MONOTONE SIMPLICIAL FUNCTIONS

 ON COMBINATORIAL SPHERESA Thesis
Presented to
the Faculty uf the Department of Mathematics University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

by

James Daniel Borkowski
June 1968
450394

ACENOMBMH:MENTS

The author wishes to oxpess has apreciatjon to his thests adyasor, professor Lanar wiginton, for the many helpful jodes and active encouragement in the preparation of this thesis. The basic idea of this theris was a peper writien by frofessor Wiginton enifted, "Nonotone sinplicial. Mappinge of $S^{3} . "$

An Abstract of a Thesis
 Presented to
 the Faculty of the Department of Mathematics
 University of Houston

In Partial Fulfillment of the Requirements of the Degree Master of Science

ABSTEACM

Let f be f monotone simplicisi function fron a triangulated combinatorial nephere s^{n} onto a triangelatcd colabinatorial n-nanifold K^{n}. It is shown that f is point... like if and only if $f^{-1}(v)$ is algebraically $[n / 2]$-connected for each vertex V of h^{n}, provided thet a-3. dhe proof is accomplished alone lines which $j t$ is hoped will lead to a proof for othei dimensions, porhapa for all u, in ai ferci: a modifyed version of the statement.

Several related conjectures are investigated by sinoring that sotie of the lemmas used to prove the main theore are true in all dimensions, or at least in all but tro. jhe particular diffeculties encountexed by tho author jutryire to prove these conjcetures are explaincd.

TABLI OF CORTERSS

CHAPTGR PAGE
 1
Introduction 1
Definjtions 1
II. BACKGROUNI TRBLTMTAARTES 12
IJT. TIE roINçRE conjecture 16
IV. THE MATN mborrn 19
v. SOME RRLATEJ CONJEC'fures $2 \ddot{3}$
BIBLTOGRAPMY 30

CHADTLR J

INTRODUCHIOR AND DETTKYJJOKS

J. INTROMUCTION

In June, 1962, Ross Finney [5]* proved that if there exists a pointlike, simplicial mapping of M onto T, where M is a triangulated $3 \cdots$ sphere and T is a trinngulated topological space, then l is a 3-sphere. Iollowing thir reoult, C. I. Wiginton [20] established that if fis a monotone simplicial mappjng from a triangulated 3-sphoro onto a mandfold M^{3}, then if the inverse image of each vertex is simply counceted, M^{3} is a $3-s p h e r e$.

In hopes that a similar rosult might be dovelonce for higher djhonsions, the author has attempted to extend Wiginton's main theorem to higher dimensions. The restit of this effort is a new proof of this theoren in chapter IV and the djscussion of the rolated conjectures in chapter V.

II. DEFINITIONS

Definition].I. An n-cell is a topological space horeonorphic to either $I^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in E^{n} \exists 0 \leq x_{i}<1\right\}$, the stamdard n-cube, or $H^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in E^{n} \Rightarrow \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}$, the stand:rd m-ball. An n-cel] is also referred to as an n-ball.
\qquad

Definjtion l.2. An n-splere is a topological space homeonorphic to $S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in E^{n+1 n_{i=1}^{n+1}} \sum_{i}^{2}=1\right\}$, the standird n-aspere.

Dofinition 1.3. An n-menifold K^{n} is a separable
metric space such that all its points have a neighborhood honcomorphic to either m^{n} or B^{nl}. An intcrior point of M^{n} is a point having a neighborhood homeomorphice to $E^{\text {nh }}$ and a boundary point is a point having no nciehborhood homeomorphic to E^{n}. The interiox of H^{n}, int M^{n}, is the unton of all for interior points of M^{n}. Whe boundary of H^{n}, Bd M^{n} or in is the conploment in M^{n} of int M^{n}.

Definition j. 4 . A manifold M is called closcd if it is conpact amt $M=\dot{\varphi}$, bounded if it is compact and $M \neq \theta$, opon if it is not conpact and $M=\emptyset$.

Definjtion 1.5. If A is a closed subset of an nmanifold x^{n}, then a component of $x^{n}-A$ is called a conplementary domain of A.

Definition 1.6. A subset A of an n-sphere S^{n} is pointifke if $s^{n}-A$ is homeomorphic to E^{n}. A mapping g of an n-sphere onto a space Y is pointlike if the set $g^{-1}(y)$ is pointlilie for each sEY.

Definjtion 1.7. A continuous function $f: M \rightarrow G$ is said to be monotons if the inverse image of each gCG is commected.

Definition 1.8. A subset A of N, where N is an n-manifold, $i s$ cellular if thare exists a erquence of n-cells
$\left\langle C_{i}\right\rangle$ such that $A=\cap C_{i}$ and for cour $i, C_{i+1} C_{i n t} C_{i}$.
Definition l.9. An n-sjundre $A(n \geqslant 0)$, where $A\left(E^{P}\right.$,
$\mathrm{p} \geq \mathrm{n}$, is the convex hull of (ntl) lincaxly independent points, called verticos of A. The convora hull of any (k+1) subcollection of theso vertices is a simplex called a k-face of A, where $k=-1,0,1, \ldots, n$. Thus the empry set is a (-1) race of A, and $A<A$. If B is a facc of A, this fact is denoted by $B<A$.

Dofinition 1.10 . The join of two simplexar 1 and ? Writeen $A B$, is the sinplex spermod by the vertices cf A ind B taken logether. If this collection of vertices is rot linearly indopendont, the join is not dofined, and A and B are said to be not joinable. Otherwisc, they are iotualro.

Definition 1.1. A finite simulicial contlex, or complex, K in \mathbb{E}^{p} is a finite collection of simplexes such that:
(1) $A \in K$ and $B \angle A=B \in K$
(2) AEK and $F \in K=-\cdots(A \subset B)<A$ and
$(A \cap B)<B$
Definition 1.12. A polyliedron $\mid \mathrm{K}$ (is the point-ret determined from a complex K by taking the union of the simpleases in K. A topology on $|k|$ is the relative topology inherited from E^{P}.

Definition 1.1.3. A triangulation of a tovological
space is a finjto simpljcial comper k such that the poly-
 triangulation of a topological space is often called simply a triangulated tomojogical space.

Definition 1.14. If K and l are cunpleses, then a simplicial map or simplicial function fok is a function $\mathrm{f}:|\mathrm{K}| \rightarrow|\mathrm{L}|$ such that:
(1.) fis continuous
(2) f maps vertices io verifocs, and whenever

$$
\begin{aligned}
& \left\{v_{o}, \ldots, v_{p}\right\} \operatorname{span} \text { a simplex of } k \text {, then } \\
& \left\{f\left(v_{0}\right), \ldots, f\left(v_{p}\right)\right\} \text { span a simplox of } L
\end{aligned}
$$

$$
\underset{i=1}{\left.f(\alpha)=\sum_{i} t_{i} f\left(v_{i}\right), ~()^{\prime}\right)}
$$

Definjition 1.15. If A is a simplex of the complox
 of K made $u p$ of all the simplexes of K having A as a face together with all their faces. The link of A in K denoted 1k(A,K) is the subcotiplex of K made up of all the simplexes of K in st(A,K) which do not intersect A.

