
SCHEDULABILITY, RESPONSE TIME ANALYSIS

AND NEW MODELS OF P-FRP SYSTEMS

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Xingliang Zou

August 2017

SCHEDULABILITY, RESPONSE TIME ANALYSIS

AND NEW MODELS OF P-FRP SYSTEMS

Xingliang Zou

APPROVED:

Albert M. K. Cheng, Chairman
Dept. of Computer Science

Guoning Chen
Dept. of Computer Science

Weidong Shi
Dept. of Computer Science

Ji Chen
Dept. of Electrical and Computer Engineering

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

Foremost, I am very lucky to have Dr. Albert Mo Kim Cheng as my supervisor. I

would like to express my sincere gratitude to Dr. Cheng for the patience, motivation,

enthusiasm, and immense knowledge he has shown and given to me. His constant

guidance, supports and encouragements as well as the flexibility of choosing research

interests leaded all my way on research and writing of this dissertation.

I would like to thank our visiting scholars, Dr. Yu Jiang from Heilongjiang Uni-

versity and Dr. Zhou from Beihang University. The time we spent together on

studying and discussing real-time scheduling and broad computer science technolo-

gies was among my most cherished memories. Especially Dr. Jiang, I did and will

always remember each of our long conversations on research and paper writing all the

years even after he finished his visiting and returned China. Thanks my teammates,

they have given me encouragements and a wonderful time.

I would like to thank my committee members, Dr. Guoning Chen, Dr. Weidong

Shi and Dr. Ji Chen for serving the committee and giving me insightful comments.

Last but most importantly, thank you, my families. My father and mother, it is

them that supported me at all aspects in all my life, taught me right from wrong,

walked me through my darkest days and encouraged me pursuing my dreams even

when sometimes the dreams were somewhat idealistic such as this one was. My

sisters and bothers in law, my bothers and sisters in law, they always take so good

care of our parents for me, love me and help me whatever and whenever I needed

even without my asking. Thanks my nephews and nieces. I am forever grateful for

my home of love.

iii

SCHEDULABILITY, RESPONSE TIME ANALYSIS

AND NEW MODELS OF P-FRP SYSTEMS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Xingliang Zou

August 2017

iv

Abstract

Functional Reactive Programming (FRP) is a declarative approach for modeling and

building reactive systems. FRP has been shown to be an expressive formalism for

building applications of computer graphics, computer vision, robotics, etc. Priority-

based FRP (P-FRP) is a formalism that allows preemption of executing programs

and guarantees real-time response. Since functional programs cannot maintain state

and mutable data, changes made by programs that are preempted have to be rolled

back. Hence in P-FRP, a higher priority task can preempt the execution of a lower

priority task, but the preempted lower priority task will have to restart after the

higher priority task has completed execution. This execution paradigm is called

Abort-and-Restart (AR).

Current real-time research is focused on preemptive of non-preemptive models of

execution and several state-of-the-art methods have been developed to analyze the

real-time guarantees of these models. Unfortunately, due to its transactional nature

where preempted tasks are aborted and have to restart, the execution semantics of

P-FRP does not fit into the standard definitions of preemptive or non-preemptive

execution, and the research on the standard preemptive and non-preemptive may

not applicable for the P-FRP AR model. Out of many research areas that P-FRP

may demands, we focus on task scheduling which includes task and system modeling,

priority assignment, schedulability analysis, response time analysis, improved P-FRP

AR models, algorithms and corresponding software.

In this work, we review existing results on P-FRP task scheduling and then

present our research contributions: (1) a tighter feasibility test interval regarding the

task release offsets as well as a linked list based algorithm and implementation for

v

scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict

detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred

Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension

of SimSo - a SimPy-based, highly extensible and user friendly task generator and

task scheduling simulator.

vi

Contents

1 Introduction 1

1.1 Real-Time Systems . 1

1.2 FRP . 4

1.3 P-FRP . 7

1.4 Copy and Restore Operation . 9

1.5 Contributions . 10

1.6 Organization . 11

2 Background 13

2.1 Task . 13

2.2 Priority . 15

2.3 Task Scheduling . 16

2.4 Multi-processor Scheduling . 20

3 Priority Assignment 24

3.1 On the Classic Model . 24

3.1.1 Uni-processor Systems . 24

3.1.2 Multi-processor . 26

3.2 On the P-FRP AR Model . 27

3.2.1 Rate Monotonic, Utilization Monotonic, Deadline Monotonic . 28

vii

3.2.2 Utilization-and-Rate Monotonic 29

3.2.3 Execution-time Monotonic . 29

3.2.4 Multi-processor . 30

4 Schedulability Analysis in P-FRP 31

4.1 Critical Instant . 32

4.2 Feasibility Interval . 33

4.3 Necessary Tests . 33

4.4 Sufficient Tests . 34

4.5 Exact Tests . 35

4.5.1 Iteration-based Response Time Analysis 36

4.5.2 Gap-Enumeration Method . 37

4.5.3 Idle-period Game Board Algorithm 38

4.5.4 Longest Response Time through Time Petri Nets 38

4.5.5 LList-based Exact Test . 39

4.6 A Case Study for the P-FRP AR model 39

4.7 Multi-processor Scheduling . 40

5 Schedulability Testing Interval 41

5.1 Introduction . 42

5.1.1 Motivations and Contributions 44

5.1.2 Organization . 46

5.2 Tightly Sufficient Test for P-FRP Tasks 46

5.2.1 Feasibility Interval in the P-FRP Model 48

5.2.2 A Tightly Sufficient Schedulability Test 53

5.2.3 Discussion . 61

5.3 Experimental Results . 68

viii

5.4 Related Research Work . 70

5.5 Conclusions . 73

6 Deferred Start 75

6.1 Introduction . 76

6.1.1 Motivations and Contributions 77

6.1.2 Organization . 79

6.2 Related Work . 79

6.3 Deferred Start of P-FRP . 82

6.3.1 The Model . 83

6.3.2 Properties . 86

6.3.3 Feasibility Interval Analysis 90

6.4 LList-based Exact Schedulability Test 94

6.5 Experiments and Results Analysis . 95

6.5.1 Experiment Setup . 95

6.5.2 Acceptance Ratio . 96

6.5.3 CPU Time Cost . 98

6.5.4 Response Time . 98

6.6 Conclusion and Future Work . 100

7 Multi-Mode Task Model 101

7.1 Introduction . 102

7.2 Related Works . 104

7.3 Multi-Mode P-FRP Tasks . 107

7.3.1 Notations . 108

7.3.2 Multi-Mode P-FRP . 109

7.3.3 Interface-aware Multi-Mode P-FRP 110

ix

7.3.4 Memory-aware Multi-Mode P-FRP 113

7.4 Experiments and Analysis . 119

7.4.1 Task Generation . 120

7.4.2 Interface-aware P-FRP . 127

7.4.3 Memory-aware P-FRP . 135

7.5 Conclusions . 136

8 SimSo-PFRP 138

8.1 Introduction . 139

8.2 Architecture . 140

8.3 Execution Time Model . 142

8.4 SimSo-PFRP . 144

9 Conclusions 155

Bibliography 157

x

List of Figures

1.1 Schedules of fixed priority taskset (τi, the i-th task, has execution time
Ci and period Ti. C1 = 1, C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 20) . . . 8

5.1 Illustration of the case Tk=LCMk−1 in the proof of Theorem 2. . . . 54

5.2 Illustration of the case (c) in the proof of Theorem 2. 55

5.3 A synchronous scenario in the P-FRP model, all the 1st jobs meeting
their deadlines (C1=3, C2=4, C3=3; T1=D1=9, T2=D2=12, T3=D3=32).
However, the 4th job of task τ3 will miss its deadline at time 128. . . 57

5.4 Illustration of the case (c) in the proof of Theorem 3. 59

5.5 Illustration of the case Tk=LCMk−1 when t1 − Φk+Ck ≤ LCMk−1 in
the proof of Theorem 3. 60

5.6 Illustration of the drifting of release time points of task τk when Tk 6=
LCMk−1 and Tk < l

{k}
max. 62

5.7 Comparison between cases for different testing interval lengths. 69

6.1 Schedules of synchronously released fixed priority task set (C1 = 1,
C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 21, implicit deadlines). 78

6.2 Schedules of synchronously released fixed priority task set (C1 =
7, C2 = 3, T1 = 15, T2 = 12, implicit deadlines) in the DS model. . . . 88

6.3 Schedulable Task Set in AR and DS. 97

6.4 Average Response Time Decreasing Rate. 100

7.1 Classic and P-FRP AR models RM scheduling (C1 = 2,C2 = 1,C3 =
2,T1 = D1 = 4,T2 = D2 = 5,T3 = D3 = 20) 105

xi

7.2 P-FRP AR and InterA models RM scheduling (C1 = 2;C1
2 = C2

2 =
1;C1

3 = 3,C2
3 = 2.T1 = D1 = 4,T2 = D2 = 5,T3 = D3 = 20) 112

7.3 P-FRP local- and global- JID models RM scheduling of tasks in Table
7.1 . 116

7.4 Interface-aware P-FRP: Schedulability Comparisons 120

7.4 Interface-aware P-FRP: Schedulability Comparisons (con’t) 121

7.4 Interface-aware P-FRP: Schedulability Comparisons (con’t) 122

7.4 Interface-aware P-FRP: Schedulability Comparisons (con’t) 123

7.4 Interface-aware P-FRP: Schedulability Comparisons (con’t) 124

7.5 Memory-aware P-FRP: Schedulability Comparisons 127

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 128

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 128

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 129

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 129

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 130

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 130

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 131

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 131

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 132

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 132

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 133

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 133

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 134

7.5 Memory-aware P-FRP: Schedulability Comparisons (con’t) 134

8.1 Simso Architecture . 140

8.2 Simso Architecture . 143

8.3 OFRP of SimSo-PFRP . 145

xii

8.4 SimSo-PFRP: Example of OFRP Scheduling 147

8.4 SimSo-PFRP: Example of OFRP Scheduling (con’t) 148

8.4 SimSo-PFRP: Example of OFRP Scheduling (con’t) 149

8.4 SimSo-PFRP: Example of OFRP Scheduling (con’t) 150

8.4 SimSo-PFRP: Example of OFRP Scheduling (con’t) 151

8.4 SimSo-PFRP: Example of OFRP Scheduling (con’t) 152

8.5 JIDA of SimSo-PFRP . 154

8.6 InterA of SimSo-PFRP . 154

xiii

List of Tables

6.1 Preemptive P-FRP . 86

6.2 An example task set . 88

6.3 CPU Time Saved by DS . 98

6.4 Task Sets with Response Time Decreased 99

7.1 JIDA Multi-mode Tasks . 115

xiv

Chapter 1

Introduction

In this chapter, we introduce the definitions of real-time systems, real-time tasks,

task scheduling, functional reactive programming(FRP), priority-based functional

reactive programming (P-FRP) and its abort-and-restart (AR) execution semantic.

We also present the motivations, propositions, contributions and structures of this

dissertation.

1.1 Real-Time Systems

Real-time systems are timely response systems in which apart, from giving correct

computation output, programs have to complete execution within certain time limits

which called deadlines. A running instance of a program that serves certain purposes

is called a tasks. Tasks may be virtual computation elements such as threads, pro-

cesses or data flows.

1

A task may run once or more times. Each running of a task is called a job. if

the recurrence of two consecutive jobs of a task happens at or with a minimum fixed

time interval, the task is called periodic or sporadic tasks respectively and the time

interval is its period. Additionally, the task is called aperiodic if there is no such a

fixed time interval.

Tasks with finishing time requirements are real-time tasks, and the finishing time

are called deadlines. In real-time systems, correctness and timeliness of results are

both critical. Failing completing a task within its deadline is called a deadline miss.

In any of periodic, sporadic and aperiodic circumstances, any failure of real-time

tasks to complete execution within the designed time limits results in incorrect or

even correct output which can lead to catastrophic or life-threatening situations.

Also, when a set of tasks running on the same platform at the same time, they can

have different priorities to others. Task scheduling is thus the research and practice

used to arrange the execution order of a set of tasks to satisfy certain criteria.

While a real-time task should complete execution within its deadline, depend-

ing on the way of dealing with the consequence of failing the completion timing

requirements, there are three categories of real-time systems as following.

I. Hard Real-Time Systems

In a hard real-time system, a deadline miss by any job of a task leads to total

system failure which can have serious consequences. Every job of hard real-time task

is expected to complete within it deadline in all possible scenarios.

Applications of hard real-time systems can be found in most medical science,

2

avionic, automotive, telecommunications, space systems, process control and do-

mains where safety and mission criticality are of the utmost importance. Consider

an example in the automotive industry, the anti-lock braking systems that are found

in the most modern vehicles. When a driver presses the brake pedal forcefully, the

vehicle computer should activate the anti-lock braking mechanism quickly. Any de-

lay in the activation of the anti-locking mechanism may cause the vehicle to skid or

go out of control leading to a life-threatening situation. The guarantees to complete

within a defined time is a critical component in the design of an anti-lock braking

system.

II. Soft Real-Time Systems

In a soft real-time system, deadline misses can occur frequently without effecting

system stability, but lead to noticeable decrease in output quality or degraded system

performance such as slowly responding. All jobs of a soft real-time task can miss

their deadline leading to lower quality output but without a serious impact on the

overall system.

Video conferencing systems are soft real-time system since, though it is important

to render video frames as soon as they arrive, failure to show frames within certain

time limits will only affect the video quality and not lead to any life-threatening

situations.

III. Firm Real-Time Systems

A system dealing with deadline miss moderately compared to a hard real-time

system while stricter than a soft real-time system is called a firm real-time system.

3

In a firm real-time system, deadline misses which do not occur at frequent intervals

do not affect the stability of the system, but the results of a task missing its deadline

are considered invalid. Few jobs of a firm task can have deadline misses, however all

jobs missing their deadline leads to total system failure.

An aircraft auto-pilot system is an example of a firm real-time system since some

jobs can miss their deadlines, but missing deadlines frequently can affect the safety

of the aircraft.

1.2 FRP

There are two distinct types of programming paradigms in computer programming:

imperative and functional. Functional programming is a programming paradigm

that treats computation as the evaluation of mathematical functions and avoids

changing-state and mutable data. It is a declarative programming paradigm, which

means programming is done with expressions. In functional code, the output value of

a function depends only on the arguments that are input to the function, so calling a

function F twice with the same value for an argument x will produce the same result

F(x) each time. Eliminating side effects, i.e., changes in state that do not depend on

the function inputs, can make it much easier to understand and predict the behavior

of a program, which is one of the key motivations for the development of functional

programming.

In contrast, imperative programming changes state with commands in the source

language. Imperative programming does have functions in the sense of subroutines,

4

and not in the mathematical sense. They can have side effects that may change the

value of program state. Thus functional programming has a distinct difference from

imperative programming in that it is immune to side-effects caused by using states

and mutable data.

Since the formal system of λ-calculus (lambda-calculus) was first devised by

Church [47] and Kleene [87], many functional programming languages have been in-

vented: LISP, Ocaml, Haskell, Scheme, Erlang, F#, Atom, Scala, and so on. Haskell

and Erlang have been studied and commercially developed intensively. Scala is re-

cently adopted by companies such as LinkedIn, Twitter and Walmart [75].

In Computer Science, studying the temporal aspects of programs and analyzing

real-time guarantees of a system are collectively studied under “real-time comput-

ing”. Real-time systems which execute programs based on external events are also

called reactive systems. An example of a reactive system is the anti-lock braking

system we mentioned previously where the vehicle’s on-board computer “reacts” to

the driver’s pressing to the brake pedal by triggering the anti-lock braking system.

FRP, functional reactive programming, integrates time flow and compositional

events into functional programming. This provides an elegant way to express com-

putation in domains such as interactive animations, robotics, computer vision, user

interfaces, and simulation.

The original formulation of FRP can be found in [64]. In [122], FRP is presented

as a framework for constructing reactive applications using the building blocks of

functional programming.

5

The FRP paradigm originates from the Haskell language community and seeks

to express easily how programs should react to new input. Conceptually, a data flow

graph is built that captures for each value an expression that can be re-evaluated

when any dependent value changes. The concept is called reactive because it auto-

matically updates graph nodes when dependent nodes change.

In the FRP paradigm, time-varying values are expressed as behaviors or signals,

and the system is notified using events when the value of a behavior has changed

[101]. A FRP language includes a means of altering or replacing a program based

on event occurrences.

• Behaviors or signals : Functions of time.

• Events : Temporal sequences of discrete values.

FRP avoids the inversion of control typically associated with systems structured

around callback functions. A typical pattern associated with inversion of control is

backwards structuring of the system behavior and implementation details of indi-

vidual system functions tend to bubble up to higher layers of the system in order to

be able to respond to external stimuli. By avoiding inversion of control, FRP makes

it possible to compose system functionality more readily by enabling, e.g., normal

nesting of expressions [88] (Chapter 17).

Amsden [2] presents a primary survey of FRP on its literature, implementation,

optimization, and uses. Although FRP is often tied to purely functional languages,

adaptations of the paradigm to imperative languages exist, notably as a Java library

[48] and in C++ as both a language extension adding new grammar [58] and as

6

a library based on the standard language [50]. Czaplicki and Chong [49] present

Elm, an FRP language focusing on the creation of graphical user interfaces (GUIs).

Project [74] presents a simple and practical comparison between FRP libraries.

In a short summary, FRP abstracts real world applications by behaviors (signals)

and events, and it can be used to anything reactive.

1.3 P-FRP

In real-time systems, the correctness of a program is measured by its logical output

as well as its ability to complete within certain time limits. FRP is demonstrated

to be effective in modeling and building reactive systems such as graphics, robotic

and vision applications. However, another significant feature of real-time systems,

priority, is not considered in FRP. To address this problem, P-FRP [84], the priority-

based FRP, model has been proposed as a variant of the FRP model.

The P-FRP model supports assigning different priorities to different events, and

higher priority events can preempt lower priority ones. However, to maintain guar-

antees of type safety and stateless execution, the functional programming paradigm

requires the execution of a function to be atomic in nature. To comply with this

requirement, as well as allow preemption of lower priority events, the P-FRP im-

plements a transactional model of execution. Using only a copy of the state during

event execution and atomically committing these changes at the end of execution,

the P-FRP model ensures handling an event in a way of “completion or nothing”,

and thus maintains both the type-safety and the state-less execution paradigm of

7

1

2

3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Preempted Job

Resumed and completed

Start and completed

Restarted and completed

(a) Classic Model

1

2

3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(b) P-FRP Model

Figure 1.1: Schedules of fixed priority taskset (τi, the i-th task, has execution time
Ci and period Ti. C1 = 1, C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 20)

the FRP, and does not require the use of synchronization mechanisms between tasks

in the system. It has the potential to transform the building of more complicated

Cyber-Physical Systems (CPSs). The impact of P-FRP in building safer controllers

in automobile anti-lock brake systems has been demonstrated in Christoffersen and

Cheng [46].

In the P-FRP model, the transactional execution scheme is also called the Abort-

and-Restart (AR), which is a scheme [84] to support the P-FRP, and we also use

the P-FRP model or the AR model as the short form of the P-FRP AR model. In

8

the classic (traditional) preemptive model, the lower priority tasks continue their

execution from where they are preempted. It is, however, different in the P-FRP

model that when the lower priority tasks are preempted their executions are aborted

and restart as new after the higher priority tasks have finished execution. The task

scheduling in the classic preemptive model and the P-FRP AR model are shown in

Fig.1.1.

Past research in real-time computing for the classic model has focused on systems

implemented using imperative programming, which are generally classified under

preemptive and non-preemptive systems. Due to its stateless nature of computation,

the execution semantics of the P-FRP model is different from classic preemptive and

non-preemptive execution and existing state-of-the-art methods developed by real-

time researchers for the classic model cannot be applied for ascertaining real-time

guarantees in the P-FRP. In this work, we summarize the existing researches on

temporal aspects of the P-FRP model, and present our research as well.

1.4 Copy and Restore Operation

In the AR model of P-FRP, when a task starts processing it creates a “scratch”

state, which is a copy of the current state of the system. Changes made during

the processing of this task are maintained inside such a state. When the task has

completed, the “scratch” state is restored into the final state in an atomic opera-

tion. Therefore, during the restoration and copy operations the task being processed

cannot be preempted by higher priority tasks. If the task is preempted after copy

9

but before the restore operation, the scratch state is simply discarded. The context-

switch between tasks only involves a state copy operation for the task that will be

commencing processing.

1.5 Contributions

In this work, we have derived several results dealing with real-time analysis of the

functional programming model of P-FRP. As previously stated, the transactional

nature of execution to P-FRP leads to an execution model where results from prior

work cannot be directly applied, hence we had to developed several methods. Based

on previous work on P-FRP, we developed more results on P-FRP scheduling. The

contributions of our work are summarized below:

• An efficient response time calculation algorithm and its implementation, LList-

based RTA algorithm, that can be used on either classic or P-FRP task scheduling.

• Research on the worst case response time and schedulability analysis for the

real-time software transactional memory-lazy conflict detection (STM-LCD) model.

• Feasibility interval research. We optimized research on the impact of task’s

release offsets to task schedulability and the schedulability test interval. Tighter

feasibility intervals are found with respect to various task’s release offsets.

• An non-work-conserving alternative model, Deferred Start, of the original AR

model of P-FRP.

• Multi-mode task model for P-FRP systems. It is the first that multiple modes

10

instead of single mode for a P-FRP task is proposed in order to reduce the scheduling

cost, and thus improve the schedulability of P-FRP task systems.

• SimSo-PFRP. We presented a SimPy based task generator and scheduling sim-

ulator with rich algorithms available as an important infrastructure of P-FRP task

scheduling research.

1.6 Organization

The rest of this work is organized as following:

Chapter 2 presents the background knowledge including system models, general

concepts, terminologies and notations used in this work.

Chapter 3 reviews the priority assignment algorithms used with our observations

in both the classic model and the P-FRP AR model.

Chapter 4 summaries previous and existing works as well as our work on P-FRP

schedulability analysis, followed by three chapters of detailed introduction of our

work on feasibility analysis and improved P-FRP AR models.

Chapter 5 presents details of our work on the P-FRP task schedulability analysis

including minimizing the schedulability test interval and some fundamental analysis

of uni-processor P-FRP task scheduling.

Chapter 6 presents details of our work on Deferred Start, a non-work-conserving

scheduling algorithm for P-FRP task scheduling.

11

Chapter 7 presents details of our work on the P-FRP multi-mode task scheduling,

a novel framework for P-FRP task scheduling.

Chapter 8 presents our work of building SimSo-PFRP, a task generator and sim-

ulator with rich algorithms implemented for the P-FRP task scheduling research.

Finally we conclude this work in Chapter 9.

12

Chapter 2

Background

In this chapter, we introduce the system model, some general concepts, terminologies

and notations used in this work.

2.1 Task

τi is the i -th of taskset Γn = {τ1, τ2, ..., τn}. The n tasks might be independent if

running or not running any task does not depend on status of other tasks. TasksetSize

or taskset size is the number of tasks in a taskset, which is n for Γn.

Γn is called n-taskset system. An instance of Γn is an n-taskset.

Jk
i : An instance or invocation of a task is called a job. Jk

i refers to the kth job of

τi.

Ti: A constant arrival time period Ti between two successive jobs of the periodic

13

task τi, or the minimal interval between successive jobs of the sporadic task τi.

Di: Relative deadline of the job of τi. Constrained-deadline means Di ≤ Ti,

implicit deadline means Di = Ti, and arbitrary deadline means tasks deadlines may

be less than, equal to, or greater than their periods.

Φi: Release offset (or phasing) of τi. It is the time, relative to time 0, when the

first job is released by task τi. Let Φ
{k}
min = mink

i=1{Φi}, and Φ
{k}
max = maxki=1{Φi}.

Cm
i (1 ≤ m ≤Mi): A job of τi has Mi modes, Cm

i is the (maximum) computation

time of τi’s job at mode m. Without loss of generality, we assume 0 < Cm
i ≤

min {Di, Ti} for all i and m. A digraph is used to express the way that modes

change. Since this is the first time that the multi-mode job is proposed, we also use

Ci as the (maximum) computation time of τi for the single mode jobs.

Pri: Priority of task τi, (1 ≤ Pri ≤ n) for Γn, and 1 is the highest, n the lowest.

In a fixed priority task system, tasks are sorted before analyzing, hence τi has priority

of i.

Um
i : Utilization for τi at mode m. Um

i = Cm
i /Ti, and Ui = maxMi

m=1U
m
i . Total

utilization of the taskset is U =
∑n

i=1 Ui.

LCMk: Let LCMk = LCM(T1, T2, ..., Tk) denote the Least Common Multiple

(LCM, or hyperperiod) of the periods of the first k highest priority tasks, 1 ≤ k ≤ n,

and LCM1 = T1.

Rk
i : Response time of the Jk

i . It is the time between the release of a job and

its completion. In a given priority model, the response time Ri of a task τi at a

14

given release offset pattern is the maximum one of all Rk
i . The Worst-Case Response

Time (WCRT) of a task is derived under the worst-case release pattern that leads

to the largest interference on the considered task. Such a particular scenario is often

referred to as the critical instant.

tcopy(i): The time taken to make a copy of the state before τi starts execution.

trestore(i): The time taken to commit the state after τi has completed execution.

Pi: The processing time for τi. Processing of a task includes execution as well as

copy and restore operations. Hence, Pi = tcopy(i) + Ci + trestore(i).

In real-time scheduling, Integer Time Model means that temporal parameters

are measured by counting the number of clock cycles, hence temporal values have a

resolution of one clock cycle. Therefore, Φi is assumed to be a non-negative integer

value, and other temporal parameters of a task are assumed to be positive integer

values.

