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ABSTRACT

In this dissertation the primary concern is with showing the ex­

istence of a solution to the initial-value problem 

x(t) £ F(t,x(t)) 

x(0) ■ xo.

The function x is once-differentiable on a closed interval of real 

numbers having left endpoint zero into a Banach space. The multi­

function F maps the cross product of the interval with the Banach 

space into the Banach space and xo is in the Banach space.

The initial-value problem is transposed, using the Bochner in­

tegral, into a multifunction fixed point problem in the space of con­

tinuous functions on the interval into the Banach space. Several 

multifunction fixed point theorems are obtained in solving the trans­

posed problem. Each of these results is dependent, either directly 

or indirectly, on the multifunction being condensing with respect to 

a measure of non-compactness. As a result, both the concept of a 

measure of non-compactness and the concept of a condensing multifunc­

tion are treated.

In addition, the idea of a monotone multifunction is developed 

and a role found for it in the fixed point theory. Finally, the topo­

logical structure of the solution set to the initial-value problem is 

investigated.
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INTRODUCTION

The primary concern of this dissertation is to investigate the 

existence of a solution to the initial-value problem

x(t) e F(tlx(t))

x(0) ■ x0.

Here x is a function on an interval of real numbers into a Banach space 

x denotes dx/dt, xo is in the Banach space and F is a point-to-set func 

tion, henceforth referred to as a multifunction, on the cross-product 

of the interval with the Banach space into the Banach space.

The above problem is transposed into a corresponding integral prob 

lem which in fact turns out to be a multifunction fixed point problem. 

Thus, the first chapter is basically devoted to providing some back­

ground as regards integration in Banach spaces and existing multifunc­

tion fixed point theory. The integral used throughout is the Bochner 

integral essentially as developed in Hille and Phillips [24] .* In 

the endeavor to show the existence of a solution to the initial-value 

problem several new multifunction fixed point results are obtained.

The pioneer work on the problem was done in the mid thirties by 

Marchaud Q29J and Zaremba [42]. More recently, Castaing [5] , Filippov 

[12] , [13] , [14] and Hermes [23] have extended this work operating in 

Euclidean n-space. Through private communication it was also learned 

that F. De Blasi and V, Lakshmikantham have investigated the problem.

Recent advances in multifunction fixed point theory allow its 

application to the above initial-value problem not unlike the manner

♦Throughout this dissertation a bracketed number refers to the 
corresponding reference in the bibliography.
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in which the Brouwer, Kakutani and Schauder fixed point theories have 

been applied to show the existence of a solution when the kernel F is 

restricted to be single-valued. Among the conditions necessary to en­

sure the existence of a fixed point for the multifunction arising in 

the transposition of the initial-value problem into an integral prob­

lem is that it satisfy a certain Lipschitz-like condition.

Single-valued mappings satisfying this condition are referred to 

in the literature as condensing, densifying or concentrative. This 

class of mappings was studied quite extensively during the early sev­

enties by Danes [?] , [sj, [9], Darbo [loj , Furi and Vignoli [193. 

[20j , [21J , Nussbaum [34] and Sadovskii [38] . Akin to the class of 

condensing mappings is the class of k-set-contraction mappings as 

studied by Gatica and Kirk [22], Nussbaum [34], Petryshyn [36] and 

Potter [37]. These mappings are also referred to in Martin [31] as 

a-Lipschitz mappings.

More recently, condensing and k-set-contraction multifunctions 

have been investigated by Fitzpatrick and Petryshyn [16], [17], [18], 

Himmelberg, Porter and Van Vleck [25] and Martelli [30]. The k-set-con­

traction multifunctions, specifically for the case k<l, have also been 

studied as a subclass of the ultimately compact multifunctions by Fitz­

patrick and Petryshyn [15] .

Central to the idea of a condensing or k-set-contraction multi­

function is the notion of a measure of non-compactness. The best known 

measure of non-compactness was introduced by Kuratowski [28] and is 

presented in Example 1.4.7, The concept of "a measure of non-compact­

ness has since been generalized by Darbo [10], Sadovskii [38] and, un­

der the name "compactness guage", by Jones [26], Following the guide­
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lines set by Sadovskii in [38] Section 1.4 is given to developing a 

general concept of measure of non-compactness for locally convex top­

ological vector spaces.

The idea of a g-contractive multifunction as introduced in Section

2.2 is a take-off on one for single-valued functions due to Furi and 

Vignoli [20]. The class of g-contractive multifunctions is an exten­

sion of the class of Banach contractive multifunctions as studied by 

Filippov [12], Fitzpatrick and Petryshyn [15J, Nadler [33] and Smith- 

son [39] .

The set relations as defined in Section 1,3 and subsequently ap­

plied in Chapter III follow from the work of Smithson [40] . Fixed 

Point Theorem 3.1.3 is an outgrowth from the standard fixed point the­

orems for monotone single-valued functions which map an order interval 

into itself. For example, see the work of Amann [1] .

The development of Section 4.1 follows along the same lines as 

that given in [15] except that the results here apply to a more gener­

al class of measures on non-compactness. Utilizing a fixed point the­

orem due to Kakutani and Tychonoff, later extended to multifunctions 

by Bohnenblust and Karlin [3] , Castaing [4] and Hermes [23] have shown 

the existence of a solution to the initial-value problem in Euclidean 

n-space under conditions somewhat less general than those given in The­

orem 4.2.6.

Definitions and statements of theorems from the literature have 

been interspersed throughout the dissertation. However, unless other­

wise specified, all given proofs are the author’s.



CHAPTER I

1.1 Notation

The following notation will be used throughout the remainder of 

the dissertation.

The set of all subsets of a point set X will be denoted by 2^.

If A and B are point sets then

A|B = {a|aeA and a|B}.

If X is a topological space and ACX then the closure of A in X 

will be denoted by Cl^(A) or more simply A^ when X is understood.

Suppose that (X,d) is a metric space and A is a nonempty subset of 

X. The diameter of A is defined by

di(A) = sup {d(x,y)|x,y e A}.

If xeX then

d(x,A) ■ inf {d(x,y)|yeA}.

If e>0 then

B(A,e) = {xeX|d(x,A)<E}.

In the event that A is a singleton {a} write B(a,E) for B(A,e).

Suppose that A and B are nonempty compact subsets of the metric 

space X. The Hausdorff distance between A and B is defined by 
dH(A,B) = max ^|sup {d(a,B)|aEA}|, {sup {d(b,A)[beB}}^.

The distance function d^ is a metric on the set of compact subsets of 

X. If the metric space X is complete so is the metric space of com­

pact subsets of X with metric dy.

A subset A of X is precompact provided given e>0 there exists a
. . nfinite set in A such that

n
A C UB(aae).

i=l
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A subset A of X is relatively compact provided A is compact in X.

If X is a complete metric space then a subset A of X is precompact 

if and only if it is relatively compact.

Unless otherwise specified all vector spaces, including normed lin­

ear spaces and Banach spaces, will be assumed to have scalar field the 

complex numbers.

Suppose that X is a vector space. If A and B are nonempty subsets 

of X and q is a scalar then

i) A+B = {a+b|aEA and beB};

ii) nA = (na| aeA);

iii) A-B = A+(-l)B.

If A is a singleton (a) write a+B for A+B. If ACX and n is a scalar 

then 4>+A = <|i and n4> = 4>.

A subset A of X is convex provided that whenever x,yeA and ne[o,i] 

the vector (l-r|)x + qy is in A.

If X is a topological vector space and ACX then the convex hull 

of A, denoted co(A), is the intersection of all convex sets containing 

A. The closed convex hull of A, denoted co(A), is the intersection of 

all closed convex sets containing A.

The following two results appear in .

Lemma 1.1.1

If X is a vector space and ACX then 
n n

co(A) = { 7 q^a.-lq.^O, J q- = 1 and a-eA}. e Lt - X J. 1 1 * # U - X X1=1 1=1
Lemma 1.1.2

If X is a topological vector space and ACX then co(A) = co(A).

The set of all closed subsets of a topological space X will be de­

noted by K1(X) and the set of all compact subsets by Kp(X). If X is a 
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vector space the set of all convex subsets of X will be denoted by K(X). 

The set of all closed convex subsets of a topological vector space X will 

be denoted by K1K(X) and the set of all compact convex subsets by KpK(X). 

Finally, if X is the appropriate space and P is one of K, KI, Kp, K1K 

or KpK then the subset of nonempty elements of P(X) will be denoted by 

P(X).

If X is a Banach space and M is a compact metric space the Banach 

space of continuous functions on M into X will be denoted by C(M,X) 

where the norm of fEC(M,X) is given by

||f||c = sup {||f(t)||: teM}.

The following two results are proved in [31].

Lemma 1,1.3

If X is a Banach space and A is a precompact subset of X then co(A) is 

compact in X.

Theorem 1,1,4

If X is a Banach space, M a compact metric space and ACC(M,X) then A 

is precompact in C(M,X) if and only if A is bounded, equicontinuous and 

{f(m)|feA) is precompact in X for every meM,

1.2 Calculus

Properties concerning the measurability, integrability and differ­

entiability of functions having their range in a Banach space are dis­

cussed here.

Until otherwise specified X will denote a Banach space and T a com­

plete measure space with a positive o-finite measure y acting on R a 

o-algebra of subsets of T.

The proofs for results not proved or referenced in this section can 

be found in [24].
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Definition 1.2.1

If f and fn> n = l,2,»»»l are function on T into X then the sequence 

{fn^n=l converges to f on T

i) almost everywhere (a.e.) provided there exists a p-null set E 

in T such that lim ||f(t) - f_(t)[| = 0 for every t e t|E;
n-»<»

ii) almost uniformly provided that for every e>0 there exists Ee
00

in fi with p(Ee) < e such that lfn}n=i converges uniformly 

to f on l|Ee.

Definition 1,2.2

A function f:T -*X is

i) countably-valued if it assumes at most a countable number of 

values in X and assumes each value on an element of fi;

ii) separably-valued if f(T) is separable in X;

iii) almost separably-valued if there exists a p-null set E such 

that f(T|E) is separable in X;

iv) p-measurable if there exists a sequence of countably-valued 

functions converging almost everywhere in T to f.

Lemma 1.2.3

A function f:T ->X is p-measurable if and only if f is almost separa­

bly-valued on T and f“^(G) e fi for every open (closed) set G in X. 

Proof Suppose that f is p-measurable on T. By a result in [24j f
CO

is the almost uniform limit of a sequence of countably-valued

functions. That is, there exists Aj e $2, j ■ 1,2,»**, such that 

p(Aj) < 1/j and converges uniformly to f on t|Aj.
CO oo

Let A ■ f^A.. Then Aefi, p(A) = 0 and converges point-
j=l J

wise to f on t[a. The set l^Jf^CTjA) is countable and hence its clo- 
k=l

sure is a separable subset of X containing f(T|A). Thus, f is almost
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separably-valued.

Let G be an open subset of X and

Gn = {xeX| B(x,l/n)CG} for n = 1,2,*

Consider tel|A. Then f(t)eG if and only if there exists positive inte­

gers n and K such that f|((t)EGn for all k>K. Now,

(m,n=l k=m )CO *

Since is a sequence of countably-valued functions, for each k 

and n the set f^-1(Gn) is the union of a countable collection of meas­

urable sets and hence is itself measurable. Thus, f~1(G)|Aefi and 

hence f-1(G)Efi since T is a complete measure space.

Conversely, suppose f is separably-valued and f-1(G)efi for every open 

set G in X. Let E be a p-null set such that f(t|e) is separable in X 

and a sequence dense in f(T|E). Given e>0 let
Cn = ^f"‘1(B(xn,e))| f 1(B(xk,E))| for n ■ 1,2,«*»,

CO 
and C = C . 

n-1 n
Then the Cn are pairwise disjoint, CnEfi for each n and E(JC = T.

Define fe;T -»-X by

X—, if tEC_ for some n 
fe(t) =

9, if tET|c (Here 6 is the zero of X) .

Then f is countably-valued and lim fe(t) « f(t) for each teC. Thus, f 
E E->0+

is measurable on T.

Since for every function f:T -*X and every subset H of X, f1(x|H) - 

T|f1(H) the result for the case when G is closed follows immediately 

from the preceding argument.

Definition 1.2.4

A countably-valued function f:T -»X is integrable (Bochner) provided 
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the function ||f[| on T into the real numbers is Lebesgue integrable 

and then the integral on E e fi is defined by

CD 
Jf(s)du » y xkp(Ekf)E) 
E k=l

where f(t) = on E^ e for k = l^,***.

Definition 1.2.5

A function f:T ->X is integrable (Bochner) provided there exists a se­

quence of countably-valued integrable functions converging al­

most everywhere to f such that

lim J||f(s) - fn(s)||dp = 0.

The integral on E e fi is then defined by

Jf(s)dp = lim Jf (s)dp.
E n-H» e

Remark The above integral is shown to be well-defined in [24].

Theorem 1.2,6

A function f:T ->X is integrable (Bochner) if and only if f is p-meas- 

urable and ||f|| is Lebesgue integrable on T with J||f(s)|[dp < ».
T 

Definition 1,2,7

Let L(T,X,p) or L(T,X), when p is understood, denote the set of inte­

grable functions on T into X where functions which disagree only on a 

p-null set are identified via the usual equivalence relation. 

Lemma 1,2,8

The set L(T,X) is a Banach space when endowed with the norm defined by 

||f||  — /||f(s)||dp for f e L(T,X).
T

Lemma 1,2,9

If f,g e L(T,X) and n is in the scalar field of X then f+g and qf are 

in L(T,X) and

i) /(f+g)(s)dp = Jf(s)dp + Jg(s)dp;
E EE



10

ii) jnf(s)dp » njf(s)dp;
E E

for E e 0.

Lemma 1.2.10

If {En)n"^ is a sequence of pairwise disjoint elements in fi, E = LJEn 
n=l

and f e L(T,X) then

/f(s)dp = y Jf(s)dp.
E n-1 En

Lemma 1.2.11

If a sequence L(T«X) converges almost everywhere to a func­

tion f and if there exists a function g e LCT,^,”)) such that for all

n, ||fn(t)|| < g(t) for all tel then f e L(T,X) and

lim Jf(s)dp ■ Jf(s)dp 
n-w E e

for E e R.

Lemma 1,2.12

If f e L(T,X) and E e R then

[[/f(s)dp|[ < J|[f(s)|[dp 
E E

where the latter integral is the Lebesgue integral on E.

