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ABSTRACT

Let £ be o monotone siwplicial funcltion from a
. ; . , N .
triangvlated combinatorial n- sphere 3 onto a triangulatcd
coubinaterial n-nanifeld M. It is shown that £ is point-
like if and only if £ Y(v) is algebraically [h/2]~connectod
o PR ) . ) - b1 .

for each vertex v of M, provided that an=3. The proof idi¢
accomplished along lines vwhich it dis hoped will lead to a
proof fer othei dimensions, pcrhaps for all u, in ai Tooct
a modifiried version of the stuatement.

Several related conjectures ere investigated by show-
ing that some of the lemmas used to prove the main theore—

he

arce true in all dimensions, or at least in all but twvo. The
particular difficulties encountered by the author in tryviryg

to prove these conjoctures are explaincd.
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CHUAPTLR 7
ITNTRODUCTIORN AND DETTNT11OKS
T. INTPODUCTION

In June, 1962, Ross TFinncy [i]* proved thet if there
exists a pointlike, simplicial wapping of M onto T, where
M is a triangulated 3-sphere and T is a triawngulated topo-
logical space, then T is a 3-sphere. Tollowing thies reouln,
C. L. Wiginton [2@ establisbed that if £ is a monotone

simplicial mapping {from a triangulated 3-gphere onto a 2-

3

manifold M°, then if the inverse image of each vertex is

. 13
simply counccted, M

is a 3~sphere.

In hopes that a similar result might be devcloped fcor
higher dinmensions, the author has attempted to extend
Wiginton's main theorem to higher dimensions. The result of

this effort i1s a new proof of this theorem in chapter IV and

the discusgsion of the rclated conjectures in chapter V.
IT. DEFINITIONS

Definiticen 1.1. An n-cell is a topological space

horeomorphic to either 1" = {(x ,...,xn)ElEn:30<xi<1}, the
) <X.<
n
) N . -
ctandard n-cube, or B = {(x ,...,xn)Eh _Bin2<l}, the
gltanaayc n-cuse . ) <
]:

standaird n-ball., Ap n-cell is also referred to as an n-ball.

“Yhrougheuot this paper a bracketed nuiber refers to the
cocrenponding roferenece in the bibliography.
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Definiticn 1.2. An n-sphére is a topologicnl spece
. n-!~1
homeconorphic to S {(xl,...,xn+l)(En1132Xi2=1], the
i=,
standerd n-sphere.
n

Defipnition 1.3. An n-menifold 10 dis a separable

metric space such that all its points have a neighborhood

. . . n , . I .
homecororphic to either E° or B". An interior point of M  is

. . . T
a point having a ueighborhood homconorphic to E and a

boundary peint is a point having no ncighborhood howeomorphic

n . . . L no, .
to E . The dnterior of ¥ , int M, disg the unien of zlil ihno

. . . n i noo. n .
interior points of M . The boundary of M, Bd M~ ox M is

n

the conplement in M7 of dint M7,

Definition 1.4. A manifold M is called closed if it
is compact and M = ¢, bounded if it is compact and M ¥ &, open
if it dis not compact and M = §.

Definjtion 1.5. If A is a closed subset of en n-
i v AT :
manifold M, then a cowmponent of M -A is celled a complenen-

tary domain of A.

Definition 1.6. A subset A of an n-sphere s® is

. . . n . . I .
pointlike if S8 --A is homeomorphic to E . A mapping g of an
n~sphere onto a space Y is pointlike if the set g—l(y) is

pointlille for each 3yCY.

Definjtion 1.7. A continuous function f:MM»G is said

to be monotone if the inverse image of each gCG is cobnuccted.
Definition 1.8. A subset A of N, vhere N is an

n-manifold, s cellular if there exists a

m

cquence of n-cells



<Ci> such that A:'ﬂCi and for cpcﬂ i, Ci+1 C int Ci.
Defirnition 1.9. An n-simplex A(n»e), where ACEP

p>n, is the convex hull of (nil) lincavly independent points,

called vertices of A. The convex hull c¢f any (k+l) sub-

collection of thesc vertices is a simplex called a k-face

of A, wvherc k:=-1,0,1,...,n. Thus the ewmpty set is a (~-1)

face of A, aund A<A. If B is a face of A, this fact is

denoted by bH<A.

Defindition 1.10. The jodin of two simplexce A and 7,

&
c

y—
o
)

written AR, is tho simplex spanncd by the vertices i A
B taken together. If this collection of vertices is not
linearly independent, the join is neot defined, and A and B
are said to be pot joinable. Otherwisc, they ave Jjoiunable.

Definition 1.10. A finite simplicial complex, ov

. i o . .
complex, K in LY is a finite collection of simplexes such

that:
(L) ACK and BCA ==2-BCK
(2) ACK and K ==I-{AMB)<A and
(AMB)<B

Definition 1.12." A polyliedron l&l is the peint-set

1

determined frow & complex K by teking the union of ithe

K

simplexes in K. A topology on is the relative tovology

inherited from EP.

Definition 1.13. A tri

angulation of 2 tovolegical

space is a finite simplicial couplex K such that the poly-



K

hedron is homzonorphic to the topoloelcel space. A
triangulation of a topological space is often called simply
a triangulated topologicel space.

Definition 1.14, If K and L are complexes, then a
simplicial map or giwplicial function f:XK*L is a function

f:

17
I

+|LI such that:
(1) f is continuvous
(2) f maps vertices to vertices, and vhenever
{vo,...,vp} span a simplex of K, then

{f(vo),...,f(vp)} span 2 simnploex of L

1
(3) f is baxycentric; that is, if «a=i t,v., thcn
paryeeptrlco . i i
n i=1
£(a) =% )
(0)_2 tif(vi)
i=1

Definition 1.15. If A is a simplex of the complcx
K, then the star of A in K denoted st (A,k), is the svhceoenplax
of R made up of all the simplexes of K having A as &z face
together with all their faces. The 1link of A in K, denoted
1k(A,K) dis the subcouplex of K made up of all the simplexes
of K in st(A,K) which do not intersect A.