2.2 Priority

In a taskset, different tasks/jobs can have different priorities compared to other

tasks/jobs. We consider three categories.

I. Task-level Priority

In task-level priority, a priority is associated with each task, and all jobs generated

by a task have the priority associated with that task. Thus, if task τ1 has higher

15

priority than task τ2 , then whenever both have active jobs, priorities are inherited

hence τ1’s jobs will have priority over than τ2’s jobs.

Task-level priority is also called Fixed Priority (FP) or static priority.

II.Job-level Priority

Unlike task-level priority that priorities are bound to tasks, in job-level priority,

for every pair of jobs Ji and Jj, if Ji has higher priority than Jj at some instant in

time, then Ji always has higher priority than Ji.

Job-level priority is sometimes called dynamic priority. However, there exist a

fully dynamic priority.

III. Fully Dynamic Priority

In fully dynamic priority, no restrictions are placed on the priorities that may be

assigned to jobs, and the relative priority of two jobs may change at any time.

2.3 Task Scheduling

In computer science, scheduling is the method by which a task is assigned to resources

that leads to completion of the this task. Resources are computer components such

as processor (such as CPU - Central Processing Unit), memory, network bandwidth,

etc. We consider processors only in this work. Task scheduling is thus used to assign

a processor to a job at a specific moment (time instant). When assigning a job to a

processor at time instant t, if a job is running at this processor, there are two ways to

16

proceed. The first one is called preemptive scheduling which compares the two tasks’

priorities, and chooses the one with higher priority to execute. If the running one

has lower priority, it will be preempted and its running information such as memory,

registers, etc. will be saved with the cost of memory and processor time, then the new

one will be selected to execute. This process is called context switch. On the other

hand, a non-preemptive scheduling is defined if there are no preemptions regardless

of the jobs’ priorities.

In this work, we consider a hard real-time uni-processor system with hierarchical

memory components at first, we then expand our work to multi-processor systems. In

a preemptive P-FRP AR system, there are n independent tasks Γn = {τ1, τ2, ..., τn}

to form a taskset. We assume that a task can only be preempted at discrete (integer)

time instants. We first consider the cost of preemption is zero, then take it into

considerations later.

Periodic tasksets may be scheduled in a synchronous way if there is some time

point at which all tasks arrive at the same time, or in an asynchronous way where all

tasks never arrive simultaneously. Tasks with common release must be synchronous.

However, tasks with different release offsets do not imply they are asynchronous

tasks, since they may arrive at the same time in the future. For example, when all

task periods are co-prime, the taskset must experience a common release, regardless

of any imposed offsets [7][4]. Notice that for an asynchronous scheduling there may

still be some tasks (but never all) sharing a common release.

A taskset is referred to be feasible with respect to a given system when there

exists some scheduling algorithms that can schedule all possible job sequences that

17

may be generated by the given taskset on that system without missing any deadlines.

A scheduling algorithm is referred to be optimal if it can schedule any tasksets

when there are any other scheduling algorithms can.

A scheduling algorithm is referred to be clairvoyant if it uses information about

future events, such as arrival times for future jobs especially for sporadic tasks, actual

execution times, which are generally unknown in advance.

A task is referred to be schedulable according to a given scheduling policy if

its worst-case response time under that scheduling policy is less than or equal to

its deadline. Similarly, a taskset is referred to as schedulable according to a given

scheduling policy if all of its tasks are schedulable.

A schedulability test is the test used to telling whether or not a taskset is schedu-

lable with respect to certain given conditions such as given system, given release

pattern. There are three types of schedulabitlity tests:

I. Sufficient Test

A schedulability test is called sufficient with respect to a scheduling algorithm

and a system if all of the tasksets that are deemed schedulable according to the test

are in fact schedulable.

II. Necessary Test

A schedulability test is called necessary if all of the tasksets that are deemed

unschedulable according to the test are in fact unschedulable.

III. Exact Test

18

A schedulability test that is both sufficient and necessary is referred to as exact.

A feasibility interval is the time interval [t, t + H) such that if all tasks are

schedulable in [t, t + H) then the tasks will also be schedulable in the time interval

[0, Z) : Z → ∞ [92][7]. Here [t, t + H) is the collection of integers greater than or

equal to t and less than t + H. A schedulability testing interval [a, b) is the time

interval in which the schedulability of a given taskset is checked. In general, the

length of [a, b) is not less than that of [t, t+H).

In scheduling theory, a non-work-conserving scheduling is one that may let the

CPU stay idle even when there are tasks ready for execution, while work-conserving

does not. Other than classifying scheduling into two types of preemptive and non-

preemptive, there is another classification. Fully preemptive scheduling allows a run-

ning task to be interrupted whenever a higher priority task releases. Fully non-

preemptive scheduling does not allow a running task to be interrupted by other tasks

for any reason. There are scheduling algorithms that lay in between fully preemptive

and non-preemptive scheduling algorithms. For example, they set portions of a task

preemptive and the rest non-preemptive.

In existing research work for the P-FRP model, it is usually assumed that tasks

are independent and there is no precedence constraints between tasks, i.e., tasks

cannot be blocked from execution by another task except contending for a processor.

Therefore, lock-free and wait-free data sharing have not been considered in the P-

FRP model. It is also assumed that once a job starts to execute it will not suspend

itself.

19

A CPU scheduler carries out the processor scheduling activity. CPU Schedulers

are often implemented in the way so they keep all processors busy, allow multiple

users to share the processors effectively, or to achieve a target quality of service. The

concept of scheduling makes it possible to have computer multitasking with a single

processor.

A CPU scheduler may aim at one of many goals, for instance, minimizing tasks’

response time, maximizing throughput (the total amount of work completed per

time unit), or minimizing latency (the time between work becoming enabled and

its subsequent completion), maximizing fairness (equal CPU time to each process,

or more generally appropriate times according to the priority and workload of each

process). In practice, these goals often conflict (e.g., throughput versus latency),

thus a scheduler will implement a suitable compromise. In real-time systems, the

scheduler needs to schedule tasks to avoid deadline missing.

2.4 Multi-processor Scheduling

Computers are such powerful tools we use in our modern daily life. Our needs and

desires upon computers resulted in a rapid increase in both software complexity and

the processing demands placed on the underlying hardware. To address demands

for increasing processor performance, computer vendors concentrated on increasing

processor clock speeds. As this approach has led to problems of both high power

consumption and heat dissipation, simply increasing clock speeds in many scenarios

is financially even technologically no longer a feasible solution. A decade ago, the

20

trend was moving toward multi-processor systems. Instead of trying to have one

high speed processor to accomplish tasks, a multi-processor system uses multiple

relatively lower-speed processors working together to tackle down problems.

Multi-processor systems can be achieved by integrating multiple cores (also called

multi-core) in single processor, or integrating multiple processors on single board.

With the availability of low-cost multi-core processors and single boards with mul-

tiple processors, more real-time and embedded systems are being implemented as

multi-core or multi-processor based. While multiple cores / processors increase

the throughput of the system, in real-time implementations where tasks have to

complete within deterministic bounds, the assignment of tasks to each individual

core/processors has to be carefully determined. Presence of multiple processors also

gives fail-safe redundancy, a vital requirement in safety critical systems.

Multi-processor systems can generally be divided into two categories from the

perspective of scheduling and based on the nature of processors:

I. Heterogeneous Multi-processor System

A heterogeneous multi-processor system can have processors of different types

which may be running at different speeds. Furthermore, it is possible that not all

tasks are able to execute on all processors.

II. Homogeneous Multi-processor System

In a homogeneous multi-processor system, the processors are identical and thus at

the same speed; hence the rate of execution of all tasks is the same on all processors.

21

Unlike on a uni-processor system, a taskset running on a multi-processor system

may be executing on designated or any processor(s). Scheduling algorithms for multi-

processor systems can be divided into three categories:

I. Partitioning Scheduling

Partitioning scheduling assigns a processor to every task and all jobs of that task

will run on that specific processor.

II. Global Scheduling

Global scheduling on the other hand, allows tasks to migrate among processors

during run time, and hence task assignment to processors is dynamic in nature, as

compared to fixed processor assignment in partitioned scheduling.

III. Cluster Scheduling

Cluster scheduling is in the ”middle” of Partitioning and global scheduling. A

task is allowed to run on a specific subset of processors in stead of a single processor

or all processors. It is also known as a semi-partitioning scheduling.

In global and cluster scheduling, the moving of a task from one processor to

another is called migration. According to the degree of migration allowed, there are

three disciplines:

(1) No migration. Partitioning scheduling for instance.

(2) Migration allowed, but only at job boundaries (i.e., dynamic partitioning at

the job level).

(3) Unrestricted migration (i.e., jobs are also allowed to migrate).

22

Migration usually comes with migration cost such as memory copy, cache loss.

Scheduling algorithms can be run off-line before the system is started if all task

parameters are known a priori, or on-line while the system is running.

23

Chapter 3

Priority Assignment

We introduce related existing work including ours on priority assignments in the

classic model and P-FRP AR model.

3.1 On the Classic Model

We first introduce the existing priority assignment research results on uni-processor

and multi-processor systems in classic model as following.

3.1.1 Uni-processor Systems

We’ve mentioned three types of priority assignments in Chapter.2.2.2: task level

(static or fixed priority assignment), job level (dynamic priority assignment) and

fully dynamic priority assignment.

24

The most common task level or fixed priority assignment scheme is the rate-

monotonic (RM) priority assignment [94]. In RM scheduling, unique priorities are

assignment to tasks in which the task with the shortest period is assigned the high-

est priority, then the task with next shortest period is assigned the second highest

priority, and so on so forth. Once a taskset is given, the priorities are assigned and

used in entire task scheduling process, and all jobs of a task have the same priority.

Liu and Layland [94] have shown that RM is an optimal fixed priority assignment

in the classic preemptive execution model for uni-processor task scheduling. The

optimality of the RM-priority assignment is derived from the fact that, if a task set

is schedulable by any other priority assignment then it is also schedulable by RM

priority assignment. However, Leung and Whitehead [91] showed that the optimality

for RM priority assignment is valid only for a synchronous (release offset of all tasks

is the same) release of tasks.

The most common job level or dynamic priority assignment scheme is the earliest-

deadline-first (EDF) [94]. In EDF scheduling, priorities are assigned based on the

absolute deadlines of jobs. At any time instant, a job with the nearest deadline has

the highest priority. Unlike RM, the priorities are decided on the run time, and jobs

of a task may have different priorities. Liu and Layland [94] have shown that EDF

is an optimal job level priority assignment in the classic preemptive execution model

for uni-processor task scheduling.

The most common fully dynamic priority assignment scheme is the least-laxity-

first (LLF) [100]. Laxity is defined as the time that a job can wait until it deemed

to miss deadline. It is calculated as a job’s absolute deadline minus its remaining

25

execution time. Thus at each time instant, jobs in the system may have different pri-

orities. Unlike EDF that a job has fixed priority, in LLF, a job has different priorities

throughout its execution. LLF is also proven to be an optimal priority assignment

in the classic preemptive execution model for uni-processor task scheduling.

We can see that, among these three priority assignment schemes, RM assigns

priorities before tasks’ execution, and does this assignment only once. EDF assigns

priorities at each time when there is a job arriving or finishing execution. LLF

calculates and possibly changes priorities at each time instant. So in terms of the time

spent on running the priority assignment algorithms, RM has the least complexity,

EDF the second, and LLF has the most complexity.

3.1.2 Multi-processor

For priority assignment on multi-processor systems, none of RM, EDF and LLF is

optimal.

Horn [70] presented an O(N3) algorithm (where N is the number of jobs) that

is able to determine an optimal multiprocessor schedule for jobs where all of the

arrival times and execution times are known a priori. This algorithm can be applied

to a set of strictly periodic tasks, by considering all of the jobs in the hyperperiod.

However, because of its O(N3) complexity, it is only tractable for tasksets with a

relatively short hyperperiod. And this method is not applicable to sporadic tasksets

where arrival times are not known in advance.

When scheduling an arbitrary collection of jobs that have more than one distinct

26

deadline on more than one processor, Hong and Leung [68] [69] showed that such

an algorithm would require clairvoyance knowledge of future arrivals and execution

times to avoid making decisions that lead to deadline misses. And they proved there

is no optimal online scheduling algorithm for such case. Dertouzos and Mok [60]

extended this result and showed that knowledge of arrival times is necessary for

optimality, even if execution times are known.

Several important algorithms have been proposed for the partitioned allocation

of tasks in symmetric homogeneous multiprocessor systems. Dhall and Liu [61]

have given the Rate-Monotonic-First-Fit-Scheduling (RMFFS) and Rate-Monotonic-

NextFit-Scheduling (RMNFS) algorithms which combine bin-packing and rate-monotonic

scheduling to assign tasks to processors. Davari and Dhall [51] [52] have given the

First-Fit-Decreasing-Utilization-Factor (FFDUF) and the NEXT-FIT-M algorithms.

Oh and Son [106] have given the Rate-Monotonic-First-Fit-Decreasing-Utilization

(RMFFDU) which uses a different rate-monotonic schedulability test and is an im-

provement over the RMFFS and RMNF algorithms.

3.2 On the P-FRP AR Model

Priorities to tasks can be assigned in a static and dynamic way, and the current

implementation of P-FRP only allows static priority assignment. Unlike dynamic

priority assignment, priorities to tasks in fixed priority scheduling are assignment

offline and remain fixed as long as the system is running.

27

3.2.1 Rate Monotonic, Utilization Monotonic, Deadline Mono-

tonic

In [20],[21], Belwal and Cheng proved that the Rate Monotonic (RM) and the Uti-

lization Monotonic (UM) priority assignments are generally not optimal in the AR

model, where RM priority assignment sets a higher priority to a task with a smaller

task period (i.e., faster arrival rate) and UM priority assignment orders tasks non-

increasingly by task utilization ratios. For 2-task sets, however, the RM and the UM

are optimal when one task period is at least two times of the other, and for n-task

sets where n > 2 the RM priority assignment is optimal only for the case that task

periods are harmonic (i.e., integer multiples of each other) and different. Notice that

a task with a smaller task period is not necessarily having a larger utilization ratio,

for example, a 2-task set with C1 = 1, T1 = 3, and C2 = 2, T2 = 4, where U1 = 1/3

and U2 = 1/2. Notice also that, as stated in [21], under some restrictions RM or UM

priority assignment may be optimal in the P-FRP model.

In the classic preemptive model, for periodic task sets with constrained deadlines

and scheduled asynchronously, the Deadline Monotonic (DM) priority assignment is

generally not optimal, where DM priority assignment orders tasks non-decreasingly

by task relative deadlines. In [82], we proved that negative propositions in the

classic preemptive model remain negative in the P-FRP model. Therefore, for the

same constraints, the DM priority assignment is also generally not optimal in the

P-FRP model.

28

3.2.2 Utilization-and-Rate Monotonic

A priority assignment being U-RM property, i.e., both utilization and rate monotonic,

is referred to as the Utilization-and-Rate Monotonic (U-RM) priority assignment,

which was mentioned in the paper given by Belwal and Cheng [20], [21]. The idea of

the U-RM priority assignment is that a task is assigned with a higher priority if it has

a larger utilization ratio and smaller task period. Clearly, this priority assignment is

only applicable to task-sets that have the U-RM property. In general this will not

be the case.

3.2.3 Execution-time Monotonic

Wong and Burns [123],[124] introduced the Execution-time Monotonic (EM) priority

assignment, which assigns a higher priority to a task τi which has a larger compu-

tation time Ci. Since the EM is not optimal, they derived an improved priority

assignment named the Execution-time-toward-Utilization Monotonic (EUM) prior-

ity assignment scheme. EUM priority assignment starts with EM ordering and the

worst-case is when a task set can only be scheduled by UM ordering (or is not schedu-

lable at all, by only fails at the last task). The lower priority tasks shift up with

higher priority level one by one until the task-set is in UM ordering. They showed

that the EUM dominated both EM and UM. However, the EUM is also not optimal

for the P-FRP model.

In summary, there is still no optimal uni-processor priority assignment discovered

for general P-FRP task scheduling at present.

29

3.2.4 Multi-processor

We introduced priority assignment work on multi-processor classic model above. One

common aspect of these algorithms is that they use a sorting order for the first-fit

scheme. The sorting is performed on the basis of arrival rates or utilization ratios.

Another common aspect of these algorithms is that the schedulability test for tasks

assigned to a processor is performed based on criterion defined for the RM scheduling

policy.

While this criterion is correct in the preemptive execution model, due to a differ-

ent execution model the RM-priority assignment is not the optimal priority assign-

ment for P-FRP. Hence, none of the first-fit algorithms that have been presented so

far are guaranteed to provide correct results in P-FRP.

Belwal and Cheng [22] presented their P-FRP First-Fit-Decreasing Rate (PFFDR),

P-FRP First-Fit-Decreasing Utilization Factor (PFFDUF), P-FRP First-Fit-Decreasing

Processing Time (PFFDPT). Their results showed that the number of processors

required to schedule P-FRP tasks are also higher than the number of processors

required to schedule the same tasks in the preemptive execution model, and they

proposed that techniques to avoid preemption for some tasks in P-FRP will be use-

ful for enhancing schedulability in this execution model.

30

Chapter 4

Schedulability Analysis in P-FRP

In this chapter, we discuss fixed priority scheduling for P-FRP tasks. To ensure

a system meets all deadlines in the real world, a schedulability test is required for

the task-set in the system. In Burns and Wellings’ book [38], four characteristics

are defined for testing schedulability: Necessary, Sufficient, Exact, and Sustainable.

Specifically, a necessary test means that if a task-set fails the test it will miss at least

one deadline; A sufficient test means that if a task-set passes the test it will meet

all deadlines; An exact test means both characteristics of sufficient and necessary;

A Sustainable test means that a task set maintains schedulable if conditions for

scheduling have been improved (e.g., by reducing the utilization of a task).

In the classic preemptive model [94], a sporadic task can be viewed as a periodic

one with a minimum arrival time period for schedulability test or response time

analysis without changing the schedulability. This is, however, generally not the

case in the P-FRP model. Wong and Burns [123],[124] showed that a sporadic task

31

with a later release may bring a longer response time. This property implies that in

the P-FRP model when a sporadic task set is treated as periodic and is schedulable

it is not necessarily schedulable when treated as sporadic. Therefore, in this work

sporadic tasks will not be considered unless otherwise stated.

4.1 Critical Instant

A critical instant for a task means the time at which a release of that task will lead

to the longest response time. The motivation for finding the critical instant is that

when scheduling a task-set, we need to determine the worst-case response time to

check if the task-set is schedulable.

In fixed priority scheduling with the classic preemptive model, Liu and Layland

[94] proved that a task is at its critical instant when the task and all higher priority

tasks are released at the same time (synchronous release). Unfortunately, Belwal

and Cheng [23],[21] showed that in the P-FRP model a synchronous release of tasks

is not necessarily lead to the worst-case response time.

Moreover, in [82], we observed that in the P-FRP model under fixed priority

scheduling both synchronous and asynchronous periodic task sets are not necessarily

schedulable even if all of the first jobs of tasks can meet their deadlines, and further-

more, the response time of the first job of any task is also not necessarily to be the

WCRT, which are different from that in the classic preemptive model.

Considering all possible release-time and abort combinations, Wong and Burns

32

[123],[124] showed that finding the critical instant for the AR model with periodic

and sporadic tasks is intractable. We argue that in the P-FRP model whether there

is generally a critical instant or not has not been proved and if the answer is “yes”

the problem of how to find the critical instant efficiently remains also open.

4.2 Feasibility Interval

In the P-FRP model, Belwal et al. [26] presented the first result on the feasibility

interval and showed that, for a schedulable n-task set Γn under fixed priority schedul-

ing, the feasibility interval of Γn is [t, t+ LCMn), where t ≥ Φ
{n}
max. However, it does

not hold for some scenarios. Specifically, the interval [Φ
{n}
max,Φ

{n}
max + LCMn) is not a

feasibility interval for some scenarios. In [81], we presented an algorithm to calculate

the minimal schedulability testing interval for tasks with arbitrary release offsets.

They first employed Si by S1 = Φ1, Si = max{Φi,Φi + d(Si−1 − Φi)/Tie × Ti}, 2 ≤

i ≤ n [67], then presented a testing interval as [0,min{Φ{n}max+2LCMn, Sn+LCMn})

for Γn. In [82], we presented their tight feasibility interval as [Φ
{k}
min,Φ

{k}
min + LCMk)

for task set Γk of each 1 ≤ k ≤ n when tasks’ release satisfies both the basic phasing

and the initial busy conditions.

4.3 Necessary Tests

It is known that a necessary test is in fact a property that a model possesses. It is

known that for uni-processor n-task systems a simple necessary test is that the total

33

utilization factor of the task set is at most 1, i.e., U ≤ 1. This property holds for

both the classic preemptive model and the P-FRP model, under fixed or dynamic

priority assignment. Since it provides little information on unschedulable task sets

which still satisfy U ≤ 1, the test is of more importance in the theoretical sense than

in the practical sense.

Currently, in the P-FRP model few necessary tests are discovered. In [82], we

presented that for a periodic task set under a fixed priority assignment, a necessary

schedulability test in the P-FRP model is that it is schedulable for the same priority

assignment in the classic preemptive model. As stated in [21], there were also some

necessary tests for P-FRP tasks satisfying some special restrictions.

4.4 Sufficient Tests

Sufficient tests are more powerful for schedulability test. As shown in [94], in the

classic preemptive model for an n-task set, a sufficient schedulability test is U =

n(21/n − 1) under fixed priority scheduling, and a sufficient schedulability test is

U ≤ 1 (being also a necessary test as shown above) under Earliest Deadline First

(EDF) scheduling. It is, however, not necessarily the case in the P-FRP model. This

is because that in the classic task system the total processing time in a time period

is fixed once the tasks are given, while in the P-FRP model the total processing time

is changed at run time due to that the restarting discards the incomplete execution,

which is equivalent to adding some processing time into the task system. Therefore,

this-like utilization-based sufficient test is generally not applicable to P-FRP tasks,

34

though under some restrictions there can also be some utilization-based sufficient

tests, for example, a utilization bound 1/n proposed in [16].

As for non-utilization-based sufficient tests, there were some sufficient tests for

P-FRP tasks satisfying some special restrictions [21].

Moreover, for periodic P-FRP tasks satisfying basic phasing and initial busy

conditions under a given priority assignment, in [82], we proposed somewhat general

and efficient simulation-based sufficient tests for both synchronous and asynchronous

tasks, and by the sufficient tests the schedulability is only needed to be checked with

an optimal search length LCMn−1, the least common multiple of the first n−1 higher

priority task periods, instead of LCMn. It is worthy of stating that the sufficient

tests are also applicable to sporadic tasks due to that they are simulation-based tests.

4.5 Exact Tests

Actual response time analysis (RTA) [83] is an “exact” schedulability test based

on calculating the worst-case response time of a task which includes the time of

interference from other higher priority tasks and blocking from lower priority tasks

(due to shared resources or non-preemptive scheduling). RTA is not exact unless

blocking is exact.

Since it is still unknown whether there is optimal priority assignment for an n-

task set in the P-FRP model, existing researches pay first attention to calculating the

longest response time under a given priority assignment. If the longest response time

35

of a task is longer than its deadline, the task will not meet its deadline. The opposite

situation is that if the longest response time of the task is less than or equal to its

deadline, the task will meet its deadline. The analysis can be applied for arbitrary

deadlines. Several methods to compute the exact response time for the P-FRP model

are given by researchers. Notice that except for exhausted permutation of priority

assignment ((n− 1)! for an n-task set) the so-called worst-case response time results

derived in existing P-FRP literatures are indeed longest response time under some

given priority assignment since currently there is still no optimal priority assignment

discovered for general P-FRP tasks.

4.5.1 Iteration-based Response Time Analysis

A natural way to make response time analysis (RTA) in the P-FRP model is to

extend the famous fixed point iteration algorithm developed by Audsley et al. [5].

Considering extra costs incurred due to the abort of tasks, Ras and Cheng [112] pre-

sented the first RTA expression for computing approximate response time bounds

in the P-FRP model. However, the expression failed to converge for some scenarios

[21] and therefore was an unreliable method to obtain guaranteed results. Belwal et

al. [27] introduced a O(N2) polynomial time algorithm that computes an approxi-

mate upper bound on the response time. The experimental analysis showed that the

quality of the bound given by this algorithm varies significantly.

Wong and Burns [123],[124] presented also a new iterative expression for calculat-

ing response time in the P-FRP model. We find, however, that their new expression

36

is also unable to give correct result for some scenarios, for example, a synchronous

3-task set with implicit deadlines and task parameters are C1 = 1, C2 = 2, C3 = 2,

and T1 = 4, T2 = 5, T3 = 20.

To the best of our knowledge, there is at present still no effectively iterative

expression for calculating response time in the P-FRP model.

4.5.2 Gap-Enumeration Method

Time-Accurate Simulation (TAS) [16] is a simple way to calculate the response time

in the P-FRP model. The approach is to execute a simulation through each time unit

within the feasible interval. Aiming to improve the efficiency, the Gap-Enumeration

Method (GEM) [16] which enumerated k -gaps was used for reducing the time com-

plexity for a calculation of response time analysis in the P-FRP model. The idea is

that there is a time slot which is first allocated with the highest priority task and sec-

ond with the next higher priority task and so on. When a task is fitted, the response

time for the task is found. If the task τi cannot find a gap, it will miss its deadline.

The gap-search function can be simply explained in that it searches the first k -gap

which is fitted with the size of Pk. The authors use a red-black tree (RB-tree) in

their experiments. In the P-FRP model, the first job of τi meets the deadline but

that does not mean other jobs of τi will meet deadlines because a synchronous release

may not lead to a critical instant. It remains an open question as to whether the

Gap-Enumeration Method is sufficient if there is no critical instant.