Lemma 1.2,13

If f e L(T,X) then the set function m defined on R by

m(E) = Jf(s)dp 
E

is absolutely continuous.

Lemma 1.2,14

If a sequence (fn}n=i converges weakly to f in L(TtX) then

lim Jf (s)dp = Jf(s)dp
n-** E n E

for E e R.

Proof Suppose that E e R and consider x* e X*, the conjugate space of

X. Then, let F* be the element in the conjugate space of L(T,X) defined
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by 

F*(f) = X*jf(s)dn, f E L(T,X).
E

Since

x*(lim /fn(s)dp) - lim F*(fn) ■ F*(f) = x*(/f(8)dv), 
n-x” g n-xo “ g

lim Jfn(s)dy = Jf(s)du. 
n->co E E

Lemma 1.2.15 * * I J

If 0<y(T)<® and f:T -♦•X is a countably-valued integrable function then

Jf(s)du £ p(T)cb({f(s):sET}).
I

Proof Fix x0 an element in the range of f. Then by Definition 1.2.4 

k k/f(s)dp = limf ( J v(En)Xn) + P<t|Ue.)xo) 
I k-*"xxn=i ' i=i /

where f(t) = xn on E e fi for each n. Indeed, 
k

lim udJl^jEj^) = p(<|>) » 0. 
k-xx. i=1

Since for each k 
k k

l/p(T)((y pCE^)) + p(t|Oe£)) = 1 
x n=l i=l '

and p is a positive measure

Jf(s)dp e p(T)cb({f(s):sET}) 
T

by Lemma 1.1,1.

Lemma 1,2.16

If 0<p(T)<», E a p-null subset of T and f:T ->X an integrable function 

then

Jf(s)dp e p(T)cb({f(s):seT|e}). 
T

Proof Let n be a positive integer. By a result of Hille and Phillips

[^24j there exists a sequence {Aj}j=£ of nonempty disjoint elements of R so

that T = and for any choice of s- e Ai the function f_ defined onJ J JJ=1
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T by

1.2.17 fn(t) - f(sj) for teAj

is countably-valued, p-integrable and

/||fn(s) - f(s)||dp < 1/n. 
T

Select a sequence {s.} j=0

s

such that s e TIE and for i^l o 1 •*
a.|e, if A.(£E

e J J
Aj, if AjCE.

Let fn be the function defined as in 1.2.17 for this choice of

and Eo (UAk|AkCE}.

Now, define a function g on T by

8n(t)
fn(t). if t^o 

if teEo.

Since Eo is a p-null subset of T, is countably-valued and p-inte­

grable since fQ is. Also,

|gn<«) * f(s)IldU

JI|f(s) - f(s)I[dp 
T n

Thus, lim /g^(s)dp ■ Jf(s)dp.

By Lemma 1.2.15 
m(n)

/f(s)dp - lim p(T) J aign^i^ 
T n-*” *

where tj e T, a«iO for l$i<m(n) and \ a^ ■ 1 for all n. However, for 
n 1-1 n ,

each i and n, t^ e Aj for some j and hence there exists s^ e T|E such

that g^t”) = f(s”). Thus,

m(n)
p(T) y ajfCsj) e p(T)co({f(s)|seT|e}) 

i"l
Jf(s)dp n lim n*»

by Lemma 1.1.1.
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Lemma 1.2.18

If i-8 a sequence in L(T,X) converging to f then there exists a

A function f:J ■♦X is differentiable at t£j provided there exists f(t)

in X such that

lim f(t+h) - f(t) ■ f(t)
h

A function f:J -*X is differentiable on J if it is differentiable at

00 

subsequence {f converging pointwise almost everywhere on T to f.
oo

Proof Select a subsequence such that
/Ilf (s> - f (.)||d„ < 2"“. 
T * * * n *k+l nk

m <*
Let h = I I I I I and h ■ X I I fn . - f„ I I.

k»l k+1 k k-1 k+1 k

Then, /h (s)dp < 1 for each m and hence, by an application of Fa- 
T

tou's Lemma, /h(s)dp < 1. Thus, h(t) < ” a.e. on T so that
T < m x x | ”

) nl k-lKnk*l nk/ k=l

converges a.e. on T. But, fn + I ( fn - fn, )=■ fn so that
1 fewp Tc+l k/ m

lim f- (t) ■ f(t) a.e. on T. k-Hx> k
In the following X will denote Lebesgue measure on the real line.

Also, J will denote an interval of real numbers having endpoints c and

d with c<d and c ■ -* and/or d ■ * will be permissible. If JQ * [a,b], 
b

JOCJ, and f e L(JO,X,X) then Jf(s)dX may be written for Jf(s)dX. 
a Jo

Lemma 1.2;19

If JQ ■ [a,bjcj and f e L(JO,X,A) then
b

||/f(s)dX|| < (b-a)sup {||f(s)||:seJo}. 
a

Proof This result is an obvious extension of Lemma 1.2.12.

Definition 1.2.20
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every point of J.

Lenmial.2.21
t

If fEL(J,X,X) and ceJ then the function defined by F(t) ■ /f(s)dX 
, c

is differentiable a.e. on J and F(t) = f(t) a.e. on J.

Lemma 1.2,22

If Jo » [a,b]CJ and f:J ■*X is a function differentiable on JQ such

that f(t) ■ 6 on JQ then f is a constant function on Jo.

Proof By a mean-value theorem due to Martin [31] for every teJo

f(t) - f(a) e (t-a)co(Ks) |se[a,t]) ■ {6}.

Thus, f(t) ■ f(a) on JQ.

Lemma 1.2.23

If JQ ■ [a,b]CJ and f,g:J •♦X are functions differentiable on Jo with

f(t) ■ g(t) on JQ then for some CeX, f(t) ■ g(t) + C on JQ.
• • •

Proof Since (f-g)(t) ■ f(t) - g(t) ■ 8 on Jo, by Lemma 1.2.22, f-g

is a constant function on Jo. Hence, there exists CeX such that

f(t) = g(t) + C for every teJo.

Lemma 1.2.24

If Jo ■ [a,b]CJ and f,g:J -*X are continuous functions such that g is

differentiable on Jo with g(t) ■ f(t) for every teJo then

b
/f(s)dX - g(b) - g(a).
a

t
Proof Let G(t) ■ Jf(s)dX on Jo. Then, as in Martin [31] , for every 

. * a b
teJo, G(t) • f(t). Thus, G(t) ■ g(t) on Jo and by Lemma 1.2.23 there

exists CeX such that G(t) ■ g(t) + C on Jo.

Now, G(b) - G(a) ■ g(b) - g(a) and G(a) ■ 6. Thus,

b
Jf(s)dX - G(b) ■ g(b) - g(a).
a



15

1.3 Partial Orderings on a Banach Space

The concept of a partial ordering on a Banach space defined here 

generally follows one developed by Krasnoselskii in [^27j . 

Definition 1.3,1

If X is a Banach space then KCX is a cone provided

i) K is closed in X;

ii) if u,v e K then au + gv e K for all a,B e [b,<»);

iii) KA(X|K) = 6.

Definition 1,3.2

A cone K is normal in a Banach space X provided there exists e>0 such 

that for all x,y e K with ||x|| = ||y|| = 1,

Ilx+y|I > £•

Definition 1.3.3

A relation <•' on a Banach space X is a partial ordering on X provided

i) xs'y implies tx<'ty if tE[0,«o) and ty<'tx if tE(-«>,0);

ii) x<"y and y<"x imply x = y;

iii) x<"y and zs'w imply x+z<'y+w;

iv) x<"y and y<'z imply x<'z.

Remark If K is a cone in a Banach space X then the relation <" de­

fined on X by x<'7 provided y-x e K is readily seen to be a partial or­

dering.

Definition 1.3.4

If (X,<") is a partially ordered Banach space and u,v e X with u<'v 

then the set

[u,vj - {x|u<'x<'v}

is called an order interval with endpoints u and v.
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Definition 1.3.5

If (Xf^") is a partially ordered Banach space then a sequence txn^n=i 

in X is increasing if xn-'xn+i ^or ni decreasing if xn+i-*xn f°r 

all n and monotone if it is either increasing or decreasing.

V If X is a Banach space partially ordered by a cone K and A,B e 2 

then A is right-set related to B, written A<B, provided that 

(b-A)f)K 4 4> for every beB.

Remark Definitions 1.3,9 and 1.3,10 are indeed different for let X

be the real numbers with their usual ordering, A = {1,2} and B = {0,3}.

Definition 1,3,6

If (Xt$j) and (¥,^2) are partially ordered Banach spaces and f is a . 

function on X into Y then f is increasing if x^z implies f(x)s2f(z)| 

decreasing if implies f(z)s2f(x) and monotone if it is either in­

creasing or decreasing.

Definition 1,3,7

A norm in a Banach space partially ordered by a cone K is semi-mono- 

tonic provided there exists a real number k such that if xs'y in K then

IMI ^llyll.

The following result is due to Krasnoselskii |^27j .

Lenma 1.3,8

A cone K in a Banach space X is normal if and only if the norm on X

is semi-monotonic.

Definition 1,3,9

If X is a Banach space partially ordered by a cone K and A,B e 2 

then A is left-set related to B, written A<B, provided that 

(B-a)f)K <|> for every aeA.

Definition 1,3,10



17

Then A<B but it is not true that A<B. 1 r

1.4 Measures of Non-compactness

The idea of a measure of non-compactness as defined in this 

section is generally attributed to Sadovskii [38]. Unless otherwise 

specified X will denote a locally convex topological vector space 

in the following.

Definition 1.4.1
• XA closed convexity m X is a set AG2 with the property that if AeA 

then co(A) £ A.

Definition 1,4,2

If A is a closed convexity in X and (T,<>0) is a totally ordered set 

with minimal element 0 then a function y:A -*T is a measure of non-com­

pactness (mnc) provided that for all AeA

y(c5(A)) » y(A).

The quadruple (X,A,T,y) is called a non-compactness measurable (ncm) 

space.

Definition 1.4.3

If (X,A>T,y) is a ncm space then y is

i) monotonic if A,BeA and ACB imply y(A) < y(B);

ii) semi-additive if whenever A, B and A(jB are in A then

y(A(JB) = lub {y(A),y(B)};

iii) non-singular if for all xeX, (x}eA and y({x}) = 0;

iv) 1-regular if AeA and y(A) = 0 imply that A is precompact;

v) 2-regular if AeA and A precompact imply that y(A) » 0;

vi) algebraically semi-additive if T is a monoid and if A,BeA 

implies A+BeA and y(A+B) < y(A) + y(B);

vii) invariant under shifts if AeA implies x+A E. A and
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y(x+A) ■ y(A) for all xeX;

viii) semi-homogeneous if T » [O,60) and if AeA and n a complex 

number imply nA e A and y(nA) = [nlvCA).

Example 1.4.4

Let X be a locally convex topological vector space, T ■ {0,1} with its 

usual ordering and A ■ 2 , Define y:A •*T by

y(A) =
0, if A is precompact

1, if A is not precompact.

Then it is easy to verify that (X,A,T,y) is a ncm space satisfying i) 

through viii) of Definition 1.4.3.

Example 1,4.5

Let X be a normed linear space, A the set of all bounded subsets of X 

and T ■ [O,*). Then, Martin [31] has shown that (X,A,T,di) is a ncm 

space satisfying i), iii), iv), vi), vii) and viii) of Definition 1.4.3. 

Example 1.4.6

Let X be a Banach space, C e K(X), A the set of all bounded subsets of

X and T ■ [O,*). Define 6c:A -►T by 
n

6 (A) - inf {d>0|ACUB(c. ,d), c.eC, n a positive integer}. 
b i-1 1 1

Then (X,A,T,6^) is a ncm space.

Indeed, consider AeA. It is immediate that 6C(A) ■ 6^(A). Thus, 

it suffices to show that 6c<co(A)) ■ 6C(A).

Let d>6c(A), Then there exists a positive integer n and c^ e C,

n
l<i<n, such that AC (<jB(c^,d). Let V ■ co({c^}£e^) and x e co(A). 

i"l
Then,

x = where nk>0, l<k<p, =* 1 and a^ e A.
k=«l K k«l K

Now, define a function h on A into the set {l,e,e,n} such that
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''•’'Ha)11 < d for all aeA.

Then

"x - )l I * 11 * “hfafc)’' ' ■= d-
k"l K k«l ”■

Let

B - [0,1] x«..x[0,1] x{Cl }x.. .x{ Cii} 
n times 

and 
n

D = )| Z » 1, ’I'£e[O,1J}.
1=1

Then D is a subset of the compact set B and hence is precompact, Let

f:B ->X be defined by
n

• c ) = Z ».c., ip.e[O,l] 
n £■! i

for l<i<n.

Then f is continuous on B and so is g, the restriction of f to D.

Since g maps D onto V the set V is precompact in X. Thus, given e>0 
m

there exists a finite set in V such that
vcOB<vi»E>-

i-1
In particular, there exists j e {l,ee»,m} such that

- Tj" < =•

Hence,
llx-Vjll S Ila - J1''kCh(ak)ll ♦ - ''ill <d«-

That is.

x e B(vj,d+e).

Since d was arbitrarily larger than 6q(A) and 5q(A) < S^CcoCA)), 

6c(co(A)) = 6C(A).

Remark The mnc 6^ is referred to in the literature as the ball mea­

sure of non-compactness relative to C. In [38] Sadovskii shows that 

the ball measure of non-compactness relative to C satisfies i) through 

viii) of definition 1.4.3.
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Example 1.4.7

Let X be a Banach space, A the set of all bounded subsets of X and

T ■ [0,»). Define a:A ->-T by 

a(A) ■ inf (d>0|A can be covered by a finite number 
of sets of diameter less than d}.

Then Martin [31] has shown that (X,A,T,o) is a ncm space.

Remark In [38] Sadovskii shows that a satisfies i) through viii) 

of Definition 1.4.3. In addition, he shows that if C ■ X in Example

l. 4.6 then a and 6^ are equivalent in the sense that there exists

m, M e (0,“) such that for every AeA, the bounded subsets of X,

m(6v(A)) < a(A) < M(6 (A)).

In fact, he shows that m ■ 1 and M ■ 2 always works.

The measure of non-compactness a was defined by Kuratowski 

and is referred to in the literature as the set measure of non-com­

pactness, The following theorem is also due to Kuratowski [28], 

Theorem 1.4,8 
00

Let X be a Banach space and {A^} a sequence of nonempty closed 
CO 

subsets of X such that A.DA-D •••. If lim o(A ) ■ 0 then A ■ f^An 12 n^. n •iib1

is a nonempty compact set and {A } converges to A in the Hausdorff n n=l 
metric.

