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Abstract

Network emulation allows us to evaluate network protocol implementations, typically

in higher fidelity than simulations. Most emulators allow execution of code in the

platform or environment similar to the target platform on which the protocol will be

deployed. This advantage comes at a cost. Emulation often requires much larger IO

or computational resources than simulations. As a result, it is common to see some

research projects doing simulations with up to hundred thousand nodes while emula-

tions typically scale up to a few hundred nodes. In this thesis, we present CloudNet, a

network protocol emulation platform that leverages the commodity cloud computing

service to scale emulations to thousands of nodes. CloudNet uses a lightweight vir-

tualization technique called LXC containers to emulate a single node. The network

protocol code and the protocol state for each node is maintained in its respective con-

tainer. CloudNet then uses properties of the network topology to determine where

to place these containers among many physical machines, researchers might rent on

the cloud service. CloudNet’s careful mapping of nodes to the containers makes

network performance more predictable and suitable for emulation even on a shared

commodity cloud, which was previously thought to be unsuitable for serious network

emulation. Through extensive experiments, we establish that CloudNet is scalable

to thousand node networks while providing accurate emulation results.
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Chapter 1

Introduction

The networking research community has a long history of building tools and method-

ologies to evaluate network protocols. Theoretical analysis and simulations are the

most common way to evaluate protocols in the community. Theoretical analysis al-

lows us to understand the protocols at the algorithmic level. We can implement the

key ideas of the protocol in a simulator and study the protocol by injecting a bit of

realism, for example, wireless link model and protocol state machines [12, 18, 16].

Emulation takes this study of protocols a step further. We can evaluate the ac-

tual implementation of the protocol, often in the same run time environment as the

deployment target. This realism comes at a cost. Emulation often is hardware inten-

sive. The protocol implementations often contain far more features than the original

algorithm on which the protocol is based. An emulator must evaluate the entire

implementation, not just the core idea behind the protocol. Many implementations

assume exclusive access to system resources such as radio or the link. This means the
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number of machines in the emulator has to be the same as the number of machines

in the target deployment. Despite these disadvantages, emulations are widely used

because they produce results that are similar to the results on the testbeds, and the

target deployments.

Recent advances in node virtualization makes it possible to emulate a large num-

ber of nodes in a single physical machine. We can run the protocol code for each node

in its own virtual machine. We can configure the networking between the virtual ma-

chines using open source tools in the host operating system. We can thus emulate

several nodes in a single machine thereby enabling emulation of a large network on

a small network of physical machines. This technique however does not scale to very

large networks because each physical machine cannot host more than a few tens of

virtual machines while providing acceptable performance.

Lightweight virtualization can help scale these emulations to very large networks.

In light weight virtualization, containers are the unit of virtualization. The proto-

col code for each node runs in its own container. Each physical machine can host

several hundred containers. Mininet [11, 6] is a recent effort that uses this approach

and shows how to emulate a network of several hundred nodes in a single machine.

However, this solution does not scale beyond the number of containers that can be

run in a single machine.

In this thesis, we present CloudNet, a network emulator that can emulate net-

works with thousands of nodes. Our work leverages two technology trends to make

this possible. First, CloudNet uses machines provided by the commodity cloud ser-

vice. The researchers can perform experiments on a large number of machines for
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the small expense of renting machines from cloud service providers such as Amazon,

etc. Second, CloudNet leverages lightweight virtualization technique to further scale

the size of the emulation.

We are not the first to propose using cloud services to scale network emulation.

The lack of consistent performance in the shared cloud environment and the chal-

lenge it presents to network experiments have been identified as the key challenge

in building an emulator in the Cloud [19]. In a shared cloud environment such as

Amazon EC2, it is possible for one of our emulation instances to share the same

physical host with an instance running a web server of a popular website. When

the other instances in the same physical machine demand more resources, naturally

fewer resources are available to our emulation instances. To address this challenge,

CloudNet only uses Cluster instances, which have ample computation and commu-

nication resources and come with loose guarantees about resource allocation. This

is in contrast to earlier work that used micro or small instances, which make large

emulations affordable but come with the inconsistent and unpredictable performance.