Definition 1.16. If A^{k} is a k-dimensional simplex ${ }_{k}^{\text {and }} \alpha \subset|A|$, where $\left\{v_{i}\right\}_{i=0} 0, f$ are the vertices of A^{k} and $a=$ $\sum t_{i} v_{i}$ so that $t_{i} \subset[0,1]$ anc $\sum_{i}^{k} t_{i}=1$, then the $\left\{t_{i}\right\}$ are $\sum_{i=0}{ }^{j}{ }^{v}{ }^{v}{ }_{i}$ So that $t_{i} \subset[0,1]$ and $\sum_{i=0} t_{i}=1$, then the $\left\{t_{i}\right\}$ are called barycentric coordinatos of a. In particular, the point \hat{A}^{k}, which has barycentric coordinates $\left\{t_{j}\right\} \quad j=0, k$ such that $t_{j}=1 / k+1$ for all j is called the barycenter of A^{k}.
befinition l. J. The dirension, n, of a conplex
K^{n} is the dimension of the hiehest dimensiomal simplex of K^{n} 。

Dofinition 1.j. If. If K and L are complexcs, L is a subdivision of K if $|K|=|x|$ and overy simplex of L lies in a simplex of K.

Definjiion 1.19. If A is a simplex, the boundary $\underset{\sim}{\circ}$ of A is the corpiex comsisting of all the proper faces of A. If K^{n} is a complox which is howogencous; that is, riudr up of n-simplexes and their faces, the boundary \tilde{N}^{n} of \ddot{i}^{n} is the ($n-1$)-complex mele up of the ($n-1$)-sjmplexes of the boundary \AA of each of the n-dimensional simplexes $A \in K^{n}$ (except for those (n-1)-sinpleyes which are faces of an evoa number of $n \cdots$ implexes of K^{n}) plus all their faces.

Definitjon 1.20. If K and L are compleaes, then the join of K and L, written $K L$, is the complex \{ABЭAEK, PEL\}, where Ab is defined for all such A and F.

Definition 1.21. Let A be a simplex of the complex K and α be a point in int A. The construction of from K such that $L=\{K-s t(A, K)\} \cup N i k(A, K)$ is called an elenentary starying of K at α, witten $k \cdot L_{\text {. }}$ A stellar subdivision of K, denoted σK, is any subdivision of K obtained by a finite sequence of elementary starrings.

Definition 1.22. A derived subdivision of a complex K is a subdivision obtained by starring all the simplexes of K in sore order such thet if $B<A$, then A is starred before B.

If the starring is done at the barycenter of cach simplox, the subdivision is said to he barycontric derived, ou sinfy bayconeric. The n-th such construction is callea the n-th derived subdivision oi K.

Dofinition 3.23. A function from a conplex k onto a conpler L is called piecewise linear (prl) if there exists subdivisions of and β relative to which if simplicial.
lefinition 1.24. A sirplicial mapping ferom a
 callca ait iscmornhish, and K is said to be isomorpitit to J . denoted K_{E}. If f is only a piece-wise limear homomonrlism, then we write $\mathbb{N} \sim 2$, and say that K and J are combinatorially cguivalent.
Definition 1.25. A combinanoicl noball is a coiplox pol honeonorphic to the triangulated standard n-ball p^{n}. A combinatorial n-sphere jes a complex pwl homeomorphic to the triangulated standard n-sphere S^{n}.
Definition 1.26. A combinatorial n-manifold is a
homogencous n-dimensional complex k such that for any vertex v of $k, 1 k(v, K)$ is a combinaturial ($n-1$)-ball if $v=1$ and a combinatorial (n-1)-sphere if $v \dot{f}$

Definition 1.27. Suppose K is a complex such that $K=I U A$, where A is a simpler, $A=a b$, and $J \cap A=a \dot{B}$ (i.e., the face Bopposite the vertex a in A is a "free" face of the simplex A jon $)^{\prime}$, then the operation of going from the corclex

K to the cuthplex $L=x-A-11$ (recall inat ranoving at aimplox from a comples (ioes not romove all its facos), ia colled an
 inverse operation, denoted Lat, is called an olcmentayy (sinplicial) expansion. Finite socuences of either are called, respeciivcly, (simpicial) collensings and (simplicial) expancions. If k collapses to a veriox vek, we say k is coldapsible, and dcnoie this by K以.

Doínition 1.28 . A subcomplex L of the conploy dis
 veritices in L, then $A \in L$.

Dcfinition 1.29. Jif ${ }^{\circ}$ is a complcx such ihat $K_{I}=k \bigcup_{0} H^{n}$, where B^{n} is a combinatoriad ball and B^{n} n $K_{o}=$
 hy $K_{I_{0}} \mathrm{~K}_{\mathrm{o}}$ is called an elementary geometrical collajsingThe inverse operation $K_{o} \rightarrow{ }^{r}$ is termed an elementery geometrical expansion. Finite sequences of either are called, respectively, geometricel collausincs and geometrical expansions. If K has dimension n, and the only B^{k} used are such that $k=n$, then the collapsings (or expansions) are called regular.

Definition 1. 30. If K is a complex and $X C_{-}|K|$, then $N(X, K)=\{\Lambda \in K \Rightarrow \operatorname{si}(\Lambda, K) \mid \cap X \neq 0\}$ is called the (closcd) simplicial. neirhborhood of X in K. Notice that $N(X, K)$ is the complex formed by taling all simplexes of k which interscet x, plus all thejr faces.

Definition l. 31. If L is a subcompler of K, then $\mathrm{S}_{\mathrm{L}} \mathrm{k}$ will demote the beryeentric subdivision obeaned by stairime the simplexes of $K-L$ in order of decroasing dimensica.

Definition 3.32 . If k is a subcomplex of a combiracorial manifold M^{n}, then by a regular neiahhorhood of K in M is meant a subcomplex $\mathbb{U}(\mathbb{K}, \mathrm{M})$. such that:
(1) $u(K, r)$ is a conbinatorian n-manifold.
(2) U(K, N_{i}) collapses geometrically tok.

Definjtjon 1.33. Suppose ACUCB, where u is opon iar. Then u is catied a cartesian monduct nejghborhond of a if there exists a homeonorphism $h: A \times(-I, I) \rightarrow U$ such that $h(x \times\{0\})=x$, for all $x \in \Lambda$. Tf there cxiste such a U, A is said to be bicollared by u.