Example 1,4,9

Let X be a Banach space, M a compact metric space, A the set of all 

bounded subsets of X and T = [0,<»). In addition, suppose that (X,A,T,y) 

is a ncm space with y a monotonic mnc. Furthermore, let X^, • C(M,X) 

and Aq the set of all bounded subsets of X^.

If AeAg define A^ ■ (f(t)|fEA, tEM} and y^sA^ *1 by
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Then is a ncm space.

To see this consider AeA-. Since (co(A))mCco(Au) and Y is mono- C “ rl
tonic

Thus,

Yg(co(A)) - y((co(A))M) < yfcoCAy.)) - yC^) ■ Yc(A)

Also, A^C(55(a))^ so that

Y_(A) = y(A^) < y((co(A)) ) ■ Yn(co(A)). L M M C

Yc(co(A)) ■ YC(A).

The idea of defining YC in this manner is essentially due to Sad-

ovskii [38] ,

In the following sequence of lemma's the ncm space involved will 

be as in Example 1.4.9.

Lemma 1.4.10

Lemma 1.4.11

If y is monotonic then so is y •C
Proof Consider A,BeA^ with AcB« Since A^CB^ and y is monotonic

Y (A) - yCA^,) < Y<B ) ” Y (B). v M M U

If y is semi-additive then so is y^.

Proof Suppose A, B and A(JB are in A^. Since y is semi-additive and 

(AUBV^U^

Y„(AUB) - y((AUB>„) v M

= lub {y(AM),Y(BM)}

= lub {yc(A),Yc(B)}.

Lemma 1.4.12

If y is 2-regular then y^, is non-singular.
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Proof Consider feX^. Then f(M) e Kp(X) so that {fleAg. Since Y 

is 2-regular

Yc({f}) = “ 0*

Lemma 1.4.13

If y is monotonic and 1-regular then Yq is 1-regular when restricted 

to equicontinuous sets in A^.

Proof Suppose A is an equicontinuous set in A^ with Y^(A) = 0.

Since y is monotonic and {f (m) | feAlCA^ for every meM

0 < Y((f(m) | fcA}) < yC^) ■ YC(A) ■ 0.

Thus, since y is 1-regular A is precompact by Theorem 1.1.4-

Lemma 1.4.14

If Y is monotonic and algebraically semi-additive then y^ is algebra­

ically semi-additive.

Proof Suppose A,BeA . Then A+B e A , Ali+B e A and (A+B) CA +B .——— c C M M M M M
Thus, since y is monotonic and algebraically semi-additive

Y (A+B) = y((A+B) ) < y(A+B) < y(\.) + Y<Bm) - Yr<A) + Yr<B). L M M M M M U U
Lemma 1.4.15

If Y is monotonic, 2-regular and algebraically semi-additive then Y^ 

is invariant under shifts.

Proof Consider feX^ and AeA^. Then f+A e A^, and since y is mono­

tonic, 2-regular and algebraically semi-additive

Y„(f+A) = Y((f+A)„) U M
< Y(f(M)+A^)

< Y(f(M)) + Y^Ajj)

■ 
= yc<A)
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Lemma 1.4.16

If y is semi-homogeneous then so is

Proof Suppose that AeA^ and n is a complex number. Then

Yc(nA) - y((nA)M) - y(n(AM)) ■ |n|r(AM) - |n|Yc<A).

Example 1.4.17

Let X be a Banach space, T ■ A the bounded subsets of X and

(M,d) a compact metric space. Also, let X^, and A^ be as in Example 

1.4.9.

For n>0 and AeAq define

(
sup {||f(mj) - f(m2) 11 :d(m|,m2)<n and feA), if A f $ 

0, if A ■

The modulus of continuity of A is then defined by 

u(A) ■ lim to(n,A). 
n-H)+

It is not difficult to show that (Xq,Aq,T,») is a ncm space. In­

deed, consider AeA^ and n>0.

If A ■ | then evidently (d(A) ■ (u(co(A)), so suppose that A 

Then, given e>0,

<o(n,A) ■ sup {||g(m^) - g(m2) | | :d(m1,m2)<n, geA}

< {sup {(IgCm^) - fg(m1)||} + sup {| J f^Cnij^) - f^Cm^) j j } 

+ sup {((fgCmj) - g(m2)I I}:d(mj ,m2)<n, geA, fgeA 

and ||fg-g||c < e/2|

< e/2 + w(n,A) * e/2

■ <i>(n>A) + e.

Thus, ii)(n,A) < u(n,A) for every n>0 and so w(A) < w(A).

Evidently, y(n,A) < u(n,A) for every n>0. Hence, y(A) < «(A) and 

e»(A) ■ u(A).

Therefore, it suffices to show that u(co(A)) ■ u(A). Now,
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a)(n ,co(A)) = sup \ Bkfk(m1) - \ Bkfk(m2)| I :d(m1,m2)<n, 
k=l k=l

8.^0, ) 1 ■ 1, f.eA k ’ L. k * k k=l 1

< sup 4|| J - ^(n^)! I :m1, n^, gk and

are as above

5 sup M Bk||fk(m1) - fk(m2)||:m1, n^, Sk and fk 
'k=l
are as above|

P
< sup { y n,A):8^ are as above}

k»l

■ w(n,A)

Thus, u(co(A)) < <i)(A).

Certainly, w(n,A) < a>(n,co(A)) for all n>0. Therefore,

<ti(A) < <i)(co(A)) and w(A) ■ <u(co(A)).

Remarks It is readily verified that the mnc oi satisfies conditions

i) and ii) of Definition 1.4.3. It also satisfies condition iii) 

since a continuous function on a compact set into a Banach space is 

uniformly continuous. Conditions iv) and v) are satisfied if either 

a) is restricted to AeA^, such that the set {f(m)|f£A} is precompact 

for every meM or if X is the real or complex numbers. The former 

follows from Theorem 1.1.4 and the latter from the Arzela-Ascoli 

Theorem.

Condition vi) of Definition 1.4.3 is satisfied by to, for sup­

pose A,BeA^. If one of A or B is empty then it is obvious that
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O)(A+B) = a)(A) + 10(B),

so suppose that A and B are both nonempty. Then A+BeA^ and for all 

n>o

<o(n,A+B) = sup {||(f+g)(m^) - (f+gXiDg) | |: feA, geB, dCmpnijJcn}

< sup {||f(m^) - fCn^)||:feA, d(m^,m2)<n)

+ suptllgCmp - g(m2)||:geB, dCn^ .m^cn)

< o)(n >A) + a)(n ,B).

Thus, (o(A+B) < io(A) + io(B).

It is easy to see that to satisfies condition vii). Indeed, con­

sider feX^ and AeA^. If A is empty then it is immediate that

io(f+A) = a>(A),

so suppose that A is not empty. Then given e>0 there exists B>0 such 

that

||f(m^) - f(m2)||<e whenever d(m^,m2)<B

Therefore, if n<B then

io(n,A) = sup {| (gCm-^) - g^JlIsgeA, d(m1,m2)<n}

< sup {||g(m^) - f(m^) + f(m^) - fCn^) + fCn^) - gCn^^l | :

geA, d(m1,m2)<n)

< sup {||(f+g)(m^) - (f+g)(m2) | | :g£A, dCmpn^Ol}

+ sup {||f(m^) - f(m2)||:d(m^,m2)<n}

< (o(n,f+A) + e.

Thus, <o(A) < <o(f+A). By conditions iii) and vii)

<o(f+A) < w({f}) + <u(A) = (o(A)

and hence a>(f+A) = aj(A).
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Finally, w satisfies condition viii), for suppose AeA^,, g is a 

complex number and TpO. If A is empty then trivially

w(gA) = |6|ti(A),

so suppose that A is not empty. Then

u(n,6A) = sup {||6f(m^) - Pf(m^)||zfeA, dCm^jm^Joil

= |g|sup {([fCm^) - f(m2)||:feA, dCm^,m2)<n}

» |B|w(n,A).

Thus, o)(BA) = |b|w(A).

In the event that u is restricted to AeA^, such that {f(m)|f£A} 

is precompact for each meM, Nussbaum [34] , without referring to u as 

a mnc, has shown that a and m are equivalent on Xg in the sense of the 

Remark following Example 1.4.7. In fact, m = 1/2 and M « 1 always 

works.

1.5 Multifunctions

The text by Berge [2] and the paper by Smithson [41] were used as 

references in the development of this section.

Definition 1.5.1
Y .Suppose X and Y are point sets. A function on X into 2 is called a 

multifunction.

Definition 1.5.2
y If X and Y are point sets, F and G multifunctions on X into 2 , BCX and

ACZY then

i) F(B)»Ur(b);
b£B

ii) F (A) = {xEx|f(x)AA f <l>};

iii) the multifunction FQG on X into 2^ is defined by

FAG(x) - F(x)AG(x), xeX.
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Definition 1.5.3

If X is a point set, Y a vector space, F and G multifunctions on X
, yinto 2 and n a complex number then

i) F+G is a multifunction on X into 2^ defined by

F+G(x) = F(x) + G(x), xeX;

ii) nF is a multifunction on X into 2^ defined by

nF(x) = n(F(x)), xeX;

iii) F-G is a multifunction on X into 2^ defined by

F-G = F+(-l)G.

Definition 1.5.4

Suppose X and Y are point sets. If P is a property of sets then a
y 

multifunction F:X -*2 is point P provided F(x) has property P for all

xeX.

Remark If X and Y are point sets then a single-valued function f on
YX into Y defined by f(x) ■ y and the multifunction F on X into 2 de­

fined by F(x) = {y} will be identified by the map y -*{y}.

In the following X and Y will denote topological spaces unless 

otherwise specified.

Definition 1.5.5
y

A multifunction F:X ->2 is upper semi-continuous (use) at xeX provided

that for every V an open set in Y containing F(x) there exists an open

set U in X containing x such that F(z)CV for all zeU. A multifunction
Y . . . . . .F:X ->2 is upper semi-continuous on X if it is use at every point of F.

The following result can be found in Smithson [41].

Lemma 1.5.6

A multifunction F:X -*-2 is use if and only if F"(A) is closed in X

whenever A is closed in Y.
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Definition 1,5.7
yA multifunction F:X is closed provided that whenever xgX and yEY 

with y|r(x) there exists open sets U in X containing x and V in Y con­

taining y such that for all zeU, F(z)f)V = 

Lemma 1.5.8
YIf F:X •*! is a closed multifunction then it is point closed.

Proof Suppose, by way of contradiction, that F(x) is not closed in

Y for some xeX. Then there exists a point yeY|F(x) such that every 

open set containing y meets F(x). However, this contradicts the defi­

nition of F being a closed multifunction.

Lemma 1.5.9

Suppose that F:X -*2^ is a closed multifunction. If (x } , is a net 
a oeA

in X that converges to H and {ya}aeA 3 net that converges to 

such that yQEF(xa) for every aeA then ^eF(H).

Proof The graph ¥ = {(x,y)|yEF(x)} of F is closed in XXY. Indeed, 

since F is a closed multifunction, for every (x,y) e (XXY)]'!' there 

exists open sets U in X containing x and V in Y containing y such that

UxVC(XXY) |¥.

Since (xajyo)e,? for each oeA and {txa>ya)}ae^ converges to (&,^) in the 

product topology that is, ^eF(X).

Definition 1,5.10
Y • 00A multifunction F:X -*2 is a-closed provided that if {x } , is a n n=l

00

sequence in X converging to x and tynJn=^ is a sequence in Y converg­

ing to y such that ynEF(xn) for all n then yEF(x).

Lemma 1.5.11
• • YIf X and Y are metric spaces then a multifunction F:X -*2 is closed 

if and only if it is a-closed.
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Proof Suppose that F is g-closed. By way of contradiction, suppose 

that F is not closed. Then there exist xeX and yeY with y|F(x) such 

that for every open set U in X containing x and every open set V in Y 

containing y there exists z, depending on U and V, in U such that 

vriF(z) |

Thus, there exists a sequence {x } in X such that x £B(x.l/n) n n=l n
for all n and a sequence {y } “ in Y such that y eB(y,l/n)nF(x_) n n=l n n
for all n. Since F is o-closed yeFCx), a contradiction.

Conversely, suppose that F is closed. Then, by Lemma 1.5.9, F is 

a-closed.

Lemma 1,5.12

If Y is a regular topological space then every point closed use mul- 

tifunction F:X ->2 is a closed multifunction.

Proof Suppose xeX and yeY with y|F(x). Since F(x) is a closed sub­

set of Y there are open sets V containing y and W containing F(x) in 

Y such that WflV ” <|>.

Since F is use there exists an open set U in X containing x such 

that F(U)CZW. That is, if zeU then F(z)f|V = 4> and hence F is a 

closed multifunction.

The subsequent result can be found in Smithson [41].

Lemma 1,5.13

If F:X -*2^ is a point compact use multifunction and AeKp(X) then 

F(A) e Kp(Y).

Lemma 1.5.14

If F:X ->2^ is a closed multifunction and AcKp(X) then F(A)eKl(Y).

Proof Suppose {y } is a net in F(A) converging to y. Then there
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exists a net {x } D in A such that y eF(x ) for every aeB, a aeB 7 a a J
Since A is compact there exists xgA and a subnet of lx } r a aeB

that converges to x. Thus, since F is a closed multifunction, 

yeF(x)CI’(A)

by Lemma 1.5.9, hence F(A)eKl(y).

Definition 1,5,15

Suppose X and Y are point sets and F:X -*2 is a point nonempty multi­

function. A single-valued function f:X ->Y with the property that 

f(x)eF(x) for all xeX

is called a selector for F on X.

Definition 1.5.16
y

Suppose (T,p) is a measure space, Y a topological space and F:T -*2

a multifunction such that F(t) is nonempty p-a.e. on T. A single­

valued function f:X -»Y with the property that f(t)£F(t) p-a.e. on T 

is called a p-selector for F on T.

Definition 1,5.17

Suppose (T,p) is a measure space and Y a topological space. A multi­

function F:T -»-2^ is p-measurable provided F~(A) is p-measurable in T 

for every closed subset A of Y.

Definition 1.5.18

Suppose (T,p) is a measure space and Y a Banach space. A multifunction 

F:T ->2 is integrably bounded on T provided there exists a p-integrable 

function p on T into the real numbers such that

sup {||y||:yeF(t)} p(t) for every tsT.

