABC+ABC+AD to T = A, (BC+BC+D)
or a minimum produét of sums
T = (A+B+CD) (A+B+D) to T = A+(B+CD) (B+D)
The Karﬁaugh maps are good aids for factoring.
One method selects two functions which, when the outputs
either logically AND or OR together produce the original
function. The example in figure 2.4 results in the product

of a sum of products,

T = ABC + AD + BCD
T = (15% Map). (279 Map)
T =

(A + BC) (D + BC)
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There are no fixed rules regarding the placing of
1's and 0's, however, large groups of 1l's that can be
expressed with one or two variables will minimize the func-

tion.

Inhibiting in Karnaugh Maps

This method utilizes considerable redundancy wher-
ever advantageous and also applies the full logic power
of the NAND/NAND or the NOR/NOR functions, unavailable in
previous transform methods,

The method is simple, Where a group of 1l's is
upset by a few 0's, it may be resolved by inhibiting the
0's to achieve the 1's group. Figure 2.5 shows that the
function may be iﬁplemented, as A and not ABC or, C and
not ABC; for example,

| T = A. (ABC)'+C. (ABC)'
implemented with fpur'NAND gétes. Algegraic factoring and
simplification of the function, without inhibiting, results
in: | .
EC + AS + AT
EC + A, (B+ )

- T

T

thereby requiring five NAND gates; This method of taking

a loop of 1's (including the bothersome 0's) and inter-
secting with the complement of the looping produces the form
"product term times the complement of a product', expressible

By a NAND/NAND function.
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Map to Hardware Implementation

Any two level function can be expressed in éight
different:forms, each tending to difectly fit a particular
mode of iogic. Consider the three-Qariables Karnaugh map
in figure 2.1, From the 1 cells the minimum sum of products
can be written:

T = ABC + ABC + ABC + ABC

Where the function is double primed and one prime
moved in, applying De Morgan's theorem resulté in:

T = (ABC + ABC + ABC + ABC)' ! |
[(ZEE)-, (3BC)'. (AFC)'. (AB‘c‘)']'

T

a NAND/NAND expréssion of .the function, Move in the.priies
around the terms and the function for OR/NAND implemen-
tation is obtained: :
T = [ (4+B+C) (A+B+T) (B+B+T) (B¥BrC) |
A NOR/OR function results, if the overall prime is moved in:
T = (A+B+C)' + (A+B+C)' +'(Z+B+E)' + (Z4§+C)5
In the last transformation if the primes of the
terms are moved in; the origiﬂal function is obtained:
| T = A5G + ABC + ABC + ABG
In considering the 0's the function may be initi-
ally expressed as NOR/OR |
T = (ABC + ABC + ABC + ABC)'
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and by moving-in the overall prime, a NAND/AND expression
1s seen:

T = (ABC)'. (ABC)'. (ABC)'. (ABC)'

Moving-in the prime of the term, the minimum product of
sums is now identified:

T = (A+B+C) (A+B+C) (A+B+C) (A+B+C)

To obtain the original function, the function is
double primed and one prime is moved in., It is possible to
repeat the same cycle starting with the minimum product of
sums, although there will be different starting points, A
flow diagram of function transformation starting from
Karnaugh Map and moving through each step 1s illustrated
in figure 2.6, .

These examples prove that a two level function
may be expressed in eight different ways, resulting in the
practical value that each one suits its particular mode

of logic.
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CHAPTER III

NAND-NOR IMPLEMENTATION

One possible choice of sihgle functional block
implementation is the NAND/NAND function which sometimes
is referred to as the "Stroke Function'". As seen before,
a NAND is a logical block whose output‘is a 0 whenever all
three inputs are l. |

Another choice for single functional block imple-
mentation is the dual of the NAND/NAND expression, the
NOR/NOR, sometimes referred to as the "Dagger Function',.

Duality provides similarity of implementation tech-
niqdes, for it is proven that by complementing the vari-
ables and the function of either will result in the other
function, similar to a change from a positive to a negative

logic.

=AB=3+ B

>l
wll

AB =

|

S|
ol

= A8 =

11
+
wll

AB = .

Without an established method even the experienced
logic designer will have difficulty recognizing the mini-
mality of the circuits., Because most of the digital inte-
grated'circuits are NAND or NOR gateé the functions may be
directly implemented to hardware. (In this example fan-in
and fan-out have been restricted to four and eight).

Four modes of expression transformation will be

discussed: .
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. Equivalent AND-OR substitution.
5

Transformation by De Morgan theorem,

Earle transformation method. 6

s WO
L]

. Direct implementation from graphical

representation,

Equivalent AND-OR Substitution

The simplest and possibly least used method is the
generation of AND, OR and Negation Function Blocks using
NAND or NOR, illustrated in figure 3.1, directly implemented
into the AND-OR expression. Figure 3.2 demonstrates a
circuit using this method to implement the function T, using
NAND blocks.

T = AB + ACD + (B+C).(B+C).(B+B)

It is evident that simplification may be achieved_
by elimihating two inverters in series as 2= A resulting
in the circuit expresséd in'figuré 3.3; however, a minimal
circuit is not produced. Nine NAND gates appear rather than
seven gates_in ;he minimal circuit, If complemented inputs
are available then |

T = (A+B)' +(3+T+D) ' +(A+B+C) ' +(B+T)"
resulting in bnly five gates. The'analyst will recognize
that minimal éircuité could be achieved by extending the
rules, Further discussion will show that ﬁhis would result
in effective conversion to another method and.would not then

be a true equivalent AND-OR substitution as presented.
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The Transformation by'De Morgan Theorem

This methodical and algorithmic approach to
synthesis is a valuable aid to the logic designer in
solving practical proBlems. The fact that a single output
exists determines a NAND at the end of the gating and the
De Morgan theorem is applied by working backwards from
the end of the gating. Typically, to implement with NORS:

T = (A + C).(B + D) '
at the input of the NOR, (see figure 3,4)

T" =AC+BD
where A C and B D are the inputs. At the next level of NORS
the inputs are: |
A+ T

Py = (BC)'

Py,' = (ED)'

it
]

B+ D

where A and C are inputs of one gate and B and D of the
other., If C is not available, an additional NOR gate is
required to complement C to C.
If the function

T = AC + BC
is impleménted with NOR gates the result is

T = (&) (B+T)
Figure 3.5 clearly shows the conflict of the.ex;stence of
an AND function at T' instead of an.OR function. A solution

would be the conversion of the equation to an OR-AND form
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before starting. A potential pitfall exists in using some
‘of the theorems converting this expression to OR~AND form,
generally resulting in loss of minimality. The preferred
transformation is from the original Karnaugh map which will
yield the minimal OR-AND expression, Changing the function
to its dual form is not economical in every case. Infre-
quently, complementing the output when the éomplement of

the input is available will be more desirable,

Earle Transform Method

The preceding methods are slow and the total
problem concept is obscured by limiting concentration to
a part at a time; whereas the transform method permits
rabid analysis and implementation, as in AND-OR logic, while
éxhibiting the overall problem'neatly.