Definifion 1.34. If M^{n} is a conibinatorial monnifold with $X \subset\left|M^{n}\right|$ such that under some subdivision α of X^{n} thore exists a $K \subset \gamma^{r}$ where $X=|K|$, then X is called a combinatorial. subspace of Mn^{n}.

Definition 3.35. A combinatorial $n-m a n i f o l d M^{n}$ is said to be algebraically g-- connected if the inclusion mapping of every combinatorial subspace $\mathrm{X}^{\mathrm{k}} \subset\left|\mathrm{M}^{\mathrm{n}}\right|, \mathrm{k} \leq \mathrm{g}$, into M^{n} is horotopic to a constant.

Definition 1.36. A continatorial $n-m a n i f o l d M^{n}$ is said to be geonetrically g-connected if every g-dimensional conbinatorial subspace of M^{n} is contained in a combinatorial $n-b a l 1$ of M^{n}.

Nefinjtion 1.37. A combinatorial closed n-mamifold is callea a homotory splere if it is comocted and algumaically [n/2]-comected, where $[x]$ is the greatest integer less than or equal to x.

Defintion 1.38. A sjmplex A^{p} is said to be oricnted if some arbitrary fixed ordering of its vextices has been detemmined. The equivalence class of even permutatione of this fised ordering is the positively orionted sinfley, denoted $+\Lambda^{p}$ and the equivalenco class of oud pernutivions of the ordering is called the negativcly oriented sjmpter. An oriented complew is a complex which has all oriented simplexes.

Definition 1.39. Let k denote an oriconted confles and G denote an arbitrary abelian group. Then an mociremsional chain on the complox w with cocfficients in the group G is a function c_{m} on the oriented m-simplexes of K with values in C such that if $c_{m}\left(+A^{m}\right)=g$, geG, then $c_{m}\left(-A^{m}\right)=$ - g. The collection of all such m-dimensional chains on k will be denoted by $\frac{C}{-1}(K, G)$. Note: Addition can be defined by $\left(1_{1} c_{m}+{ }_{2} c_{m}\right)\left(A^{m}\right) \equiv{ }_{1} c_{m}\left(A^{m}\right)+{ }_{2} c_{m}\left(A^{m}\right)$, where the addition on the right is the group addition in G, and that jif G is the integers mod2, there is no necessity to have oriented simplexes. $\quad C_{m}(K, C)$ forms a commetative group under the described addition.

Definition 1. 40. Let K be an oriented conplex. There
is corociaterl with every pajr of simplexes A^{m} and $\mathrm{b}^{\mathrm{mbn}}$, Where A and B differ in dimens:on by 1 , an incidruce munhur defincd as follors:
(1) $\left[A^{n}, B^{n-1}\right]=0$, if $E^{m-1} \leqslant A^{m}$
(2) $\left[A^{m 1}, B^{m-1}\right]=+1$, if $D^{m-1}<A^{m}$

In order to decide in (2) which sign to usc, consider the vertices of H^{m-1}. They wost lue the same as the vertices of A^{m}, with say v_{i} lefi out. If that pariticular ordoring is $+B^{m \cdot 1}$ and $\left(v_{i}, v_{0}, \ldots, t_{i}, \ldots, v_{m}\right)$ is $+A^{m}$, ther $\left[A^{1 a}, s^{m \cdot 1}-\right.$ $\therefore I$; if it is $\cdots I^{m}$, then $\left[\Lambda^{m}, B^{m-1}\right]=-1$. If that partiraiati ordering is $-B^{m-1}$ and ($v_{i,}, v_{o}, \ldots, y_{i}, \ldots, v_{m}$) is $+A^{m}$, then $\left[\Lambda^{\mathrm{m}}, B^{\mathrm{m}-1}\right]=-1$; if it is $-\Lambda^{\mathrm{m}}$, then $\left[A^{m}, B^{m-1}\right]=+1$.
 m-chajin c_{m} such that $c_{m}\left(\pm A^{m}\right)=E_{0}$ for some proticular simplex $A^{1 n} \in\left\{\right.$, and $C_{n}\left(B^{n}\right)=0$, for any other m-simplex oík. Thus any mochain may be rriten as the formal lincar combination of elemontary m-chains; $c_{m}=\sum g_{i}$. $A_{i}{ }^{m}$, where $g_{j}=$ $c_{\mathrm{II}}\left(+\mathrm{A}_{\mathrm{i}}{ }^{\mathrm{ml}}\right)$

Dofinition 1.42. The boundary operator is defined by:

$$
\partial\left(\varepsilon_{0} \cdot A_{o}^{m}\right)=\sum_{B_{i}<A_{0}^{m-]}}^{\left[A_{0}^{m i}, B_{i}^{m-1}\right] \cdot \varepsilon_{0} \cdot B_{i}^{m-1}, ~}
$$

where $\left[A_{o}{ }^{m}, B_{i}{ }^{m-1}\right]$ is the incidence number. We further definc:

$$
\partial\left(\sum_{j} \varepsilon_{i} \cdot \Lambda_{i}^{n i}\right)=\sum_{i} \partial\left(\varepsilon_{j} \cdot \Lambda_{j}{ }^{n}\right)
$$

 On W With coefficiente in G is a chain z_{m} in $C_{m}(K, G)$ such thot $\partial\left(z_{n}\right)=0$. The m-dimensional sycle woup of with coefficionts ing is the collection of such m-cycles together with lhe commitative adition previously noted and is wrilten $Z_{n T}(K, G)$.

Definition 1. 広. An m-boundary is an m-chain b_{m} if there exists an $(m+1)$-chain C_{m+1} in $C_{m+1}(K, G)$ such that $\partial\left(C_{m+1}\right)=b_{m}$. The collection of ajl m-bourciaries of h Low gether with the prev-ousily noted addition forms a commitiaive group written $B_{n}(K, G)$. Notice that $B_{m}(K, G)$ is a subgroup of $Z_{m}(K, G)$ since $\partial\left[\partial\left(C_{m+1}\right)\right]=0$.

Definitjon 1.45. The factor grcup $Z_{m}(K, G)$.- Fin (K, G) is called the moth honology group of K over G, and is defotwi by $\mathrm{H}_{\mathrm{m}}(\mathrm{K}, \mathrm{G})$.

Definition J. 46. Let G_{i} be the direct sum de.composition of $H_{m}(K, G)$ such that at most one of the G_{i} is not a cyclic group, and call the non-cyclic group (if it exists) G_{o}. The number of generators of G_{o} is calied the m-th betti number of k. If there is no non-cyclic group, then the m-th betti number is zero.

CHAPTIR I?

BACKGROUND PKHTOMTNAKTHS

A classical problem in the study of monotome continuous functions from a topological space X ontro a topological Y is to diecover conditions on sucli a function such that X is homeomorphic to Y.