The function p is called an integral bound for F.

Definition 1.5.19

Suppose (T,p) is a measure space and Y a Banach space. A multifunction
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Y . F:T -*2 is integrable on T provided the set

B = {f|f is an integrable p-selector for F on T} 

is nonempty. The integral of F on T is then defined by 

/F(s)dp = {/f(s)dp|feB}.
T T

Definition 1,5,20
X •Suppose that X is a point set and F:X -*1 is a multifunction, A 

point xeX such that xeF(x) is called a fixed point of F.

Definition 1,5,21

Suppose that (X,<i) and (Y,^) are Banach spaces partially ordered by 

cones. A multifunction F:X -»-2^ is left-set (respectively, right-set) 

monotone on X provided that if in X then

F(x) < (respectively, <) F(z).

1.6 Contractive and Condensing Multifunctions

The paper by Sadovskii [^38j was used as a reference in the dis­

cussion here of condensing and k-set-contraction multifunctions. It 

should be noted, however, that the work done there is restricted to 

single-valued functions.

Throughout this section Q will denote a point set.

Definition 1.6.1

Suppose that X and Y are metric spaces and k>0. A multifunction 

F:X -*Kp(Y) is a k-contraction provided that for all x,z e X 

dH(F(x),F(z)) < kd(x,z).

Definition 1.6.2

If X is a metric space and Y a topological space then a multifunc­

tion F:QxX is precompact (respectively, compact) provided that 

F(QxA) is precompact (respectively, compact) in Y for every bounded 

subset A of X.
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Definition 1.6.3

Suppose that (X|AllTly^) and (YlA2lTly2) are ncm spaces. A multifunc­

tion F:QxX ->2^ is y^2-condensing if F(QxA)eA2 for every AeA^ and if

Y2(F(QxA)) i YjCA) 

implies that A is precompact.

Remark If X = Y and y1 = y2 ■ y in Definition 1.6.3 then F is said 

to be y-condensing or simply condensing. Since T is a totally ordered 

set the last condition in Definition 1.6.3 is equivalent to demanding 

that if A is not precompact then y2(F(QxA)) < y^A).

Definition 1,6.4

Suppose that (XtA gTiYj) and (Y^A^T^y,,) are ncm spaces, k>0 and T 

a subset of the real numbers. A multifunction F:QxX -»-2^ is a k-yjy^- 

set-contraction provided that for every AeA^, F(QxA)eA2 and 

y2(F(QxA)) S k(Y1(A)).

Remarks In order to apply the preceding definitions to multifunc­

tions defined on an appropriate space X into the set of all subsets 

of an appropriate space Y identify X with QxX, where Q = {q} is a sin­

gleton, by the map x ->-(q,x).

Suppose that (X,A1,T,y1) and (Y,A2,T,y2) are ncm spaces where Aj 

and A2 are the bounded subsets of X and Y respectively. If y2 is a 

2-regular mnc then every precompact, hence every compact, multifunc- 

tion on X into 2 is obviously a 0-y1Y2-set-contraction.

The subsequent result follows immediately from the two preceding 

definitions and Definition 1.4.3.

Lemma 1,6.5

Suppose that (X,A1,T,yi) and (Y,A2,T,y2) are ncm spaces where y^ is a 

1-regular mnc. If 0<k<l and F:X is a k-y1Y2-set-contraction then
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F is Y1Y2-condensing.

The following result is proved by Fitzpatrick and Petryshyn in 

[15].

Lemma 1,6,6

Suppose that (X,AX,TI6X) and (YlAYlTlYy) are ncm spaces as in Example 

1.4.6. If F:X -»Kp(Y) is a k-contraction then F is a k-fi^S^-set contrac­

tion.

Lemna 1.6.7

Suppose that (XjApTjY ) and (Y^^T^Yg) are ncm spaces where Aj and 

are the bounded subsets of X and Y respectively. If y2 Is monotonic, 

algebraically semi-additive and 2-regular, F:X -»-2 is a precompact mul- 

tifunction and G:X -*2 is a k-Y1Y2“8et-contraction then F+G is a k-Y1Y2~ 

set-contraction.

Proof Consider AeA^. Then

Yo(F+G(A)) < y (F(A) + G(A))2 2
Y2(F(A)) + y2(G(A))

< 0 + kCy^A))

= k(Y1(A)).
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CHAPTER II

2.1 A Definition of Solution to the Initial-value Problem

A definition of a solution to the initial-value problem as posed 

in the Introduction is provided in this section. The definition dif­

fers from that of the classical solution as given by Filippov [12] in 

that only a local solution defined almost everywhere in a neighbor­

hood of zero is sought here.

Definition 2.1.1

Suppose that T, X and Y are point sets. If x:T -*X is a single-val- 
vued function, seT and F:Txx ->2 is a multifunction then

y
i) the multifunction FX:T -*2 is defined by

Fx(t) - F(t,x(t)), teT;
Yii) the multifunction Fg :X -»-2 is defined by

F (z) - F(s,z), zeX.

Unless otherwise specified X will denote a Banach space, J a 

closed interval of real numbers [0,T] with 0<T«», and FzJ^X -VI8" a 

multifunction. Also, unless otherwise stated, any reference to mea­

sure on the real line will be to Lebesgue measure and it will be de­

noted by X.

Definition 2.1,2
X If G:J is a multifunction and is a subinterval of J then o

i) IS(G,JO) will denote the set of all integrable X-selectors 

on for G restricted to J^;o o’
ii) MS(G,Jq) will denote the set of all measurable X-selectors 

on JQ for G restricted to Jo.

Definition 2.1.3

A solution to the initial-value problem
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2.1.4 x(t) e F(t,x(t))

x(0) = xol xoeX

is an ordered pair (x,Jo) where Jo = [0,To], 0<TosT and x:Jo -*X is a 

once differentiable function a.e. on JQ such that x is a X-selector on 

Jo for Fx restricted to Jo and x(0) = x0.

Lemma 2,1.5

Suppose that Jo = [OiTq], 0<TosT and xoeX. If F is the multifunction 

on C(JolX) into the subsets of itself defined by

t
2.1.6 F(x) = {y|y(t) = xo + Jfx(s)dX where fx£lS(FxlJo)}

0

then every fixed point of F is a solution to 2.1.4.

Proof Indeedt F is a multifunction on C(JQ|X) into the subsets of 

itself by Lemina 1.2.13.

Suppose that x is a fixed point of F. Then

t
x(t) = xo + Jfx(s)dX where fxElS(Fx,Jo).

0

Certainly, x(0) ■ xq and by Lemma 1.2.21, x(t) = fx(t) a.e. on Jo. 

Thus, x(t) e F(t,x(t)) a.e. on and hence x is a solution to 2.1.4.

Remark The multifunction 2.1.6 corresponding to the initial-value 

xQ will be denoted by (F,xo) or simply F when xQ is understood.

Lemma 2,1.7

Suppose that X is a separable reflexive Banach space and xoeX. If

Jo = [p,T^] with 0<To<T and x e C(Jo,X) such that

i) Fx restricted to JQ is integrably bounded;

ii) Fx(t) e K1K(X) a.e. on JQ;

then the multifunction (F,xo) maps x into KpK(C(Jo,X)).
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Proof If r(x) is empty then the result is trivial, so suppose that 

r(x) is not empty. 
CO

Consider {yn}n=i a sequence in F(x). Then for every n

t
yn(t) = xQ + /fn(s)dl where fneIS(Fx,Jo).

0

By i) and a result of Castaing [6j the set {fn|n ” 1,2,***} is pre­

compact in the weak topology of L(J0,X). Thus, by a result due to 
CO

Eberlein and Smulian found in [11] there exists a subsequence 
co

of {fn}n=i converging weakly to some f e L(JO,X).

Let y be the function defined on Jo by

t
y(t) = xQ + Jf(s)dX.

0

According to Lemma 1.2.14 for every tEJo

lim k*»
t

/fk(s)dX - Jf(s)dX 
0

By a result found in [24] , for each k there exists a finite set of

k m(k) k
non-negative numbers such that £ a^ = 1 and

i=l
m(k) k 

Z aifk+i = f in KJ »X). 
i=l 

m(k) k
Let hk = y ai^k+i* By i-emma 1.2.18 there exists a subsequence 

i=l 
co co

{hj}j=i of (hk}k=i converging a.e. to f. Let

E = {t£Jo|fn(t) | ^or some integer n} (J {t£Jo|Px(t) | K1K(X)}

U {tfJ0|{hj(t)}j=| does not converge to f(t)}.

Then, for t e JO|E
f(t) e Qco^fitt)) Cco(Fx(t)) = Fx(t).

k=l i=k

Since E is a X-null set f(t) £ Fx(t) a.e. on JQ and hence y £ r(x).
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To verify that T(x) is compact in C(Jo,X) it suffices to show that 

P(x) is sequentially compact, that is, it suffices to show that 

converges to y in C(Jo,X).

Now, r(x) is uniformly equicontinuous on J^. Indeed, consider 

z e r(x). Then for every teJo

t 
z(t) = x + (f (s)dX where f eIS(F ,J ).o x x x' o

Let the function px be an integral bound for F* restricted to

J . Then, by Lemma 1.2.13, the function p on J into the real num- 

bers defined by

t 
p(t) ■ Jp (s)dA

0 x

is continuous, hence uniformly continuous, on Jo. Thus, by Lemma 

1.2.10 and Lemma 1.2.12, given e>0 there exists 6>0 such that if 

s,t e J with s<t and It—sI<6 then

t t
||z(t) - z(s)|| < /||fx(s)||dX < Jpx(s)dX < |p(t) - p(s)| < e. 

8 8

Therefore, F(x) is uniformly equicontinuous on JQ.

The set S ■ (ylt^Jly^lk = 1,2,»**} is also uniformly equicontin­

uous since y e C(Jo,X). Thus, given e>0 there exists 6>0 such that if 

s,t £ J with s<t and |t-sl<6 then

||z(t) - z(s)|| < e/3 for every zeS.

Let the set {t.}.™. be such that 0 ■ t1<*e*<t « T and i iai 1 no
max {t^-t^-il2si<n} < 6.

Then for each i e {l,«**,n} there exists a positive integer N^ such 

that for j>N£

Ilyj(tiJ " y<fci>11 <e/3-
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Let N = max (N. l<i<n} and consider tej . Then there exists me{l,e,,.n} i o
such that t <t, |t-t I<6 and thus for j>N in * 1 th1 u

I ly- y<t>l I s I lyj<e) - yj<tln>l I ♦ I lyj*1^ * y^n? 11

♦ lly<tm) - y(t)||

< e/3 + e/3 + e/3

= e

Hence, converges to y and T(x) is compact in C(Jo,X).

In order to see that T(x) is convex consider y^,y2Er(x) and 

ns [0,1], Then

t 
y£<t) = xQ + Jf£(s)dX where f£eIS(Fx,Jo) for i = 1,2.

Thus,

t 
ny^Ct) + (l-n)y2(t) = xo ♦ J|nf1(s) - (l-n)f2(s)]dX, t£jQ.

Let

Eq = {teJo|f£(t)^Fx(t) for some l<is2} U {teJo|Fx(t)|K(x)}.

Since is a X-null set and for tej Ie„o o'o
nf^Ct) + (l-n)f2(t) e Fx(t), 

nf^ + (l-n)f2 e IS(FX,JO). Therefore ny^ + (l-n)y2 e T(x) and T(x) 

is convex.

2.2 A Fixed Point Theorem for g-contractive Multifunctions

In this section the definition of a g-contractive multifunction is 

given and a fixed point theorem for g-contractive multifunctions is 

proved. The fixed point theorem will be applicable in obtaining a solu­

tion to the initial-value problem 2.1.4 in section 4.
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Definition 2.2.1

Suppose that X and Y are metric spaces and g:[0,<») is an in­

creasing function continuous on the right with the property that

g(r)<r for r>0. A multifunction G:X ->Kp(Y) is g-contractive provided

dH(G(x),G(z)) S g(d(x,z)) for x,zeX.

Remark Every k-contraction for k<l is a g-contraction.

Lemma 2.2.2

Suppose that (X.A^.T.d^) and (Y,6^) are ncm spaces as in Example

1.4.6. If G:X ->-Kp(Y) is a g-contractive multifunction then G is a

6^6^-condensing multifunction.

Proof Consider AeA^ with 5^(A) = d>0. Then, given e>0 there exists

x.eX, l<i<n, such that

n
A CZ k_J B(x. ,d+e). 

i=l 1

Since G is point compact for each ie{l,»*«,n} there exists y.eY,

l<j<m(i), such that

m(i) .
G(x.) C U B(y.,e).

1 j=l J

It is not difficult to verify that

n
G(A)cU 

i=l

m(i)
B(yj,g<d+e) + e).

Indeed, if y£G(A) then ytG(x) for some x£A and there exists pE{l,,,,,n} 

such that

||x -xI I < d+E.
P

Since d (G(x ),G(x)) S g(d+e) there exists weG(x ) such thatH p p
I|w-y|| < g(d+E).

In addition, there exists qell,•••,m(p)} such that yP £ G(x ) and 
q P
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Hence,

I lw-y^l I < e.

I |y-^l I 5. | |y-w| | + llw-y^ll < g(d+e) + e.

Since g is continuous on the right lim g(d+e) = g(d) < d and so 
e->0+

there exists e>0 such that

g(d+e) + e < d.

Thus, 6^(g(A)) < 6^.(A) and G is 5^6y-condensing.

Lemma 2.2.3

Suppose that (X,A,T,6X) is a ncm space as in Example 1.4.6 and G:X -*2 

is a closed condensing multifunction. Then any bounded sequence ^xn^nZi 

with the property that

lim d(x ,G(x )) = 0 n-*<» n n
has a subsequence that converges to a fixed point of G.

r n 00Proof Suppose that ixnJnS5i 18 a bounded sequence in X such that

lim d(x,G(x)) = 0. n-*co n* n
Let S = {xn|n=l,2,,ee}. Then, given e>0, there exists subsets T and

U of S such that T is finite, UCB(G(S),e) and S = T(JU.

Since 6^ is monotonic, semi-additive and non-singular 

6y(S) < max {6y(T),6y(U)} = max {0,6Y(U)} < 5y(G(S)) + e.

