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AB STRAC

Let f bo. o mo no t on e s implicial function from a 

triangulated combinatorial n- sphere. Sn onto a triangulated, 

combinatorial n-nanifold Mn. It is shovzn that f is point- 

like if and only if f 1 (v) is algebraically pn / 2^] - c onne c t cd 

for each vertex v of Hn, provided that n-'3. The. proof is 

accomplished along lines xzhich it is hoped vzill lead to a 

proof for othe.j dimensions, perhaps for all n, in al Ic.rv t 

a modified version of the statement.

Several related conjectures are investigated by show

ing that some of the. lemmas used to prove the main theor<"" 

are. true in a .1 .1. dimensions, or at J.east in all but tro. The 

particular difficulties encountered by the author in trying 

to prove these conjectures are explained.
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CHAPTER ]

INTRODL'CT'j OK AND DF.riNJ j. IONS

J . IMTP.ODUCTION

In June, 1962, Ross Finney [5] proved that if there

exists a pointlike, simplicial mapping of M onto T, where

M is a triangulated 3-sphore and. T is a triangulated topo

logical space, then T is a 3-sphere. Following this result,

C. L. Wiginton [20j established that if f is a monotone 

simplicial mapping from a triangulated 3-sphere onto a 3- 

manifold Md, then if the inverse image of each vortex is 

simply connected, M3 is a 3-sphere.

In hopes that a similar result might, be. developed for 

higher dimensions, the author has attempted to extend

Wigin ton's main theorem to higher dimensions. The result of 

this effort is a new proof of this theorem in chapter IV and 

the discussion of the related conjectures in chapter V.

II. DEFINITIONS

Def i. n i. t i o n ] . .1 . A.n n-ce 11 is a topological space

homeomorphic to

£J-521£‘ r c‘- ILlP-L11? c

st a_n d nr d n - b a 1 j.

either In - { (x , . . . , x )CEn50<x.<l}, the 
i n — i—

T1
or Bn - { (x , . , . , x )CEn .3 Lx . 2< 1} , the 

1 n i^1"
An n-cel] is also referred to as an n-ball.

fl r on g ti o u I. this paper a bracketed number refers to the 
c.r. r e s p ond i. u g r< lei. in the- b i b .1 i og r a pli y .



I) ef a n i t j cm J.. 2 . An n-spber_e is a topological space 
ni l

hor.i e.O'iioiTpli ic to Sn { (x , ...5x )C E*  ""1 1.)Zx . 2 -1 ] , the
i ni-1 . _ ii-i

s taiida_r d np;_s phor e .

I)_cj? i_i.pij: ioji^ 1-_3 . An n - in a n i. f o 1 d It11 is a separable 

metric space such that all its points have a neighborhood 

h omeomor ]>h ic to either E or b . An 3. n tori or j)_o.rilt or ?i is 

a point having a neighborhood homeomorphic to En and a 

boundary jpoint is a point having no neighborhood bow eoniorph ic 

to Er\ The i n t e r i o r of i. n t MU, is the union of all r bo 

interior points of Mn. The b oun d ary of Mn, 2id_^£n or Tl_“, Is 

the complement in Mn of int Mn.

Definition 1.4. A manifold M is called closed if it

is compact and M = 0, bounded if it is compact and M 4- 4-, open 

i.f it is not compact and M -• 0.

Definition 1.5. If A i.s a closed subset of an n- 

manifold Mn, then a component of Mr-A is called a complemen- 

tary dom_aj.n of A.

Definition 1.6. A subset A of an n-sphere Sn is 

j)o in t like if Sn--A is honeomor ph ic to En. A mapping g of an 

n-sphere onto a space Y is poin11ike if the set g 1 (y) is 

point like for each yCY•

D e f i n i t i o n 1.7. A continuous function f:M->G is said 

to be rnonotono if the inverse image of each gCG is connected.

Definition 1.8. A subset. A of N, where N is an

n-manif old , is ce.ll.ul_ar if there exists a sequence of n-cells
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^C.)*  such that A-CIC . av.cl for each. 1,0., C int C . 
i i i-l-i " i

DeX^ £ Jl i_° ’2__1-9 • An ii-^j o;; A(fi>_c') , where AQE^ ,

p>n, is the convex hull of (n-!l) linearly independent, points, 

called verti cos of A. The convex hull of any (k-H) suh- 

collection of these, vertices is a simplex called a k-face 

of A, where k---1,0,1 , . . . , n. Thus the empty set is a (-1) 

face of A, and A<A. If B is a. face of A, tills fact is 

denoted by B,<A .

D cf ini t i on 1.10 . The ,i_°An Oj<- sinplexnf A .ind B , 

written AD, is the. simplex spanned by the vertices cf A ;.nd 

B taken together. If this collection of vertices is not 

linearly independent, the join is not defined, and A o.nd B 

are said to be not joinab1e. Otherwise, they are joiuablo’ 

_D ef i n i t_i_on 1.1.1 . A Xif1 Lkf' s i^b-1 i ci_a 1 com p 1. ex , o r 

comp 1 ex , K in E^’ is a finite collection of simplexes such 

that:

(1) ACK and B<A ^^r-A-BCK

(2) ACK and BCK —f--(ACiB)<A and

(AnB)<B

Definition 1.12. A poly lie dr on | K | is the point.--set 

determined from a complex K by taking the union, of tbs 

simplexes in K. A topology on |k| is the. relative topology 

inherited from .

Definition 1 . 1.3 . A t_r if[n_g u Ll °23 CfL a 0 D 0 0 g i c a J. 

sjoace is a finite sinpJi.c.ial couplex K such that the. poly-



hcdron |k| is bom2or.orpl) ic. to the topolo^icol space. A 

triangulation of a topological space is often called simply 

a _t r i a n g u l_a t_Cjd t. o ]■> o 1 o g s_p a c e .