37

4.5.3 Idle-period Game Board Algorithm

Belwal and Cheng [18] thought that the GEM was hard to program because an

RB-tree was not available as a native function in programming languages. Another

technique using a game board was an easier way because the method can be imple-

mented by using a simple array. Moreover, they changed the term Gap-Enumeration

to idle-period. This Game Board Algorithm (GBA), however, was essentially the

same as the GEM.

4.5.4 Longest Response Time through Time Petri Nets

Belwal et al. [28] developed Time Petri Net (TPN) models for schedulability analysis

in the P-FRP model. A publicly available TPN tool called ROMEO [65] was used.

In the experiment, 50 task sets of sizes varying from 2 to 4 tasks were synthetically

generated. The execution times for these task sets were selected from the range [5,

15], while their arrival periods were selected from [30, 100]. On the same platform

with an Intel dual-core machine and Microsoft Windows Vista, the exhaustive enu-

meration took an average of 1, 8 and 20 minutes to run the simulation of 2, 3 and

4-task sets respectively. The queries on TPN models using ROMEO obtained the

result with a 3 to 4 seconds delay for a few 4-task sets.

38

4.5.5 LList-based Exact Test

The above simulation-based methods are in fact exhaustive-search-based methods for

response time and schedulability analysis. Moreover, for an n-task set a test interval

with at least a length LCMn, the least common multiple of all n task periods, was

required. It is obviously inefficient for larger LCMn.

Furthermore, in [82], we have obtained and proved an optimal search length

LCMn−1 instead of LCMn for n-task sets satisfying the basic phasing and the ini-

tial busy conditions for a given priority assignment in the simulation-based exact

response time calculation and schedulability test. This is the current best result on

the problem.

Based on the previous research, we present a linked list- and simulation-based

exact test method for the classic preemptive model under fixed priority scheduling

in [97]. The results have shown that the LList-based exact test is a good candidate

in exact response-time tests when task periods span no more than three orders of

magnitude. Notice that this method is also applicable to the P-FRP model and this

is one of their current work.

4.6 A Case Study for the P-FRP AR model

In [112], Ras and Cheng presented also their case study for the P-FRP AR model.

Two cases are studied in software and on hardware. The authors use the Generic

Avionics Platform [95] task set in their case studies. In the first study, they evaluated

39

the AR model under RM and EDF scheduling and then compare the results with

other models such as non-preemptive, Priority Ceiling Protocol (PCP) [116], and

Stack Resource Policy (SRP) [9]. Another study was for hardware: the Analog

Devices’ ADuC814 micro-controller was used to run the P-FRP compiled code with

RM and EDF scheduling. The result of this case study was the number of tasks

against the average number of aborts and the average number of aborts against

system load.

4.7 Multi-processor Scheduling

Based on their previous work [112], Ras and Cheng [113] derived inequalities for cal-

culating response time upper bound of a task in a symmetric multi-processor (SMP),

under RM and EDF scheduling respectively. This is the first attempt extending the

AR model to SMP systems.

Belwal and Cheng [22] presented off-line partitioning of tasks in SMP system

in order to find the minimum number of processors required to feasibly schedule

the tasks in a given P-FRP task set. The authors implemented three first-fit based

heuristics: P-FRP First-Fit-Decreasing Rate, P-FRP First-Fit-Decreasing Utiliza-

tion Factor and P-FRP First-Fit-Decreasing Processing Time. Unlike previous works

where theoretical proofs to validate the performance of the first-fit algorithms are

derived, the authors only used experimental tasks sets for the heuristics’ comparison

and validation.

40

Chapter 5

Schedulability Testing Interval

This chapter studies the schedulability of real-time tasks in the P-FRP model

under fixed priority scheduling, one of the influential scheduling policies. Since the

abort-and-restart execution paradigm of the P-FRP model is different from that of

the classic preemptive model, the schedulability analysis for P-FRP tasks under fixed

priority scheduling differs widely. In P-FRP, for a synchronous n-task set under fixed

priority scheduling, the least common multiple (LCM) of all n task periods is the

typical length of a testing interval for a schedulability test.

In this chapter, we propose and prove a simulation-based tightly sufficient schedu-

lability test in the P-FRP model under fixed priority scheduling for a given priority

*Work of this chapter was published as: Yu Jiang, Albert M. K. Cheng and Xingliang Zou.
Schedulability analysis for real-time P-FRP tasks under fixed priority scheduling. 21th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and Application in Hong
Kong, 2015, pp. 31-40.

41

order, covering scenarios from synchronous task release to asynchronous task release

with the initial busy condition, and from implicit deadlines to constrained deadlines.

The length of a testing interval for the tightly sufficient test is the LCM of the first

n-1 task periods. The tightness of the sufficient condition is shown by examples and

the optimality of the search length is proved.

5.1 Introduction

Real-time systems are playing a crucial role in our modern society. Systems including

robotic controllers, virtual reality systems, multimedia systems, telecommunications,

and many safety-critical industrial systems such as automotive electronics, flight

control, space missions, digital oil production control, chemical and nuclear plant

control, and so on all make use of real-time system technologies.

To meet diversity requirements of these kinds of real-time systems, various task

models and scheduling algorithms have been proposed, from the classic preemptive

model [94] (shortened as the classic model in the rest of this work) to the priority-

based functional reactive programming (P-FRP) model [84], from the rate mono-

tonic (RM) to the deadline monotonic (DM) and to the earliest deadline first (EDF)

scheduling algorithms [94],[92],[91],[43].

Using functional reactive programming languages over the traditional imperative

programming style present several advantages especially for implementing safety-

critical embedded systems. In this programming paradigm, the programmer can

intuitively describe safety behaviors of the system, lowering the chance of introducing

42

bugs in the design phase, while its stateless nature of execution does not require

the use of synchronization primitives, thus reducing the complexity of programming.

Specifically, the P-FRP model is a variant of the FRP model which has been employed

in a wide range of applications such as graphics, robotics and vision [122], [110].

Besides maintaining both type-safety and state-less execution paradigm of FRP,

P-FRP also supports assigning different priorities to different tasks and does not

require the use of synchronization mechanism between tasks. P-FRP is a relatively

new model in embedded and real-time system research, having received attentions

from different research groups [84],[17],[39],[123],[124], and it has the potential to

transform the implementation of the control components of future complex cyber-

physical systems. The impact of P-FRP in building safer controllers in automobile

anti-lock brake systems has been demonstrated in [46].

Like the classic model, in the P-FRP model higher-priority tasks can preempt

lower-priority ones. Unlike the classic model in which preempted jobs (instances or

invocations) can resume execution from the point they were interrupted, in the P-

FRP model preempted jobs will, however, roll back and restart execution from the

very beginning at some later time, i.e., preempted jobs will resume in a transactional

way, in order to meet the natural atomic execution requirement. The P-FRP model

is hence characterized by the “abort-and-restart” (AR) execution semantics, and

handles a job in a “completing-or-nothing” way. This provides a scheduling and

programming model where response times to different tasks can be tweaked by the

programmer without affecting the semantic soundness of the program. Moreover,

the AR execution semantics would be better than fully non-preemptive scheduling

43

since it allows an arriving higher-priority task to preempt the currently running

lower-priority task even if they have the same critical section while considering work-

conserving scheduling. Furthermore, the AR execution semantics is similar to that

in the Preemptible Atomic Regions (PAR) model which is a new concurrency control

abstraction for real-time systems [98]. In other words, the AR execution semantics

has been implemented in a common programming language.

Real-time systems have timing requirements that must be guaranteed, and schedu-

lability analysis and scheduling policy enables these guarantees to be fulfilled. Suf-

ficient tests are usually efficient but are pessimistic. Exact (necessary and suffi-

cient) tests are more powerful than sufficient tests [5]. Thus, discovering faster exact

schedulability tests is a persistent research motivation for the real-time community.

5.1.1 Motivations and Contributions

The motivation for the work of this chapter is threefold. (1) Compared with the

classic model, the schedulability analysis in the P-FRP model differs widely because

of the AR feature and the scheduling uncertainty of lower priority tasks interfered by

higher priority tasks, and thus many results for the classic model may not be applied

directly to P-FRP tasks. Lacking powerful and efficient schedulability test would

prevent the use of the P-FRP model in practical real-time scheduling. In general,

finding exact schedulability tests for various kinds of real-time models would be

beneficial for both the theory and the engineering of real-time systems. (2) For a

P-FRP n-task set, the current schedulability tests require testing within the interval

44

consisting of the least common multiple (LCM) of all task periods, or are sufficient

with a utilization-based bound 1/n under restrictions on the task periods, making

it less useful as n gets larger [16]. (3) The motivation also comes from efficiency

requirement. In the P-FRP model, the schedulability of a task is a function of both

the set of higher priority tasks and their specific priorities, hence, the response time

of a task is a function of priority ordering [39]. Thus, many more priority order

combinations will be checked to seek an optimal or sub-optimal priority assignment,

and a more efficient simulation-based schedulability test is needed, which will also

be beneficial for the study of response time analysis.

In this chapter, we propose a tightly sufficient schedulability test for periodic

P-FRP n-task sets under fixed priority scheduling for a given priority assignment

(GPA). The sufficient condition cannot be improved further since there really exist

task sets reaching the condition. The sufficient test covers cases from synchronous

task release to asynchronous task release satisfying certain phasing conditions, from

implicit deadlines to constrained deadlines. It is a simulation-based schedulability

test which reduces the overall search length, from the LCM of all n task periods to

that of the first n-1 higher priority task periods, and the search length is optimal

for scheduling P-FRP n-task sets. The corresponding proofs are given for validating

lemmas and theorems we have provided. Apart from yielding a contribution to

the theory and engineering of P-FRP scheduling, we believe that these results will

provide inspiration to studies in the P-FRP model.

45

5.1.2 Organization

Basic concepts and notations used in this chapter can be found in Chapter.2, and

the rest of the chapter is organized as follows. Sec. 5.2 provides new results on the

tightly sufficient test in the P-FRP model, including their proofs and illustrations,

and Sec. 5.3 presents experimental results showing the efficiency and effectiveness of

the new test. Sec. 5.4 gives a brief overview of related work, and finally, Sec. 5.5

states conclusions and future research areas.

5.2 Tightly Sufficient Test for P-FRP Tasks

In this section, we provide our new results on simulation-based tightly sufficient

schedulability test in the P-FRP model under fixed priority scheduling for any GPA

(given priority assignment). We first present results that are related to the feasibility

interval in Sec. 5.2.1. Then we give a sufficient schedulability test for synchronous

start tasks and generalize it for asynchronous start tasks under certain phasing condi-

tions in Sec. 5.2.2, covering cases of both implicit deadlines and constrained deadlines.

In Sec. 5.2.3, we prove the optimality of the search length in the schedulability test.

As stated in the chapter of background, for an n-task set of periodic tasks and a

GPA, we relabel tasks with τ1 being the highest priority task, and denote the task

set by Γn={τ1,τ2,...,τn}. A task set with different GPAs will be treated as different

task sets, since in the P-FRP model whether a task set is schedulable is related to

the priority order.

46

For ease of reference, for each k, 1 ≤ k ≤ n, let Γk = {τ1, τ2, ..., τk} (⊆ Γn)

to denote the first k higher priority tasks. When a given phasing of Γn satisfying

0 ≤ Φi < Ti for all i, 1 ≤ i ≤ n, we designate the given phasing with a term of

the basic phasing condition . When Γn satisfies the basic phasing condition, each

Γk (1 ≤ k ≤ n) also satisfies this condition. For simplicity and clarity, we define

following two concepts.

Definition 1. For Γn under fixed priority scheduling, an i-permissibility interval

of task τi for a GPA, 1 ≤ i ≤ n, is a time interval [tu, tv) for the GPA, such that: (1)

the interval length, i.e., tv − tu, is no less than Ci time units, (2) no higher priority

task is awaiting execution and ready to execute before time tu, and (3) no higher

priority task is released within it.

This concept differs from that of the gap in [17] which has not taken the require-

ment of interval length into account.

Definition 2. For Γn under fixed priority scheduling, the Initial Busy Condition

for a GPA refers to the condition: For each i, 2 ≤ i ≤ n, min1≤j<i{Φj} < Φi + Ci

and Φi ≤ max1≤j<i{Φj +RGPA
j,1 }, where RGPA

j,1 is the response time of the first job of

task τj for the GPA.

In the initial busy condition for a GPA, the former inequality implies that, for

the GPA, the first job of task τi cannot complete before or at a time at which the

first jobs of higher priority tasks begin releasing, and the latter inequality implies

that, for the GPA, the first job of task τi is released no later than a time at which all

the first jobs of higher priority tasks have completed. For checking the initial busy

47

condition, what we need to know is the response time of the first job instead of the

worst-case response time of each task. When Γn satisfies the initial busy condition,

each Γk (⊆ Γn) also satisfies the initial busy condition, 1 ≤ k ≤ n.

5.2.1 Feasibility Interval in the P-FRP Model

In this subsection, for each Γk (⊆ Γn), 1 ≤ k ≤ n, we first present a feature of

the release pattern by Lemma 1, then further under the initial busy condition we

present a feature of the effective execution pattern in the P-FRP model by Lemma

2. Further, we present a result on the feasibility interval in the P-FRP model by

Theorem 1.

Lemma 1. Consider a schedulable Γn satisfying the basic phasing condition, then,

for each k, 1 ≤ k ≤ n, and for any t ≥ Φ
{k}
min, the release pattern of Γk (⊆ Γn) in the

intervals [t, t+ LCMk) and [t+ LCMk, t+ 2LCMk) will be the same.

Proof. Two intervals [t, t+LCMk) and [t+LCMk, t+2LCMk) have the same length.

The basic phasing condition implies that, for each k, 1≤ k ≤ n, and for each task

τi, 1≤ i ≤ k, in Γk, there will be exact LCMk/Ti jobs of τi released in each interval

[t, t + LCMk), where t ≥ Φ
{k}
min. The claim then follows from both the periodicity

of tasks and the LCMk being the least common multiple of all periods of tasks in

Γk. �

This result is a parallel form of that in the classic model for periodic tasks because

a release pattern does not depend on the execution semantics.

48

Lemma 2. Consider a schedulable Γn satisfying both the basic phasing condition and

the initial busy condition, under fixed priority scheduling, then, for each k, 1 ≤ k ≤ n,

and for any t ≥ Φ
{k}
min, the effective execution pattern of Γk (⊆ Γn) in the intervals

[t, t+ LCMk) and [t+ LCMk, t+ 2LCMk) will be the same.

Proof. The lemma is proved by induction.

Base: when k = 1, there is only task τ1, and it is easy to see that for any

t ≥ Φ1, the effective execution pattern of Γ1 = {τ1} in the intervals [t, t + LCM1)

and [t+ LCM1, t+ 2LCM1) will be the same.

Inductive hypothesis : Assume that for any t ≥ Φ
{k−1}
min , the effective execution

pattern of Γk−1 = {τ1, τ2, ..., τk−1} in the intervals [t, t+LCMk−1) and [t+LCMk−1, t+

2LCMk−1) is the same.

Inductive step: For Γk = Γk−1 ∪ {τk}, by the inductive hypothesis, we know

that, starting from Φ
{k−1}
min , in every successive interval with length of LCMk−1 time

units, the effective execution pattern of Γk−1 will repeat itself one after another.

Considering that LCMk is a multiple of LCMk−1, that Γk satisfies both the basic

phasing condition and the initial busy condition, that Γk is schedulable and tasks are

periodic, and that the priority of task τk is lower than priorities of tasks in Γk−1 and

hence task τk produce no preemption during the execution of tasks in Γk−1, thus, for

any t ≥ Φ
{k}
min, the effective execution pattern of Γk−1 in the intervals [t, t + LCMk)

and [t+ LCMk, t+ 2LCMk) will be the same.

Next, we prove that, for any t ≥ Φ
{k}
min, the effective execution pattern of the task

τk in the intervals [t, t+ LCMk) and [t+ LCMk, t+ 2LCMk) will be the same.

49

By the initial busy condition, the first job of task τi cannot complete before or at

a time at which the first jobs of higher priority tasks begin releasing, and the first job

of task τi is released no later than a time at which all the first jobs of higher priority

tasks have completed, i.e., the first job of task τk will have to (re)start executing

after that all the first jobs of higher priority tasks have completed. From the above

results we have known that, for any t ≥ Φ
{k}
min, the effective execution pattern of

Γk−1 in the intervals [t, t + LCMk) and [t + LCMk, t + 2LCMk) is the same. We

also know that a release of a lower priority task has no impact on the execution of

higher priority tasks. Thus, after scheduling all tasks in Γk−1, for every value of b,

0 ≤ b < LCMk, if there is a k-permissibility interval of task τk starting from time

t+b, then there will also be a same length k-permissibility interval of task τk starting

from time t+LCMk +b. Moreover, by Lemma 1, the release pattern of task τk in the

intervals [t, t+LCMk) and [t+LCMk, t+2LCMk) will be the same. In addition, for

any schedulable task, it will (re)start its execution at the starting point of its nearest

permissibility interval after its release time and complete its execution in the same

permissibility interval. Therefore, for any t ≥ Φ
{k}
min, the effective execution pattern

of the task τk in the intervals [t, t+ LCMk) and [t+ LCMk, t+ 2LCMk) will be the

same, and thus the effective execution pattern of Γk = Γk−1 ∪ {τk} in the intervals

[t, t+ LCMk) and [t+ LCMk, t+ 2LCMk) will then be the same. �

Theorem 1. Consider a schedulable Γn satisfying both the basic phasing condition

and the initial busy condition, under fixed priority scheduling, then, for each k, 1 ≤

k ≤ n, a feasibility interval of Γk is [t, t+ LCMk), where t ≥ Φ
{k}
min.

Proof. If a schedulable system runs till time Z, where Z is a sufficiently large positive

50

integer (Z →+∞), then for each k, 1≤ k ≤ n, we obtain a number j=b(Z −

tΦ)/LCMkc, where tΦ=Φ
{k}
min. Therefore, the time interval [0, Z) can be divided into

some time intervals and the union of these consecutive time intervals will lead to the

time interval [0, Z), i.e.,

[0, Z) = [0, tΦ) ∪ [tΦ, tΦ + j × LCMk) ∪ [tΦ + j × LCMk, Z), where [tΦ, tΦ + j ×

LCMk) = [tΦ, tΦ+LCMk)∪[tΦ+LCMk, tΦ+2LCMk)∪...∪[tΦ+(j−1)×LCMk, tΦ+

j × LCMk).

By Lemma 1 and Lemma 2, both the release and the effective execution patterns

of Γk in time intervals [tΦ, tΦ + LCMk), [tΦ + LCMk, tΦ + 2LCMk),...,[tΦ + (j −

1)×LCMk, tΦ + j ×LCMk) will be the same. Thus, schedules of Γk in these j time

intervals will be the same. Due to the periodicity of tasks, schedules in time intervals

[tΦ + j × LCMk, Z) and [tΦ + (j − 1) × LCMk, tΦ + (j − 1) × LCMk + (Z − (tΦ +

j × LCMk))) will also be the same. Therefore, if task set Γk is schedulable in time

interval [tΦ, tΦ + LCMk), it will also be schedulable in intervals [tΦ + LCMk, tΦ +

2LCMk), ..., [tΦ + (j − 1)× LCMk, tΦ + j × LCMk), and [tΦ + j × LCMk, Z). Task

set Γk is also schedulable in the time interval [0, tΦ). Hence, the schedulability of

Γk in the time interval [tΦ, tΦ + LCMk) will determine the schedulability of Γk in

the time interval [0, Z). By its definition, a feasibility interval of the task set Γk is

[Φ
{k}
min,Φ

{k}
min + LCMk).

For any t ≥ Φ
{k}
min, further considering the length of intervals [t, t + LCMk) is

equal to a fixed value LCMk, the theorem then follows. �

The basic phasing condition and the initial busy condition guarantee that the

51

starting point of the first feasibility interval shifts to the left and is from Φ
{k}
min for Γk

(instead of from Φ
{n}
max for Γn previously), making less constructing length of schedules

in some cases. For example, it needs only to construct a schedule for Γn in the interval

[0, LCMn) instead of in [0, Φ
{n}
max + LCMn) due to Φ

{n}
min = 0.

In the following subsection, based on the above results, we present new results

on schedulability test in the P-FRP model under fixed priority scheduling.

In both implicit deadlines and constrained deadlines scenarios, in order to be

schedulable, each job of a task should complete its execution within its relative

deadline Di time units. Since the scenario with implicit deadlines is a special case

of that with constrained deadlines, we present the sufficient schedulability test in a

unified form. In the rest of the chapter, without explicit description, we assume that

the task set Γn is with implicit or constrained deadlines, for a GPA, and under fixed

priority scheduling in the P-FRP model.

For Γn satisfying both the basic phasing condition and the initial busy condition

for a GPA, for each k, 2 ≤ k ≤ n, when there are jk > 0 k-permissibility intervals

of τk in the time interval [Φ
{k−1}
min , Φ

{k−1}
min + LCMk−1), denoted by [t1, t2), [t3, t4),...,

[t2jk−1, t2jk), and the next k-permissibility interval is [t2jk+1, t2jk+2), we define l
{k}
max, a

quantity which will be used in following theorems:

l{k}max = max1≤i≤jk{t1 − Φk + Ck, t2i+1 − t2i + 2Ck − 1}

The case of synchronous start can be seen as a special case of asynchronous start

where each phasing equals to 0. For clarity, we first present the sufficient test for

synchronous start tasks, and then generalize it for asynchronous start tasks.

52

5.2.2 A Tightly Sufficient Schedulability Test

In this subsection, we first introduce a simulation-based tightly sufficient schedula-

bility test for the scenario of synchronous start and then generalize it for that of

asynchronous start. Note that the synchronous start tasks satisfies both the basic

phasing condition and the initial busy condition.

Theorem 2. Consider a synchronous start Γn for a GPA, then, for each k, 2 ≤

k ≤ n, Γk (⊆ Γn) is schedulable for the GPA if: (1) Γk−1 is schedulable in the time

interval [0, LCMk−1), and (2) there is at least one k-permissibility interval of τk in

the time interval [0, LCMk−1), and Dk ≥ l
{k}
max, and Tk ≥ l

{k}
max or Tk = LCMk−1.

Proof. For synchronous start, Φk = 0 (1 ≤ k ≤ n).

For each k, 2 ≤ k ≤ n, by preconditions, Γk−1 will be schedulable since Γk−1 is

schedulable in the time interval [0, LCMk−1), which is a feasibility interval of Γk−1

by Theorem 1. In order to prove Γk is schedulable, we need to prove that task τk is

schedulable.

There is at least one k-permissibility interval of τk in the time interval [0, LCMk−1),

i.e., there are jk > 0 k-permissibility intervals of τk in that interval, denoted by

[t1, t2), [t3, t4),..., [t2jk−1, t2jk), and the next k-permissibility interval is [t2jk+1, t2jk+2).

Dk ≥ l
{k}
max = max1≤i≤jk{t1 + Ck, t2i+1 − t2i+2Ck − 1}, then there is Dk ≥ t1+Ck

which implies that the first job of task τk will not have a deadline miss.

If Tk = LCMk−1, there will be only one job of task τk released in each interval

[m×LCMk−1,m×LCMk−1 +LCMk−1), where m ≥ 0. Note also that, starting from

53

Figure 5.1: Illustration of the case Tk=LCMk−1 in the proof of Theorem 2.

time 0 for a synchronous start, in every successive interval with length of LCMk−1

time units, the schedule of Γk−1 will repeat itself one after another, including k-

permissibility intervals of τk in that interval. In this case, task τk will keep pace

with those tasks in Γk−1 as a whole, as shown in Fig.5.1. Thus, similar to the first

job, each of all the other jobs of task τk will not have a deadline miss, i.e., τk is

schedulable. The task set Γk is hence schedulable.

We then consider the arrival positions of other jobs of task τk in the interval [0,

LCMk−1) at the time line. For a k-permissibility interval [t2m−1, t2m), 2 ≤ m ≤ jk,

(a) if a job arrives at a position between time points t2m−2 and t2m−1, then it will

complete its execution in the interval [t2m−1, t2m−1 + Ck), and its relative deadline

Dk should be no less than the relative time t2m−1 + Ck − t2m−2, i.e., Dk ≥ t2m−1 −

t2m−2 +Ck; (b) if a job arrives at a position between time points t2m−1 and t2m−Ck,

then it will complete its execution in the k-permissibility interval [t2m−1, t2m), and

at this time there will be Dk ≥ Ck; (c) if a job arrives at a position between time

points t2m − (Ck − 1) and t2m, then it will not be able to complete its execution in

this interval since the remaining maximum interval length Ck − 1 is less than Ck.

Thus, due to the “completing-or-nothing” way of execution in the P-FRP model,

the job will have to be postponed until in the next k-permissibility interval [t2m+1,

54

Figure 5.2: Illustration of the case (c) in the proof of Theorem 2.

t2m+2) to complete its execution. At this time, its relative deadline Dk should be no

less than the relative time t2m+1 − (t2m − (Ck − 1)) + Ck = t2m+1 − t2m + 2Ck − 1,

i.e., Dk ≥ t2m+1 − t2m + 2Ck − 1. Then, considering all the jk + 1 k-permissibility

intervals, if Dk ≥ l
{k}
max = max1≤i≤jk{t1 + Ck, t2i+1 − t2i + 2Ck − 1}, each job of task

τk will have no deadline miss. An example of the case (c) is illustrated in Fig.5.1.