C o . k , . . .
Definition 1.16. IXf A" is a k-dimensicnal simplex

k
and GC[AI, where {v,}, are the vertices of A7 and a-
i i=0,F
k k
L t,v, so that t,c [0,1] and ¥ t, = 1, then the {t.} are
AP A | i , i i
i=0 i=0
called barycentric coordinates of «. In particular, the
.. Tk . . . § I
point A, which has barycentric coordinates Ltj} §=0,% such
=0,k

k

that tj=l/k+l for all j is called the barycenrter of A

Definition 1.17. The dinension, n of 2 conplex
Puii S SR . N - ' A oY b I



K" is the diwcensiown of the highest dinmcnsional simplex of

Definition 1.18. If K and L are couplexcs, L is a

subdivision of K if

K

=|L| and cvery simplex of L lies dun
a simplex of K,

[+
Definition 1.19. Il A is a simplex, the boundarv A

of A is the cowmplexr cousistiug of all the proper faces of

MR . . .
A, IFf K is a complex which is howogencous; thoat dis, w.dc

up of n-simplexes and their faces, the bLoundary XK= of i is

the (n-1)-complex mcle up of the (n-1)-simplexes of the
]
boundary A of each of the n-dimeusional simplexes ACk™

(except for those (h-1)-simplexes which are faces of an-even
. n .

number of n-simplexes of K ) plus all their faces.

P

efiniti

Py
.
vy
»)

on 1.20. 1f XK and L are complexes, then
join of K and L, written KL, is the complex {ABDACK,BELD,
where AD is defined for all such A and B.

Definition 1.21. Let A be a simplex of the complex K

and o be a point in int A. The construction of L from K
©
such thot L={K-st(A,K)}UcAlk(A,K) is called an elementary

sta

=

‘ring of K at o, written K2L. A stellar subdivision of

K, denoted oK, is any subdivision of K obtained by a finite
sequence of elewmentary starrinos.

Definition 1.22. A derived subdivision of a cowmplex

K is a subdivision obtained by starring all the simplexes of

K in sowre order such thet if B<A, then A is stearred before b.



If the starring is done at the barycenter of cech siwmplex,

the subdivieion ds said to ba barycentidic derived, o1 sinply

barycentric. The n-th such coustruction is called the n-th

devived subdivision oi K.

Defindtion 1.23. A fuuction f from a cowplex K onto

a conplex L is called piece-vise linear (pwl) if there exists

subdivisions ¢l apd BL rvelative to which & dis simplicial.
definition 1.24. A sirplicial mapping £ from a

comblter K onto a complex L such thet { is a bomcomorplioy iu

callcd an isemorphisw, and X is said to be isomorphin te T,

denoted KZL. If £ is only a piece-vise liuncar homconorpbisw,

then we write K~L, and say that X end L cre combinatorially

cquivalent.

Definition 1.25. A cowbipatoriel n-ball is a couplex

X . n
pwl homecwmorphic to the triangulated standard n-ball B . A

re is a complex pwl howecowmerphic to the

combinatorial

) n
triangulated standard n-sphere S .

Definition 1.26. A combiratorial n-manifold is a

homogencous n-dimensional complex K such that for any vertex
v of K, 1lk(v,K) is a cowmbinatorial (n-1)-ball if vZK and a
combinatorial (n-1)-sphere if vﬁK.

Definition 1.27. Suppose K is a coemplex such that

K=LUJA, where A is a simplex, A=aBb, and J/NA=aB (i.e., the

ace B opposite the vertex a in A is a '"free” face of the

siwplex A in¥), then the opevation of geing from the complex



K to the conplex L=X-A-~L (reccall that removing o simplex
from a complen does not renove all ite faces), is called an

elenentary (eimplicial) cnllrpsing, denoted ENL. The

inverse opeoration, denoted LXK, dis called an clcwmcntory

(simplicial) expansion. VYinite sequences of either are

alled, respectively, (siuplicial) collapsings ond (simplicial)

ex¥pancions. If X collapses to a veriex wiK, we say K ic

o

colle

poiblie, and dcnote this by K20,

Definition 1.28. A subcomplex L of the cowmplew I ds
complete or full in K if, fer every simplex ACK with all
vertices in L, then ACL.

Definition 1.29. If K. is a complex such that

n % T . . n

=K&JD , Where B is a combinatorial ball and B (\Koc
n-1 ,n . . s , . .
B C P, theu the opecration of going from K. to LO, devicted

]

T

by K1+RO, is called an elementary geometrical collapsing

The inversc operaticn KO+K1 is termed an elementeary

geonmetrical expansion. Finite sequences of either are called,

respectively, geometricel collawsings and geometricel

expansions. If K has dimension n, and the only Bk used are
such that k=n, then the collapsings (or expansions) are
called regular.

Definition 1.30. If K is a cowmplex and XC[KI, then
N(X, ) ={AZK3| st (A,K) [NX#0)} is called the (closed) simplicial
neighborhood of X in K. ©WNotice that N(X,K) is the complex
formed by taking all sinplexes of K which interscct X, plus

all thedr faces.




Definition 1.3L. If I is a2 subcowplex of K, then §qg
will denote the beryecentric subdivision obtained by stairing
the simplexnces of K-L in ordci of decrecasing dimensica.