D c f i n i t J. o n 1.14. If K and L are complexes, then a 

s im p 1 i c 1 a 1 waj) or s io p 11 c i a 1 function f :!<->-L is a function

(1) f is continuous

(2) f maps vertices to vertices, and xzhenever 

{vo,...,v } span a simplex of K, then

{f(v ) , . . . , f(v ) } span a simplex of I,
P ii

(3) f is barycentric; that is, if a-Z t.v., then
n i = l

f(a)=Z t.f(v.) 
i = l 1 1

21 ef ]j_i itjion _1.15. If A is a simplex of the conplcx

K, then the star of A in If denoted sjXA,K) , is the sub comp]

of K made up of all. the simplexes of K having A as a face 

together with all their faces. The li^nk epf A i_n K, denoted 

l.k_(_A_,_K)_ it; the subcor.p 1 ex of K made up of all the simplexes 

of K in st(A,K) which do not intersect A.

Definition 1.16. If A is a k-dimensional simplex 

and ocIaI, where {v.}. ,, , are the vertices of A^ and cx = 
k 1 k
Z t.v. so that t.c [0,1] and Z t. = 1, then the {t.} are 
i=01 1 1 i=0 1 1
called barycentric coordinates of a. In particular, the

point A , which has barycentric coordinates 

that t. = l/k+l for all j is called the baj:y center 

j = O,k 
of Ak

such
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Kn is flic cl 5 m. cns 1 on of the highcist djncmdunal siipplcx of 

Kn.

D.e_y2iiti,qn Idl.8. If K and L are coniplexcs, 1j is a 

s a b cl i v i s i o n of K if |k| = |l| and every .simplex of L lies in 

a siiuplcx of K. 
o

Def inJ Lion 1.19. If A is a simplex, the boundary A

of A is the complex consisting of all the proper face;; of

A. If Kn is a complex vzhich is h^iiop^eji cqus_; that is, r.jh1 

up of n -- s imp 1 ex es and their faces, the bound_aj2X 1\T1 !-s

the (n - 1) - c omp lex made up of the (n -1) - s imp lexes of the 
o

boundary h. of each of the n - dinieus i on al simplexes A.CK 

(except for those (n-1)-simplexes which are faces of an-even 

number of n-simplexes of Kn) plus all their faces.

Def i n i ti on 1.20. If K and L are complexes, then the 

J-Ojin of K and L, written KL, is the complex {AB3A.CK, B€L}, 

where AB is defined for all such A and B.

Definition 1.21. Let A be a simplex of the complex K 

and a be a point in int A. The construction of L from K 
o

such that L-[K-s t (A , K) lUcv.Alk (A , K) is called an elementary 

starring of K at a, written K->L. A stellar subdivision of

K, denoted cK, is any subdivision of K obtained by a finite 

sequence of elementary starrings.

DefinitionA derived subdivision of a complex

K is a subdivision obtained by starring all the simplexes of

K in soi'.e order such that if B<A, then A is starred before B.
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If the starring is done at the barycenter of each simplex, 

the subdivision is said to he bj?i_re c n L: i.i c d e r 1 v e d , or sin.pdy 

b a r y c c. n t r i c . The n-th such construction is called the n--th 

d er i v e.d subdiv 1 s:i on of K.

Definition J. . 2 3 . A function f from a cc>mp.1ex K. onto 

a comp] ex L is called piece-xri se linear (pwl) if there exists 

subdivisions c-Jf and (?>L relative to which f is simplicial.

Def iu i t ion 1.24. A sirplicial mapping f from a 

coripJc:: k onto a complex L such that f is a boneome::phi.sv. is 

called an i s cm or ph i sw , and K is said to be. i s omo r ]■> i, r. to L, 

denoted . If f is only a piece--wi.se. linear bomeunorphism ,  

then we write K~L, and say that K and L are combinat o r i a11y 

equivalent.

Definition 1_.J?_5 . A c_or_b_ii) p t o r- i n--ball is a cor-plex

pwl hoinec’BOrpb.ic to the triangulated standard n-ball En. A 

combinatoria1 n- sphere is a complex pwl homeomorphic to the 

triangulated standard n-sphere Sn.

Definition 1.26. A combi na tori a1 n-mani fold is a 

homogeneous n-dimensiona1 complex K such that for any vertex 

v of K, lk(v,K) is a combinatorial (n-l)-ball if vCK and a 

combinatorial (n-l)-sphere if v^K.

Definition 1.27. Suppose K is a complex such that 

K--LUA, whore A is a simpler:, A-aB, and JZlA=-aB (i.e., the 

face B opposite the vertex a in A is a "free1’ face, of the 

simplex A ink), then the operation of going from the complex 
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K to the cuuplex L=K-A-B (recoil that rcnwv.in^ a c.ii.iplcx 

frorn a coapJex does not rc'n.ux-e all its faces), is crJlcd an 

e 1 c T. । c- n t a r y _( s 1 i_c c ojlj a p & i. iyy , denote a RXL . The 

inverse opcrction, denoted Lz'K, is called an _el£-|;.i^_ii_tary 

(s iiii]2.1j_cial)_ exp ans ion . Finite sequences of either are 

called, respectively, ( s iji n 1 i.ci a_l) coil aps inps and ( s im pl i ci a 1) 

exp a n n i ons . If K collapses to a vertex vCK, v/e say K is 

c_oll_ape , and denote this by K'aO .

