
 

 

Insights into the substrate binding specificity 

of quorum-quenching acylase PvdQ 
 

 

A Dissertation Presented to 

the Faculty of the Department of Biology and Biochemistry 

University of Houston 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

By 

Yanyun Liu 

May 2019 

  



	 	ii	

 

 

Insights into the substrate binding specificity 

of quorum-quenching acylase PvdQ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yanyun Liu 

APPROVED: 

Dr. James M. Briggs, Chairman 

Dr. George E. Fox 

Dr. Jason A. Rosenzweig 
Texas Southern University 

Dr. Weihua Zhang 

Dr. Dan E. Wells, Dean, College of 
Natural Sciences and Mathematics 
 



	 	iii	

 Acknowledgements 

I would like to express my deepest gratitude to my advisor, Dr. James M. Briggs, for his 

excellent guidance, caring and continuous support throughout my Ph.D. study and 

dissertation research. I still remember the first meeting with him in 2014. I was very 

nervous to meet him, but he was so nice and friendly and made me believe in myself. I 

have always been interested in computational study and really wanted to join a 

computational lab for my Ph.D. research, even though I didn’t have a strong 

computational background. He wasn’t concerned about my background and encouraged 

me to pursue my research interest, gaving me the chance to join his lab. He is very patient 

to guide me to learn all the knowledge needed, helps me to think critically about my ideas, 

and to gain deep understanding of my research. When I first came to US, my English was 

very bad and I can’t even understand what people say and didn’t know how to express 

myself clearly. Dr. Briggs always patiently explains the meaning of vocabularies I don’t 

know and corrects my grammar. Moreover, during my pregnancy, Dr. Briggs helped me 

a lot to make my life and research easier. Without his sincere help and supportive 

research environment, I would never have been able to complete my research and 

dissertation.  

I sincerely thank the rest of my committee members, Drs. George E. Fox, Jason A. 

Rosenzweig, and Weihua Zhang. The completion of this dissertation is a testament to 

their guidance, feedback, and valuable insights throughout the duration of my research. I 

am thankful to them for holding me to a high research standard and inspiring me to be a 

better researcher.  



	 	iv	

I would also like to thank Dr. Mehmet Sen who give me the chance to work with him 

and learn new knowledge. Collaborating with him is a valuable experience for me to 

expand my horizon and learn how to cooperate with other researchers to make greater 

success. I would like to thank him for his insightful comments and encouragement.  

To my first mentor: Dr. Xiaolian Gao, thank you for accepting me into your lab to do 

experiments. Without your help, I don’t know where I would be now. Your passion for 

science really amazes me.  

I am grateful to the other members of the Dr. Briggs lab. Their generous support and care 

helped me stay focused on my research. Many thanks to Dr. Iris Nira Smith, who is the 

best lab mate I ever had. Thanks so much for mentoring me to do my research and help 

me in my personal life. You are like a big sister to me and I really appreciate your various 

forms of support and I am grateful to have you as my friend in my life. I would like to 

thank Dr. Khushboo Singh for her help with my research and we had a lot of fun 

together. For Dr. Benjamin L. Skidmore, there is no word can express my thanks to him. 

We talk, eat, and laugh together almost every weekday. With his help, my English has 

improved a lot and I have learned a lot of American culture from him. He is like my big 

brother to help me go through my difficulties even though he is younger than me :). For 

Dr. John W. Craft, I would like to thank him for his help when I first came here and I 

enjoyed talking to him. For Sladja Maric, I would like to thank her for the suggestions 

during our lab meetings and it is so great to have her as part of our lab family. For Zahra 

Mazhar and Jasper Nyandoto, thanks for helping to prepare my defense presentation. I 

would like to thank Dr. Guedmiller Souza de Oliveira for solving many problems for 

my project and I am so glad we cooperated on one paper together. Thank you all. 



	 	v	

 

Many thanks to my colleagues, Fei Yuan, Haopeng Yang, Celise Robertson, Priyanka 

Srivastava, Pragya Manandhar, Shivangi Srivastava, Nada Béjar, Savini 

Wellappuliarachchi, … for their generous help and support during these years. They are 

great friends.  

To my family: Mom and Dad, thanks so much for bringing me into this world and 

always support me in my study. I know deep in heart that you don’t want your little girl 

be away from you. I would like to thank you for always understanding and encouraging 

me. Thanks so much for taking good care of my baby and me. To my sister and brother, 

thank you for always taking care of me and our parents when I am not around. I would 

like to thank my mother-in-law for helping me take good care of my baby. To my 

husband, Dr. Ning Cao, there are no words strong enough to express my deepest love 

and gratitude to you. Without your support, I would never be able to reach at this point in 

my life. I love you and looking forward to this exciting and new chapter of our life. 

Finally, to our dearest daughter Sophia, thanks so much for choosing us as your parents. 

You are the best thing ever happen to us. You bring so much laugh and joy to our life. 

Mom and Dad love you forever.  

 

 

 

 

 

 



	 	vi	

 

 

Insights into the substrate binding specificity 

of quorum-quenching acylase PvdQ 
 

 

An Abstract of a Dissertation 

Presented to 

the Faculty of the Department of Biology and Biochemistry 

University of Houston 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

By 

Yanyun Liu 

May 2019 



	 	vii	

 Abstract 

The N-acyl homoserine lactone acylase, PvdQ, from human opportunistic pathogen 

Pseudomonas aeruginosa is a quorum-quenching enzyme that can hydrolyze the amide 

bond of the quorum sensing signaling N-acyl homoserine lactones (AHLs) thereby 

degrading the signaling molecules, inhibiting the biofilm formation and reducing 

virulence gene expression. Previous studies demonstrated that PvdQ has different 

preferences for AHLs with different acyl chain lengths and substituents. However, the 

substrate binding specificity determinants of PvdQ with different bacterial ligands remain 

unknown and unintuitive. Elucidation of these determinants can lead to mutants with 

efficiency and broader substrate promiscuity.  

To investigate this question, a computational study was carried out combining multiple 

molecular docking methods, molecular dynamics (MD) simulations, residue interaction 

network analysis, and binding free energy calculations. The main findings are: firstly, 

results from pKa predictions support the observation that the pKa of the N-terminus of 

Serβ1 was depressed due to the surrounding residues. Multiple molecular docking studies 

provided information about PvdQ binding modes and binding affinities. Secondly, 

analysis of the protein dynamic fingerprint of each complex from MD simulations 

demonstrated that binding of C12-homoserine lactone (C12-HSL) ligand reduced the 

global motion of the complex and maintained the correct arrangement of the catalytic 

site. Further, the residue interaction network analysis of each system illustrated that there 

are more communication contacts and pathways between the residues in the C12-HSL 

complex as compared to other complexes. The binding of the C12-HSL ligand facilitates 
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structural communication between the two knobs and the active site. The binding of other 

ligands tends to impair these specific communication pathways, leading to a catalytically 

inefficient state. Finally, simulation results from free energy landscape and binding free 

energy analysis revealed that the C12-HSL ligand has the most favorable binding free 

energy and greater stability than the less favored ligands. Each of the following residues: 

Serβ1, Hisβ23, Pheβ24, Metβ30, Pheβ32, Leuβ50, Asnβ57, Thrβ69, Valβ70, Trpβ162, 

Trpβ186, Asnβ269, Argβ297 and Leuα146, play different roles in substrate binding 

specificity. This is the first computational study that provides molecular information for 

structure-dynamic-function relationships of PvdQ with different bacterial ligands and 

demonstrates determinants of substrate binding specificity. 
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Chapter 1 Introduction 

Pseudomonas aeruginosa (P. aeruginosa) and Burkholderia cenocepacia (B. 

cenocepacia) are prevalent opportunistic pathogens that are the primary pathogens of 

concern for cystic fibrosis (CF) patients. Both, individually or in co-infection, can cause 

severe chronic pulmonary infections in immunocompromised and CF patients, with high 

infection and fatality rates. When co-inhabiting the same environment, both use quorum 

sensing (QS) systems and can form mixed biofilms in the lungs of CF patients. The 

interspecies cooperation of P. aeruginosa and B. cenocepacia during an infection has 

emerged as a major new challenge due to high fatality and resistance to most common 

antibiotics in patients. Therefore, it is important to understand the basic knowledge about 

these bacteria and develop new strategies to target these two bacteria.  

In this chapter, the background information of these two bacteria, quorum sensing, and 

quorum quenching enzymes are introduced along with the hypothesis and scope for this 

study.  

1.1 Pseudomonas aeruginosa 

1.1.1 Overview 

P. aeruginosa is a ubiquitous, rod-shaped, Gram-negative, aerobic, motile bacterium. P. 

aeruginosa is a multidrug resistant opportunistic pathogen capable of causing serious 

infection.1-3 It is one of the most common causes of infection in humans and the infection 

is riskier for patients who are immunocompromised, particularly transplant recipients, 

neutropenic patients, and patients with cancer, severe burn woods, and HIV. P. 
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aeruginosa is responsible for acute respiratory infections in immunocompromised 

patients, chronic respiratory infection in CF patients, and excessive mortality in 

ventilator-associated pneumonia patients.1,4-8 More specifically P. aeruginosa is 

responsible for 26% of ventilator-associated pneumonia,9 12% of catheter-associated 

urinary tract infections, and 15.4% of surgical site infections.10,11 Finally, it is also a 

major cause of morbidity and mortality in CF patients.12,13  

Even though various strategies and therapeutic solutions have been proposed to deal with 

P. aeruginosa,2,14-20 the problems of seriousness of infection, high fatality rates, and 

increasing resistance to common antibiotics still persist, and the need for novel 

therapeutic options remains. 

1.1.2 Pathogenesis 

The pathogenicity of P. aeruginosa is mainly caused by many different bacterial 

virulence factors (Figure 1.1) and its genetic flexibility that allows it to adapt to hostile 

environments. The precondition of P. aeruginosa infection typically requires a loss of 

first-line defense by the host, such as breakdown of the skin or mucosal barriers or an 

impaired immune system. In general, P. aeruginosa infection consist of three stages: (i). 

attachment and colonization, (ii). local invasion, and (iii). systemic disease. For each of 

these stages, a progression of virulence factors is involved.  

Virulence factors used in attachment and colonization include: flagella, pili, and 

lipopolysaccharide (LPS). Flagella are involved in motility, adherence, and 

invasiveness.21 Type IV pili mediate the adherence to the epithelium. In addition, LPS 

also contributes to the bacterial adhesion by binding to host asialo-GM1. These 
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appendages are mainly responsible for the adhesion to epithelial cells and enable 

colonization of the respiratory epithelium.1 

After colonization, several extracellular products of P. aeruginosa can cause severe tissue 

damage, bloodstream invasion, and dissemination.14 Exotoxin A plays a major role in 

local tissue damage, bacterial invasion, and possibly immunosuppression.22 

Phospholipase C and rhamnolipid may break down lipids and lecithin, and disrupts lung 

surfactants. Alkaline protease degrades immune system components, such as complement 

factors.23,24 Two elastases, LasB and LasA, play important roles in degrading elastin, 

disrupting membranes, impairing monocyte chemotaxis, and degrading complement 

proteins.25 

Upon attachment, a powerful tool called the type III secretion system is activated to inject 

effector proteins, such as ExoS, ExoT, ExoU and ExoY, through a syringe-like apparatus 

into the eukaryotic cytoplasm.1 All four effector proteins play important roles in the 

cytotoxicity and cause invasion and promote bacterial dissemination. 23  

The mechanisms of P. aeruginosa antibiotic resistance include: low outer membrane 

permeability,14,26 multidrug efflux pumps, and the production of antibiotic modifying 

enzymes.14,27,28 P. aeruginosa can also evade clearance by losing immunogenic features 

such as pili and flagella.1 Additionally, P. aeruginosa can form biofilms to protect itself 

from host immune cell clearance. Biofilms promote persistent chronic infections. 

Moreover, P. aeruginosa also has regulating systems called QS to coordinate the 

bacterial population in adapting to the changing environment. 



	 	4	

 

Figure 1.1. Virulence factors of P. aeruginosa.  
    (Adatped from Sorger-Domenigg T.14) 

 

1.1.3 Diagnosis 

In the healthcare setting, P. aeruginosa can be spread through improper hygiene or via 

contaminated medical equipment. P. aeruginosa can infect the blood, lungs, urinary tract, 

wounds, ear, eyes, and skin. Bloodstream infections present with symptoms such as: 

fever and chills, muscle and joint pain and stiffness, body aches, rapid pulse and 

breathing, fatigue, nausea and vomiting, diarrhea, and decreased urination. Respiratory 

tract infections present with symptoms of coughing, congestion, fever and chills. Urinary 

tract infections present with painful urination, odor in urine, cloudy or bloody urine. 

Wound infections present wtih inflammation, green pus or discharge leakage from wound 

while ear infections causing hearing loss, ear pain, ear discharge, itching inside the ear, 

dizziness, and disorientation. Eye infections can cause eye pain, redness, swelling, and 
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impaired vision while skin infections typically present with rash, which can include 

pimples filled with pus. 

Early diagnosis is critical for treating P. aeruginosa infections. The basic identification of 

P. aeruginosa is to use conventional methods, indirect molecular strategies and direct 

molecular strategies including polymerase chain reaction (PCR) and sequence analysis. 

Conventional culture methods are still the most commonly used methods in clinical 

practice. P. aeruginosa is identified based on the biological characteristics of the 

bacterium under certain culture conditions, such as Gram-negative/Gram-positive status, 

or the activities of bacterial molecules such as oxidase, acetamidase, arginine 

dihydrolase, glutamate utilization, proteolytic activity, nitrate utilization, lipolytic 

activity, and pyocyanin pigment formation.29,30 Several automated identification systems 

are available for P. aeruginosa identification, such as the Vitek231 and Phoenix 100 

systems.32 In recent years, numerous modern detection approaches, such as flow 

cytometry,33 immunological detection,34 and molecular biology-based detections,35 have 

been developed to establish a rapid and sensitive detection of P. aeruginosa infections, 

especially for early detections.29 The PCR-based identification methods have also 

becoming popular for rapidly detecting P. aeruginosa.36-41 Conventional PCR detection 

targeting the 16S rRNA gene has been established to identify P. aeruginosa.36 The loop-

mediated isothermal amplification based PCR method has also been developed to avoid 

the thermocycling for amplification.42 Since early diagnosis of P. aeruginosa is critical to 

effectively treat the infections, developing affordable, rapid, and accurate identification 

methods is of significant importance.  
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1.1.4 Treatment 

Different strains are resistant to different antibiotics. Due to this wide range of resistance, 

finding the proper therapies to treat P. aeruginosa is challenging. P. aeruginosa is 

naturally resistant to many antibiotics, such as tetracyclines and benzylpenicillin due to 

low outer membrane permeability and has increasing resistance to new antibiotics and 

drugs.43 Moreover, selection can occur during treatment and trigger the development of 

bacterial resistance.44,45  

In general, there are several groups of antimicrobials that can be used to treat P. 

aeruginosa.46 (i). Penicillins (such as b-lactams, ticarcillin, tazobactam, and piperacillin) 

and cephalosporins (such as cefepime and ceftazidime) have been used to treat P. 

aeruginosa.47-49 (ii). Carbapenems (such as meropenem, doripenem, ertapenem, and 

imipenem) are generally the main drugs used in the treatment of P. aeruginosa.50 (iii). 

Aminoglycosides (such as amikacin, netilmicin, tobramycin, and gentamicin) can also be 

used in combination treatment of P. aeruginosa.51 (iv). Monobactam (such as aztreonam) 

has been used to treat P. aeruginosa, especially for urinary tract infections, intra-

abdominal, soft tissue infections, and pelvic infections and pneumonia.46,52,53 (v). Colistin 

has also shown efficacy in treating P. aeruginosa.54-57 In general, a drug cocktail of 

several antibiotics that are effective against most strains and have different modes of 

actions should be used.58 Even though tobramycin can effectively eradicate early P. 

aeruginosa, it has been found that P. aeruginosa has become increasingly resistant to 

tobramycin.2,59-62 P. aeruginosa shows limit resistance to colistin in cystic fibrosis. 

However, colistin has potential concerns for neurotoxicity and nephrotoxicity that need to 

be monitored.63 
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Even though some of the above antibiotics are effective against P. aeruginosa, these 

antibiotics are not effective against all strains. Selecting the right antibiotic requires a 

clinical isolate from a patient which can be typed to determine the most effective 

treatment. Early treatment with suitable drugs is significant to optimize the clinical 

outcome and numerous factors should be considered.64 However, it is difficult to select 

the best antipseudomonal due to the increasing resistance of P. aeruginosa, which has 

become a serious problem in recent years.  

1.2 Burkholderia cenocepacia 

1.2.1 Overview 

B. cecocepacia belong to the Burkholderia cepacian complex (Bcc), which are Gram-

negative, aerobic, motile, rod-shaped bacteria existing in diverse environments such as 

soil, water, plants, animals, and human.65 Bcc are a group of closely related opportunistic 

organisms that are more infective to patients with chronic granulomatous disease, who 

are immunocompromised, or have pre-existing lung conditions, such as CF. The Bcc 

consists of at least 17 species, including B. cepacia, B. multivorans, and B. cenocepacia 

etc.66-69 Bcc is the second leading cause of chronic lung infection behind P. aeruginosa. 

As an important pathogen in CF pulmonary infections, Bcc often infect CF patients in the 

late process of the disease when they are already chronically infected with P. aeruginosa. 

Such co-infection causes variable and unpredictable consequences in clinic, and can 

range from an asymptomatic carriage to the fatal pneumonia. The so-called “cepacia 

syndrome” is a condition manifesting in high fever, leukocytosis and progressive 

respiratory failure.70 Among all the Bcc, B. cenocepacia has been one of the most 
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prevalent in CF. The main difficulty in dealing with B. cenocepacia is their extraordinary 

resistance to antimicrobial agents. One important factor of the infection process is its 

biofilm formation that can withstand host immune responses and provides increased 

resistance to antibiotics. Moreover, along with P. aeruginosa, mixed biofilms can be 

formed, which is more problematic in clinical settings.  

1.2.2 Pathogenesis 

B. cenocepacia possess numerous pathogenic mechanisms that enable them to invade, 

hide, and survive in their natural hosts71-77 including flagellum,71 extracellular 

proteases,76 siderophore production,72 a type III secretion,75 biofilm formation,73 and a 

QS mechanism (Figure 1.2).74  

 

The first step of the infection is the adhesion of the B. cenocepacia to the epithelial 

surface of the host cell via protein and glycolipid receptors as well as secretory mucins. 

 

 
Figure 1.2 Important virulence factors for Bcc survival in interactions with host 
phagocytes.                                                                            (Adapted from Porter L. A.77) 
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B. cenocepacia possess flagellum that contribute to bacterial motility and adhesion and 

enable the organism to invade host cells.71,78 In addition to the above-mentioned adhesion 

and invasion processes, Bcc have many virulence factors, such as proteases, lipases, and 

LPS, to enhance the pathogenicity in epithelial cells. B. cenocepacia can produce 

extracellular proteases, such as zinc metalloproteases (i.e., ZmpA and ZmpB).76-79 ZmpB 

has been found to be able to cleave immunoglobulins, transferrin, and lactoferrins. The 

lipase produced by B. cenocepacia plays an important role in invasion of lung epithelial 

cells. The LPS located in the outer membrane of B. cenocepacia plays important roles in 

contribution to antimicrobial peptide resistance and promotion of a potent pro-

inflammatory response.80 The O-antigen portion within the LPS molecular structure plays 

an important role for resistance to serum-mediated killing81 and prevents bacterial 

binding to epithelial cells and phagocytosis by macrophages.82 B. cenocepacia can 

produce different siderophores to acquire iron under conditions of iron depletion.83 

Similar with P. aeruginosa, B. cenocepacia also possess the Type III secretion system to 

directly inject proteins from the bacterial cytoplasm into the host cell cytoplasm.  

B. cenocepacia possess various mechanisms to resist oxidative stress with catalase, 

peroxidase, and superoxide dismutase activities.84 B. cenocepacia can produce biofilms, a 

complex, multicellular bacterial communities to protect bacterial from antibiotics and the 

host immune system.85 In CF lungs, B. cenocepacia can also produce mixed biofilms 

with P. aeruginosa and communicate with P. aeruginosa via QS systems.86,87 The QS 

mechanism is for cell-to-cell communication to regulate protease production, siderophore 

synthesis, the type III secretion system, motility and biofilm formation.88 QS enables 

bacteria to coordinate the behavior of their community in a cell-density-dependent 
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manner by controlling the expression of the virulence-related genes. 

1.2.3 Diagnosis 

Due to the seriousness of the B. cenocepacia infection, laboratory diagnosis should be 

carried out as accurately and early as possible. However, in practice, isolation and 

diagnosis of B. cenocepacia is complicated and difficult, especially for routine 

microbiological laboratories. In general, the B. cenocepacia can be identified by a 

combination of selective media and biochemical analysis in the clinical laboratory. These 

bacteria can be difficult to isolate since other bacteria from the patient sample may 

overgrown them. The selective media is based on the B. cenocepacia’s high intrinsic 

resistance while suppresses the growth of non-Bcc organisms. B. cenocepacia can be 

identified phenotypically with conventional culture with selective media using samples 

from blood, sputum, cerebrospinal fluid or other clinical specimens. A definitive 

diagnosis includes features like oxidase-positive, polymyxin-resistant, and gentamicin-

resistant. PCR-based assays have also been developed to amplify the 16S rRNA gene.89-91 

After 16S rRNA amplification, restriction enzyme mediated fragmentation can generate a 

specific restriction fragment length polymorphism (RFLP) banding pattern to identify the 

B. cenocepacia.92 RFLP method based on amplifying the recA gene has also been used to 

identify the B. cenocepacia.93 Other identification methods include amplified fragment 

length polymorphism (AFLP) fingerprint typing,94 sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS PAGE) of whole cell proteins, and whole cell 

fatty acid analysis.67  
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1.2.4 Treatment 

The antimicrobial resistance of B. cenocepacia is based on mechanisms of cell wall 

impermeability, enzymatic inactivation, alteration of drug targets, and active efflux 

pumps.95 Antibiotics, such as piperacllin, azlocillin, cephalosporins, meropenem, 

ciprofloxacin, minocycline, chloramphenicol, carbapenems, fluoroquinolones, 

ceftazidime, semisynthetic penicillins, and trimethoprim-sulfamethoxazole have been 

used to treat Bcc.96-99 In clinical practice, combinations of different antibiotics are 

generally more effective, such as combinations including meropenem, co-trimoxazole, 

chloramphenicol, and tetracyclines97 or a four-drug combination of chloramphenicol, 

doxycycline, and trimethoprim-sulfamethoxazole.100 Inhalational immunotherapy, which 

has emerged as important to manage chronic lung infections, can also be used to acute B. 

cenocepacia infection by combining with other antibiotics.101 B. cenocepacia as well as 

the other strains in Bcc are difficult to eradicate and the treatment should be made on a 

case-by-case basis.  

1.3 Quorum Sensing 

1.3.1 Quorum sensing mechanism 

As mentioned above, P. aeruginosa and B. cenocepacia are both highly communicative 

organisms with the purpose of coordinating their behavior, which is referred to as QS. QS 

is a cell to cell signaling mechanism that enables the bacterium to regulate cell density 

and coordinate virulence factors through small signaling molecules, controlling 

antibiotics production, DNA exchange, motility, and biofilm production. Those signaling 
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molecules released by bacteria in the extracellular medium are called autoinducers and 

work as mediators of QS. As shown in Figure 1.3, typically the signaling molecule is N-

acyl homoserine lactone, which is synthesized by an autoinducer synthase, and 

recognized by an autoinducer receptor. When the bacterial population increases 

sufficiently, the autoinducer concentrations will increase and exceed a particular 

threshold level. These signaling molecules are internalized into the cell and bind the 

transcription activators, which activate expression of particular genes. This includes 

genes responsible for biofilm formation, various virulence factors, and other group 

behaviors.  