Rules for implementing:

1. - '
a) For NAND--Factor the Boolean equation to a -

form where output is an OR (OR-AND-OR etc.).
0dd levels complémented variables and even
levels uncomplemented variables are desired
objectives. _
b) For NOR--Factor to output AND (AND-OR-AND etc.)

achieving the desired levels objective,
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2, Lay out the gating from the equations in AND or
OR format rather than NAND and NOR -except that
NAND and NOR variables coming in at odd levels
of gating are complemented, as in figure 3.6.
Use of factoring is suggested when the fan-in of
several blocks is exceeded, when complements are unavail-
able or when signals are overloaded,
For example: To implement T using NAND's (Figure 3.7)
T = ABCDE+ABCE+ABCDE+ABCF+ABDF
The restriction to three input gates results in thirteen
NAND gates total, a requirement of two NAND's per term by
a direct two levels implementation from the Karnaugh Map.
Factoring achieves:
T = BE.(CD + AD) + ABF. (5 + D)
A four level equation in AND-OR-AND-OR form, as required,
permitting direct implementation as AND's - OR's with
complementing at odd levels, A reduction of three NAND

less than the first solution,

Direct Implementation from Maps

_ Perhaps the most natural approach to NAND/NAND
function and the NOR/NOR func;iqn is'to treat them as
functions in their own right rather than force them into
the form of AND's and OR's, This renews insight into the

fundamental‘pfocesses_of synthesis and proves the minimality
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of the two previous methods,

1.

The NOR/NOR function:
A Karnaugh map usiﬁg the NOR/NOR function
concludes that:
a) The NOR function is a 1, when, and only
when, the input variables are 0.
b) The O's of the Karnaugh map represents
the input terms of the function.
c¢) To minimize the function the fewest possible
terms and literals are selected, as in
AND-OR expressions.
The example in figure 3.8 shows the implemen-
tation of a Karnaugh map to a two level NOR/NOR
function;
T = [(A+§4D)'+(A+C)'+(B+C+ﬁ)'+(A+B+C+D)']'
a minimal expression for two lévgls and checked
by successive substitutionms.
The NAND/NAND function:
The NAND/NAND function may be implemented in a
similar manner: |
a) The term is 1 whenever there is-a 1 on the
map. _
b) Combining the 0's of the map results.in al
whenever any term is 0.

c) The complement of the function may be found
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by interchanging 1's and 0's on the map,
From the map in figure 3.9 and appiying the
above rules results in:
T = [(AB)'. (CD)'. (ABC)'. (ACD)' ] '
Previous examples reveal that the NAND/NAND func-
fions and the NOR/NOR functions are related in the same
way as the AND and OR functions. Siﬁilar interchanges of
1's and 0's, with the functions written from 0's, should
give the NOR/NOR function. Since the transformation yields .
minimal equations with identical map configuration, a two
level minimal expression is evident, The previous two
examples could be algeﬁraically verified to establish that
the equétions are identical.

"In conclusion, it is proven that ffom one Karnaugh
map, each.of the two possiblé minimal two level equations
in the AND, OR, INVERTED function,; the NAND/NAND function
and the NOR/NOR function may be written. This permits a
nearly simultaneous minimization and cost investigation

of the circuit logic defacto obtainable by Karnaugh maps.
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CHAPTER IV

DECOMPOSITION OF FUNCTIONS

The fundamental concept of switching theory is the
possibility of expressing any'logic circuit _as. a Boolean
function. The algebraic propertieé ané-postulates provided
the foundations for the graphical Karnaugh method for
minimization employed in the previous chapters.,

| The question arises.whether these algebraic prop-
erties are unique. Examination of the general theory of
functions reveals another basic property which should be
considered, that of decomposability, that is,.the way it
can be decomposed into a set of simpler functions, In logic
circuits, the prime implicants may be séen as the basic set
of functions forming a minimum'sum representation, Further,
a Boolean function iﬁplementing a multiple-level logical
circuit may be considered as being decomposed into a set
of simpler functions.

After extensive research at Harvard University,
based on the above properties of Boolean functions, R.L.
Ashenhurst presented his paper "The Decomposition of .

P]The

Ashenhurst theory and its application to minimization of

Switching Functions" in a Bell Laboratory report

logical integrated circuit blocks is the subject of this

chapter,
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Disjunctive Deccmposition

It is interesting to examine the conditions in
which a Boolean function may be expressed with one or more
subfunctions, Given the Boolean function £ with m + p va-
riables: X1 Koy eees Xﬁ; Y15 Y25 eee>s yp. The function is
salid to be decomposable where it cén be represented in the
form: £ = (%, X9, «o0y Xy, V1, Yos eees yp) =F [xl, Xy
coes X b (F1s os eees yp)] .

It appears obvious that any Boolean function of n
variables may be written in this form, where ¢ will be a
one variable function: f (xl,'xé, ceos xp) = F [xl, Xgs seey
Xh-1, ¢.(Xn)] . For any sequeﬁce of configurations of the
variables a. function is said ﬁo be disjdnctive decomposable
if at least one subset is differént from the preceding ‘
trivial case,.

A convenient abbreviation of the above notation
provides that a, B, ¢, ... represents the subsets of the
variables xj, X9, .., X, with the only stipulation.béing
that the subsets afé mutually exclusive, In this condition
it may be said that a disjunctive decomposition of £ (a, b)

in terms of a and ¢ (b) exists and‘results in;:
£ (a,b) = F [a, q»(b)] .
The notation of aisjunctive decomposition may

easily be analytically formulated, In a four variables
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Boolean function £ (a, b, ¢, d) where it is desired to
determine if a disjunctive decomposition exist of the form:
£ (a, b, ¢, d) = F [a, b, ¢ (c, d}] .