Definition 1.32. Tf K is a svbcecomplex of & combina-
torial manifold M, then by a regular neighbhorhoed of K in M
is meant a svbconplex U(K,M) such that:

(1) U(X,1) is a combinatorial n-wmeanifold.

(2) U(X,N) collapses geowetrically to K.

Defdmition 1.33. Svppose ACUCE, where U is cpon Lu R.
Then U dis calldd a cartesian product meighborhooed c¢f A i
there cexists a homeomorphism h: AX(~-1,1)-U such that
h(xx{0})=x, for all =£A. If there cxists such a U, A is said
to be bicollared by U.

Definition 1.34. If M is a2 corbiuctorial n-uanifold

with XC

n e 1
M I such that under some subdivision a of M therc

. o > . . .
exists a KCoM  where X=|k[, then X is called a combipnatorial

n
subspace of M.

Definition 1.35. A combinatorial n-manifold M7 is

said to be algebraically g-connected if the inclusion mapping

L (=)

. . k n . s I
of every combinatorial subspace X CIM [, k<g, dnto M is

honotopic to a constaut.

e . . . M, .
Definition 1.36. A cowbinatorial n-manifold M is said

to be geounetrically g-connected if every g-dimensional

.

. . n . . . .
combinatorial subspace of M is containced in a combinatorial

n-ball of M".



[Xo]

Defin

,'\_v

i 1

L1 ion 1.37. A cowbinatorial closed n-wenifold

is called a homotopy sphere ii it is connected end olgelbrai-

cally[n/2]~connccted, vhere [{} is the greatest integer

less than or equal to x.

lt::

efinition 1.38. A simplex 4P is said to be oriented
if some arbitrary fixed ovrdering of its vertices has been
deterwined., The equivalence cless of even permutscions of

this fixed ordeving is the pesitively oricntcd simpler,

i

dencted +AY and the equivalence clasgs of odd pernutctions oi

the ordering is called the pegolively criented gimpiey. An

oriented complex is a complex which has all oriented

simplexces.

bDefinition 1.39., Let K denote an oricnted coirrplex

and G denote an arbitrary abelian group. Then an m-dinergional

chain on the conplex K with coefficients in the group

.

is a function c, °on the oriented m-simplexes of K with

. . Y . m m
values in C such that if cm(+A Y=g, g£G, then cm("A )=
-g. The collection of all such m-diwensional chains on K
vill be denoted by Qﬂ(K’Gl' Note: Addition can be defined
by (,c_ + 5C ) (A = c'(Am)+ d (Am), vvhere the addition on

I™m 1 m 2 m

the right ig¢ the group addition in G, and that if € is the
integers mod2, there is no necessity to have oriented
simplexes., Cm(K,C) forms a conmutative group undcr thc

described addition.

Definitior 1.40. Let K be an orientced corplex. There
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m-1

(%)
<]

. . . - m .
encociated with every pair of simplexes A7 oand B

vhere A and B differ in dimension by 1, an dincidence nunber

defined as followvs:

(1) [Am’ Bm~-l] - 0, if Bm-—l

(2) [.Aln; Bm_l:] = "‘"l, j_f B.m—l < Am

In order to decide in (2) which sign to usc, consider the

3 w1 )
vertices of B . They must Le the same as the vertices of

A7, wvith say Vs left out. Tf that parvticular ordecring

m--1 1
+5 and (V. V. seeesVYoseeesV ig A
“ ( 1’ O’ ] 19 s m)

r
2]

'

!

R

n . il -
, then [A s B

. . . m m
+1; if it is -~L, then U , B T

n-l .
I1'J = -1, If that particular

m-1 m

ovdering is =B and <V*’Vo""’¢i""’vn) is +A, then
-l ¥

653

- -1
™, 5™ Y = 215 i it is -A™, then W™, 3™V = 41,

Befindition %4il' An e¢lcuentary m~chein on ¥ is =02

m-chain < such that ¢ (+tA) = +gc for some particular
N moo- -%o

. mo . -
simplex A CX. and <, (B = 0, for ary other m-siwmplex of X,
H

Thus any m-ch2in may be vritten as the formal lincar combina-

. . Q w
tion of elementary m-cheins; ¢ => g, * A, , where g, =
m ~ &4 i i

w
c +A
i ( i )

bDefinition 1.42. The boundary operator is defined
1—)\' o

n B -1- n-1
dg  + AT =Z W™ 3" g - B, s
Bi <

n-1"0 i
A,

wvhere [Aom, Bim_l] is the incidence number. We further de-
fine:
\“ c oA nt NN <A oy
a (LJ._' f’,»i i ) _1_4 C)(;vi j )
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Definition 1.43. 1f m>0, then an r-dimensicunal cycle

cu K with coefficients in G is a chain z in C (K,G) such

that a(z ) = 0. The m-dimensional cycle group of K with co-

efficicents in G is the collection of such m-cycles together
with the commutative addition previously noted and is written
Z K,G).

z_ (K,0)

Definition 1.44. An m-boundary is an m-chain b if

there exists en (m¥+l)-chain Cm+1 in Cm*l (K,G) such thasz
. s I [
B(Cm,l) = bm. The collection of &J1 m-bourcdaries of L to-
n

gether with the previously noted addition forwms a ccocunmuldiive

group written Qﬁ (X,G). Notice that Bm (K,G) is a subgroup

of Z_ (X,6) since dd(C = 0.

md-1 )J

Definition 1.45. The factor group Z (K,G) - n (¥, 0)
is called the m-th honolory sroup of K over G, and is denotod

by B (K,G).

Definition 1.46. Let Gi be the direct sum de-

composition of Hm (K,G) such that at most one of the Gj is
not a cyclic group, and call the non-cyclic group (if it
exists) Go' The number of generators of Co is called the

m-th Betti number of K. If there is po non-cyclic group,

then the m~th Betti nunber is zero.