 

1.3.2 Quorum sensing signal molecules 

Different bacteria produce different signal molecules. As indicated in Figure 1.4, there 

are generally three categories of signal molecules: Gram-negative bacteria primarily use 

AHLs, known as Autoinducer-1 (AI-1); Gram-positive bacteria that mainly use 

 

 
Figure 1.3 Quorum sensing mechanism. It includes three steps: synthesis, recognition, 
and response. Bacteria synthesize the quorum sensing molecules, which diffuse into the 
surrounding environment at low cell densities. However, when the local population 
increases in density and the concentration of the signaling molecules exceeds a particular 
threshold level, these molecules are internalized into the cell and bind to the cognate 
receptor; then activate a particular set of genes.  
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autoinducing peptides (AIPs); A furanosyl borate diester, also known as Autoinducer-2 

(AI-2), is the only species-nonspecific autoinducer and can be seen as a universal QS 

signal.102 AI-2 is commonly available in both Gram-negative and Gram-positive bacteria 

for intraspecies and interspecies communication.103 

 

 

 

Figure 1.4 Molecular structures of different autoinducers. (A) Different AHLs with 
the corresponding bacteria. (B) AIPs with corresponding bacteria. The asterisk represents 
an isoprenyl group. (C) AI-2 with corresponding bacteria. 

[Adapted from Taga M. E.102] 
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AHLs are diffusible, low molecular weight molecules and all of which share a common 

homoserine lactone head group with different acyl side chains. The differences in side 

chain length, saturation and oxidation at the C3 position results in different AHLs. 

Because of amphipathic nature, AHLs can diffuse freely in and out of the cell in most 

conditions, which means AHL concentration in the extracellular environment increases 

when the cell density increases. However, active transport of AHLs also happens.104 

Short chain AHLs can diffuse freely and efficiently across the cell envelope while long 

chain AHLs diffuse slowly due to the interactions with the lipophilic cytoplasmic 

membrane.105 In addition, it has been found that long chain AHLs can be exported by 

efflux pumps in certain bacterial strains.104,106,107 

Unlike AHLs, AIPs cannot permeate the cell membrane and require specialized 

transporters for active transport. Detection of the AIPs can occur either at the surface of 

the membrane or intracellularly. For some cases, AIPs cannot directly bind to a 

transcriptional activator. They need to bind to a receptor on the surface of the membrane, 

which uses a phosphorylation based relay system to eventually activate or repress the QS 

target genes.  

In general, AI-2 can freely diffuse out of both Gram-negative and Gram-positive bacteria. 

Detection of AI-2 can occur either extracellularly or intracellularly depending on the 

bacterium. The synthesis of AI-2 is executed by LuxS, which is an enzyme that cleaves 

S-ribosyl-L-homocysteine to produce L-homocysteine and 4,5-dihydroxy-2,3-

pentanedione, upon which the latter undergoes a spontaneous intramolecular cyclization 

and hydration to generate AI-2.108  

QS provides stimulus for unique and various cellular responses along with detection 
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and/or protection from competing microbial communities. Examples of species-specific 

and interspecies QS exist. In Gram-negative bacteria, species-specific QS is mediated by 

AHLs with different acyl chain length and substitution. In Gram-positive bacteria, 

species-specific QS is mainly mediated by small autoinducer peptides.109 Even though the 

autoinducers are usually specific to its cognate receptor, nonspecific signaling or cross-

talk between different QS systems can also occur. For example, interaction of P. 

aeruginosa and B. cenocepacia in CF patients takes place: B. cenocepacia can detect the 

AHL signals produced by P. aeruginosa to activate its QS system even though P. 

aeruginosa cannot directly detect B. cenocepacia’s signals.110-111 For interspecies 

communication, autoinducer-2, a furanosyl borate diester, has been identified. QS not 

only regulates intraspecies survival and differentiation in bacterial communities, but is 

also responsible for interspecies communication between symbionts and competitors. 

Interactions between different Gram-negative and Gram-positive bacteria affect bacterial 

persistence and clinical outcomes. For example, S. aureus is negatively associated with 

subsequent P. aeruginosa in CF patients. P. aeruginosa is negatively associated with 

subsequent B. cepacia complex. P. aeruginosa and B. cepacia complex were reciprocally 

and positively associated with infection by Aspergillus species. P. aeruginosa and B. 

cepacia complex may inhibit other bacteria through decreasing airway biodiversity. 112 

Moreover, the AiiA enzyme is an AHL lactonase from Gram-positive bacteria Bacillus 

thuringiensis, which can hydrolyze the ester bond of the homoserine lactone ring group. 

This enzyme exhibits different enzymatic activity toward different AHLs from Gram-

negative bacteria to inhibit their “group behavior”.113 Different bacterial interaction and 

competition may alter coevolution and the outcomes of treatment plans. 
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1.3.3 Quorum sensing role in virulence and biofilm 

Virulence factors are expressed by bacteria during pathogenesis and increase survival 

rate. QS plays an important role in regulating processes like bioluminescence, 

competence, biofilm formation, sporulation, antibiotic production, and virulence factor 

secretion.114 Expression of virulence genes is regulated by QS in most cases and different 

QS systems affect virulence in different ways. In general, QS systems follow three basic 

steps: 1). Bacterial community produces autoinducers and the concentration of 

autoinducers reach a particular threshold when cell density is high, enabling autoinducer 

detection and response. 2). Autoinducers are recognized by cognate receptors that are 

located in the membrane or cytoplasm. 3). The response is to activate specific virulence 

gene expression. For example, in P. aeruginosa, QS regulates the expression of many 

virulence genes, including phenazine production, elastase, exotoxin A, alkaline protease, 

rhamnolipids, superoxide dismutases, lectins, and biofilm formation.115 The roles of 

different virulence have been discussed in Section 1.1.2. 

As mentioned earlier, bacteria can enclose themselves in a self-produced polymeric 

matrix and adherent to an inert or living surface, which is called biofilm. Biofilm acts as a 

protective coating to make the bacteria difficult to eliminate and helps them to survive in 

harsh environments. The mechanism of biofilm formation has five stages as shown in 

Figure 1.5. The first stage is initial attachment, where the bacteria attach onto a surface 

and begin to proliferate in a favorable environment. When a specific concentration of 

bacteria is obtained, the QS mechanism is triggered to regulate the production of 

extracellular polymeric substances. They form a sticky matrix causing irreversible 

attachment. As the colony continues to grow, the early structure of the biofilm is formed, 
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which contains channels in order to allow the exchange of nutriments and waste products. 

Then the architecture of the biofilm matures. Finally, dispersion of single cells from the 

biofilm occurs and planktonic bacteria leave the colony and try to find other places for 

new colonies.116 QS plays an important role in the various stages of biofilm development, 

including the control of bacterial motility, regulating genes responsible for surface 

attachment and the synthesis of matrix components. It has been found that the biofilm 

maturation process is facilitated by controlling the swarming motility of the cells by 

QS.117 Moreover, formation of biofilms needs extracellular DNA, which depends on the 

QS system.118 Biofilm dispersion is also found to be regulated by the QS mechanism. 

Therefore, the QS system is essential for cellular aggregation, adhesion, biofilm 

formation, and biofilm dispersion.119  

 

 

Figure 1.5 Five stages of biofilm development. First, bacteria attach onto a surface and 
begin to proliferate; then form a sticky matrix causing irreversible attachment. The early 
structure of biofilm is formed due to the colony continuing to grow; and then the 
architecture of the biofilm matures. Finally, dispersion of single cells occurs and 
planktonic bacteria leave the colony and find other new places.  

[Adapted from Monroe D.120] 
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1.3.4 Quorum sensing system in P. aeruginosa and B. cenocepacia 

P. aeruginosa uses three QS signal systems, i.e., Las, Rh1 and P. aeruginosa quinolone 

signal (PQS) systems (Figure 1.6).121,122 The Las and Rh1 systems are hierarchically 

ordered and both are AHL-dependent QS systems. Each of them is comprised of a 

synthase and transcriptional activator.123 Two acyl homoserine lactone signals and one 

quinolone based signal are used by P. aeruginosa. The signal produced by the AHL 

systems increases as the bacterial population increases. When the signal reaches an 

intracellular threshold concentration, it will bind to the transcriptional regulator and 

regulate gene expression accordingly.123 In the Las system, signal synthase LasI produces 

the signal N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL), which can bind to 

the transcriptional activator LasR.124,125 Similar, in the Rhl system, signal synthase RhlI 

produces the signal N-butyryl homoserine lactone (C4-HSL), which can bind to the 

transcriptional activator RhlR.126-128 The three systems are arranged in a hierarchy: the 

Las system positively regulates the Rhl system, the Las and Rh1 systems can also control 

the PQS synthesis, whereas PQS can stimulate the expression of the Rh1 system. 

Together, the three systems regulate gene expression and modulate a range of virulence 

factors.  



	 	19	

 

The QS system in B. cenocepacia consists of AHL synthase CepI and AHL-dependent 

 
Figure 1.6 Quorum sensing in P. aeruginosa. The hierarchical organization of the three 
QS systems (Las, Rhl, and PQS systems) in P. aeruginosa. The Las system regulates the 
Rh1 system, the Las and Rh1 systems also control the PQS synthesis, while PQS can 
stimulate the Rh1 system.  

 (Adapted from Papaioannou E.122) 
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transcriptional regulatory protein CepR (Figure 1.7).129 CepI synthesize N-octanoyl-

homoserine lactone (C8-HSL) and minor amounts of N-hexanoyl-homoserine lactone 

(C6-HSL) as a by-product.130,131 When the signaling molecule reaches a particular 

threshold concentration, the C8-HSL binds to the cognate CepR receptor. This CepR/C8-

HSL binding can activate target genes with various functions, such as biofilm formation, 

swarming motility, siderophores, extracellular proteases, other virulence factors, etc. 

CepR can control the CepI expression, likely by binding to a lux box-like region, which 

overlaps part of putative CepI promoter. Auto-regulated CepR can also negatively control 

itself. 

 

 

Figure 1.7 The CepI/CepR quorum sensing system of the Bcc. CepI synthesizes C8-
HSL, which is recognized by the CepR receptor to activate target gene expression. 

(Adapted from Eberl L.88) 
 

 



	 	21	

B. cenocepacia and P. aeruginosa can communicate with each other and form mixed 

biofilms in lung infected patients. B. cenocepacia is able to synthesize the putative 

intergenus signal 2-heptyl-4(1H)-quinolone(HHQ), which can be processed into a QS 

signal by P. aeruginosa.110 B. cenocepacia is able to perceive the AHL signals from P. 

aeruginosa. Since both of the two strains use AHL to mediate quorum sensing to control 

biofilm formation and virulence genes expression, the target of the AHL signal molecules 

opens up a new way to inhibit bacterial infections.  

1.4 Quorum quenching enzymes 

1.4.1 Quorum quenching 

As discussed previously, QS systems play important roles in virulence factor production, 

biofilm formation, and motility. Therefore, how to inhibit QS is critical in combatting 

pathogenic bacteria and could provide an alternative for antibiotic treatment. The 

inhibition of QS is commonly called quorum quenching (QQ). In general, there are three 

strategies that can be used to inhibit QS: 1). inhibition of signal synthesis, 2). enzymatic 

degradation and inactivation of signaling molecules, 3). blocking signal reception 

(Figure 1.8).  

Inhibition of signal synthesis can limit QS signal accumulation. In general, AHL signals 

are generated by acyl-HSL synthases, which are formed from the substrates S-adenosyl-

methionine (SAM) and acyl-acyl-carrier-protein (acyl-ACP).132-134 Therefore, 

suppressions of SAM biosynthesis, acyl-ACPs generation, or inactivation of the synthase 

enzyme are potential ways to inhibit AHL signal production.132 For example, 5¢-

methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN; also known as Pfs) 
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plays an important role in biosynthesis of both AHL and AI-2 autoinducers.135 Therefore, 

MTAN inhibitors, such as immucillin A and DADMe-ImmA derivative, can be used to 

suppress the autoinducer production.136,137  

Many AHL degrading or modifying enzymes have been reported and these can be 

classified into four groups: i). lactonases, which are able to open the homoserine lactone 

ring.138 ii). acylases, which can hydrolyze AHLs at the amide bond and release the fatty 

acid tail group and homoserine lactone head group.139 iii). oxidoreductases, which can 

convert the 3-oxo-substituted AHL to the cognate 3-hydroxyl-substituted AHL.140 iv). 

Cytochrome oxidases, which catalyze oxidation of the acyl chain.141 It has been found 

that some bacteria can degrade their own autoinducers and inhibit the QS activities when 

group behaviors are assumed to be problematic for the population in the late growth stage. 

The third strategy of QQ is blocking the signal reception, which is based on different QS 

signal analogues. The basic idea is to generate analogues of native signaling molecules. 

The native signaling molecules can be modified to keep the ligand-receptor interaction 

properties while generating nonproductive ligand-receptor complexes that do not cause 

the same effect in gene expression. The competitive binding of the native signaling 

molecules is a good alternative for QQ. Various AHL analogues have been tested, such as 

lactams,142 thiolactones,143 urea,144 and triazolyldihydrofuranone based analogues.145 
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1.4.2 Acyl-homoserine lactone lactonase and acylase 

Enzymatic degradation of AHL signaling molecules is a promising strategy to inhibit 

pathogenic bacterial infections. AHL-lactonase and AHL-acylase are two major classes 

of enzymes that degrade QS molecules. As shown in Figure 1.9 AHL-lactonase can 

target the homoserine lactone ring group of AHLs by hydrolyzing the ester bond to yield 

the corresponding acyl homoserine molecule. Such hydrolysis can occur spontaneously at 

alkaline pH and is reversible at acidic conditions. On the other hand, AHL-acylase can 

 

Figure 1.8 Quorum quenching strategies. The three different kinds of strategies are 
employed to inhibit signal synthesis, degrade or inactivate signaling molecules, and block 
signal reception, respectively. 
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break down the amide bond between the acyl chain and homoserine lactone head group 

of AHL molecules, which releases a homoserine lactone and a corresponding fatty 

acid.139 In this study, we focus on the binding specificity of AHL acylase since it is 

difficult for the amide bond to be rebuilt after hydrolysis by AHL acylase. AHL-acylases 

are substrate specific enzymes, which prefer different AHL ligands based on the acyl 

chain length146. For example, AHL-acylase PvdQ enzyme from P. aeruginosa was 

studied in this research, which is much more sufficient to hydrolyze AHLs with acyl-

chains longer than 10 carbon atoms.146,147 

 

1.4.3 Structure and function of PvdQ from P. aeruginosa 

As discussed above, P. aeruginosa and B. cenocepacia are two of the most problematic 

pathogens associated with various serious infections, such as cystic fibrosis. Moreover, 

 

Figure 1.9 AHL signal degradation with lactonases and acylases. Dashed lines 
indicate the sites of bond cleavage.                                        (Adapted from LaSarre B.132) 
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the co-infection of these two pathogens makes the colonization even more difficult to 

eradicate. Since both P. aeruginosa and B. cenocepacia employ QS to control their 

actions, the targeting of QS is an attractive way to inhibit virulence and biofilm 

formation. 3-oxo-C12-HSL and C4-HSL are the two major endogenously generated 

communication molecules in P. aeruginosa that mediate the QS. C8-HSL is the signal 

molecule for B. cenocepacia. Therefore, degradation of AHL signaling molecules is a 

new way to inhibit bacterial infections. As mentioned earlier, AHL acylase PvdQ is one 

of the structurally well-characterized QQ enzymes, which can break down the amide 

bond between the AHL head group and the acyl tail group. PvdQ from P. aeruginosa is a 

typical Ntn-hydrolase with two chains interwoven together (Figure 1.10). Heterodimer 

PvdQ forms two protruding knobs (A-knob and B-knob), which forms a heart-shaped 

conformation with a solvent-accessible cleft in the center. PvdQ has 710 resides in total 

(missing 7 residues) and an unusually hydrophobic binding pocket.  

 

 

Figure 1.10 A: The 3D structure of PvdQ enzyme B: Sliced surface of PvdQ with 
substrate binding pocket. A chain colored in red, while B chain colored in green. The 
ligand product after hydrolyzed by PvdQ colored in magenta, while catalytic nucleophile 
Serβ1 colored in green.  
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PvdQ has two functions: siderophore biosynthesis and quorum quenching. Siderophores 

have high affinity for iron to scavenge free iron from surrounding environment. P. 

aeruginosa can produce different siderophores to acquire iron under iron limited 

environment.83 PvdQ plays a key role in siderophore biosynthesis in order to maintain 

iron homeostasis. PvdQ is able to hydrolyze an N-myristic acid substituent from a 

precursor of the iron-scavenging pyoverdine, the major siderophore of P. aeruginosa 

(Figure 1.11).148,149 Inhibition of PvdQ will block the iron acquisition and impair 

bacterial growth in an iron limited environment. Therefore, the study of the substrate 

binding specificity will pave the way for inhibitor design. As discussed above, the second 

function of PvdQ is acting as an AHL acylase with the ability to hydrolyze the amide 

bond of AHL signaling molecules used by various Gram-negative bacteria. PvdQ has an 

unusual hydrophobic binding pocket and exhibits different binding affinity toward 

different ligands. Four AHL substrates (3-oxo-C12-HSL and C4-HSL from P. 

aeruginosa, C8-HSL from B. cenocepacia, and C12-HSL as a control ligand) were 

investigated in this study in order to better understand the properties, structure, and 

mechanism of the PvdQ enzyme. Studying the performance of PvdQ on AHL substrates 

with different chain lengths and substituents can provide new insights and help to identify 

the factors related to the catalytic efficiency (Figure 1.12). The obtained information and 

analysis can be applied to target the bacterial infection through design of more an 

efficient and promiscuous PvdQ, new inhibitor against PvdQ, and other clinical or 

technological challenges. 
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Figure 1.11 Siderophore biosynthetic function of PvdQ. PvdQ is able to hydrolyze an 
N-myristic acid substituent from a precursor of the iron-scavenging pyoverdine, PvdI 
precursor. After maturation, PvdI can scavenge free iron from surrounding environment 
and shuttle it back to the bacteria. 

(Adapted from Nadal-Jimenez P.148) 

 

 

Figure 1.12 Substrate binding pocket and different ligands of PvdQ enzyme. A: The 
hydrophobic binding pocket of PvdQ. The hydrogen bonds are represented by dashed 
lines, while the hydrophobic interactions are indicated by arcs with spokes. B: Structures 
of four different ligands.  
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1.4.4 Mechanism of PvdQ enzyme 

As a therapeutic enzyme, PvdQ plays an important role in interfering in quorum sensing, 

thereby inhibiting the virulence gene expression and biofilm formation. The heterodimer 

PvdQ is a typical Ntn-hydrolase (N-terminal nucleophile). It can activate 

autocatalytically and cleave an amide bond with a N-terminal catalytic nucleophile Serβ1. 

As represented in Figure 1.13, there are two proposed chemical mechanism of PvdQ. In 

path a., the α-amino group of Serβ1 is able to deprotonate its own hydroxyl group from 

Serβ1 directly to activate this catalytic center. In path b., water is involved in the 

activation of the Serβ1 nucleophile by relaying the proton from the Oγ to the alpha-amino 

group. After activation, the hydroxylate of the nucleophile Serβ1 can attack the carbonyl 

carbon of the scissile bond of the substrate. This leads to the formation of the first 

tetrahedral intermediate state, which is stabilized by the backbone of Valβ70 and side 

chain of Asnβ269. In path a. or path b., ammonia or water donates its proton to the amine 

of the HSL-leaving group, which results in the collapse of the tetrahedral intermediate 

state into the acyl-enzyme intermediate state. Then the α-amino group or water 

hydroxylate attack the carbonyl carbon of the acyl-enzyme intermediate state, which 

results in a second tetrahedral intermediate state stabilized by the backbone of Valβ70 

and side chain of Asnβ269. The collapse of the second tetrahedral intermediate state 

results in the regeneration of the enzyme PvdQ.148,149  

Lacking a functional PvdQ in P. aeruginosa will inhibit bacterial growth in an iron-

limited environment, impair biofilm formation, and reduce virulence expression.9 

However, the details of the binding interactions of PvdQ with bacterial substrates are not 

fully understood.  
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1.5 Hypothesis and scope of research 

In this study, the prediction of the binding affinity and dynamic motions between the 

PvdQ enzyme and different bacterial substrates would provide a new insight into the 

determinants of substrate preference and substrate discrimination of PvdQ. Therefore, I 

propose that the mutations of some specific residues, such as Serβ1, Pheβ24, Leua146, 

Asnβ57, will affect the accessibility and volume of the substrate binding pocket. And I 

also believe that the structural communication between the A/B knob and active site of 

 

Figure 1.13 Chemical mechanism of PvdQ. There are two proposed chemical 
mechanisms of PvdQ. In path a., the α-amino group of Serβ1 is able to deprotonate its 
own hydroxyl group from Serβ1 directly to activate this catalytic center. In path b., water 
is involved in the activation of the Serβ1 nucleophile by relaying the proton from the Oγ 
to the alpha-amino group. Two tetrahedral intermediate states and one acyl-enzyme 
intermediate state are formed. The collapse of the second tetrahedral intermediate state 
results in the regeneration of the enzyme PvdQ. Serb1 is the catalytic nucleophile. R is 
the acyl chain, which is released as a fatty acid. 

(Adapted from Clevenger K. D.207) 
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PvdQ complex will influence the orientation of the side chain of residues lining the 

binding pocket and thereby affecting the correct arrangement of the active site toward 

different substrates. This study will be helpful in the design of an efficient PvdQ enzyme 

with broader substrate promiscuity or in the design of inhibitors of PvdQ that can inhibit 

the iron acquisition.  