As early as 192 , R.t. Moore [1] ehoved that the monotone conifnuoue image of a Z-sphere is a cactoid (a contjunoas curve whose evcry maximal cuclic elemeat je a 2-sphere), and that every cactoid is a monotone continuous jmage of a 2 -sphorc. He also shoved that if the inverge inage of no point of the image space seforates the $2 \cdots$ ophens domain, then the inase is eitiler a 2 -sphere or a point.

Some hichly analagous results were obtained by J.H. Foborts and N.E. Steenrod [15] in 1938. They proved that the class of continuous inages of compact 2-manifolds without boundary under monotone transformations is composed of just those continuous curves each of which can be obtained from a gencralized cactojd (a continuous curve whose every maxinal cyclic element is a 2-manifold and all but a finite number of these are $2-s p h e r e s)$ by making a finite number of identifications. By adding various restrictions on the nondegencrate inverse images of points in the image space, they obtained etronger results, jucludifg tirel if fis a monotome
continuous function from a comact, conmected 2-manifold X onto Y, then X is honcomomphic to Y if and only if Y contains more than one point and the l-dimensional betti number (mod 2) of each of the scts $\mathrm{f}^{-1}(\mathrm{y})$, yEY, is zero.

An interesting sufficiont condition that a ronotone continuous inage of the 3 -sphere be honeonorphic to a 3sphere was publiched by 0.G. Harrold, Jr. [7] in 1953 , and is statcd as follows:

Theorem 2.1. Let $M=f\left(S^{3}\right)$, where f is a monotonc continuous map such that $i f y$ is the set of points in fhich have non-degenerate inverse inages, and given yery and $c>0$, there exists a topological $2-$ sphere $K \subset T=\{z \in M \rho(z, y)<\epsilon\}$, where
 3-sphore.

Going in a different direction from Harrold's result, Ross Finney [5] proved this powerful theorem:

Theorem 2.2. Let M be a triangulated 3 -splere and let T be a triangulated topological space. If there exists a pointlike, simplicial mapping M onto T, then T is homeomorphic to M.

In 1965, C.L. Wi.ginton [20] proved this closely re..
lated theorem:
Theorem 2.3. Suppose f is a monotone simplicial mapping from a triangulated 3 -sphere S^{3} onto a 3 -manifold M^{3}. Then f is pointlike jf and only if the inverse inage of each
verier is simply connceted.
The porer of this theorem is secn in the following cosollary:

Coroliury 2. 3.1. Suppose f is a monotone simplicial
 Then if the inverse image of each vertex is simply conncted, M^{3} is a 3-sphere.

This corollary is a result of Theoren 2.2 and Theorem 2.3.

Four theorems of E.C. Zeman [21] will be cinployod in the sequel.

Theorem 2.4. A derived simplicial neighborhood of a collapsible polyhedron which is contained in an manifride in an $n-b a l l$.

Theorem 2.5. Any derived simplicial neighborhood of. a combinatorial subspace of a combinatorial manifold is a regular neighborhood.

Theorem 2.6. Any two regular neighborhoods of a colubinatorial subspace of a combinatorial marifold are homeonorphic.

Theorer 2.7. A manifold is collapsible if and only if it is a ball.
H. Seifert [17] proved the following extremely useful theorem:

Theorer 2.8. The first Betti number of a compact

3-manifold with houndary is greatea than or equal to the sum of the genera of its boundary surfaces.

In 1961, Morton Brow [2] obtained this result:
Theorem 2.9. The morotome union of open m-colls is
an open n-cel.l.
This theorem is used to relate the concepts of pointlikeness and cellularity.

CHAPMER IIT

THE POTRCARE CORJECHER

Jine origimal version of the Poincare Conjecture is stated as follows:

Conjecture 3.1. Suppose M^{3} is a connected closed n-ranifold which is also simply conncoted. Then M^{3} is homeo: orplite to S^{3}.

Paradoxically, this is stily an outstandine quastion, even though a more gencral form of the poincaré conjecture is known to be true for dimensions greater than 4:

Theoren_3. Let M^{n} be a connccted closed conbinatorial m-manifold. Jhen M^{n} is a homeonorphic to S^{n} if and only j.f $M^{\text {ni }}$ is a homotopy sphere (n>5).
E.C. Zeeman [22] established this significant result by proving the followjng relationship between algebraic and geometric connectedncss:

Theorem 3.2. Let M^{n} be a connected combinatorial n-manifold. If. M^{n} is algebraically g-connected and $\mathrm{g} \leq \mathrm{n}-\mathrm{B}$, then M^{n} is geometrically g-connected.

The generalized Poincaré Conjecture $n \geq 5$ was obtained as a corollary in light of Thcorem 3.2 and an earlier result of J.R. Stal1ings [19]:

Ikoorem 3.3. Let M^{n} be a connected closed combinato:jol n-innifold, $n>0$. If n^{n} is gecretrically [n/2]-
comected, then M^{n} is homeomurphic to a sphero.
Stallingehad uscd his theorm in 1960 lo prove the Poincaré Conjecture for $n \geq 7$, but adnitted that his proof was not the best possible, since Zoeman's theorem (3.2) had already been published. Zecrian comments that Theorem 3.2 might be shown for $\mathrm{g} \leq \mathrm{n}-2$ if use could be mado of the additional hypothesis that $\mathbb{I f}^{17}$ is a closed manifold. If this could lie done, the Poincaré Conjecture would followfor dimensions 3 and 4 since $[n-2]=n / 2$ for these dinensinne.

In his proof of Theorem 3.3, Stalinges omployfu itu long unknown Generalized Schocnflies theorem which was established in carly 1960 by Morton Bromin [3]:

Theorem 3.4. Suppose h is a honewmorpic enbeciding of $S^{n-1} \times[0,1]$ in S^{n}. Then the closure of ejther conplenentery donain of $h\left(S^{n-1} \times 1 / 2\right)$ is honeomorphic to an $n-c e l l$.

The following unproven conjecture by Zeenan [21] is extremely interesting in that it implies the original. Poincaré Conjecture:

Conjecture 3.2. If K^{2} is a contractible 2-complex, then $K \times[0,1]>0$.

Another proof of Theorem 3.1 was given by Stephen Sinele [18] using a differential structure which he showed vas implied by the combjnatorial structure.
M.W. llirsch [8] pointed out in 1965 that the poincare Conjerture is still unknomin in \quad if a combinatorjal.
sitactur is not acsmmed. He also statcd that if a combinaforiot structure is assumed, it wes easy to show that $\mathrm{M}^{\text {th }}$ is contictorially equivalent to S^{n} for $n \geq 6$. In the cited paper he showed the following:

Theorem 3.5. Supposc M^{5} is a closcd conbinatori=?
5-manifold which is the boundary of an oricntable 6-manifold. When M^{5} is combinatorially equivalemt to S^{5} if and only if N^{5} is a homotopy sphere.