I) e £ i n 11 i on 1.28. A s ub comp .lex. L of the coiiplex k is 

cojnp.lcte or in K if, for every simplex At-K vzitli al !.

vertices in I,, then ACL . •

Definition 1.29. If is a complex such that 

K=KlJBn, where Bn is a combinatorial ball and BnQ K 
1 o o

B11 Br , then the operation of goinp from to K^, derict.ed 

by Kn->K , is called an el.cmentary geometrical collapsing.

The inverse operation K ->K, is termed an elementary

geonetrical expansion. Finite sequences of either are called, 

respectively, gcome t r i c? 1 collaus rii/ys and geom et r i ca 1

k expansions. If K has dimension n, and the only B used are 

such that k“n, then the collapsings (or expansions) are 

called rygular.

Definition 1.30. If K is a complex and Xc[k|, then 

N (X , K) = { A£ZK3| s t (A , K) |nXy'0} is called the ( c. 1 o s e d) s imp 11 ci a 1 

_ne_ighb.p_rh ood of X in K . Notice that N (X , K) is the complex 

formed by taking all simplexes of K which intersect X, plus 

all their faces.
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nji o it__l ._3_1. If L is a s ul> c. oiiip 1 o; of K, then S1 K 

will denote tbr. barycentric subdivision obtained by stairin^ 

the siviplexes of K-L in order of de cr o as ing d imens I c a.

2l91f.Anf t_j °’J_? --L^. If K is a svbcoikplex of a coidbina- 

torial manifold Mn, then by a regular neigbborhood of K in M 

is meant a subconplex such tlia.t:

(1) U(K,K) is a combinatorial n-manifold.

(2) -U(K,N) collapses geo;netrically to K<

Defin 1 11 on 1.33. Suppose ACUCB, whe.ro U is epon Lit P.

Then U is called a cartesian j_irod_xic.t Tie^glib-Orh^0^ A If 

there, exists a homeomorplii sin h: Ax(-]sl)->-u such that

h (x x {0}) , for all x-£A. If there exists such a U, A is said

to be bl collared by U.

D e f inij' i_o n _1 ._34 . If lin is a cor.b iuator ial n-imul fold 

with XC|lln| such that under some subdivision ex of Mn there 

exists a KCcx'ir' where X--|k|, then X is called a corob i n a t o r ial. 

s ub s p a ce of Mn.

D e f ini 11 on 1 ,35. A combinatorial n-manifold Mn is

said to be al g eb ra i cally g-- connected if the inclusion mapping 

of every combinatorial subspace X^C.|Mn|, k_< g, into Mn is 

homotopic to a constant.

Definition 1.36. A combinatorial n-manifold Mn is said 

to be geoi.ie trie, ally g - c o n n c. c t e d if every g-d im ens i onal 

combinatorial subspace of Mn is contained in a combinatorial 

n-ball of Mn.
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. Pcf_iriy.on 1 .37. A coii'b j nator:i a 1 closed n-mi'iii £c>.l d 

is called a h or.’ o t o p y S)plier_e if it is connected and tilgebrai- 

cally [n/2] -connected, vherc. [xj is the greatest integer 

less than or equa1 to x.

D e f i n 11 i o n _1.38. A simplex A^ is said to be o r i. c n t c <1 

If some arbitrary fixed ordering of its vertices has been 

dc-.tei mined. The equivalence class of even permutations of 

this fixed ordering is tlie p^ositively oricntc_d s^impler > 

denoted +aP and the equivalence class of odd perr.u tc t i.ons of 

the ordering is called the n e g£ t ppcl_y c_ri o.irte_d srlmpriiy. An 

o 3" i e n ted c o m yj 1 e x is a complex which has all oriented 

simp 1 exes.

Definition 1.39. Let K denote an oriented corp]ex 

and G denote an arbitrary abelian group. Then an m-dinersional 

chai.n oji the complex K wi th coefficients in the ££oup G 

is a function c on the oriented m~simp Lexes of K withm 
values in G such that if c (-LAm)=g, gCG, then c (-Am) = 

m m

-g. The collection of all such m-d iipe ns ional chains on K 

will be denoted by C (K,G). Note: Addition can be defined—m-----------
by (nc + _c ) (Am)« nc (Am)+ c (Am), where the addition on 

1 m 2 m 1 in 2 m

the right is the group addition in G, and that if G is the 

integers mod2, there is no necessity to have oriented 

simplexes. Cm(K,C) forms a commutative group under the 

described addition.

De f ini t ion 1. <-\ 0 . Let K be an oriented copp.lex. There
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is rGf.ociated x.'ith every pair of sj.r.ip.1 c:<ea A™ and B

vhere A and B differ in dliuenslon by 1, an 1 n c i d c- p. c e nmiLtn: 

def j,ncd as foilovrs :

(1) b'-1] . 0, If b"-1 r Am

(2) [A'11, I!1’"1] . +1, If B"'-1 < A™

In order to decide in (2) which sign to use, consider the 

vertices of 1>L' . They mist he the. sane as the vertices of

A , with say v. left out. If that particular or. d cr 1 ng is

+B and (v . , v y; v ) :is -l-A. , then gA , rl I -r o i m
■11; if it is -7.™, then La™, B1'1 g] = -1 . If that particular

ordering is --B™ and (v . ,v yfv ) is l-A111, then
° ' x ’ o i m

f. m „m--l"l x . r ■ • A,n Pa1"11 ,1[_A , B J -.1. ; if nt is -A , then LA , B J = +1.

])ef f.nf. Lion 1 .Al. An ef.cnc n tary m-che in on )’ is - o

in-chain c such that c (iA™) =• -l-g for sonic particular 
lu in — - o

siiiiplcx A1'Ch; and c (BW) - 0, fox any other m-siwplex of K.