Therefore, if Tk 6= LCMk−1, by Tk ≥ Dk ≥ l
{k}
max = max1≤i≤jk{t1 +Ck, t2i+1− t2i +

2Ck − 1}, for any job of task τk, neither a deadline nor the next job of τk will arrive

before the current job of τk completes, i.e., each job of τk will not have a deadline

miss (the worst case for Dk is shown in Fig.5.2). Thus, τk is schedulable, and the

task set Γk is hence schedulable. �

Example: Consider a 3-task set Γ3 = {τ1, τ2, τ3} with computation times C1 = 3,

C2 = 4, C3 = 3, and T1 = D1 = 9, T2 = D2 = 12, T3 = D3 = 32, released

synchronously at time 0, under fixed priorities as the task numbers indicate (1 being

the highest). There are LCM1 = 9, LCM2 = 36, and LCM3 = 288. Fig.5.3(a) shows

the schedule in the time interval [0, 36), i.e., [0, LCM2). The upward arrow indicates

the release of a new job, the downward arrow indicates the completion of a currently

running job, and the cross-mark indicates a lower-priority task being aborted by a

higher-priority one. A preempted lower-priority task has to rollback and restart at

55

some later time.

Task τ1 is clearly schedulable. For task τ2, there is only one 2-permissibility

interval in the time interval [0, LCM1). There are t1 = 3, t2 = 9, t3 = 12, and

2C2−1 = 7. l
{2}
max equals to 10, and D2 = T2 = 12 > l

{2}
max. Task τ2 is then schedulable.

For task τ3, there is only one 3-permissibility interval in the time interval [0, LCM2).

At this time, t1 = 21, t2 = 24, t3 = t1 + LCM2 = 21 + 36 = 57, and 2C3 − 1 = 5.

l
{3}
max = max{t1 +C3, t3− t2 + 2C3−1} = max{24, 38} = 38, and D3 = 32 < l

{3}
max. By

the theorem, task τ3 will be unschedulable. In fact, all tasks meet their deadlines for

the first jobs. It seems that the task set is schedulable and the worst-case response

time (WCRT) of the task set is 24. This is, however, not the case. As shown in

Fig.5.3(b), the 5th job of τ3 will arrive at time 128, and the 4th job of τ3 arriving

at time 96 will miss its deadline. In order to make this task set schedulable when

released synchronously, the period T3 should be equal to 36 (= LCM2) or be no less

than 38 (= l
{3}
max), as required by Theorem 2, and will be an example of synchronous

start task sets reaching the sufficient condition. On the other hand, it is enough now

to test the schedulability of this task set in a time interval [0, 36) instead of in [0,

288), with an 8 times efficiency improvements.

There are two basic ideas behind the result for testing the schedulability of P-

FRP periodic n-task set satisfying the basic phasing condition and the initial busy

condition. First, by the concept of k-permissibility interval, for checking whether

task τk is schedulable, there is no need to consider each gap in a feasibility interval

of task set Γk−1. Second, for task sets satisfying the initial busy condition, the

number of jobs of task τk in the time interval [0, LCMk−1) will get the largest in

56

Figure 5.3: A synchronous scenario in the P-FRP model, all the 1st jobs meeting
their deadlines (C1=3, C2=4, C3=3; T1=D1=9, T2=D2=12, T3=D3=32). However,

the 4th job of task τ3 will miss its deadline at time 128.

each feasibility interval with a length LCMk−1 of Γk−1 for synchronous start and

the schedule of Γk−1 comprises of repeated feasibility interval and k-permissibility

intervals related to the time interval [0, LCMk−1).

We now present a simulation-based sufficient schedulability test for the scenario of

asynchronous start, which is a generalized form of that for the scenario of synchronous

start.

Theorem 3. Consider an asynchronous start Γn satisfying both the basic phasing

condition and the initial busy condition for a GPA, then, for each k, 2 ≤ k ≤ n, Γk

(⊆ Γn) is schedulable for the GPA if: (1) Γk−1 is schedulable in the time interval

[Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1), and (2) there is at least one k-permissibility interval

of τk in the time interval [Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1), and Dk ≥ l

{k}
max, and when

t1 −Φk +Ck > LCMk−1, there is Tk ≥ l
{k}
max; when t1 −Φk +Ck ≤ LCMk−1, there is

Tk ≥ l
{k}
max or Tk = LCMk−1.

57

Proof. For each k, 2 ≤ k ≤ n, by preconditions, Γk−1 will be schedulable since Γk−1

is schedulable in the time interval [Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1), which is a feasibility

interval of Γk−1 by Theorem 1. In order to prove Γk is schedulable, we need to prove

that task τk is schedulable.

By preconditions, there is at least one k-permissibility interval of τk in the time

interval [Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1), i.e., there are jk > 0 k-permissibility intervals

of τk in that interval, denoted by [t1, t2), [t3, t4),..., [t2jk−1, t2jk), and the next k-

permissibility interval is [t2jk+1, t2jk+2). Since Tk ≥ Dk ≥ l
{k}
max = max1≤i≤jk{t1 −

Φk + Ck, t2i+1 − t2i + 2Ck − 1}, then there is Tk ≥ Dk ≥ t1 − Φk + Ck which implies

that the first job of task τk will not have a deadline miss.

When t1 − Φk + Ck > LCMk−1: At this time, there is, in fact, only one k-

permissibility interval of τk in the time interval [Φ
{k−1}
min ,Φ

{k−1}
min +LCMk−1), and then

there is only one k-permissibility interval in each of the time interval [Φ
{k−1}
min +m×

LCMk−1,Φ
{k−1}
min + (m + 1) × LCMk−1) where m ≥ 0, due to the repetition of the

schedule of the schedulable Γk−1. As observed earlier, due to Tk(≥ Dk ≥ l
{k}
max ≥

t1−Φk +Ck) > LCMk−1, the release time points of jobs of task τk will drift to right

bit by bit relative to certain time points Φ
{k−1}
min + m × LCMk−1 where m ≥ 1, and

there will be at most one job of task τk released before the starting time point of the

next k-permissibility intervals of τk, and thus task τk is schedulable. The task set Γk

is hence schedulable. This scenario is illustrated in Fig.5.4(b).

Then we consider the arrival positions of other jobs of task τk in the interval

[Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1) at the time line. For a k-permissibility interval [t2m−1,

t2m), 2≤ m ≤ jk, (a) if a job of task τk arrives at a position between time points t2m−2

58

Figure 5.4: Illustration of the case (c) in the proof of Theorem 3.

and t2m−1, then it will complete its execution in the interval [t2m−1, t2m−1 +Ck), and

its relative deadline Dk should be no less than the relative time t2m−1+Ck−t2m−2, i.e.,

Dk ≥ t2m−1−t2m−2+Ck; (b) if a job of task τk arrives at a position between time points

t2m−1 and t2m−Ck, then it will complete its execution in the k-permissibility interval

[t2m−1, t2m), and at this time there will be Dk ≥ Ck; (c) if a job of task τk arrives

at a position between time points t2m − (Ck − 1) and t2m, then it will not be able to

complete its execution in this interval since the remaining maximum interval length

Ck−1 is less than Ck. Thus, due to the “completing-or-nothing” way of execution in

the P-FRP model, the job will have to be postponed until in the next k-permissibility

interval [t2m+1, t2m+2) to complete its execution. At this time, its relative deadline

Dk should be no less than the relative time t2m+1− (t2m− (Ck − 1)) +Ck = t2m+1−

t2m + 2Ck − 1, i.e., Dk ≥ t2m+1 − t2m + 2Ck − 1. Then, considering all the jk+1 k-

permissibility intervals, if Dk ≥ l
{k}
max = max1≤i≤jk{t1−Φk +Ck, t2i+1− t2i +2Ck−1},

59

Figure 5.5: Illustration of the case Tk=LCMk−1 when t1 − Φk+Ck ≤ LCMk−1 in
the proof of Theorem 3.

each job of task τk will have no deadline miss. An example of the case (c) is illustrated

in Fig.5.4(a).

When t1 − Φk + Ck ≤ LCMk−1: If Tk = LCMk−1, then task τk will keep pace

with those tasks in Γk−1 as a whole, as shown in Fig.5.5. There is at least one

k-permissibility interval of task τk in the time interval [Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1)

and, starting from time Φ
{k−1}
min , in every successive interval with length of LCMk−1

time units, the schedule of Γk−1 will repeat itself one after another, including k-

permissibility intervals of τk in that interval. Thus, similar to the first job, each of

all the other jobs of task τk will not have a deadline miss, i.e., τk is schedulable. The

task set Γk is hence schedulable.

If Tk 6= LCMk−1, by Tk ≥ Dk ≥ l
{k}
max = max1≤i≤jk{t1 − Φk + Ck, t2i+1 − t2i +

2Ck − 1}, for any job of task τk, neither a deadline nor the next job of τk will arrive

before the current job of τk completes, i.e., each job of τk will not have a deadline

miss (the worst case for Dk is shown in Fig.5.4(a)). Thus, τk is schedulable, and Γk

is hence schedulable. �

The proof of Theorem 3 follows the same reasoning of the proof for Theorem 2

with explicit consideration on phasing. Besides making the starting point of the first

60

feasibility interval of Γk to be Φ
{k}
min, the purpose of the phasing conditions in the

theorem is also aiming to meet a possible need of recursively using this test in other

ways of simulation.

An example for an asynchronous start is a 3-task set where C1 = 3, C2 = 4,

C3 = 3; T1 = D1 = 9, T2 = D2 = 12, T3 = D3 = 35; and Φ1 = 2, Φ2 = 1, Φ3 = 0.

In this scenario, it is also unschedulable though all the first jobs have meet their

deadlines, since the 2nd job of the τ3 arriving at time 35 will miss its deadline in

the time interval [68, 73). In order to make the task set schedulable when scheduled

asynchronously with the above phasing, the period T3 should be no less than 36,

as required by Theorem 3, where Φ
{2}
min + LCM2 = 1 + 36 = 37, t1 = 32, t2 = 37,

2C3 − 1 = 5, and l
{3}
max = 36. At this time, it is also an asynchronous start example

of task sets reaching the sufficient condition. In fact, we observed that in the P-

FRP model under fixed priority scheduling a periodic n-task set (n ≥ 2), for both

synchronous start and asynchronous start, is not necessarily schedulable even if all

of the first jobs of tasks can meet their deadlines. Furthermore, in the P-FRP model

under fixed priority scheduling the response time of the first job of any task is also

not necessarily to be the WCRT, which is different from that in the classic model.

5.2.3 Discussion

We note that, when Tk < LCMk−1, the release time points of jobs of task τk will

drift to left bit by bit relative to certain time points Φ
{k−1}
min + m × LCMk−1, and

when Tk > LCMk−1, the release time points of jobs of task τk will drift to right

61

Figure 5.6: Illustration of the drifting of release time points of task τk when
Tk 6= LCMk−1 and Tk < l

{k}
max.

bit by bit relative to certain time points Φ
{k−1}
min + m × LCMk−1, where m ≥ 1. If

Tk < LCMk−1 ≤ l
{k}
max or LCMk−1 < Tk < l

{k}
max, then certain job of τk may eventually

miss its deadline at some time point, as shown in Fig.5.6.

In addition, it is easy to derive a sufficient schedulability test for a 2-task set Γ2

from Theorem 3, as Lemma 3 states.

Lemma 3. Consider Γ2={τ1,τ2} satisfying the basic phasing condition and the initial

busy condition for a GPA, then, Γ2 is schedulable for the GPA if: T1 ≥ C1 +C2, and

D2 ≥ l
{2}
max, and (a) T2 ≥ l

{2}
max when Φ1+C1−Φ2+C2 > T1, or (b) T2 ≥ l

{2}
max or T2 = T1

when Φ1 +C1−Φ2 +C2 ≤ T1, where l
{2}
max = max{Φ1 +C1−Φ2 +C2, C1 + 2C2− 1}.

62

Proof. For a 2-task set Γ2, Γ1={τ1} is schedulable due to C1 ≤ D1 ≤ T1. Inequality

T1 ≥ C1 +C2 implies that there is one (and only one) 2-permissibility interval of τ2,

i.e., [t1, t2), in the time interval [Φ1, Φ1+T1), where t1=Φ1+C1 and t2=Φ1+T1, and

the starting point of the next 2-permissibility interval is t3=Φ1+T1+C1, and thus

l
{2}
max=max{t1−Φ2 +C2, t3− t2 + 2C2− 1}=max{Φ1 +C1−Φ2 +C2, C1 + 2C2− 1}.

The rest parts of the proof follow the same reasoning of the proof for Theorem 3.

The lemma is then proved. �

Since l
{2}
max ≥ C1+C2, the necessary schedulability test of min{T1, T2}≥ C1+C2

in [16] is just a corollary of Lemma 3.

We note that due to the repetition of the schedule of Γk−1, two time intervals

[Φ
{k−1}
min +LCMk−1, t2jk+1) and [Φ

{k−1}
min , t1) have the same length. Therefore, t2jk+1−

t2jk = (t2jk+1− (Φ
{k−1}
min +LCMk−1)) + ((Φ

{k−1}
min +LCMk−1)− t2jk) = (t1−Φ

{k−1}
min) +

((Φ
{k−1}
min + LCMk−1) − t2jk) = t1 + LCMk−1 − t2jk , and thus l

{k}
max is also equal to

max1≤i≤jk−1{t1 − Φk + Ck, t2i+1 − t2i + 2Ck − 1, t1 + LCMk−1 − t2jk + 2Ck − 1},

which has relationship only with the k-permissibility intervals of τk in the interval

[Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1).

Moreover, after simulating all tasks in Γk−1 in the time interval [Φ
{k−1}
min ,Φ

{k−1}
min +

LCMk−1) we will have 2jk boundary values of jk k-permissibility intervals and it

needs only to test all LCMk/Tk jobs of τk in this interval. At this time for test-

ing the jth job of τk it needs only to make a comparison between Locjk and relative

boundary values, where

63

Locjk =

 modjk if j = 1 or modjk ≥ Φ
{k−1}
min ,

modjk + LCMk−1 if modjk < Φ
{k−1}
min .

where modjk = Φk + (j − 1)Tk mod LCMk−1, and there is no need to test each job

of τk in a time-tick way (i.e., simulating the schedule from time 0 one time tick after

another). Notice also that LCMk/Tk ≤ LCMk−1. Hence, it needs only to search in

this interval, with a length of LCMk−1, to check whether the task τk is schedulable,

as Lemma 4 states.

Lemma 4. Consider Γn satisfying the basic phasing condition and the initial busy

condition for a GPA, then, for each k, 2 ≤ k ≤ n, it is sufficient to search in the

interval [Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1) for checking whether task τk is schedulable.

Proof. It follows from the above discussion. �

This lemma tells us that there is no need to simulate the corresponding schedule at

the time line beyond the time point Φ
{k−1}
min +LCMk−1. In fact, based on Lemma 4, a

pseudo-polynomial time algorithm for computing the LRTGPA (the largest response

time of a task set for a GPA) is derived. Moreover, compared with the previous

results in [17],[18], for each k, 2 ≤ k ≤ n, when testing the schedulability of task τk,

we reduce the search length from LCMk to LCMk−1 when Tk 6= LCMk−1. Actually,

we have Theorem 4.

Theorem 4. Consider Γn satisfying the basic phasing condition and the initial busy

condition for a GPA, then, for each k, 2 ≤ k ≤ n, the search length, being LCMk−1,

64

in the simulation-based schedulability test for checking the schedulability of Γk is

optimal.

Proof. For each k, 2 ≤ k ≤ n, as shown in Lemma 4, it needs to search with no

more than a length of LCMk−1 for checking the schedulability of task τk. On the

other hand, it indeed requires to search with at least a length of LCMk−1 for testing

the schedulability of task τk in a simulation-based way, since, in general, all possible

execution states of k-1 higher priority tasks are embodied in a feasibility interval of

Γk−1 with a length of LCMk−1. In other words, if a testing length is no more than

LCMk−2 when intending to test the schedulability of Γk, certain execution states of

Γk−1 will be missing and thus it is unable to test the schedulability of task τk, let

alone the optimality. �

It should be pointed out that Theorem Theorem 2 and Theorem 3 provide a

recursive method which can be applied step-by-step from the highest priority task to

each of the lower-priority ones in the n-task set. It does not, however, imply the two

theorems can only be used recursively. In fact, when using traditional time-tick-based

simulation method, for the sufficient test, we can use no more than 5(n-1) variables

to record the related boundary values of k-permissibility intervals of task τk in the

time interval [Φ
{k−1}
min , Φ

{k−1}
min +LCMk−1), i.e., t1, t′2i+1, t′2i, max{t′2i+1 − t′2i}, and the

values of l
{k}
max, calculate the l

{k}
max when the simulated schedule reaches at the time

Φ
{k−1}
min +LCMk−1, and then check the schedulability of Γk according to the theorems.

Thus, for example, for a system with n synchronously released tasks having the same

period T , the length of the interval used by the sufficient test is still T , no need to test

65

n-1 times a time interval of length T . At this time, there is only one k-permissibility

interval of τk in the interval [0, T), and we need no more than 2(n-1)+1 variables

for recording the related values of k-permissibility intervals and the values of l
{k}
max,

2 ≤ k ≤ n.

In addition, based on previous results in [21], we derive a new necessary test for

P-FRP tasks by Lemma 5.

Lemma 5. For a periodic task set under a fixed priority assignment, a necessary

schedulability test in the P-FRP model is that it is schedulable for the same priority

assignment in the classic model.

Proof. As stated in [21], (1) if a task set is schedulable for some fixed priority as-

signment in the classic model, then it is not necessarily schedulable for the same

priority assignment in the P-FRP model; and (2) if a task set is schedulable for some

fixed priority assignment in the P-FRP model, then it will also be schedulable for

the same priority assignment in the classic model, the lemma then follows. �

By Lemma 5, negative propositions in the classic model, such as that, for periodic

task sets with constrained deadlines and scheduled in an asynchronous way, the DM

scheduling is not optimal, will remain negative in the P-FRP model.

It is seen that the maximum search length has been reduced from LCMn to

LCMn−1 when Tn 6= LCMn−1 for testing the schedulability of Γn which satisfies

the basic phasing condition and the initial busy condition (including the scenario

of synchronous start) for a GPA, and it is optimal in terms of the search length.

66

However, it is still not a polynomial-time schedulability test. In fact, we conjecture

that, in the P-FRP model under fixed priority scheduling, the problem of deciding

whether a given periodic n-task set is schedulable for a GPA on m processors is NP-

hard for each m ≥ 1, i.e., it is unlikely that there will be a polynomial-time exact

schedulability test unless P=NP; otherwise, for all those periodic n-task sets which

are deemed schedulable in both the P-FRP and classic models, denoted by Γds, we

can use the polynomial-time exact schedulability test in the P-FRP model under

fixed priority scheduling to check the schedulability of a given task set in Γds, then,

by Lemma 5, it implies that, in the classic model under fixed priority scheduling,

we are able to check the schedulability of any task set in Γds in polynomial-time,

and this will contradict previous results in the general case (as stated in Sec.5.4).

Note that the conjecture does not imply that there will be no polynomial time exact

schedulability test in the classic model for task sets with particular parameters. Till

now there is no formal proof for the hardness of the above decision problem in the

P-FRP model.

Finally, it should be emphasized that the above sufficient schedulability test is

applicable for periodic P-FRP n-task sets satisfying both the basic phasing condition

and the initial busy condition under fixed priority scheduling and a GPA. For the

scenarios of dealing with arbitrary phasing, finding the phasing that leads to the

worst-case behavior, and optimizing priority assignment are left for future work.

67

5.3 Experimental Results

Besides providing theoretical proofs in Sec.5.2, we present experimental results in

this section for showing the efficiency improvement and the effectiveness of the new

suffcient schedulability test. The efficiency improvement refers to improvements on

the search length and the testing time, while the effectiveness means that, by the

new sufficient test, a given task set satisfying the sufficient condition is deemed

schedulable and a given unschedulable task set is also deemed unschedulable. In

fact, simply comparing the LCMn−1 with the LCMn of the same n-task set for the

same given priority order provides an evidence of the efficiency improvement on the

search length of the new test.

Experiment setup: We generate six groups of task sets, from 3-task to 8-task

sets, by varying tasks’ parameters and task set size. An n-task set is generated as

follows. Randomly generate n positive integer values within a given range, sort them

in an increasing order, and set them in sequence to the period Ti, 1≤ i ≤ n; Use the

UUniFast algorithm [30] to generate n utilization factors Ui in a decreasing order,

1≤ i ≤ n, such that the total utilization U=
∑n

i=1 Ui equal to a given value, e.g.,

0.5 or 0.4 for a 3-task set and a 4-task set respectively; Then let the computation

time Ci to be Ti × Ui. Each phasing Φi is set to 0 or 1 for satisfying the initial busy

condition. RM scheduling is employed. Two different period ranges are used, aiming

to validate the sufficient test with different scenarios, the range of periods from 61

to 301 for the groups of 3-, 4- and 5-task sets and the range of periods from 51 to 79

for the groups of 6-, 7- and 8-task sets. Each of the task sets in each group is likely

68

Figure 5.7: Comparison between cases for different testing interval lengths.

to be unique since they are generated independently. The experiment is conducted

on a PC with CPU i7-3770 3.4GHz and 16GB memory.

Fig.5.7 shows ours improvement by a comparison of averaged testing time per

task set between cases for different search lengths. The testing time is averaged over

300 schedulable task sets satisfying the sufficient condition for each group. Groups

with different period ranges are put in the same figure. The Y-axis is shown with a

logarithmic scale due to high values of testing time of the case for the search length

of LCMn.

We can see that for different groups of task sets all have efficiency improvement.

In average the testing time per set in groups of 3- through 7-task sets has been

improved for at least one order of magnitude, especially for groups of 4- and 5-task

sets having more than two order of magnitudes. For the group of 8-task sets, the

testing time per set by the test with a search length of LCMn is as more than 9

times long as that using the new test, which implies that in average for this group of

8-task sets the new test with an LCMn−1 search length needs only one-ninth time of

69

that of an LCMn. In addition, by comparing groups of 3-, 4-, and 5-task sets with

that of 6-, 7-, and 8-task sets, we can see that more improvements are obtained for

task sets with larger range of periods.

On the other hand, in the experiments we generate 60000 6-, 7-, or 8-task sets

(20000 per group) and pick out totally 10168 task sets that are all in fact unschedu-

lable (confirmed by the test with a search length of LCMn) and they are all deemed

unschedulable by the new test. At this time, in average the testing time per task set

for each group by the new test is between 14.8ms and 113.4ms, having been improved

for at least one order of magnitude because of less search length.

To sum up, the new sufficient test is of not only effectiveness but also having

efficiency improvement in average both on the search length and on the testing time,

compared with the test with a search length of LCMn.

5.4 Related Research Work

To date, there is an immense body of research on the classic model, and excellent

surveys can be found in [43],[57],[6], [117],[13],[55]. In contrast, research on the P-

FRP model is just beginning. In this section, we give a brief review on some results

on the classic and P-FRP models under fixed priority scheduling on uni-processor

systems that are pertinent to the theme of this chapter.

In the classic model under fixed priority scheduling, as to the exact schedulability

tests for n-task sets, there are two kinds of generally equivalent computation-based

70

methods which are based on either processor demands (or workload) [89],[33], or on

the response time analysis (RTA) [5],[7]. Using the workload Wi(t)=
∑i

j=1dt/Tje ·Cj

given in [89], which is the cumulative demand on the processor incurred by jobs

of equal or higher priority than the task τi over [0, t] when time 0 is a critical

instant, a periodic task set with implicit deadlines is schedulable for any phasing

under fixed priority scheduling if and only if max1≤j≤nmint∈si{Wi(t)/t}≤1, where

si={k · Tj: j=1,...,i; k=1,...,bTi/Tjc}.This expression has been extended for coping

with arbitrary deadlines [90], and for accommodating asynchronous systems [29]. A

more efficient Hyperplanes test was also proposed [33], which can be tuned using

a parameter to balance acceptance ratio versus complexity. An important concept,

termed the busy period, for schedulability analysis has been introduced in [90].

Using the RTA-based method proposed in [5],[7], a periodic task set with con-

strained deadlines is schedulable under DM scheduling if and only if Ri ≤ Di for

each task, where the Ri can be computed using the iterative formula, i.e.,R
(k)
i =Ci+∑

1≤j<idR
(k−1)
i /Tje · Cj, until R

(k)
i = R

(k−1)
i and R

(k)
i ≤ Di, where the initial value

of R
(0)
i is set to Ci, and only a subset of points in the interval [0, Di] need to be

examined for feasibility. Other initial values such as
∑

1≤j≤iCj or Ri−1+Ci can also

be used [6], and further effective initial values are explored for faster convergence and

efficiency improvement [96],[30]. Other exact tests such as that in [108] deal with

cases under a condition of certain period ratios. In addition, response time upper

bounds can also be used as sufficient tests [31],[56]. Moreover, the standard RTA

algorithm has been extended to cater for situations of arbitrary deadlines and release

jitters without restrictions on the task periods [121]. There are also other extensions

71

such as accounting for blocking time.

In general, however, in the classic model, the problem of deciding whether any

given periodic task set is schedulable under fixed priority scheduling, for both syn-

chronous and asynchronous systems, is NP-hard, unless P=NP [92],[91],[12], [35],

without resource (or speed) augmentations. Approximate schedulability tests with

tunable complexity have also been proposed [32],[35]. The non-polynomial behavior

is due to the feasibility test itself and not the priority assignment [8], since only a

polynomial number of priority assignments, at most being O(n2), needs to be checked

for both synchronous and asynchronous n-task sets [7],[8]. In addition, it has been

proved that response time computation for periodic tasks with implicit deadlines

under RM scheduling is NP-hard [62], and thus approximate techniques are em-

ployed [105]. Moreover, for some special tasks such as those with harmonic period

length, meaning that the periods of tasks pairwise divide each other, there are exact

polynomial-time algorithms for both testing the schedulability and computing the

response time [36].