In two papers published in 1963, C.D. Pepalyitakeperelos [12, 13] prored sevoral other conjectures to he cquinalrat to the Poincaré Conjecture in hopes that they would lead to a solution of that elusive question.

CIIAPTET IV

THE NATN THEORML

This chaptor will consist in an alternate proof of the previously statcd theorem of G.I. Viginton.

Theorem 4.1. Suppose f is a monotone simplicial. function from a combinatorial $3-s^{\prime}$ fhere 3 onto a combinatorial 3-manifold M^{3}. Then f is pointinko if and onjy if the irverse image of each vertox of M^{3} is sjmply conacetec.

Throughout the following sequence of lonmas; foll be a monotone simplicial function from S^{3} onto M^{3}, where S^{3} is a combinatorial 3 -sphere and M^{3} is a conbinatorial 3-manifold.

Lemma 4.1. A subset of an n-sphere S^{n} is cellular if and only if it is pointlike.

Proof: Suppose A is a poirtlike subset of S^{n}; then there exists a honeomorphism h between $S^{n}-A$ and $E^{n}-p$, where p is a point of E^{n}. Now there exists a sequence of closed. t-nej.ghborhoods $\left\langle D_{i}\right\rangle$ of p such that $\operatorname{CD}_{i}=p$. By the Generalized Schoenflics Theoren (3.4), $h^{-1}\left(\dot{D}_{i} \times[0,1]\right)$ is a tame bicollared $(n-1)$-sphere $\hat{\mathrm{B}}_{i}$ so that $h^{-1}\left(\dot{D}_{i} \times 1 / 2\right)$ is a tane $(n-1)$-sphere B_{i}. These $\left\langle B_{i}\right\rangle$ are the boundaries of tame n-cells $\left\langle C_{i}\right\rangle$ of S^{n} such that $C_{i+1} \subset$ int C_{i} and $A \subset i n t C_{i}$ for al. i. Since $h\left[\cap C_{i}\right] \subset \cap h\left(C_{i}\right)=p, i t$ follows that $\cap C_{i}=A$. Suppose A is a cellular subsei of S_{n}. Then there
exists a sequencer of tame n-ccals $\left\langle C_{i}\right\rangle$ sioh that rocion and

 \sim_{i} means the conploment of C_{i}. But $\cup{ }^{\circ} C_{i}=\sim \sim C_{i}$, and by Theorem 2.9, $U^{\sim} C_{i}$ is an open $n-c e l l$. Jt follows that A is pointlike.

Iemat 4.2. Let $\&$ be a monotone simplicial function from a closed trianqulated n-manifold N onto a triangulated n-ranifold T. Then T is closed.
 Then A must be the face of exactly one n-simplex B of it. Now $g^{-1}|B|$ must be $U\left|\beta_{i}\right|$, where the β_{j} are nosimplexes of N. Consider β_{n}, where $g\left(\beta_{n}\right)=B$, and let α_{n} be the ($n-j$) - face of B_{n} which naps onto A. Since M has no boundasy, on rust be the facc of exactly one other n-simplex y_{n} of M. Now γ_{n} must also map to A, since g is simplicial. Now all ($n-1$)-faces of γ_{n} must map into A, and thus every chain of n-sirplexes of M which are pairwise connected by (n-1)--simplexes and are connected to γ_{n} by one of its $(n-1)$-faces other than α_{n} must also map to A because of the simplicial nature of g. But these chains canot fill up all of M since β_{n} does not map to A. Thus at least one of them has a last n-simplex with an (n-1)-simplex which is the face of that n-simplex only. This iuplies that M has a non-enpty boundary. But i has an enpty boundary by hypothesis. The contradiction jnplies that
$T=6$.
Lempa 4.3. Supyose δ is a continuous monotonc function from a compact space S onto a space T, S and T are both T_{1}, and M is a closed subset of S such that $S-M=N B$ where $\bar{A} \cap B=A \cap \bar{B}=\emptyset$ and neither $g(A)$ nor $g(B)$ is contained in $g(M)$. Then g(if) separates 'l.
 Suppose there exists an $x \in[g(A)-g(i)] \cap[g(B)-g(M)]$. Then
 is not connected. Since this contradicts ε being morotome jt follows that $[g(A)-g(M)] \cap[g(B)-g(M)]=6$. Suppose that t is a linit point of $g(B)-g(M)$ which is contained in $g(A)-g(M)$. Let $\left\langle P_{i}\right\rangle$ be a sequence of points of $g(B)-g(M)$ when convatges to t. Thon the set $\left\{\varepsilon^{-1}\left(\mathrm{p}_{\mathbf{j}}\right)\right\}$ dchernines a convergent sequonce of points $\left\langle y_{i}\right\rangle$ of B. Let z be the sequential linit point of this sequence. Now fith since $A \bar{\sim}=0$ by hypothesis. Thus $g(z) f g(A)$. But. $g(z)=t$, which is an elcrent of $g(A)$. Ihis contradiction implies that $[\overline{g(B)-g(M)}] \cap[g(A)-g(M)]=\varnothing . \quad A$ sjralar argument yicids that $[g(B)-g(N)] \cap[(A)-g(M)]=\%$. These two results imply that $g(M)$ separates T.

Lemma 4.4. Supposc g is a monotone simplicial function from a trianculated n-sphere S^{n} onto a triangulated n-manifold $:^{n}$. If C is a set that separates S^{n} and $\mathcal{E}(C)$ is a point $x \in M^{n}$, then at most one complenentary donain of C can fail to Maj to x .
proof: If more than onc complementary domain of the set C fails to map to x, then x will separate A^{n} by Lema 4.3. Lvery point of K^{n} has a neighborhood homeomorphic to E^{n}, since M^{n} is an m-manifold without boundary by Lemma 4.2 . But if x separates M^{n}, it ninst separate all of its euclidian nejshborhoods, and thus none of them can be homcomorplije to E^{n}. The contradiction inplice the 1 crima.

Lemmat.5. Suppose g is a monotone simplicial function from a trianculated n-sphere S^{n} onto a triangulated n-nnin fold M^{n}. If v is a vertex of M^{n}, then $g^{-1}(v)$ is a cormecind full proper subcomplex of S^{n} which does not separate.

Proof: The set $g^{-1}(v)$ is comocted since g is monotone and does not separate because of Lema 4.4. Now $\varepsilon^{-\mathrm{T}}$ (v) must be $U\left|A_{i}\right|$ where the A_{i} are simpleres of S^{n}, since g is simplicial. The simplexes of $g^{-1}(v)$ are properly joined and finite in number since they belong to the complex S^{n}. Moreover, if the vertices of any sinplex of S^{n} are all in $g^{-1}(v)$, then the simplex itself must be in $g^{-1}(v)$, since g is barycentric. Thus $\mathrm{g}^{-1}(\mathrm{v})$ is a full subcomplex of S^{n}. It is obviously proper, since v is not all of M^{n}.