In summary, the co-infection of the two pathogens P. aeruginosa and B. cenocepacia are 

difficult to eradicate and can be deadly for hospitalized patients. The PvdQ enzyme can 

be used to interfere the QS, thereby inhibiting these bacterial virulence factor production 

and biofilm formation. PvdQ has different preference for QS signaling molecules with 

different acyl chain lengths and substituents. The substrate binding specificity 

determinants of the quorum-quenching enzyme PvdQ with the different bacterial ligands 

are unknown and unintuitive. The starting point of this study is to provide a better 

understanding of the dynamical characteristics of the PvdQ complex; thus pave the way 

to improve the catalytic efficiency of PvdQ or the future design of new inhibitors. In this 

study, multiple molecular docking calculations are performed to study the favorable 

binding poses and binding affinities of PvdQ with different bacterial ligands. Various 

molecular dynamic simulation methods are implemented to further gain insight into the 

determinants of the substrate binding specificity of PvdQ, which can lead to mutants with 

higher efficiency and broader substrate promiscuity.  
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Chapter 2 Theoretical background and methods 

2.1 pKa prediction  

Protein stability and function are affected by the pH of the surrounding environment, 

which can exchange protons with the titratable residues of the protein to influence the 

ionization state of residues and the charge properties of the protein. In most biological 

reactions, the prediction of the correct ionization state of acidic or basic residues in a 

protein is critical to understand the function of the molecule. pKa values of ionizable 

residues can be used to measure proton affinity and strength of an acid for a given pH. In 

other words, pKa is the expression of the acid dissociation constant (Ka) on the 

logarithmic scale. The Ka is used to show the strength of the acid. A strong acid can 

dissociate completely in water, while a weak acid dissociates incompletely. An acid, HA, 

can dissociate into the conjugate base, 𝐴" and proton, 𝐻$. Ka is expressed by the product 

of the concentrations of 𝐴"and 𝐻$ divided by the concentration of HA.150 pKa is an easy 

and convenient way to represent the Ka. The Ka of a weak acid HA is a constant value at 

a specific pH and enviroment. The relationship between the pKa and pH is shown in the 

following equations: 

  HA⇌ 𝐴"+ 𝐻$    (Equation 2.1) 

  Ka=
&' [)*]
[)&]

    (Equation 2.2) 

  𝑝𝐾𝑎 = 	−log56 K8    (Equation 2.3) 
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  𝑝𝐻 = 𝑝𝐾𝑎 + log56
[&']
[)&]

     (Equation 2.4) 

Therefore, pKa equals to pH when half of the acid is dissociated ([A-]/[HA]=1). Table 

2.1 shows the pKa values of some common amino acids found in proteins when these 

residues are alone in water.151 pKa plays an important role in protein catalysis, protein 

stability, and protein-ligand interaction. It can help to predict the accurate electrostatic 

potentials of the protein and understand the pH dependent protein recognition and 

enzyme catalysis. The pKa of amino acid is represented by the pKa of the side chain of 

the amino acid. However, the pKa of an isolated amino acid can be different than the pKa 

of the residue in a protein due to the effects of the surrounding environment. The main 

factors affecting pKa values in proteins are desolvation of the residue by nearby residues 

and the electrostatic interactions (or lack) with surrounding residues. Therefore, the 

prediction of pKa of a residue in a protein at a specified condition is extremely important.  
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In this study, the pKa was predicted via the University of Houston Brownian Dynamics 

(UHBD) program.152 UHBD is a program capable of providing fast evaluations of 

electrostatic potential values for all ionizable residues in a protein as well as the pH 

titration behaviors of the titratable residues. The finite-difference Poisson-Boltzmann 

method (FDPB) method is used in UHBD to numerically solve the linearized Poisson-

Table 2.1 pKa’s of common amino acids in water 

	 Name	 pKa	of	
α-COOH	

pKa	of	
α-NH3+	

pKa	of	
side	chain	

Non-polar	amino	acids	

Gly	 2.35	 9.78	 -	
Ala	 2.35	 9.87	 -	
Val	 2.29	 9.74	 -	
Leu	 2.33	 9.74	 -	
Ile	 2.32	 9.76	 -	
Met	 2.13	 9.28	 -	
Phe	 2.20	 9.31	 -	
Pro	 1.95	 10.64	 -	
Trp	 2.46	 9.41	 -	

Polar	amino	acids	

Asn	 2.14	 8.72	 -	
Gln	 2.17	 9.13	 -	
Ser	 2.19	 9.21	 13	
Thr	 2.09	 9.10	 13	
Cys	 1.92	 10.70	 8.37	
Tyr	 2.20	 9.21	 10.46	

Basic	amino	acids	

Lys	 2.16	 9.06	 10.54	
Arg	 1.82	 8.99	 12.48	
His	 1.80	 9.33	 6.04	

Acidic	amino	acids	
Asp	 1.99	 9.90	 3.90	
Glu	 2.10	 9.47	 4.07	
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Boltzmann equation:153  

  ∇ ∙ 𝜀 𝑟 ∇𝜙 𝑟 = −4𝜋𝜌B 𝑟 + 𝜆(𝑟)𝑘G𝜙 𝑟     (Equation 2.5) 

where 𝜀 is the dielectric constant function, 𝜙 is the electrostatic potential at position 𝑟 to 

the density of the charge distribution 𝜌B  at position r, while 𝜆 indicates the accessible 

regions to ions and 𝑘 is a modified Debye-Hückel parameter.  

In UHBD, the predictions of the ionization states are obtained from the difference in the 

electrostatic work of changing the ionizable site from the neutral to the ionized state in 

the protein and the electrostatic work of making the same alteration in the model 

compound.  

For a given pH, the free energy change for protonation of a single titratable group can be 

obtained from 

  ∆𝐺 = 2.303𝑅𝑇(pH − pKa)    (Equation 2.6) 

It should be noted that pK8,TUVWX should be used if the group is embedded in the model 

amino acid and pK8,YZ[\YZ]Y^ should be used if the group is protonated in an otherwise 

neutral protein. pK8,YZ[\YZ]Y^ is represented as: 

  pK8,YZ[\YZ]Y^ = pK8,TUVWX − 𝛾∆∆𝐺/2.303𝑅𝑇  (Equation 2.7) 

where  

  𝛾 = −1,					for	an	acidic	site
+1,									for	a	basic	site   (Equation 2.8) 
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and 

  ∆∆𝐺 = ∆𝐺lmnopqr
(ps) − ∆𝐺tnups

(ps)   (Equation 2.9) 

∆𝐺lmnopqr
(ps)  and ∆𝐺tnups

(ps)  represent the free energy differences for ionization of a given site 

in the model amino acid and in the protein with all other residues neutral, respectively. In 

this study, predicting pKa with UHBD is important to better understand the stability and 

catalytic mechanisms of a protein.  

2.2 Molecular docking calculations 

2.2.1 Outline and principle 

Molecular docking is a method can be used to predict the best matching between two 

molecules. Molecular docking calculations can be applied to study the protein-substrate 

interactions, binding-site identification, catalytic mechanisms, virtual screening, and drug 

discovery. For example, protein-ligand docking can be used to predict the possible 

binding modes and binding affinity to better understand the biological activity of the 

protein-ligand complex. In general, the molecular docking procedure includes two 

components: a search algorithm and a scoring function. The search algorithm finds 

different structural conformations for the ligand by using methods such as: Monte Carlo 

methods, genetic algorithms, exhaustive search methods, fragment-based methods, tabu 

searches, and systematic searches, etc.154 It is difficult to decide whether the orientations 

of the generated ligand poses fit the active site of the receptor. Therefore, a scoring 

procedure is needed to measure the fitness of a substrate into the binding site. The 
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primarily used scoring methods include empirical, knowledge based, and force-field 

based scoring functions. Many docking programs are currently available, such as 

AutoDock,155 AutoDock Vina (Vina),156 Schrödinger Glide,157 GOLD,158 LeDock,159 

FlexX,160 UCSF Dock,161 LigandFit,162 MOE Dock,163 and Surflex.164 The differences 

between those methods are based on their different search and/or scoring functions. In 

practice, it is generally necessary to combine different docking methods to achieve better 

predictions.165 In this study, three of the most popular methods (i.e., Schrödinger induced 

fit docking (IFD), GOLD, and AutoDock Vina) are employed to obtain a more reliable 

cross-validated docking result. IFD is based on Glide (exhaustive search based) and the 

Refinement module in Prime.166 GOLD is a genetic algorithm based docking program 

with flexible ligand and partial flexibility for the protein. Autodock Vina uses a Carlo 

sampling method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach for local 

optimization.167 

2.2.2 Search algorithms 

The difficulty of the searching procedure in docking is in part due to the fact that many 

degrees of freedom are involved: six degrees of freedom of the translation and rotation of 

one molecule relative to the other; additional conformational degrees of freedom for both 

protein and ligand; the solvent can also affect the protein-ligand geometry. Therefore, the 

search algorithm needs to generate extensive poses of the molecule in the binding site.  

2.2.2.1 Exhaustive search 

The exhaustive search method is used in docking by rotating all potential rotatable bonds 

of the ligand in the binding site at a specified interval. The computational burden of 
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exhaustive search can become too heavy as the search space becomes very large. In 

Glide, heuristics are used to focus on the conformational space that tends to have 

favorable ligand poses and a grid representation of target’s shape and properties is 

generated as well as an initial set of low-energy ligand conformations in ligand torsion-

angle space.168 Moreover, an initial screening of favorable ligand poses is carried out to 

further reduce the conformational space using approximate positioning and scoring 

methods.157,168 Then a high-resolution docking search is implemented, which minimizes 

the molecular mechanics energy function; then uses a Monte Carlo algorithm to further 

examine the nearby minim.168 

2.2.2.2 Genetic algorithm 

The general idea of a genetic algorithm is based on Darwin’s theory of evolution and 

natural selection. The set of randomly chosen ligand placements in the conformational 

space can be seen as the ‘populations’. Degrees of freedom of the ligand are represented 

as ‘genes’, which make up the ‘chromosomes’ that represent the ligand’s poses.169 Genes 

describe the ligand placement at a certain position around the protein with variables such 

as: translation, rotation, and ligand torsions. Genetic operators, such as mutation, 

crossover, and selection are also used in genetic algorithm. Mutation changes the genes 

randomly and crossover exchanges genes between two chromosomes.169 After the 

‘genetic operator’, a new ligand structure is obtained and can be assessed by scoring 

functions (i.e., selection operator). The selected structures are then used for the next 

generation and the procedure run iteratively until some stopping criteria (i.e., number of 

runs, or energy difference between two consecutive runs) are met.  
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2.2.2.3 Monte Carlo method 

Monte Carlo methods produce an initial pose of the ligand in the binding site with 

random conformation, bond rotation, rigid-body translation or rotation.170,171 The 

obtained conformation is scored with some energy-based selection criteria. If it passes the 

criteria, it will be saved and some changes will be made to generate a new conformation, 

which will again be scored according to the same criteria. If the new conformation gets a 

better score it is saved otherwise it is accepted or rejected via a Metropolis test.168 If the 

new conformation is not a new minimum, a Boltzmann-based probability function is 

implemented.168 If it passes the probability test, the conformation is accepted; otherwise, 

it is rejected. The iterations continue until the defined number of conformations is 

generated.169 

2.2.3 Scoring algorithms 

The scoring algorithms in docking can generally be divided in three categories: force-

field based, empirical, and knowledge based scoring functions. Different docking 

programs have different scoring strategies. For example, Glide uses empirical scoring, 

GOLD uses force-field based scoring, and AutoDock Vina uses knowledge based 

scoring. Many docking programs also combine different scoring functions to improve the 

performance. For example, AutoDock Vina combines both knowledge-based and an 

empirical approach. In this section, examples of scoring algorithm are introduced for each 

category.  

2.2.3.1 Empirical scoring algorithm 

The empirical scoring function includes several energy terms that are based on 
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experimentally observed values. The ChemScore function157,172 used in Glide is an 

empirical based scoring algorithm with form of 

∆𝐺vYZV = 𝐶6 + 𝐶XYxU 𝑓 𝑟sm + 𝐶zvUZV 𝑔 ∆𝑟 ℎ ∆𝛼 + 𝐶TW[8X 𝑓 𝑟st + 𝐶\U[v𝐻\U[v  

 (Equation 2.10) 

Each component on the right represents the descriptions of specific interactions such as 

lipophilic interaction, hydrogen bonding interactions, interaction with metal, and others. 

Based on ChemScore, two more complicated GlideScore algorithms (i.e., GlideScore 

Standard-Precision (SP) and GlideScore Extra Precision (XP)) are also used in Glide.157 

GlideScore SP157 is a more forgiving function and extends the ChemScore function as 

∆𝐺vYZV = 𝐶XYxU 𝑓 𝑟sm + 𝐶zvUZV"ZW~["ZW~[ 𝑔 ∆𝑟 ℎ ∆𝛼 + 

𝐶zvUZV"ZW~["^z8\�WV 𝑔 ∆𝑟 ℎ ∆𝛼 + 

𝐶zvUZV"^z8\�WV"^z8\�WV 𝑔 ∆𝑟 ℎ ∆𝛼 + 

𝐶T8�"TW[8X"YUZ 𝑓 𝑟st + 𝐶\U[v𝐻\U[v + 

𝐶xUX8\"xzUv𝑉xUX8\"xzUv + 𝐶^U~X𝐸^U~X + 

 𝐶�V�𝐸�V� + solvation	terms   (Equation 2.11) 
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The first lipophilic term is same as ChemScore. The hydrogen-bonding term is divided 

into three components based on whether the donor and acceptor are neutral or charged. 

The fifth term represents the mental-ligand interaction term. The seventh term rewards 

instances in which a polar but non-hydrogen-bonding atom is found in a hydrophobic 

region. The other major components are the contributions from the Coulomb and van der 

Waals (vdW) interaction energies. The remaining major component is related to the 

solvation model.157  

2.2.3.2 Force-field based scoring algorithm 

The force field describing the energy of the system can be divided into different terms: 

non-bonded interaction terms (i.e., van der Waals and electrostatic interactions) and bond 

stretching/bending/torsional energy.168 Force-field based scoring algorithms use a variety 

of force-field parameters. The Goldscore 173 scoring function used in GOLD has the form 

of 

  Goldscore = 	𝑆��_p�o + 𝑆�u�_p�o + 𝑆��_qro + 𝑆�u�_qro   (Equation 2.12) 

where 𝑆��_p�o represents the protein-ligand hydrogen bond score, 𝑆�u�_p�o is the van der 

Waals score, 𝑆��_qro is the intramolecular hydrogen bonds in the ligand. 𝑆�u�_qro is the 

contribution to the fitness caused by intramolecular strain in the ligand. GOLD can place 

the ligand in the binding site by adding fitting points and it is optimized for the prediction 

of binding positions.174 

2.2.3.3 Knowledge based scoring algorithm 

The scoring function used in AutoDock Vina is introduced in this section. The 

conformation-dependent part of the scoring function has the form of156 
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  𝑐 = 𝑓o�o�(𝑟q�)q��     (Equation 2.13) 

where 𝑡q represents the type of atom 𝑖, 𝑟q� is the interatomic distance between atom 𝑖 and 

atom 𝑗. 𝑓o�o� is the interacting function with form of  

  𝑓o�o�(𝑟q�) ≡ ℎo�o�(𝑑q�)   (Equation 2.14) 

where 𝑑q� = 𝑟q� − 𝑅o� − 𝑅o� is the surface distance.174 𝑅o is the van der Waals radius of 

atom type 𝑡. ℎo�o�  represents a weighted summation of steric interactions, hydrophobic 

interaction, and hydrogen bonding. The steric interactions are same for all atom pairs and 

contain three components:156 

  gauss5 𝑑 = 𝑒"(u/6.�Å)�    (Equation 2.15) 

  gaussG 𝑑 = 𝑒"(
�'�Å
�Å )�    (Equation 2.16) 

  repulsion 𝑑 = 𝑑G,			if	d < 0
0,			if	𝑑 ≥ 0     (Equation 2.17) 

The hydrophobic term and hydrogen bonding term are both linear functions in different 

distance segments. The scoring value in Equation 2.13 can also be divided into the sum 

of intermolecular and intramolecular contributions as: 

  𝑐 = 𝑐qropm + 𝑐qrom¢    (Equation 2.18) 

An optimization algorithm is used in Vina to find the global minimum of 𝑐 and other 
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low-scoring conformations. The predicted binding free energy can be determined from 

the intermolecular part of the lowest-scoring pose as156 

  𝑠5 = 𝑔 𝑐5 − 𝑐qrom¢5 = 𝑔 𝑐qropm5 = ¤�¥¦§¨©
5$�ª¨«¦

    (Equation 2.19) 

where 𝑔  is a conformation-independent function with an increasing smooth nonlinear 

form. 𝑁mno is the number of active rotatable bonds between heavy atoms in the ligand and 

𝑤 is the associated weight.  

In practice, Vina ranks the conformations according to Equation 2.18. The scoring 

function in Vina combines both knowledge-based potentials and empirical scoring 

functions: both the conformational preferences of the receptor-ligand complexes and the 

experimental affinity measurements provide empirical information.  

2.2.4 Docking protocols 

In this section, the protocols of three docking programs used in this study are introduced.  

2.2.4.1 Schrodinger induced fit docking (IFD) 

It is known that the conformation of the binding site of a protein depends heavily upon 

structural changes caused by the binding of a ligand. Schrodinger’s IFD protocol deals 

with this problem by combining Glide and Prime to process possible binding modes and 

the corresponding conformational changes.175 First, IFD implements Glide to dock the 

ligand using a softened potential and removal of side chains. The van der Waals radii and 

an increased Coulomb-vdW cutoff are used in the procedure to temporarily remove 

highly flexible side chains. The potential is softened using information from side-chain 

flexibility. Many poses are returned from several docking runs and are clustered to obtain 
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representative poses. Then a Prime side-chain prediction is performed on residues within 

a specific distance to accommodate the ligand by reorienting nearby side-chains. A 

minimization procedure is carried out to these residues and the ligand. Finally, 

implementing Glide to re-dock each protein-ligand complex into its associated low 

energy structures and the resulting complexes are ranked according to GlideScore. The 

default Glide settings is used to rigorously dock the ligand into the induced-fit binding 

site. The output poses are scored with a new scoring function.175 Therefore, IFD can 

combine the advantages of Glide’s sophisticated scoring function and Prime’s advanced 

conformational refinement.  

2.2.4.2 GOLD docking 

Similar with other docking programs, GOLD docking procedure also contains three 

components: a search algorithm, a scoring function, and a mechanism for placing the 

ligand in the binding site.173 As introduced in Section 2.2.2.2, GOLD uses a genetic 

algorithm to explore possible binding modes. In the genetic algorithm, the following 

parameters are optimized: (a). dihedrals of ligand rotatable bonds; (b). dihedrals of 

protein OH groups and NH¯$ groups; (c). ligand ring geometries by flipping ring corners; 

and (d). the mappings of the fitting points.173 GOLD uses a unique fitting points-based 

method to place the ligand in the binding site. The fitting points are added to hydrogen 

bonding groups on protein and ligand, and acceptor points are mapped on the ligand on 

donor points in the protein and vice versa. Moreover, hydrophobic fitting points in the 

protein cavity are also created by GOLD where ligand CH groups are mapped.173 The 

scoring function used in GOLD to rank different binding modes is a molecular 

mechanics-like function as introduced in Equation 2.12.  
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2.2.4.3 AutoDock Vina docking 

Vina is designed to be compatible with AutoDock software to take advantage of the 

existing AutoDock Tools. Vina uses a model that predicts noncovalent bonds, 

hydrophilic, and hydrophobic interactions between the protein and ligand. The scoring 

function introduced in section 2.2.3.3 is used to calculate the free energy of the system. 

Vina places the ligand in a set conformation within the research region and estimates the 

binding affinity using the distances between the atoms of interest in the protein-ligand 

complex.176 The search area needs to be specified by size and coordinates in the 3D 

space. If the search area is not big enough, the ligand might not be able to rotate properly. 

If the search area is too big the processing time becomes very long. AutoDock Tools can 

be used to define the search area. Then the ligand is positioned in a new different 

conformation in the search area, and the binding affinity is recalculated.176 This 

procedure is repeated for all the conformations, which are scored based on the binding 

affinity. It should be noted that the outputs of Vina can be different for different runs 

since a random seed is used to decide which configurations are used, which means 

sometimes it is necessary to repeat Vina docking procedures to obtain converged results.  

2.3 Molecular dynamics (MD) simulations 

2.3.1 Outline and principle 

The basic idea of MD simulation is to mimic the motions of atoms using computational 

tools. In general, two basic physic theories, such as Quantum Mechanics (QM) and 

Classical Mechanics (CM), can be used to compute the molecular dynamics. QM can 

accurately model the movement of electrons in a molecule by solving the wave functions. 
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However, QM is computationally expensive and is generally only suitable for small 

systems (< 100 atoms). Compared with QM, MD simulation with CM is less accurate. 

But the simulation is much faster and adaptive to large systems (>104 atoms) with long 

time duration (> 10 ns). Therefore, in this study, MD simulation with CM is used. MD 

simulation is a useful method to better understand the molecular basis of protein 

dynamics, flexibility, function, and stability.  

For a set of atoms, the force experienced by any atom can be calculated from the energy 

function if the positions of the other atoms are also known. How the forces affect the 

atoms’ motions can be determined by Newton’s laws. In practice, continuous time can be 

divided into small discrete steps. At each step, the forces experienced by each atom can 

be calculated from the molecular mechanics force field. The position and velocity of each 

atom can be updated by Newton’s laws of motion. Then the new positions and velocities 

can be used for the next step to repeat the procedure. Finally, the molecular dynamics 

motions can be simulated.  

2.3.2 Potential energy functions 

In order to estimate the forces between particles, a potential energy function is needed, 

which exists between bonded neighbors and non-bonded atoms. For bonded atoms, three 

types of interactions exist, i.e., stretching along the bonds, bending between bonds, and 

rotating around bonds. The bonded potentials include bond-length, bond-angle, proper 

dihedral, and improper dihedral potentials. In additional to the van der Waals and 

electrostatic potentials, the schematic representations for all the six sources of energy are 

shown in Figure 2.1.177 
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The bond-length potential controls the length of covalent bonds. The most common to be 

used is the harmonic bond potential, which is given by  

  𝑉�nru = 𝐾� 𝑟 − 𝑟6 G    (Equation 2.20) 

where 𝐾� is the force constant, 𝑟 is the distance between covalently bonded atoms, 𝑟6 is 

the equilibrium bond length.   

As shown in Figure 2.1 (b), the angle potential is defined by two bonds that share a 

common atom. Two most commonly used angle potentials are the harmonic and the 

cosine harmonic potential functions, which can be expressed as 

  𝑉¢r°sp = 𝐾±) 𝜃 − 𝜃6 G   (Equation 2.21) 

and  

 

Figure 2.1 Different potentials. (a) bond length potential. (b) bond angle potential. (c) 
proper dihedral potential. (d) improper dihedral potential. (e) Van der Waals. (f) 
Electrostatic interactions.                                                       (Adapted from Maksim K.177) 
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  𝑉¢r°sp = 𝐾±³) cos𝜃 − cos𝜃6 G   (Equation 2.22) 

where 𝜃 is the bond angle, 𝜃6 is the reference angle, 𝐾±)
 and 𝐾±³) are the force constants 

for the harmonic and cosine harmonic functional forms, respectively. Both the force 

constants have a different order of magnitude and different units. In practice, Chemistry 

at HARvard Molecular Mechanics (CHARMM) uses the harmonic potential function and 

GROMOS96 uses the cosine harmonic potential functions.  

Torsion potentials contains two cases, i.e., proper dihedral potential and improper 

dihedral potential as shown in Figure 2.1 (c) and (d). Both potentials depend on a 

structure of four atoms, bonded in different ways. The proper dihedral angle potential 

contains four atoms bonded consecutively while the improper dihedral has structure of 

three atoms centered around a fourth atom. The major difference between these two 

potentials is how to define the torsional angles and the forms of the potential functions. 

As shown in Figure 2.1 (c), the torsion angle for proper dihedral is defined by the angle 

of the two planes of the dihedral structure. For improper dihedral potential the torsional 

angle is defined by the angle between planes as shown in Figure 2.1 (d). The cosine form 

of the dihedral potential can be expressed as  

  𝑉lmnlpm	uq�pum¢s = 𝐾´³ 1 + 𝑐𝑜𝑠 𝑛𝜙 − 𝜙6     (Equation 2.23) 

where 𝐾´³  is the force constant, 𝑛 is the multiplicity, which is a positive nonzero integer 

number describes the number of minima as the bond is rotated through 360o. 𝜙 is the 

torsional angle and 𝜙6 is the angle where the potential passes the minimum value. The 

functional form of the improper dihedral can be expressed as  
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  𝑉qtlmnlpm	uq�pum¢s = 𝐾· 𝜑 − 𝜑6 G   (Equation 2.24) 

where 𝐾·  is the force constant, 𝜑 is the torsional angle and 𝜑6 is the equilibrium value. 

The dihedral potential is mainly used to describe the rotation around a bond and the 

improper dihedral potential is mostly used to maintain planarity in a molecular structure.  