While using Cluster instances with ample resources addresses the performance

consistency to some extent, it becomes prohibitively expensive to emulate large net-

works. CloudNet uses light weight virtualization in each Cluster instance to econom-

ically scale the emulation while providing more consistent networking performance.

Thus, CloudNet becomes as economical as emulation with micro or small instances

but with better performance consistency.

In this thesis, we make these contributions:
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OpenvSwitch Bridge

2 63 4 5

Figure 1.1: CloudNet emulation of a 6 node network. The different colors represent
different networks. If we wish to send packets from 2 to 6 we need to do it via 3,4
and 5.

• We show how to achieve a partially consistent networking performance for

network emulation in a completely uncontrolled shared cloud environment like

Amazon EC2. Such consistency is critical to the development of a correct

emulator.

• We present the design and implementation of an emulator that economically

scales to thousands of nodes.

• We present experiments to evaluate the correctness of the such large scale

emulators. We use those experiments to evaluate CloudNet.

• We present, to our knowledge, the first emulation of DTN protocol on a 1000

node network as a case study that exercises the capabilities of CloudNet.
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Chapter 2

Design

In this section, we present the design of CloudNet, which meets these design goals:

• It should scale to thousand node networks and beyond.

• It should be affordable even to a small research group.

• It should provide consistent network performance.

We now describe the design that meets these requirements.

2.1 Network Nodes

CloudNet uses lightweight virtualization mechanism called Linux Containers (LXC)

where each container represents a single node. The network protocol code for that

node runs in its respective container. We used LXC for launching the containers
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in the machine. LXC uses Linux kernel mechanisms to provide lightweight virtual

system with full resource isolation and resource control for running application or a

system [14][4].

In short, LXC containers are stripped down virtual machines which share the

same kernel as the host operating system. This reduces the virtualization overhead

considerably. It is possible to run hundreds of LXC containers in a single machine.

Resource isolation in LXC containers is achieved using control groups. It is possible

to isolate the amount of memory and CPU cycles among different containers so

that we can ensure fidelity among the different containers or design experiments

with heterogeneous nodes. Thus, because of their lightweight nature with sufficient

resource isolation, LXC containers are a good choice in node representation in our

goal of designing a scalable emulator.

2.2 Network Connectivity

Each LXC container represents a node in the network we wish to emulate. To

emulate links connecting different nodes in the network, we need to provide network

connectivity between LXC containers.

In our design, LXC container has at least two network interfaces. One network

interface is connected to the default LXC bridge and the other network interfaces

are connected to the OpenvSwitch bridge. OpenvSwitch [15] is a software switch

which can be used to connect virtual machines. It has been designed to be highly

scalable, robust and extensible. OpenvSwitch supports many standard protocols and
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management interfaces. It allows QOS (Quality of Service) for each virtual machine

interface. It supports openflow protocol as well as many tunneling protocols like

GRE (Generic Routing Encapsulation), IPSEC (Internet Protocol Security), etc.

The default LXC bridge and the OpenvSwitch bridge are not connected. We perform

NAT (Network Address Translation) out of the box for the LXC containers through

the LXC bridge and we create the logical network for emulation experiments using

OpenvSwitch. CloudNet provides two ways to define the topology of the emulated

network.

2.2.1 Creating Topology Using OpenFlow

This approach of defining emulation topology using OpenFlow [13] is borrowed from

Mininet [11]. Network switches perform two main tasks; first they decide where to

forward the packets and then they forward the packets based on the decision. Open-

flow separates the two responsibilities of a switch. A centralized software controller

makes decision on how to forward the packet. When there is a link between the

nodes in the topology we wish to emulate, the controller allows forwarding between

those nodes thereby creating an emulated link. We attach an OpenFlow controller

to OpenvSwitch with custom rules on how OpenvSwitch must forward the packets.

2.2.2 Creating Topology Using Subnets

We can use subnets to provide or limit connectivity between different nodes in the

emulated networks. We use the LXC bridge as the default gateway in our containers.
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We setup routing rules such that the packets meant for destination addresses belong-

ing to the same subnets as the network interfaces of the containers will go through

the OpenvSwitch bridge. Any packet meant for destinations other than those be-

longing to the same subnets as container’s interfaces are dropped. Thus, if we need

to provide a link between two nodes, together with our routing rules, we assign them

ip addresses in the same subnet.