Any function of four variables may be expressed in
the partially factored form, where capital A, B, C, D re-
presents any subsets of the two variables ¢ and d,

f (a,b,c,d) = a,b,A (c,d)+a.b.B (c,d)+a,b.C (c,d)+a.b.,D (c,d).

These subsets are uni@uely determining £, However,
where A,B,C and D can be expressed in terms of some single
function 4 (c,d), that is, if they assume only values
chosen from the set + (e,d), +' (c,d), 0 and 1, there then
exists disjunctive decomposition, being the necessary as
well as sufficient condition, Example:

T = abcd + abed + abed + abed

T = ab (cd + cd) + ab (cd + cﬁ), where

— -

cd + cd = (Ed + cd)!

T = ab ¢ (c,d) + ab ¢' (c,d), where ¢ = cd + cd,

In this case A (c,d) = @, B (¢,d) =0, C (c;d) =0
and D = ¢' (c,d) by the general partial factored forﬁ and
'is disjunctive decomposable HaVing only one function (¢)
its complement (¢') and Q...

The algebraic method followed in this examp le may
always be applied to any function., To determine a decompo-
sition, the partial factored form expression for all the
poésible partioniﬁgs.of the variables requires éxamination

of the iiterals to detect disjunctive decomposition,

A
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Figure
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The Partition Matrix

Fortunately, this tedious aigebraic manipulation
is replacible by simple graphics. Visual inspection of a
set of partition matrices may reveal disjunctive decompo-
sition.

Figure 4.l‘being'an output of the computer program
'""BOLEQ.", used in the minimization procedure, shows no need
for reflected ordering to detec; decompoéition as in the -
Karnahgh map. The cﬁlumns and rows are arranged in straight
binary to facilitate implementation (ordering is really
_ of no consequence). Each product is represented by a cell
in which 0 or a 1 represents the output and a P with a
subscript, identifies the binary variables in dyadic form.
For example, P 10, is the product term a b ¢ d. The P; are
arranged in the map so that each appears in a coiumn headed
by the combination of ¢ énd'd that it éontains, and in a.
row headed by the.combinatian_of a and b that it contains.
fhe first row therefore has the combination with the terms
ab A (c,d) in the equation of partially factored form, the
second row contains @b B (¢,d) and so forth. By employing
the function of the previous example, the map usage may
be jillustrated. _ |

The standard sum of products form of the above
function is as follows:

T =5 (0,3,11,14)
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This function has the value 1 for the combinations Py, Py,
Pg. and P14; and the vaiue 0 for the rest of the sixteen
combinations., Accordingly, there is a 1 or 0 in each block.
The 1's in the first row correspond to the terms of A (c,d)
and those. in the second, third and fourth row are B (c,d),
C (c¢,d) and D (c,d) respectively. The fact that the fourth
row has the complement of 1's and 0's of the first row,
results in D (c,d) = A' (c,d). The fact that the second
and third rows do not'coﬁtain a 1 implies that B (c,d) =
C (c,d) = 0; if all the combinations in é row were 1l's, it
will imply that the function associated with the row is equal
to 1. '
' A givén configuration of 1's and 0's in a row is
called a Pattern. A row Qhere the 1's and 0's are the com-

plément of the pattern is called the Inverse of P.. Rows of

all 1's or all 0's are called Trivial,
-Using tﬁe above terminology a fuﬁction is disjunc-
tivély aecomposable in the term ab and ¢ (c¢,d):
'"" Should a pattern P appear in a row, then a
‘ decomposition of this form exist and only if
every 6ther row exhibits the pattern P, or its’
inverse, or one of the trivial patterns'.
Where the numbers of 1l's and 0's are equal,‘pattern
and inverse selections are totally arbitréry and can be |
reversed without detriment.

Corresponding maps should be examined to determine
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whether decomposition of terms of different partition of

variables exists, Examination of seven maps row-wise and
column-wise will determine complete function decomposa-

bility for a four variable function. (See figure 4.2).

Minimization by Decomposition

The characteristic of a disjunctively decomposed

function is the possibility of realizing a miﬁimum logical

network, Generally, the circuit realized by a decomposition
1 utilizes fewer logical blocks than circuits derived by the
methods of the brevious Chapters. For examéle the function
T =§:(0;5;6,7,10;11,12,13) of four variables takes the
unity value for all the combinations of the variables A
0,5,6;7,10,11,12‘and_13, and the zero value for all other.
From the Karnaugh map in figure 4.3 the function may be
minimized to a2 minimum sum of products:

T

AECD + ACD + BCD + BUD + BCD

T = ABCD + BCD + BCD + CD. (A+B)

The corresponding logic network for this function
requires six "NAND'" circuits and twenty-two interconnec-
tions. The same function is also disjunctive and decompos-
able in ﬁerﬁs of ¢ and ¢ (a,b;d). This is seen from the
decomposition chart in figure 4.2, The form of subfunctions

can be read direétly from the chart c - dba:

'I." (a’b’cad)‘ = F [C b (a’b:d)]
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i
ol

$ + c. ¢, where

T
$ = ABD + ABD + ABD and simplified to
b = ABD + BD .
T = C. (ABD+BD) + C. (AED+BD)' |

The total implementation of the decomposed function
requires only four logical blocks (three NAND's and one
EXOR), a reduction in hardware by one third compared to
the previous logical network. The number of interconnections
(ten) represents a reduction of 55 per cent. To simplify
the minimum sum of products to four gates, it would be
necessary to recognize that;dgﬁﬁ + BD is the complement of
AD + BD + BD, which is most unlikely to be found by simple
algebraic simplification.

The minimization procédure outlined in Chapter I
includes thé search for disjunctive decompositions. The
time required for inspection of the partition matrix is
only a few seconds and éhort for the minimality obtained.
A disadvantage in the use of the disjunctive function is
the increased propagation time, but this is the case in

factoring a minimum sum of products also,.
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CHAPTER V.