CBAPTIR 11
BACKCRCUND PRELTIMINARLES

A classical problem in the siudy of monotcne continuous
fuuctions from a topeological swpece X onte a topological Y is
to discover couditions on such a function such that X is
homecomorphic to Y.

As early as 1929, R.L. Moorec {]] showed that the
menotene continuous image of a Z-sphere is a cactodid (s
countinuous curve whose every meximal cyclic elewment de a 2-
sphere), and that every cactoid is a monotone continuous

image of a 2-sphere. He also showed ithat if the inverce

image of no poiunt of the image space separates the 2--eph

o
s
D

domain, then the iwage is either a 2-sphere or a point.

Some highly analagous results were obtained by
J.H. Robertg and N.E. Steenrod DS] in 1938. They proved
that the class of continuous images of compact 2-manifclds
without boundary under monotone transformations is composed
of just those continuous curves each of which can be obtained
from a gencralized cactoid (a continuous curve whose every
maximal cyclic elewent is a 2-manifold and 211 but a finite
nunber of these are 2-spheres) by making a finite number of
identifications. By adding verious restrictions on the non-
degencroate inverce inages of points in the image space, they

obtained sctrongey results, Jncluding thael if £ is a monotouc
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continuous function from a compact, connected 2-manifold X
onto Y, then X dis hoacowmorphic to Y if and only if Y contains
more than onc point and the l1-diwmensionul Betti number (mod
2) of each of the scts £ ~ (y), vEY, is zero.

An dinteresting sufficicnt condition that & mwonotone
continuvous jiwnage of the 3-sphere be honecmorphic to a 3-
sphere vas publiched by 0.G. Harrold, Jr. [7] in 1958, and is
stated as follovs:

Theoren 2.1. Let M=f(83), vhere f is 2 monotonc
continuvous map such that if Y is the set of points in i shich
hhave non-degenerate inverse images, and given y€?'2nd >0,
there exists a topological 2-sphere KCT={2MDp(z,y)<e}, where
K separates y and M-T such that KNY=¢, then M is a topclogical
3-sphere,

Going in a different direction from Harrold's result,
Ross Finney [5] proved this powerful theorem:

Theovem 2.2. Let M be a triangulated 3-sphere and let
T be a triangulated topological space. If there exists a
pointlike, simplicial mapping M onto T, then T is homeomorphic
to M.

In 1965, C.L. Wiginton [ﬁO] proved this closely re--
lated theorem:

Theorem 2.3. Suppose f is a monotone simplicial

3

. . 3 ,
mapping from a triangulated 3-sphere S” onto a 3-manifold M7.

Then £ is pointlike if and only if the inversc image of each
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vertex ds siwply conncected.
The pewer of this theovenm is secn in the followving
corolleary:
Corollary 2.3.1. Suppose f is a monotone simpliciel
. . N ' . 3
mapping frowm a triangulated 3-sphere onto a 3-manifold M.
Then if the inverse image of each vertex is simply conneccted,
3
M™ is a 3-sphere.

This corollary is a result of Theoremwm 2.2 and Theoren

Four thcorems of E.C. Zeewan [21] will be cuployved in
the sequel.

Theorem 2.4. A derived simplicial neighborhood QF a
collapsible polyhedren which is contained in an n-manif~ld in

an n-ball.

Theorem 2.5. Any derived simplicial neighborhood of

.

a combinatorial subspace of a combinatorial manifold is a
regular neighborhoed.

Theorem 2.6. Any two regular neighborhoods of a

coibinatorial subspace of a combinatorial manifold are
howmeomorphic.

Theorert 2.7. A manifold is collapsible if and only

if it is a ball.
H.'Seifert[}ﬂ proved the following extremely useful
theoram:

Theorern 2.8. The first Betti number of a compact



15
3~wanifold with beundary dis grca{CL than or equal to the sum
of the genera of dits boundary surfaces.

In 1961, Morton Broun [2] obtained this result:

Theorem 2.9. The momnotouc uniou of open n-cells is
an opcen n-cell.

This theorem is used to relatc the cencepts of point-

likeness and cellularity.



CUADTER ITI
THE TPOTNCART COHJLCTURL

-
The original version of the Poiuncere Coujecture

[N
w

stated as follows:

. 3,
Conjecture_3.]. Supposc M~ is a connected closecd

. - . . 3,
n-manifold which is also simply connccted. Then M7 is

3
homeo.;orphic to S7.

Parvadoxicully, this dis still an outstanding qurstion,
) .
even theugh a more general forw of the FPeincare Conieccture

is known to be true for dimensions greater than 4:

. n . .
Theorem 3.1. Let M be a connccted closed combina-

. . - n o, . n ..
torial n-manifold. Then M dis a howeomorphic to § if

£
-
=
(a7

. no, .
only if M dis a homotopy sphere (n>5).
Jth ! Z

E.C. Zecuan [22] established this significant result
by proving the following relationship between algebraic and
geometric connectedness:

n . .
Theorem 3.2. Let M  be a connected combinatorial

(=]

n-menifold. If M" is algebraically g-connected and g<n-3,

n

4

then M is geometrically g-connected,

The generalized Poincaré Conjecture n>5 was obtained
as a corollary in light of Thecorem 3.2 and an earlier result
of J.R. Stallings [19]:

n .
Theoren 3.3. Let M be a connected closed combina-

. IS L .
n—-tanifold, n>0. Tf N dis gecuetrically [n/i]—

n

tovicl



n .

conncctecd, then M is houweomorphic to a spherea.