Although this approach is simpler to implement and configure, it is non trivial to

determine the number of subnets required to emulate a large and complex network.

Furthermore, we also need to determine the membership of each subnet. We cast the

problem of finding the subnets and their memberships in the network as a problem of

finding maximal cliques in the graph that describes the network we wish to emulate.

Every maximal clique constitutes a subnet. The nodes belonging to the same clique

are members of the same subnet. If a node is a member of multiple cliques, then it will

be member of multiple subnets, which also means that it will have multiple virtual

interfaces connected to OpenvSwitch. We find the maximal cliques in a graph using

the Bron Kerbosch algorithm [1] and we used a software library called ipgraph [2]

which implements the Bron Kerbosch algorithm.

2.3 Link QoS

In many network emulations, we wish to use links that have different loss rates or

delays. For example, in DTN (Delay Tolerant Networking) [3] emulations, we might

want to emulate links with propagation delay of several seconds or even longer. We

8



use Netem and Tc to constrain the bandwidth and delay of a link.

2.4 Distributing Nodes Across Instances

The fundamental limitation of Mininet like approach is that it requires all the emu-

lated nodes to be in the same physical node. Emulating a network with thousands

of nodes will require thousands of containers, which will not fit in a single machine.

Now, we describe how CloudNet distributes the containers across multiple machines

thereby enabling emulation of network with thousands of nodes while providing con-

sistent network performance.

We run OpenvSwitch in each of the instances. All the LXC containers in each

instance is connected to OpenvSwitch bridge on that instance. We used GRE tunnels

to connect the OpenvSwitch bridges on the different instances. GRE tunnels can

encapsulate a wide variety of network layer protocols inside virtual point to point

links. Connecting the bridges using GRE tunnels in Amazon EC2 requires using

public IP addresses for the instances.1 CloudNet requires only a small number of

Cluster Instances to emulate even a large network, and only the Instance needs public

IP address, so public IP addressing provisioning for CloudNet is not a problem.

We use NTP (Network Time Protocol) to synchronize the time across the in-

stances. The synchronized time is essential to the functioning of networked applica-

tions and protocols that rely on timestamps for timeouts and other types of timing

1One possible reason is that the visibility of the private IP addresses is limited to a certain
portion of the EC2 cloud.
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based control.

2.5 Choice of Instance Type

Instance type selection is a critical design decision. We can use a large number of

small instances or a small number of large instances and virtualize each instance

using lightweight containers. Previous work has shown that virtualization in Ama-

zon EC2 causes highly unreliable network performance [19]. However in such work,

researchers used small instances. Such inconsistent performance would not meet

CloudNet’s requirement of correct emulation. CloudNet uses a smaller number of

instances with more resources in Amazon EC2, then uses LXC containers to decrease

the number of instances required to emulate a large network. For example, cluster in-

stances have 60.5 GB of RAM with 88 ECUs (EC2 Compute Unit). These instances

can be launched together in a single placement group to assure high and consistent

network performance between the instances. To emulate a 1000 node network, with

200 containers per node, we only need five instances. Because we control the execu-

tion environment of the containers in each instance, we can provide more consistent

network performance across the emulated nodes compared to running the nodes di-

rectly on top of Amazon EC2 and leaving it to Amazon to provision the network.

Furthermore, there is high and consistent network connectivity between cluster in-

stances. Thus, the emulated nodes within these instances achieve consistent network

performance.
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2.6 Container Fidelity

One of the most important challenges while performing any networking experiment

is that we should maintain fidelity between the different nodes. Cloudnet uses a

linux kernel feature called cgroup to to limit and isolate resource usage for the dif-

ferent LXC containers so that each container would only use the amount of resource

available to it. Mininet uses a similar methodology and has found that cgroups work

pretty well in isolating resources.