In the P-FRP model, the authors of [17],[18] present the Gap-enumeration [17]

and idle-period game board [18] algorithms for computing the actual response time,

and then the schedulability of the task set is determined. However, the algorithms

need to test within the interval consisting of the LCM of all task periods; On the

other hand, both algorithms have some slack in performance due to higher search

costs or Red-Black balance-tree maintaining costs [18].

As to the sufficient test, the authors of [16] proposed one for P-FRP n-task sets,

with a utilization bound being 1/n under the restriction of Tn < Ti and Ti ≤ n·Tn for

72

1 ≤ i < n, making it less useful as n gets larger. In addition, the authors of [112] tried

to extend the standard RTA method for coping with the problem of RTA in the P-

FRP model. Furthermore, the authors of [123],[124] provided an equivalent equation

to that in [112], and considered it as a sufficient test in their studies. However, a

special case indicates that the resulting expression does not converge for all situations

[17]. This research practice indicates that results derived in the classic model usually

do not apply directly to the P-FRP model because of the AR feature and hence the

uncertain response time of the P-FRP tasks [39]. Thus, schedulability analysis in

the P-FRP model deserves more research effort. To the best of our knowledge, no

simulation-based tightly sufficient test for P-FRP tasks for a given priority order is

available till work of this chapter.

5.5 Conclusions

In this chapter, we have presented a new simulation-based sufficient schedulability

test for periodic P-FRP task sets which satisfy both the basic phasing condition and

the initial busy condition for a given priority order, under fixed priority scheduling,

covering both implicit and constrained deadlines. The sufficient test, including the

optimality of the search length for testing, is validated by both theoretical proofs

and experimental results. To the best of our knowledge, this is the first time such

simulation-based tightly sufficient test is presented in the P-FRP model, showing

the first test that has the maximum search length being the LCM of periods of the

first n-1 higher priority tasks. One significance of this optimal search length is that,

73

when LCMn is (much) larger than LCMn−1, previous tests constructing a schedule of

length at least LCMn may be infeasible while the above test may be feasible. Though

the new test is not efficient enough, it is the current best result of simulation-based

schedulability tests and its search length cannot be improved further.

The schedulability and response time analysis problems under non-fixed prior-

ity scheduling policies as well as those dealing with arbitrary deadlines and finding

optimal priority assignments in the P-FRP model are future work. Considering the

blocking time, sporadic tasks, robustness during overloads, resource sharing, and

task interactions also deserve further study. The scheduling theory for the P-FRP

model is far from complete and must be fully addressed for it to be practically used

in the implementation of complex real-time control systems.

74

Chapter 6

Deferred Start

In real-time systems, Functional Reactive Programming (FRP) is already playing

an important role and will potentially be more so in the future. Priority-based

(preemptive) FRP (P-FRP), a variant of FRP with more real-time characteristics,

demands more research in its scheduling and timing analysis. Its Abort-and-Restart

(AR) nature indicates that reducing preemptions can be critical for improving system

performance. In this chapter, we present a new non-work-conserving scheduling

model, P-FRP Deferred Start (DS) model, to reduce certain preemptions for task

sets with fixed priorities. We analyze some properties and feasibility problem of

the P-FRP DS model. We provide a prototype algorithm to verify our analysis.

The algorithm has polynomial-time complexity in terms of the total number of jobs

*Work of this chapter was published as: Xingliang Zou, Albert M. K. Cheng and Yu Jiang.
A Non-Work-Conserving Model for P-FRP Fixed Priority Scheduling. 13th IEEE International
Conference on Embedded Software and Systems in Chengdu, 2016.

75

within a given time interval. Experiments show the domination on schedulability

rate and task response time to those of the P-FRP AR model. The schedulability

rate increases up to 243.1% and the task response time saving is up to 24.11% for

10-task sets in our experiments.

6.1 Introduction

In real-time systems, the correctness of a program is measured by its logical output as

well as its ability to complete within certain time limits. FRP (Functional Reactive

Programming) [122] is demonstrated to be effective in modeling and building real-

time reactive systems such as graphics, robotic and vision applications. However, a

significant feature of real-time systems, priority, is not considered in FRP. To address

this problem, the P-FRP (Priority-based FPR) [84] model has been proposed as a

variant of the FRP model. P-FRP maintains both the type-safety and the state-less

execution paradigm of FRP, and supports priorities assigned to different tasks while

not requiring the use of synchronization mechanisms between tasks in the system.

It has the potential to transform the building of more and more complicated Cyber

Physical Systems (CPSs). Christoffersen and Cheng [46] presented an impact of

P-FRP in building controllers in automobile anti-lock brake systems.

In classic preemptive scheduling [94], a preempted task pauses execution, and

resumes from where it paused (Fig.6.1(a)) when it is given CPU time again. In order

to maintain the state-less paradigm of the FRP model, unlike the classic preemptive

model, P-FRP uses an Abort-and-Restart (AR, Fig.6.1(b)) semantics where if a

76

lower priority task is interrupted by a higher priority task, it has to restart from

the beginning when it is resumed. Thus the P-FRP model is also called the P-FRP

AR model, or simply shortened as the AR model. This provides a scheduling and

programming model where response times of different tasks can be tweaked by the

programmer without affecting the semantic soundness of the program.

6.1.1 Motivations and Contributions

It is obvious that the restarting in the AR model wastes the executed time (we call

it the abort cost) and therefore the schedulability would benefit from reducing the

number of preemptions (aborts). Our contributions in this chapter include:

1) We propose a new model, the P-FRP Deferred Start (DS) model, or short-

ened as the DS model, for P-FRP systems. The DS model (see Fig.6.1(c)) reduces

the number of preemptions by postponing the starting of a job. It is a non-work-

conserving model and applies to task sets with any given priority assignments. The

DS model has equivalent or better schedulability and tasks’ response time perfor-

mance compared to that of the AR model, which is not true in any other known

non-work-conserving models.

2) We present the schedulability and response time analysis for the DS model.

Experiments and analysis indicate the superior schedulability rate and shorter re-

sponse time in the DS model compared to the AR model.

3) We present and implement a prototype algorithm for the exact schedulability

test in the DS model. The algorithm has polynomial-time complexity in terms of the

77

1

2

3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Preempted Job

Resumed and completed

Start and completed

Restarted and completed

(a) The classic preemptive model

1

2

3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(b) The P-FRP AR model

1
2
3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(c) The P-FRP DS model

Figure 6.1: Schedules of synchronously released fixed priority task set (C1 = 1,
C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 21, implicit deadlines).

78

total number of jobs within a given time interval. The algorithm and implementation

aim to improve the existing algorithms in P-FRP task scheduling.

6.1.2 Organization

The rest of the chapter is organized as follows. Basic concepts and notations used in

this chapter can be found in Chapter.2. Section 6.2 gives a brief overview on related

works. Section 6.3 presents the DS model and its some properties. Section 6.4

describes our algorithm for the exact schedulability test in the DS model. Section

6.5 provides the experiments and results analysis, and Section 6.6 concludes this

chapter.

6.2 Related Work

In the classic preemptive model using RM (Rate Monotonic) scheduling for periodic

tasks with deadlines equal to periods [94], an n-task set is schedulable if the first

instance of each task can finish within its deadline when these tasks are released at

the same time (synchronous release, or critical instant). RM is optimal among other

existing fixed priority scheduling algorithms for synchronously released periodic task

sets [94]. When deadline is less than period, Deadline Monotonic (DM) uses deadlines

instead of periods and is similar to RM [38]. For arbitrary deadline task-sets with

potentially some tasks having deadlines greater than periods, neither the RM nor

the DM schemes can be used [90]. There are extensive analysis of schedulability for

79

the tasks with given priority assignments under the classic preemptive model [38],

[57] in decades.

However, these analyses do not apply directly to the P-FRP model due to the

abort-and-restart semantics of P-FRP systems. Belwal and Cheng [20] have shown

that RM is not optimal in the P-FRP AR model with synchronous release and it is

even unknown if there exists an optimal one other than exhaustive tests over all possi-

ble priority assignments. Belwal and Cheng [16] presented a utilization-based analy-

sis showing that the current schedulability condition only holds true with the utiliza-

tion bound of 1/n under certain restrictions on periods and release scenarios. Jiang

et al. [82], [81] presented their feasibility intervals and schedulability analysis for the

AR model of the P-FRP systems. Wong et al. [123] conducted research on other

priority assignment algorithms: Utilisation Monotonic (UM), Execution-time Mono-

tonic (EM), and a combination of UM and EM, Execution-time-toward-Utilisation

Monotonic (EUM). By comparing with the Exhaustive Search (ES) schema, they

confirmed that none of RM, DM, EM, or EUM is optimal in the AR model. The

reality that there is so far no optimal priority assignment algorithm for the P-FRP

AR model is one of the motivations of the work in this chapter to study alternative

models of P-FRP systems.

Alternatives of the AR model are researched too. Real-time Java is designed to

allow programmers to develop a real-time application using the Java language. In

[98], Manson et al. introduced the example of Preemptible Atomic Regions (PAR)

for real-time Java. It is a new concurrency control abstraction for real-time systems.

The basic notions of the AR model and the PAR model are similar but PAR makes

80

a log of the shared resource and then the state of the resource will be rolled back

if the task is preempted. Wong et al. [125] proposed the Deferred Abort (DA)

model where a task is divided into two regions: the first region is AR and the second

region is non-preemptive and non-abortable. The motivation of the DA model is to

reduce the number of preemptions by eliminating some preemptions. The difference

between AR and DA is that AR has no non-preemptive region and a higher priority

task preempts a running lower priority task instantly when it is released. Notice that

the deferred preemption has been studied in the classic preemptive model, such as

[37], [53], [42], and the deferred abort can be viewed as an application of the deferred

preemption in the P-FRP model. The concepts of priority level-i active period, and

∆-critical instant were also introduced. Preliminary research of the DS model was

presented in [127].

The most effective way to reduce preemption cost is to disable preemptions com-

pletely, which means a non-preemptive scheduling (NPS). In most NPS, however, a

task can experience blocking from other tasks. A careful arrangement of task execu-

tion can avoid the blocking, while it most likely works in a non-work-conserving way.

NPS has received less attention compared to preemptive scheduling. The schedula-

bility conditions in NPS are NP-hard in the strong sense as Jeffay et al. [80] shown,

and in the same paper, they also presented an exact (necessary and sufficient) test

for schedulability of non-preemptive EDF (npEDF) for periodic tasks with arbitrary

release offsets. A comprehensive schedulability analysis of non-preemptive systems

was performed by George et al. [66]. Sufficient conditions for the schedulability of

periodic (and sporadic) tasks scheduled by non-preemptive rate-monotonic (npRM)

81

have been studied [66], [3], [109]. Clairvoyant EDF (cEDF) [63] and group-based

EDF (gEDF) [93] are two heuristic algorithms for this NP-hard problem.

Since the problem is NP-hard, special cases were studied, such as harmonic task

sets [59], [44], [103]. It should be stated that in [103] the Precautious-RM algorithm

was proposed and it was an O(1) fixed priority based algorithm which can be used

in many more cases [102], [104], for example, that Nasri and Fohler [102] presented

Efficient Precautious-RM (EP-RM) as non-preemptive scheduling algorithms under

RM (rate-monotonic) priority assignment for less restricted harmonic task sets where

the periods of tasks are an integer multiple of the shortest task period. Baruah and

Chakraborty [11] analyzed the schedulability of the non-preemptive recurring task

model. Buttazzo and Cervin [40] used the non-preemptive task model to reduce jit-

ter. Preemption normally works well to meet timing requirement in real-time system

design; however, in many cases, a fully preemptive scheduler produces many unnec-

essary preemptions. To reduce the runtime overhead due to preemptions and still

preserve the schedulability of the task set, limited preemption has been investigated

[14], [42].

6.3 Deferred Start of P-FRP

We introduce the DS model for the P-FRP systems in this section. We first give the

definition and several properties of the DS model, then present feasibility interval

analysis for this new model.

82

6.3.1 The Model

We analyze further the classic preemptive model, the classic non-preemptive model,

the P-FRP AR model, and the P-FRP DA model, for comparison purpose; then we

give the definition of the DS model for P-FRP tasks.

1) In the classic preemptive model, when a task is running and a higher priority

task releases and takes the control of processor, the lower priority task pauses execu-

tion. And when the interrupted task gets again the control of processor, it resumes

from the point when it was paused; the already-executed part of the task remains

effective.

2) In the classic non-preemptive model, once a task, whatever its priority, starts

executing, no task can interrupt it. Each successfully scheduled task thus occupies a

continuous block of time at the length of the task’s execution time. Non-preemptive

scheduling brings a question that is called priority inversion. When priority inversion

happens, the tasks with higher priorities have to wait for the completion of the tasks

with lower priorities.

3) In the P-FRP AR model, a newly released higher priority task interrupts the

running task instantly in the same way it does in the classic preemptive model.

However, for the interrupted task, it must start from the beginning whenever it is

given control of the processor again. No matter how much processor time it has spent

in the uncompleted executions and how many times a task is interrupted, there has

to be a continuous block of time no shorter than the length of the task’s execution

time in order to let it finishes execution. This AR model can also be called the

83

fully-AR model.

4) In the P-FRP DA model, a task contains two regions: preemptive and non-

preemptive regions. It works in the preemptive region in the same way the AR

model does, and works in the non-preemptive region in the same way the classic

non-preemptive model does.

From the above analysis, we can see that there are executed but incomplete

execution regions for an individual task in both the classic preemptive model and

the P-FRP AR model (including the DA model). The difference is that the executed

but incomplete execution regions of the same task in the classic preemptive model

are valid towards the complete execution of the task, while those in the P-FRP

AR model are not. In fact, an executed but incomplete execution region has no

contribution to and effect on the completion of a P-FRP task in the P-FRP model.

So there are two steps leading to the DS model from the AR model. In the first step,

we use “idle” periods to replace the executed but incomplete execution regions in

the AR scheduling. In the second step, without affecting the execution of tasks with

higher priorities, we move backward the complete execution of some lower-priority

task if it fits in a “idle” period. By repeating these steps for tasks from the second

highest-priority task (no need for the highest-priority task) to the lowest-priority

task, we get the DS model scheduling of the P-FRP task sets.

In practical algorithms, scheduling in the DS model (DS scheduling) is simplified

as follows: a task is scheduled as if it was in the AR model with the condition that it

is scheduled to start executing only when there is enough time to finish its execution.

As a result, the number of preemptions in DS scheduling decreases to zero, which

84

makes it seem to be a non-work-conserving non-preemptive scheduling. It differs,

however, from existing classic non-preemptive scheduling algorithms in that:

1) the completion time, hence the response time, of a higher-priority task in DS

scheduling is not affected by tasks with lower priorities. A task yields the processor

only when it will be preempted by higher-priority tasks and that would make the

incomplete execution useless according to the P-FRP semantics, and not because of

the arrival of lower-priority tasks. It is still a priority-based model but there is no

priority inversion as found in the classic non-preemptive model.

2) in the P-FRP AR model, preemptions happen strictly according to the priority

settings, thus the response time of a task is optimal in the sense that its response

time is not affected by any lower priority task. The DS model follows the same rule

regarding to priority settings, so the DS model is not comparable to those classic non-

preemptive models that allow a task delay execution while it should start instantly.

3) there is no non-preemptive region in DS scheduling as found in the DA model

and some classic non-preemptive models.

By shifting from work-conserving to non-work-conserving, compared to the AR

model, in the DS model, (1) there is no waste of execution time; (2) because higher-

priority tasks yield the processor if it cannot finish execution in some time interval, a

lower-priority task has higher chance to be scheduled successfully and to be scheduled

earlier for execution, thus the schedulability rate of task sets increases, and the

response times of individual tasks decrease.

Table 6.1 shows where the DS model is in the context of preemptive P-FRP.

85

Table 6.1: Preemptive P-FRP

Fully-AR Non-fully-AR

Work-Conserving AR [84] DA[125]

Non-Work-Conserving DS

Both the existing AR and DA models are work-conserving, and to the best of our

knowledge, the DS model is the first non-work-conserving model proposed for P-FRP

systems.

The DS model that is presented in this chapter is based on fully AR, that leaves

the variations of the DS model open topics which are neither fully preemptive nor

fully non-preemptive.

6.3.2 Properties

We present several properties of the DS model in this subsection.

Theorem 5. In P-FRP systems, if a task set is schedulable in the AR model, it is

also schedulable in the DS model.

Proof. The proof is conducted using an inductive method for a Γn task system,

Base: when n = 1, where there is only task τ1, the proof is obvious that both

schedulings are the same, thus if it is schedulable in the AR model then it is schedu-

lable in the DS model.

Inductive hypothesis : For n = k, suppose that if Γk is schedulable in the AR

model, then it is also schedulable in the DS model.

86

Inductive step: When n = k + 1, i.e., Γk+1 = Γk ∪ {τk+1}, the aim of this step is

to prove that if Γk+1 is schedulable in the AR model, then it is also schedulable in

the DS model. Without loss of generality, we can assume the newly added task in

Γk+1 is τk+1; otherwise, we can still assume that the Γk consists of the first k highest

priority tasks and by the inductive hypothesis, this Γk is schedulable in both the AR

and the DS models. Notice also that adding a task with the lowest priority does not

change the schedulability of the existing task set according to the definition of the

AR and the DS models.

For Γk+1 = Γk ∪ {τk+1} which is schedulable in the AR model, by inductive

hypothesis, Γk is schedulable in the DS model, and now we need to prove τk+1 is

schedulable in the DS model.

It is noted that, for the same task set Γk+1, for each job of each task, its release

time point is the same in both the AR model and the DS model, and a lower priority

task has no effect on the schedule of higher priority tasks. For any job J j
k+1(j ≥ 1)

of the task τk+1, since τk+1 is schedulable in the AR model, suppose that the release

time point of job J j
k+1 is tr and the completion time point is tc. Given the schedule

SDS of Γk in the DS model and there are m (m ≥ 0) unoccupied time intervals in

the schedule SDS between the time point tr and the time point tc − Ck+1 that have

length no shorter than Ck+1. If m = 0, the finish time of job J j
k+1 in the DS model

is the same as that in the AR model. If m > 0, job J j
k+1 is scheduled successfully at

a time point in the DS model ahead of that in the AR model. The theorem is then

proved. �

Lemma 6. In P-FRP systems, if a task set is schedulable in the DS model under

87

Table 6.2: An example task set

Priority Execution Time Ci Period Ti
τ1 1 1 5
τ2 2 2 4
τ3 3 2 10

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

(a) Using RM priority assignment: τ1(3, 12), τ2(7, 15)

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 32 33 34 35 36 37 38 39 40 41 42 43 54 55 56 57 58 59 6022 23 24 25 26 27 28 29 30 31 45 46 47 48 49 5044 51 52 53

(b) Using a non-RM priority assignment: τ1(7, 15), τ2(3, 12)

Figure 6.2: Schedules of synchronously released fixed priority task set
(C1 = 7, C2 = 3, T1 = 15, T2 = 12, implicit deadlines) in the DS model.

a given priority assignment, there is no guarantee that it is schedulable in the AR

model under the same priority assignment.

Proof. We use an example to show this property.

Tasks in Table 6.2 all have implicit deadlines and release synchronously. Simply

referring to the Figs.6.1(b) and (c), it is clear that Γ3 is schedulable in the DS model,

but the first job of τ3 will miss its deadline in the AR model. �

Theorem 5 together with Lemma 6 imply that an AR model’s schedulabity test

must be sufficient but may not be necessary for the DS model.

From the definition and analysis of the DS model, we also have Lemma 7.

Lemma 7. Compared to the AR model, the DS model reduces the response time of

88

a lower priority task without delaying the completion of higher priority tasks, and

hence it can decrease the response time of all tasks except the two highest priority

ones.

Proof. For a task system Γn of 1 ≤ n ≤ 2, tasks’ response time in the DS model are

the same as those in the AR model (see the analysis on τ1 and τ2 below).

When n ≥ 3, according to the scheduling rules of the DS model, we have that:

1) τ1, the task with the highest priority, is scheduled right at the time when it is

released, and its response time is hence exactly its execution time, C1.

2) After τ1 is scheduled, τ2 is selected. For a certain job of τ2, in the AR model,

before it finally finishes execution at time t, it might have been aborted k (k > 0)

times, hence wasting k time intervals, [t1, t2), [t3, t4), ..., [t2k+1, t2k+2). On the other

hand, when it is scheduled in the DS model, its completion time is still t since none

of the k time intervals is long enough and the DS scheduler simply skips them. So

the response time of τ2 in both models is the same, except that k time intervals are

idle in the DS model. If there is no abort, we apply the same reasoning to τ3.

3) After τ2 is scheduled, τ3 is selected. In the DS model, jobs of τ3 may be able to

use the time intervals which are wasted in the AR model and saved in the DS model

after scheduling jobs of τ2. Even though τ3 may not be able to benefit in shortening

its response time from the saving intervals resulting from scheduling τ2, it does not

suffer lengthening of its response time. Besides, the time intervals that are not used

by τ3 may also be used in scheduling other lower priority tasks.

89

4) For τ4 and others, similar reasoning as in 3) applies.

Hence, Lemma 7 is proved. �

Theorem 5, Lemma 6, and Lemma 7 show that the task set schedulable in the

AR model is also schedulable in the DS model, and some of the task sets that are

not schedulable in the AR model can be schedulable in the DS model. Also, for a

task set schedulable in both the AR and the DS models, its response time in the DS

model is not longer than that in the AR model. Thus the DS model dominates the

AR model in terms of task schedulability and response time.

6.3.3 Feasibility Interval Analysis

We give a concept first. In the DS model, when there is an available time interval but

a task is not able to use it because of its short length, we call the task is interfered

by higher-priority tasks.

Lemma 8. The schedule of Γn in the DS model has at least (n − 1)! interfering

combinations.

Proof. Consider first a periodic task set Γn whose tasks release only once. Task τ1

has n − 1 choices of lower priority tasks to interfere; τ2 has n − 2 choices of lower

priority tasks to interfere. This continues until τn−1 which has only one choice to

interfere. Finally, τn has zero choices because there is no lower priority task. In

this case, there are (n− 1)! interfering combinations. When tasks release more than

90

once, the number of choices increases, and the number of interfering combinations is

therefore at least (n− 1)!. �

Lemma 9. In the DS model for P-FRP systems, the rate-monotonic priority assign-

ment is not an optimal priority assignment with synchronous release of tasks.

Proof. If we can give a P-FRP task set in the DS model which is not schedulable

using the RM priority assignment, but is schedulable by another priority assignment,

it is sufficient to prove this lemma.

Consider a 2-task system Γ2: C1 = 7, T1 = 15, C2 = 3, T2 = 12 that released

synchronously at time 0, as shown in Fig.6.2. Using the same method shown in

Fig.6.1, in the time interval of [0, 60), the third job of τ1 finishes at time point 46

which is 1 time unit later than its deadline when using the RM priority assignment

(Fig.6.2(a)). After exchange their priority, both tasks are scheduled successfully

(Fig.6.2(b)). The lemma is hence proved. �

In fact, there is still no known priority assignment or release pattern to form the

critical instant of the DS model in P-FRP systems as Theorem 6 indicates.

Theorem 6. To find the critical instant for the DS model in a periodic n-task system,

there are exponential number of state should be checked.

Proof. Lemma 8 shows that there are at least (n − 1)! interfering combinations for

an n periodic task system, and all of which must be checked for the worst-case

to be found. These two properties in isolation and together show that it is an

91

exponentially increasing number of release patterns to check in order to define the

critical instant. �

Thus, efficient feasibility interval analysis and schedulability test algorithms and

implementations for a given release pattern are demanded before finding the WCRT

of an n-task system.

One of differences between the DS model and the AR model is that in the DS

model a time interval that is unable to accommodate the complete execution of a

task τi may be able to accommodate the complete execution of a lower priority task

τk. We then provide a new definition of the k-permissibility interval in DS of a task

τk in the DS model as follows, which is of difference in condition (2) from that in

[82].

Definition 3. For Γn under fixed priority scheduling, a k-permissibility interval in

DS of task τk is a time interval [tu, tv) such that: (1) the interval length, i.e., tv− tu,

is no less than Ck time units, (2) the interval length tv− tu is less than Ci time units

if a higher priority task τi is awaiting execution and ready to execute before time tu,

and (3) no higher priority task is released within it.

When a given phasing of Γn satisfying 0 ≤ Φk < Tk for all k, 1 ≤ k ≤ n, we

designate the given phasing with a term of the basic phasing condition [82]. When

Γn satisfies the basic phasing condition, each Γk (1 ≤ k ≤ n) also satisfies this

condition. The term of the Initial Busy Condition remains the same as that in the

AR model [82].

92

Definition 4. For Γn under fixed priority scheduling, the Initial Busy Condition for a

given priority assignment refers to the condition: For each i, 2 ≤ i ≤ n,min1≤j<i{Φj} <

Φi + Ci and Φi ≤ max1≤j<i{Φj + Rj,1} where Rj,1 is the response time of the first

job of task τj for the same given priority assignment [82].

In [82], the authors have presented their research on the feasibility interval in

P-FRP systems specifically with the AR model. The results are also hold in the DS

model since both the DS and AR model are the P-FRP models. Also, from Theorem

5 we know that a sufficient test in the AR model is also a sufficient test in the DS

model.

Theorem 7. [Theorem 3.3 in [82]] Consider a schedulable Γn satisfying both the basic

phasing condition and the initial busy condition, under fixed priority scheduling, then

for each k, 1 ≤ k ≤ n, a feasibility interval of Γk is [t, t+ LCMk), where t ≥ Φ
{k}
min .

The above results show the periodicity of P-FRP task scheduling in the DS model.

This periodicity makes it possible to check the schedulability of a task set in a

finite time interval, and apply it to the infinite releases of the tasks, thus makes

[Φ
{k}
min,Φ

{k}
min + LCMk) the first feasibility interval.