Stallings -hed uscd his theorem in 19560 Le prove the

-
Poincare Cenjecturc for n>7, but adwitted that his proof wac
not the best possible, since Zeeman's theorem (3.2) had
already been published. Zecnan comments that Thecorew 3.2
might be shown for g<n-2 if use could be madc of the

P . v : . : .
additional hypothesis that M is a closed manifold. If this
- . -

could be done, the Poincare Conjccture would follow fer
dimensions 3 and 4 since[p~é% n/2 for these dineusions,

In his proof of Theorem 3.3, Stallines ewployed tie
long unknown Generalized Schoenflies Theorem which was
established in early 1960 by Morton Brown [3]:

Theorew 3.4. Supwosec h is a houeuvmorphic embedding

n--1 . n ., .
of S X[O,L} in S. Then the closure of either conplencntery

donain of h(Sn—l

X1/2) is homeomorphic to an n-cell.
The following unproven conjecture by Zeewan [21] is
extremely interesting in that it implies the original
. - .
Poincare Conjecture:

Conjecture 3.2. If K2 is a contractible 2-complex,

then KX[O,i]\O.

Another proof of Theorem 3.1 was given by Stephen
Smele [18] using a differential structurc which he showved
vas implibd by the combinatorial structure.

f.W. Nirsch [8] pointed out iu 1965 that the Poinceare

Cenjectvre is still unknowvn in n>3 if a combinatorial



i8

4 -

etiuctrre is not acsuned., He also gtetced that if a conbina-
- . . 5 no,

toricld structure dis assuwed, it wag cacy to show thiet M is
. . . n .

comhietorially equivalent to S for n>6. In the cited

paper he showed the following:

T . .
Theorem 3.5. Supposc M~ is a closeced conbinatorisl

5-manifold which is the boundary of an orientable 6-manifold.
0 s . : . 5 . .
Ther M~ is combinatorially equivalent to §° if and only if
5o ;
M™ is a hombropy syiheve.

In two papers published in 1963, C.D. Pupekysrickepoulos
[12, 13] proved several other ceonjectures to be cquivelceat

to the Poincaré Conjecture in hopes that they would lead to

a gsolution of that elusive question.



CHAPTLR IV

THY MALN THEQORWIL

This chapter will consist in an. alternate proof of
the previously stated theorem of C.L. Wiginton.

Theorem 4.1. Suppose f is a monotone simplicial

function from a combinatorial 3-sphere S3 onto a combina-
. (= 3 . . . . ke

torial 3-wanifold M~ . Then f is poiutlilke if aud cnly

. " . . r~ 1(3 . + - k]

if the inverse image of each vervtex of M~ is simply counnccted.

Throughout the follcocwing scquence of lcumas, £ wili

: . s i i 3 ! 3 3
be a monotone simplicial function from S~ onto M, where S
is a combinatorial 3-sphere and M3 is a combinatorial
3-manifold.
n o, .

Lemma 4.1. A subset of an n-sphere § is cellulav if
and only if it is pointlike.

Proof: Suppose A is a pointlike suvbset of Sn; then
there exists a homeomorphism h between S"-A and En—p, wherve
p is a point of E". Now there exists a sequence of closed
¢e-neighborhoods <Di> of p such that ﬁDi = p. By the

. -1 - ;
Generalized Schoenflics Theorewm (3.4), h (Dix @,1]) is a
. . A -1, .
tame bicollared (n-l)-sphere Bi so that h (Din/Z) is a
tane (n-1)-sphere Bi. These <Bi> are the boundaries of tane
n-cells (C.> of S" such that C,

i i+l
for all i. Since h [mci}cmh(ci) = p, it follows that NC_ =A.

C int C., and A C int C,
i i

Suppose A is a cellular subsel of Sn. Then there



20

exists a sequence of tome n-—-cclls (Ci>svch that(\CirA and

C, C int C., 7oi1 all i, whercec A C int C, for all i. Now
i1 i i
. , n .
~Ci is howeomorphic to E for all i and NCiC:~Ci'1’ vhere
L
~Ci mecauns the copplencnt of Ci' But\J“Ci = ~ﬁCi, and by

Theoren 2.9,\J”Ci is an open n-cell. Tt follows that A is
pointlike.

Leuma 4.2. Let g be a monotone simplicial function
from a closed triangulated n-manifold M onto a triaugulatad

n-manifold T. Then T is closed.

Proof: "Suppose i#ﬁ and A is au (n-1)-simplex of 7.
Then A must be the face of exactly one n-simplex B of 1.

Now g—llB| mus t be\J!Bj|, vhere the Bj are n-simplexes of M.
Consider Bn, vhere g(Bn)=B, and let Gn be the (n-1)-face of

Bn which naps onto A. Since M hes no boundarvy, an must be the
face of exactly one other n-simplex Vn of M. Now 7n must

also map to A, since g is simplicial. Now all (n-1l)-faces

of Yn must map into A, and thus every chain of n-sinplexes

of M which are pairwise connected by (n-l)-simplexes and zre
connccted to 7n by one of its (n-1)-faces other than o

must also mep to A because of the simplicial nature of g.

But these chains caunot fill vp all of M since Bn does not

map to A. Thus at least one of them has a last n-simplex with
an (n-1)-simplex which is the face of that n-simplex only.

This iwplies that M has a non-empty boundary. But M has an

enpty boundary by hypothesis. The contradiction jmplies thet



Leunrna 4.3. Suppose g is a contintoeus monctone func—
tion from a compact space S onto a space T, S and T are both
Tl, and M dis 2 closced subset of S such that S-¥M = AJ3 where

AW = ANB = ¢ and neithex g {A) nor g(R) is contained in g().

Then g(

—
——
N~

separates L.