Lemma 4.6. Any regular neighborhood of a connected, simply conncoled, full subcomplex Z of S^{3} which does not separatc is a 3 -cell.

Proof: Let $U\left(Z, S^{3}\right)$ be a regular neighborhood of Z in soce subijvision of S^{3}. Then $U\left(Z, S^{3}\right)$ cen be constructed fron
Z by a finite number of elementary geonctricol expansions such that the resulting expangion is a 3 -dimensional submanifold of S^{3}. Now $U\left(Z, S^{3}\right)$ is certairly conncoted, and is also simply connocted as can be seen by thr following tro step inductive argument:
(1) Onc elementary geometrical exparsion of Z musi be simply connected or else the resulting expansjon canot collapse to the simply connected Z.
(2) If after n elencntary geonetrical expansicuis the result is simply commected, then another clementary Gcometrical expansion must be sinply comected or elsc collapsing of the $(m+1)-t h$ result back to the simply connected m-th result would be inpossible.

Since $u\left(Z, S^{3}\right)$ is, in addition to being sinply comincted, a proper connected closed 3-dirensional submanifold of s^{3} which does not separatc, it must have zero as its first betti number. By Theorem 2.8, $U\left(Z, S^{3}\right)$ has a 2 -spherefor its boundary and is thus a 3 -cell. But Theorem 2.6 states that any two regular neighborhoods of Z must be homeonorphic. Thus all regular neighborhoods of 2 are 3-cells.

Lemme 4.7. Let v be a vertex of M^{3}. Then $f^{-1}(v)$ is pointlike if and only if $f^{-1}(v)$ is simply connected.

Proof: Suppose $f^{-1}(v)$ is pointlike. Then there must exist a homeonorphisn h which maps $S^{3}-f^{-1}(v)$ onto $S^{3}-p$ such that $h\left[f^{-1}(v)\right]=p \subset f^{-1}(v)$. Let $q(x, t)=t h(x)+(1 \cdots t) I$,
where te[0, 1] and I js the inpitity mappine. Then a is a homotopy such that $q(x, 1):=h(y)$ and $q(x, 0)=I$. Thus $q\left(f^{-1}(v), I\right)=p$ anc $q\left(f^{-1}(v), 0\right)=f^{-1}(v)$. It follows that $f^{-1}(v)$ js honotopic to a consitant, and every simple closed curve in $f^{-1}(v)$ must also be homotonic to a constant. Therefore, $f^{-1}(v)$ is simply conncoted.

Suppose $f^{-1}(v)$ is simply connected. By Theoren 2.5 any derived simplicial neighborhood of $f^{-l}(v)$ is a regular neighborhcod and thus a 3-cel. 1 by Lemaa 4.6 . If $N\left(f^{-1}(v), S_{f(v)}^{n i} S^{3}\right)$ is an moth derived simplicial noistation hood of $f^{-1}(v)$, a fine enough subdivision $S^{p} f^{-1}(v) S^{3}$ of S^{3} yicids $N\left(f^{-1}(v), S_{f^{-1}(v)}^{p}\right) \subset$ int $N\left(f^{-1}(v), S_{f^{-1}(v)} S^{3}\right)$, se thet there exists a sequence of regular neighborhoods 〈u $\left.{ }_{i}\right\rangle$ such thet $f^{-1}(v) \subset$ int U_{i} and $U_{i+1} \subset i n t U_{i}$ for all i. Since the subdivision may be made as fine as desircd, $\cap U_{i}=f^{-1}(v)$, and $f^{-1}(v)$ is seen to be cellular, and therefore pointlike by lemma 4.1 .

I_mma 4. 8. Suppose g is a monotone simplicial function from a triangulated n-sphere s^{n} onto a triangulated n-manifold M^{n}, and that p is not a vertex of \mathbb{M}^{n}. Then if $\hat{\mathrm{M}}^{\mathrm{n}}$ in a first derived subdivision of Al^{n} with p as a new vertex, there exists a corresponding first derived subdivision \hat{S}^{n} or S^{n} such that $\mathrm{g}: \hat{\mathrm{S}}^{\mathrm{n}} \rightarrow \hat{\mathrm{M}}^{\mathrm{n}}$ is a situpicial wonotone function.

Prone: The function roinins monotome no matter hor
S_{n} and M^{n} are triangulated. So let $\hat{N^{n}}$ be a subdivision of M^{n} where $\left\{v_{i}\right\}$ are the nev vertices of. \hat{M} and $\mathrm{p} \in\left\{\mathrm{v}_{\mathrm{i}}\right\}$. Each of the v_{i} was in the interion of some $k-s i m p l e x ~ A_{i} k$, where $1 \leq k \leq n$. Now $g^{-I}\left(V_{i}\right) \cap\left\{i_{j}^{B}{ }^{k}\right\}$, where $g\left(i_{i}{ }_{j}^{k}\right)=A_{i}^{k}$, is a collection of single points $\left\{{ }_{i}{ }^{t}{ }_{j}{ }^{k}\right\}$ each of which is in the interior of one of the ${ }_{i}{ }^{B}{ }_{j}{ }^{k}$, and $g^{-1}\left(v_{i}\right) \cap$, where $g(L)=A_{i}{ }^{k}$ and J has dimension higher than k, is the convex hull of the elements of $\left\{\dot{i}^{t}{ }_{j}{ }^{k}\right\}$ which appear in the k-faces of that do not coljapse. Now let $\left\{{ }_{i} W_{m}\right\}$ be the collection of poirte each of which is a point interior to one of the convex bulle, where m is the number of hulls gencrated, and $\left\{{ }_{i} x_{b}\right\}$ be a collection of points each of which is interior to one of the k-dimensional or larger simplexes of $\varepsilon^{-1}\left(A_{i}{ }^{k}\right)$ which map ondy
 vertices of $\hat{\mathrm{S}}^{\mathrm{n}}$ and complete $\hat{\mathrm{S}}^{\mathrm{n}}$ by starring each of the simplexes of S^{n} beginning with the highest dimensional ones and ending with the lowest. The mapping $g: \hat{S}^{n} \rightarrow \hat{M}^{n}$ is simplicial by construction.

Lemma 4.9. Suppose $p \subset \mathrm{M}^{3}, \hat{M}^{3}$ is a firsl derived subdivision of M^{3} which has p as a vertex and $\hat{\mathrm{S}}^{3}$ is the corresponding derived subdivision of S^{3} constructed in Lema 4.8 . Suppose v is a vertex of M^{3} such that [v,p] is a l-simplex of \hat{M}^{3}. Then $f^{-1}\left[I k\left(v, \hat{M}^{3}\right)\right]$ is the boundary of $N\left(f^{-1}(v), \hat{S}^{3}\right)$. Furthermore, if $f^{-1}(v)$ is simply comected, then $\left.\because r^{2}\left[f^{-1}(v), \hat{s}^{3}\right)\right]$ is a 2 -sphere.