Thus, 6^.(G(S)) > 6^(S) and S is precompact in accordance with Defini­

tion 1.6.3. Therefore there exists a subsequence of ^xn^n=i

converging to xeX. Also, there exists a sequence in x such

that z^cG(x^) for each k and

ijs = °-

Thus, the sequence also converges to x and since G is closed

X E G(x)

by Lemma 1.5.11
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Theorem 2.2.4

Suppose that X is a Banach space and G:X ->-Kp(X) is a closed g-contrac- 

tive multifunction. If G(X) is bounded then G has a fixed point.

Proof By Lemma 2.2.2 G is 6^-condensing.

Making use of the point compactness of G construct the following

sequence in X. Choose xQeX and let x^eG(xQ) be such that 

Ilxo"xllI = d(xo,G(xo)).

For n>l let xn£G(xn_|) be such that

Il^n-l’^nlI = d(xn-l’G(xn-l))*

Then by Lemma 2.2.3 it suffices to show that lim d(xn,G(xn)) = 0.

Now, for n>l

d(xn>G(xn)) - dH(G(xn-l)»G(xn))

S 8(llxn-l’xnl।5 

=

< aCx^pGU^)).

Let s = d(x ,G(x )) for n = l,2,,e*. Then {s } , is a non-negative n n n * * n n=i °
decreasing sequence of real numbers and hence converges to some se[p,“).

Since s^ < g(sn_j2 and 8 conti-nuous on the right s < g(s).

However, since g(s) < s for s>0 it must be that s = 0. That is, 

lim d(x ,G(x )) = 0. n-xo n n

2.3 The Measurability of Multifunctions

This section is devoted to a discussion of some of the measura­

bility properties of multifunctions that will be necessary in the ap­

plication of the fixed point theorem of the preceding section to the 

multifunction 2.1.6.



In the following T will denote a locally compact space with a 

positive measure y acting on a a-algebra of subsets of I and Y will 

denote a separable Banach space.

Lemma 2.3.1

If G and H are y-measurable multifunctions on T into Kp(Y) then G+H 

is a y-measurable multifunction on T into Kp(Y).

Proof Certainly, G+H is point nonempty. To verify that G+H is point 

compact it suffices to show that if A,B e Kp(Y) then so is A+B.

Therefore, consider A,B e Kp(Y). Then AXB is a compact subset of 

YxY with respect to the product topology. Since addition is continu­

ous from YXY into Y the set A+B is the continuous image of a compact 

set and hence is itself compact.

Thus, G+H(t) = G(t) + H(t) e Kp(Y) for every t£T. The multifunc­

tion G+H is y-measurable on T by a result of Castaing [5] .

Lemma 2.3.2

Suppose y is a complete measure and G and H are y-measurable multi­

functions on T into 2^ such that G(t) and H(t) are both in Kp(Y) y-a.e. 

on T. Then G+H is a y-measurable multifunction on T with

G+H(t) e Kj>(Y) y-a.e. on T.

Proof Let

E = {t£T|one of G(t) or H(t) is not in Kp(Y)}.

Then, define multifunctions G£ and Hg on T into Kp(Y) by

!
G(t), if teT|E

{6}, if teE

and

HF(t) = £»
H(t), if teT|E 

{6}, if teE.
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Each of Gg and Hg are p-measurable for consider A a closed subset of

Y. Then

G^(A) - {teT:GE(t)riA f <|>} 

G~(A)|E, if e|A 

G"(A)UEl if 6eA.

Since p is complete G£ is a p-measurable multifunction on T since G

is in accordance with Definition 1.5.17. The argument for the p-meas- 

urability of is analogous

By Lemma 2.3.1 the multifunction is p-measurable on T in­

to Kp(Y). Given A a closed subset of Y let

EA = [(G+H)"(A)] C|E.

Again, since p is complete E^ is a p-null set. Also, 

(G+H)”(A) = {teT| [G+H(t)]AA f 4>}

[(ge+he) (a)]Uea, if e|A 

{[(Gg+Hj.) (A)] |e|U Ea, if 6eA.

Thus G+H is p-measurable on T since ge+he is.

Finally, if teT|E then G+H(t) e Kp(Y) and hence G+H(t) e Kp(Y) 

p-a.e. on T.

Lemma 2.3.3

If H:T -»Kp(Y) is a p-measurable multifunction then there exists a 

p-measurable selector, h, for H on T such that for every teT

2.3.4 h(t) e {vEH(t):||v|| = d(0,H(t))}.
00

Proof Let {un}n=i be a sequence dense in Y with u^ = 6. Using the 

point compactness of H construct the following sequence of multifunc­

tions on T. Let

HjCt) = (vEH(t): | [v-UjJ | = d(upH(t))}

and for n>l let
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HnCt) = {veHn_1(t):|| - d(un,Hn_1(t))}.

Certainly, Hq is point closed for each n. Thus, since H is point com­

pact and for all n, H^t) CZH(t) for every teT, the multifunction 

is point compact for every n. Also, by a result of Castaing [5j , 

is y-measurable on T for every n.

Since for every teT

H1(t)Z> H2(t) D •••,

oe 
the multifunction h ■ is point nonempty by Lemma 1.4.8 and is 

n»l
p-measurable on T by another result of Castaing [5].

It is not difficult to show that h is single-valued on T, for 

consider teT and suppose y,z e h(t) with y f z. Then there exists 

e>0 such that B(y,e) fl B(z,e) = <j)e There also exists a positive inte­

ger j such that uj e B(y,e). However, since y,z e Hj(t),

Hy-ujH ■

a contradiction. Thus, y ■ z and h is single-valued.

Therefore, by Definitions 1.5.2 ii) and 1.5,17 and Lemma 1.2.3, 

h is a p-measurable selector for H on T satisfying 2.3.4.

Lemma 2.3,5

If H:T -*2^ is a p-measurable multifunction such that H(t) e Kp(Y) 

p-a.e. on T then there exists a p-measurable p-selector, h, for H 

on T such that

h(t) e (veH(t):||v|| ■ d(8,H(t))J p-a.e. on T.

Proof Let

E » {teT:H(t) | K^Y)}.

Then, define a multifunction HgiT •♦Kp(Y) by
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!
H(t), if teT|E 

{0}, if teE.

As argued in the proof of Lemma 2.3.2 H is p-measurable on T. Thus,

by Lemma 2.3.3 there exists a p-measurable selector, h, for H on T E
satisfying 2.3.4. If teT|E then h(t) e H (t) = H(t) andE

h(t) e (veH(t):||v|| = d(9,H(t))}.

Since E is a p-null set the result follows.

Lemma 2,3,6
Y • .If G:T ->2 is a p-measurable, p-mtegrably bounded multifunction such 

that G(t) e Kp(Y) p-a.e. on T then G is integrable on T.

Proof This is an immediate consequence of the preceding lemma and 

Theorem 1.2.6.

2.4 A Solution to the Initial-value Problem

Certain contractive conditions on the kernel F of the initial-val­

ue problem 2.1.4 which guarantee a fixed point for the corresponding 

multifunction F and hence a solution to the initial-value problem are 

ascertained here.

In the following X will denote a separable reflexive Banach space 

and F, J and X will be as in Section 2.1. Any reference to measurabil­

ity on the real line will be to Lebesgue measurability. 

Theorem 2.4.1

Suppose g is a function as in Definition 2.2.1, x^eX and = [0,1^] 

with 0<T £min {T.l}. If for all x,y e C(j ,X)

i) F^ is measurable and integrably bounded when restricted to J^;

ii) F (t) e KpK(X) a.e. on J ;

iii) sup {dH(F (t),F (t));teJ } < g(||x-y||r);

then the multifunction (r,xo) is g-contractive on C(JO,X).



Proof If x e C(JO,X) then by i) and Lemma 2.3.6, F(x) is nonempty 

so that r maps C(JQ,X) into KgK(C(Jo,X)) by Lemma 2.1.7.

Consider x,y e C(JO,X). If z e F(x) then

t 
z(t) = x_ + ff„(s)dA where fYElS(FY, Jn), teJ-,.

xNow, define a multifunction H on JQ into 2 by

H = Fy - fx.

Then H is measurable on JQ and H(t) e Kp(X) a.e. on JQ by Lemma 2.3.2. 

Therefore, by Lemma 1.2.3 and Lemma 2.3.5 there exists h £ MS(H,JO) 

such that

h(t) e {vEH(t):||v|| = d(e,H(t))} a.e. on Jo.

Since both h and fx are measurable on Jo

h = fy - fX 

where fyEMS(Fy,JQ). Recalling how H was defined and making use of iii) 

it is clear that

|Ify(t) - fx(t)I I = d(fx(t),Fy(t))

< dH(Fy(t),Fx(t))

g<I Ix-y||c) a.e. on JQ.

As a result of i) and Lemma 2.3.6 the function w defined on Jo 

by
t 

w(t) = xo + Jfy(s)dX
0

is in F(y) . Thus,

t
I |z-"l lc = 8UP (I I / Efy<s) - | | :tEJ0}

0
To

< J I|fy(s) - fx(s)I|dX 
0
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To
S Jg<I|x-y|| )dx

0 c

< g<ll* i) ii) iii) * * * * * * x~y|lc>

Suppose that xoeX, Jq = [0 ,Tq] with 0<TQ<min {T,l} and for all x,y in 

C(J ,X) o
i) Fx is measurable and integrably bounded when restricted to JQ;

ii) Fx(t) e KpK(X) a.e. on Jq;

iii) sup {dH(Fx(t),Fy(t)):tEjQ} $ g(||x-y||c^e

If F(J xX) is bounded then the multifunction (f.x ) has a fixed point o * o r
in C(Jo>X) which is a solution to the initial-value problem 2.1.4.

Proof According to Theorem 2.4.1 and its proof T is a g-contractive 

multifunction on C(j ,X) into KpK(C(j ,X)).o —I— o
It is not difficult to show that F is a closed multifunction. In­

deed, suppose that ^xn^n-^ and ^yn^n=i are sequences in C(Jo,X) con­

verging to x and y respectively with yn e T(xn) for all n. Then, given

e>0 there exists an integer N such that for n>N 

lly~ynllc < e/2 and Hx"xnllc < e/2.

Thus, for n>N 

d(y,r(x)) < ||y-ynllc + d(yn,r(x))

by Lemma 1.2.12 and Lemma 1,2.19. That is, 

sup {d(z,r(y)):zer(x)} < g(||x—y||^). 

Reversing the roles of x and y gives the inequality

sup {d(w,r(x)):wEr(y)} < g(||x—y|1^).

Hence, 

dH(r(x),r(y)) < g(||x-y|(c) 

and r is g-contractive on C(Jo,X).

Theorem 2.4,2
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.s lly-ynllc + dH(r(xn),r(x))

< lly~ynllc + g(l|x-xn||c)

< E.

Since according to Lemma 2.1.7, F(x) is a closed subset of C(Jo,X), 

y e F(x) and by Lemma 1.5.11, F is a closed multifunction.

As a result of the hypothesis that F(jQXX) is bounded and Lem­

ma 1.2.12, r(C(Jo,X)) is bounded in C(JO,X). Therefore, by Theorem

2.2.4 the multifunction (r,xQ) has a fixed point and by Lemma 2.1.5 

it is a solution to the initial-value problem 2.1.4.
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CHAPTER III

3.1 A Fixed Point Theorem in an Order Interval

In this section a multifunction fixed point theorem is obtained 

by requiring that a condensing multifunction satisfy a monotone condi­

tion on an order interval of a ncm space.

For the duration of this section (X,<") will denote a Banach space 

Lemma 3.1.1

monotone sequence in a compact subset of X then it con­

verges .

gi-ng to xeX.

ging

that k(n)such

is, x< "yThat There

that i(n) < p(n)such for all

) E K.x-y =

Thus, y<'x and x =

It is immediate that suppose not.

exists e>0 and of {xThen there

X has a convergent subsequence which by the above must converge to x 

lim n-H»

<xj(nr\(„>) e K

x, for

partially ordered by a cone K and < and < will respectively denote the 

induced left and right set relations of Definitions 1.3.9 and 1.3.10.

Proof Suppose

set of X. Then there exists a subsequence

{xn^n=^ converges to

limn-xn
also exists a subsequence {x , .} , of {x, , .} , p(n) n=l k(n) n=l

K is closed

If (x } is a n n—1

Xfc | B(x,e) for all k. However, being in a compact subset of

{x } - conver- n n=l

{x } , conver- n n=l
of {x., .} i(n) n=l

Further, suppose that ^x£(n)^n-i a subsequence of 
00 

to yeX. Then there exists a subsequence ^xj(n)^n-^ 1

< j(n) for all n. Since K is a closed set

that {xn}n=i is an increasing sequence in a compact sub-

: } , such thatn n=l

y-x =

n. Again, since

<x , .-X p(n)
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a contradiction.
CO

The proof for the case when is decreasing is analogous.

Lemma 3,1.2

An order interval [u,v] in (Xt<‘*) is closed and convex.

Proof Suppose that [u,v] is an order interval in X and x e [u,v] . 
00

Then there exists a sequence in [u,v] converging to x. Since

v-Xq e K for every n and K is a closed set

v-x ■ lim v-x_ e K n-x» “
so that x<xv. Similarly, since XjfU e K for every n,

x-u ■ lim xn-u e K. n*co “
That is, u<'x, hence x e [u*y] and [u,v] is closed.

To verify that [u,vj is convex consider x,y e [u,v] and n e [0,1] .

Then by Definition 1.3.3 i)

nu <“ nx <* nv 

and

(l-n)u <' (l-n)y <* (l-n)v.

Thus, by Definition 1.3.3 iii)

u <* nx + (l-n)y <* v 

and [u,v] is convex.

Theorem 3.1.3

Suppose that (X,A,T,y) is a ncm space with y a monotonic, semi-additive, 

non-singular mnc and [u,v] is an order interval in X such that [u,v] and 

all its subsets are in A. If G: [u,vj -*1 is a left-set (respectively, 

right-set) monotone, closed, y-condensing multifunction such that

{u} < (respectively, <) G(u) 
1 r

and

G(v) < (respectively, <) {v}
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then G has a fixed point in [u,v].

Proof Suppose that G is left-set monotone with

{u} < G(u) and G(v) < {v}.

Using the left-set monotonicity of G construct the following increas­

ing sequence in X. Let uQ = u and for n>l select un e G(un_^) such 

that un-i5"un' It is clear that {un)n=i is i-n LU»VJ • Indeed, by in­

duction, uq is in fu,v] by definition. Assume u^ e fu,vj for n>0. 