Proof: Since S = AJAJ, then T = g(A)Jg(D)YJe (1) .
Suppose therc exists an x[g(A)-g(i) IN[g(B)~-g(M)]. Then
gul(x)ﬁA{ﬁ, gvl(xﬂﬁn¥¢, g_l(xﬂﬂM=¢. This inplics that a—l(x)
is not ceannccted. Since this contradicts g being monotonc
it follows that [g(A)-gQOn) INlg(B)-g@i)1=¢. Suppose that t
is a limit point of g(B)~g(M)'which is ccntained in g(A)-g ().
Let <pi> be a sequencc of points of g(B)-g(M) which couverges
to t. Then the set {ng(pi)} éctc£mines a convergent sequoence
of points (yi> of B. Let z be the sequential limit point of
this sequcnce. XNow @fA since AFEZﬁ by hypothesis. Thus
g(z)¢g(A). But g(z)=t, which is an elecment of g(A). This
contradiction implies that [g(B)-g() IN[g(A)-g ) 1=¢. A
similer arguwent yiclds that [g(B)—g(M)]ﬂ[gfxngzﬁ7]=%.

These two results imply that g(M) separates T.

Lerma 4.4. Suppose g is a monotone simplicial function

from a triangulatcd n-sphere s onto a triangulated n-mani-
n

fold ¥ . If C is a set that separates s™ and £(C) is a point

n . .
xTM ', then at most one conplenentary domain of C can fail to
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Proof: 1If more thon one complementary dowmain of the
. . n
set C foils to map to %, then x will separate M by Leuma
/ . R . PR 1 . .. 3 " . B
t.3. Lvery point of M  has a neighborhood homeonorphic to
N . n . -
E7, since M7 dis an n-manifold without boundesry by Lemma 4.2.
X . D . g
But if x separvates M , it must separate all of its euclidian
neighborhoods, and thus nore of them can be homcoeomorphic to
n 4 . . .
E°. The contradiction iwplics the lemma.
Lemma /4.5. Suppose g is a mnonotone simplicial function
, . . ! . PN ;
from a trianguvlated n-—-sphere 5 onio s trianguleted n-iouf-
. 14 4D . D -1 . s
fold M. If v is a vertex of M , then g ~(v) is a conncctand
n .
full proper subcomplex of S which does not separate.
, -1 . . ,
Proof: The set g “(v) dis connected since g is nono-
. -1
tone and does nct scparate because of Lemnma 4.4, Now g (v)
. ! . .
must be U[Aj] wvhere the Ai are simplexes of § , since g is
. .. , . -1 . - 1
simplicial. The simnplexes of g “(v) are properly joined and
.. . . n
finite in number since they belong to the complex S . More-

Eoy

. . . n . -1
over, if the vertices of any siunlex of S are all in g ~(v),

then the simplex itself must be in g—l(v), since g is bary-
centric. Thus g—](v) is a full subcomplex of s™, It is
obviously proper, since v is not all of Ml

Lemma 4.6. Any regular neighborhood of a connected,
simply connected, full subconplex Z of S3 which does not
separate is a 3-cell.

Proof: Let U(Z,S3) be a regular neighborhood of Z in

e s 3 . 3
co.¢ suhdivision of S7. Then U(Z,57) cen be constructed fron



Z by a finitec nuwber of elerentary geomctricel ecxpansions
such fhat the resulting c¢wpansion is & 3-dimensional sub-
manifold of 83. Now U(Z,S3) is certainly connccted, and is
also sinply connccted as can be secen by the following tvo
step inductive argument:

(1) Onc elementary geomctiical expansion of Z must
be simply connected or else the resulting expansion caunot
collapsec to the gsimply connected Z.

(2) 1If after n elemwentary geometrical expansicus
the result is simply conuected, then another clement:ury
gcometrical expansion must be siwnly connected or elsc
collapsing of the (wtl)-th result back to the simply connected
m-th result would be impossible.

3

Since U(Z,S7) is, in addition to being sinply connccted,

a proper connected closed 3-dimensional submanifold of Sj
whiich does not separate, it must have zero as its first betti
number. By Theorem 2.8, U(Z,S3) has a 2-sphere for its
boundary and is thus a 3-cell. But Theorcwm 2.6 states that
any two regular neighborhoods of Z must be homeonorphic.
Thus all regular neighborhoods of Z are 3-cells.
3 -1 .
Lemna 4.7. Let v be a vertex of M~ . Then £ “(v) is
pointlike if and only if f—l(v) is simply connected.
roof: Suppose f_l(v) is pointlike. Then there must
. . . 3 -1 3
exist a howecwmorphism h which maps S -f “(v) onto S7-p such

1

that h[f“l(v)] = pcf “(v). Let q(x,t) = th(x) + Q-t)I,



where tC[0,1] and I ds the ideuiity mappiug. Then ¢ is a
homotopy such that q(x,1) = h(¥) and q(x,0) = I. Thus
q(f—l(v), 1) = p and q(f_l(v), Q) = f—l(v). It followus that
f_l(v) is homotopic to a conctant, and every simple closed
curve in f—l(v) must alcc be homotopic Lo a constant.
Therefore, fnl(v) is ¢imply connccted.

Suppocse f—l(v) is simply connected. By Thecorem 2.5
any devived simpliciel ncighborhood of f-l(v) is a regular
neighborhood and thus a 3-cell by Leuma 4.6, If
N(fml(v),Smfml(V)SB) is an m-th derived simplicial reighbow-

- 3
hood of f 1(v), a fine enough subdivision Spf~1(v)8 of S

1 D 3 L ~1
(v), S £_1(V>S ) C int N(f “(v), S

w

- m 3

1 : < X
yiclds N(f fnl(v)p ), sc
thet there exists a sequence of reguler neighborhoods <Ui>

suvch theat f—l(v) C int Ui and U C int Ui for 211 1.

i+l
Since the subdivision may be made as fine as desired,

-1 -1 .
ﬂUi=f (v), and £ " (v) is scen to be cellular, and therefore
pointlike by Lemma 4.1.