In the next section, we present an exact schedulability test for the DS model.

93

6.4 LList-based Exact Schedulability Test

There is neither mathematical- nor simulation-based either on computation time or

memory space for P-FRP DS model. Response Time Analysis- (RTA-) based schedu-

lability test is a practical method in such scenario. Belwal and Cheng presented the

gap-enumeration [17] and idle-period game board [18] algorithms for computing the

actual response time of P-FRP tasks in the AR model. However, on the one hand,

the algorithms need to test within an interval with length of LCM of all task periods;

On the other hand, both algorithms have slack in performance due to high search

costs or high Red-Black balance-tree maintenance costs [18].

Lv et al. [97] presented a linked list- (LList-) and simulation-based exact test

method for the classic preemptive model under fixed priority scheduling. The pre-

liminary results have shown that the LList-based exact test is a good candidate in

exact response-time tests when task periods span no more than three orders of mag-

nitude. Notice that this method is also applicable to the P-FRP tasks in both the

AR and the DS models. In the P-FRP model, though the optimal search length

LCMn−1 in the exact test is still exponential-time complexity in terms of the num-

ber of tasks, it is polynomial-time complexity in terms of the total number of jobs

within the test interval [82]. We use the same method in this work.

Also, from the analysis in above section, we have the following lemma:

Lemma 10. In the DS model, consider Γn satisfying both the basic phasing con-

dition and the initial busy condition, under fixed priority scheduling, then for each

k, 1 < k ≤ n, Γk is schedulable in [Φ
{k}
min,Φ

{k}
min + LCMk) if Γk−1 is schedulable in

94

[Φ
{k−1}
min ,Φ

{k−1}
min + LCMk−1) and τk is schedulable in [Φ

{k}
min,Φ

{k}
min + LCMk).

Proof. It naturally follows the proof of Theorem 7. �

Lemma 10 indicates that Γn can be scheduled in a recursive and incremental

manner, and it is crucial in improving the performance of the implementations.

6.5 Experiments and Results Analysis

6.5.1 Experiment Setup

The experiments are conducted on a desktop computer with a CPU of i3-4130

3.4GHz, 8 GB memory and Ubuntu 14.04.3 LTS 64-bit Desktop operating system.

The objective is to deliver comparisons between the AR model and the DS model on

the schedulable rate increasing for task sets and the response times decreasing for

individual tasks that achieved in the DS model.

From the discussion above, the DS model scheduling can be viewed as a kind of

non-preemptive scheduling, it thus shares the same limitation with non-preemptive

scheduling that the utilization factor of an infeasible task set can be close to 0 [104].

Hence the utilization factor itself of task sets in the experiments is not our concern.

We choose a utilization factor that is neither very high nor very low. And with

this chosen utilization factor, we should have enough number of schedulable task

sets as well as that of non-schedulable task sets in the AR model for the purpose of

comparison. In the task set generation, we only consider a necessary condition of

95

U ≤ 1. Adopting more necessary conditions can increase the quality of task sets in

terms of overall schedulable rate. While it is not important to this chapter as the

overall schedulable rate does not affect the comparisons.

As we have stated in above sections, the difference between the AR model and

the DS model with n-task system Γn where n = 1, 2 is trivial. So our experiments

start from 3-task sets. The task sets we generate have 3, 4, ..., 10 tasks respectively.

For each group, we generate 5000 task sets. The periods Tk are randomly generated

in range [15, 70] and deadlines are set to the corresponding periods. Note that the

period range is not of significance to our comparison objective. Release offsets are

randomly set to 0 or 1 satisfying the initial busy condition. The total utilization

factor of a task set is set to 0.6. We use the UUniFast algorithm [30] to generate

n (n = 3, 4, .., 10) utilization factors Uk(1 ≤ k ≤ n) in a descending order such

that the total utilization factor U =
∑n

k=1 Uk equals to the given value, 0.6, in this

experiment. We then shuffle those Uk to a random order for the consideration of

generalization. The computation time of each task is computed by Ck = Uk × Tk,

and set Ck = 1 if it is 0 after this computation.

6.5.2 Acceptance Ratio

Acceptance ratio means the proportion of the number of task sets deemed to be

schedulable by a test method to the total number of task sets tested. Numbers

of schedulable task sets in our experiments are listed in Fig.6.3. The rows of AR

and DS are the numbers of schedulable task sets in the AR and the DS model

96

 float sum floatsum%/>0

106.9504 7.391181

63.0383 6.114287

40.28147 5.97648

28.05282 5.678709

15.75674 5.414687

9.756688 5.189728

6.125261 4.979887

2.597097 4.477753

0.333903

0.1321424 0.2474442

0.0841581 0.183185 0.237993

0.06453856 0.1467096 0.22147 0.2549119

0.06972187 0.1262053 0.159744 0.2277571 0.247898

0.04878964 0.08215624 0.153958 0.1890167 0.226759 0.275517

0.03190518 0.07388265 0.128283 0.1500224 0.186519 0.24045 0.26445

0.04109468 0.06043708 0.155316 0.1592266 0.162634 0.204524 0.199643 0.241117

24.79

22.68 27.55

18.65 24.05 26.44

16.26 20.45 19.96 24.11

3 4 5 6 7 8 9 10

AR 2246 1195 698 507 292 189 123 58

DS 2516 1703 1252 1036 742 551 407 199

Rate 120.21 425.10 793.70 1043.39 1541.10 1915.34 2308.94 2431.03

0

500

1000

1500

2000

2500

3000

n-task set

Rate values multiply 10 for better visualization
N

u
m

b
er

 o
f

sc
h

ed
u

la
b

le
 t

as
k

se
ts

Figure 6.3: Schedulable Task Set in AR and DS.

respectively. In the third row, Rate is calculated by (DS −AR)/AR× 100 (%). For

better visualization, we amply the percentage numbers by 10 in the figure.

We can see that the numbers of schedulable task sets in the DS model domi-

nate those in the AR model, and the DS model has 12.0%, 42.5%, 79.3%, 104.34%,

154.1%, 191.5%, 230.9%, 243.1% more schedulable tasks. In this experiment, the

improvement of the acceptance ratio increases along with the increasing of the tasks

number in a task set. The reason is that with more tasks in a task set, the poten-

tially wasted time increases in the AR model, and hence the acceptance ratio of a

task system benefits more from applying the DS model.

97

Table 6.3: CPU Time Saved by DS

Γn 3 4 5 6 7 8 9 10
CPU Saving(%) 7.39 6.11 5.98 5.68 5.41 5.19 4.98 4.48

6.5.3 CPU Time Cost

We analyze the CPU time saving in the DS model compared to that in the AR model.

For each schedulable task set in both models, we sum up the CPU time assigned to a

task in the feasibility interval, TickAR and TickDS, then let Per Task Set CPU Saving =

(TickAR − TickDS)/T ickDS. We calculate the average number CPU Saving of all

such tasks and show in Table 6.3.

Table 6.3 shows that the DS model saves from 4.48% up to 7.39% CPU time

compared to the AR model. The ratio is not significant, and it is descending with

the ascending of the number of tasks in a task set. When comparing this small

number and the descending trend to the big number and the ascending trend in the

acceptance ratio change in Fig.6.3, it reveals the significance the abort-and-restart

wastes time to the P-FRP tasks. It also reveals that wasting of small pieces of time

could result in huge schedulability lost. The facts make the DS model a promising

alternative for the P-FRP systems.

6.5.4 Response Time

Experimental results confirm that scheduling tasks in the DS model has no task

response time increase compared to that in the AR model. We list statistics of the

response time changes of task sets in our experiment. From Table 6.4, Γ3 has 2246

98

Table 6.4: Task Sets with Response Time Decreased

Γn

Number of
Schedulable
Task Sets

Number of Task
Sets Having Re-
sponse Time De-
creased

Ratio
(%)

3 2246 348 15.49
4 1195 594 49.71
5 698 542 77.65
6 507 433 85.40
7 291 273 93.81
8 188 183 97.34
9 123 117 95.12
10 58 57 98.28

schedulable task sets in both the AR and the DS model, and 348 (15.49%) of them

have response time decreased. As of Γ10, 57 out of 58 (98.28%) have response time

decreased. The portion of task sets that have response time decreased ranges from

15.49% to 98.28%, and the number increases as the number of tasks in a task set

increases. The reason is that more tasks in a task set leads to more interfering cost

for lower-priority tasks in the AR model.

We calculate the average response time decreasing rate for τk, shown in Fig.6.4.

As expected, there is no response time change to the first two highest-priority tasks.

We notice that the lower the task priority is, the higher the response time decreasing

rate is. The reason is that with lower priority, a task has a higher chance of being

interfered by other tasks. For example, τ3 of Γ10 has 4.11% response time decreasing,

and the number monotonically increases to 24.11% for τ10.

99

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

3-task set 4-task set 5-task set 6-task set
7-task set 8-task set 9-task set 10-task set

The k-th task

A
v
er

ag
e

re
sp

o
n

se
 t

im
e

d
ec

re
as

in
g
 r

at
e(

%
)

Figure 6.4: Average Response Time Decreasing Rate.

6.6 Conclusion and Future Work

We have proposed our research on Deferred Start (DS), a new alternative model for

preemptive P-FRP systems. We stated that there is no known critical instant for

P-FRP task sets in this new model. We have presented several properties, and also

analyzed the feasibility interval problem of the DS model. Analysis and experiments

show that the DS model increases the schedulability rate and decreases the response

times of P-FRP tasks compared to the AR model.

Moreover, from the generalized analysis we have presented in this chapter, consid-

ering the fact that the DS model scheduling is a type of non-preemptive scheduling,

less generalized cases such as task sets with harmonic periods, with wider-distributed

periods are worth of further study.

100

Chapter 7

Multi-Mode Task Model

Functional Reactive Programming (FRP) provides an elegant way to express

computation in domains such as interactive animations, robotics, computer vision,

user interfaces, and simulation. Priority-based (preemptive) FRP (P-FRP), a variant

of FRP with more real-time characteristics, demands research in its scheduling and

timing analysis. Different from the classic preemptive model, in a P-FRP system,

when a task is preempted, all changes made by the task are discarded and after

higher priority tasks complete their execution the preempted task will restart from

the beginning (abort-and-restart). P-FRP is thus able to capture changes of the task

in time and provides an option other than the classic preemptive model in certain

scenarios.

*Work of this chapter was published as: Xingliang Zou, Albert M. K. Cheng, Carlos Rincon and
Yu Jiang. Multi-Mode P-FRP Task Scheduling. Outstanding Paper Award, 20th IEEE International
Symposium on Real-Time Computing, Toronto, Canada, 2017.

101

In the P-FRP model, previous studies use the largest execution time of a task for

all its restarted jobs. In practice, however, when considering the changing/unchanging

inputs/outputs of the task or the memory effects such as cache-hit in loading code

and data, the restarted jobs likely consume less time than its largest execution time.

In this chapter, for the first time we present a multi-mode P-FRP task framework

and two particular scenarios for the framework that are able to reflect such effects

and then improve the performance of a developing commercial software platform.

We show that the multi-mode task P-FRP system has significant schedulability im-

provements over the original P-FRP model.

7.1 Introduction

Functional Reactive Programming (FRP) is a framework for constructing reactive

applications. It exploits many of the characteristics of high-level languages such as

abstraction, maintainability, and comprehensibility. Nowadays, FRP is used in many

applications such as robotics, animation, and computer vision [79]. Research results

have also been presented on the semantics of FRP [50], [77], [119]. Applicability

of functional programming for real-time systems is laso explored by the research

community [119] [20] [123].

In Schneider Electric [73], a project called modelergy is under development and the

outcome is an OTS/Simulation-as-a-Service product. It is briefly a cloud platform to

host various applications. The platform itself consists of three major modules: the

portal is responsible for user management; the guest-agent is a bridge that connects

102

all modules, and the platform is the core module that hosts the client applications

and manages the entire environment. The hosted applications also have intensive

activities internally and throughout the underlying host platform. There are many

idempotent functions in modelergy that are naturally suitable for FRP. FRP also

facilitates scaling out of the modelergy. We adapted P-FRP [84], a priority-based

FRP variant, into modelergy to address the priority issue that different activities

require different priorities. Though in modelergy, there are more than one task

sharing the same priority, and there are various types of tasks, in this work we

simplify the range of tasks to the subset of periodic and sporadic tasks, and there is

only one task at each priority level.

Since P-FRP uses an abort-and-restart (AR) semantics where once a lower priority

task is interrupted by a higher priority one, it has to restart from the beginning after

released higher priority tasks complete, the cost of P-FRP must be addressed in order

to improve the resource efficiency such as efficient CPU and memory utilization.

Kazemi and Cheng [85] studied the P-FRP task execution time on a scratchpad

memory-based platform, and showed that the task execution time changes because

of the memory hierarchy. Their work is also one of the motivations for this work.

The contribution of this chapter includes: adopting P-FRP into a real-world

product; proposing a multi-mode task framework for P-FRP systems; intensively

analyzing and examining the proposed framework with two typical scenarios from

different perspectives. The results show that our achievements push P-FRP forward

into more practical use.

The rest of the chapter is organized as follows. In Section 7.2, we review the

103

related work of FRP and P-FRP. In Section 7.3, we propose the multi-mode tasks

scheduling for P-FRP systems, followed by the experiments and corresponding analy-

sis of the proposed models in Section 7.4. Finally, we conclude the chapter in Section

7.5.

7.2 Related Works

Hu et al. [77] reviewed the impact of functional programming, how it has changed the

way we construct, verify and even think about programs. Medeiros [99] prensented

the demands of the reactivity paradigm. Although FRP is often tied to pure func-

tional languages, adaptations of the paradigm to imperative languages exist. Library

[48] in Java and C++ works as a language extension by adding new grammar [58]

and as a library based on the standard languages [50]. Czaplicki and Chong [49] pre-

sented Elm, an FRP language focusing on the creation of graphical user interfaces

(GUIs). Project [74] presented a simple and practical comparison among various

FRP libraries.

One of the significant features of FRP is that its stateless execution eliminates the

use of synchronization primitives, and thus reduces the complexity of programming.

Programmers can intuitively describe safety behaviors of a system and lower the

chance of introducing bugs.

In real-time systems, the correctness of a program is measured by its logical

output as well as its ability to complete within certain time and with proper priori-

tization. P-FRP has been proposed in [84] to address priority issue of FRP. P-FRP

104

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Preempted

Resumed and completed

Cold-start and completed

Restarted and completed

t

(a) The classic model

t

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) The P-FRP AR model

Figure 7.1: Classic and P-FRP AR models RM scheduling
(C1 = 2,C2 = 1,C3 = 2,T1 = D1 = 4,T2 = D2 = 5,T3 = D3 = 20)

maintains both the type-safety and the state-less execution paradigm of FRP, and

supports priorities assigned to different tasks while not requiring the use of syn-

chronization mechanisms between tasks in the system. Zou et al. [130] presented a

detailed survey of current P-FRP scheduling research. Fig.7.1 shows different sched-

ules of an example taskset under classic and P-FRP semantics.

P-FRP is neither classic preemptive nor classic non-preemptive systems. Unlike

the classic preemptive systems, there are two job morphs in P-FRP systems because

of abort-and-restart: cold-started job and restarted job. Cold-started job is a job that

105

is released at the beginning of each period, while a restarted job is the re-invocation

of a preempted job. In the original P-FRP systems, cold-started and restarted jobs

have the same execution time.

Due to the abort-and-restart execution semantics of P-FRP systems, many re-

search results in the classic preemptive/non-preemptive/limited preemptive models

do not apply to the P-FRP model. For the P-FRP AR model, Belwal and Cheng

[20], Wong et al. [123] presented their researches on priority assignment. Jiang et

al. [82], [81] presented their feasibility intervals and schedulability analysis for the

P-FRP AR model in order to find tighter feasibility intervals.

Because of the high inefficiency of the original P-FRP paradigm, alternative mod-

els are also studied. Zhou et al. [126] presented their research on WCRT and schedu-

lability analysis for real-time software transactional memory-lazy conflict detection

for P-FRP tasks. Wong et al. [125] proposed the Deferred Abort model to reduce

the number of preemptions in scheduling P-FRP tasks. Zou et al. [127] proposed

a non-work-conserving Deferred Start model to eliminate preemptions in scheduling

P-FRP tasks.

However, none of these researches considers the different execution time of cold-

started jobs and restarted jobs. In this chapter, we proposed a new task model that

has different modes for cold start and restarted jobs that uniquely exist in P-FRP

systems.

Altmeyer and Navet [1] proposed a declarative modeling and execution framework

106

for real-time and Cyber Physical Systems(CPS). In CPS, the characteristics of a real-

time task may be able to change over time, for example, the computational demand

or the resource allocation. Such behavior is referred to as mode changes [115], [120],

[78] and the importance of mode changes for real-time systems has been presented in

many perspectives, such as aircraft control systems, automotive Electronic Control

Units (ECU) [54], [114], etc.

Typically, there are two categories of mode changes in hard real-time systems.

One is associated to all tasks and the other is associated to individual tasks. In the

former, all tasks have to switch to their new parameters and before the new mode

of the task system is fully established, no further mode changes are permitted [115],

[120]. In the latter, there is no synchronous mode change imposed on all tasks and

different tasks may progress through their different execution modes independent of

each other. The latter category of mode changes can be found in the generalized

multiframe (GMF) model [10], digraph real-time model (DRT) [118], variable rate-

dependent behavior (VRB) task model [34], [41], [54], [86], and a generalization form

[78] of the sporadic model [100]. These mode changes are usually associated to tasks.

To the best of our knowledge, there is no research on the P-FRP model combining

both the abort-and-restart semantics and the mode change mechanism.

7.3 Multi-Mode P-FRP Tasks

In this section, we first introduce the system model, some basic concepts and nota-

tions used in the chapter, and then propose the multi-mode task model.

107

7.3.1 Notations

We consider a real-time system with single processor, hierarchical memory compo-

nents, and rich input/output interfaces. In a P-FRP system, there are n independent,

preemptive multi-mode tasks Γn = {τ1, τ2, ..., τn} to form a taskset where each task

τi has Mi (Mi ≥ 1) execution modes for each of its jobs to select. τmi,j is the j-th job of

τi at mode m. τmi,j has the maximum execution time Cm
i , the minimum inter-arrival

time of a sporadic task or period of a periodic task Ti, and the relative deadline Di.

The smallest of Cm
i s is denoted by CS

i , and the largest is CL
i . We restrict ourselves

to either Di = Ti for the implicit deadline or Di ≤ Ti for the constrained-deadline.

The difference of execution time between two consecutive modes is called mode gap.

In a fixed priority scheduling, τ1 has the highest priority.

Φi: The initial release offset (or phasing) of a task τi. It is the time, relative to

time 0, when the first job is released by τi. Let Φ
{k}
min = mink

i=1{Φi}, and Φ
{k}
max =

maxki=1{Φi}.

Um
i : The utilization factor of task τi for its job at mode m where Um

i = Cm
i /Ti,

and Ui = maxMi
m=1U

m
i = CL

i /Ti. The total utilization factor of the taskset is U =∑n
i=1 Ui, and U ≤ 1.

LCMi: The Least Common Multiple (LCM, or hyperperiod) of the periods of

the first i highest priority tasks. LCMi = LCM(LCMi−1, Ti), 2 ≤ i ≤ n, and

LCM1 = T1.

108

7.3.2 Multi-Mode P-FRP

In the P-FRP AR model, a restarted job has the same execution time as the cold-

started job does, hence wastes the executed time of the aborted job (abort cost).

It is critical to reduce the abort cost of P-FRP. For example, if the input of a task

doesn’t change, there is no need to discard all the work that has already been done.

We propose a multi-mode task P-FRP model. In this model, a task has multiple

modes in terms of multiple execution time options. A light expert system is used to

select a mode of execution for any cold-started or restarted jobs. The expert system

has a knowledge database based on the characteristics of the tasks and the running

platforms, and uses deductions to select the right mode for a particular job. In this

chapter, the output of the expert system is the chosen execution time of a particular

job (cold-started or restarted one). If an expert system always returns the remaining

execution time of the preempted job for any restarted jobs, this multi-mode P-FRP

task scheduling is the same as the classic full preemptive scheduling. On the other

hand, if it always returns the longest execution time, i.e., CL
i , to any jobs of τi, it is

reduced to the P-FRP AR model.

In the rest of the section, we present two specific scenarios, Interface-aware and

Memory-aware multi-mode P-FRP task models in subsections 7.3.3 and 7.3.4 respec-

tively. The Interface-aware model focuses on the features of a task itself, while the

Memory-aware one relates to the entire taskset and the whole system.

109

7.3.3 Interface-aware Multi-Mode P-FRP

In modelergy, there are some tasks responsible for functions such as rendering GUI or

retrieving/storing data to the Cassandra database. In such cases, the task execution

time is highly dependent on the input in that the execution time is proportional to

the amount of changes in the input, and partial change of the input will result in only

partial re-execution. For example, a 0-1 matrix A as the input represents a black-

white image, and matrix B as the output is the reverse of A. So the task conducts the

calculation such that B[i][j] = 0 if A[i][j] = 1, or B[i][j] = 1 if A[i][j] = 0. In this

example, the restarted job needs only to continue computing if there is no change

in A, or to redo part of the preempted work if it detects some related changes. The

execution time of the restarted job hence can be significantly shorter than the full

execution time. Since in this type of systems, the execution mode is highly related to

the task interface (input and output) to the outside world, we call it Interface-aware

Multi-Mode P-FRP model. Note that in fixed priority scheduling for this model, the

task with the highest priority has no restarted jobs, and thus its jobs always run in

the same mode.

We give an exemplary InterA of Interface-aware Multi-Mode P-FRP model below.

Here InterA stands for Inter(face)A(ware).

InterA. InterA refers to an Interface-aware multi-mode P-FRP model such that:

(1) A task τi has Mi modes for each of its jobs to switch in sequential from

mode m=1 to mode m = Mi when a job is started or restarted;

(2) All Cm
i s are in a non-increasing order, i.e., C1

i ≥ C2
i ≥ ... ≥ CMi

i ; and

110

CL
i = C1

i , CS
i = CMi

i in this scenario;

(3) Both the period Ti and the relative deadline Di remain the same for each job

at different modes;

(4) The rules for mode changing are as follows:

(i) if task τi has a job running at mode m (m < Mi) when it is preempted,

and the time unit the job has executed is not less than the mode gap between mode

m and its successor m + 1, i.e., Cm
i − Cm+1

i , it proceeds to mode m + 1 when it is

restarted; otherwise, it remains at current mode m, and we call such scenario mode

transit frozen;

(ii) if current mode of τi,j is the last one (i.e. m = Mi), it remains at the

same mode in all following restarted of τi,j.

InterA denotes a type of tasks of which the executions are conducted gradually,

i.e., with finite amount of checkpoints, and when a task is preempted, it rolls back

with certain steps instead of to the beginning as P-FRP AR does. Note that InterA

is not all but one type of Interface-aware multi-mode P-FRP systems.

Example. We give scheduling of an InterA taskset in Fig.7.2. We compare the

taskset’s Rate Monotonic (RM) scheduling between P-FRP AR and InterA models.

In this example, Mi = 2 for all tasks, but it is clear that τ1 runs only in mode

m=1, while both modes are used for jobs of other tasks: m=1 for the cold-started

jobs, and m=2 is for the restarted jobs, and C1
i ≥ C2

i for i = 2, 3.

The P-FRP AR scheduling uses the mode of m=1 only. The results are shown

in Fig.7.2(a). The first job of task τ3 is interrupted five times before its deadline

111

t

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Preempted

Resumed and completed

Cold-start and completed

Restarted and completed
Miss deadline

(a) The P-FRP AR model

Preempted

Resumed and completed

Start and completed

Restarted and completed

1

2

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3
22

3 C

(b) The P-FRP InterA model

Figure 7.2: P-FRP AR and InterA models RM scheduling
(C1 = 2;C1

2 = C2
2 = 1;C1

3 = 3,C2
3 = 2.T1 = D1 = 4,T2 = D2 = 5,T3 = D3 = 20)

112

at time point 20, and finally misses its deadline because all restarted jobs require 3

time units. So the taskset is not schedulable by P-FRP AR scheduling.

On the other hand, both modes are used in the multi-mode P-FRP scheduling

shown in Fig.7.2(b). Since the restarted job of τ3 asks for 2 time units in mode m=2,

and it is scheduled at the time [18, 20) with reduced execution time. Hence the

taskset is schedulable by P-FRP InterA scheduling.

From the above description and example, we can see that the Interface-aware

multi-mode P-FRP task scheduling reduces the number of preemptions and tasks’

response time, and is thus potentially able to schedule more tasks.

7.3.4 Memory-aware Multi-Mode P-FRP

Unlike the Interface-aware P-FRP model which uses information of changing in-

put/output to select the execution mode, there is another type of system in which

the internal memory effect dominates the decision making. We denote this P-FRP

model as the Memory-aware P-FRP model.

We consider a specific scenario. A typical job life cycle includes: (1) Code is

loaded from the hard drive and data is loaded from the hard drive or the hierarchical

memory (or memory cache); (2) Computation is done by processor(s); and (3) Results

are committed to the hierarchical memory.

In the P-FRP AR model, when a periodic/sporadic task is aborted, the work

done in phases (2) and (3) is discarded. Due to the existence of hierarchical memory,

however, the time spent in phase (1) can be less when a job is restarted; for example,

113

all or part of the task code is still in the caches and needs not to be read again from

the hard drives. Hence the job’s execution time varies. The difference can also be

caused by the eviction of the code from fast memory (cache, scratchpad, etc.). We

consider the Least Recently Used (LRU) replacement algorithm for the fast memory,

thus the amount of code remaining in the fast memory is related to the amount of

other tasks whose jobs have executed between the execution of two consecutive jobs

of a task. We refer to this amount of tasks as JID :

Definition 1. JID (Job Instantiating Distance) of τi refers to the amount of tasks,

τk’s of k 6= i, that have jobs executed since the last time τi has been executed.