THE COMPUTER MINIMIZATION PROGRAM

The majority of the Boolean function ﬁinimization
work is performed by a digital computer, thereby relieving
the logic designer from tedious operation, but insuring a
minimized equivalent function capable of direct implemen-
tation into integrated éircuit blocks,

It is not necessary that the program user have
knowledge of computer programming, as complete information
will be presented in this chapter tovplan input, output
and execution, A section describing the exact methods em-
pldyed,'together with the flow chart and the MAD programls]

is provided for the logic designer familiar with pro-

gramming and interested in the algorithm,

Purpose

For-a given Boolean Function the subroutine
""BOOLEQ" will compute and print.
1, The Truth Table of all possible combinations,
2, The Canonical expressions in the dyadic form,
3. A comment defining which Canonical form has
less terms and their number,
4, The number of Karnaugh Maps required.

5. The Partition Matrix.
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6. The comparison of input unit hardware
function and comment equivalent or error

definition.,

Input

The Boolean functions to be minimized are punched

according to the following card format. (See figure 5.1).

1, Columns 1 to 10 are left blank, spaces are not
relevant,

2, Column 11 is used to designate continuation of

the Boolean function (0,1,2,...,9).

The function is interpreted by card order
sequence and is not affected by the order of
the digit; however any one function may not
exceed ten éards.‘

3. Columns 12 to 72 are for the function statement
which may start or finish within these limits
‘and spaces may be inserted without relevance,

4, Columns 73 to 80 are not used by the computer
and may be well employed as function and pro-

ject identifier,

Expressing the Function

The MAD language and subroutine require definite

rules to express the Boolean functions,
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The letters for the input variables are A,B,C,
D,E,F. |
The input constants can be only 0 B for false
statements and 1 B for true.

The Boolean operators available are: .NOT., .OR.,

" .AND,, .THEN., .EXOR, and ,EQV. corresponding to

the symbol: -, +, ., 0, v, 'and =, See appendix
for table of symbols,

The letter T followed by an equal sign (=)
starts any function, whereever T has the value
binary 0 or 1 representing the function.
Parentheses have the same symbol and are used to
specify the order 6f the computation., Redundant
parentheses are allowed.

The sequence of compﬁtation is the same as in
Boolean algebra, unless otherwise indicated by
parentheses. The order being: .NOT., .AND., .OR.,
.EXOﬁ., .THEN., ,EQV, and =,

illustrate the function:

T = (ABC + BDC + ADC)'

will be expressed in MAD as followsf

T = .NOT. (A. AND, B, NOT. C. OR, .NOT. B..
AND. Do AND. Co OR. .NOTO Ao AND. Dol
AND. C)
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For further examples see Input functions to computer pro-

gram on page 71.

Output

Maximum effort has been made to present the output
data in clear and explicit form, The truth table is
printed for any function and for any number of variables
up to six, The computer program output shows different
truth tables for four, five and six variables., Following,
the standard sum of products or the standard product of
sums are printed in dyadic form:

0, 4, 14, 15
PROD = 8, 9, 12, 14

SUM

A comment is printed to show which standard function has
-fewer terms deciding if implementation should be done from
1l's or 0's,

The final output contains a map (or maps) of the
function, Each new column, square or map is idenfified to
facilitate direct implementation. (See page 74.). An error
comment will be printed upon failure of an error check
involving the new minimized function and standard sum-

mation,
Execution

The subroutine ""BOOLEQ" has been written as an
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external function and can be called for execution by any

'"MAD" program with the following statement:

EXECUTE BOOLEQ. (V,I1,I2,I3)

The names in parentheses are the dummy arguments, where:

V = the number of variables in the Boolean
function,
I1 = is a flag with the value of 0, when sub-

routine should find equivalence of two

Boolean functions, otherwise should be 1.

12 = is a flag, if 0 suppresses output print of
the Boolean function, otherwise should be a 1,
= is a flag to the subroutine, if 0 suppresses

13
" the print of Karnaugh maps, otherwise should
be a 1,

The Boolean function to be minimized is a separate

external function FUN. with the following program state-

ments:

EXTERNAL FUNCTION (A,B,C,D,E,F,T)

ENTRY TO FUN.
' N

LR 2R J

Ceee > The Boolean functions

. o0

FUNCTION RETURN
END OF FUNCTION
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The usage of external functions provides maximum
flexibility, allowing for the subroutine to be incorporated

as part of a large program or as a Library Subroutine,

Diagnostic

The subroutine has been checked with many variations
of Boolean functions and found to perform as specified. If
an error is encouﬁtered in the input function due to illegal
operation or misspelling, the subroutine will not execute

and a comment will be printed identifying the type of error.

The Algorithm

The program uses the saﬁe algebraic topological
formulation covered in the previous Chapters for the
minimization'of the switching function. The computation
‘method of this program wi lvbe described in terms of the
flow chart in figure 5.2 and the MAD program shown on
page 67. The program contains the following sections:

1.'The entry to the subroutine "BOOLEQ" also de-

fines the number of variabieé (V) and the three
flags for suppressing different sections of the
program, |

2. Normal mode is integer except that Boolean

function variables and the Boolean vector (TV)
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are in the Boolean mode,
There are three véctors: TV, the binary outputs
of the input combinations; SUM; and PROD, The
latter two vectors being the canonical form of
the function,
The next group of statements forms and prints
the title and header of the Truth Table, A set
of conditional statements is incorporated to
control the printing of the number of letters,
A nested Loop.(w) of six iteration statements
assign the values of binary 0 and 1. to the six
Boolean variables of the function., There are
26 possible combinations which the variables can

take, giving a maximum of 64 iterations,

, "FUN" is executed and the value of the Boolean

function (T) assumes a new value depending upon
the preseﬁt values of the input variables
(A,B,C,D,E,F), The output (T) is transferred |

to the Boolean vector (TV)., The counter I re-
presenting the term in dyadic form is incremented
by 1.

A conditional statement defiﬁes the branching,
where output (T)= 1 a set of statements introduce
a new term in the sum of products, Where the

output (T) = 0 the product of the sums is
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introduced by a new term. With the addition of
the term in the dyadic form the number of term
counters M or N are incremented by one.