For non-bonded atoms, two potential functions need to be included, i.e., van der Waals 

potential and electrostatic potential. The most commonly used approximation for the van 

der Waals potential is the Lennard-Jones (LJ) potential, which can be expressed by 

  𝑉¹º(𝑟) = 	4𝜀 (»
m
)5G − (»

m
)¼     (Equation 2.25) 

where 𝜀 is the depth of the potential well, 𝜎 is the finite distance at which the potential is 

zero, 𝑟 is the distance between the particles. The LJ potential versus the distance between 

two particles is shown in Figure 2.2. Particles with no net electrostatic charge will still 

tend to attract each other at short distance given their distance is not too close. Once the 

distance is too close, the atoms have overlapping electron clouds and start repel each 

other with strong force.  

 

 

Figure 2.2 Lennard-Jones potential energy versus distance between atoms. 
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The electrostatic potential can be expressed with Coulomb’s law as  

  𝑉¾sp¤ =
¿�¿�

ÀÁÂÃÂm
    (Equation 2.26) 

where 𝜀6 is the permittivity of free space, 𝜀 is the dielectric constant, 𝑞q  and 𝑞�  are the 

signed magnitudes of the charges, and r is the distance between the charges. If the 

charges have opposite signs, the force of the interaction is attractive and vice versa. 

In summary, the total potential energy is the summation of all the above six categories of 

potentials and can be given by178 

𝑉 = 𝐾� 𝑟 − 𝑟6 G
�nruÅ + 𝐾± 𝜃 − 𝜃6 G

¢r°spÅ + 𝐾´ 1 + 𝑐𝑜𝑠 𝑛𝜙 − 𝜙6uq�pum¢sÅ +

𝐾· 𝜑 − 𝜑6 G
qtlmnlpmÅ + 𝜀 mÆ

m

5G
− 2 mÆ

m

¼
qÇ� + ¿�¿�

ÀÁÂÃÂmqÇ�    (Equation 2.27) 

2.3.3 Numerical integration 

The previous section introduced the forms of the potential energies, which is a function 

of 3N atomic positions and determines the forces as  

  𝑓q = − ÈÉ
Èm�

   (Equation 2.28) 

where 𝑓q represents the forces acting on the i-th atom and is derived from potential energy 

𝐸 𝑟ª  and 𝑟ª = 𝑟5, 𝑟G, … , 𝑟ª  represents the 3N atomic coordinates. N is the number of 

atoms. By knowing the force, the molecular dynamics simulations can be achieved based 

on Newton’s law of motion: 𝐹 = 𝑚𝑎, where 𝐹 is the force on an atom, 𝑚 is the mass of 

the atom, and 𝑎  is the acceleration. It is known that acceleration is the derivative of 
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velocity 𝑣, which is the derivative of position 𝑟 such as  

  
𝑣 = um

uo
										

𝑎 = u�
uo
= Î

t

    (Equation 2.29) 

Combining Equation 2.28 and 2.29 gives the relation of potential energy and motions. It 

should be noted that the potential energy is a function of the positions of all the atoms in 

the system and there is no analytical solution due to the high complexity. In practice, 

numerical methods have been used to perform the integrations. For a small time step 𝛿𝑡, 

Taylor expansions of the position function r(t) can be written as 

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 +
𝑑𝑟 𝑡
𝑑𝑡

𝛿𝑡 +
𝑑G𝑟 𝑡
𝑑𝑡G

𝛿𝑡G

2
+ ⋯ = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 +

𝑓 𝑡
𝑚

𝛿𝑡G

2
+ ⋯ 

(Equation 2.30) 

and  

𝑟 𝑡 − 𝛿𝑡 = 𝑟 𝑡 −
𝑑𝑟 𝑡
𝑑𝑡

𝛿𝑡 +
𝑑G𝑟 𝑡
𝑑𝑡G

𝛿𝑡G

2
+ ⋯ = 𝑟 𝑡 − 𝑣 𝑡 𝛿𝑡 +

𝑓 𝑡
𝑚

𝛿𝑡G

2
+ ⋯ 

(Equation 2.31) 

Combining Equation 2.30 and 2.31 we have 

  𝑟 𝑡 + 𝛿𝑡 ≈ 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + B o
t
𝛿𝑡G    (Equation 2.32) 

Each position is obtained from the current and previous positions. Equation 2.32 is 
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known as the Verlet algorithm179. The Verlet algorithm is straightforward and needs 

modest storage. The disadvantage is lacking of explicit velocity term. A reformed Verlet 

algorithm that uses the velocity directly is known as velocity Verlet algorithm with 

expressions as 

  𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 𝛿𝑡 + B o
Gt

𝛿𝑡G    (Equation 2.33) 

  𝑣 𝑡 + 𝛿𝑡 = 𝑣 𝑡 + B o$Òo $B(o)
Gt

𝛿𝑡    (Equation 2.34) 

The basic steps of the Verlet algorithm as the following:  

1). The forces on every atom can be calculated using the force field given the position 

𝑟 𝑡  and velocity 𝑣 𝑡  at time 𝑡. 

2). Using Equation (18) to get an update of the position 𝑟 𝑡 + 𝛿𝑡 .  

3). Calculate the new force 𝑓 𝑡 + 𝛿𝑡  using the updated position 𝑟 𝑡 + 𝛿𝑡 . 

4). Using Equation (19) to get an update of the velocity 𝑣 𝑡 + 𝛿𝑡 .  

5). Go back to step 1.  

Another modified Verlet algorithm is known as the leap-frog algorithm180 which solves 

for the velocities at half time step intervals:  

  𝑣 𝑡 + 𝛿𝑡/2 = 𝑣 𝑡 − 𝛿𝑡/2 + B(o)
t
𝛿𝑡    (Equation 2.35) 

  𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝑣 𝑡 + 𝛿𝑡/2 𝛿𝑡    (Equation 2.36) 

The advantage of the leap-frog algorithm is that the velocity is calculated explicitly. One 
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disadvantage of the leap-frog algorithm is that the velocity is not calculate at the same 

time as position, making it difficult to calculate the kinetic energy contribution to the 

total energy at any one point in time.  

One important configuration of the integration algorithm is the proper selection of the 

time step 𝛿𝑡. Too large a time step causes the simulation become unstable since a large 

time step may make the positions of two atoms to be too close to each other and lead to 

strong forces. Too small a time step causes the trajectory covers only a limited part of the 

phase space. In general, the time step should be around one order of magnitude smaller 

than the fastest time scale in the system. However, there is no hard rule. In practice, 

Table 2.2181 can be used for reference to select the time steps in the MD simulation.   

 

2.3.4 Simulation setup 

A flowchart of the basic MD simulation is shown in Figure 2.3. The basic MD 

Table 2.2 Timescales of molecular motions in MD simulations 

Motions	(distances,	time)	 Timescales	(s)	
Local	motions	(0.01	–	5	Å,	10-15	–	10-1	s)	

Atomic	fluctuations	
Side	chain	motions	
Loop	motions	

10-15	-	10-12	

Rigid	body	motions	(0.01	–	10	Å,	10-9	–	1	s)	
Helix	motions	
Subunit	motions	
Domain	motions	

10-12	-	10-9	

Medium-scale	motions	(>	5	Å,	microseconds)	
Helix	coil	transitions	

Dissociation/association	
10-9	-	10-6	

Large	scale	(>	5	Å,	10-7	–	104	s)	
Protein	folding	and	unfolding	

Protein	interactions	
10-6	-	10-1	
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simulation steps include initial molecule coordinates and velocities, structure 

minimization, solvation modeling, raising system temperature, equilibration to ensure 

system is stable, dynamics simulations under desired conditions (NVE, NPT, etc.), and 

final analysis to evaluate the results.  

 

2.3.4.1 Initialization 

It can be seen from the previous section that initial positions and velocities of all the 

atoms need to be specified at the start of the simulations. The initial position can be 

obtained from experimental or theoretical data such as a homology model, X-ray 

 

Figure 2.3 The flowchart of MD simulation. 
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crystallography, or NMR structure. 

The initial velocities must be assigned to meet two conditions: 1). achieve the desired 

temperature and 2). the total linear momentum of the system is zero. The velocities of the 

atoms are related to the kinetic energy as  

  𝐾 = t���
�

G
ª
qÓ5    (Equation 2.37) 

The kinetic energy is related to the temperature as 

  𝐾 = ¯
G
𝑁𝑘Ô𝑇    (Equation 2.38) 

where 𝑘Ô is the Boltzmann’s constant and 𝑇 is the thermodynamic temperature. Based on 

the relationship of velocity and temperature, the initial velocities can be assigned based 

on a given temperature using Maxwell-Boltzmann distribution 

  𝜌 𝑣q = t�
GÁÕÖ×

G
exp − 5

G
t���

�

ÕÖ×
    (Equation 2.39) 

The initial velocities can be randomly selected for each of the 3N components. But it 

should be noted that randomly selecting the initial velocities in this way results in a 

nonzero total linear momentum of the system. Therefore, the velocities should be shifted 

to remove the nonezero momentum.  

2.3.4.2 Energy minimization 

If MD was started immediately, the added hydrogens and broken hydrogen bond network 

in water would cause very large forces and structure distortion. Therefore, it is necessary 

to first perform a short energy minimization to remove the strong forces before starting 
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the simulation. Energy minimization is needed to allow water molecules to adjust to the 

structure of interest and correct distorted bond angles. The energy of the system is 

calculated with the force field. The minimization process can alter the conformation of 

the system to find lower energy conformations. It is impossible to find the true global 

minimum given the 3N degrees of freedom and huge number of local minima. In 

practice, there are many minimization algorithms that can be used such as steepest 

descent, conjugate gradient, and Newton-Raphson. As an iterative approach, the steepest 

descent algorithm adjusts the step size using the gradient of the potential energy surface 

to guide toward the local minima. The steepest descent algorithm converges slowly and 

can be used for highly restrained systems. The conjugate gradient algorithm uses 

intelligent choices of search direction and is efficient but costly for large systems. The 

Newton-Raphson algorithm assumes the potential energy is quadratic in the region of the 

minima and calculates both slope of energy and rate of change to find the minima. It is 

also costly for a large molecular system.  

2.3.4.3 Solvent and periodic boundary conditions 

In real cases, a molecule is generally immersed in solvent (usually water) rather than 

being isolated. Solvation has an essential influence on the molecular conformation, 

electrostatic interactions, and binding energies, etc. Therefore, it is critical to model the 

solvation for MD simulation. There are two ways to model the solvation: 1). explicit 

treatment when solvent molecules are added to the system; 2). implicit treatment when 

solvent is modeled as a continuum dielectric. Moreover, in order to keep a realistic 

solvent simulation, periodic boundary conditions are needed to establish the 

computational boundaries. As shown in Figure 2.4, the cubic system is replicated 
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infinitely in all directions so that the particles can experience forces as if they were in a 

bulk solution.181 An atom moving across one boundary comes back into the system on the 

other side with identical velocity.  

 

2.3.4.4 Heating and equilibration 

The initial velocities are generally assigned for a low temperature (for example, 0 K) and 

the system is heated to gradually increase the temperature. Once the desired temperature 

is reached, the equilibration procedure is performed and the properties of the system are 

monitored. The purpose of the equilibration is to run the simulation until the desired 

pressure, volume, temperature, and energy properties become stable. There are numerical 

temperature control (thermostats) methods. The simplest way to modify the temperature 

is to do velocity scaling. Combining Equation 2.37 and 2.38, the following velocity 

scaling factor can be obtained:  

 

Figure 2.4 Periodic boundary conditions. 
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  𝜆 = 𝑇Ù 𝑇(𝑡)    (Equation 2.40) 

where 𝑇Ù is the desired temperature and 𝑇(𝑡) is the kinetic temperature at time 𝑡. The 

new velocities becomes 𝑣qrp� = 𝜆𝑣q¤Úmmpro.  

2.3.4.5 Ensembles 

An ensemble is a collection of microscopic states that are described by state variables, 

such as energy E, volume V, temperature T, pressure P, chemical potential µ, and number 

of particles N. In general, certain state variables need to be remain constant during the 

simulation to mimic experimental conditions. Depending on which state variables are 

kept fixed, there are different statistic ensembles that can be obtained as shown in Table 

2.3. NVT and NPT are the commonly used ensembles in MD simulations. The NVT 

ensemble can be obtained by temperature-bath coupling during the data collection phase 

and the volume is maintained constant during the simulation182. The NPT ensemble 

requires control over both the temperature and pressure. The pressure is controlled by 

adjusting the volume. The NPT ensemble can also be used during the equilibration phase 

to acquire desired temperature and pressure before changing to other ensembles.  

 

2.3.4.6 Production and analysis 

After the equilibrium state is reached, the simulation can be performed for the desired 

Table 2.3 Example of ensembles 

Ensembles	 Fixed	Variables	
Microcanonical	(NVE)	 N,	V,	E	
Canonical	(NVT)	 N,	V,	T	

Constant	P-T	(NPT)	 N,	P,	T	
Grand	Canonical	 µ,	P,	T	
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time length, which is known as the “production” phase. During the production phase, the 

thermodynamic parameters are calculated and the simulation is conformed to the desired 

ensemble. Finally, the obtained results (including coordinates, velocities, and other 

properties) can be used for analysis.  

2.4 Analysis 

After the MD simulations are performed, the time dependent trajectories, velocities, 

forces and other properties are obtained and saved. The outputs of MD simulations can 

then be used for analysis, where information related to conformation, motions, rotations, 

interactions, and energies of the system can be evaluated. The following methods can be 

used to analyze the MD simulation results in a time dependent way.  

2.4.1 Root mean square deviation and fluctuation 

The root mean square deviation (RMSD) has been widely used to measure the difference 

between structures with respect to a reference structure and is defined by 

  𝑅𝑀𝑆𝐷(𝑡) = 	 5
ª

𝑟q(𝑡) − 𝑟q
mpB Gª

qÓ5     (Equation 2.41) 

where 𝑁 is the number of atoms and 𝑟q(𝑡) indicates the position of atom 𝑖 at time 𝑡. It 

should be noted that least square fitting of the two structures is needed to find the 

corresponding atom pairs between the two structures before the RMSD calculation. The 

fitting procedure does not have to use the same atoms. The RMSD can be calculated for 

both the backbone and for the whole protein. In general, the starting structure can be used 

as reference structure. If protein folding is studied, the folded structure from experiment 
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can also be used as reference.  

The root mean square fluctuation (RMSF) is a measure of the deviation between the 

position of atom 𝑖 and some reference position. It is computed by 

  𝑅𝑀𝑆𝐹q = 	
5
×

𝑟q 𝑡� − 𝑟q
mpB G×

o�Ó5     (Equation 2.42) 

where 𝑇 is the time span of the averaging and 𝑟q
mpB is the reference position of atom 𝑖, 

which is typically defined by the time-averaged position of the same particle (i.e., 𝑟q
mpB =

𝑟q ). Comparing Equation 2.41 and 2.42, we can see that RMSF is averaged over time, 

generating value for every atom. RMSD, on the other hand, is averaged over the atoms, 

generating time specific values.  

2.4.2 Radius of gyration 

The radius of gyration (Rg) is a measure of the compactness of a structure and it is 

defined by 

  𝑅° =
𝒓�"𝒓Þ �t��

t��
    (Equation 2.43) 

where 𝑚q  is the mass of particle 𝑖, 𝒓q  and 𝒓¤  are the position of the particle 𝑖 and the 

position of the center of mass of the structure. 𝒓q − 𝒓¤ represents the distance between the 

particle and the center of mass. Rg can be used to evaluate the shape change of the 

structure during the simulations. For example, during protein folding, Rg gradually 

decreases until becoming steady when the protein is folded.  
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2.4.3 Hydrogen bonds analysis 

In biomolecular systems, hydrogen bonds are an important non-covalent structural 

interaction and are determined by both distance (Donor-Acceptor) and angle (Hydrogen-

Donor-Acceptor). The general rule of thumb for determining whether a hydrogen bond 

exists is based on geometrical criteria: 1). the distance between acceptor and hydrogen is 

no larger than a distance (e.g., 0.35 nm). 2). the angle between Hydrogen-Donor-

Acceptor is no larger than an angle (e.g., 20o). In order to calculate the lifetime of the 

hydrogen bonds, the time autocorrelation function needs to be calculated first as 

  𝐶 𝜏 = ℎq(𝑡)ℎq(𝑡 + 𝜏)     (Equation 2.44) 

where ℎq 𝑡 = {0,1}  is the existence function of the hydrogen bond 𝑖  at time 𝑡 . The 

relevant hydrogen bond lifetime can then be found via integration of the autocorrelation 

function as 

  𝜏)Ô = 𝐶 𝜏 𝑑𝜏â
6     (Equation 2.45) 

2.4.4 Distance analysis 

The distances in the structure can also be analyzed to obtain information about contacts in 

the structure. Both the distances between two particles and the minimum distance 

between two groups of atoms can be calculated and plotted. The distance between the 

geometrical centers of two groups can be calculated, so is the minimum distance between 

two groups of atoms during time. A symmetric matrix of contacts can also be plotted if 

the minimum distances between all residuals (the smallest distance between any pair of 
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atoms of the two residues) of the protein are calculated. Analyzing the change of the 

matrices in time can provide information about the changes of the structure in time.  

2.4.5 Principal component analysis (PCA) 

Principal component analysis (PCA) is a statistical technique that can transform a set of 

potentially coordinated observations into a set of linearly uncorrelated variables using 

orthogonal vectors known as principal components (PCs).183-186 PCA can be used to 

reduce the dimensionality of the data to a limited number of PCs. The PC describes the 

directions in which large variances of coordinates occur. The first principal component 

has the largest variance, which represents the dominant motion. Therefore, the first few 

PCs represent correlated modes of motion that occurred during the simulations.  

The first step of PCA is an alignment process that removes translation and rotation (i.e., 

removing six degrees of freedom) of the entire molecule for every frame in the trajectory 

by least square fit of each frame to a reference. Once the structure has been aligned, the 

covariance matrix can be calculated. For a given trajectory of 𝑁  atoms, the 3𝑁×𝑚 

coordinate matrix can be expressed as 𝑅q 𝑡 = 𝑥q 𝑡 , 𝑦q 𝑡 , 𝑧q 𝑡 	 , where 𝑖 = 1,2, …𝑁 

and 𝑡 = 1,2, …𝑚 with m equal to the duration of the trajectory. For simplicity, let 𝑟(𝑡) 

represents any one of 𝑥q 𝑡 , 𝑦q 𝑡 , or	𝑧q 𝑡 . The mass-weighted covariance matrix 𝑪 can 

be calculated as  

  𝐶q� = 𝑀q

©
�𝑀�

©
� 𝑟q 𝑡 − 𝑟q 𝑡 𝑟� 𝑡 − 𝑟� 𝑡     (Equation 2.46) 

where 𝐶q�  represent the covariance between 𝑖th and 𝑗th atoms. 𝑀q  represents the mass. 

𝑟q 𝑡  is the time average position along the entire trajectory. It should be noted that 
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𝑟q 𝑡  can represent any one of 𝑥q 𝑡 , 𝑦q 𝑡 , or	𝑧q 𝑡 , which means the covariance matrix is 

a 3𝑁×3𝑁 matrix with 3𝑁 − 6 degrees of freedom.  

Then the covariance matrix is diagonalized as 

  𝑪 = 𝑽𝚲𝑽"5    (Equation 2.47) 

where 𝑉 is a square matrix whose columns are eigenvectors and 𝚲 is the diagonal matrix 

whose diagonal elements are the corresponding eigenvalues. After diagonalization, we 

can obtain 3𝑁 eigenvectors and eigenvalues, which describe the modes of the collective 

motion and their respective amplitudes. A eigenvector 𝒗𝒊 and corresponding eigenvalue 

𝜆q satisfies the linear equation 

  𝑪𝒗q = 𝜆q𝒗q    (Equation 2.48) 

The eigenvectors can be sorted in descending eigenvalue index (i.e., 𝜆5 ≥ 𝜆G ≥ ⋯ ≥

𝜆¯ª) and the first PC can be calculated by projecting the data onto the eigenvector (𝒗𝟏) 

corresponding to the largest eigenvalue as  

  𝑷5(𝑡) = 𝒗5 ∙ 𝒓(𝑡)    (Equation 2.49) 

where 𝒓(𝑡) = 𝑟5(𝑡), 𝑟G(𝑡), … , 𝑟 ª(𝑡) ×. Similarly, the second PC, 𝑷G(𝑡), corresponding 

to the second largest eigenvalue can be obtained and so forth. The trajectory can be 

projected onto each eigenvector for all time steps and followed by investigating the time 

evolution of the projected trajectory. The resulting distribution of each projection has 

variance of 𝜆q, which is the physical meaning of the eigenvalues.  
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2.4.6 Free energy landscape 

In analysis of MD simulations, the free energy landscape (FEL) can be used to map the 

possible conformations of a molecule during the simulation along with the corresponding 

Gibbs free energy, which can be achieved by an appropriate conformational sampling 

procedure. FEL shows the hills and valleys of free energy that a molecule adopted during 

the simulation, which can be useful in the selection of representatives to use in further 

analysis. In general, FEL can be represented with two variables that reflect specific 

properties of the system and free energy as the third variable, which can be estimated 

from the probability distributions of the system. For example, the first two variables can 

be the first and second principal components of the protein after PCA. Then the FEL 

shows valleys of low energy that represent metastable conformations of the system. The 

energy minimum structures during the simulations can be identified. The free energy 

landscape is calculated as: 

  𝐺 ï³5,ï³G = 	−𝑘Ô𝑇𝑙𝑛𝑃(ï³5,ï³G)   (Equation 2.50) 

where 𝑘Ô  is the Boltzmann constant, T is the temperature, and 𝑃(ï³5,ï³G) represents the 

normalized joint probability distribution.  

2.4.7 Residue interaction network and WebPSN 

Residue interaction network (RIN) is a technique that can be used to analyze the protein 

structures.187-189 RIN can represent protein structures with network nodes and arcs, where 

nodes represent residues and arcs that links the nodes indicate interactions between 

residues. Using the network theory to represent protein structures can significantly 
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simplify the structure analysis and enable the users to focus on the specific interested 

residues. In this study, RING-2 is used for RIN analysis due to its various capabilities, 

such as to calculate hydrogen bond, van der Waals, secondary structure, distance-based 

generic contacts, intra- and inter-chain interactions, and contacts with ligands.189 First, 

RING-2 uses the measured atom distances to create a list of residue-residue (or residue-

ligand or ligand-ligand) pairs that are capable of interaction, followed by methods to 

identify interaction types and create attributes for the nodes and edges. RING-2 uses 

geometrical criteria to estimate atomic interactions instead of using a complicated force 

field analysis, which significantly reduces the processing time. It has been found that 

RING-2 has satisfying performance in analyzing mutation effects, protein folding, protein 

domain-domain communication, and catalytic activity.189  

In addition to RIN, a free web server WebPSN is also been used in this study to analyze 

the structurally important residues, protein stability, and communication.190 WebPSN is a 

mixture of protein structure network (PSN) and elastic network model-normal model 

analysis (ENM-NMA). PSN analysis has been used to analyze the protein structures, 

functions, dynamics, communications, and folding processes.191,192 PSN also creates a 

network using amino acid residues as nodes and non-covalent interactions between 

residues as the corresponding edges. The strength of the interaction between two residues 

𝑖 and 𝑗 can also be calculated in percentage as 

  𝐼q� =
r��
ª�ª�

×100   (Equation 2.51) 

where 𝑛q� represents the number of atom-atom pairs between the side chains of residues 
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within a distance cutoff. 𝑁q  and 𝑁�  are the normalization factors. NMA is a method to 

study the structural and dynamic properties of protein systems and predicts functional 

motions. ENM-NMA is a coarse grained NMA method that can describe the vibrational 

dynamics of complex systems.193 

In WebPSN, the PSN analysis is first implemented on a single high-resolution structure 

and a protein structure graph is generated. The shortest communication pathways on 

ensembles of structures are generated by defining all possible communication paths 

between selected node pairs, followed by a filtering procedure based on cross-correlation 

of atomic motions. 