Then since u s'v and G is left-set monotone n
G(u ) < G(v) < {v}. n 1 1

Thus, since u e G(u ) n+1 n 
u = u <' u ,, <' v. o n+1 ~

Let 

CX> 00

A = {u } and B = {u }. 
n=0 n n=l n

Then, BCG(A) and A = BU{uo}. Since Y is monotonic, semi-additive 

and non-singular

y(a) = y(bL/{uo}) = y(B) < y(g(a)).

Thus, since G is y-condensing A is precompact and by Lemma 3.1.1 and 

Lemma 3.1.2 the sequence ^un^n”^ converges to some y e [u,vj . Since 

un e G^n-l^ f°r an^ G is a closed multifunction y e G(y) by Lem­

ma 1.5.11.

Suppose that G is right-set monotone with 

{u} < G(u) and G(v) < (v). r r
Using the right-set monotonicity of G construct the following decreas­

ing sequence in X. Let vq = v and for n>l select vn e G(vn such 

that vn5 vn_i> The sequence {vn}n-i Is evidently in [u,vj . Indeed, 

by induction, vq is in [u,v] by definition. Assume that vn e {u,v] 

for n>0. Since u$'vn and G is right-set monotone
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{u} < G(u) < G(vn) r r
Thus, since vn+j e G(vn), 

u vn+l vo = v* 

Let 
CO co

c = VJ{vn} and D = k_J<vn}. 
n=0 n=l

Then, DCZG(C) and C = D |J {vo}. Again, since y is monotonic, semi-ad­

ditive and non-singular

y(C) = y(D U {vQ}) • y(D) S y(G(C)).

Thus, since G is y-condensing, C is precompact and by Lemmas 3.1.1

and 3,1.2 the sequence {vn}nei converges to some z e [u,v]. There­

fore, since vn e G(vn_|) for n>l and G is a closed multifunction 

z e G(z) by Lemma 1.5.11 and the result follows.

3.2 A Solution to the Initial-value Problem in an Order Interval 

The Fixed Point Theorem 3.1.3 is shown to be applicable in deter­

mining a solution to the initial-value problem 2,1.4.

Unless otherwise specified (X,<_') will denote a separable Banach 

space partially ordered by a cone K and < and < will respectively de-
1 r

note the induced left and right set relations of Definitions 1.3,9 

and 1.3.10. Also, J and X will be as in Section 2.1 and F will be a

multifunction JxX into 2^. Finally, the partial ordering on C(J,X) in­

duced by the cone

K, B {x e C(J,X):x(t) e K for every teJ} 

will be denoted by The left and right set relations of Definitions

1.3.9 and 1.3.10 in (C(J,X),<_) will be denoted by < and < respectively. 
L 10 rC

Lemma 3.2,1

Suppose that {u,v] is an order interval in (C(J,X),<^) and x^eX. If
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for all x,y e [u,v]

i) Fx is measurable and integrably bounded on J;

ii)  Kp(X) a.e. on J;e

iii) x<^y implies that Fx(t) < (respectively, <) Fy(t) a.e. on J; 

then the multifunction (r,xo) is left-set (respectively, right-set) 

monotone on [u,v].

Proof First, suppose that if x,y e [u,v] with x<^y then

Fx^^ i a,ee 011 Je

Consider x,y e [u,v] with x<^y and suppose that z e F(x). Then

t 
z(t) » x + ff (s)dl where f eIS(F_,J).

0 xx

Let C be the constant multifunction defined on J by

C(t) - K

Then by Lemma 2.3.2, Definition 1.3.9 and the fact that K is closed

[Fy(t) - fx(t)]f)C(t) e K£(X) a.e. on J

and the multifunction F -f_ is measurable on J. In fact, the multi- y x
function [f -f JflC is measurable on J for consider A e K1(X). Then, y x
since K is closed, Af|K e K1(X) and

Ap-

3.2.2 ([Fy-fx]nC)‘(A) - {t£j|(Fy(t) - fx(t))f)(KAA) <|>}. 

is a measurable set since Fy-fx is a measurable function on J. 

plying Lemma 2.3.5 to the multifunction [f -fvlAc and recalling that 

fx is integrable, hence measurable on J, there exists fy £ MS(Fy,J) 

such that

f_(t) - f (t) e K a.e. on J. y x
Since Fy is integrably bounded on J and by Lemma 2.3.6 the func­

tion w defined on J by
t

w(t) • x+ Jf (s)dX
0 7
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is in r(y). To verify that r(x) r(y) it suffices, by Definition 

1.3.9, to show that

Let

E - {seJ|f (s) - f (s) | K}. y x
Then E is a 1-null set, and by Lemma 1.2.16 and the fact that K is 

closed and convex, for every teJ 

t
w(t) - z(t) ■ /[fy(s) - fx(s)]dX

e tco({fy(s) - fx(s):se[O,t]|E}) 

C K

Therefore, z(t)<‘,w(t) for every teJ, hence z<_w and r(x) < r(y). u ic
Now, suppose that if x,y e [u,v] with x<^y then 

F_(t) < F_(t) a.e. on J.
x r "

Consider x,y e [u,v] with x<^y and suppose that w e r(y). Then 

t
w(t) ■ xo + Jf*(s)dX where f*£lS(F ,J). o y y y

Applying the argument given in the preceding case to the multifunc­

tion [f^-FjjQC, there exists z e C(J,X) such that z<cw. Thus, by 

Definition 1.3.10, r(x) < r(y) and the result follows.
rC

Lemma 3.2.3

Suppose that [u,v] is an order interval in (C(j,X),<^) such that u 

and v are continuously differentiable on J and xqeX with u(0) <•* xQ 

S'* v(0). If the multifunction F satisfies

i) Fu and Fv are measurable on J and Fu(t) and Fy(t) are each 

in Kp(x) a.e. on J;

ii) {u(t)} < Fu(t) < Fv(t) < {v(t)} (respectively, 

(u(t)} < Fu(t) < Fv(t) < (v(t)}) a.e. on J;
r r r
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ill) Fu (respectively, Fv) is integral*ly bounded on J; 

then {u} < (respectively, < ) r(u) and r(v) < (respectively, < ) {v}.
1C rC 1C rC

Proof First, suppose that the left set conditions hold. Again, let

C be the constant multifunction defined on J by 

C(t) - K.

Then [Fu(t) - u(t)]AC(t) e K^X) a.e. on J and by an argument simi­

lar to that given in 3.2.2 the multifunction [Fu-u] f) C is measurable 

on J. Thus, by Lemma 2.3.5 there exists f^ e MS(Fu,j) such that 

fu(t) - u(t) e K a.e. on J.

Since Fu is integrably bounded on J and by Lemma 2.3.6 the function 

z defined on J by 
t

z(t) - xo + Jfu(s)dX
0 

is in r(u).

Let

Eo ■ {seJ|fu(s) - u(s) | K}.

Then, by Lemma 1.2.16 and the facts that E is a X-null set and K is o
a cone, for every teJ

t te t
/fu(s)dA - Ju(s)dX ■ /[fu(s) - u(s)]dX
0 0 0

e tc6({fu(s) - u(s) | se[0,t] |EO})

C K

so that
t t,

xQ * Jfu(s)dX - Ju(s)dX e K+«o
0 0

and hence by Lemma 1.2.24

t 
xo * /fu(s)dX - [u(t) - u(O)J e K+x 

0
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Thus, according to Definition 1.3.1

t 
xo + /fu^8^d^ - E K + [xo - u(0)] CK.

0

That is, u(t)<'z(t) for all teJ, hence u<qZ and {u} r(u).

Suppose that w e r(v). Then

t 
w(t) ■ xo + Jfv(s)dX where fvElS(Fv,J). 

0

Since Fv(t) < {v(t)J a.e. on J, v(t) - fy(t) e K a.e. on J. Let

Ej ■ {seJ|v(s) - fv(s) | K}.

Again, by Lemma 1.2.16 and the fact that is a X-null set, for ev­

ery teJ 
t t t
Jv(s)dX - /fv(s)dX ■ J[v(s) - fv(s)JdX
0 0 0

e tco({v(s) - fv(8):se[0,t]|E^})

C K

so that 
t t
Jv(s)dX - [xQ + Jfv(s)dx] e K-xo 
0 0

and hence by Lemma 1.2.24 
t

[v(t) - v(O)J - [xQ + /fv(s)dx] e K-xo. 
0 

Thus, 
t

v(t) - [xo Jfv(s)dxJ e K + [v(0) - Xo] CK. 
0

That is, w(t)<'v(t) for all tEJ, hence w<_v and r(v) < {v}. 
c 1C

The case involving the right set conditions is proved using an

analogous argument.

Lemma 3.2,4

Suppose that X is a separable reflexive Banach space, xoeX and D is 
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a closed subset of C(j,X), If for all xeD the multifunction FiJXX ->2X 

satisfies

i) Fx(t) e K1K(X) a.e. on J;

ii) for a.e. tej the multifunction F^zX ->2 , when restricted 

to x(j), is use;

iii) there exists p e L(j, [O,<»)), independent of x, such that 

||z|| < p(t) a.e. on J for all z e Fx(t);

then the multifunction (r,xo> is closed on D.
00

Proof Suppose that is a sequence in D converging to x and
00

{yn^n*l •'■s a sequence in C(J,X) converging to y such that

yn e r(xn)-

Then, for every n
t 

yn(t) ■ xQ + /fn(s)dA where f^ISCF^, J).

According to iii), there exists an integral bound for the set

{fn|n - 1,2,...}.

Thus, as argued in the proof of Lemma 2.1.7, there exists a subsequence
00 00

{ffchc*! ^n^n*l thet converges weakly to some f e L(J,X). Then, by

Lemma 1.2.14, for every teJ 

t t
lim ffv(s)dA ■ /f(s)dX, 
k-*” 0 K 0 

hence 
t

y(t) • xo + Jf(s)dA, teJ. 
0

Again, as argued in the proof of Lemma 2.1.7, for every k there ex- 
k mCk) m(k)

ists a finite set of non-negative numbers such that a. ■ 1
i“l 

and
m(k) . 

lim Z aifk+i " f in L(J,X). 
k-Hx> 1 KT1
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For every teJ let
00 co

C(t) = p)co(UFx.(t)). 
k=l i=k

?or a.e. teJ
HO CO co

5/0 .t E Oco(Uf£(t)) CC(t).
k=l i=k

S3
C2L W = {t£j|f(t) C(t)},

restricted to x(j) is not use},

i ) 4- •Exn^t^ f°r 8Ome integer n},

3
E « UEn. 

n=l

is use on x(j), given e>0, there exists y>0

such that if yeX with ||y-x(t)|| < 6 then

Ft(y) CB(Fx(t),e/2).

Also# there exists an integer N such that for n>N

||xn(t) - x(t)||

Thus, given ka:N there exist finite sets

< 6.

{ni}i=i of non-negative num­

bers and of elements in X with £ t)£ = 1 and for each i,
i=l

z- e F„ (t) for some j>k,
1 Xj

such that
m

||f(t) - y n£Zil| < e/2.
i=l

Let W£ e Fx(t) be such that ||z£-W£[| < e/2 for Isian. Then

mm m
[| n£Z£ - £ n£W£|| < y n£l|z£-w£|| < e/2. 

i=l i=l i=l

Thus, since Fx(t) is closed and convex, f(t) € Fx(t). That is, since
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E is a X-null set, f(t) e Fx(t) a.e. on J, hence y e f(x) and r is a 

closed multifunction on D as a result of Lemma 1.5.11.

Remark Suppose that X is partially ordered by a normal cone K and

F maps jxx into 2 in the preceding lemma. Further, suppose that

D ■ [u>v] is an order interval in (C(j,X),<^) such that Fv is inte- 

grably bounded by p on J and the left set relation of condition iii) 

of Lemma 3.2.1 is satisfied. Then, it is immediate that condition

iii) of the preceding lemma is also satisfied. Indeed, if xeD then 

for a.e. teJ there exists a vz e Fv(t) for every z e Fx(t) such that 

z<'vz. As a result of Lemma 1.3.8 there exists a real number r such 

that for a.e. teJ, ||z|| < ic||p(t)|| for every z e Fx(t). Since icp 

is integrable on J condition iii) of the preceding lemma follows. 

Lemma 3.2,5

Suppose that xQeX and (X,A,T,y) is a ncm space where X is a Banach 

space, A the set of all bounded subsets of X and y a mnc satisfying 

properties i), ii), iii), vii) and viii) of Definition 1.4.3. If 

F:JxX -*1 is a k-y-set-contraction multifunction then the multifunc­

tion (r,x ) is a kT-y -set-contraction in the ncm space (X ,A ,T,y ).o c C C C
Proof For every x e C(J,X) and fx e IS(FX,J) let

E* ■ (tEj|fx(t) | Fx(t)}.

Consider A e A^,. Then 

yc(r(A)) - y((r(A))j) 

by the definition in Example 1.4.9, 

t 
“ * Jfx(s)dX:xeA, fxeIS(Fx,j), teJ})

by definition,

< y(xQ ♦ |tco({fx(s):sE[b,t]|Ex}):xeA, fxsIS(Fx,j), tsj|)
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since y is monotonic and by Lemma 1.2.16,
< y(^J|co(Tco({fx(s):sej|E^}) U {0}) :xeA, fxeIS(Fx,j)|) 

since y is monotonic, invariant under shifts and 

non-singular and by Lemma 1.1.1,
< Y^_J |co(Tc6((<J{Fx(8):8eJ}) (J {0}) :xeA}^ 

since y is monotonic,
« y(co(Tc6(F(JxAj)) (J {0}j) 

by definition,

» y (TcoCFCjXAj)))

since y is semi-additive and non-singular and by Defi­

nition 1.4.2,

- Ty(f(JxAj))

since y is semi-homogeneous and by Definition 1.4.2,

< kTyCAj)

since F is a k-y-set-contraction,

- kTyc(A)

by definition. 

Thus, the result follows in accordance with Definition 1.6.4.

In the following theorem (X,A,T,y) will be a ncm space with X a 

separable reflexive Banach space partially ordered by a cone K, A the 

set of all bounded subsets of X and y a mnc satisfying properties i), 

ii), iii), iv), vii) and viii) of Definition 1.4.3.