2.7 Difference from Mininet

CloudNet borrows the technique of using lightweight virtualization to emulate a

node from Mininet. However, Mininet can run only on a single machine, limiting its

scalability to the number of containers one machine can host. CloudNet, on the other

hand, carefully places the containers on different instances using the maximal clique

organization, and connecting them with the topology defined by the user, thereby

scaling beyond what a single machine can run.
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Chapter 3

Evaluation

In this section, we study how CloudNet satisfies its design goals. We use tools such as

iperf to validate the correctness of CloudNet and DTN[3] as a case study to evaluate

the usefulness of CloudNet.

3.1 Network Performance in Amazon EC2

Correctness is the most important requirement of any network emulator. To evaluate

CloudNet’s correctness, we create a network topology using CloudNet and run iperf

over those topologies to measure bandwidth and jitter. If CloudNet emulation is

correct and consistent, we expect the results of measurements in the experiment to

match the specified properties of the topology. Otherwise, CloudNet results are not

correct. In addition, we compare the correctness of emulation done on CloudNet vs

directly on top of Amazon EC2. A network emulation directly on Amazon EC2 uses

12
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Figure 3.1: Boxplot of iperf throughput normalized by the nominal throughput for
the setup varying from 100 Kbps to 54 Mbps.

an instance to represent a node and uses virtual interfaces to connect the instances

to create the user specified network topology. This experiment will help us under-

stand if CloudNet provides any advantage over running emulation directly on top of

Amazon EC2. In each experiment, we created a small network of 10 nodes over 9

hops and made 50 bandwidth and jitter measurements using iperf. The experiments

were performed multiple times a day over five days (to understand if performance

consistency holds at different times of the day and different days of the week).

Figure 3.1 shows throughput achieved by iperf when doing emulation with Cloud-

Net versus using Amazon EC2 to do those emulations. The first observation is that

iperf achieved constant normalized throughput across multiple experiments with 50

iterations each for all throughput settings. Thus, the measured throughput matches

the ground truth. The second observation is that emulation directly on top of Ama-

zon EC2 medium instances are less consistent (despite much higher instance rental
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Figure 3.2: Boxplot of jitter in path latency measured during experiments for setups
varying from 100 Kbps to 54 Mbps.

cost as we show later). The results are worse (and unacceptable) with Amazon

EC2 small instances. Thus, we conclude that throughput available to emulation on

CloudNet is consistent and correct.

Figure 3.2 shows the jitter in path latency measured during the experiments.

The topologies used in these experiments were specified to have no jitter. Thus

any considerable jitter could lead to inaccurate emulation results. We observe that

the jitter with CloudNet is smaller than emulation that uses Amazon EC2 Medium

instances, and significantly smaller than the emulation that uses Amazon EC2 Small

instances. Thus, we find that latency measurements on CloudNet emulations are

close to the ground truth.
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3.2 Correctness of Network Impairments in Ama-

zon EC2

One of the features of Netem is that it can introduce random delay in the network

links which can optionally be correlated. The default installation of Tc and Netem

on Ubuntu 12.04 comes with 3 mathematical distribution tables which can be used

to introduce variable delays in the links. These distribution tables are normal, pareto

and paretonormal respectively. We can also make our own distribution table based on

some experimental data. To test this feature we created our own uniform distribution

table based on a uniformly distributed data for the experiments.

To evaluate the effectiveness of Netem in introducing variable delays, we per-

formed our experiments in a 2 step process. In the first step we setup a 2 node,

1 hop network using CloudNet. We performed experiments where variable delay

was introduced in the link based on the different mathematical distributions. In all

our experiments we used 100 ms as our mean(µ) delay and 20 ms as the standard

deviation(σ). We sent UDP packets between the 2 nodes and calculated the delay

for each packet. We collected more than 2000 packet delay values from each experi-

ment. Our hypothesis is that the distribution of delays from each of the experiment

should match the behavior of the underlying distribution used for introducing de-

lay in the link. We use the distribution tables and the algorithm implemented by

Netem to generate the same number of delay samples as the experiments. We obtain

the theoretical distribution plot by generating more than million points using the

distribution tables and the algorithm implemented by Netem.
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Figure 3.3: Theoretical vs Generated vs Observed plot of delays in a 1 hop network
where in each link, delay was introduced based on an underlying distribution.