Thus any m-c.1i?in may be vritten as the formal linear combina

tion of elementary’ in -chains ; m
A 111 VA . , where g.i r

m

is definedbou n d a r y

b

We further de-i s th e incidence number.wh e. r e

fine:

ni

j. ji

(-i-a/1)

d(go So

i

B m-l
1

B.m-L

lLA m-]L o
< Ao

Definition 1.^2. The

[Ao’r‘

pi . B .
1



.1J

])cf ijil tn on 1 -J’. 3 . If r.i>0 $ then an r.- clijncns ional _cy_c]_c

on K with cocfficientf- in G is a chain z in 0 (K.G) such---- --- ---------—-------------------------- ------ -- ra m

that = 0. The m- cl inion s i ona j c^cle ji,r ou_p of K vz i t h co-

ef f i ci.on t.s in, G is the- coll ection of such in-cycles together 

with the comnutative addition previously noted and is written

Z (K,G).—m--------- - —

Definition 1.44. An m-boundarv is an ra-chain b if------- -- ----- -—m
there exists an (ml-l)-chain C , in 0 ,, (K.G) such that m-H ni+1

o(C , ,) ~ b . The collection of all n-bourdaries of k to- n-l-1 m

gether with the previously noted addition forms a cci.iniuLu L ive

group written B (K,G). Notice that B (K,G) is a subgroup 

of Z (K,G) since d[d(C , )"l 0.
TH TUi'J. -J

Definition 1.45. The factor group Z (K.G) - B (K.G)--- ----------------------------- o 1 m m 

is called the in- th honology g r o u y o_f K over G, and is denoted

by H (K,G).

Definition 1.4 6 . Let. G. be the direct sum de- i

composition of H (K,G) such that at most one of the G. is i

not a cyclic group and call the non-cyclic group (if it 

exists) Gq. The number of generators of Go is called the

m- th Betti n unb e. r o f K. If there is no non-cyclic. group, 

then the m-th Betti number is zero.
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B A C K G R 0 U K1) P R E LIM1N A R1K S

A classical problen in the sLudy of munotone continuou 

functions from a topological space X onto a topological Y is 

to discover conditions on such a function such that X is 

homeomorphic to Y.

As early as 1929; R.L. Moore showed that the 

monotone continuous image of a 2-sphere is a cactoid (a 

continuous curve vzhose every maximal cyclic element is a 2- 

sphere), and that every cactoid is a monotone continuous 

image of a 2-sphcrc. Be also showed that if the inverse 

image of no point of the image space separates the 2••sphere, 

domain, then the image is either a 2-sphere or a point.

Some highly anal.agous results v.’ere obtained by

J.H. Roberts and N.E. Steenrod [lb] in 1 938. They proved 

that the class of continuous images of compact 2-nianifolds 

without boundary under monotone transformations is composed 

of just those continuous curves each of which can be obtained 

from a generalized cactoid (a continuous curve wliose every 

maximal cyclic element is a 2-manifold and all but a finite 

number of these are 2-spheres) by making a finite number of 

identifications. By adding various restrictions on the non- 

degenerate inverse images of points in the image space, they 

obtained stronger results, i nclud i. i.'1, that if f is a monotone
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continuous function froru a com^jact, connected 2-manifold X 

onto Y, then X is ho.no. oiporyli ic to Y if and only if Y contains

more than one point and the 1-dimensiona1 Betti number (mod
_ ]

2) of each of the sets f " (y), yCY, is zero.

An interesting, sufficient condition that a monotone

continuous image of the 3-sphere be homeomorphic to a 3- 

sphcrc uas published by O.G. Harrold, Jr. in 1953, and is 

stated as follov’s:
3

Theorem 2.1.  Let M=f(S~), v?herc f is a monotone 

continuous map such that if Y is the set of points in II .-zhich 

have non-degenerate inverse images, and given yCY and (>0, 

there exists a topological 2-sphere KGT-{zCM3p(z,y)<e}, where 

K separates y and H-T such that KflY-0, then M is a topclogical 

3-sphere.

Going in a different direction from Harrold's result, 

Ross Finney [bj proved this powerful theorem:

Theorem 2.2. Let M be a triangulated 3-sphere and let 

T be a triangulated topological space. If there exists a 

pointlike., simplicial mapping M onto T, then T is homeomorphic 

to M.

In 1965 , C.L. Wiginton [20] proved this closely re

lated theorem:

Theorem 2.3.  Suppose f is a monotone, simplicial 

3 3mapping from a triangulated 3-sphere S onto a 3-manifold M .

Then f is pointlike if and only if the inverse, image of each
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ver I" ex is sii,:p 1 y coun e.c tecl.

The pover of this theorein is seen in the following 

corollery :

Coro.l lary 2^3^1. Suppose f is a monotone, siraplicial

3 
mapping from a triangulated 3-sphere onto a 3-manifold M . 

Then if the inverse image of each vertex is simply connected, 
3

M is a 3-sphere.

This corollary is a result of Theorem 2.2 and Theorem 

2.3.

Four theorems of E.C. Zeeman [21] will be employed in 

the sequel.

Theorcm 2.4. A derived siraplicial neighborhood of a 

collapsible piolyhc dr on. which is contai.ned in an n-nan i fr' 1 c in 

an n-ball.

Theorem 2.5. Any derived simpl.ic.ial neighborhood of 

a combinatorial subspace of a combinatorial manifold ?.s a 

regular neighborhood.

Theorem 2.6. Any two regular neighborhoods of a 

combinatorial subspace of a combinatorial nanifold are 

homeomorphic.