A set of conditional and pfint statements
control the printing of one line from the truth
table, Different print format statements are

used depending on the number of wvariables,

. The number of iterations of the section described

in point 6, 7 and 8 are dependent on the number
of Boolean variables (V). A set of conditional
statements transfers the program out of the loop,
when the number of iteration (I) is equal to 2V,
Once out of the loop (W); the canonical form of
the function is printed. A conditioned statement
defines which expression has fewer terms (M.L.N)
and prints a comment of minimality.

A loop L1 controls the number of Karnaugh maps
to be printed dependant on the number of vari-
ables (V).

Another loop (L2) nested in L1 iterates and prints

. one row of a map four times. A set of instructions

compute the index for a reflected ordering of
termé.
The four partition matrices of eight by two are

printed., The TV vector is indexed directly,.



60

14, The three partition matrices of four by four are
printed, using the same TV vector, Vector
indexing is performed directly,

15. The subroutine has now been executed and re-
turns to the Main program,

The program described requires 2,034 memory loca-

tions and subroutine execution time is approximately

.2V x 250 m/seconds where V = number of wvariables,
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[e0]
FUNCTION
IDENTIFICATION
™
~
1
(9]
N~
BOOLEAN FUNCTION
N
i
= CONTINUATION
o
i
" NOT USED

NG

NUMBER OF COLUMN
PUNCH CARD FORMAT

Figure 5,1




FORM HEADER FCR
TRUTH TABLE

(%iNT TRUTH TABLE >__MO
_ REQUIEED?

-YES

PRINT TITLE AND
HEADER FOR
TRUTH TABLE

EXECUTE FUN.
FIND T FOR

RiE,c, DL
|

TV(I) e T
TRANSFER VALUE
TO THE TV VECTOR

1

CANONICAL FORM \NO
PRINT REQUIRED?

YES
' YES
T=0 ?
¢ NO '

“ e Figure 5.,2-a
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SUM(M) I
Me M I
GENERATE A NEW
TERM IN SUM OF
PRODIINTS

PROD(N) =~ I
N+~ NJ
GENERATE A NEW
TERM IN PROD.

or _SiM

=

NO

r

PRINT ONE LINE
TRUTH TABLE
(SIX VARIABLES)

K-\
2a !
-
On
w

—
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~
VES- HES( 52

!

PRINT ONE LINE
TRUTH TABLE

(FIVE VARIABLES)

. ‘aé!;o

V

e )

4

PRINT ONE LINE
OF TRUTH TABLE
(FOUR VARIABLES)

PRINT ONE LINE
OF TRUTH TABLE
(THREE VARIABLES

)

" Figure 5.2-b
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ITw-T+ 1
STEP UP I
COUNT=!

tno

(e =@
) ©

YES
N>M
VNO
SUM OF PRODUCTS PRODUCT OF SUM
HAS LESS TERMS HAS LESS TERMS

PROD (O)... (M) |

( vEE ) YES VT

Figure 5.2-¢c



UP TO L1
K 4, 1, UNTIL
NUMBER OF MAPS

PRINT MAP
HEADING

UP TO L2
KK=0, 1, 3
NUMBER OF LINES
IN MAP

\

POSITION TV VECTOR

M1« KMNP (O+4KK ) + MM
M2 @ KMNP ( 1¥4KK ) 4+ MM
M3 < KMNP(2+L4KK )+ MM
ML < xrnp ( R4+UKK )+ MM

PRINT ONE LINE
OF MAP

M1, TV(M1).,..
M4, Tv{MU

MM < MM+ 16
INCREMENT FOR
THE NEXT MAP
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Figure 5.2-d



TV VECTOR INDEX,
FOR 2 x 8

MATRIX

y

PRINT TITLE
PARTITION MATRIX

PRINT FOUR
2 x 8 MATRIX:

TV VECTOR
INDEXED

l

PRINT THREE 4x4
MATRIX

Figure 5.2-e
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B COMPILE MAD = — -0 oo = e
R e Y R

D 101 GCT 1965 VERSION) PRCGRAM LISTING ees ves sie.

SUBRCUTINE FIER MINIMIZING Bf’ LE Aé FUNCTICNS o
EXTERNAL FUNCTICN (V,11,12,13) _ B
NORMAL MOLCE IS INTEGER o ] o
DIMENSIUON TVI64),SUM(64),PRAC(64) o - B
N N BOOLEAN A,B,C4+0,EyFy CT,TV,FUN, o o
- .. ENTRY_ T0 BOOLEQ. — e —— —
- _ I=0_ _ S o
. .. M=0__ . R o - -
. N=0 _ _ o o e
_ . BL=% & _ e
- Al=% A% L ~ _ L
_ e .. B1=3 Bs I R _ e
e il C1=s__ __CHh e e
_ e .__ Dl1=$ D% i e
- o _ El=%__ _ _ES$ L
i F1=s F$ I
I I € T T$ _ e

_ WHENEVER _V.G.5,IRANSFER TG _JJ

e i Fl=BL _ o e
~ o ~ NHE\IEV[R V.G. IHTQANSFER TG JJ . _
ew . . EY=BL_ oo o e
e WHE’\IEVEQ V.G.3, TRA‘ISFER T0_JJd . .
el ....__D1l=8L
o N CONTIWNUE_
el . _. _PRINT_FORMAT_TITLE
e _PRINT.FORMAT HEADER,F1l,E1,01, Cl,Bl Al, T1
e __THROUGH Wy FUR _VALUES_CF_F=08,18 e
v ... THROUGH_WsFQGR _VALUES OF E=0B,18
i .. __ __THROUGH Wy FOR VALUES (OF _D=0B,y18
_ - THROUGH _W,FOR_VALUES_ OF_C=05,18
N e _THROUGH _w,FOR_VALUES_CF. B=08,18 .
i . _THRCUGH_W,yFOR VALUES_COF A=038,18 -
e _EXECUTE _FUN.(A,B8,C,D,E _FV_ _1_-)__ — _.
— JTIVII)=T
WHENEVER _I1.E.1,TRANSFER_TO_JY o - _
CEXECUTE_MUN.(A4ByCyDsEsF,T)
. _ _ WHENEVER TV(I).E.T,TRANSFER_TO_J3 . _ ____ . _ e
o _ _PRINT COMMENT $ ERROR IN IMPLEMENTATIGN $ e e
J3 _CONTINVUE o e
Jl CCONTINUE _ . R S
_ WHENEVER TV(I).E 0B, TRA'\JSFER T0 J& o B e
e SUMIMY =T e e e e e e e e e
. . M=M+1l o _ .
o . TRANSFER T0 J2 -
J& PROGDI{N)=1 L o e ~
L N=N+1
cd2 _CONTINUE
WHENEVER V.NE.6,TRANSFER TG S1
o _ PRINT FORMAT TABl,F,E,D0,C,B,A,T o
e - __ __WHENEVER T.E.63,TRANSFER T0 J10O
__ TRANSFER TO FIN B . o o