We compare the result obtained from experiments with the generated sample

data and calculate the earth movers distance between the observed and generated

delays. Figure 3.3 shows the results from the experiment which compares observed,

generated and theoretical data. We see that the plots of the observed delay values

confirm to the type of distribution used for introducing delay with less than 0.6

percent error as shown in Table 3.1.

In the next step we used CloudNet to setup a 10 node, 9 hop network. We
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Normal Uniform Pareto Pareto Normal
1 Hop - EMD 0.6 0.08 0.36 0.04
Error (%) 0.6 0.08 0.36 0.04
9 Hops - EMD 7.29 6.90 7.62 7.8
Error (%) 0.81 0.76 0.84 0.86

Table 3.1: Earth movers distance between theoretical and observed values.

performed experiments similar to what we performed in the previous step. We in-

troduced delay at each link which varied based on an underlying distribution. We

sent UDP packets between the farthest nodes. Hence the path length for a single

packet transmission was 9 hops. Once again, our hypothesis is that the distribution

of delays from each experiment should match the behavior of the underlying dis-

tributions used for introducing delay in the links. We compare the result obtained

with the generated data and calculate the earth movers distance as shown in Table

3.1 between the observed and generated delays. Figure 3.4 shows the results for the

experiment.

We choose experiments where normal distribution was the underlying distribution

for varying packet delay in the links for our additional analysis. It is a mathemat-

ically known fact that sum of independent normal distributions is also a normal

distribution. We performed QQ tests on the observed delay values for the 1 hop and

9 hop experiments to determine if the delays were distributed normally. Figure 3.5

shows the results from the QQ tests.

Next we perform the mean test for the observed delay values from each exper-

iment. The mean in case of the 9 hop network should be approximately be equal

to 9 times the mean for 1 hop network. We see that all the graphs confirm to that

17
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Figure 3.4: Theoretical vs Generated vs Observed plot of delays in a 9 hop network
where in each link, delay was introduced based on an underlying distribution.

characteristic with less than 0.77 percent error as shown in Table 3.2. Through

the experiments so far, we find that CloudNet can provide controlled and correct

throughput and latency topology to network emulations that run on top of Cloud-

Net.
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Figure 3.5: QQ plot of normally distributed delays. We performed the normality
test on the delay values. P value for 1 hop is 0.22 and for 9 hops it is 0.23.

Distribution 1 Hop Delay (sec) 9 Hop Delay (sec)
9 Hop Delay / 1

Hop Delay
Error (%)

Normal 0.0998 0.9045 9.06 0.66
Uniform 0.1002 0.9044 9.02 0.22
Pareto 0.0994 0.8984 9.03 0.33
Pareto Normal 0.0992 0.9004 9.07 0.77

Table 3.2: Latency analysis for the different distributions.

3.3 Storage I/O

Networking protocols in general don’t need high storage I/O since they use memory

for storing and retrieving data. However recent protocols like DTN [3] may require

high storage I/O. DTN protocol allows communication between heterogeneous net-

works. DTN uses store and forward approach where data bundles are stored at every

intermediate hop before being forwarded to the next hop. In some cases these bun-

dles may be so large in size that we can’t save them in the memory and will need

to use the disk to save them. We wanted to evaluate the performance of CloudNet
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cr1.8xlarge cc2.8xlarge
Price $3.1 per Hour $2.4 per Hour

cr1.8xlarge (MB/sec) cc2.8xlarge (MB/sec)
Initial Write 64 34
Re write 205 127
Read 1181 1101
Re Read 1055 1014

Table 3.3: Storage I/O for cr1.8xlarge and cc2.8xlarge instances.