Theorem 3.2,6

Suppose that JQ ■ [OjTj where TQ e (O,tJ and xqeX. Further, suppose 

that [u,v] is an order interval in A^,, the bounded subsets of C(Jo,X), 

such that u and v are continuously differentiable on JQ and u(0) <' xQ 

<* v(0). If B ■ {x(t) :xe[u,v] , tej} and the multifunction F:JxX -»-2X
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satisfies

i) for every x e [u,v] , Fx restricted to Jo is measurable on Jo 

and Fz(t) e KpK(X) a.e. on Jo;

ii) x<cy in [u,y] implies that Fx(t)

a.e. on Jo;

iii) {u(t)} < Fu(t) < Fv(t) < (v(t)}
1 u 1 v 1

{u(t)} < F„(t) < Fv(t) < (v(t)}) a.e. on J_;r u r v r °
iv) for a.e. teJo the multifunction Ft restricted to x(jQ) 

is use for every x e [u,v] ;

v) F restricted to JQxB is a k—y-set-contraction with kTo<l; 

then the multifunction (r,xo) has a fixed point in [u,y] which is a 

solution to the initial-value problem 2.1.4.

< (respectively, <) F_(t) 
1 r y

(respectively,

Proof Suppose that the left set conditions of the lemma are satis­

fied. Since F is a k-y-set-contraction on JqxB there exists a posi­

tive number M that bounds F(JqxB) , that is,

||z|| < M for every z e F(JoxB).

Thus, by Lemma 1.2.19, the constant function defined on JQ by 

p(t) - M

is an integral bound for Fx, independent of the choice of x e [u,y]. 

Therefore, by i), ii) and Lemma 3.2.1, (r,xo) is left-set monotone on 

[u,vj and by i), iii) and Lemma 3.2.3

{u} < r(u) and T(v) < {v}. 
1C 1C

Also, by i), iv) and Lemmas 3.1.2 and 3.2.4, P is closed on [u,v].

Now, the mne yq is monotonic, semi-additive and non-singular on

Let ^unJn»Q be an increasing sequence in [u,y] and A ■ 

in the proof of Theorem 3.1.3. Then, uQ = u and for n>l

00

U(un} as 
n“0
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t
^(t) = xo + Jfn_1(s)dX where fn_1eIS(Fu ,Jo), teJo. 

0 n”i

As a result of Lemmas 1.2.10, 1.2.12 and 1.2.19, given e>0 and n>l, 

if r<t in Jo with |t—r| < e/M then 

t
I|wn<t) - un(r)|| < J||fn.i(s)||dX < e/M-M = e. 

r

Thus, the set A is equicontinuous on JQ. Also, consider x e P(A). 

Then, for some n>0

t
x(t) ■ xo * Jfn(s)dX where fneIS(Fu ,Jo), teJQ. 

0 n

By an argument analogous to the preceding one r(A) is equicontinu­

ous on Jo as well.

As shown in Example 1.4.17 the sets E e Aq for which both E and 

r(E) are equicontinuous on Jo form a closed convexity in C(JO,X) and 

by v) and Lemmas 1.4.13 and 1.6.5, T is y^-condensing when restricted 

to these sets. According to the proof of Theorem 3.1.3 this is enough 

to guarantee a fixed point for P in [u,y] which is necessarily a solu­

tion to the initial-value problem 2.1.4 as a result of Lemma 2.1.5.

Suppose that the right set conditions of the lemma are satisfied 

now. Then, by the same reasoning as in the preceding case (P,xo) is 

right-set monotone on Fu.vl, {u} <„ r(u) and r(v) <„ {v}, and P is L J rC rC
closed on [u,v]. Also, if {vn}n-Q is a decreasing sequence and

C - U <’n> 
n»0

as in the proof of Theorem 3.1.3 then, as in the preceding case, C 

and P(C) can be shown to be equicontinuous on Jo. This is enough to 
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ensure a solution to the initial-value problem 2.1.4 again, as argued 

in the preceding case.
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CHAPTER IV

4.1 A Fixed Point Theorem in a Compact Set

A multifunction fixed point theorem in the spirit of one given in 

Fitzpatrick and Petryshyn [15] is proved here.

Throughout this section Y will denote a locally convex topological 

vector space and D an element of K1(Y). If G:D -*2^ is a multifunction, 

following Sadovskii [38], define the following transfinite sequence in 2^

Ko = co(G(D)) 

and

c6(G(DriKa_^), if a is an ordinal of the first kind
Ka =

nkb, if a is an ordinal of the second kind.
B«x

Lemma 4.1.1
Y .If G:D ->2 is a multifunction then

i) Ko (ZKg for gsa;

ii) G(DflKa)CKa for all a;

iii) there exists an ordinal 5 such that

Ka = Kj for 6ia.

Proof The proof of i) and ii) is done simultaneously by transfinite

induction. Suppose that a = 0. Then i) is obvious. Since

G(dDk0) C G(D) C co(G(D) ) - Ko

ii) also follows. Assume that both i) and ii) are true for all B<a.

If a is an ordinal of the first kind then B<a implies that Bsot-l

and hence KQ_^ C Kg by the induction hypothesis for i). Since

Kq.! e K1K(Y)

and by the induction hypothesis for ii)

Ka = co(G(Df]Ka_^)) CZ Ka-i CZ Kg, 8<a,
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hence, i) follows. As shown in the preceding argument, CZK* 

so that

DDK cdAk 1 a a-l
Therefore,

G(DAKa) C Eo(G(DHKa_1)) = K* 

and ii) follows.

If a is an ordinal of the second kind then

K = a ' 1 3 3<a

so that i) follows immediately. Also,

G(Df)K ) C co(G(DAK.)) for 3<a. a p
As a result of the induction hypothesis for ii) and the fact that for 

all B«x, Kg £ K1K(Y),

co(G(DAKg)) CKg, g<a.

Thus,

K ) CQ1C = K 
° 6<a “

and ii) results.

To see the validity of iii) note that when the cardinality of an
Y 

ordinal 6 is greater than the cardinality of 2 a repetition must oc­

cur in the transfinite sequence However, since (Kj is decreas­

ing this is equivalent to

K = K. for 6<a. a o

For the remainder of this section the set corresponding to a 

a multifunction G:D -*2^ will be denoted by K(G,D) or simply K when G 

is understood.

Lemma 4,1.2
Y .If G:D -»2 is a multifunction then
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co(G(Df)K)) = K.

Proof Since K = ,

E5(g(dAk)) = E5(g(dAk6)) = k6+1 = K.

Definition 4.1,3
Y .An use multifunction G:D ->-2 is ultimately compact provided that

K e Kp(Y).

Theorem 4,1,4

Suppose that G:D -»K1(Y) is an ultimately compact multifunction. If

A is a nonempty precompact subset of Y such that G(A) C. A then

K e Kfc(Y).

Proof According to the preceding definition it suffices to show that

K is not empty. Following Fitzpatrick and Petryshyn [ ], define a 
Ysequence in 2 as follows,

co = g(a)Aa 

and for n>l

cn " G(cn-1>AC„-1.

Then by Lemma 1.5.14, is compact for each n, hence by Theorem 1.4.8,

C = Cn € K]>(Y). 
n=0

Now, C CG(C). Indeed, if x e 0 then x e G(Cn)ACn for every n>0.

Therefore, there exists a sequence {zn}n=Q such that for all n>0, 

x e G(zn) and zn e CnCA,

Since A is compact there exists a subsequence of {zn)n-Q con­

verging to z e A. In accordance with Theorem 1.4.8, given e>0 there 

exists an integer No such that for k>No

([z-z^ll < e/2 and dy(C,C^) < e/2.

Thus, d(z,C) < e and hence z is in the closed set 0. Moreover, since
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G is use and point closed, there exists an integer N such that for k>N 

G(zk) CB(G(z),e)

so that

x e G(z)C G(C).

It is not difficult to show that CCKa for every a. Indeed, by 

transfinite induction,

C Cco(G(C)) C co(G(D)) = KQ.

Assume that C CKg for B<a. If a is an ordinal of the first kind then 

CC co(G(C)) C cb(G(Ka_1)) = Ka.

If a is an ordinal of the second kind then since C CZKg for B<ct,

GCClKg = Ko.
B<a

Thus, C CZK and K is not empty.

In addition to Y denoting a locally convex topological vector 

space, (Y,A,T,y) will denote a ncm space for the remainder of this 

section.

Lemma 4.1.5

If y is monotonic, D and all its subsets are in A and G:D ->Kp(Y) is an 

use y-condensing multifunction then G is ultimately compact.

Proof If K is empty the result is obvious, so suppose that K is not 

empty.

By Lemma 4.1.2, co(G(DQK)) = K so that

dCIk c coCgCdCIk)).

Since y is monotonic

y(dAk) S y(G(dAk)), 

therefore DAK is precompact and hence compact as D and K are in
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K1(Y). As a result of G being use and point compact GCdOk) is compact 

by Lemma 1.5.13. Thus, by Lemma 1.1.3, 

co(G(DClK)) = K 

is compact. 

Theorem 4.1.6 

Suppose that D e K1K(Y) with D and all its subsets in A and y is a mono­

tonic, non-singular, semi-additive mnc. If G:D -»KpK(D) is an use y-con- 

densing multifunction then G has a fixed point.

Proof According to Lemma 4.1.5 and a theorem of Fitzpatrick and Pe- 

tryshyn fl5j it suffices to show that K is nonempty.

Let xoeD and define a sequence in 2^ by 

(?(xo) - {xo} 

and for n^l

Gn(x0) = GCG^Cxq))

Also, let

A - UGn(xo). 
n=0 

Then,

A = G(A) U {xo} 

and since y is semi-additive and non-singular 

y(A) = y(G(A) U {xQ}) = y(G(A)).

Thus, since G is y-condensing, A is precompact and K e Kp(Y) by The­

orem 4.1.4.

4.2 A Solution to the Initial-value Problem in a Convex Set

In this section conditions on the kernel of the initial-value 

problem 2.1.4 enabling the application of the Fixed Point Theorem 

4.1.6 are investigated.
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As previously specified X will denote a Banach space. In addi­

tion, (X,A,T,y) will denote a ncm space where A is the set of all 

bounded subsets of X and y satisfies all the conditions of Definition 

1.4.3 except possibly vi). Also, J, F and X will be as in Section 2.1.

For the purposes of this section suppose that xQeX, T2 e (0,f] 

and r>0 such that F restricted to [0,T2]xB(xo,r) is a k-y-set-contrac- 

tion. Let B = B(xo,r). Then, by Definition 1.6.4, F([0,T2Jxb) e A, 

hence there exists a positive real number M that bounds F([0,T2]xb). 

Finally, let Tj = min {r/M,T2}, TQ e (0,1^ be such that kTo<l, JQ = 

[0,To] and

C = {x e C(Jo,X):x(Jo) C B}.

Lemma 4,2,1

The set C is in K1K(C(JO,X)).

Proof The set C is nonempty since the constant function defined on

Jo b?

x(t) = xQ

is in C. 
00

To verify that C is closed consider a sequence {xn}n_| in C con­

verging to xeX, Then, given e>0 there exists an integer N such that 

for n>N

||x(t) - xn(t)|| < e for every teJQ.

Thus, for n>N

I|x(t) - xo|I < I|x(t) - XnCt)!I + IIxnCt) - xo|| < e+r 

for all teJQ. That is, x(t) e B for all teJo, hence x e C and C is 

closed.

Consider x,y e C and n e [O,1J. Then for all teJQ 

||(nx(t) + (l-n)y(t)) - xo|| = ||nx(t) - nxo + (l-n)y(t) - (l-n)xo||
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< n||x(t) - xo|| + (1—n)||y(t) - xo||

< nr + (l-n)r 

= r.

Therefore, C is convex and lies in K1K(C(JO>X)),

Lemma 4.2.2

If (r,xo) is the multifunction 2.1.6 defined on C(JO,X) then 

co(r(C)) C C.

Proof Since C e K1K(C(J^.X)) it suffices to show that r(C) CZ C.

Consider x £ C and y e r(x). Then for t£Jo 

t
y(t) = x + Jf (s)dX where f„ElS(F„,Jn). 

0

According to Lemma 1.2.13, y e C(Jo,X) and by Lemmas 1.2.12 and 1.2.19 

for every t£jQ
t

Ily(t) - xo|I = ||xo + Jfx(s)dx - x I I
0

< J||fx(s)||dA
0

< tM

5 r.

Thus, y e C and r(C) CZ C.

For the remainder of this section let D = co(r(C)).

Lemma 4.2,3

If there exists x e C such that Fx when restricted to JQ is measur­

able and Fx(t) e Kp(X) a.e. on JQ then D is nonempty.

Proof Suppose that x satisfies the hypotheses of the lemma. Since 

Fx is bounded, hence integrably bounded on JQ by the constant function

p(t) = M, 
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the set IS(FX,JO) is not empty by Lemma 2.3.6 and therefore D is not 

empty.

Lemma 4,2.4

The set D is uniformly equicontinuous on Jq.

Proof Consider y e D. Then, given e>0 there exist finite sets

in C, in 0 and ^£^=1 in fche non-negative real num- 

m
hers such that y. e r(x.), l<i<m, Y n- =

1 1 i=l 1
1 and for all teJ o

m
I|y(t> - 1 n.y.(t)|| < e/3. 

i=l 1 1

Now, for every i e {l,*’*,m}, 

t
y.(t) = x + /f.(s)dX where f.eIS(Fw ,J ), teJ .■'1 Oil 1 X£ * o ’ o

Thus, for r,t e JQ with r<t and |t—rj < e/3M,

|Iy(t) - y(r)|I < ||y(t) - ? n-y-Ct))| + || £ n-y-Ct) - n-y-Cr),| 
i=l i=l i=l

♦ I I 1 n^Cr) - y(r)| | 
i=l

m t
< e/3 + y H-Jllf (s)||dX + e/3

i=l r
m

< e/3 + y n^MCe/SM) + e/3
i=l

= e

as a result of Lemmas 1.2.10, 1.2.12 and 1.2.19.

Lemma 4.2.5

Suppose that X is a separable reflexive Banach space. If for every

x e D

i) Fx(t) e K1K(X) a.e. on Jq;
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ii) for a.e teJ the multifunction F.:X -*2 when restricted to O u
x(j ) is use; o '

then (F.x ) is use on D, ' o
Proof Consider A a closed subset of C(Jo>X). According to Lemma

1.5.6 it suffices to show that

r~(A) = {xeD:r(x)f}A f <#)}

is a closed subset of C(Jo,X). To that end, suppose that {xn}n-j i-8 

a sequence in r“(A) converging to x e C(Jo,X), Then, there exists a 

sequence {yn}n=i i-n A such that for teJo

t
y (t) = x + Jf(s)dX where f eIS(F ,J ). ' n o n n Xq * o

As noted in the proof of Lemma 4.2.3 the constant function 

p(t) = M, teJo

is an integral bound for each multifunction F„ on J , n>l. Thus, as 
xn °

argued in the proof of Lemma 2.1.7, the set tfn111 “ is pre­

compact in the weak topology of L(Jq,X) and there exists a subsequence 

^k^k=l ^n^n=l converginS weakly to some f e L(Jo,X). Then, by 

Lemma 1.2.14 for every teJQ

t t
lim Jf(s)dX = /f(s)dX.
n^” o n 0

Also, as shown in the proof of Lemma 3.2.4, f e IS(FX,JO) and hence the

function y defined on JQ by

t 
y(t) = xQ + Jf(s)dX 

0

is in r(x).