Theor era 2.7. A manifold is collapsible if and only 

if it is a ball.

H.' Seifert [17] proved the following extremely useful 

the o rcm:

The or or; 2.8. The first Betti number of a compact



15 

3-i.>anifold xzitli boundary is greater Limn or equal to the sum 

of the genera of its boundary surfaces.

In 1961, Morton Broun [2.J obtained this result:

I boor e m 2.9. The monotone union of open n-co. IJ.s is 

an open n-cell.

This theorem is used to relate the concepts of point

likeness and cellularity.



CUAPTEP. Ill

THE POIKCAHE COHJECTUKE

THe originnl version of the Poincare Conjecture is 

s t ated as fol] ov?s :
3

C o nj e c t u r e 3 . .1.. Suppose M is a connected closed
3 

n-nanifold which is also simply connected. Then II is
3 

homeo;.-orphic to S .

Paradoxically, this is still an outstanding qu'-stinn, 

even though a more general form of the Poincare Conjpcture 

is known to be true for dimensions greater than 4:

Theorem 3.1.  Let Mn be a connected closed combina

torial n-manifol.d- Then M11 is a homeomorphic to Sn :i f and 

only if M"1 is a homotopy sphere (n_>5) .

E.C. Zeeman [22] established this significant result: 

by proving the following relationship between algebraic and 

geometric connectedness:

Theorem 3.2.  Let Mn be a connected combinatorial 

n-manifold. If Mn is algebraically g-connected and gj< n-3, 

then Mn is geometrically g-connected.

The generalized Poincare Conjecture n>5 was obtained 

as a corollary in light of Theorem 3.2 and an earlier result 

of J.R. Stallings [19]:

Theorem 3.3.  Let Mn be a connected closed combina- 

t.o-'lcl. n-i. anifold, n>0 . If L'n is gecr.etrically [n/2]-



17

connected, then Mn is hoMeoi-iorphic to a sphere.

S taJ lings • had used his thcorcin in 1 960 Lc prove the 

Poincare Conjecture for n_> 7, but admitted that his proof was 

not the best possible, since Zeeman's theorem (3.2) had 

already been published. Zee.nan comments that Iheorem 3.2 

might be shown for g<^n-2 if use could be made of the 

additional hypothesis that M1' is a closed manift'ld. If this 

could be done, the Poincare Conjecture vrould follovr for 

dimensions 3 and 4 since [n-21^ n/2 for these d im.en s i on s .

In his proof of Theorem 3.3, Stallings employed the

long unknov.m Generalized Schoenflies Theorem vrhich was 

established in early 1960 by Morton Brown [3]:

Theorem 3.4. Suppose h is a homeomorphic embedding 

of Sn "  x [o, J in Sn. Then the closure of either c. orip Icnont a ry 

domain of h(Sn ^xl/2) is homeomorphic to an n-cell.

*

The following unproven conjecture by Zeeman [^21] is 

extremely interesting in that it implies the original 

Poincare Conjecture:

2 
Conjecture 3.2. If K is a contractible 2-complex, 

then Kx[0,l]b.O.

Another proof of Theorem 3.1 was given by Stephen

Smale [18^ using a differential structure which he showed 

was implied by the combinatorial structure.

M. W. llirsch [sj pointed out in 1965 that the Poincare

Conjecture is still unknown in n_>3 If a combinatorial 
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s i ■ u v j'c is not acsninrcl. He also sta.tcd that if a conbina- 

tc.rioj structure is assuued, :i t vzr.s e.a.t:y to sliovz that Mn is 

c.xhi •ttorially equivalent to Sn for n_>6 . In the cited 

paper he showed the following:

Theorem 3.5. Suppose is a closed combinatorial 

5-manifold which is the boundary of an orientable 6--manifold.

5 5Then M is combinatorially equivalent to S' if and only if

is a homotopy sphere.

In two papers published in 1963 , C.D. Papakyri r.kopoulos 

[12, 13] proved several other conjectures to be cqu:'vs .1 c-nt 

to the Poincare Conjecture in hopes that they would lead to 

a solution of that elusive question.



CILAPTEP. IV

THE MAIN THEOREM

Q'his chapter will consist in an. alternate proof of 

the previously stated theorem of C.L. Wiginton.

Theorem . 1. Suppose, f is a monotone simplicial 
3 

function from a combinatorial 3-spherc S onto a combina- 
3 

tori al 3-m.anifold M . Then f is point like if and only 
3 

if the inverse image of each vertex of M is simply connacted,

Throughout the. foi.lowing sequence of lemmas, f v, i J 1 

3 3 3be a monotone simplicial function from S onto M , where S 
3 

is a combinatorial 3-sphcre and M is a combinatorial 

3-manifold.

Lemma 4.1. A subset of an n-sphere S11 is cellular i. f 

and only if it is point like.

Proof: Suppose A is a pointlike subset of Sn; then 

there exists a homeomorphism h between Sn-A and En-p, where 

p is a point of En. Now there exists a sequence of closed 

(-neighborhoods of p such that Al)^ - p. By the

Generalized S choen f lies Theorem (3.4), h (1) x [p , 1] ) is a 

tame bicollared (n-l)-sphere so that h ^(D^xl/2) is a 

tame (n-l)-sphere B . These are the boundaries of tame

n-cells < C . )> of Sn such that C.,, C int C. and A C i.nt C. 
x 1 i-tl i i

for ali. i. Since h [DC jCQh (C\) = p , it. follows that Ac -A.