Proof: Since f is simplicial and the inverse inge of every simplex in st (v, \boldsymbol{H}^{3}) rust be simpleycon all of which either jutcresect $f^{-1}(v)$ or feces of such simplexes, it follows that $f^{-1}\left[\operatorname{si}\left(v, \hat{\mathrm{~N}}^{3}\right)\right] \mathrm{NH}\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{\mathrm{S}}^{3}\right)$. Jet p be a point of B, where f is some simplex of $\hat{\mathrm{S}}^{3}$ such that $f(\mathrm{~B})$ Est $\left(\mathrm{v}, \hat{\mathrm{M}}^{3}\right)$. Them B either intersects $f^{-1}(v)$ or is a face of sone simplex which intersects $f^{-1}(v)$. If B intersects $f^{-1}(v)$, then $f(B)$ must intersect v since f is simplicial. If B is the tace of a simplex which intersects $f^{-1}(v)$, thea $f(B)$ must be the fare of some simplex which intcasectg v. In either cast fol) is a foin of $s t\left(v, \hat{H}^{3}\right)$. So $\left|N\left(f^{-1}(v), \hat{S}^{3}\right)\right| C f^{-1}\left(\left|s t\left(v, \hat{M}^{3}\right)\right|\right)$ and it follows that they are equal in light of the previously establionce inclusion. Since $1 \mathrm{k}\left(\mathrm{v}, \hat{M}^{3}\right)$ is the boundary of $\operatorname{st}\left(v, \hat{M}^{3}\right)$, then $f^{-1}\left[I E\left(v, \hat{M}^{3}\right)\right]=\operatorname{Bd}\left[k\left(f^{-1}(v), \hat{S}^{3}\right)\right]$.

Suppose $f^{-1}(v)$ is simply corrected. Now $N\left(f^{-1}(v), \hat{S}^{3}\right)$
is a 3-cell by Theorem 2.5 and Lemma 4.6. Thus $\operatorname{bd}\left[\mathrm{N}^{\left.\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{S}^{3}\right)\right] \text { is a } 2 \text {-sphere. } . ~ . ~}\right.$

Lemma 4.10. If $f^{-1}(v)$ is simply connected for all vertices v of M^{3}, then $f^{-1}(p)$ is pointing for every p not a vertex of M^{3}.

Proof: By Leman 4.9, for any $p, f^{-1}\left[1:\left(v, \hat{r}^{3}\right)\right]=$ $\operatorname{Bd}\left[\mathrm{N}\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{S}^{3}\right)\right]$, where v is a vertex of M^{3} such that $[\mathrm{v}, \mathrm{p}]$ is a l-simplex of \hat{N}^{3}. Non $f^{-1}(p)$ must be contained in $\mathrm{Bd}\left[\mathrm{N}\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{\mathrm{S}}^{3}\right)\right]$ since $\mathrm{p}=1 \mathrm{k}\left(\mathrm{v}, \hat{\mathrm{M}}^{3}\right)$, and $\operatorname{Bd}\left[\mathrm{N}\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{\mathrm{S}}^{3}\right]\right.$ is a $2-s f^{\prime h} e r e$ since $f^{-1}(v)$ is simply connected. The fact that S^{3}
is a combinatorial 3 -splicre implics that ik(v, $\left.\hat{M}^{3}\right)$ is also a 2. spheje. Dut a ronotone sinplicial function from a 2 -sphere onto a 2-sphere is pointilike, so that $f^{-1}(\mathrm{p})$ js pojntifike on $\operatorname{bd}\left[\mathrm{N}\left(\mathrm{r}^{-1}(\mathrm{v}) \hat{s}^{3}\right)\right]$. Thus $\mathrm{r}^{-1}(\mathrm{p})$ is cellular on that $2-$ sphere which implies that there exists a sequence of tame 2-cells $\left\langle A_{i}\right\rangle$ on the $2-s p h e r c$ such that $f^{-1}(p)$ is contained in the interios of all the A_{i} and $A_{i+1} \subset$ int A_{i} for ali. i,
 \hat{S}^{3} such that $^{B_{i}}=A_{i} \times\left[-\frac{1}{i}, \frac{1}{i}\right]$, and $i t$ is readily seen tiat $f^{-1}(p)$ j.s cellular in \hat{S}^{3}.

Proof of the Main Theorom (4.1): Lemas 4.7 am 4. 10
inply the theorem.

SOME RHJAJMD COMJECTUREG

In an effort to catcind Thooren 4. 1 to hagher dimonsions in at least some form, Jemas 4.1, 4.2, 4.3, 4.4, 4.5, and 4.8 were shown to be true for all dimonsions, and Lemma 4.9 can casily be proven for all dimensione if the adaed statemont that $\left.B d\left[i{ }^{-1}(v), \hat{S}^{n}\right)\right]$ is am $(n-1)-s p h o r e$ is eliminated. The following aic conjectures which wise studicd togethei with slisgestions for their possible proof.

Conjecturc 5.1. Suppose f is a monotonc simpli.ci.a. function foon a combinatoriaj. n-sphere s^{n} onto a combinetoriait n-manifold M^{n}. Then f is pointlike if and only if the inverse imase of each vericx of M^{n} is algobraica]ly [n/2]-connected (nt 4 or 5) .

If f is pointlike, it follovs that $f^{-1}(v)$ is al.gebraically $[n / 2]$-commected, since $f^{-1}(v)$ is cellular implies that there exists a sequence of tame n-cells 〈C $\left.{ }_{i}\right\rangle$ such that
 The difficult part of the proof is the "if" part.

Conjccture 5.1.1. Any regular ncighborhood of a connected, alqebraically [n/2]-comected, full subcontplex Z of S^{n} which does not separate is an n-cell (niftor 5).

It is easily seen by incuction that a regular neicuborinood of Z is algebraicnlly [1./?]-cañectad. If it
were truc that a compact m-manifold with connected bomdary which is algebraically [n/2] connocted has a bourdary vhict is alsebraically $[(n-1) / 2]$ - connected, then this conjecture would hold for dintencions mith or 5 by applyine the poincaré Conjecturc for nt 3 or 4 to establish that the boundary is an (n-1)-sphere. This result would radily imply the folloving version of Lemma 4.7:

Collocture 5.1.2. Let v be a vertex of M^{n}. Then $f^{-1}(v)$ is pointitike if and only if $f^{-1}(v)$ is algebranally [r/2]-commecter (nt/4 or 5).