JID denotes the number of tasks executed between two consecutive jobs of task τi.

So JID is in range of [0, n-1] for Γn. The execution time of a job is typically shorter

with a smaller JID. Note that either of the two consecutive jobs can be cold-started

or restarted, and the tasks corresponding to JID can be either the higher priority

ones or the lower priority ones relative to τi. On the other hand, in this case, the

highest priority tasks can also run in different mode. Fig.7.3 shows some examples.

We can see JID = 1 for the restarted of job τ2,1 since only τ1 is executed in time

interval [1, 4), and JID = 2 for cold-started τ2,2 because τ3 and τ1 are executed in

time interval [5, 9).

From the definition and Fig.7.3, we can see that there are two compositions of

JIDs: JID1 denotes those JIDs calculated for the restarted jobs, and JID2 are

those calculated for the cold-started jobs. So JID1 is within a single period of the

task, while JID2 crosses periods because it is calculated using the interval between

releasing of a cold-started job and the finishing of its previous job. JID2 can be

114

Table 7.1: JIDA Multi-mode Tasks

Ti Φi
Cm

i

C1
i C2

i C3
i

τ1 5 1 2 2 3
τ2 6 0 1 1 2
τ3 30 0 1 1 2

ignored in some scenarios. In modelergy, we have some memory-intensive tasks of

which each cold-started job flushes the fast memory (sometimes the fast memory

means the data having a copy in the local machine), for example, a task that loads

data from networking repositories, thus hit or miss of the fast memory only has

effects on the restarted job.

For convenience, we denote the scenario that only JID1 is used as the local -

JID scheduling (Fig.7.3.(a)), and the other scenario as the global -JID scheduling

(Fig.7.3(b)) where both JID1 and JID2 are used. Compared to the aforementioned

memory-intensive tasks, there are also other tasks such as CPU-intensive ones where

the fast memory-hit/miss crosses any cold-started or restarted jobs. Global-JID

captures these scenarios more accurately. Note that in Fig.7.3, in the scenario of

local-JID the highest priority task τ1 has only one mode since it is never interrupted

by other tasks, while in the scenario of global-JID, τ1 does have multiple modes

because the lower priority tasks, τ2 and τ3, are executed between execution of two

consecutive jobs of τ1.

This memory effect is not considered in previous studies of P-FRP systems.

Therefore, we combine mode changing with the P-FRP model to take into account

the memory effect in its schedulability analysis. In this specific JID-based model of

115

Preempted

Resumed and completed

Cold-start and completed

Restarted and completed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 2421 25 26 27 28 29 30 t
JID=1

31

JID1=1

JID1=2

Phi_1 = 1

(a) The P-FRP local-JID model

Preempted

Resumed and completed

Cold-start and completed

Restarted and completed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 2421 25 26 27 28 29 30 t
JID=1

JID=1

Phi_1 = 1

JID=1

JID=2

31

JID1=1 JID2=2

(b) The P-FRP global-JID model

Figure 7.3: P-FRP local- and global- JID models RM scheduling of tasks in Table
7.1

Memory-aware P-FRP system, a job usually needs to reload part instead of all of

its code (and data) when there are jobs from the same task having been executed

earlier.

We also give an exemplary scenario, JIDA, of the Memory-aware multi-mode task

P-FRP system. Here JIDA stands for JID A(ware).

JIDA. JIDA refers to a JID-based memory-aware multi-mode task P-FRP system

such that:

(1) For any job of τi in Γn, its running modes are decided using a task and sys-

tem dependent function, i.e. the mode function of m = func mode(JID); Mi is the

number of ms, and thus also task and system dependent.

116

(2) The execution times Cm
i , 1 ≤ m ≤Mi, are determined by a domain and sys-

tem dependent function Cm
i = func comp(m). Cm

i s are typically in a non-decreasing

order, i.e., C1
i ≤ C2

i ≤ ... ≤ CMi
i ; and CL

i = CMi
i , CS

i = C1
i ;

(3) Both the period Ti and the relative deadline Di remain the same for each job

at different modes.

For an exemplary linear system, we define the mode functions such as Equation

(7.1) for the global-JID scheduling, and Equation (7.2) for the local-JID scheduling:

m = JID + 1 for all jobs (7.1)

m =

n for cold-started jobs

JID + 1 for restarted jobs

(7.2)

For this system, m is in range of [1, n] and Mi = n, and we give an example

taskset and its scheduling as follows.

Example. We give an example taskset Γ3 shown in Table 7.1. There are three modes,

i.e. Mi=3 for each job, and its local- and global-JID schedulings are shown in Fig.7.3.

In this example, C1
i ≤ C2

i ≤ C3
i for each 1 ≤ i ≤ 3, and CS

i = C1
i , CL

i = C3
i . Note

that τ1,1 starts at time 1, τ2,1 and τ3,1 start at time 0, and all of these three first jobs

are in the mode with CL
i .

The local-JID scheduling is shown in Fig.7.3(a). All cold-start jobs are executed

in mode m=3. The first job of τ2, τ2,1, is interrupted by τ1 at time point 1. When

117

it is restarted at time point 4, only τ1 is executed in the time interval [1, 4), hence

JID = 1 and m = JID + 1 = 2 for τ2,1, so the job is executed in the mode with

C2
2 = 1 and is completed at time point 5. Note that the taskset is unschedulable in

the P-FRP AR model since there is not enough time for τ3, 1 to complete before its

deadline.

The global-JID scheduling is shown in Fig.7.3.(b). Unlike those in the local-JID

scenario, only some of cold-started jobs of τ1 and τ2 are in mode m=3, and the rest

of them are in mode m=2. Thus τ3 is able to finish executing at time point 15 which

is much earlier than time point 30 as it completes in the local-JID scheduling. In

fact, τ3 is not schedulable for any Cm
3 > 1 in local-JID, while it is schedulable with

CL
3 ≤ 2 in the global-JID scenario.

We can see that for all cold-started τk,j, j > 1, the local-JID and global-JID

scenarios have different scheduling. The local-JID scheduling always chooses the

mode that has the longest execution time CL
i for the cold-started jobs, while in

global-JID scheduling, the mode is always determined by JID and is likely not the

mode with CL
i . Thus global-JID has at least the same performance as local-JID does

in this example.

We also can see that under the same priority assignment and fixed priority

scheduling, both local- and global-JID schedulings reduce the response time of some

tasks in the taskset. The JID-based memory-aware P-FRP scheduling is thus poten-

tially able to schedule more tasks than the P-FRP AR scheduling does.

118

In the next section, we provide experiments and analysis on the P-FRP Interface-

aware and Memory-aware models.

7.4 Experiments and Analysis

We design experiments for the multi-mode P-FRP model to observe how schedula-

bility changes:

(1) when applying the new multi-mode P-FRP task scheduling and the original

P-FRP AR scheduling; and

(2) when task execution time changes in various ways in the multi-mode schedul-

ing.

There is still no known mathematical calculations to conduct schedulability test

for P-FRP systems as of present. A simulation-based RTA (Response Time Anal-

ysis) schedulability test is applicable in such condition. The simulation runs in the

feasibility interval. Lv et al. [97] presented an efficient simulation-based algorithm,

LList-based algorithm LList-RTA, to calculate the response time for either classic

task scheduling or P-FRP task scheduling. A task is schedulable only if all of its

jobs complete within deadlines, and a taskset is schedulable only if all of its tasks

are schedulable.

Synthetic tasksets are used in the experiments. The priority assignment algorithm

is RM. All experiments are run on a desktop computer with a CPU of i3-4130 3.4GHz,

8 GB memory and Ubuntu 14.04.3 LTS 64-bit Desktop operating system. We describe

119

840

860

880

900

920

940

960

980

1000

1020

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR f=0.8 f=0.5

(a) U=0.2

Figure 7.4: Interface-aware P-FRP: Schedulability Comparisons

how we generate the synthetic tasks for the experiments in 7.4.1, followed by the

experiments and analysis of Interface-aware and Memory-aware multi-mode P-FRP

task scheduling in 7.4.3 and 7.4.3.

7.4.1 Task Generation

Following are the rules we use in task generation:

(1) All tasks are periodic (or sporadic tasks but arriving at their minimum inter-

vals) with implicit-deadline;

(2) The number of tasks in a taskset, n, is in range [3, 10];

120

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR f=0.8 f=0.5

(b) U=0.3

Figure 7.4: Interface-aware P-FRP: Schedulability Comparisons (con’t)

121

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR f=0.8 f=0.5

(c) U=0.4

Figure 7.4: Interface-aware P-FRP: Schedulability Comparisons (con’t)

122

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR f=0.8 f=0.5

(d) U=0.5

Figure 7.4: Interface-aware P-FRP: Schedulability Comparisons (con’t)

123

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR f=0.8 f=0.5

(e) U=0.6

Figure 7.4: Interface-aware P-FRP: Schedulability Comparisons (con’t)

124

(3) Task periods are generated according to a log-uniform distribution. The log-

uniform distribution of a variable x is such that ln(x) has a uniform distribution. Ti

is assigned to τi, and so forth. We choose periods in range of [20, 200] based on our

application;

(4) Utilization U for a taskset is one of the values in {0.2, 0.3, 0.4, 0.5, 0.6}. At

each U, the UUniFast Algorithm [30] is used to generate Uis for τis;

(5) Mode functions and methods of calculating execution times are different for

InterA and JIDA as follows.

For InterA:

(i) Three modes are set for each job, i.e. Mi = 3 for 1 ≤ i ≤ n in the

experiments;

(ii) The execution time in adjacent modes changes with a factor of fa. fa is

set to 0.8 or 0.5 to simulate the slightly or moderately changing of execution times;

(iii) Task execution times are calculated by CL
i = C1

i = Ui × Ti. For each

2 ≤ m ≤Mi, C
m
i = dCm−1

i ∗ fae;

For JIDA:

(i) CL
i and CS

i of task τi are generated as follows: CL
i = Ui×Ti, CS

i = fc×CL
i .

fc indicates the range of the task execution time. fc is set to one of the values in

{0.2, 0.5, 0.8} in different experiments.

(ii) Unlike InterA, Mis in JIDA are calculated instead of being given explic-

itly. In our experiments, the system capability regarding to performance of the fast

125

memory is expressed by a factor fm, and fm is used to obtain Mi and m and finally

Cm
i . With larger fm, execution time in different mode changes slower. Mi, m and

Cm
m are calculated by Equation (7.3), (7.4) and (7.5) respectively.

Mi = d1/fme (7.3)

m =

JID + 1 if JID < Mi

Mi if JID ≥Mi

(7.4)

Cm
i = min(CS

i + (CL
i − CS

i) ∗ fm ∗ (m− 1), CL
i) (7.5)

Therefore, fm is the slope of the curve representing changes in the execution

time with JID values. fm is selected from the set of {0.1, 0.2, 0.3} to simulate

the three systems with different performance when running the tasksets with their

hierarchical memory subsystems. Specifically, fm = 0.1 means a system has better

performance than the one with fm = 0.2, and a system with fm = 0.2 has better

memory performance the one with fm = 0.3.

(6) We generate 1000 different tasksets for each configuration pair (n, U). For ex-

ample, Γ3 has 1000 tasksets at utilization 0.2, and another 1000 tasksets at utilization

0.3, and so on. So there are totally 40,000 basic tasksets, and the actual experimental

tasksets are generated using the basic tasksets and various configurations of fa, fm

and fc as described above;

126

Utilization = 0.2:

840

860

880

900

920

940

960

980

1000

1020

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(a) fm = 0.1

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons

(7) Tasks are synchronously released at time 0, and the schedulability test time

interval is [0, LCMn) for Γn.

7.4.2 Interface-aware P-FRP

We focus on the schedulability improvement of the proposed multi-mode tasks over

the P-FRP AR model, and how the changing fa affects the schedulability in the

multi-mode tasks scheduling.

We use the notation InterAfa=x to denote that fa is set to x in a certain experi-

ment. We run LList-RTA schedulability test to all experimental tasksets, and obtain

the number of schedulable tasksets respectively in the P-FRP AR, InterAfa=0.5 and

127

840

860

880

900

920

940

960

980

1000

1020

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(b) fm = 0.2

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

840

860

880

900

920

940

960

980

1000

1020

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(c) fm = 0.3

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

128

Utilization = 0.3:

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(d) fm = 0.1

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(e) fm = 0.2

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

129

0

100

200

300

400

500

600

700

800

900

1000

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(f) fm = 0.3

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

Utilization = 0.4:

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(g) fm = 0.1

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

130

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(h) fm = 0.2

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

0

100

200

300

400

500

600

700

800

900

1000

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(i) fm = 0.3

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

131

Utilization = 0.5:

0

100

200

300

400

500

600

700

800

900

1000

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(j) fm = 0.1

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(k) fm = 0.2

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

132

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(l) fm = 0.3

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

Utilization = 0.6:

0

100

200

300

400

500

600

700

800

900

1000

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(m) fm = 0.1

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

133

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(n) fm = 0.2

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

0

100

200

300

400

500

600

3 4 5 6 7 8 9 10

Sc
h

e
d

u
la

b
le

 T
as

ks
e

ts
 #

Taskset Size

AR fc=0.8 fc=0.5 fc=0.2

(o) fm = 0.3

Figure 7.5: Memory-aware P-FRP: Schedulability Comparisons (con’t)

134

InterAfa=0.8 at each utilization setting. The numbers are shown in Fig.7.4.

First, the figure shows that under all of these configurations, InterA outperforms

AR in terms of having more schedulable tasksets. Second, it also shows that the im-

provements increase generally when the utilization increases, and at each utilization

level, the improvements increase when the taskset size increases.

We also find in Fig.7.4 that InterAfa=0.5 has larger improvement than InterAfa=0.8

under most configurations, and has the same improvements over the P-FRP AR in

rest of configurations, and it is as our expectations stated in the task generation

subsection.

In extreme circumstances, schedulability rate drops to very low levels in P-FRP

AR model when the utilization is high (such as U=0.6 in Fig.7.4.(e)), and by using

multi-mode task model, it restores to decent levels.

7.4.3 Memory-aware P-FRP

We use the notation JIDAfc=x to denote that fc is set to x. We obtain the number

of schedulable tasksets respectively in the P-FRP AR and P-FRP JIDA with various

configuration tuples (n, U, fc, fm). Results are shown in Fig.7.5. Bastoni et al. [15]

introduced a method to show multiple numbers of schedulable tasksets in a single

graph by weighting those numbers base on utilizations. While in P-FRP scheduling,

not only the relative value, i.e. utilization, but also the absolute values of execution

time and period affect schedulability. Thus we show the original numbers in separate

graphs.

135

In each sub-figure, we can see that JIDAfc=0.2 can schedule more than JIDAfc=0.5

does, and JIDAfc=0.5 can schedule more tasksets than JIDAfc=0.8 does. Observ-

ing horizontally at each utilization level, such improvements caused by fc increase

when fm increases. The reason is that with larger fm, the execution time differences

increase, and thus results in higher schedulability. Observing Fig.7.5 vertically, we

can see that the multi-mode memory-aware scheduling outperforms the P-FRP AR

model under all configurations, and improvements increase non-linearly as utilization

increases, and as much as 700%.

We also see that the schedulability rate of the P-FRP AR scheduling decreases

sharply with increasing utilization and taskset size as shown in Fig.7.5.(j)-(o), while

the multi-mode memory-aware scheduling maintains decent performance in such sce-

narios.

To sum up, our experiments result and analysis show that the proposed models

are able to schedule one to seven times more tasksets compared to the P-FRP AR

model.

7.5 Conclusions

Confronting the challenges of a real-world project, we proposed to use P-FRP to

resolve the difficulties. In order to overcome drawbacks of P-FRP that cause over-

consumption of the system (computation) resources, we proposed a multi-mode P-

FRP task framework. We also presented two specific models for the multi-mode task

136

framework according to two practical situations, the Interface-aware and Memory-

aware models. The Interface-aware multi-mode task model focuses on a task itself,

while the Memory-aware one addresses the whole taskset and the runtime system.

In previous studies of the original P-FRP model, the largest execution time of

a task is used for all its restarted tasks. In some practical scenarios, however, the

restarted tasks likely consume less time than the largest one when considering the

changing/unchanging input/output or the memory effect such as cache-hit in loading

code and data. Our proposed Interface-aware and Memory-aware P-FRP models

are able to reflect such effects. Simulation results show that the schedulability is

improved significantly when more accurate execution time of a task in cold start and

restarted cases is addressed.

137

Chapter 8

SimSo-PFRP

When research tends to solve real world problems, it seems to be a better approach

to evaluate the research on real systems. However, it is hard even impossible to

find such real systems sometimes. P-FRP is such a case because as we’ve shown

in previous chapters, P-FRP is a new model, and it involves many research areas

which do not have valid research results at present. As a consequence, simulation

is a good compromise to efficiently evaluate our research. In previous chapters, we

have presented some algorithms and experiments. In most of our previous work,

experiments are executed by our C++ based programs in consideration of the run

time efficiency. However, we believe it is a critical step to build a more generic and

extension-friendly platform to facilitate the research of P-FRP task scheduling and

timing analysis. In this chapter, we present our work on this endeavor.

138

8.1 Introduction

We’ve shown that many task scheduling research results are no longer applicable for

P-FRP, it is necessary to check then modify existing research results and conduct

new research in P-FRP. On the other hand, P-FRP targets on solving complicated

problems and scalability is of its strong merit. It is highly important to conduct the

research of P-FRP task scheduling on multi-processor platform. In their excellent

survey paper [55], Davis and Burns referenced more than thirty real-time multi-

processor scheduling algorithms. And more than a dozen of new algorithms have

emerged since then. Thus a generic and extension-friendly simulation platform is in

highly demanding.

Our work is an extension to an existing project named SimSo [45] [71]. We

call our work SimSo-PFRP, meaning that it is a P-FRP extension of SimSo. In

considerations of self-complete and easier understanding of our work, we include

some details and descriptions of SimSo in this chapter.

In [45], Chéramy et al wrote “SimSo is a simulator designed for the comparison

and the understanding of real-time scheduling policies. It is designed to facilitate

the implementation of schedulers in a realistic way. Currently, more than twenty-five

scheduling algorithms are available in SimSo. A particular attention is paid to the

control of the computation time of the jobs therefore introducing more flexibility, for

instance by taking into account cache-related preemption delays. In addition, SimSo

offers an easy way to generate the tasksets, to perform simulations and to collect

data from the experiments”.

139

Figure 8.1: Simso Architecture

We choose SimSo because it is the best match among others to our target, in-

cluding the option of building one from scratch by ourselves. SimSo is a real-time

scheduling simulator designed to be easy to use as well as to extend, and it is freely

available under an open source license.

8.2 Architecture

The core of SimSo relies on SimPy, a process-based discrete-event simulation frame-

work. The use of discrete-event simulation allows it to deal with short and long

duration at the same cost. Its process-based nature offers a convenient way to ex-

press the behavior of the simulated components. SimSo uses a Configuration object

what contains all the information about the system, such as tasksets, processors,

duration, scheduler, etc.

140

To give a whole picture of SimSo, our Fig.8.1 refers to a figure in [45]. We also

quote [45] on the description of SimSo:

“The figure shows the main classes of SimSo and their mutual interactions. SimSo

uses objects to simulates real system modules: processors, tasks, jobs, timers, etc.

Each of these objects simulates the behavior of the corresponding part on the system:

Tasks release the jobs; Jobs emulate the execution of the task’s code; Timers can

launch a method on a processor at a given time; etc. The instances of Processors are

actually the central part of the simulation because they simulate both a processor

and the operating system executing on it. Each processor can execute a job or be

interrupted to execute a method of the scheduler. Finally, the Scheduler object is

not an active process. It could be considered as a part of the operating system and

as a consequence, its methods are only called by the Processors.”

“The Model object is the conductor of the simulation. It takes as a parameter the

Configuration object. When the run model method is called, the objects described

above are created and launched.”

“The design of SimSo allows it to take into consideration various time overheads

that occur during the life of the system. This includes direct overheads such as

context-switches and scheduler calls (with fixed time penalties) but also indirect

overheads with a simplified system of locks to forbid the parallel execution of a

scheduler if needed. Such overheads are applied on the processor they are supposed

to occur (e.g., the time spent in the scheduler is taken into account on the processor

that called the scheduler).”

141

SimSo has already implemented more than 25 schedulers including uni- and multi-

processor algorithms. The main uni-processor schedulers such as RM, DM, FP, EDF

and M-LLF [107] are implemented. It even includes DVFS (Dynamic Voltage and

Frequency Scaling) schedulers such as Static-EDF and CC-EDF [111]. For multi-

processor systems, both partitioning and global scheduling algorithms are available.

For partitioning scheduling, P-EDF and P-RM using decreasing First-Fit assign-

ment algorithm are implemented. It also provides a class to use Next-Fit, Best-Fit,

Worst-Fit algorithms. For global scheduling, SimSo implemented following sched-

ulers: G-RM, G-EDF, G-FL [13], EDF-US[29], PriD [18], EDZL, M-LLF [24] and

more recently U-EDF [22]. SimSo also implemented some PFair schedulers: LLREF

[9], LRETL [15], DP-WRAP [21], BF [31] and NVNLF [14]. For semi-partitioning,

SimSo implemented EDHS [19], EKG [2] and RUN [26].

8.3 Execution Time Model

Task scheduling is essentially to manage the execution order and duration of jobs.

In ideal classic preemptive scheduling, the total job duration is fixed as its WCET.

The remaining execution time of a job decreases monotonically. It keeps decreasing

when the job is executing, and remains unchanged when the jobs is preempted till it

resumes execution then decreases. This ideal model is oversimplified of the reality.

SimSo uses the term Execution Time Model (ETM) to denote this procedure. The

authors claim their purpose of using ETM is to customize duration of jobs.

142

Figure 8.2: Simso Architecture

There are a few reasons that make us to say that the ideal model is oversimpli-

fied. In task scheduling, the use of WCET is common. However, it is in fact very

pessimistic: First, WCET is the worst-case this an upper bound of the execution of

a job which is hardly reached. In most of time, a job likely finishes in less or much

less time than WCET. Second, the preemption and migration cost are ignored which

in is not true in real world. In fact, in many cases, preemption cost and migration

cost can dominate the time consumption in the system. Now it is time to recall our

P-FRP AR model. Unlike the classic model, P-FRP has an additional abort cost.

When a preempted P-FRP job restarts, determining its execution time is crucial and

much more complicated than in class model. Because of this, ETM is a fundamental

part of our extension to SimSo.

Fig.3 in [45] (our Fig.8.2) depicts the ETM class in SimSo. The ETM object is

informed by the jobs of any scheduling event (activate, execute, preempted, termi-

nated, etc.). The job will use the get ret method to get a lower bound of its remaining

143

execution time and, when that time is up, the job calls that method again until it

returns 0.

Beside the basic WCET model, SimSo also implemented an ACET, Average

Execution Time, execution model. The ACET model uses a normal distribution

defined by its mean, its standard deviation and is bounded by the WCET. Another

model detects the preemptions and migrations and extends the WCET of the job

using fixed time penalties. It also has a more complex model that tries to simulate

the state of the caches. We implemented three P-FRP ETMs in SimSo-PFRP.

8.4 SimSo-PFRP

We implemented three ETMs in SimSo-PFRP:

OFRP - Original P-FRP AR;

JIDA - Memory-aware multi-mode P-FRP;

InterA - Interface-aware multi-mode P-FRP.

Fig. 8.3 shows the example code of OFRP ETM. All ETM classes are derived

from a base class, AbstractedExecutionTimeModel. A specific ETM needs to imple-

ment the functions accordingly. We use OFRP class as example. Function init

is called automatically when a OFRP object is created, and does some initialization

such as:

self.sim = sim # save simulation object.

self.executed = # create an empty list to save executed time of a job.

144

D:\GoogleDrive\ME\Dissertation Defense\dissertation\figures\simso\OFRP.py Sunday, May 21, 2017 5:42 PM

original FRP: discard executed work at preempted if is not finished
from simso.core.etm.AbstractExecutionTimeModel \

import AbstractExecutionTimeModel

class OFRP(AbstractExecutionTimeModel):
def __init__(self, sim, _):

self.sim = sim
self.executed = {}
self.on_execute_date = {}
self.num_preempted = {}
self.on_preempted_date = {}

def init(self):
pass

def update_executed(self, job):
if job in self.on_execute_date:

self.executed[job] += (self.sim.now() - self.on_execute_date[job]
) * job.cpu.speed

del self.on_execute_date[job]
def on_activate(self, job):

self.executed[job] = 0
self.num_preempted[job] = 0
self.on_preempted_date[job] = 0

def on_execute(self, job):
if self.on_preempted_date[job] < self.sim.now(): # last job is not me

self.num_preempted[job] += 1
self.executed[job] = 0 # P-FRP AR: restart === discard executed

self.on_execute_date[job] = self.sim.now()
print(self.sim.now(), job.task.name, "etm.on_execute.executed", self.executed[job])

def on_preempted(self, job): # will be triggered even it will be picked as the next job
self.update_executed(job)
self.on_preempted_date[job] = self.sim.now()
print(self.sim.now(), job.task.name, "etm.on_preempted.executed", self.executed[job])

def on_terminated(self, job):
self.update_executed(job)
del self.on_preempted_date[job]

def on_abort(self, job):
self.update_executed(job)
del self.on_preempted_date[job]

def get_executed(self, job):
if job in self.on_execute_date:

c = (self.sim.now() - self.on_execute_date[job]) * job.cpu.speed
else:

c = 0
print(self.sim.now(), job.task.name, "etm.get_executed", self.executed[job], c)
return self.executed[job] + c

def get_ret(self, job):
wcet_cycles = int(job.wcet * self.sim.cycles_per_ms)
return int(wcet_cycles - self.get_executed(job))

def update(self):
for job in list(self.on_execute_date.keys()):

self.update_executed(job)

-1-
Figure 8.3: OFRP of SimSo-PFRP

145

self.on execute date = # create an empty list to execution start time of a job.

self.num preempted = # create an empty list to save the number of preemptions

times of a job.

self.on preempted date = # create an empty list to save when preemptions happens

to a job.