Supoose A is a cellular- subs-et of S , Thon there n 
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exists a sequencr of tame n--cells <^C )>si'ch that f)C^--A raid

0.,^ c irit C. foi till i, where A c int C. for al], i. Nov? i-t-1 i i
~C . is hor'.eomoi phi c to En for all i. and ~C . c ~C . , M , where

i i 1-11 

~C. means the coniplniiicnt of 0.. But U"C. ~ ~QC. . and by
1 i ii -

TheoiCLi 2.9, U~C is ait open n-cell. It foilorcs that A is 

p o i n 11 i k e .

Lemmei 4.2. Let g be a monotone s implicial function 

from a closed triangulated n-manifold M onto a triangulated 

n-nanifold T. Then T is closed.

Proof : "Suppose T:/0 and A is an (n-1)-s impl e.x of T. 

Then A must be the face of exactly one n-simplex B of 1. 

Now g | B | must b e U | P j | , where, the p are n--s imp 1 ex es of M. 

Consider P , where g(P )=B, and let a be the (n-1)-face of n ii n

P which nans onto A. Since M has no boundary. O' rius t bn the n n

face of exactly one other n-simplex 7 of M. Now 7 must r n n

also map to A, since g is simplicial. Now all (n-l)-faccs

of 7n must map into A, and thus every chain of n-s in1 n 1 exe s 

of M which are pairwise connected by (n-1)—simp lexes and are 

connected to 7 by one of its (n-l)-faces other than a n n

must also map to A because of the simplicial nature of g.

But these chains cannot fill up all of M since P does not n

map to A. Thus at least one. of them has a last n-simplex with 

an (n-1)-siraplex which is the face of that n-simplex only.

This implies that M has a non-empty boundary. But M has an 

empty boundary by hypothesis. The. contradiction implies that
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T = 0.

■ Suppose g j s a continuous in one ton c f u n c - 

tion from a cor.ijiact space. S onto a space. T, S and T are both 

T^, and M is a closed subset of S such that. S-M = A'JB where 

ACiB -• AAB = 0 and neither g(A) nor g(B) is contained in g(M) . 

Then g(lj) separates T.

Proof : Since. S = AU2UI1, then T - g (A)Ug (B)Ug (M) . 

Suppose there exists an xc[g(A)-g(M)] Q[ g(B)-g(M)]. Then 

g (x )riA7'0 , g ^(x)O)37,0> g ■*"  (x )r_lM- 0. This inplics that g (x)

is nut connected. Since this contradicts g being nonotonc 

it follows that [ g (A)-g (Ti) ]Q[ g (B)-g (M) ]-0 . Suppose that t 

is a limit point of g(B)-g(14) which is contained in g(A)-g(M). 

Let <(p^"> be a sequence of points of g(B)-g(M) which coir/crges 

to t. Then the set {g "*"(p.)}  deterMines; a convergent sequence 

of points <y^)> of B. Let z be the sequential limit point of 

this sequence. Now z^cA since Adl-0 by hypothesis. Thus 

g(z)'"/g(A). But g(z)-t, which is an element of g(A). This 

contradiction implies that [g(B)-g(M)]Q[ g(A)-g(M)]=0. A 

similar argument yields that [ g (B) - g (M) ]O[ g ( A) - g (M) ] =r/>. 

These two results imply that g(M) separates T.

L emm a . 4. Suppose g is a monotone simplicial function 

from a triangulated n-sphere Sn onto a triangulated n--mani- 

f o 1 d ?•!n. If C is a set that separates Sn and g (C) is a point 

xC.Mn, then at most one coup J. enent ary domain of C can fail to 

ri a ■) t o x .
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y r(X)f: If more tlir.n one: cor?.p] en.entary domain of Clio, 

set C fails to rmp to x, then x wil] separate Mn by Lei.nna 

4.3. Every point of Mn has a neighborhood hoiiieoLiorpliic to 

En, since Mn is an n-raanifold vzithout boundary by Lemina 4.2. 

But if x separates Mn, it must: separate all of its euclidian 

neighborhoods, and thus none of them can be hom.c.omorphi c to

En. The contradiction implies the Icrnna.

Lemma 4.5. Suppose g is a monotone simpliciai function 

from a triangulated n-sphere Sn onto a triangulated ri-r.-u?-- 

fold Mn. If v is a vertex of Mn, then g (v) is a con i; f c t od 

full proper subcomplex of Sn which does not separate.

ILr_o_of : The set g ^(v) is connected since g is neno- 

tone and does net separate because of Lemma 4.4. Now g "* (v) 

must be U | A | where the A_^ are simplexes of Sn, since g is 

simplicial. The simplexes of g ^(v) are properly joined and 

finite in number since they belong to the complex S . More

over, if the vertices of any simplex of Sn are all in g (v) , 

then the simplex itself must be in g "*"(v),  since g is bary

centric. Thus g "*  (v) is a full subcomplex of Sn. It is 

obviously proper, since v is not all of Mn.

Lemma 4.6. Any regular neighborhood of a connected,

simply connected full subcouiplex Z of S which does not 

separate is a 3-ce11.
3 

Proof: Let U(Z,S ) be a regular neighborhood of Z in

3 3so -o. subdivision of S . Then U(Z,S ) celt be constructed, from 
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Z by a finite number of eJenent ary geometrical expansions 

such that the. resulting expansion is a 3-d imcns i ona 1 sub--

3 3manifold of S . Nov; U(Z,S ) is certainly connected, and is 

also simply connected as can be seen by the follo\?ing two 

step inductive argument:

(1) One elementary geometrical expansion of Z must 

be simply connected or else the resulting expansion cannot 

collapse, to the simply connected Z.