2.4.8 Binding free energy calculation 

The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method is a 

reliable and efficient binding free energy calculation method that has been widely used in 

MD simulations to model protein-ligand binding interactions. MM-PBSA combines 

continuum electrostatic solvation with a ligand-receptor van der Waals energy, 

intramolecular, stereochemical energy terms, a nonpolar solvation term proportional to 

buried surface area, and vibrational entropies.194-200 In MM-PBSA, the binding free 

energy of the protein-ligand complex in an aqueous solvent can be decomposed into the 

relative free energy of the solvated receptor-ligand complex and the separated, solvated 

ligand and receptor as 

  ∆𝐺vYZV,]UX� = ∆𝐺^UTxXW�,]UX� − ∆𝐺\W^Wx[U\,]UX� − ∆𝐺XY�8ZV,]UX�    (Equation 2.52) 

Each of the free energy change term in Equation 2.52 can be decomposed as: 
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  ∆𝐺]UX� = ∆𝐸óó + ∆𝐺vYZV,]UX� − 𝑇∆𝑆    (Equation 2.53) 

where ∆𝐸óó, ∆𝐺vYZV,]UX�, and −𝑇∆𝑆 represent the vacuum-phase molecular mechanical 

energy change, solvation free energy change, and the entropy change upon binding, 

respectively. The molecular mechanical energy and solvation free energy change can be 

further decomposed as 

  ∆𝐸óó = ∆𝐸^U�8XWZ[ + ∆𝐸WXW^[\U][8[Y^ + ∆𝐸�V�    (Equation 2.54) 

  ∆𝐺vYZV,]UX� = ∆𝐺xUX8\ + ∆𝐺ZUZ"xUX8\    (Equation 2.55) 

where ∆𝐸^U�8XWZ[ , ∆𝐸WXW^[\U][8[Y^ , and ∆𝐸�V�  represent the covalent energy change, the 

electrostatic energy change, and the van der Waals energy change, respectively. ∆𝐺xUX8\ 

and ∆𝐺ZUZ"xUX8\ represent polar and non-polar contributions, respectively. The covalent 

energy change contains of changes in the bond terms (∆𝐸vUZV), the angle terms (∆𝐸8Z�XW), 

and the torsion terms (∆𝐸[U\]YUZ) as 

  ∆𝐸^U�8XWZ[ = ∆𝐸vUZV + ∆𝐸8Z�XW + ∆𝐸[U\]YUZ.    (Equation 2.56) 

All of the above energy changes can be calculated by averaging over a large set of 

sampled conformations.200 The entropy term is the most difficult to compute and has the 

least accuracy; it can be approximated with a normal mode analysis or a quasi-harmonic 

analysis.201 The polar solvation term can be calculated with a numerical solution of the 

Poisson-Boltzmann equation. The non-polar solvation free energy can simply be 

estimated to be proportional to the solvent accessible surface area (SASA) of the solute: 
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  ∆𝐺ZUZ"xUX8\ = 𝛾 ∗ SASA + 𝑏    (Equation 2.57) 

where 𝛾 is the surface tension and 𝑏 is the correction term. Both terms are usually set to 

be constant for all solute molecules.200 For example, 𝛾=0.00524 kcal/mol/Å2 and 𝑏 =

0.92	kcal/mol.201  
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Chapter 3 Investigating the substrate binding 

mode and binding affinity of quorum-quenching 

acylase PvdQ with multiple docking strategies 

3.1 Introduction 

P. aeruginosa is one of the most common Gram-negative opportunistic pathogens 

associated with hospital stays. People with cystic fibrosis, severe burns, AIDS, or other 

immuno-compromised patients are susceptible populations for this bacterial 

infection.202,203 P. aeruginosa is difficult to eradicate due to its capability to form a 

biofilm, which can significantly increase the resistance to the common antibiotics.204 

Their co-colonization with other bacteria can exacerbate the disease and lead to a poorer 

prognosis. B. cenocepacia is found co-colonized with P. aeruginosa in patients with lung 

infection. Bcc is a group of Gram-negative opportunistic human pathogens, which can 

cause pneumonia in people with compromised immune systems along with underlying 

lung disease. More and more studies have been focusing on these bacteria due to the 

seriousness of infection as well as the difficulty to eradicate them with common antibiotic 

if they are co-infected with other bacteria.204,205 Therefore, it is critical to find new ways 

to inhibit the bacterial virulence and biofilm formation without adding more selective 

pressure.  

It is well-known that bacteria are communicative microorganisms and thereby are able to 

organize and coordinate their behavior through QS. Both P. aeruginosa and B. 
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cenocepacia employ QS to control their actions. P. aeruginosa has a well-known QS 

system. 3-oxo-C12-HSL and C4-HSL are the two major endogenously generated 

communication molecules, mediating the QS.206 C8-HSL is the signal molecule for B. 

cenocepacia. The degradation of HSL signaling molecules is an attractive way to inhibit 

QS and target bacterial infections.205 One of the structurally well-characterized quorum 

quenching enzymes is AHL acylase PvdQ, which can break down the amide bond 

between the AHL head group and the acyl tail group. According to previous studies, 

PvdQ has different preference for different substrates.207,208 It prefers to target the AHLs 

with long acyl chains, such as 12 or 14 carbons in tail group, rather than AHLs with short 

tail groups or 3-oxo substituents, such as C8-HSL, C4-HSL, and 3-oxo-C12-HSL. The 

determinants of substrate recognition and discrimination of PvdQ with different bacterial 

ligands are still unknown. Therefore, it is necessary to use other methods to study the 

determinants of the substrate binding specificity of PvdQ using native AHL ligands. The 

current work addresses this problem by using multiple docking approaches to investigate 

the binding mode and binding affinity of PvdQ protein.  

Molecular docking calculation is an essential way to study the biological activities and 

correlations of protein and ligand structures. Reliable and accurate prediction of the 

binding modes and binding affinity of protein bound with a ligand is critical to study their 

function in many fields.209 Various programs are currently available for prediction of 

docked poses. As addressed in Wang’s paper, no single docking program has superiority 

over the others. Generally, combining different docking methods appears to be a practical 

method for achieving better predictions.165 Therefore, three of the most frequently used 

protein-ligand docking programs (i.e., Schrödinger IFD, GOLD, and AutoDock Vina) 
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were employed in this study to obtain more reliable binding modes and binding affinities 

of different ligands (C12-HSL, 3-oxo-C12-HSL, C8-HSL, and C4-HSL) bound to the 

PvdQ protein. The combination of multiple molecular docking approaches in this study 

can not only be applied to accurately predict the binding poses and binding affinities of 

PvdQ with different substrates, but also provide starting structures for further MD 

simulation.  

3.2 Computational methods 

3.2.1 pKa prediction 

The University of Houston Brownian Dynamics (UHBD) program152 was used to 

perform pKa predictions in order to predict the ionization states of key residues in the 

PvdQ protein. All of the non-protein components were removed before the calculation. 

pKa’s were predicted using the CHARMM force field210 and the resultant ionized states 

of the ionizable residues in the protein were selected at pH 7.0. The dielectric constant of 

the solvent was set to 80, while the dielectric constant of the protein was set to 20. The 

maximal number of iterations is 300 and the temperature is 293 K. The ionic strength and 

radius of ions were 150 mM and 2.0 Å, respectively. The grid spacing and dimensions 

were set to four different levels of focusing [4: 2.5 45 45 45; 1.2 15 15 15; 0.75 15 15 15; 

0.25 20 20 20].  

3.2.2 Schrödinger IFD 

The Schrödinger IFD program was used to investigate the interactions between PvdQ 

protein and different ligands.166 IFD employed an initial Glide docking with subsequent 
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Prime induced fit docking to take the flexibility of both protein and ligand into account 

(Table 3.1). The protein was prepared with the protein preparation wizard in the Maestro 

visualizer. All waters were removed, all hydrogens were added to the protein, and bond 

orders were assigned. All hydrogen-bonding networks were optimized and the ionization 

states were assigned at pH 7.0. The structure of the protein was optimized and minimized 

using the OPLS_2005 force field before docking. The ligand was prepared with the 

LigPrep platform in the Maestro visualizer and was energy minimized using the 

OPLS_2005 force field. The ligand was treated as fully flexible. The docking grid was 

generated with the Receptor Grid Generation tool. The default van der Waals radius 

scaling factors were used. The center and size of the grid box were defined according to 

the position of the hydrolysis product, 3-oxo-lauric acid, in complex with PvdQ in the 

crystal structure (PDB ID: 2WYC). The size of the grid box was 30 Å. The ligand was 

docked into the receptor via initial Glide docking to generate a maximum of up to 50 

poses with a default van der Waals scaling factor; then the docked poses were subjected 

to the Prime induced fit docking. The residues within 5 Å of each ligand pose were 

energy-minimized and refined to make the substrate-binding pocket flexible. The extra 

precision docking score was used to rank the docking poses. No constraints were applied 

and all the other settings remained at their defaults.209 
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3.2.3 GOLD docking 

The GOLD Suite 5.4.1 (Genetic Optimization for Ligand Docking; Cambridge 

Crystallographic Data Centre)158,211 docking method was also used to investigate the 

binding mode and binding affinity of PvdQ with different ligands. GOLD employed 

pharmacophore point matching and a genetic algorithm (GA) to generate the binding 

poses and calculate binding affinities. The protein and ligand were prepared using the 

Hermes visualizer in the GOLD suite (Table 3.2). Briefly, all hydrogens were added to 

the protein. The center of the binding site (X, Y, Z: 35.242, 52.079, 49.826) was defined 

by the position of the substrate in the 2WYC structure. All atoms within a radius of 15 Å 

of the binding ligand were defined as the binding site. The side chain of the key active 

residues Serβ1 (catalytic center), Pheβ24 (acting as a gate), Valβ70 and Asnβ269 

(oxyanion hole residues), Trpβ186 and Leuα146 (residues that move upon ligand 

binding) were treated as flexible during the whole docking calculation to improve the 

fitness of the ligand to the protein. The ligand was also treated as being fully flexible. 500 

Table 3.1 The settings of the Schrödinger IFD 

Schrödinger	IFD	

Receptor	 The	residues	within	5	Å	of	each	ligand	pose	are	flexible	
Ligand	 Flexible	

Force	field	 OPLS_2005	force	field	
Score	functions	 Extra-Precision	
Hydrogen	 Add	hydrogen	to	both	receptor	and	ligand	

pH	 7.0	

Gridbox	center	
Defined	according	to	the	position	of	the	hydrolysis	

product	of	PvdQ	complex	(PDB	ID:	2WYC	)	
Gridbox	range	 30	Å	×	30	Å	×	30	Å	
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GA runs were selected for the ligand docking calculation. The ChemScore scoring 

function was used for this docking study. No early termination was allowed. The default 

GA search options were chosen to obtain 100% search efficiency. Each docking 

calculation was repeated three times with different seed values.  

 

3.2.4 Autodock Vina docking 

Finally, AutoDock Vina, one of the best-known and widely used open-source protein-

ligand docking programs, was employed in our study. It is designed to predict the binding 

interaction of small molecules and a receptor. Vina improves the average accuracy over 

AutoDock by using a different scoring function and optimization algorithm.156 The 

protein PvdQ and four different ligands structures were prepared with Autodock Tools 

(Table 3.3).155 All non-protein components were deleted. All hydrogens were added and 

Gasteiger charges212 were assigned. The side chains of residues Serβ1, Pheβ24, Valβ70, 

Trpβ186, Asnβ269, and Leuα146 along with the entire ligand were flexible during the 

Table 3.2 The settings of the GOLD Docking 

GOLD	Docking	

Receptor	
The	protein	is	rigid	except	that	residues	Serβ1,	

Pheβ24,	Valβ70,	Trpβ186,	Asnβ269,	and	Leuα146	are	
flexible.	

Ligand	 Flexible	
Score	functions	 ChemScore	scoring	function	

GA	runs	 500	
Hydrogen	 Add	hydrogen	to	both	receptor	and	ligand	

Early	termination	 No	
Seed	 Random	seed	value,	repeat	3	times	

Gridbox	center	 Defined	by	the	position	of	the	substrate	in	the	2WYC	
structure.	

Radius	 15	Å	
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docking procedure. PvdQ was enclosed in a grid box of 30 Å in each direction to include 

the substrate binding site. The center of the box was the same as the other two docking 

methods. In order to find the best conformations, the maximum number of binding modes 

to generate and the level of exhaustiveness were set to 20 and 16, respectively. The 

docking score was utilized to rank the binding affinity of each docking pose. Each 

docking calculation was repeated 10 times with different random seeds. 

 

3.3 Results and discussion 

3.3.1 pKa results 

In order to predict the ionization states of important residues in the protein, pKa 

predictions were carried out to better understand the structure-function relationship and 

Table 3.3 The settings of the Vina Docking 

Vina	Docking	

Receptor	
The	protein	is	rigid	except	that	residues	Serβ1,	

Pheβ24,	Valβ70,	Trpβ186,	Asnβ269,	and	Leuα146	are	
flexible.	

Ligand	 Flexible	

Num_modes	 20	

Exhaustiveness	 16	

Seed	 Random,	repeat	10	times	

Charges	 Gasteiger	charges	were	assigned	

Gridbox	center	 Defined	by	the	position	of	the	substrate	in	the	2WYC	
structure.	

Grid	spacing	 1	Å	

Gridbox	range	 30	Å	×	30	Å	×	30	Å	
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aspects of the catalytic mechanism of the PvdQ protein. The titration curve of the N-

terminus of Serβ1 demonstrates that it exhibits a significant shift toward the acidic range 

(Figure 3.1), which means the N-terminus of Serβ1 is kept in its neutral form. This 

confirms the proposal from Clevenger’s study that the catalytic center Serβ1 can directly 

deprotonate its own hydroxyl group through its own N-terminal amine.207 The 

surrounding residues (i.e., Hisβ23 and electropositive Argβ297) having the highest 

electrostatic interaction free energy with Serβ1 are responsible for the pKa depression of 

the N-terminus of Serβ1, which is also consistent with the results from Clevenger’s 

study.207 

 

3.3.2 Substrate binding modes and binding affinity analysis from Schrödinger IFD 

In order to study the binding interactions between PvdQ and different substrates, multiple 

docking methods were used to obtain reliable docking results. In fact, the side-chains or 

backbones of many proteins move when bound with other substrates. These movements 

	

	

Figure 3.1 (A) The titration curve of the N-terminus of Serβ1 in PvdQ. (B) The 
electrostatic interaction free energy between the N-terminus of Serβ1 and the other 
ionizable residues. 
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can change the binding sites to better accommodate the ligands. Therefore, Schrödinger 

IFD was adopted to involve the flexibilities of both ligand and receptor. The distance 

between the Oγ atom of the catalytic center Serβ1 and the carbonyl carbon atom of the 

amide bond of each ligand, the docking score, and the orientation of the binding poses 

were used to select biologically reasonable binding poses. As represented in Table 3.4, 

the binding affinities of the most favorable poses of C12-HSL, 3-oxo-C12-HSL, C8-HSL 

and C4-HSL are -9.9 kcal/mol, -8.7 kcal/mol, -7.7 kcal/mol, and -5.9 kcal/mol, 

respectively. These binding affinities are positively correlated with the N-acyl chain 

length after considering the fact that there are ranges of standard error in each docking 

method. The distances between the Oγ atom of the catalytic center Serβ1 and the 

carbonyl carbon atom of the amide bond of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-

HSL are 3.0 Å, 5.8 Å, 6.8 Å, and 7.4 Å, respectively. The distances are negatively 

correlated with the N-acyl chain length, which is consistent with the binding affinities of 

each protein-ligand complex.   

 

Table 3.4 Distance between the catalytic center Serβ1 Oγ and the carbonyl carbon 
atom of the amide bond of each ligand, and docking scores obtained from the 
Schrödinger IFD  

Schrödinger IFD results 

Complex Names Distance (Å)	 Docking score (kcal/mol)	

C12-HSL	 3.0	 -9.9	

3-oxo-C12-HSL	 5.8	 -8.7	

C8-HSL	 6.8	 -7.7	

C4-HSL	 7.4	 -5.9	
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As shown in Figure 3.2, the sliced hydrophobicity surfaces of PvdQ binding with 

different substrates are generated to study the protein-ligand interactions. Green 

represents the most hydrophilic, while purple represents the most hydrophobic 

(hydrophobic property increases from green to white to purple). The tail group of C12-

HSL substrate is buried inside the hydrophobic binding pocket, while the head group is 

located in the deep solvent-accessible cleft between the two knobs of PvdQ. The 

orientation of Oγ atom of the catalytic center Serβ1 is close to the carbonyl carbon atom 

of the amide bond of C12-HSL. This position of C12-HSL is similar to that of the 

proposed siderophore precursor207 , which is favorable for the catalysis to occur. The tail 

group of 3-oxo-C12-HSL is also buried in the hydrophobic binding pocket. However, the 

head group bends toward the hydrophobic binding pocket. The hydrophilic head group 

and the extra 3-oxo substituent are surrounded by unfavorable hydrophobic residues. The 

position of the Oγ atom of the catalytic center Serβ1 is far away from the carbonyl carbon 

atom of the amide bond of 3-oxo-C12-HSL. Therefore, the catalytic efficiency of 3-oxo-

C12-HSL substrate is less than C12-HSL substrate. It should be noted that C8-HSL 

substrate is totally buried inside the PvdQ protein covered by the whole hydrophobicity 

surface. The location of Oγ atom of the catalytic center Serβ1 is even furtherer from the 

carbonyl carbon atom of the amide bond of C8-HSL. Therefore, the catalytic efficiency 

of the C8-HSL substrate is less than the C12-HSL and 3-oxo-C12-HSL substrates. For 

C4-HSL, the whole substrate is entirely buried inside the hydrophobic binding pocket. 

The distance between the Oγ atom of the catalytic center Serβ1 and the carbonyl carbon 

atom of the amide bond of C4-HSL is the furthest as compared to other substrates which 

is consistent with C4-HSL’s low catalytic efficiency.  
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In order to study the detailed interactions of PvdQ with different ligands, the specific 

docking poses of PvdQ with four different substrates were generated. Figure 3.3 shows 

the substrate binding sites of the IFD positions for each PvdQ complex. As shown in 

Figure 3.3, the positions of all ligands after docking are buried inside the binding pockets 

 

Figure 3.2 Sliced hydrophobicity surface of PvdQ binding with different substrates 
from the Schrödinger IFD. Green represents the most hydrophilic, while purple 
represents the most hydrophobic (color changes from green to white to purple). Serβ1 is 
the catalytic center. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. 
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of PvdQ. The conformations of the binding pockets have changed slightly to 

accommodate different ligands. The Oγ atoms of the nucleophile Serβ1 of all complexes 

are toward the substrate in the binding sites. Residues Pheβ24 of all complexes are in 

their open states to enable the substrates buried inside the binding pockets. In C12-HSL 

complex, the Pheβ24 shows slightly bigger twist to fully open the binding pocket as 

compared to the other ligands. There are no substantial conformational changes of the 

side-chains of residues Valβ70 and Asnβ269. The movements of the residue Trpβ186 and 

Leuα146 affect the sizes of the binding pockets. In C4-HSL complex, different side-chain 

orientations of residues Trpβ186 and Leuα146 reduce the volume of the substrate binding 

pockets. In this study, we assume that the catalysis is more likely to occur when the 

distance becomes shorter. For C12-HSL, the distances between the Oγ atom of the 

catalytic center Serβ1 and the carbonyl carbon atom of the amide bond of C12-HSL is 3.0 

Å. The most reasonable poses for C12-HSL obtained from Schrödinger IFD methods 

demonstrates that it has the shortest distance and the most favorable docking score. 

Therefore, there is greater opportunity for catalysis to occur. The distances for 3-oxo-

C12-HSL, C8-HSL and C4-HSL are 5.8 Å, 6.8 Å, and 7.4 Å, respectively. Accordingly, 

the poses for 3-oxo-C12-HSL and C8-HSL are less energetically favorable in comparison 

to the C12-HSL complex, considering their distant positions and low docking scores. The 

location of C4-HSL in the pose is far beyond the hydrogen bonding capability and has the 

least favorable docking score, which is consistent with its low catalytic efficiency.  
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In order to further investigate the hydrogen bonds and hydrophobic interactions of PvdQ 

with each substrate, the schematic diagrams of protein-ligand interactions were generated 

by LIGPLOT v.4.5.3.213 The hydrogen bonds are represented by dashed lines, while the 

hydrophobic interactions are indicated by arcs with spokes. As shown in Figure 3.4, 

C12-HSL ligand forms three hydrogen bonds with Serβ1 (atom N and atom Oγ) and 

Hisβ23 from PvdQ protein. Serβ1 is the nucleophilic catalytic residue, which can 

deprotonate its own hydroxyl group to activate the catalytic role. The close interaction 

 

Figure 3.3 The docking poses of PvdQ with four different substrates from the 
Schrödinger IFD. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. Residues treated flexible during 
docking are displayed in stick. The distance between the Oγ atom of the catalytic center 
Serβ1 and the carbonyl carbon atom of the amide bond of each ligand was measured. 
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between residue Serβ1 and C12-HSL indicates a higher chance for catalysis to occur. 

Hisβ23 forms polar interaction with ligand to stabilize the ligand in an appropriate 

position. However, there are fewer hydrogen bonds formed between PvdQ and the other 

ligands as compared to the C12-HSL ligand. These results from Schrödinger IFD 

program are consistent with the experimental conclusion that the PvdQ protein prefers 

HSLs with long acyl chains and without the 3-oxo substituent.205,206 

 

 
Figure 3.4 The ligand interactions of PvdQ with four different substrates from 
Schrödinger IFD. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. The hydrogen bonds are represented 
by dashed lines, while the hydrophobic interactions are indicated by arcs with spokes. 
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3.3.3 Substrate binding modes and binding affinity analysis from GOLD docking 

GOLD docking program is one of the most robust programs on pose predictions and it 

possesses high consistent rates of 82.5% (consistent rate is defined as SRtsp/SRbp, where 

SRtsp is the success rate for the top scored poses and SRbp is the success rates for the best 

poses).165 In order to improve the fitness of the ligand to the PvdQ protein, the side chains 

of residues Serβ1, Pheβ24, Valβ70, Trpβ186, Asnβ269, and Leuα146 along with the 

entire ligand treated flexible during the docking calculation. The distance between the Oγ 

atom of the catalytic center Serβ1 and the carbonyl carbon atom of the amide bond of 

each ligand, the docking score, and the orientation of the binding poses were used to 

select biologically reasonable binding poses. As illustrated in Table 3.5, the fitness 

scores of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL are -7.5 kcal/mol, -6.5 

kcal/mol, -5.7 kcal/mol, and -5.3 kcal/mol, respectively. The distances between the Oγ 

atom of the catalytic center Serβ1 and the carbonyl carbon atom of the amide bond of 

C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL are 3.0 Å, 4.9 Å, 3.1 Å, and 7.5 Å, 

respectively. The shorter the distance, the higher chance for the catalysis to occur. 