Function init is called explicitly when it is necessary.

Function on activate is called when a job is released (cold-start).

Function on execute is called when a job is scheduled to start or restart to execute.

Since the variable executed[job-i] saves the time executed for the job-i, we set this

variable to 0, and that implements the semantic of the original P-FRP AR model:

discarding the incomplete execution.

Function on preempted is called when a job is preempted.

Function on terminated is called when a job finishes correctly.

Function on abort is called when a job is aborted before finishing.

Function get executed calculates the time a job has executed.

Function get ret returns the remaining time of a job.

SimSo has a fully support of any functions using Python script. However, it also

includes a QT [76] based GUI for users to have a better visualization how SimSo

works. Fig.8.4 shows an example. In Fig.8.4.(a) we choose OFRP as the ETM; in

Fig.8.4.(b) we choose uni-processor RM priority assignment algorithm; we choose uni-

processors with a unit speed in Fig.8.4.(c) and we create a taskset with three periodic

tasks in Fig.8.4.(d). After we run the this configuration, the experiment results are

146

(a) Select ETM - OFRP

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling

147

(b) Priority Assignment - RM

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling (con’t)

148

(c) Number of Processors - Uniprocessor

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling (con’t)

149

(d) Taskset

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling (con’t)

150

(e) Scheduling Results - Gantt

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling (con’t)

151

(f) Scheduling Results - Log

Figure 8.4: SimSo-PFRP: Example of OFRP Scheduling (con’t)

152

shown in Fig.8.4.(e) and (f). Fig.8.4.(e) is a graphic display of the scheduling, and

Fig.8.4.(f) shows the log of events. We can see that τ3 misses its deadline at time

instant 20 which is the end of the hyperperiod of experimental tasksets, hence the

experimental taskset is correctly deemed to be unschedualable.

Compared to OFRP, InterA and JIDA are more complicated in implementa-

tion since they have multiple candidate modes to select one at in functions such as

on activate and on execute.

Fig.8.5 and Fig.8.6 show code fragments accordingly.

The source code of SimSo-FRP can be found at https://github.com/jeffreyzou/simso.

153

D:\GoogleDrive\ME\Dissertation Defense\dissertation\figures\simso\JIDA.py Sunday, May 21, 2017 6:46 PM

def on_execute(self, job):
if self.on_preempted_date[job] < self.sim.now():

self.num_preempted[job] += 1

calculate jid
unique_tasks = set(job.task.other_tasks)
jid = len(unique_tasks)
new computation time based on jid (and self.executed[job])
c = func(jid)
self.current_wcet[job] = c

clear its own other_tasks list
#job.task.other_tasks.clear() #python 3.3+
#del job.task.other_tasks[:] # a little slower
job.task.other_tasks[:] = []

update itself to others
for t in self.sim.task_list:

if t != job.task:
t.other_tasks.append(job.task)

self.executed[job] = 0

self.on_execute_date[job] = self.sim.now()

-1-

Figure 8.5: JIDA of SimSo-PFRP

D:\GoogleDrive\ME\Dissertation Defense\dissertation\figures\simso\InterA.py Sunday, May 21, 2017 6:46 PM

def on_execute(self, job):
if self.on_preempted_date[job] < self.sim.now():

self.num_preempted[job] += 1

new computation time based on number of preemptions (and self.executed[job])
c = func(job.get_num_premptions)
self.current_wcet[job] = c

self.executed[job] = 0

self.on_execute_date[job] = self.sim.now()

def on_preempted(self, job):
self.update_executed(job)

self.on_preempted_date[job] = self.sim.now()

-1-

Figure 8.6: InterA of SimSo-PFRP

154

Chapter 9

Conclusions

P-FRP is a promising exploration regarding to the needs of more complicated CPS

systems. In this work, we reviewed existing researches on P-FRP task scheduling.

We also reviewed and presented our work on this topic which listed as following:

• An efficient response time calculation algorithm and its implementation, LList-

based RTA algorithm, that can be used on either classic or P-FRP task scheduling.

• Research on the worst case response time and schedulability analysis for the

real-time software transactional memory-lazy conflict detection (STM-LCD) model.

• Feasibility interval research. We optimized research on the impact of task’s

release offsets to task schedulability and the schedulability test interval. Tighter

feasibility intervals are found with respect to various task’s release offsets.

• An non-work-conserving alternative model, Deferred Start, of the original AR

model of P-FRP.

155

• Multi-mode task model for P-FRP systems. It is the first that multiple modes

instead of single mode for a P-FRP task is proposed in order to reduce the scheduling

cost, and thus improve the schedulability of P-FRP task systems.

• SimSo-PFRP. We presented a SimPy based task generator and scheduling sim-

ulator with rich algorithms available as an important infrastructure of P-FRP task

scheduling research.

Based on our work, further multi-mode P-FRP task model will leads the way of

more practical application of P-FRP model in real world. P-FRP-capable program-

ming language or compiler/interpreter and computer architecture shall be great help

and research area to P-FRP ecosystem. There are also more implementations and

tests can be done on SimSo-PFRP.

156

Bibliography

[1] S. Altmeyer and N. Navet. Towards a declarative modeling and execution frame-
work for real-time systems. ACM SIGBED Review 2016, 13(2):30-33.

[2] E. Amsden. A survey of functional reactive programming.
http://www.cs.rit.edu/˜eca7215/frp-independentstudy/Survey.pdf

[3] B. Andersson and E. Tovar. The utilization bound of non-preemptive rate-
monotonic scheduling in Controller Area Networks is 25%. IEEE International
Symp. on Industrial Embedded Systems (SIES), 2009, pp. 11-18.

[4] N. C. Audsley and A. Burns. On fixed priority scheduling, offsets and co-prime
task periods. Information Processing Letters, 1998, 67(2): 65-69.

[5] N. C. Audsley, A. Burns, M. Richardson, and K. Tindell, A. Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engi-
neering Journal, 1993, 8(5): 284-292.

[6] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings. Fixed
priority scheduling: A historical perspective. Real-Time Syst., 1995, 8(2-3):173–
198.

[7] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. TR-YCS-164, U. of York, 1991.

[8] N. C. Audsley. On priority-assignment in fixed priority scheduling. Inform.
Process. Lett., 2001, 79(1):39–44.

[9] T. P. Baker. Stack-based scheduling of real-time processes. Real-Time Systems,
1991, 3(1): 67-100.

[10] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks.
Real-Time Systems, 1999, 17(1):5-22.

157

[11] S. K. Baruah and S. Chakraborty. Schedulability analysis of non-preemptive
recurring real-time tasks. Parallel and Distributed Processing Symposium, Inter-
national, 0:149, 2006

[12] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks on
one processor. Theoretical Computer Sci., 1993, 118(1):3–20.

[13] S. K. Baruah and A. Burns. Fixed-priority scheduling of dual-criticality systems.
In Real-Time Networks and Systems (RTNS) 2013, pp. 173–181.

[14] S. Baruah. The limited-preemption uniprocessor scheduling of sporadic task
systems, ECRTS, 2005, pp. 137-144.

[15] A. Bastoni, B. B. Brandenburg, J. H. Anderson, Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability. In Pro-
ceedings of the 6th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, 2010, pp. 33-44.

[16] C. Belwal and A. M. K. Cheng. A Utilization based Sufficient Condition for
P-FRP. 9th IEEE/IFIP Int’l Conf. on EUC, 2011, pp. 237-242.

[17] C. Belwal and A. M. K. Cheng. Determining actual response time in P-FRP.
ACM PADL 2011, pp 250-264.

[18] C. Belwal and A. M. K. Cheng. Determining actual response time in P-FRP
using idle-period game board. ISOR, 2011, pp. 136-43.

[19] C. Belwal and A. M. K. Cheng. Lazy versus eager conflict detection in software
transactional memory: A real-time schedulability perspective. IEEE Embedded
Systems Letters, 2011, 3(1): 37-41

[20] C. Belwal and A. M. K. Cheng. On priority assignment in P-FRP. RTAS 2010
WiP Session.

[21] C. Belwal and A. M. K. Cheng. Optimal priority assignments in P-FRP. TR-
UH-CS-11-03, University of Houston, 2011.

[22] C. Belwal and A. M. K. Cheng. Partitioned scheduling of P-FRP in symmetric
homogenous multiprocessors. IEEE/IFIP 9th International Conf. on Embedded
and Ubiquitous Computing (EUC), 2011, pp. 47-54.

[23] C. Belwal and A. M. K Cheng. Reducing the number of preemptions in P-FRP.
IEEE RTSS 2010 WiP Session.

158

[24] C. Belwal and A. M. K. Cheng. Schedulability analysis of transactions in soft-
ware transactional memory using timed automata. IEEE 10th International Conf.
on Trust, Security and Privacy in Computing and Communications (TrustCom),
2011, pp.1091-1098.

[25] C. Belwal and A. M. K. Cheng. Scheduling conditions for real-time software
transactional memory. IEEE Embedded Systems Letters, 2011, 3(3): 93-96.

[26] C. Belwal, A. M. K. Cheng, and B. Liu. Feasibility interval for the transactional
event handlers of P-FRP. Journal of Computer and System Sciences, 2013, 79(5):
530-541.

[27] C. Belwal, A. M. K. Cheng, and Y. Wen. Response time bounds for event han-
dlers in the priority based functional reactive programming (P-FRP) paradigm.
2012 ACM Research in Applied Computation Symp., 2012, pp. 282-287.

[28] C. Belwal, A. M. K. Cheng, and Y. Wen. Time petri nets for schedulability
analysis of the transactional event handlers of P-FRP. 2012 ACM Research in
Applied Computation Symp., 2012, pp. 257-262.

[29] G. Bernat. Response time analysis of asynchronous real-time systems. Real-
Time Syst., 2003, 25(2-3):131–156.

[30] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time System, 2005, 30(1-2):129-154.

[31] E. Bini and S. K. Baruah. Efficient computation of response time bounds under
fixed-priority scheduling. In RTNS 2007, 2007, pp. 95–104.

[32] E. Bini and G. C. Buttazzo. The space of rate monotonic schedulability. In
IEEE RTSS 2002, pp. 169–178.

[33] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Trans. on Computers, 2004, 53(11):1462–1473.

[34] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo. Exact
interference of adaptive variable-rate tasks under fixed-priority scheduling. In
Euromicro Conference on Real-Time Systems (ECRTS), 2014, pp. 165-174.

[35] V. Bonifaci, H. L. Chan, A. M. Spaccamela, and N. Megow. Algorithms and com-
plexity for periodic real-time scheduling. ACM Tran. on Algor., 2012, 9(1):A6:1–
19.

159

[36] V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese. Polynomial-
time exact schedulability tests for harmonic real-time tasks. In IEEE RTSS 2013,
2013, pp. 236–245.

[37] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time anal-
ysis of real-time tasks under Fixed-priority scheduling with deferred preemption.
Real-Time Systems, August 2009, 42(1-3):63-119.

[38] A. Burns and A.J. Wellings. Real-time systems and programming languages.
Pearson Education, 4th edition, 2009.

[39] A. Burns. Is audsley’s scheme the most expressive optimal priority assignment
algorithm? In the 8th Real-Time Scheduling Open Problems Seminar (RTSOPS),
July 2013, pp. 8–11.

[40] G. Buttazzo and A. Cervin. Comparative assessment and evaluation of jitter
control methods. International Conference on Real-Time and Network Systems,
2007.

[41] G. C. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive tasks: Model, analysis,
and design issues. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pp. 1-6.

[42] G. C. Buttazzo, M. Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. IEEE Transactions on Industrial Informatics, 2013, 9(1):3-15.

[43] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-Time Syst.,
2005, 29(1):5–26.

[44] Y. Cai and M. C. Kong. Nonpreemptive scheduling of periodic tasks in uni- and
multiprocessor systems. Algorithmica, 1996, vol. 15, no. 6, pp. 572-599.

[45] M. Chéramy, P. Hladik and A. Déplanche. SimSo: A Simulation Tool to Eval-
uate Real-Time Multiprocessor Scheduling Algorithms. 5th International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), Jul 2014, Madrid, Spain. pp. 6-p, 2014.

[46] K. R. Christoffersen and A. M. K. Cheng. Model-based design: Antilock brake
system with priority-based functional reactive programming. RTSS 2013 WiP
Session.

[47] A. Church. An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58, pp.345-363, 1936.

160

[48] Courtney, A. Frappe: Functional reactive programming in Java. In Practical
Aspects of Declarative Languages Springer. 2001, pp. 29-44.

[49] E. Czaplicki, S. Chong. Asynchronous functional reactive programming for
GUIs. In ACM SIGPLAN Notices (Vol. 48, pp. 411-422). ACM, 2013.

[50] X. Dai, G. Hager, J. Peterson. Specifying behavior in C++. ICRA 2002, pp.
153-160.

[51] S. Davari and S. K. Dhall. An on-line algorithm for real-time tasks allocation.
Proceedings of IEEE RTSS 1986, pp.194-200.

[52] J. I. David, K. G. Larsen and A. Skou. Model-based framework for schedulability
analysis using UPPAAL 4.1. In Model-Based Design for Embedded Systems, ed.
Gabriela Nicolescu and Pieter J. Mosterman, CRC Press, 2010, pp. 93-119.

[53] R. I. Davis and M. Bertogna. Optimal Fixed priority scheduling with deferred
preemption. RTSS 2012, pp. 39-50.

[54] R. I. Davis, T. Feld, V. Pollex, and F. Slomka. Schedulability tests for tasks
with variable rate-dependent behaviour under fixed priority scheduling. In Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2014,
pp. 51-62.

[55] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comp. Surv. vol. 43, 2011, pp. 35:1-44.

[56] R. I. Davis and A. Burns. Response time upper bounds for fixed priority real-
time systems. In IEEE RTSS 2008, 2008, pp. 407–418.

[57] R. I. Davis. A review of fixed priority and EDF scheduling for hard realtime
uniprocessor systems. ACM SIGBED Review, 2014, 11(1):8-19.

[58] C. Demetrescu, I. Finocchi, A. Ribichini. Reactive Imperative Programming
with Dataflow Constraints. In ACM SIGPLAN Notices, 2011, Vol. 46, pp. 407-
426.

[59] J. S. Deogun and M. C. Kong. On periodic scheduling of time-critical tasks.
IFIP World Computer Congress, 1986, pp. 791-796.

[60] M. L. Dertouzos and A. K. Mok. Multiprocessor scheduling in a hard real-time
environment. IEEE Trans. Softw. Eng. 15(12), 1989, pp. 1497-1506.

161

[61] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operation Re-
search, 1978, 26(1), pp.127-140.

[62] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling: Response
time computation is NP-hard. In IEEE RTSS 2008, 2008, pp. 397–406.

[63] C. Ekelin. Clairvoyant non-preemptive EDF scheduling. ECRTS, 2006, pp. 23-
32.

[64] C. Elliott, P. Hudak. Functional Reactive Animation. ICFP, 1997, 32(8): 263-
273.

[65] G. Gardey, D. Lime, M. Magnin, and O.H. Roux. Romeo: A tool for analyzing
time petri nets. Lecture Notes in Computer Science 3576 (17th International
Conf. on CAV 2005), Springer, 2005, pp. 418-423.

[66] L. George, N. Rivierre, M. Spuri. Preemptive and Non-Preemptive Real-Time
UniProcessor Scheduling. Research Report RR-2966, INRIA, 1996.

[67] J. Goossens and R. Devillers. The non-optimality of the monotonic priority
assignments for hard real-time offset. Real-Time Systems, 1997, 13(2): 107-126.

[68] K. S. Hong and J. Y. T. Leung. On-line scheduling of real-time tasks. In Pro-
ceedings of the Real-Time Systems Symposium, 1988, pp. 244-250.

[69] K. S. Hong and J. Y. T. Leung. On-line scheduling of real-time tasks. IEEE
Trans. Comp. 41, 1992, pp. 1326-1331.

[70] W. A. Horn. Some simple scheduling algorithms. Naval Res. Logist. Quart. 21,
1974, pp. 177-185

[71] http://projects.laas.fr/simso/

[72] http://simpy.readthedocs.org/

[73] http://www.schneider-electric.com/

[74] https://github.com/gelisam/frp-zoo

[75] https://typesafe.com/company/casestudies, 09/24/2014.

[76] https://www.qt.io/

[77] Z. Hu, J. Hughes, M. Wang. How functional programming mattered. Natl Sci
Rev (2015)2(3):349-370.

162

[78] W. Huang and J. Chen. Techniques for schedulability analysis in mode change
systems under fixed-priority scheduling. IEEE RTCSA 2015, pp. 176-186

[79] P. Hudak, J. Hughes, S. P. Jones, P. Wadler. A history of Haskell: being lazy
with class. Proceedings of ACM HOPL III, 12-1-12-55, 2007.

[80] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of
period and sporadic tasks. IEEE Symposium on Real-Time Systems, 1991, pp.
129-139.

[81] Y. Jiang, Q. Zhou, X. Zou, and A. M. K. Cheng. Minimal Schedulability Test-
ing Interval for Real-Time Periodic Tasks with Arbitrary Release Offsets. IEEE
ICESS 2014, pp. 611-614.

[82] Y. Jiang, A. M. K. Cheng, and X. Zou. Schedulability Analysis for Real-Time
P-FRP Tasks Under Fixed Priority Scheduling. RTCSA 2015, pp. 31-40.

[83] M. Joseph and P. Pandya. Finding response times in a real-time system. Com-
puter Journal, 1986, 29(5): 390-395.

[84] R. Kaiabachev, W. Taha, and A. Zhu. E-FRP with priorities. ACM EMSOFT
2007, pp.221-230.

[85] Z. Kazemi, A. M. K. Cheng. A Scratchpad Memory-Based Execution Platform
for Functional Reactive System and its Static Timing Analysis. RTAS 2015 WiP
session, pp. 176-181.

[86] J. Kim, K. Lakshmanan, and R. R. Rajkumar. Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems. In Interna-
tional Conference on Cyber-Physical Systems (ICCPS), pages 55-64, 2012.

[87] S. Kleene. A theory of positive integers in formal logic. American Journal of
Mathematics 57, 1935, pp.153-173 and 219-244.

[88] S. Krishnamurthi(2012). Programming Languages: Application and Interpreta-
tion (Second Edition.). Providence, 2012.

[89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In IEEE RTSS 1989, 1989,
pp. 166–171.

[90] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. RTSS, 1990, pp. 201-209.

163

[91] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation (Netherlands), 1982, 2(4),
pp. 237-250.

[92] J. Y. T. Leung and M.L. Merrill. A note on preemptive scheduling of periodic,
real-time tasks, Information Processing Letters, 1980, 11(3): 115-118.

[93] W. Li, K. Kavi, and R. Akl. A non-preemptive scheduling algorithm for soft
real-time systems. Computers and Electrical Engineering, 2007, vol. 33, no. 1,
pp. 12-29.

[94] C. L. Liu and L. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of ACM, 1973, 20(1): 46-61.

[95] C. D. Locke, D. R. Vogel, and T. J. Mesher. Building a predictable avionics
platform in Ada: A case study. IEEE RTSS 1991, pp. 181-189.

[96] W. C. Lu, K. J. Lin, H. W. Wei, and W. K. Shih. Period-dependent initial
values for exact schedulability test of rate monotonic systems. In Int’l Parallel
and Distributed Process. Symp.(IPDPS)2007, pp. 1–8.

[97] J. Lv, X. Zou, A. M. K. Cheng, and Yu Jiang. Using Linked List in Exact
Schedulability Tests for Fixed Priority Scheduling. RTAS 2016 WiP Session, pp.
1-1.

[98] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin, and J.
Vitek. Preemptible atomic regions for real-time Java. RTSS 2005, pp. 62-71.

[99] A. Medeiros. Dynamics of Change: Why Reactivity Matters. Tame the dynamics
of change by centralizing each concern in its own module. Comm. of the ACM,
October 2016, Pages 42-46.

[100] A. K. Mok. Fundamental design problems of distributed systems for the hard-
real-time environment. 1983.

[101] C. Monsanto. Liftless Functional Reactive Programming. The 21st Interna-
tional Symposium on Implementation and Application of Functional Languages
(IFL), 2009

[102] M. Nasri and G. Fohler. Non-Work-Conserving Scheduling of Non-Preemptive
Hard Real-Time Tasks Based on Fixed Priorities. Real-Time Network and Sys-
tems (RTNS’15), 2015, pp. 309-318.

164

[103] M. Nasri and M. Kargahi. Precautious-RM: a predictable non-preemptive
scheduling algorithm for harmonic tasks. Real-Time Systems, vol. 50, no. 4, 2014,
pp. 548-584.

[104] M. Nasri, S. Baruah, G. Fohler, and M. Kargahi. On the optimality of EDF
and RM for non-preemptive real-time harmonic tasks. Real-Time Network and
Systems (RTNS’14), 2014, pp. 331-340.

[105] T. Nguyen, P. Richard, and E. Bini. Approximation techniques for response-
time analysis of static-priority tasks. Real-Time Syst., 2009, 43(2):147–176.

[106] Y. Oh and S. Son. Fixed-priority scheduling of periodic tasks on multipro-
cessor systems. Technical Report. UMI Order Number: CS-95-16., University of
Virginia, 1995.

[107] S. H. Oh and S. M. Yang. A modified least-laxity-first scheduling algorithm for
real-time tasks. In Proc. of RTCSA, 1998, pp. 31-36.

[108] M. Park and H. Park. An efficient test method for rate monotonic schedula-
bility. IEEE Trans. on Computers, 2014, 63(5):1309–1315.

[109] M. Park. Non-preemptive fixed priority scheduling of hard real-time periodic
tasks. International Conference on Computational Science, 2007, pp. 881-888.

[110] J. Peterson, P. Hudak, A. Reid, and G. D. Hager. FVision: A declarative lan-
guage for visual tracking. In Practical Aspects of Declarative Languages (PADL)
2001, pp. 304–321.

[111] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low power
embedded operating systems. In Proc. of SOSP 01, 2001, 35(5): 89-102.

[112] J. Ras and A. M. K. Cheng. Response time analysis for the abort-and-restart
task handlers of the priority-based functional reactive programming (P-FRP)
paradigm. IEEE RTCSA 2009, pp. 305-314.

[113] J. Ras and A. M. K. Cheng. Response time analysis of the abort-and-restart
model under symmetric multiprocessing. IEEE 10th Int’l Conf. on Computer and
Information Technology (CIT), 2010, pp. 1954-1961.

[114] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey
and a new proposal. Real-time systems, 2004, 26(2):161-197.

165

[115] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change proto-
cols for priority-driven preemptive scheduling. Real-Time Systems,1(3):243-264,
1989.

[116] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers, 1990,
39(9): 1175-1185.

[117] L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. P. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real time scheduling theory:
A historical perspective. Real-Time Syst., 2004, 28(2-3):101–155.

[118] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task model.
In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2011, pp. 71-80.

[119] W. Taha, P. Hudak, and Z. Wan. Directions in functional programming for
real-time applications. In Embedded Software. Springer, 2001, pp. 185-203.

[120] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemp-
tively scheduled systems. In Real-Time Systems Symposium, 1992, pp. 100-109.

[121] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for
analysing fixed priority hard real-time tasks. Real-Time Syst., 1994, 6(2):133–
151.

[122] Z. Wan and P. Hudak. Functional reactive programming from first principles.
ACM SIGPLAN PLDI 2000, pp. 242-252.

[123] H. C. Wong and A. Burns. Improved Priority Assignment for the Abort and-
Restart (AR) Model. Technical Report YCS-2013-481, University of York, De-
partment of Computer Science, 2013.

[124] H. C. Wong and A. Burns. Schedulability analysis for the abort-and-restart
(AR) model. ACM 22nd International Conf. on Real-Time Networks and Systems
(RTNS), 2014, pp. 119-127.

[125] H. C. Wong and A. Burns. Priority-based Functional Reactive Programming
(P-FRP) using Deferred Abort. RTCSA 2015, pp. 227-236.

[126] Q. Zhou, Y. Li, X. Zou, A. M. K. Cheng, Y. Jiang. Worst Case Response Time
and Schedulability Analysis for Real-Time Software Transactional Memory-Lazy
Conflict Detection (STM-LCD). ACM SIGBED Review 2016, 13(2):14-19.

166

[127] X. Zou, A. M. K. Cheng, and Y. Jiang. Deferred Start: A Non-Work-
Conserving Model for P-FRP Fixed Priority Task Scheduling. RTSS 2015 WiP
Session, pp. 373-373.

[128] X. Zou, A. M. K. Cheng and Y. Jiang. A Non-Work-Conserving Model for
P-FRP Fixed Priority Scheduling. 13th IEEE International Conference on Em-
bedded Software and Systems in Chengdu, 2016

[129] X. Zou, and A. M. K. Cheng. Memory-aware Response Time Analysis for P-
FRP Tasks. RTAS 2016 WiP Session, pp. 1-1.

[130] X. Zou, A. M. K. Cheng, and Y. Jiang. P-FRP Task Scheduling: A Survey. The
first CPSWeek Workshop on Declarative Cyber-Physical Systems (DCPS 2016),
IEEE, 2016, pp. 1-8.

167