st WHENEVEK V.NE.5,TRANSFER TO S2
_ PRINT FGRMAT TAE2,E4D,Cy89A,T . S .
WHENEVER T1.5.31,TRANSFER TG J10 e . 68 .
S TRANSFER TG FIN
s2 WHENEVER V.NE.4,TRANSFER TQO S3
- PRINT FGRMAT TAB3,D,C+845A,T o o e

WHENEVER 1.2.15,TRANSFER TG J10
TRANSFER TG FIN

S3 . PRINT FURMAT TA34, C 8,A, T__"__mn__"‘ﬁ__ e
o wHEWEVEQ l+Es7TyTRANSFER YO J1O S
FIN »__.CCNTJVUE_NM_“_ e o
o R U U 2 S

W  COCNTIRUE . o e
J10 CONTINUE

WHENEVER 1.2.E.0, TRANSFER T0 _J5

_WHENEVER N.L. M TRANSFER TO J6

CPRINT. COMMVMT $1 SUM CF PRODUCTS HAS LESS TEKMS $

PRINT FCRMAT_ MTFRM M

_PRINT FOR2MAT SU, SUM(O)...SUM(M-I)

TQANSFER T0 JS

J6  PRINT _COMMENT 81 PRODUCT OF SUMS HAS LESS TERMS §
~ PRINT FORMAT NTERM,
PRINT FGRMAT PRC PPOD(O)...PRGD(N-I)

J5  PRINT_FCRMAT TOT,TV(0)...TV(I-1)

WHENEVER 13.E.0, TRANSFCR TG J7

_ WHENEVER V.E.6,V=7

MM=0

THRIUGH L1,F0R K=4,1,K.G.V S
_PRINT_FGRMAT MAP1

PRIVT FO?MAT MAPZ DASH(O)...CASH(7)

THROUGH L2,FGR KK=0,1,KK.Ge3

_Mi= KMAP(O+KK*4)+M
M2=KMAP (1+KK#4)+MM

M3=KMAP(2+KK#4)+MM

M&=KMAP ( 3+KK*4 ) +MM

~ PRINT_FORMAT MAPT7,ML,M2,M3,M4
_PRIMT_FORMAT MAP3

_PRINT FORMAT MAP3 o
PRINT FORMAT MAPS, MK(KK),TV(MI);TV(MZ);TV(M3) TV(M4)

_ THRCUGH L44FOR I11=1,1,11.G.3

L4 PRINT FORMAT MAP3

L2 TTPRINT FORMAT MAP4,DASH(0)...DASH(T)
ID=(V+K) =8 _
PRINT EQSMAT MAP6,MAPID(ID) N -

R _ MM= MM+716

Lt CUVTINUE N

J7° 7 7 CONTINUE

CPRINT FGRMAT _NPG
PQI”T FORNAT LDM , IDM(0), IDM( 1)

CPRINT FORMAT EDM,TV(0)...TV(7)

PRINI FURMAT DDM,TV(8)...TV(15)

PRINT FGRMAT LDM,IDM(2),1DN(3)
PRINT FORMAT EDu'TV(O)...TV(3),TV(8)...TV(11)

" PRINT FORMAT DOMyTVI(4) oo eTV(T)oTVI(12)...TV(LS)

“PRINT FORMAT LDM,I0M{%),IDM(5) -
PRINT FORMAT qu“TV(O),TygllLTV(é),TV(S),TV(B),TV(9).TV(12) TV(13)

PRINT FORMAT DDM,TV(Z),fV(3).TV(6),TV(7),TV(10),TV(11),TV(14) TVIiS)

PRINT FORMAT LDM,IDM(6)9IDMj7)
"~ PRINT FORMAT EDM,TV(0),TV(2), TV(4)yTV(6)'TV(8):TV(10)pTV(lZ),TV(14)

PRINT FORMAT DDM,TVI(1), TV(3)1TV(5)1TV(7)yTV(9) y TVI(11), TV(13),TV(15)




PRINT FORMAT LDM,IOM(B),IDM(9)
PRINT FORMAT FDM,TV(O0)e.TVI(3)
PRINT FORMAT FOM,TV(4) .. eTVI(T)
PRINT FORMAT FDM,TV(8)...TV(11l)
PRINT FCRMAT FOM,TV(12).a.TVI(15) _
PRINT FORMAT LOM,IDM(10),10M(11)
PRIMT FORMAT FDONM,TVIO)yTV(1),TV(4),TV(5) _

PRINT FORMAT FOM,TVI2),TVI3),TV(6),TVIT)

PRINT FORMAT FOM,TVI(8),TV(9),TV(12),TV(L13)Y . e
PRINT FORMAT FOM,TV(10),TVI(11),TVI(14),TV(15)
PRINT FCRMAT LDM,IDM(12),I10M(13)

PRINT FORMAT FDM,TV(O0),TVI(2),TV(4),TV(6) .
PRINT FORMAT FOM,TV(1),TV(3),TV(5),TV(T) __
PRINT FCRMAT FDM,TV(8),TV(10),TV(12),TV(14) _
PRINT FORMAT FOM,TVI(9),,TVILLY,TV(13),TV(L1SY
VECTGR VALUES TITLE=$1H1, S45,13H TRUTH TABLE #$%
__ VECTCGR VALUES HEADER=%1H0,S20,7C6/ =%

VECTOGR VALUES TAB1=%1H ,S20,716%s

VECTUR VALUES TAB2=%1H ,S520,56,6162% '