under scenarios where Storage I/O is important. For example if we have a certain

DTN topology, where there is a relay node in the middle. There are 50 flows going

through that node and for each flow the throughput is 50 MB/s. Storage could be a

bottleneck in such a scenario because DTN nodes would need to store bundles before

relaying to ensure reliability. We performed an experiment to determine which Clus-

ter Instance should we choose to launch in EC2 for CloudNet based on storage I/O

requirements. We chose two kind of cluster instances provided by Amazon for our

evaluation, named cc2.8xlarge and cr1.8xlarge respectively. The difference between

them is that cr1.8xlarge comes with free SSD storage while cc2.8xlarge come with

regular storage. We started 50 independent processes in each instance simultane-

ously and tried to measure I/O performance. We used iozone [22] for measuring the

I/O performance. The results from the tests are shown in the Table 3.3. We see that

if we want our DTN application to be able to handle 50 flows at a rate greater than

50MB/sec, we need to use cr1.8xlarge instance. For the tests each process wrote or

read a file of size 10M, in blocks of 4096 bytes. The file system was formatted as

ext4.
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Figure 3.6: A random topology with 1000 nodes to test the scalability of CloudNet.

3.4 Scalability

To test the scalability of CloudNet, we pick a 1000 node topology shown in Figure 3.6.

The minimum, average, and maximum node degree in this topology are 1, 6.4, and

13 respectively. We setup this topology using the technique described in Section 2.

Every instance contained 200 containers. So we used 5 cluster instances. We split

the graph into sections and then randomly picked 100 pair of random nodes from

the different sections and sent data between each pair using iperf. The maximum

bandwidth for the iperf experiment was limited to 100kbps. The maximum path

length between a pair of node was 22 and the shortest path length was 1. We then

started the UDP tests between all the pair of nodes simultaneously. The results from

the tests are shown in the Figure 3.7. The net throughput achieved per flow is close

to the expected value of 100kbps.

Next, we try to understand if the latencies stay close to the ground truth even
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Figure 3.7: Iperf throughput results with maximum bandwidth limited to 100kbps
on the 1000 node network. The node pairs have been sorted by the mean of the
throughput values.

Hops RTT
Mean (ms) σ

1 2000.98 2.28
2 4002.16 5.89
3 6005.70 9.20
4 8006.28 10.64

Table 3.4: RTT for paths of different hops in a 1000 node network. Each link was
configured with a delay of 1s.

when the user topologies add delays. We emulate a 1000 node network in CloudNet

and specify a link latency of 1 second on each link. Table 3.4 shows the mean RTT

and standard deviation in delay between random pairs of nodes at hops varying from

1 to 4. In an ideal setup we should have no base latency between a pair of nodes.

However as we know that in real life situations there would always be some base

latency between a pair of nodes. This is a system overhead of CloudNet. We observe

that the overhead increases as expected with the number of hops but stays small.
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Thus, we learn that CloudNet offers specified througput and delay in the topology,

even at a large scale.

To compare Cloudnet’s scalability with Mininet, we perform a 1000 node exper-

iment on Mininet on a 8 core server with 48 GB of RAM. This experiment stressed

Mininet in two ways. First, the experiment setup took more than an hour and the

machine became unresponsive. Second, we were not able to use ping to send data

between the nodes: the system dropped the packets because this experiment was

overloading the server. This result should not come as a surprise: Mininet uses a

single machine architecture and is designed to work with a few hundred nodes.

Through these experiments, we understand that CloudNet can scale to 1000 node

topologies with predictable and expected performance even at this scale.

3.5 Case Study

As a sample case study of a realistic use of CloudNet, we perform large scale exper-

iments with DTN2. By emulating a DTN network, we show that we are able to run

real network protocols on CloudNet. We randomly chose 100 pair of nodes from the

1000 node topology Figure 3.6. We use dtnperf and dtping to send data between

the node pairs in the topology. As expected, the goodput achieved is higher when

the path length is smaller Figure 3.8. The one hop goodput obtained is similar to

what has been reported in prior work [17] when the authors did experiments with

physical machines. Figure 3.9 shows the time it takes for dtnping to send packets

between each node pair in the same topology. The high variation in latency is due
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Figure 3.8: Throughput achieved between node pairs using DTN when each link has
1 s latency (top) and without any network impairment (bottom). Payload size is
100KB.