(2) If after n elementary geometrical expansions 

the result is simply connected, then anotlier elementary 

geometrical expansion must be simply7 connected or else 

collapsing of the (m+l)-th result back to the simply connected 

nr-th result would be impossible.
3

Since U(Z,S ) is, in addition to being simply connected 

a proper connected closed 3-dimensional submanifold of S 

which does not separate, it must have zero as its first Betti
3 

number. By Theorem 2.8, U(Z,S ) has a 2-spherc for its 

boundary and is thus a 3-cell. But Theorem 2.6 states that 

any two regular neighborhoods of Z must be homeomorphic.

Thus all regular neighborhoods of Z are 3-cells.

3 -1Lemma 4.7. Let v be a vertex of M . Then f (v) is 

pointlike if and only if f "*"(v)  is simply connected.

Proof : Suppose, f ^(v) is pointlike. Then there, must

3-1 3exist a homeomorphism h which maps S -f (v) onto S -p such 

that h [ f "*'  ( v ) ] - pC f 1 ( v) . Let q (x , t) = t h ( x ) + (1 - t) I ,



where tc [ 0,1 ] and I is tl.'e :i 'J p\i i Lty rnapp in;r. Then q is a 

homotopy such that q(x,l) - h(x) and q(x,0) = I. Thus 

-1 - 1 -1
q(i " (v), 1) ~ p and q(f (v) , 0) - f (v). It folloxrs that 

f ^(v) is honotopic to a constant, and every simple closed 

curve in f ^(v) must also be homotopic to a constant. 

Therefore, f ^(v) is simply connected.

Suppose f (v) is simply connected. By Theorem 2.5 

any derived simp1ici a 1 neighborhood of f ' (v) is a regular 

neighborhood and thus a 3-cell by Lemma 4.6. If

B(f"1(v),Smr.1(v)S3) is an m-th derived simplicial rcigh.bor--

hood of £ (v) , a fine enough

yields N(f“1(v), SP p S3)
1 \V i

subdivision of S'
—. "I rn 3C int N(f J-(v) , S 1 f-l(v)S ) ,

that there exists a sequence, of regular neighborhoods <( U z1

such that f ^(v) c int U. and U.,n c int U. for all i. 
i i+l i

Since the. subdivision may be made as fine as desired,

AU =f ^(v), and f "^(v) is seen to be cellular, and therefore 

pointlike by Lemma 4.1.

Lemma 4.8. Suppose g is a monotone simplicial func

tion from a triangulated n-sphere S11 onto a triangulated

n-manifold >[n, and that p is not a vertex of Mn. Then if 

Mn in a first derived subdivision of Mn with p as a new 

vertex, there, exists a corresponding first derived sub

division Sn of Sn such that g: SU Mn is a simplicial 

monotone function.

Proof: The function rcmaius monotone no natter hoc
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S n
Mn

J and M are

x-/h e. r e {v.}
i

triangulated. So let KU be a. subdivision of 

are the new vertices of. Mn and pc{v } . Each

of the v. vzas in the interior of some k-siraplex A.^, where 
i i

Kk<n. Nov? g (v . )Di . IS , ,------  " 3. 1 J

collection of single points

interior of one of the . B. 
i J

is a

is in the 
i J
and g \v,)nL, where g(L)~A.^

i r

1 Z -n k X A k
where g ( .B. ) - A. , 

i a i
{.t . } each of which

and L has dimension higher than k, is the convex hull of the 

elements of {.t Jv} which appear in the k-faces of L that do 
i J

not colj apse. Noxz let { . vz } be the collection of points i m '•

each, of which is a point interior to one of the convex, hulls >

where m is the number of hulls generated, and he a

collection of points each of which is interior to one of the 

k-dimens ional or larger simplexes of g "^(A^^) which map only 

to a vertex of A.^. Let the set [{.t.^lui.v }U{.x, }] be nev-7
i i j i m i b

vertices of Sn and complete Sn by starring each of the

simplexes of Sn beginning with the highest dimensional ones 

and ending with the lowest. The mapping g: Sn -> Mn is 

simplicial by construction.

3 ^3Lemma 4.9. Suppose pCM , M is a first derived sub-

3 '"'3division of M which has p as a vertex and S is the cor-
3

responding derived subdivision of S constructed in Lemma 4.8.
3

Suppose v is a vertex of M such that [v,p] is a 1-siraplex

^3-1 "'S -1 A 3
of M . Then f [lk(v,M )] is the boundary of N (f (v),S ).

Furthermore, if f (v) is simply connected, then

-1 ^3j'-d’hCf (v),S )] is a 2-sphe.re..
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3is a combinatorial 3~sphcre implies that Jk(v,M ) is also 

2-sphci)fc. But a Tionotono. sinplicinl function from a 2-sphere.
-1

onto a 2-sphere is point!ike, so that f (p) js point like

-1 3 -1
on Bd[N(f "(v),S )]. Thus f (p) is cellular on that 2-

sphere which implies that there exists a sequence of tame 

2-cells <\Aj> on the 2-spherc such that f ^(p) is conti’ined 

in the interior of all the K. and A. ,c int A. for all i, r i+l i ’
where PlA^-f ^(p). Let he the sequence of 3-cells in

^3 11S sucJi that B. -- A.x[- , and it is readily seen that
iiii

-1 3f (p) is cellular in S .

Proof of the Main Theorem(4.1) : Lemmas 4.7 and 4.10

imply the theorem.



CHAPTER V

SOME RFJJ/J’ED COMJEC1LEES

In an effort to extend Theorem 4.1 to higlicr dimensions 

in at least some form, Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, and 

4.8 were shov.Tn to be true for all dimensions, and Lemma 4.9 

can easily be proven for all dimensions if the added statement 

that Bd[N(f "^(v),Sf * n)] is an (n-l)-sphcre is eliminated. The 

folloi^j'ng are conjectures vzhic.h \?c.re studied together x- : th 

suggestions, for their possible, proof.

f ( v) C i n t C . and C . , . c i n t C . for all i , w h e r c AC , = f (v) .i i+l i i

The difficult, part of the proof is the "if" part.