Therefore, we can see that the binding affinities are positively correlated with the N-acyl 

chain length.  
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As represented in Figure 3.5, the sliced hydrophobicity surfaces of different PvdQ-ligand 

complexes are achieved. The tail groups of C12-HSL, 3-oxo-C12-HSL, and C8-HSL are 

all buried inside the hydrophobic binding pocket with different depths. The head groups 

of C12-HSL, 3-oxo-C12-HSL, and C8-HSL are all located in the deep solvent-accessible 

cleft of PvdQ. The orientations of the substrates decrease the distance between the Oγ 

atom of the catalytic center Serβ1 and the carbonyl carbon atom of the amide bond of 

each substrate. The tail groups with different acyl chain lengths and extra 3-oxo 

substituent have different hydrophobic interactions with the residues lining the 

hydrophobic binding pocket. The whole C4-HSL ligand is buried inside the PvdQ 

covered with the hydrophobicity surfaces. The Oγ atom of the catalytic center Serβ1 is 

far from the carbonyl carbon atom of the amide bond of C4-HSL. The totally different 

interaction pattern of C4-HSL indicates the low catalytic efficiency. 

Table 3.5 Distance between the catalytic center Serβ1 Oγ and the carbonyl carbon 
atom of the amide bond of each ligand, and docking scores obtained from the 
GOLD docking 

GOLD	docking	results	

Complex	Names	 Distance	(Å)	 Docking	score	(kcal/mol)	

C12-HSL	 3.0	 -7.5	

3-oxo-C12-HSL	 4.9	 -6.5	

C8-HSL	 3.1	 -5.7	

C4-HSL	 7.5	 -5.3	
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Figure 3.6 shows the binding site of each substrate-bound PvdQ complex from GOLD 

docking method. As shown in Figure 3.6, the pose of each ligand after docking is buried 

inside PvdQ protein without causing substantial conformational changes in the substrate 

 

Figure 3.5 Sliced hydrophobicity surface of PvdQ binding with different substrates 
from the GOLD docking. Green represents the most hydrophilic, while purple 
represents the most hydrophobic (color changes from green to white to purple). Serβ1 is 
the catalytic center. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. 
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binding site. The orientation of the Oγ atom of the catalytic center Serβ1 of each complex 

is toward the substrate in the binding site. Substantial conformational changes of the side-

chain of residues Valβ70 and Asnβ269 are not observed in C12-HSL, 3-oxo-C12-HSL, 

and C8-HSL complexes. In C4-HSL complex, the movements of the side-chains of 

residues Pheβ24, Valβ70, and Trpβ186 have changed the volumes of the substrate-

binding pockets as compared to other complexes. In each complex, residue Leuα146 has 

a slight conformational change to properly accommodate different ligands. The distances 

between the Oγ atoms of the catalytic center Serβ1 and the carbonyl carbon atoms of the 

amide bond of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL are 3.0 Å, 4.9 Å, 3.1 Å, 

and 7.5 Å, respectively. The pose for C12-HSL obtained from the GOLD docking 

method demonstrates that it has the shortest distance and the most favorable docking 

score. The pose for 3-oxo-C12-HSL is not quite as energetically favorable as compared to 

the C12-HSL complex. The position of C8-HSL ligand is similar to that of C12-HSL. 

However, the shorter acyl tail group lowers the binding affinity. The distance for the C4-

HSL pose is far beyond the hydrogen bonding capability and has the least favorable 

docking score.  
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As shown in Figure 3.7, there are three hydrogen bonds formed between the C12-HSL 

ligand and residues Serβ1, Hisβ23, and Valβ70 of the PvdQ protein. C8-HSL forms the 

same hydrogen bonds with the C12-HSL ligand due to the same position of the head 

group. 3-oxo-C12-HSL forms three hydrogen bonds with Hisβ23, Valβ70, and Asnβ269, 

while only one hydrogen bond is formed with the C4-HSL ligand. Basically, these results 

 

 

Figure 3.6 The docking poses of PvdQ with four different substrates from the 
GOLD docking. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. Residues treated flexible during 
docking are displayed in stick. The distance between the Oγ atom of the catalytic center 
Serβ1 and the carbonyl carbon atom of the amide bond of each ligand was measured. 
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from the GOLD docking program are also consistent with the previous experimental 

results.205,207 

 

 

Figure 3.7 The ligand interactions of PvdQ with four different substrates from the 
GOLD docking. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. The hydrogen bonds are represented 
by dashed lines, while the hydrophobic interactions are indicated by arcs with spokes. 
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3.3.4 Substrate binding modes and binding affinity analysis from Autodock Vina 

docking 

Vina docking is a widely used open-source molecular docking method, which has the 

best scoring power.165 The scoring power indicates the ability of a scoring function to 

rank the binding capabilities, which is calculated by Pearson correlation coefficient (rp) 

and Spearman’s rank correlation coefficient (rs). Vina docking possesses an rp/rs of 

0.564/0.580 for the top scored poses and rp/rs of 0.569/0.584 for best poses165. Since 

protein flexibility is very important to obtain high binding accuracy, several residues 

lining the binding pocket were treated as flexible in this docking study. The distance 

between the Oγ atom of the catalytic center Serβ1 and the carbonyl carbon atom of the 

amide bond of each ligand, the docking score, and the orientation of the binding poses 

were also used to select biologically reasonable binding poses. The data in Table 3.6 

indicate that the binding affinities of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL 

are -8.3 kcal/mol, -7.3 kcal/mol, -6.3 kcal/mol, and -5.1 kcal/mol, respectively. The 

distances between the Oγ atoms of the catalytic center Serβ1 and the carbonyl carbon 

atoms of the amide bond of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL are 3.2 Å, 

3.4 Å, 7.3 Å, and 8.2 Å, respectively. These binding affinities are also positively 

correlated with the N-acyl chain lengths, which is consistent with the previous 

discussions.  
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The sliced hydrophobicity surfaces of PvdQ bound with different ligands are generated 

and represented in Figure 3.8. The tail groups of C12-HSL and 3-oxo-C12-HSL 

substrates are all located in the hydrophobic binding pockets. The head groups of C12-

HSL and 3-oxo-C12-HSL substrates are all toward to the deep solvent-accessible clefts of 

the PvdQ protein. These orientations of C12-HSL and 3-oxo-C12-HSL substrates enable 

the carbonyl carbon atom of the amide bond be close to the catalytic center Serβ1, which 

increases the possibility for the catalysis to occur. The head group and tail group of the 

C8-HSL substrate are all buried inside the binding pocket. The distance between the Oγ 

atom of the catalytic center Serβ1 and the carbonyl carbon atom of the amide bond of C8-

HSL is far from hydrogen bonding distance. For the C4-HSL substrate, it is totally 

immersed inside the PvdQ protein, which is enclosed by the hydrophobic surface. The 

different binding patterns of C8-HSL and C4-HSL demonstrate the low catalytic 

efficiency of the enzyme with these substrates.  

Table 3.6 Distance between the catalytic center Serβ1 Oγ and the carbonyl carbon 
atom of the amide bond of each ligand, and docking scores obtained from the Vina 
docking  

Vina docking results 

Complex Names Distance (Å)	 Docking score (kcal/mol)	

C12-HSL	 3.2	 -8.3	

3-oxo-C12-HSL	 3.4	 -7.3	

C8-HSL	 7.3	 -6.3	

C4-HSL	 8.2	 -5.1	
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As shown in Figure 3.9, the position of each ligand after docking is buried inside the 

binding pocket of PvdQ. Slightly different side-chain movements for residues Serβ1, 

Valβ70, Trpβ186 and Leuα146 of each complex are observed, which can change the 

 

Figure 3.8 Sliced hydrophobicity surface of PvdQ binding with different substrates 
from the Vina docking. Green represents the most hydrophilic, while purple represents 
the most hydrophobic (color changes from green to white to purple). Serβ1 is the 
catalytic center. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. 
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volume of binding pocket to accommodate different substrates. The side-chains of 

Pheβ24 and Asnβ269 do not show substantial movement in the active site. The distances 

between the Oγ atoms of the catalytic center Serβ1 and the carbonyl carbon atoms of the 

amide bond of C12-HSL, 3-oxo-C12-HSL, C8-HSL and C4-HSL are 3.2 Å, 3.4 Å, 7.3 Å, 

and 8.2 Å, respectively. These distances are negatively correlated with the N-acyl chain 

length. The Vina docking results illustrates that C12-HSL has the closest distance and the 

most favorable docking score. The 3-oxo-C12-HSL substrate is less energetically 

favorable as compared to the C12-HSL complex due to the extra 3-oxo substituent. The 

distances for the C8-HSL and C4-HSL poses are far beyond hydrogen bonding capability 

and have the least favorable docking scores, which is consistent with previous 

study.205,207 
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The protein-ligand interaction diagrams are generated in Figure 3.10. There are three 

hydrogen bonds formed between the C12-HSL ligand and residues Serβ1, Hisβ23, and 

Asnβ269 of PvdQ. Residues Serβ1, Hisβ23, and Asnβ269 play important roles in 

stabilizing the head groups. Residues Hisβ23 and Trpβ186 form two hydrogen bonds 

with the 3-oxo-C12-HSL substrate. The hydrogen bond between residue Trpβ186 and the 

extra 3-oxo substituent of 3-oxo-C12-HSL help the substrate to bury deeper inside the 

binding pocket, which explains the relatively short distance between the Oγ atom of the 

 

Figure 3.9 The docking poses of PvdQ with four different substrates from the Vina 
docking. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: PvdQ-C8-
HSL complex D: PvdQ-C4-HSL complex. Residues treated flexible during docking are 
displayed in stick. The distance between the Oγ atom of the catalytic center Serβ1 and the 
carbonyl carbon atom of the amide bond of each ligand was measured. 
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Serβ1 and the carbonyl carbon atom of the amide bond of 3-oxo-C12-HSL. There is only 

one hydrogen bond formed between C8-HSL and residue Serβ1. Conversely, the C4-HSL 

ligand is buried inside the binding pocket with zero hydrogen bond with the PvdQ 

protein. These results from Vina docking are also consistent with the experimental data 

that the PvdQ protein prefers different substrates with different acyl chains.205,207 

 

 

Figure 3.10 The ligand interactions of PvdQ with four different substrates from the 
Vina docking. A: PvdQ-C12-HSL complex B: PvdQ-3-oxo-C12-HSL complex C: 
PvdQ-C8-HSL complex D: PvdQ-C4-HSL complex. The hydrogen bonds are represented 
by dashed lines, while the hydrophobic interactions are indicated by arcs with spokes. 
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3.4 Conclusions  

Molecular docking calculation is a widely used computational method in structure-based 

drug design. It can be applied to predict the binding mode and binding affinity of a 

substrate with the target protein. It plays an important role in studying the biological 

activities and correlations of protein and ligand structures. Therefore, three of the most 

popular docking programs are used to study the interactions of different ligands bound to 

the PvdQ protein. Even though the above experimental results of the three programs may 

seem redundant, it is very important to show the consistency of different docking 

programs. Otherwise, it is difficult to evaluate the docking performances 

From the above discussions, we can see that results from three different docking 

programs are highly consistent with each other and previous studies,205, 207 which means 

the docking results are reasonable and trustworthy. All three programs have shown that 

the binding affinity is positively correlated with the N-acyl chain length of each ligand. 

The positions of the head groups of C12-HSL and 3-oxo-C12-HSL are mainly toward the 

deep solvent-accessible clefts between the two knobs of PvdQ, while the tail groups are 

buried inside the hydrophobic binding pockets. The entire C8-HSL and C4-HSL 

substrates are completely positioned in the hydrophobic binding pockets. The movements 

of the side-chains of residues Serβ1, Hisβ23, Valβ70, Trpβ186, Asnβ269 and Leuα146 

affect the volumes of the binding pockets. There are three hydrogen bonds formed 

between the C12-HSL ligand and residues Serβ1, Hisβ23, Valβ70, or Asnβ269 of the 

PvdQ protein, while fewer hydrogen bonds are formed with other ligands. Analyses of 

the results from three molecular docking calculations demonstrate that PvdQ has different 
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substrate binding specificities toward different ligands. The binding mode and binding 

affinity analysis indicate that C12-HSL has a higher probability to make contact with the 

catalytic center than other ligands, which explains its higher catalytic efficiency and 

thereby supporting the accuracy of the docking calculations. These docking results are 

consistent with the experimental data that the PvdQ protein prefers HSLs with long acyl 

chains and without the 3-oxo substituent. 205,207  
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Chapter 4 Unraveling the substrate binding 

specificity of quorum-quenching acylase PvdQ 

4.1 Introduction 

P. aeruginosa and B. cenocepacia  have drawn wide attention recently due to the 

seriousness of infection and high fatality rate when co-infected with other bacteria.204,205 

The enzymatic degradation of HSL signaling molecules used by various Gram-negative 

bacteria opens up new ways to fight against bacterial infections proven by previous 

study.205 PvdQ is an AHL acylase with the ability to hydrolyze the amide bond of AHL 

signaling molecules.207 However, the details of the binding interactions of PvdQ with 

bacterial substrates are not fully understood. Previous studies demonstrated that the PvdQ 

has different preferences for substrates or inhibitors with different acyl chain lengths and 

substituents (Table 4.1).207,208 It prefers to hydrolyze the AHLs with a long acyl chain, 

such as 12 or 14 carbons in the tail group, rather than AHLs with a short tail group or a 3-

oxo substituent, such as C8-HSL, C4-HSL, and 3-oxo-C12-HSL.  

In Clevenger’s study, they used the n-alkylboronic acid inhibitors to demonstrate that the 

C6-B(OH)2 and C8-B(OH)2 form tetrahedral adducts and bind to the acyl tail pocket, 

while the C2-B(OH)2 and C4-B(OH)2 form trigonal planar adducts and bind to the head 

binding pocket.208 However, the structure of the n-alkylboronic acid inhibitors are 

structurally different from AHL ligands and the absence of a PvdQ crystal structure with 

the entire AHL ligand makes it necessary to use other methods to study the determinants 
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of the substrate binding specificity of PvdQ using native AHL ligands. Moreover, it is 

common knowledge that protein structures are not static. The dynamical behavior of 

proteins is essential for gaining a more complete understanding of its function.214 

Although the general catalytic mechanism of PvdQ has been revealed by structural 

studies, an understanding of the intrinsic molecular dynamical motions of PvdQ induced 

upon different ligand binding is currently lacking. The substrate binding specificity 

determinants of the quorum-quenching enzyme PvdQ with the different bacterial ligands 

are unknown and unintuitive.202  

The current work addresses this by providing a better understanding of the dynamical 

characteristics of the PvdQ complex; thus aiding the future design of new inhibitors. In 

this study, multiple molecular docking calculations were performed to obtain favorable 

binding poses and binding affinities of PvdQ with different ligands (C12-HSL, 3-oxo-

C12-HSL, C8-HSL, and C4-HSL).215 Subsequently, 300 ns molecular dynamics (MD) 

simulations were carried out for each substrate-bound and substrate-free PvdQ. On the 

basis of the MD-simulated structures, an approach through the combined use of principal 

component analysis (PCA), free energy landscape (FEL), residue interactions network 

(RIN), WebPSN analysis, and binding free energy calculation was performed to gain 

insight into the substrate binding specificity of PvdQ. The MD simulation approach is 

used to investigate the substrate binding modes and molecular motions in these 

complexes. PCA and FEL are capable of analyzing low energy structures of each 

complex. RIN and WebPSN analyses can help us to better understand the residue 

interactions and communication pathways. While the binding free energy calculation can 

provide some information about the energy changes of PvdQ upon different ligand 
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binding. As a result, this combined method can be effective in providing information to 

more fully understand the mechanism of substrate binding specificity and structure-

dynamic-function relationship of the PvdQ enzyme.  

 

4.2 Computational methods 

4.2.1 Molecular dynamics simulations 

4.2.1.1 Energy minimization after docking calculations 

In order to avoid steric clashes and to refine the structure of the complex after molecular 

docking, the energetically favorable docking poses were subjected to an energy 

minimization, before MD simulation, using Gromacs 4.6.7 with the GROMOS 54a7 

Table 4.1 The steady-state rate constants of selected substrates and the ΔGbind of 
selected n-alkylboronic acid inhibitors from previous studies.  

Ligands	 kcat/KM	(M-1s-1)a	 n-alkylboronic	
acid	inhibitors	 ΔGbind	(kcal/mol)b	

C12-HSL	 2.2	×	105	 C12-B(OH)2	 -13.2	±	0.1	

3-oxo-C12-HSL	 2.3	×	103	 3-oxo-C12-B(OH)2	 Not	determined	

C8-HSL	 2.2	×	102	 C8-B(OH)2	 -9.23	±	0.02	

C4-HSL	 Not	determined	 C3-B(OH)2	 -3.1	±	0.2	

 

aThe steady-state rate constants of selected substrates from previous studies. bThe ΔGbind 
of selected n-alkylboronic acid inhibitors from previous studies. The n-alkylboronic acid 
inhibitor is structurally homologous to the HSL with one more carbon in the acyl chain.  
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force field.183,216 The topology file for each ligand was generated with the PRODRG 

program217 with no energy minimization in order to keep the original coordinates of the 

ligand. Then the partial charge of each ligand was refined by a Firefly quantum chemistry 

calculation with the 6-31G** split valence basis set and the B3LYP hybrid functional 

through geometry optimization and a subsequent energy calculation.218 Finally, the 

topologies of ligands were refined according to the above result and previous study in 

order to generate the GROMOS-compatible charges and charge groups.219,220 The 

Generalized Born implicit solvent model was used since it can lower system complexity 

and reduce the calculation time. Double precision, including conjugate gradient and 

steepest descent methods were used to minimize the system energy. Energy minimization 

was carried out until the system converged to the maximum atomic force less than 10 

kJ×mol-1×nm-1. The minimized structure of each complex was used as the starting 

coordinate for MD simulations.  

4.2.1.2 System set-up and energy minimization 

MD simulations were performed on each substrate-bound and substrate-free PvdQ using 

the Gromacs 4.6.7 program with the GROMOS 96 54a7 united-atom force field to reduce 

computational burden.183,216 The protein-ligand complex was solvated in a cubic simple 

point charge (SPC) water box. The distance between the furthest protein atom and the 

water box edge was 12 Å.221 Four sodium ions were added to neutralize the system 

(Figure 4.1). Each system was subjected to a step-wise energy minimization starting with 

the steepest descent method to ensure that the system had no steric clashes. The protocol 

of the step-wise energy minimization involved four steps: 1). receptor-ligand complex 

was constrained while water and ions moved freely, 2). heavy atoms of the complex were 
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constrained while water, ions, and hydrogens moved freely, 3). atoms of the complex 

main chain were constrained while the rest of the system moved freely, and 4). the entire 

system was subjected to an unconstrained energy minimization 222. The minimization was 

carried out until the maximum atomic forces acting on the system converged to less than 

100 kJ × mol-1 × nm-1.  

 

4.2.1.3 Equilibration and production simulation 

After energy minimization, MD simulation of each system was performed under an 

isothermal-isochoric ensemble (constant Number of particles, Volume, and Temperature, 

NVT) for 100 ps to equilibrate the solvent and ions around the protein-ligand complex. 

 

Figure 4.1 Representation of the simulation box of the substrate-bound PvdQ 
complex with water and sodium ions.  
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The systems were heated gradually from 0 K to 300 K using the single type simulated 

annealing method in the Gromacs program that is analogous to gradual heating methods 

used in other programs. Subsequently, the entire system was subjected to an isothermal-

isobaric ensemble (constant Number of particles, Pressure, and Temperature, NPT) MD 

simulation for 200 ps to stabilize the pressure of the system. The harmonic position 

restraints on the heavy atoms were gradually released from 1000 kJ×mol-1×nm-2 to 0 

kJ×mol-1×nm-2 to carefully relax the system. Finally, production runs of MD simulation 

were carried out under the NPT ensemble with no restraints on the entire system. Periodic 

boundary conditions were used to minimize edge effects. The particle mesh Ewald 

method was employed to handle the long-range electrostatics beyond the cutoff223 and the 

LINCS algorithm was used to constrain all bond lengths.224 The cutoff for short-range 

electrostatics was 0.9 nm and the cutoff for short-range van der Waals was 1.4 nm. The 

temperature was maintained at 300 K by the V-rescale method, while the pressure was 

kept at 1 bar by the Berendsen algorithm during the simulation.182 The time step was set 

at 2 fs. The trajectories of each system were saved every 2 ps for later analysis. The entire 

production simulation was carried out for 300 ns (Table 4.2). The results were analyzed 

using Gromacs utilities. 
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Table 4.2 MD simulations of each substrate-bound PvdQ complex from three 
different docking 

MD	simulations	from	IFD	poses	
Complex	system	 C12-HSL		 3-oxo-C12-HSL		 C8-HSL		 C4-HSL	
PvdQ	residues	 710		 710		 710		 710		
Ligand	atoms	 21	 22	 17	 13	
Water	molecules	 39689	 39259	 39885	 39739	
Total	Na+	atoms	 4	 4	 4	 4	
Total	atoms	 126191	 124902	 126775	 126333	
EM		 Until	

convergence	
Until	
convergence	

Until	
convergence	

Until	
convergence	

EQ	NVT	ensemble	 100	ps	 100	ps	 100	ps	 100	ps	
EQ	NPT	ensemble	 200	ps	 200	ps	 200	ps	 200	ps	
Production	run	 300	ns	 300	ns	 300	ns	 300	ns	

MD	simulations	from	GOLD	docking	poses	
Complex	system	 C12-HSL		 3-oxo-C12-HSL		 C8-HSL		 C4-HSL	
PvdQ	residues	 710	 710		 710		 710		
Ligand	atoms	 21	 22	 17	 13	
Water	molecules	 39251	 39922	 39919	 39430	
Total	Na+	atoms	 4	 4	 4	 4	
Total	atoms	 124877	 126891	 126877	 125406	
EM		 Until	

convergence	
Until	
convergence	

Until	
convergence	

Until	
convergence	

EQ	NVT	ensemble	 100	ps	 100	ps	 100	ps	 100	ps	
EQ	NPT	ensemble	 200	ps	 200	ps	 200	ps	 200	ps	
Production	run	 300	ns	 300	ns	 300	ns	 300	ns	

MD	simulations	from	Vina	docking	poses	
Complex	system	 C12-HSL		 3-oxo-C12-HSL		 C8-HSL		 C4-HSL	
PvdQ	residues	 710	 710		 710	 710	
Ligand	atoms	 21	 22	 17	 13	
Water	molecules	 39775	 39718	 39750	 39930	
Total	Na+	atoms	 4	 4	 4	 4	
Total	atoms	 126449	 126279	 126370	 126906	
EM		 Until	

convergence	
Until	
convergence	

Until	
convergence	

Until	
convergence	

EQ	NVT	ensemble	 100	ps	 100	ps	 100	ps	 100	ps	
EQ	NPT	ensemble	 200	ps	 200	ps	 200	ps	 200	ps	
Production	run	 300	ns	 300	ns	 300	ns	 300	ns	

 



	 	103	

4.2.2 Stability of the complexes  

4.2.2.1 Root mean square deviation (RMSD) 

RMSD of the backbone was calculated for the PvdQ-ligand complexes through the 

Gromacs analysis toolkit, g_rms. 

4.2.2.2 Root mean square fluctuation (RMSF) 

RMSF of the alpha carbons were measured with the Gromacs tool g_rmsf during the 300 

ns production runs for each complex. 

4.2.2.3 Radius of gyration (Rg) 

Rg is the root mean square distance of the atomic positions relative to the center of the 

mass of the protein. The Rg of each complex was calculated with g_gyrate to examine the 

compactness of each complex during the entire simulation. 