0 20 40 60 80
Node Pairs

0

10

20

30

40

50

60

70

Pi
ng

 L
at

en
cy

(s
)

1 
Ho

p

2 
Ho

ps

3 
Ho

ps

4 
Ho

ps

5 
Ho

ps

6 
Ho

ps 7+ Hops

Figure 3.9: End to End bundle latency for each pair of node using dtnping.
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CloudNet Medium Small EC2 Region
Unit Price $2.4 $0.12 $0.06 U.S. East(N. Virginia)
Number of Instances 5 1000 1000 U.S. East(N. Virginia)
Total Price $12 $120 $60 U.S. East(N. Virginia)

Table 3.5: Cost analysis for emulating a 1000 node network for an hour.

to bundle queuing in the intermediate hops as different flows cross each other. Thus,

the throughput and latencies we obtained in our experiment match the expected

output and also what has been previously reported.

Table 3.5 compares the cost of performing a similar experiment using small or

medium instances separately for each node. The cost analysis affirms that CloudNet

provides a cheaper alternative to performing emulation directly on top of EC2 in-

stances, while providing correct results and scaling beyond state of the art solutions

such as Mininet.
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Chapter 4

Related Work

Networking community has built a rich set of tools to evaluate network protocols.

In this section, we focus on topics related to network emulators to understand the

context in which we designed CloudNet.

4.1 Link Emulation

Single link emulation can be done on hardware (using channel emulators) or on soft-

ware (using tools such as netem and Tc). Prior work compared the results achieved

using a hardware emulator and a software emulator using netem and concludes that

when correctly configured, netem provides a realistic estimation of impaired network

conditions and is sufficient for most networking experiments [10]. One disadvantage

of software emulators is that they don’t perform well in situations where we need high

timer resolution. Netem module comes as a part of the Linux kernel and Tc comes
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Netem Dummynet NistNet
Operating System FreeBsd Linux 2.4 - 2.6.14 Linux >2.6
Time resolution System clock (up to

10 KHz)
Real time clock System clock (up to

1 KHz) or High res-
olution timers

Interception point Input and Output Input Originally Output.
Newer versions al-
low Input

Latency Constant delay Constant and vari-
able delay.

Constant and vari-
able delay.

Bandwidth Limita-
tion

Yes Yes Yes

Packet drop Yes but without
Correlation

Yes and optionally
with correlation

Yes and optionally
with correlation

Packet reordering No Yes and optionally
with correlation

Yes and optionally
with correlation

Packet duplication No Yes and optionally
with correlation

Yes and optionally
with correlation

Packet corruption No Yes and optionally
with correlation

Yes and optionally
with correlation

Table 4.1: Comparison of software emulators.

as a part of iproute suite of tools. It borrows its idea from Nistnet and dummynet.

Though the design goals of the systems are same they have been implemented differ-

ently. Nistnet was the original network software emulator for Linux and is no longer

maintained. It was a standalone emulation software as compared to netem and tc.

Dummynet is available for freebsd. Table 4.1 shows a comparison between different

kind of software emulators in a study done by this work [9].
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4.2 Network Emulation

Mininet [11][6] provides a system for emulating a large network using limited physical

resources. Instead of using system virtualization techniques like KVM or VMware

which use paravirtualization, Mininet uses lightweight process virtualization tech-

niques by isolating certain OS resources, thus allowing emulation of large networks

in a single machine. Linux kernel has the ability to create network namespaces. Each

network namespace will have its own interfaces and routing tables. Mininet exploits

this feature of Linux kernel to launch multiple network nodes each of which have

their own interfaces and routing tables. Since all the nodes share the same OS kernel

as the host operating system, we can run only Linux nodes. Mininet is a very nice

way to perform networking experiments when size of the networking experiments is

small. It allows to run real unmodified code just like Cloudnet. However, scalability

becomes an issue when we want to emulate larger networks since we run into different

kind of resource bottlenecks which are related to memory or cpu.

Emulab [7] is another emulator which took OS level lightweight virtualization

technique, FreeBSD jails, and modified it to allow multiple virtual interfaces per

process group, similar to Mininet and CloudNet. CloudNet provides better resource

isolation and flexibility across the emulated nodes than Emulab. CloudNet presents

a concrete design that can be deployed on the commodity clouds.