VECTJIR VALUES TA33=%$1H ,S5S32,516=#%
. VECTCGR VALUES TAB4=%1H ,S38,416=%_ e . w

VECTGR VALUES MTERM=351H0,S10,16HNUMB, CF MIDTERM,15%%
_ VECTOR VALUELS SU=$5H SUM={16(12,1H,))=*$
_ VECTGBR VALUES NTERM=$1H0,S10,16HNUMB. OF MAXTERM,I5%$ _

VECTCGR VALUES PRO=$6H PRED=(16(12,1H,))#$
VECTOR VALUES TCGT=$6H TVAL={16(12,1H,))*$ L
VECTOR_VALUES MAPL=$51H1,S20,2HDC,S3,2H00,S10,2H01,S10,2H11,S10, 2H10*$ L

VECTOR VALUES MAP2=351HO,S14,2HBA,S4,8C6,1H+=%

VECTGR VALUES MAP3=$1H ,S20,5(1HI,S11)=¢
_VECT3IR VALUES MAP5=$1H ,S14,C29S4,4(1HI,SS,11,55),1HI#4%
_VECTOR VALUES MAP4=31H ,S20,8C6,1H+=$% i

VECTCGR. VALUES MAP6=3%1HC,528, 13HKARNAUGH MAP ,ca*s

VECTOR_VALUES _MAPT=$1H_,S20,4(1HI,12,5S9),1HI*$_

_VECTOR VALUES _MAPID=%____ $45 —E $,8 € $,5-E—Fb,5—F F6s5 E-F5,5 E F$

_ wv_,VECT_OR*VALUES_,KP"_.AP:‘-,O 14112y85195413+,943,7,15,11,2,6,14,10
VECTO"\ _VALUES _MK=3%00%$,301%,%11%,%10%

1 _3’:-"::':3’ ) 3’*:—-"‘3 r $"--_-—-—;;>ry $+:—-—$ 9 5;-————:5 )

VECTOR _VALUES NPG=51H1,S20,14HPARTION MATRIX%$

VECTOR_VALUES LDM=$1HO0,S516,C4,54,C40 =%
__VECTOGR VALUES_EDOM=%1H ,S20,812%$
__VECTGR VALUES_DDM=$%$1H ,520,812=%
__VECTOR_VALUES _FDM=$1H ,520,412=%
__ VECTOR_VALUES IDM=3$D%,$CBAS,5C5,$0BA%,35B%,5DCA$,$AS, $DCBS,
o 0_$DC$,$BAS,5DB$.$5CAS,$DAS,SCBS
. FUNCTION RETURN
__END OF FUNCTION _

|23L
"'.v




$ COMPILE. MAD, EXECUTE

AD (01 GCT 1965 VERSIGN) PROGRAM LISTING eoe eve see

. .. _TESTING_BOGLEAN_EXTERNAL FUNCTION __ __ __ _ ~_ __~
. NGRMAL MODE IS INTEGER _ - I
e . _ EXECUTE BOCLEG.(44,0,1,Y) e
: _END OF PROGRAM _ [
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$ COMPILE MAD o o ) o o
MAD (Ol OCT 1965 VERSION) PRCGRAM LISTING eee oee oee
- o EXTERNAL FUNCTION {A4B,C4D4E4F,T)
" NORMAL_MGDE IS BOGLEAN _ e
o o E\lTRY T0 FUN. o e
T Y=.NGT.A.AND..NCT.B.AND..NOT.C.AND..NOT.D.GR.
0 A AMD. .NGT.B.AND.C.AND..NOT.D.0OR. B
) - 1 .NOT.ALAND.B.AND.C.AND..NOT.D.0R. i o
i ) 3 ALAND.B.AND.C.AND..NOT.D.GR. )
o 4 NGT.A.AND.B.AND..NOT.C.AND.D.OR. _ -
S 5 ALAND.B.AND..NOT.C.AND.D.OR. T ST
O 6 JNOT.A.AND..NOT.B.AND.C.AND.D.OR, __ _—~ — — "~~~
) 7 AJAND..NOT.B.AND.C.AND.D e o
o FUNCTION RETURN - B o
s _ __ ENTRY TG MUN. o .
e T=.NOT.A.AND..NOT.B.AND. ___ D. OR. _
1 W NOTLA.AND. _ C.AND..NOT.D. _ OR. o
o 2  ALAND..NOT.C.AND..NGT.D. _ OR. -
3 NOT.A.AND. __ C.AND..NOT.D. OR. _
&% _AJAND.____B.AND, C. OR. _ i
. s T ALAND..NCT.C.AND. D. OR.

6 AJLAND..

_C+AND.

D.

1 __ A, AVD..NOT , B AND. .NOT, C

FUNCTION RETURN

END_OF _FUNCTION




S b
. TRUTH TABLE
e B € B AT

ERROR IN IMPLEMENTATION _ . . . I
S 0 o0 .0 o
. ERRCR IN IMPLEMENTATION __ N L e
0O O . O __ Y _ Y o
e . 0 o__ l._._o0 ___O0
ERRGR IN IMPLEMENTATION o o

e _0 0_ 1 1 _
__ERROR IN IMPLEMENTATION I e _ -
U — 0 ! o0 __ 9o
_ ERRGR IN _IMPLEMENTATICN . - o
e e e - 0 \ o 1 O
; e _0 1 1 o
__ERROR IN IMPLEMENTATION o -
e 0 1 1 1 o
. ERROR IN IMPLEMENTATICN -
L . 1 0 0 _ 0 1 .
ERROR IN_TMPLEMENTATIGN
o SN S o .1 L3
ERROR IN IMPLEMENTATICN _ - _
e 1 0 1 0 0
o 1 0 1 1 1
) 1 1 0 0 L o
= 1 1 0 1 1
I 1 1 1 0 0
- ERRGR_IN IMPLEMENTATION _
1 1 1 1 1