4.2.3 Hydrogen bond occupancy 

The hydrogen bonds of each substrate bound PvdQ complex were calculated using 

g_hbond module within GROMACS program. The hydrogen bonds occupancy was 

calculated by a python code named readHBmap.py. A hydrogen bond was assigned when 

the distance between donor and acceptor was less than 3.5 Å as well as the angle of 

donor-hydrogen-acceptor was more than 140°.225 

4.2.4 Distance analysis 

The distance between the Oγ atom of catalytic center Serβ1 and the carbonyl carbon atom 

of the amide bond of each ligand during the 300 ns MD simulations were calculated by 

g_dist module within GROMACS program. 
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4.2.5 Buried surface area 

To observe the surface interactions between PvdQ and different ligands, the buried 

surface areas of different ligand complexes were calculated using the g_sas module 

within the GROMACS program. 

4.2.6 Principal component analysis (PCA) and free energy landscape (FEL) 

The PCA and FEL methods were used to analyze the minimal energy structure of each 

complex. The covariance matrix from alpha carbon fluctuation was calculated after 

elimination of the translational and rotational degrees of freedom. After diagonalization 

of the covariance matrix, the eigenvalues and eigenvectors were obtained. This essential 

dynamics analysis was performed with Gromacs g_covar and g_anaeig commands for 

each 300 ns MD simulation. The first few eigenvectors, which correspond to the highest 

eigenvalues, are called the principle components (PC) since they represent the correlated 

collective motions of the protein-ligand system. The projections of the first two principal 

components, which account for about 40%, revealed overall correlated motions in each 

complex. In order to obtain the energy minimum structures during the 300 ns MD 

simulations, the free energy landscape along the first two principal components was 

generated by the g_sham module within the GROMACS program226 and plotted with 

MATLAB. 

4.2.7 Protein dynamic fingerprint 

In order to investigate the dynamical motions of PvdQ induced upon different ligand 

binding, the protein dynamic fingerprints were calculated with the g_covar and g_anaeig 

modules within the GROMACS program and plotted with Visual Molecular Dynamics 
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program. The first principal component was used to analyze the protein dynamic 

fingerprint since it collectively accounts for around 30% of all dynamical motions. The 

direction of the arrow indicates the direction of the motion, while the length of the arrow 

represents the strength of the movement. 

4.2.8 Residue interaction network  

Furthermore, in order to understand the interactions between the residues lining the 

binding pocket, the residue interaction network (RIN) was produced using the Residue 

Interaction Network Generator (RING).189 The RING-2.0 program is able to identify six 

types of interactions, namely, hydrogen-bonds, van der Waals interactions, disulfide 

bridges, salt bridges, π-π stacking, and π-cation interactions. The output files were 

visualized with the Cytoscape program.227 In the interaction network, each node is 

represented as a residue or a ligand molecule, while each edge line between two nodes is 

denoted as a noncovalent interaction between two residues. The different types of 

noncovalent interactions are indicated as different colored edges. In order to further 

analyze the topological parameters of each RIN, the closeness centrality and betweenness 

centrality were calculated with the NetworkAnalyzer plugin of the Cytoscape program.228 

Closeness centrality indicates how fast information spreads from one node to other 

reachable nodes in the interaction network.229 The betweenness centrality describes the 

amount of control one node exerts over the other nodes in the interaction network.230 In 

an interaction network, the values of closeness centrality were mapped to the color of the 

nodes, mapping low values to green and high values to red. The values of betweenness 

centrality were mapped to the size of the nodes, mapping low values to small sizes and 
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high values to large sizes. 

4.2.9 WebPSN analysis 

As an extension of the residue interaction network analysis implemented in the RING 

program, we used WebPSN to represent the networks on interacting residues in system to 

investigate the potential role of structurally important residues, the protein stability, and 

communication.190,193,231 This method begins with a protein structure graph; then searches 

for all possible communication paths and filters the results according to the cross-

correlation of atomic motions to obtain shortest communication pathways that traverse 

the protein structure. Meta paths include the most recurrent nodes and links in the full 

communication pathways, which is important for acquiring the global picture of the 

structural communication of the whole system.  The representative structure of the most 

populated cluster of each complex was used for the generation of the residue 

communication pathway. The node and link recurrence cutoff used in building the meta 

paths was ≥ 30%. Each spherical node was centered on the Cα-atom of one residue, 

whose diameter is proportional to the number of links generated by the node. The link 

thickness is also proportional to link frequencies in the communication paths.  

4.2.10 Binding free energy analysis 

In order to better understand the energy changes of PvdQ induced upon binding of 

different ligands, the Molecular Mechanics Poisson-Boltzmann (or Generalized Born) 

Surface Area (MM-PBSA or MM-GBSA) method can be used to calculate the individual 

energy components and total binding free energy. Both MM-PBSA and MM-GBSA are 

widely used approaches in free energy calculations. A thorough comparison of MM-
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PBSA and MM-GBSA methods had also been conducted where the overall prediction 

accuracies of the two methods had been comprehensively investigated along with the 

studies of the entropy effects, improved docking performance with high solute dielectric 

constant (i.e., ε =2, or 4), and the predicting of binding free energies for protein-protein 

and protein-RNA systems.232-236 In this study, in order to compare the free energy 

changes of substrate-bound PvdQ, the binding free energy for each complex was 

computed using the g_mmpbsa package in the Gromacs utility.237 The binding free 

energy can be decomposed into different parts, containing van der Waals, electrostatic, 

polar, and nonpolar free energy contributions. The entropy contribution at 300K (-TDS) 

was calculated by normal mode analysis from energy-minimized structures generated in 

the MD simulations.238-240 The free energy equation is shown below. In the equation, g 

was 0.00542 kcal/(mol×Å2), while b was 0.92 kcal/mol. The bondi set of atomic radii was 

used in this study.237 The dielectric constant values for the solute and solvent were set to 

be 2 and 80, respectively. A total of 3000 snapshots were extracted from the 300 ns 

production trajectories at intervals of 0.1 ns and were used for the MM-PBSA 

calculations. 

  DGbinding = Gcomplex – (Greceptor + Gligand)     (Equation 4.1) 

  DGbinding = DEMM + DGsol - TDS      (Equation 4.2) 

  DEMM = DEvdW + DEele       (Equation 4.3) 
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  DGsol = DGpol + DGnonpol     (Equation 4.4) 

  DGnonpol = g(SASA) + b     (Equation 4.5) 

  DS = Scomplex – (Sreceptor + Sligand)     (Equation 4.6) 

4.3 Results and discussion 

MD simulations are a critical method to investigate the global motions and dynamical 

behaviors of protein-ligand complexes. The favorable docking modes obtained from 

multiple molecular docking calculations were used as the starting structures for MD 

simulations. The complexes were allowed to move and form more favorable 

conformations during MD simulations to improve the interactions between protein and 

ligand. Therefore, MD simulations were carried out to analyze the specific interactions 

and overall molecular motions of PvdQ induced upon different ligand binding. The 

average structural properties from the 300 ns MD simulation results derived from three 

different docking programs are listed in Table 4.3. The results of MD simulations from 

three different docking programs were consistent with each other and the Schrödinger 

program is one of the most robust programs on pose predictions with a nearly 90% rate 

(SRtsp/SRbp, where SRtsp and SRbp are the success rates for the top scored poses and 

best poses)165 and performs best when binding sites are mainly influenced by 

hydrophobic contacts.167 Hereafter, the MD simulation results from the Schrödinger IFD 

poses were selected for further analysis and discussion.  



	 	109	
 

Table 4.3 Average structural properties of different substrate-bound PvdQ during 
300ns MD simulations from three different docking  

MD	results	from	Schrödinger	IFD	poses	

Complex	 C12-HSL	 3-oxo-C12-
HSL	 C8-HSL	 C4-HSL	

RMSD	(Å)	 2.15±0.28	 2.40	±	0.28	 2.29±	0.29	 2.74±	0.43	
RMSF	(Å)	 1.17±0.77	 1.25±	0.84	 1.22±	0.78	 1.32±	0.88	
Rg	(Å)	 26.18±0.12	 25.96±0.19	 25.91±0.17	 25.99±0.15	

Distance	(Å)	 3.40±	0.35	 4.58±	1.13	 7.91±	0.80	 9.81±	1.26	
Buried	surface	
area	(Å2)	 430.28±14.13	 409.49±14.28	 324.56±11.20	 246.43±9.79	

FEL	(kJ/mol)	 -8.55	 -8.43	 -8.02	 -8.17	
ΔGbind	

(kcal/mol)	 -12.74±2.17	 -10.84±2.50	 -9.63±2.11	 -5.34±2.33	

MD	results	from	GOLD	poses	

Complex	 C12-HSL	 3-oxo-C12-
HSL	 C8-HSL	 C4-HSL	

RMSD	(Å)	 2.15±	0.37	 2.16±	0.36	 2.41	±	0.39	 2.76±	0.50	
RMSF	(Å)	 1.27±0.72	 1.21±0.83	 1.28±	0.87	 1.42±	0.96	
Rg	(Å)	 26.15±0.14	 26.29±0.13	 26.06±0.20	 26.14±0.14	

Distance	(Å)	 3.36±0.41	 4.26±0.76	 3.37±	0.28	 13.32±2.45	
Buried	surface	
area	(Å2)	 425.17±14.64	 408.72±14.14	 331.48±11.30	 283.02±9.52	

FEL	(kJ/mol)	 -8.66	 -7.16	 -7.87	 -7.54	
ΔGbind	

(kcal/mol)	 -11.54±2.75	 -10.66±2.76	 -8.94±2.06	 -6.42±2.31	

MD	result	from	Vina	poses	

Complex	 C12-HSL	 3-oxo-C12-
HSL	 C8-HSL	 C4-HSL	

RMSD	(Å)	 2.20±	0.26	 2.13±	0.26	 2.21±	0.23	 2.24	±	0.42	
RMSF	(Å)	 1.26Å±0.61	 1.23±	0.83	 1.28±	0.92	 1.30±	0.96	
Rg	(Å)	 26.11±0.18	 26.04±0.20	 26.05±0.14	 25.11±0.15	

Distance	(Å)	 3.36±	0.40	 4.47±	0.61	 5.60±	1.23	 9.49±	0.60	
Buried	surface	
area	(Å2)	 424.51±13.52	 416.18±14.88	 311.48±12.31	 280.06±8.90	

FEL	(kJ/mol)	 -8.77	 -8.17	 -8.43	 -8.55	
ΔGbind	

(kcal/mol)	 -10.40±2.61	 -8.65±2.81	 -7.79±2.76	 -4.50±2.01	
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4.3.1 The stability analysis for each system 

Root mean square deviation (RMSD) is commonly used to measure the deviation of the 

system with respect to the starting structure over time. As illustrated in Figure 4.2A, the 

RMSD values from Schrödinger IFD poses deviate a small extent from their starting 

structures during the 300 ns production run. These results illustrate that each system 

reached equilibrium and retaine stable fluctuations during the simulations. The overall 

variation of the RMSD is not remarkable, although slight RMSD changes of each system 

are observed. The RMSD value for the C12-HSL complex is slightly smaller as compared 

to the values of 3-oxo-C12-HSL, C8-HSL, and C4-HSL complexes and substrate-free 

PvdQ. Therefore, the other substrate-protein complexes have more backbone deviation as 

compared to the C12-HSL complex and undergo conformational shifts at varying time 

points that cause relatively high trends in RMSD. Furthermore, the RMSD values of 

active site residues lining the binding pocket and the two knobs were calculated (Figure 

4.3). The results exhibit that the binding of C12-HSL reduces the deviations of the active 

site and the two knobs. These results show that the conformational diversifications of 

different substrate-protein complexes are a direct result of deviations in both internal 

stability and structural dynamics induced upon different ligand binding.  

To further investigate the individual residue flexibility of each substrate-protein complex, 

the root mean square fluctuation (RMSF) of the alpha carbons were measured during the 

300 ns production runs for each complex (Figure 4.2B). From the RMSF plot, it can be 

seen that the overall fluctuations of the C12-HSL complex are slightly lower as compared 

to the other substrate-protein complexes and unliganded PvdQ. It is noticed that there are 

some dramatic fluctuations in the terminal regions (6-7, 166-169) due to the flexibility of 
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the unrestrained termini. In the PvdQ-C4 and PvdQ-C8 complexes, the large fluctuations 

in the surface loop regions at residues 111-126 (residues 280-285 in Figure 4.2B), 131-

143 (residues 300-312 in Figure 4.2B), 212-219 (residues 381-388 in Figure 4.2B), 340-

345 (residues 509-514 in Figure 4.2B), 390-398 (residues 559-567 in Figure 4.2B), and 

428-434 (residues 597-603 in Figure 4.2B) of the PvdQ B chain may affect the stability 

of the complex. The binding of C4-HSL produces the highest fluctuations than the others 

and these large fluctuations could induce ligand instability, and in turn affect the stability 

of the PvdQ complex. Therefore, these results reveal that the binding of different ligands 

influence the fluctuations of the loops located in the two knobs. The movements of those 

loops are likely to affect the conformation of the active site and influence the dynamic 

stability of the entire PvdQ structure.  

To further examine the effects of different ligand binding on PvdQ protein compactness, 

the radius of gyration (Rg) was computed of each complex (Figure 4.2C). Rg is the root 

mean square distance of the atomic positions relative to the center of the mass of the 

protein. The Rg of each complex was calculated to examine the compactness of each 

complex during the entire simulation. The respective mean Rg value for C12-HSL, 3-

oxo-C12-HSL, C8-HSL and C4-HSL complexes are 26.2 ± 0.1 Å, 26.0 ± 0.2 Å, 25.9 ± 

0.2 Å, and 26.0 ± 0.2 Å, which exhibit comparable values to the substrate-free PvdQ with 

a value of 26.0 ± 0.3 Å. These results demonstrate that the structures for the systems 

studied are compact and well folded, and that there is no meaningful change in Rg on 

ligand binding.  
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Figure 4.2 (A) RMSD, (B) RMSF and (C) Rg of substrate-bound and substrate-free 
PvdQ. 
 

 

Figure 4.3 (A) RMSD of active site residues lining the binding pocket. (B) RMSD of 
the two knobs. 
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4.3.2 Hydrogen bond occupancies 

In order to obtain additional insight into the protein-ligand interaction, hydrogen bond 

occupancies were calculated. These are a time ratio of the hydrogen bond existence 

during the entire simulation, which is a widely used method to indicate the frequency of 

the hydrogen bond interactions between the protein and ligand.241 There are plenty of 

hydrogen bonds formed during the 300 ns simulations for each complex. The 

occupancies of hydrogen bond pairs greater than 5% are shown in Figure 4.4. The most 

populated hydrogen bond pairs formed for the C12-HSL complex are HSL(H1) – 

Hisβ23(O), Serβ1(HG) – HSL(O1), Serβ1(H1) – HSL(O1), and Valβ70(H) –HSL(O3), 

with occupancies of 86%, 74%, 49% and 22%, respectively. These hydrogen bonding 

interactions are stable and the residues involved in the bonding play an important role in 

ligand binding. The most populated hydrogen bond pairs formed for the 3-oxo-C12-HSL 

complex are HSL(H1) – Hisβ23(O), Asnβ269(D21) – HSL(O1), Serβ1(H1) – HSL(O1), 

Serβ1(HG) – HSL(O4), Serβ1(HG) – HSL(O1), Hisβ23(H) –HSL(O4), and Serβ1(H1) –

HSL(O4), whose occupancies are 80%, 49%, 48%, 41%, 16%, 9%, and 8%, respectively. 

The 3-oxo-C12-HSL ligand has some additional hydrogen bonds due to the extra 3-oxo 

substituent – Serβ1 and Hisβ23. C8-HSL and C4-HSL form different hydrogen bonding 

patterns since the position to which they bind are far from the catalytic center. C4-HSL 

forms a hydrogen bond with Asnβ57 during the majority of the time in the simulation, 

which permits C4-HSL to diffuse around this position. These differences in the hydrogen 

bond occupancies could be useful in explaining the substrate specificity and helpful for 

further inhibitor design. 
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4.3.3 Distance analysis 

Furthermore, the distance between the Oγ atom of catalytic center Serβ1 and the carbonyl 

carbon atom of the amide bond of each ligand during the 300 ns MD simulations were 

calculated to analyze the contacts and catalytic potential between PvdQ and the various 

ligands (Figure 4.5).  

 

Figure 4.4 Hydrogen bond occupancy for four different ligands. 
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The average distance for C12-HSL binding is 3.40 ± 0.35 Å during the 300 ns MD 

simulation, which is close to the catalytic center Serβ1 and has a higher chance to contact 

with it. Figure 4.6 shows the occurrence probability for different distances of each 

complex during the 300 ns MD simulations. For the C12-HSL complex, 95.5% of the 

measured distances during the simulations are less than 4 Å, which is consistent with the 

catalytic efficiency of PvdQ for this ligand. The mean corresponding distances for 3-oxo-

C12-HSL, C8-HSL and C4-HSL are 4.58 ± 1.13 Å, 7.91 ± 0.80 Å and 9.81 ± 1.26 Å, 

which are beyond hydrogen bonding distance, showing they have a lower probability to 

make contact with the catalytic center and should have lower catalytic efficiencies. This 

is consistent with the observation that PvdQ has different catalytic efficiencies toward 

 
Figure 4.5 The distances between the Oγ atom of catalytic center Serβ1 and the 
carbonyl carbon atom of the amide bond. 

 



	 	116	

different ligands and has highest efficiency with C12-HSL.  

 

 

4.3.4 Buried surface area 

To observe the surface interactions between PvdQ and different ligands, the buried 

surface areas of different ligand complexes were calculated for each complex (Figure 

4.7). C12-HSL exhibits the largest total buried surface area with a mean value of 424.5 

Å2, which includes the largest hydrophobic buried surface area of the ligand among all 

 

Figure 4.6 The occurrence probability for different distances during 300 ns MD 
simulations.  
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ligands. This result demonstrates that the entire acyl tail group of C12-HSL is buried 

inside the hydrophobic binding pocket and the hydrophobic interactions are maintained 

between C12-HSL and the PvdQ protein during the entire simulation. 3-oxo-C12-HSL 

binding reveals the largest hydrophilic buried surface area with a value of 110.0 Å2, 

which indicates that the head group and the extra 3-oxo substituent interact with the polar 

surface area of the PvdQ protein. C8-HSL and C4-HSL have a shorter tail group, which 

is consistent with their buried surface areas.  

 

4.3.5 Principal component analysis (PCA) and free energy landscape (FEL) 

The PCA method is a widely used strategy to investigate dominant motions that lead to 

the global correlated dynamics of protein, induced upon different ligand binding. The 

projections of PC1 and PC2 were calculated to show the conformational distribution. The 

 

Figure 4.7 The buried surface area of different ligands. 
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FEL along the first two principal components was generated to investigate the energetics 

of the different conformations of the complexes sampled during the MD simulation. As 

shown in Figure 4.8, the direction of the motions and the probability of visited 

conformational regions of the complexes differ from each other. The blue region in all 

figures have the lowest Gibbs free energy. The size and shape of FEL vary among the 

different substrate-bound complexes, which indicates the stability differences of each 

complex. The more centralized, deeper, and smaller the blue areas of the “valley”, the 

more stable is the complex.242,243  

As shown in Figure 4.8, the complex of C12-HSL exhibits one small dominated energy 

minimum, which indicates that this complex is stabilized in a minimum energy 

conformational region. 3-oxo-C12-HSL, C8-HSL complexes, and PvdQ protein alone 

(Figure 4.9) mainly visit two energy minima, which demonstrates that these two 

complexes cross two subspaces and transform between distinct conformational states. For 

the C4-HSL complex, one dominated energy minimum spread out over a large portion of 

the free energy space is detected, which indicates that this complex had large 

conformational changes in the surrounding regions. Even though the depth of the 

“valley” of each system is similar to each other, the energy minimum value is positively 

correlated with its stability. The C12-HSL complex has a slightly deeper energy 

minimum with a value of -8.55 kJ/mol as compared to 3-oxo-C12-HSL, C8-HSL, and 

C4-HSL with values of -8.43 kJ/mol, -8.02 kJ/mol, and -8.17 kJ/mol, respectively. 

Therefore, these analyses illustrate that the binding of the C12-HSL compound results in 

a higher stability, which is in accord with previous experimental results.207 

The corresponding minimum energy structure of each complex extracted from the MD 
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simulation trajectories is indicated with arrows. For the C12-HSL complex, there is one 

minimum energy structure. The C12-HSL ligand is tightly bound to the substrate binding 

pocket of the PvdQ protein. The distance between the Oγ atom of the catalytic center 

Serβ1 and the carbonyl carbon atom of the amide bond of C12-HSL is 3.1 Å. The tail 

group forms strong hydrophobic interactions with the surrounding residues in the binding 

pocket. The head group forms hydrogen bonds with the side chain of Serβ1 and backbone 

of Hisβ23 and Valβ70. For the 3-oxo-C12-HSL complex, there are two minimum energy 

structures, which display a close resemblance to one another except for some fluctuations 

in the two knobs. Pheβ24 acts as a gate separating the solvent and the hydrophobic 

binding pocket. For the deeper minimum energy structure, there are more hydrogen 

bonds formed due to the “open” state of Pheβ24. The additional 3-oxo substituent is a 

polar group, which forms a hydrogen bond with the side chain of Serβ1. However, this 

extra 3-oxo substituent blocks the movement of the ligand. Therefore, the tail of 3-oxo-

C12-HSL is not as deeply buried as C12-HSL inside of the hydrophobic binding pocket. 

The distance between the Oγ atom of the catalytic center Serβ1 and the carbonyl carbon 

atom of the amide bond of 3-oxo-C12-HSL is 5.1 Å. For the C8-HSL complex, there are 

also two minimum energy structures, which are similar to each other except for the 

rearrangement of the substrate binding site. The entire structures of the C8-HSL and C4-

HSL ligands are completely buried inside the binding pocket. The polar head group is 

surrounded by unfavorable hydrophobic residues and the shorter tail group contributes to 

the lower hydrophobic energy. The distance between the Oγ atom of the catalytic center 

Serβ1 and the carbonyl carbon atom of the amide bond of C8-HSL and C4-HSL are 7.3 Å 

and 8.9 Å, respectively, which are far beyond hydrogen bonding distance. Previous 
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studies demonstrated that the n-alkylboronic acid inhibitors of PvdQ, C6-B(OH)2 and C8-

B(OH)2, can form tetrahedral adducts and bind to the acyl tail pocket, which was more 

favorable than the shorter ligands. On the other hand, the C2-B(OH)2 and C4-B(OH)2 

inhibitors can form trigonal planar adducts and bind to the catalytic pocket instead of the 

acyl-group binding pocket, which supported the observation that PvdQ prefers substrates 

with longer chains over short ones.208 However, the results from this study show that the 

C4-HSL ligand is located inside the pocket and is stabilized by forming a hydrogen bond 

with the side chain of Asnβ57. The C4-HSL ligand has a short tail group, which is 

flexible, moving around inside the hydrophobic binding pocket. The difference between 

this result and the previous study may be due to the structural differences of the 

substrates. The n-alkylboronic acid inhibitors dose not have the head ring group nor the 

amide bond as compared to the native ligands studied herein. Therefore, the results from 

this study are compatible with the previous study. 
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Figure 4.8 The free energy landscapes were generated by projecting the first two 
principle components of the substrate-bound complexes along with the 
corresponding minimum energy structures. 
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4.3.6 Protein dynamic fingerprint 

In order to investigate the dynamical motions of PvdQ induced upon different ligand 

binding, the protein dynamic fingerprints were calculated. The first principal component 

was used to analyze the protein dynamic fingerprint since it collectively accounts for 

around 30% of all dynamical motions. The direction of the arrow indicates the direction 

of the motion, while the length of the arrow represents the strength of the movement 

(Figure 4.10).  