Lemma 4.8. Suppose g is a monotone simplicial func-
. . n .

tion from a triangulated n-sphere S onto a triangulated

. n . n . .
n-manifold M, and that p is not a vertex of M . Then if
“n n
M in a first derived subdivision of 2" with p as a new

vertex, there exists a corresponding first derived sub-

~ ~ ~
e s n I n n . . . .
division S8 of S§ such that g: § > M is a sinplicial

ronotone function.

Proof: The fronction reoi.2ins wmeaotone no matter hov



25

. el
n , n e
S and M are triangulated. So let M be & subdivision of
N

i : . n
M where {vi} are the nev vertices of M~ and pC{Vi}. Each

. . . . k
of the v, was in the iInterior of some k-simplex Ai , where
1
. -1 Jis k ko,
1<k<n. Now g (v, ,)N{.B, }, where g(.B. ) = A, , is a
T i i7j iv) i

. . . k , . .
collection of single points {irj } each of which dis in the
, , . k -1 k
interior of one of the iB. , and g (viNWL, where g(L)=Ai
and L has dimension higher than k, is the convex hull of the
k . .
elements of {th\} which appear in the k-faces of L that do
not collapse. Now let {iwn} he the collection vi poirte
!

each of which is a point interior to one cof the convex hulls

where m is the number of hulls gencrated, and {ixb} be a

collection of points each of which ig interior to one of the

1

. . , - jid -
k-dimensional or larger simplexes of g (Ai ) which map only

to a vertex of A.k. Let the set [{.t.k}LH,w Yul.x, }] be new
i i’j i m i'b

”~

"~
. n R n .
vertices of § and complete S by starring each of the

simplexes of st beginning with the highest dimensional ones
. . . en L oImn
and ending with the lowest. The mapping g: S ~» M is
simplicial by construction.
Lemma 4.9. Suppose pCM~, M3 is a first derived sub-

R 3 . .
division of M~ which has p as a vertex and S~ is the cor-
3 . I 3 3 3 - *
responding derived subdivision of S constructed in Lemma 4.8.

. 3 \ . .
Supposc v is a vertex of M~ such that [v,p] is a l-simplex

of M3. Then fnl[lk(v,M3)] is the boundary of N(f*l(v),S3).

. -1 . .
Furthermore, if f “(v) is simnply connected, then

1

”~
: P 3 . :
#dIN(L T(v),87)] is a 2-spheve.
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Proof: Since I dis siwplicial and the inverse iwmage
/7 :’.
of every sirplex in st(v,M7) must be gsinplexces all of which
.. . -1 - . .
either intersect f (v) ov freces of such simplexes, it
-1 I T ~3 .
fellows thot £ "[st(v,M7)JCN(f “(v),S7). TLct p be a point of
"3 "3
B, where B is some sinaplex of 87 such that £(B)Est(v,M7).
. . . -1 . .
Then B e¢ither intersects f {v) or is a face of some simplex

which inteisccts fﬂl(v). If P intersccts fﬂl(v), then £(B)

must intersect v since f is simplicial. If B is the face of
a simplex which intcrsccts fwl(v), then f(B) must be the face
of some simplex which intcrsects v. Tu either case F(p) is
/\3 -1 Fa st - /\:‘
a point of st(v,MM ). So IN(f ](v),Sd)lcf l(,st(V,N )]) and
it follows that they are equal in light of the previously
establiczhed inclusion. Since 1k(v,Mj) is the boundary of
st (v,M°), then £ F[1k(v,uN)) = Baln(e ™ (w,sH 1.
- - ~3
Suppese f l(v) is simply counected. MNow N(f ](v),S )
is a 3~cell by Theorem 2.5 and Lenwa 4.6. Thus
o1 o3 .
BA[N(f “(v),S7)] is a 2-sphere.

Lemma 4.10. If f_l(v) is simply connected for all

vertices v of M3, then fnl(p) is pointlike for every p not a

vertex of M3.

Proof: By Lemma 4.9, for any p, f_l[lk(v,M3)] =

Bd[N(fal(v),SJ)], where v is a vertex of M3 such that [v,p]
is a l-simplex of M3. Now f~l(p) must be contained in

Bd[N(f"l(v),SB)] since pClk(v,M3), and Bd[N(f_l(v),SB] is a

. ; -1 . , . 3
2--:phere since f “(v) is sinply connected. The fact that 8§
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3

A
is a conbinatorial 3-splicre implics that Ik(v,M7) is also =a

2-sphere. Dut a nonotone sinplicial function frowm a 2-sphere

. . . . ; -1 . .
onto a 2-sphere is pointlike, so that £ ~(p) dis pointlike

on hd[N(f—l(v),Sj)]. Thus I_l(p) is cellular on that 2-

sphere which fwplies that there cxists a sequence of tame

2-cclls <Ai> on the 2-spherec such that f_l(p) is contained

in the interior of all the A, and A, C int A, for all i,
i i+l i

wvherc ﬁAiLfﬂl(p). Let <Bi> be the sequence of 3-cells in

N
3 ] ] . . . ;
§$” suclh that B, = A _X|[- ;, ;], and i1t is readily seen toat
i i i’ i
a)

f*l(p) is cellular in 83.