— e ——— = —— — — e 7 3 —_—— -
SUM GF PRGDUCTS HAS LESS TERMS . )
o CONUMB. OF MIDTERM. 8 o o
SUM:_Oy S5y 6y T43104,11,32413y_ _ o . e eem el I _
TVAL= 1, 0, O, ,01,5)_ 1, 1’ 11 0’, _0: l)_‘laﬁ,,ls;la _G’- e e e
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$ CAMPILE mal, =xgcule - ] )
TMAD (01 OCT 1965 VZRSIAN) PRUGRAY LISTING vou ses woee . -
- TESTING BCALEAN EXTERNAL FUNCT I
***** T NOR™AL MEBDE IS 1 TEGER o .
T EXECUTE bOJLEQ.(5,0,1,1) - o
- END CF PRUGRAM. L - -
I, EXTERNAL FUNCTION (AsByCaDyEsF,T) _
" NGRMAL “CDE IS BOOLEAN ] - i
N ~ E~TRY TO FUXN. L o
L T=.NCT.A.AND. NCT.B.AND.  D.AND..NGT.E.COR. L
1 U UNOTJLAJAND. . CL.AND..NOT.D.AND.  E.CR. o i
o 2 AJAND. .HNCT.C.AND. NUT D AND. E.CR. o
3 NCT.A, AND. C.AND. . .NOT.D. ] 0. -
- 4 AND.  B.AND.  D.AND..NGT.E.CGR. L
5 A LAND..NCT.C.AND. D AND. . NCT.E.OR, I
6 AJAND.  C.AND.  D.AND.  E.OR. e
- . 8 AJAND. NIT.B.AND.C.AND.D.AND. . NOT.ELGR.
9 ALAND.B.AND..NOT. C.Auo D.AND.E.OR. B
) 7 ALAND..NOT.5.AND. .NOT.C.AND. E _
FUNCTIGH RETURN
ENTRY T3 MUN.
T=.4CT.A.AND.C.ANC. . NGT.D.OR.
i L 1 A.AND.D.OR. o )
2 JNGT.5.AND.D.AND, ,NOT.E.CR, _
3 AtALD..NUT.C.AND.E
e FUNCTIGN RETURN -
EMD UF FUNCTION o
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. SUM GF PRCDULTS HAS LESS TER™S i
T NUMb. OF alDTERm e
T T SuM= 4y by 8, 9511912913,15517919520922925927529,31,
L ] ‘TVAL=70,;C" Oy Oy 1y 0y 1y Cy 14 1y 24 1y 1y 14 Oy 1,
B _,440’,}’_.0’.-..1’ 134 Oy 1y 2y 0y 1s 0 1_' Oy 1y O, B
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CHAPTER VI

SUMMARY AND CONCLUSION

Recapitulation

Many logic designers use a pragmatic approach when
simplifying switching circuits for digital applicat?ons.
That is so because no firmly established routine covers
all aspects of minimization; The procedure, described in
this paper, may be utilized as a simplification - implemen-
tation tool by any engineer acquainted with switching
circuitry. Further, the computer program may be adapted as
a subroutine within the framework of a bigger logic design

and implementation program.

Research Direction

Computers have been sﬁcqessfully applied to a
variety of problems by adapting the revelant data té a
computer language, Algorithmic iterative minimization
methods are developed having computer languages in mind,.
Névertheless, a manual-visual task, like that of minimi-
zation by graphical methods, may bé as efficient as any
other if a computer is utilized as a logic designer's
tool. |

The procedure described in this paper may be further
automated, pravided enough high speed random access storage

is available for manipulating the parameters involved,
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Author's Contribution

This research resulted in a procedure for minimi-
zation of Boolean functions aided by a computer program,
Included in this procedure are original techniques for

direct map to multi-level NAND/NOR implementation.



APPENDIX

Postulates
A = 1lorelseA = 0
1.1 = 1 0 + 0 = 0
1.0 = 0.1 = 0 0 + 1 = 1
0.0 = O 1 + 1 = 1
T =0 0 = 1
Theorems
la, 0.A = O 1b, 1 + A
22, 1.A = A 2b, 0 + A
3a. A A = A 3b. A + A
ba, AA = 0 4, A + A
5. A B = BA 5b. A + B
6a. ABC = (AB)C = A (BC)

6b., A+B+C=(A+C) +C=44+ (B+C)
7a. BB..C=B+B+...+C
7b. ¥ B +...+C=2438,..C
8., T (AB,...,C.,#) = £ A&,B,...,C,+,.)
9a. AB+ AC =A (B + C)
9b., (A + B)(A + C) = A + BC

10a, AB+AB = A

10b, (A + BY(A+ B) = A

A
A

1la. A+ AB
11b. A (A + B)

W o= > >



12a,
12b.
12a,
12b,
13a.
13b,
l4a,

14b.

15a,
15b,
16a,

16b.

A«
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Theorems

ZB = A+ B

A (B + B) = AB

AC +
(A +
AB +
(A +
AB +
(A +

ABC = AC + BC
C)@ + B + C)
ZC + BC = AB = AC

BY(E+ C)(B+C) = (A+ BY(A + C)
2C = (A + C)Y(A + B)

BY(Z + C) = AC + 2B

(A + C)(A + B)

[l

A*f (A,%,B,...,0) = A*f (1,0,B,...,0)

A+

£ (A,%5,B,...,0) = A+ £ (0,1,B,...,C)

£ (A,%,B,...,0) = A (1,0,B,...,C) + &£ (0,1,B,...,0)
f (A,3,B,...,C)

=(A + f(O,lsB’°°"C)) (K + f(l,O,B,...,C))



SNOIIONNI DID0T

NAME LOGIC SYMBOL MAD LANGUAGE TRUTH TABLE LOGIC DIAGRAM
NEGATION ~or ' & or A ,NOT, < A—{ | L=A
COMPLEMENT ~ ~ A -NOT.A £ |
or PRIME | 0 |t %

A3 |T
éED . . B . AND, 00 |0 A — ) TeA,J]
INTERSECTION Av B A.AXD.B o1’ B
1 '
OR A+D |IT
OR + A+ B .OR, 00 lo A @_I::A.;.}
: o1 |1 B '
UNION v AV B A.OR,B 0 11
11 13
EXCLUSIVE OR © A®DB _EXOR. AoB |7
or 00 |0 A @ )I=40D
SYMETRIC A B 1 A.EXOR,B 01 |1 B
DIFFERENCE ~ 011
11 10
) A5 |
NAND 2.5 =4+ B 00 |1 A — T=A+B
or .NOT, (A.AND,B) o1 |1 B —
STROKE AlB 10 11
11 lo
AvB T
IgSR 2¥B = A,8 JNOT, (A,OR,B) 00 |1 A T=
s oL {0 B
DAGGER A}B 10 |o
1180

63



ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF
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