There is some prior work in data centers to optimize VM placement and rout-

ing [8]. CloudNet uses the concept of cluster placement groups in Amazon EC2 [20].

A cluster placement group is a logical entity within Amazon EC2. It helps us to
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create a cluster of instances by launching instances as part of a group. The cluster

of instances then provides low latency, full bisection 10 Gigabit Ethernet bandwidth

connectivity between instances in the group. In this way we are able to efficiently

use the resources in Amazon EC2.

4.3 Network Emulation Timing

Time Warp [5] explores the possibility of using time dilation in network emulation

experiments. Its uses the concept of virtual time. The idea is to give the operat-

ing system a different illusion to time change compared to physical time. Suppose

the maximum bandwidth that a system can support is 100Mbps. We may wish to

convince a system that, for every 10 seconds of wall clock time, only one second of

time passes in the operating system’s dilated time frame. In that way the maximum

bandwidth relative to the system would be 1000Mbps.

Thus, for a given CPU or network resource, we can emulate a much faster or slower

network by manipulating the rate at which time elapses. Future version of CloudNet

may use this technique to offer added consistency in performance for emulations that

requires very high bandwidth.

Slicetime is another effort to provide scalable and accurate network emulation [21].

Slicetime makes the simulations independent of real time constraint thus allowing

simulation of complex and high performance networks when we have limited physical

resources.
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4.4 Network Performance in Amazon EC2

In a prior study [19], the researchers tried to characterize the impact of virtualization

on the networking performance of the Amazon Elastic Cloud Computing (EC2) data

center. They measured various attributes like processor sharing, packet delay, TCP

(Transmission Control Protocol) / UDP (User Datagram Protocol) throughput and

packet loss among Amazon EC2 virtual machines. Their results showed that even

if the data center network is lightly utilized, virtualization can still cause significant

throughput instability and abnormal delay variations. However in that study only

small and medium size instances were considered and performance in case of the

medium instances was significantly better than the smaller instances. The study

found that the smaller instances always get around 40% to 50% of the physical

CPU sharing. Their suspicion was that Amazon EC2 uses strict virtual machine

scheduling policy to control the computation capacity of instances. They also found

that medium instances get around 100% CPU sharing for most of the cases. As far

as network TCP and UDP throughput performance is concerned it was unstable in

case of the smaller instances but in case of the medium instances it was found to be

relatively stable.
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Chapter 5

Limitations

The experiments in this thesis showed emulation of homogeneous network. CloudNet

design accommodates emulation of heterogeneous networks. The containers within

an instance share the host operating system. However, emulated nodes of different

platforms can be placed on different instances running different OS. Heterogene-

ity in CPU and memory resources can be implemented directly with the container

mechanism.

A disadvantage of our setup is we cannot assure complete fidelity while using

Amazon EC2 since we have no control over the infrastructure. However the contain-

ers that we launch within an Amazon EC2 instance are completely controllable. We

can control the amount of memory, CPU, and bandwidth available to them. Thus

we turn an uncontrolled system into a system that provides predictable performance.
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Since Cloudnet implements a distributed architecture, we are limited by the max-

imum bandwidth we can have between the instances. Hence, we cannot emulate large

scale networks with high bandwidth links. Cloudnet at present is suitable for per-

forming large scale experiments with low bandwidth requirements. However, this

can be resolved if we implement the concept of virtual time in Cloudnet.
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Chapter 6

Conclusion

In this thesis, we presented the design of CloudNet, which is an emulator that runs on

commodity cloud services such as Amazon EC2. CloudNet’s design uses techniques

to achieve consistent network performance despite having little control over the EC2

infrastructure over which it runs. Through extensive experiments, we showed that

the emulator was able to replicate the results from experiments that used physical

machines. We presented the results from emulation of DTN on a 1000-node network.

Thus, we showed that CloudNet meets the design requirements of scalability and

economic viability in network emulation design. As future work, we will implement

CloudNet on other cloud service providers. We will also test other types of network

protocols to better understand the limits of Cloud-based network emulation.
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