Proof of the Main Theorem (4.1): Lenmas 4.7 aud £4.10

imply the theorem.
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RELATLED COUJLECTULRTS

In an effort to cuxtend Thecorem 4.1 to higher dimensions
in at least some form, Lemwmmas 4.1, 4.2, 4.3, 4.4, 4.5, and
4.8 were shown to be true for all dimensions, and Lenma 4.9
can casily be proven for all dimensione if the added statcment

l(v),Sn)] is an (n-1)-sphere is eliminated. The

that BI[X(f
folloving ave conjectures which vwere studied together vith
suggesitions for their possible proof.
Conjecturc 5.1. Suppose f is a monotonc siuplicial
. . .. .n . .
function {rom a combinatorial n-sphere 8§ onto a combincterial
. n e . . . . \ . ,
n-nenifold M . Then f is pointlilke if and only if the in-
. . n ., . -
versc imoace of eoch vertex of M dis algcebraically [n/2]-
connected (ni 4 or 5).
. e a1 . -1 .
If f is pointlike, it follous that { “(v) is algc-
. . . -1 . . .
braically [n/2]-connected, since £ “(v) is cellular implies
that therc exists & sequence of tame n~cells <Ci> such that

l(v).

f*l(v) C int Ci and Ci+l c int Ci for all i, wherc(ﬁCi=f"
The difficuvlt part of the proof is the "if" part.
Conjecture 5.1.1. Any regular neighborhood of a
cennected, algebraically [n/2]-connected, full subcomplex
Z of Sn which does not separate is an n-cell (n#4 or 5).

It is easily seen by dnduction that a regular

neighborhood of Z is elgebraically [v/?]-counected. T{ it
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were true that a cowpact n-manifeld with connected boundary
which is algebreically [n/2]-cennccted has a bourdary which
is "algebraically [(n-1)/2]--connectcd, then this conjecturé
would hold for dinensions n#4d or 5 by applying the Poincaré
Conjecturc for n#3 or 4 to establish that the boundary is an
(n-1)-sphere. This result weuld recadily imply the following
version cf Lenma 4.7:

Conjectuvre 5.1.2. TLet v be a vertex of MY, Theu
ful(v) is pointlike if and only if f_l(v) ig algebracally
{n/2)-ceunecied (n#4 or 5).

The difficult portion of Leunma 4.9 would also follow,
namely:

Conjecture 5.1.3., Supposc f_l(v) is algebraically

In/2)~counecicd. Then Bd[N(f_l(v),gn)] is an (n-1) ¢
(nt4 or 5).

Another difficulty arises, however, in trying to prove
Lemwma 4.10 for n-dimensions.

Conjecture 5.1.4. If f—l(v) is algebraically [n/2]-

connected for all vertices v of Mn, then f—l(p) is pointlike
for every p not a vertex of M'(nf4 or 5).

The problem is that even if it were known that
Bd[K(f—l(v),gn)] is an (n-1)-sphere, it is not known whether
a monotone, simplicial function from a k-sphere onto a k-
sphere is pointlike or not, k<n.

Anothecr possibility was suggested by Theorem 3.3:

<O
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Conjecture 5.2. Suppose £ is a monotone sinmplicial
; . . n .
function frow o combinatorial n--sphere S onto a combina-
. . 1 n . . . . .

torial n-mnanifold M°. Then £ is pointlike if the inverse
. n o, . , !
image of ecach vertex of M dis gecometrically [n/2}-connected.

The condition on the inverse images scems to be much

. . . . k 1

stronger, since if the inverse image T of a vertex has
dimension k, thewn every [n/2]-cowbinatorial subspace must

k

lie in & k-ball of ¥ This means that there cannot he any

k

simplexes din ¥ of dimension less than [n/2lvhich 2:1: ner

h

the faces of [n/2]-simplexes. For this rcason, the “only

bt

rart of the theorem wes omitted from this conjecture.

Conjecture 5.2.1. Any regular ncighhorhood of a

connected, geometrically [n/2]-connected, full subcowplen Z
of $" which docs not separate is an n-cell.

By Theorem 3.2, this conjecture is equivalent to
Conjecture 5.1.1 for n>5. Again, it can be shown that a
regular neighborhecod of Z is geometrically [n/2])-connected.
Stalling's Theorem (3.3) could be used if it were known
that a compact n-manifold with connected boundary which is
geometrically [n/2]-counected has a geowetrically [(n-1)/2]-
connccted boundazry. Thé following could easily be shown:

Conjecture 5.2.2. Let v be a vertex of M". Then

f—l(v) is pointlike if fﬁl(v) is geometrically [n/2]-

connected.

=
"

Conjecture 5.2.3. Suppose £ ~(v) gecometrically
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) . =l 0 Tn . i
[n/?2}-connccted. Then Bd [ (f (v),$ )] is an (n-1)-sphere.

The counterpart of Lewnae 4.10 for Conjeclure 5.2 hes
the same difficultice exploired in Conjecture 5.1.4.

One other modification vas considered in some detail,
bui no more procress vas made:

Conjectrre 5.3. Suppose f is 2 monotone simplicial

\ . . . -1
function from a conibinatorial n-sphevre S onto a combina-
. . n . . . . . .
torial n-manifold . Then { is pointlike if the inversc
. c , oo, .
inage of cach vertex of M is ccllapsible.

The reversc dimplication is not Lrue, since thern are
exanples which show that contractible k~complexes need not
be collapsible.

Lewma 5.3.1. A regular neighborhood of a collapsible

n
subcomplex of & is an n-cell.

Threc of Zeeman's Theorems (2.4, 2.5, and 2.6) taken
together imply this lemwma. It follows immediately that the
next lemma is true:

Leuma 5.3.2. Let v be a vertex of MY,  Then f—l(v)

ful(v) is collapsible.

is pointlike if
In trying to establish that f_l(p) is collapsible for

n l(p)

p not a vertex of ¥, it could not be ascertained that f
is not one of those non~collapsible yet contrectible k-
conplexes mentionced above.

These conjectures suggoest many areas for further

reccearch.
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