 

 

Figure 4.9 The free energy landscape was generated by projecting the first two 
principle components of the PvdQ protein.  
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On the basis of the obtained protein dynamic fingerprint shown, the binding with the 

C12-HSL ligand reduces the flexibility of the A and B knobs as compared to the 

unliganded PvdQ and PvdQ bound to other ligands. Therefore, arrangement of the 

binding pocket of PvdQ remains stable. This is also consistent with the RMSF results. In 

the 3-oxo-C12-HSL complex, the knobs A and B both move in an opposite direction and 

closer to each other. These motions push the “gate” Pheβ24 toward its closed state, which 

 

Figure 4.10 Protein dynamic fingerprints for different PvdQ-ligand complexes. The 
direction of the arrow indicates the direction of the motion, while the length of the arrow 
representes the strength of the movement. 
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blocks the entrance of the additional 3-oxo substituent from occupying the binding 

pocket. This supports that this ligand with the extra 3-oxo substituent is not very favored. 

However, in the C8 and C4-HSL complexes, knobs A and B both move in an opposite 

direction and further from each other with larger fluctuations. These motions push the 

“gate” Pheβ24 toward its fully open state, which results in the two ligands being 

completely buried inside the binding pocket. This explains the disfavoring of the ligand 

with the short tail group. Therefore, these cooperative movements of the two knobs of 

PvdQ determine the motions of the binding pocket and are important for correct 

arrangement of the catalytic site toward substrates.  

4.3.7 Residue interaction network and WebPSN analysis  

In the interest of further exploring the structural and functional roles of residues, 

comparative residue interaction network (RIN) analyses were performed using 

representative structures from different substrate-binding complexes.244 The residues with 

high closeness and betweenness centrality are crucial for the stabilization of the protein 

structure and are likely to play important functional roles.231,245-247 In Figure 4.11, the 

RIN results illustrate that residues with high closeness and betweenness centrality values 

are located in the substrate binding pocket. These residues surrounding the substrate are 

responsible for rapid spreading of information and controlling the interactions of the 

nodes. However, the differences of the closeness and betweenness centrality values 

indicate that there exist structural rearrangements in the active sites of different protein-

ligand complexes.  

In order to further analyze these functionally key residues, the first neighbor residues of 
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each ligand are retrieved from the interaction network. As shown in Figure 4.11, it is 

clear that the noncovalent interactions in the active site are different for different 

substrate-binding complexes. C12-HSL substrate has more connection to the surrounding 

residues and forms a more complicated interaction network (nodes: 44, edges: 99) as 

compared to other ligands, 3-oxo-C12-HSL (nodes: 41, edges: 88), C8-HSL (nodes: 34, 

edges: 69), C4-HSL (nodes: 28, edges: 61). The residues Serβ1, Hisβ23, Pheβ24, 

Metβ30, Pheβ32, Leuβ53, Asnβ57, Thrβ69, Valβ70, Asnβ188, and Asnβ269 in the active 

site of the C12-HSL complex are the nodes with the highest number of interactions as 

compared to the other ligands. The van der Waals interaction between Serβ1 and Valβ70, 

Hisβ23 and Glyβ478, Pheβ24 and Serβ480, Metβ30 and Argβ145, Pheβ32 and Asnβ57, 

Leuβ53 and Thrα143, Leuβ53 and Leuα146, Asnβ57 and Hisβ68, Valβ70 and Asnβ269, 

Asnβ188 and Aspβ71 in C12-HSL complex disappear in the other complexes. In the 

C12-HSL complex, Hisβ23 and Asnβ2, Thrβ69 and Asnβ188 form extra hydrogen bond 

interactions. These residues are helpful in information communication and regulating the 

structural rearrangements of the binding pocket.  

The decreased number of connections in the 3-oxo-C12-HSL, C8-HSL, and C4-HSL 

complexes likely indicate that the information spread less and the internal 

communications of these complexes are decreased accordingly. In particular, the 

betweenness centrality values of Asnβ269 and Hisβ23 vary among different complexes, 

which is likely to be important in information communication and biological function of 

the protein. These analyses of the network communications provide additional 

information about the roles of key active residues and indicate that the structural 

rearrangements of the binding pocket affect the binding specificity of the protein.  
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Figure 4.11 RIN of four different ligands binding to the PvdQ. The first neighbor 
residues of each ligand (right figure) are retrieved from the entire interaction network 
(left figure). Magenta, green, red, and blue lines represent hydrogen bond, van der Waals, 
pi-pi stacking interactions, and interaction between closest atoms, respectively. 
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4.3.8 WebPSN analysis 

In order to study the global structural communication pathways of each protein-ligand 

complex, the distinct long-range communication pathways were computed using the 

 
Figure 4.11 (Continued) RIN of four different ligands binding to the PvdQ. The first 
neighbor residues of each ligand (right figure) are retrieved from the entire interaction 
network (left figure). Magenta, green, red, and blue lines represent hydrogen bond, van 
der Waals, pi-pi stacking interactions, and interaction between closest atoms, 
respectively. 
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WebPSN server. In Figure 4.12, the meta-pathways of each complex demonstrate the 

potential roles of some key residues and the regions that participated in the stability of the 

protein.  

The C12-HSL complex system has a more complicated global communication pathway, 

which spreads out over the two knob regions of the protein structure and connects the two 

chains together. The C12-HSL ligand binding induces changes in the paths resulting in a 

gain of nodes and links as compared to others, which shows greater signal propagation 

and potentially results in the ability to minimize the motions of the two knobs. The nodes 

participating in the most populated communication pathway are shown in Figure 4.12. 

The following nodes are members of the most populated communication pathway: 

Pheβ370-Trpβ436-Glnβ440-Ileβ451-Valβ475-Trpβ26-Pheβ500-Leuβ498-Glnβ502-

Glnβ34-Tyrβ481-Alaβ48-Pheβ32-Pheβ24-Metβ30-Argα145-Gluα49-Thrα52-Argα57. 

Residues Metβ30, Tyrβ33, Pheβ24 and Pheβ32 are identified as the hubs, which connect 

the A and B chains together and make links between nodes on the two knobs and the 

active site. The recurrent residues Trpβ436, Glnβ440, Ileβ451, Valβ475, Trpβ26, 

Pheβ500 and Glnβ502 are participating in many considered pathways and helpful for 

information transfer through the protein. 

Communication pathways of the 3-oxo-C12-HSL, C8-HSL, and C4-HSL complexes 

mainly concentrate in the binding site and lose the pathways to the two knobs, which may 

allow more perturbations in the two knobs upon binding these ligands. For the 3-oxo-

C12-HSL complex, it shares some of the same residues in the most populated 

communication pathway with the C12-HSL complex. However, the communication 

pathway of the 3-oxo-C12-HSL complex is shorter than that for the C12-HSL complex 
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and mainly involves residues of the B chain. Residues Glnβ502, Glnβ34, Tyrβ481, 

Alaβ48, Pheβ24, Metβ30, Argα145, Gluα49, Thrα52, and Argα57 that are peculiar to the 

C12-HSL complex in signal propagation disappear in the 3-oxo-C12-HSL complex. The 

following residues are involved in a large number of the communication paths in the 3-

oxo-C12-HSL complex and appear to play a large role in structural communication: 

Trpβ26, Pheβ32, Leuβ50, Asnβ57, Proβ185, Trpβl62, and Pheβ500. For the most 

populated communication pathway of the C8-HSL complex, it shares the largest number 

of residues with the 3-oxo-C12-HSL complex. Some recurrent nodes, such as Thrβ479, 

Hisβ23, Trpβ436, Glnβ440, Ileβ464, Argβ297, Asnβ269, Valβ70, Trpβ186, Aspβ150, 

Asnβ152, Leuβ153, and Argβ144 are important in the C8-HSL complex communication 

system. In both the 3-oxo-C12-HSL and C8-HSL complex systems, the communication 

pathways mainly focus on the residues in the B chain, while residues of the A chain are 

almost not involved in the pathways.  

The communication pathway of the C4-HSL complex shares fewer residues with the 

other complexes. It forms a short and different communication pathway as compared to 

others. Residues Ileβ451, Valβ475, Trpβ26, Pheβ500, Tyrβ33, Proα20, Trpα14, Alaα39, 

Argα40, and Pheα114 play a major part in these communications. The redistributions of 

these nodes cause the populated communication pathways to involve the two chains 

together and form a completely different binding mode for the C4-HSL ligand. The 

communication pathways of each complex demonstrate the structural perturbation caused 

by different ligand binding and potential roles of some apparently key residues.  
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4.3.9 Binding free energy analysis  

As a complement to the binding interactions and dynamic motions discussed above, MM-

PBSA was used to calculate the binding free energy in order to more deeply understand 

the energetic changes of PvdQ induced upon different ligand binding (Table 4.4). Van 

der Waals (ΔEvdw) and electrostatic energies (ΔEele) are favorable for complex formation, 

 

Figure 4.12 Global meta paths of each PvdQ complex achieved by WebPSN and the 
most populated communication pathways for different complexes. Each spherical 
node is centered on the Cα-atom of one residue, whose diameter is proportional to the 
number of links generated by the node. The link thickness is also proportional to link 
frequencies in the communication paths. The red spherical nodes represent the most 
populated nodes. 
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while polar solvation energy (ΔGpol) and entropy (-TΔS) impair binding free energy. The 

SASA energy (ΔGnonpol) makes a slight favorable contribution to the total binding free 

energy. The binding of C12-HSL has the most favorable binding free energy with a value 

of -12.74 ± 2.17 kcal/mol, which is consistent with the experimental inhibitor binding 

free energy.208 The binding free energy of 3-oxo-C12-HSL is unfavorable as compared to 

that for C12-HSL due to the extra 3-oxo group which changes the van der Waals and 

polar solvation energy contributions. The change in the electrostatic energy of 3-oxo-

C12-HSL may be due to the additional hydrogen bonds between PvdQ and the ligand: 

Serβ1(HG) – HSL(O4), Hisβ23(H) – HSL(O4), and Serβ1(H1) – HSL(O4). C8-HSL and 

C4-HSL have the least favorable binding free energies, which are consistent with their 

low binding affinity with the PvdQ protein.  

From the analysis of the individual binding energy components, it is obvious that the van 

der Waals energy plays a primary driving role in the total binding free energy. The 

previous inhibitor affinity increased by -1.1 kcal/mol/CH2, while the predicted binding 

free energy of the bacterial ligand increases by -0.9 kcal/mol/CH2. The difference in the 

binding free energy is due to the enhanced affinity of the inhibitor, which is more potent 

than structurally similar fatty acids.208 These results demonstrate that the computationally 

predicted binding free energy of each PvdQ complex is in agreement with the previous 

experimental results.208 A good correlation of predicted binding free energy with N-acyl 

chain length is obtained with a correlation coefficient value of 0.897 (Figure 4.13).  
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In order to determine the contribution of each individual residue, the per-residue 

decomposition energy analysis of the full binding free energy was calculated (Figure 

4.14). The per-residue decomposition energy analysis contains all parts of the binding 

Table 4.4 Distribution of the various interaction energies of PvdQ-ligand complexes  

MM-PBSA	(kcal/mol)	

	 C12-HSL	 3-oxo-C12-HSL	 C8-HSL	 C4-HSL	

ΔEvdw	 -42.76	±	2.53	 -39.96	±	3.25	 -36.80	±	1.82	 -25.17	±	2.53	

ΔEele	 -13.47	±	2.91	 -15.18	±	4.12	 -7.52	±	1.89	 -8.68	±	2.44	

ΔGpol	 25.73	±	2.55	 29.07	±	3.66	 22.96	±	1.98	 18.29	±	2.39	

ΔGnonpol	 -4.09	±	0.20	 -4.16	±	0.23	 -3.65	±	0.18	 -2.67	±	0.19	

-TΔS	 21.85±1.2	 19.39±2.1	 15.38±1.5	 12.89±2.0	

ΔGbind	 -12.74	±2.17	 -10.84	±2.50	 -9.63	±2.11	 -5.34	±2.33	
 

 

Figure 4.13 Calculated binding free energy with n-acyl chain length. 
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free energy except for the entropy. Residues with a positive interaction energy value 

impair the binding and vice versa. In this study, in order to focus on the most critical 

interactions, residues are regarded as playing a key role in substrate binding if their 

binding free energy is more favorable than -2 kcal/mol.242-248 There are more key residues 

favoring the ligand binding in the C12-HSL complex than others. The per-residue 

decomposition energy results show that Leuα146, Leuα147, Hisβ23, Pheβ24, Leuβ50, 

Valβ70, Trpβ162, Trpβ186, and Valβ187 make favorable contributions to the binding of 

the ligands. These key residues are crucial to ligand binding. Residues Trpβ186 and 

Pheβ24 are the top two contributors for binding in the C12-HSL and 3-oxo-C12-HSL 

complexes. Trpβ186 is a key residue lining the binding pocket and the movement of the 

Trpβ186 residue controlls the size the binding pocket. Pheβ24 acts as a gate to separate 

the solvent and hydrophobic binding pocket. The closed state of Pheβ24 blocks the 

entrance of 3-oxo-C12-HSL ligand in the binding pocket and the fully open state of 

Pheβ24 allows the C8-HSL and C4-HSL ligands to be completely buried inside the 

binding pocket. Valβ70 is the oxyanion hole residue that stabilizes the intermediate 

catalytic state, Hisβ23 forms polar interactions with the ligand, and Leuα146 is a key 

residue that moves upon ligand binding. The catalytic center Serβ1 plus residues Asnβ57 

and Asnβ269 impair the ligand binding to different extents, which is consistent with the 

low catalytic efficiency of the PvdQ enzyme. In Figure 4.15, the extra hydrophilic 3-oxo 

substituent of 3-oxo-C12-HSL interacts with surrounding hydrophilic residues, Serβ1 and 

Hisβ23, and is also repelled by the hydrophobic residues lining the tail binding pocket. 

Therefore, the 3-oxo-C12-HSL ligand cannot deeply bury itself into the hydrophobic 

substrate binding pocket. The short acyl-chains of the C8-HSL and C4-HSL are 
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responsible for the flexibility of these two ligands; therefore, they form different 

interactional patterns with the surrounding residues. The different residue contributions to 

the binding of C8-HSL and C4-HSL also demonstrate that C8-HSL and C4-HSL 

complexes have different binding positions. The binding free energy and per-residue 

decomposition energy analysis are in agreement with binding specificity and previous 

experimental results. 

 

 

Figure 4.14 Per-residue contribution to the binding free energy of PvdQ in complex 
with different ligands. Residues with a positive interaction energy value impair the 
binding and vice versa. Residues are regarded as playing a key role in substrate binding if 
their binding free energy is more favorable than -2 kcal/mol, which is represented by the 
dashed line. 
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4.4 Conclusions 

PvdQ plays an important role in hydrolyzing the AHL ligands, inhibiting quorum sensing 

and thereby reducing the virulence gene expression and biofilm formation. It is essential 

to study the structure-dynamic-function relationship of PvdQ with different ligands if we 

want to improve the catalytic efficiency of PvdQ or design new PvdQ inhibitors. The 

results of MD simulations from three different docking poses indicated consistent 

interactions between the protein and ligands. Each of the following residues, Serβ1, 

Hisβ23, Pheβ24, Metβ30, Pheβ32, Leuβ50, Asnβ57, Thrβ69, Valβ70, Trpβ162, Trpβ186, 

Asnβ269, Argβ297, and Leuα146 played different key roles in substrate binding 

 

Figure 4.15 The hydrophobicity surface of the substrate binding pocket. Green is the 
most hydrophilic, while purple is the most hydrophobic (from green to white to purple). 
 



	 	136	

specificity. The global dynamic fingerprint differences of each complex demonstrated 

that the cooperative movements of the two knobs of PvdQ regulated the motions of the 

binding pocket and were crucial for correct arrangement of the catalytic site toward 

substrates. The RIN analysis of each system demonstrated that the C12-HSL substrate 

formed more connections with surrounding residues as compared to other substrates and 

the same key residues played a major role in information communication and regulating 

the structural rearrangements of the binding pocket. The residue communication 

pathways were predicted for different protein-ligand complexes, which indicated a clear 

change in the structural communication upon binding of different ligands. The binding of 

a favorable ligand facilitated the structural communication between the two knobs and 

the active site. While the binding of the other ligands tended to impair communication 

between the two knobs and the active site and led to a catalytically inefficient binding 

site.  

The binding of C12-HSL stabilized the PvdQ protein in a minimum energy conformation 

and produced the lowest binding free energy. The binding affinity was positively 

correlated with the acyl chain length. The binding free energy calculations of different 

AHLs were consistent with previous experimental data of the inhibitors. There were polar 

interactions from the 3-oxo substituent with surrounding residues Serβ1 and Hisβ23 in 

the lactone head binding pocket, but these interactions of the extra 3-oxo substituent and 

the closed state of the “gate” Pheβ24 blocked the 3-oxo-C12-HSL from entering into the 

tail binding pocket. The least favorable ligand was C4-HSL due to its small size and easy 

diffusion while buried inside the tail binding pocket and was analogous to the C8-HSL 

binding result from Koch’s study.205 Our data suggested that this buried configuration of 
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C4-HSL was accessible due to the stabilization by residue Asnβ57. These analyses 

explained why the PvdQ enzyme does not prefer to hydrolyze the two major 

endogenously generated communication molecules of P. aeruginosa, C4-AHL or 3-oxo-

C12-AHL. This study provided a molecular basis for better understanding the structure-

dynamic-function relationship of the PvdQ enzyme and demonstrated determinants of 

substrate recognition and discrimination.  
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Chapter 5 Future directions 

The PvdQ enzyme has different preferences for N-acyl substrates with different acyl 

chain lengths and substituents. The results from this study provides a molecular 

foundation for better understanding the structure-dynamic-function relationship of the 

PvdQ protein and demonstrates the determinants of different ligand recognition and 

discrimination. Our results indicated that each of the following residues, Serβ1, Hisβ23, 

Pheβ24, Metβ30, Pheβ32, Leuβ50, Asnβ57, Thrβ69, Valβ70, Trpβ162, Trpβ186, 

Asnβ269, Argβ297, and Leuα146 play different key roles in substrate binding specificity. 

Our work also showed that the closed state of Pheβ24 blocks the entrance of the 3-oxo-

C12-HSL ligand in the binding pocket while the fully open state of Pheβ24 allows the 

C8-HSL and C4-HSL ligands to be completely buried inside the binding pocket. 

Therefore, further analysis of the functional effects of mutations at specific positions will 

aid in obtaining more information to improve the catalytic efficiency of PvdQ. Our study 

also provided a platform to develop inhibitors to limit the function of PvdQ, and design a 

more efficient and promiscuous PvdQ to inhibit the growth of specific or a wide range of 

bacteria. 

 

Insight into the residue Serβ1 mutations to improve the catalytic efficiency of the 

PvdQ. 

As discussed in this study, residue Serβ1 of the PvdQ protein is the nucleophilic catalytic 

residue, which can deprotonate its own hydroxyl group to activate its catalytic role. 
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However, PvdQ does not have strong catalytic efficiency. Therefore, it would be 

innovative to mutate the catalytic center Serβ1 and/or residues in the vicinity to improve 

the catalytic efficiency. We hypothesize that the mutation of the Serβ1 to Cysβ1 would 

improve the catalytic efficiency of the N-terminal nucleophile. The side chain of Serβ1 

must be deprotonated by its own N-terminal amine. Then the activated Serβ1 nucleophile 

attacks the carbonyl carbon of the scissile bond of the substrate and results in the 

formation of the first tetrahedral transition state and acyl-enzyme intermediate. Cysteine, 

with its more acidic side chain, is more easily deprotonated than serine. Cysteine occurs 

in various enzymes where it is actively involved in chemical reactions, such as, viral C3 

protease and papain super-families. The mutation of the Serβ1 into Cysβ1 would make 

the N-terminus more acidic before substrate binding and improve the nucleophilic 

catalysis. 

Investigating the impact of residue Pheβ24 mutations on the binding efficiency of 

PvdQ protein toward different ligands. 

This study provided a molecular basis for design of more effecient PvdQ that can 

hydrolyze the ligands with 3-oxo substituent. Residue Pheβ24 acts as a gate to separate 

the solvent from the hydrophobic binding pocket. Our results indicated that the closed 

state of Pheβ24 blocks the entrance of 3-oxo-C12-HSL ligand into the binding pocket. It 

would be interesting to study the effect of Pheβ24 mutation on the binding efficiency of 

PvdQ toward different ligands. Residue Pheβ24 can be selected to be substituted by all 

other 19 possible amino acids though in silico mutagenesis. After energy minimization, 

the new models will be used to dock different ligands to generate energetically favorable 
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docked poses for further analysis. Large-scale change of the side chain of Pheβ24 could 

make some changes of the size of the entrance of the binding pocket and binding property 

of the PvdQ protein.  

Study the impact of PvdQ binding sites mutations on the size of the binding pocket 

to accommodate different ligands.  

Our results showed that the entire structures of the C8-HSL and C4-HSL ligands were 

completely buried inside the binding pocket. The polar head group was surrounded by 

unfavorable hydrophobic residues and the shorter tail group contributed to the lower 

hydrophobic energy. The distance between the Oγ atom of the catalytic center Serβ1 and 

the carbonyl carbon atom of the amide bond of C8-HSL and C4-HSL are far beyond 

hydrogen bonding distance. It is meaningful to study the mutations of the binding sites to 

change the size of the binding pocket to accommodate different sizes of ligands. The 

modification of the shape and electrostatics of each binding site residues to adapt the 

ligand binding would shed some light on improving the catalytic efficiency of PvdQ 

protein toward different ligands.  

Develop inhibitors to block PvdQ action in iron acquisition 

Since PvdQ plays a key role in siderophore biosynthesis in order to maintain iron 

homeostasis, it could be beneficial to develop inhibitors to block PvdQ action in order to 

disrupt iron acquisition, thereby impairing bacterial viability. The PvdQ enzyme tolerates 

different head groups but is more selective for the length and functionalization of the acyl 

chain group. Therefore, a structure-based drug design method can be used to discover and 

optimize new inhibitors. This work demonstrated that the PvdQ enzyme prefers ligands 
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with long N-acyl chain group. Modifying the head group of the PvdQ ligand while 

keeping the length of the acyl tail group will provide some new clues toward structure-

based drug design. Therefore, the design new inhibitors of PvdQ that can inhibit the iron 

acquisition and bacterial growth appears promising and can be accomplished by using the 

molecular information obtained from this study.  

Design of a functional molecule to inhibit bacterial growth. 

It is beneficial to design a functional organic catalyst to degrade the quorum signaling 

molecules. We hypothesize that the organic catalyst mimic that has a similar functional 

group arrangement as the PvdQ enzyme would hydrolyze the quorum signaling 

molecules. The functional groups should include a nucleophilic group, a general base to 

promote the intermediate state, and a general acid to stabilize the protonated general base, 

thereby protonating the leaving group and leading to an acyl-enzyme intermediate. 

Further cleavage of the acyl-enzyme intermediate can be mediated by water acting as the 

attacking nucleophile; then completing the process with regeneration of the artificial 

enzyme. Therefore, it is compelling to incorporate these functional groups, which have 

the similar function and orientation with the active sites of the PvdQ protein, on a 

potential binding scaffold, such as a modified cyclodextrin or crown ether. Then the 

starting structure can be obtained followed by an energy minimization procedure. The 

molecular docking and MD simulations can be used to calculate the binding energy and 

characterize the specific interaction to acquire the stable states in the active site. The 

enzyme-substrate pose needs to be scored and refined. The top scoring poses should be 

re-docked and mutations are needed to enhance the catalytic efficiency. The above 
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procedures need to be employed iteratively to obtain the final optimized molecular 

structure. The final organic AHL degradation catalyst will be made and tested with 

bacterial signaling molecules, which can be applied in a water system, hospital settings, 

and the International Space Station.  
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