Conjecture 5.1.1. Any regular neighborhood of a 

connected, algebraically [n/2]-connected, full subcomplex 

Z of Sn vrhich docs not separate is an n-ce.1.1 (n-r4 or 5) . 

It is easily seen by induction that a regular 

neighborhood of Z is algebra! cal l.y [ u / 2 ] - c onn e c t ed . If it

Conjecture 5.1. Suppose f is a monotone simnlicial 

function from a combinatorial n-sphere Sn onto a combinatorial 

n-manifold Mn. Then f is pointlike if and only if the in

verse image of each vertex of Mn is algebraically [n/2J- 

connected (nr4 or 5).

If f is pointlike, it folloxzs that f ^(v) is alge

braically [n/2]-connected, since f ^(v) is cellular implies 

that there exists a sequence of tame n-cells < C . )> such that 
i 
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were true that a coiapnct n-nanifold v?ith connected boundary 

which is a.lgeb r i ical].y [ n/ 2 ] - comicct e.d has a boundary which 

is 'algebraically [ (n-1)/2]--connectc.d, then this conjecture 

vzould hold for d ir.iens ions n-//i or 5 by applying the. Poincare 

Conjecture for n-/3 or 4 to establish that the boundary is an 

(n-1) - sphere. This result would readily imply the follov.’ing 

version of Lemma 4.7:

Coiij ecturo 5.1.2. Let v be a vertex of Mn . Thou

-1 -1f (v) is point] ike if and only if f (v) is algebr-o ! cally 

[n / 2 ] - cc-nne c t ed (n/=4 or 5).

The difficult portion of Lemma 4.9 would also follov7, 

namely:

Conjecture 5.1.3. Suppose f (v) is algebraically 

[n/2]-connect cd. Then Ld[N(f ^(v),Sn)] is an (n-1) sphere 

(n7h or 5) .

Another difficulty arises, however, in trying to prove 

Lemina 4.10 for n-dimens ions .

Conjecture 5.1.4. If f (v) is algebraically [n/2]- 

connected for all vertices v of >[n, then f "*"(p)  is pointlike 

for every p not a vertex of Mn(nr4 or 5).

The problem is that even if it were known that 

Bd[i:(f"1(v) ,Sn) ] is an (n-1)-sphere, it is not known whether 

a monotone, simplicial function from a k-sphere onto a k- 

spheie is pointlike or not, k<n.

Another possibility was suggested by Theorem 3.3:
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C o n i e. c t u r e 5.2. Suppose f is a no no tone sirp]icia] 

function fron a combinatorial n--splicre Sn onto a combina

torial n-nanifold Mn. Then f is pointlike, if the. inverse 

imago of each vertex of Mn is; geometrically [ n / 2 ] - conn ected .

The. condition on the inverse images seems to be much 
k 

stronger, since if the inverse image F of a vertex has 

dimension k, then every [n/2]-combinatorial subspace must 

lie in a k-ball of This means that there cannot be. any

simplexes in F^ of dimension less than [n/2]which er:, net 

the. faces of [ n/ 2 ] -s imp 1 exes . For this reason, the :’c>n.1y if" 

part of the theorem was omitted from this conjecture.

Conjecture 5.2.1. Any regular neighborhood of a 

connected, geometrically [n/2]-connected, full subcomplex Z 

of Sn which docs not separate is an n-ccll.

By Theorem 3.2, this conjecture is equivalent to 

Conjecture 5.1.1 for n_> 5. Again, it can be shown that a 

regular neighborhood of Z is geometrically [n / 2 ]--connec t ed . 

Stalling's Theorem (3.3) could be used if it were, known 

that a compact n-manifold with connected boundary which is 

geometrically [n/2]-connected has a geometrically [(n-l)/2]- 

connccted boundary. The. following could easily be shown:

C o n j e. c t u r e 5.2.2. Let v be a vertex of Mn . Then 

f "^(v) is pointlike, if f ^(v) is geometrically [n/2]- 

conn ected.

C o n j e c t u r e. 5.2.3. Suppose f "*"(v)  is geometrically
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[ n / 2 ]--conn ec ted . Then ^(■'-,),Sn)] is an (n-l)-spliere.

The counterpart of Lciinia 4.10 for CunjccLure 5.2 has 

the sar.ic difficulties' explained in Conjecture 5.1.4.

One. other modification was considered in son.e detail, 

but no more progress oac: made:

C on j e c. t nr e 5.3. Suppose f is a monotone simplicial 

function from a cuiibinatorial n-sphere Sn onto a combina- 

t.oria.1 n-muuifold lln. Then f is pointlike if the inverse 

image of each vertex of Mn is collapsible.

The reverse implication is not true, since them are 

examples vzhich show that contractible k-complexcs need not 

be collapsible.

L_emma 5.3_._1. A regular neighborhood of a collapsible 

subcomplex of Sn is an n-cell.

Three of Zeer.iau's Theorems (2.4, 2.5, and 2.6) taken 

together imply this lemma. It follows immediately that the 

next lemma is true:

Lemma _5-__3._2. Let v be a vertex of Mn. Then f ^(v) 

is poi n11 ike if f (v) is collapsible.

In trying to establish that f ^(p) is collapsible for 

P not a vertex of Mn, it could not. be ascertained that f ^(p) 

is not one of those non-collapsib1e yet contractible k- 

complexes mentioned above.

These conjectures suggest many areas for further
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