To verify that r”(A) is closed then, it suffices to show that

y e A. In fact, since the subsequence of {yn^n=i i-8 i-n the
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closed set A it is enough to show that converges to y in

C(J ,X).o
Now, the set {y^|k = is uniformly equicontinuous on Jq

as a result of Lemma 4.2,4. Thus, as in the proof of Lemma 2.1.7, 
00

{y^k-l converges to y in C(Jo,X). Therefore, 

y e r(x)f|A

and r~(A) is closed.

Theorem 4.2.6

Suppose that X is a separable reflexive Banach space and that there 

exists z e C such that F when restricted to J is measurable and z o
Fz(t) e Kp(X) a.e. on JQ. If for every x e D

i) F (t) e K1K(X) a.e. on J ;X o
ii) Fx when restricted to JQ is measurable;

iii) for a.e. tcJ the multifunction F. :X -*2 when restrictedo t
to x(j ) is use; o ’

then (r,xQ) has a fixed point in 0 which is a solution to the ini­

tial-value problem 2.1.14.

Proof As a result of Lemma 4.2.3, D is nonempty. The mne is 

monotonic, semi-additive and non-singular on D by Lemmas 1.4.10, 

1.4.11 and 1.4.12 respectively. Also, by Lemma 1.4.13, Yq is 1-regu- 

lar on D and by Lemmas 1.6.5 and 3.2.5, Fis y^-condensing on D.

Since for every x e D the multifunction Fx is measurable and in- 

tegrably bounded on JQ by the constant function

p(t) = M, teJ

(F,xo) maps D into KpK(D) by Lemmas 4.2.2, 2.1.7 and 2.3.6. Finally, 

by the preceding lemma r is use on D. Thus, by Theorem 4.1.6, F has

a fixed point in D and by Lemma 2.1.5 it is a solution to the ini-
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tial-value problem 2.1.4.
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CHAPTER V

5.1 Structure of the Fixed Point Set

In retrospect it is of some interest to note that the hypotheses 

that the multifunction be closed and condensing with respect to a mono­

tonic mnc are common to each of the Fixed Point Theorems 2.2.4, 3.1.3 

and 4.1.6. As the next theorem indicates the presence of these two 

conditions gives some insight into the topological structure of the 

fixed point set of the multifunction.

Theorem 5.1,1

Suppose that (Y,A,T,y) is a ncm space with y a monotonic mnc and
Y .G:Y ->2 is a closed y-condensing multifunction. If S, the set of 

fixed points of G, is in A then S is compact.

Proof Certainly, S CZG(S). Thus, 

y(S) s y(G(S)) 

and S is precompact according to Definition 1.6.3, 

To verify that S is a closed set consider {sa} a net in S conver­

ging to s in Y. Then, since sa e G(sa) for every a and G is closed, 

s e G(s) by Lemua 1.5.9.

Thus, S is closed and hence compact.

Remark Since in each of the Theorems 2.4.2, 3.2.6 and 4.2.6, F is 

a closed, bounded and y-condensing multifunction with respect to a mon­

ont on ic mnc having domain bounded sets, the set of all solutions elic­

ited by any one of these theorems is nonempty and compact.

5.2 Examples of Initial-value Problems

In this section several examples are given of how the initial-val­

ue problem 2.1.4 might arise. Of course, many examples arise from the 
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fact that if the kernel of the initial-value problem 2,1.4 is restrict­

ed to be single-valued then the problem becomes a standard initial-val­

ue problem in ordinary differential equations. This problem can be ef­

fectively handled without introducing multifunctions as illustrated by 

Sadovskii [38] . Thus, the emphasis here will be on examples which have 

kernels that are possibly not single-valued.

For the remainder of this section J will denote a closed interval 

of real numbers [0,t] where 0<T<*.

Example 5.2.1

Let X be a Banach space and f:J*x -*-[0,») and h:jxx ->X single-valued 

functions. Consider the problem of finding a solution x to the dif­

ferential inequality

||x(t) -h(t,x(t))|| < f(t,x(t)), teJ 

x(0) - xo, xoeX.

It is easily verified that this problem is equivalent to the ini­

tial-value problem

x(t) e F(t,x(t))

x(0) ■ x o
where

F(t,x(t)) ■ B^h(t,x(t)),f(t,x(t)))

Example 5.2,2

Let (X,<^) be a partially ordered Banach space and f:J ->[0,00) a sin­

gle-valued function. Consider the problem of finding a solution x to 

the inequality

6 s." x(t) <'* f(t)x(t), teJ 

x(0) - x, xeX. O' o
This problem readily translates into the initial-value problem
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x(t) e F(t,x(t)) 

x(0) = xo 

where

F(t,x(t)) = [e,f(t)x(t)].

In the event that X is partially ordered by a cone the multifunction Fx 

is point closed and point convex for every x e C(J,X) by Lemma 3.1.2. 

Example 5,2,3

Let X be Euclidean n-space, Y Euclidean m-space and f:JxXxY ■*X a sin­

gle-valued function. Consider the control theory problem

x(t) = f(t,x(t),u(t)), teJ 

x(0) = xol xoeX

where the control function u may be chosen as any measurable m-vec- 

tor-valued function with value at time t in a preassigned subset U(t) 

of Y. This problem is equivalent to the initial-value problem

x(t) e F(t,x(t))

x(0) = xo

where

F(t,x(t)) = {f(t,x(t),u(t)):u is a measurable selector for U on J}. 

Considerable work has been done on this problem by Filippov [14] and 

Hermes [23] without recourse to multifunction fixed point theory.

5.3 Further Research

There appears to be several avenues related to the initial-value 

problem 2.1.4 and the fixed point theory developed to solve it open 

for further research. For example, it might be interesting to inves­

tigate the types of conditions that would be necessary to guarantee a 

solution to the initial-value problem 2.1.4 if the underlying space
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were other than a Banach space or, in the event that it is a Banach 

space, if more or less general conditions were placed on it. Along 

with experimenting with the underlying space an integral, either more 

or less general than the Bochner integral, might be tried. Also, the 

effects of generalizing or restricting the measure of non-compactness 

used in each case could be considered.

It may be of interest as well to attempt the development of a 

constructive procedure for evaluating certain of the fixed points 

shown to exist here, at least in the case where the space in which the 

fixed points are known to exist is Euclidean n-space. Some steps in 

this direction have already been taken by Merrill [32] who has devel­

oped an algorithmic technique for evaluating fixed points of a certain 

subclass of upper semi-continuous multifunctions having domain Euclid­

ean n-space.

Though the initial-value problem 2.1.4 is known to arise in the 

area of control theory, further investigation into its role in the ar­

eas of linear programming, optimization and econometrics needs to be 

made. As suggested by Merrill's work in [32] the fixed point theory 

developed here, aside from its intermediary application to the ini­

tial-value problem, may be directly applicable to problems in these 

areas



79

BIBLIOGRAPHY

1. Amann, H., Fixed point equations and nonlinear eigenvalue prob­
lems in ordered Banach spaces, SIAM Rev., 18 No. 4 (1976), 
pp. 620-709.

2. Berge, C. , Topological Spaces, The Macmillan Company, New York,
1963.

3. Bohnenblust, H.F. and Karlin, S., On a theorem of ville, contri­
butions to the theory of games. Annals of Math. Studies, No. 
24, Princeton University Press, Princeton, New Jersey, 1950, 
pp. 155-160.

4. Castaing, C., Sur les equations differentielles multivoques, C.R.
Acad. Sc. Paris, Ser. A 263 (1966), pp. 63-66.

5. Castaing, C., Sur les multi-applications mesurables, Rev. Fran-
caise Informat. Recherche Operationelle, 1 (1967), pp. 91- 
126.

6. Castaing, C. , Un theorme de compacite faible dans Lg, Secretari­
at des Math., No. 44, University of Montpellier, 1969.

7. Danes, J., Fixed point theorems, Nemyckii and Uryson operators,
and continuity of nonlinear mappings, Comment. Math, Univ. 
Carolinae, 11 No. 3 (1970), pp. 481-500.

8. Danes, J., Generalized concentrative mappings and their fixed
points. Comment. Math. Univ. Carolinae, 11 No. 1 (1970), pp. 
H5-135.

9. Danes, J., Some fixed point theorems in metric and Banach spaces,
Comment. Math. Univ. Carolinae, 12 No. 1 (1971), pp. 37-50.

10. Darbo, G., Punti uniti in transformazione a condominio non com-
patto, Rend. Sem, Mat, Univ, Padova, 24 (1955), pp. 84-92.

11. Dunford, N. and Schwartz, J.T., Linear Operators Part I, Intersci­
ence Publishers Inc. , New York, 1964.

12. Filippov, A.F. , Classical solutions of differential equations with
multivalued right-hand side, SIAM J. Control, 5 No. 4 (1967), 
pp. 609-621.

13. Filippov, A.F., Differential equations with many-valued discontin­
uous right-hand side, Soviet Math. Dokl., 4 (1963), pp. 941- 
945.

14. Filippov, A.F., On certain questions in the theory of optimal con­
trol, SIAM J. Control, Ser. A 1 No. 1 (1962), pp. 76-84.



80

15. Fitzpatrick, P.M. and Petryshyn, W.V., Degree theory, fixed point
theorems and mapping theorems for multivalued noncompact map­
pings , Trans. Amer, Math. Soc., 194 (1974), pp. 1-25.

16. Fitzpatrick, P.M. and Petryshyn, W.V., Fixed point theorems and
the fixed point index for multivalued mappings in cones, J. 
London Math. Soc. , 12 (1975), pp. 75-85.

17. Fitzpatrick, P.M. and Petryshyn, W.V., Fixed point theorems for
multivalued noncompact acyclic mappings. Pacific J. Math., 
54 No. 2 (1974), pp. 17-23.

18. Fitzpatrick, P.M. and Petryshyn, W.V., Fixed point theorems for
multivalued noncompact inward maps, J. Math. Anal. Appl., 
46 (1974), pp. 756-767.

19. Furi, M. and Vignoli, A., A fixed point theorem in complete met­
ric spaces, Boll. Un. Mat. Ital., Ser. IV No. 4-5 (1969), pp. 
505-509.

20. Furi, M. and Vignoli, A., Fixed points for densifying mappings,
Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 
Ser. 6 47'(1969), pp. 465-467"

21. Furi, M. and Vignoli, A., On o-nonexpansive mappings and fixed
points, Atti. Accad. Naz. Lincei Rend. Cl. Sci, Fix. Mat. 
Natur. , Ser." 8" 48 (1970) , pp. 195-198.

22. Gatica, J. and Kirk, W., A fixed point theorem for k-set-contrac-
tions defined in a cone. Pacific J. Math., 53 No. 1 (1974), 
pp. 131-136.

23. Hermes, H., The generalized differential equation xe R(t,x),
Advances in Math., 4 (1970), pp. 149-169.

24. Hille, E. and Phillips, R.S., Functional Analysis and Semi-Groups,
American Mathematical Society, Rhode Island, 1957.

25. Himmelberg, C.J., Porter, J.R., Van Vleck, F.S., Fixed point the­
orems for condensing multifunctions. Proc. Amer. Math. Soc., 
23 (1969), pp. 635-641.

26. Jones, G.S., A functional approach to fixed point analysis of non­
compact operators, Math. Systems Theory, 6 No. 4 (1971), pp. 
375-382.

27. Krasnoselskii, M., Positive Solutions of Operator Equations, P.
Noordhoff Ltd., Groningen,~The Netherlands, 1964.

28. Kuratowski, C., Topologie, "Monografie Matematiczne", Tom 20, War­
szawa, 1958.

29. Marchaud, A., Sur les champs de demi-cones convexes, Bull. Sci.
Math., 62 (1938), pp. 229-240.



81

30. Martelli, M., Some results concerning multivalued mappings de­
fined in Banach spaces, Atti. Accad. Naz. Lincei Rend. Cl. 
Sci. Fis. Mat, Natur,, 54 (1973), pp. 865-871.

31. Martin, R.H., Nonlinear Operators and Differential Equations in
Banach Spaces, John Wiley & Sons, New York, 1976.

32. Merrill, 0., Applications and extensions of an algorithm that
computes fixed points of certain nonempty convex upper-sem­
i-continuous point-to-set mappings. Technical Report No. 
71-7, University of Michigan, 1971.

33. Nadler, S.B., Multivalued contraction mappings, Pacific J. Math.,
30 No. 2 (1969), pp. 475-487.

34. Nussbaum, R.D., A generalization of the Axcoli Theorem and an
application to functional differential equations, J. Math. 
Anal. Appl,, 35 (1971), pp. 600-610.

35. Nussbaum, R.D., The fixed point index for local condensing maps,
Ann. Mat. Pura Appl,, 89 (1971), pp. 217-258.

36. Petryshyn, W.V., Structure of the fixed points sets of k-set-con-
tractions. Arch. Rational Meeh. Anal., 40 (1971), pp. 312-328.

37. Potter, A.J.B., A fixed point theorem for positive k-set-contrac-
tions. Proc. Edinburgh Math. Soc., 19 (1974), pp. 93-102.

38. Sadovskii, B.N., Limit compact and condensing operators, Uspehi
Mat. Nauk, 27 (1972), pp. 81-146.

39. Smithson, R.E., Fixed points for contractive multifunctions,
Proc. Amer. Math. Soc., 27 No. 1 (1971), pp. 192-194.

40. Smithson, R.E., Fixed points of order preserving multifunctions,
Proc. Amer. Math. Soc., 28 No. 1 (1971), pp. 304-310.

41. Smithson, F.E., Multifunctions, Nieuw Arch. Wisk., 20 (1972),
pp. 31-53.

42. Zaremba, S.C., Sur les equations au paratingent, Bull. Sci.
Math., 60 (1936), pp. 139-160.