The difficult portion of Lemat 4.9 would also foliow, namely:

Conjecture 5.1.3. Suppose $f^{-1}(v)$ is alecbraicaliy [n/2]-comecicd. Then $\mathrm{Ed}\left[\mathrm{N}\left(\mathrm{f}^{-1}(\mathrm{v}), \hat{\mathrm{S}}^{\mathrm{n}}\right)\right]$ is an $(\mathrm{r}-1)$ sphere (nit 4 or 5).

Another difficulty arises, hovever, in trying to prove Lemma 4.10 for n-dimensions.

Conjecture 5.].4. If $f^{-1}(v)$ is algebraica]ly [n/2]connected for all vertices v of M^{n}, then $f^{-1}(p)$ is pointlike for every p not a vertex of $M^{n}\left(n_{7}^{\prime} 4\right.$ or 5).

The problem is that even if it were known that Bd[if($\left.\left.f^{-1}(v), \hat{S}^{n}\right)\right]$ is an $(n-1)$-sphere, it is not known whether a monolone, simplicial function from a k-sphere onto a kspheie is pointlike or not, $k<n$.

Another possibility was susgested by Theorem 3.3:

Coniccture 5.2. Sunpose f.is a monotone simpicial funclion from a combinatoriaj nosphore sn onto a combinatorial m-manifold M^{n}. Then f is pointlike iff the inverse image of cach vertex or M^{n} is gonmetricaliy [n/2]-connected.

The condition on the inverse imaics seems to be much stronger, since if the inverse image fk of a vertex has dinension k, then every [n/2]-combinaturial subspace must Iie in e k-ball of. 1 . This means that there canmot be ary simplexes in F^{k} of dimension less than [n/2]which a: inc: the faces of [n/2]-simplexes. For this reason, the :ar $]$ y if" part of the theorem was onitted from this conjecture.

Conjecture 5.2.]. Any regular neighborhood of a connected, geometrically [n/2]-connected, full. subcomplea Z of S^{n} which docs not separate is an n-cell.

By Theorem 3.2, this conjecture j.s equivalent to Conjecture 5.1.1 for n>5. Again, it can be shown that a regular neiglıborhood of Z is geometrically [n/2]--connected. Stalling's lheorem (3.3) could be used if it were known that a compact n-marifold with connected boundary which is geometrically [n/2]-connected has a geometrically [(n-1)/2]connccted boundary. The following could easily be shown:

Conjecturc 5.2.2. Let v be a vertex of N^{n}. Then $f^{-1}(v)$ is pointlike if $f^{-1}(v)$ is geometrically [n/2]comnected.

Conjecture 5.2.3. Suppose $f^{-1}(v)$ is geometri.ca11.y
[n/2]-comected. Then $\left.B d\left[j^{-1}\left(y^{n}\right), \hat{S}^{n}\right)\right]$ is an (n-1)-sphere.
 the same difficultics explainad in Gonjecture 5.1. 4 .

One other modjfication vas considered in sotue detail, but no more progress was made:

Gonjectre 5.3. Suppose fis a monotone sjmplicial function from a curhimatorial n-sphere S^{n} onto a combinatolial m-manifold M^{n}. Then f is pointifle if the inverse inage of cach verter of A^{n} is collapsible

The reverse implication is not true, since thero are examples which show that contractible k-complexes need not be collapsible.

Leluma 5.3.1. A regular noighborhood of a collapisible subcomplox of s^{n} is an nocell.

Three of Leenan's Theorems (2.4, 2.5, and 2.6) taken together imply this lema. It follows immediately that the next lema is true:

Lemma 5.3.2. Let v be a vertex of M^{n}. Then $f^{-1}(v)$ is pointilike if $f^{-1}(v)$ is collapsible.

In trying to establish that $f^{-1}(p)$ is collapsible for p not a verter of X^{n}, it could not be ascertained that $f^{-1}(p)$ is not one of thosc non-collapsible yet contractible kcomplexes mentioncd above.

These conjectures suggest many areas for further
researcin.

1. Alcander, J. W. "The Coribinatorial Theory of Compleaes," Ampas of Mailhomaides, 31.292-320, 1930.
2. Frown, Mortori. "The Monotonc Urion of Opon n-Celis is an open n-Coll," American liathematical Saciety motices, 7:478, 1960.
3. \qquad - "A Proof of the Generalizcd Schoenflies Theorem," Bulletin of the Macrican Mathenetical Society, 66:74-76, 7960.
4. Curtis, M. 1. . and Zoenan, F. C. "On the Polyhedral Schoenflics Theorem," Proceudings of the Amcricen Matheratical Socicty, IT:838-889, 1960.
5. Finney, Ross. "pointlike, Sinplicial kappines of a 3-Sphero," Canaitan Journal of Mathoratics, $15: 50-604$, 1962.
6. Glaser, L. C. Geometrical Combinatorial Topnlogv. Mineographed Notes, 1965.
7. Harıold, O. G., Jr. "A Sufficient Condition That a Nunotone Image of the Three-spherc be a Topological. Three-splece," procedings of the American yathonatical Society, $9: 846-850,1958$.
8. Hirsch, N. W. "On Homotopy Spheres of Low Dimension," Differential and Combinctorial Topology. Edi.ted by Stevart S. Cairns. Princeton, New Jcrsey: Princeton University Press, 1965. Pp. 199-204.
9. Hocking, J. G. and Young, G. S. Topology. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1961.
10. Mazur, Barry. "On Enbeddings of Spheres," Buljetin of the Anerican Mathematical Society, 65:59-65, 1959 .
11. Moore, R. L. "Concerning Upper Semi-Continuous Collections," Monstshctte Fiir Math. and Physjk, 36:81-88, 1929.
12. Papalyrial:opoulos, C. J. "A Reduction of the poincaré Conjecture to Other Conjectures, " Buljetin of the American yatheritics. Socicty, $68: 360-365,1962$.
13. \qquad - "A licauction of the poincaré conjcoture to other conjectures JI," Buljetin of the Anctican Matheraical Socicty, 69:309-401, I063.
14. Rice, P. if. "The Hourtvomutung and the Folykedral Schocnflics Theorom," liujuetin of the Anesican Mathematical Society, 71:521-522, 1965.
15. Robertu, J. H. and Steenrod, N. E. "Monotone Transformations of Two-Diransional Manifolds," Annals of Mathenatics, 39:851-8j2, 1938.
16. Rosen, R. H. "Stellar incighborhoods in polyhedral Manifolds," Proceedings of the Amcrican Mathontical Society, 14:401-406, 1963.
17. Seifert, H. and Threlfall, W. Lehrbuch der Tovioris. New York: Chelsea Publishine Co., 1947.
18. Smale, Stephen. "The Generalized Poincaré Confcinme in Higher Dinensions," Bulletin of the American Mathematical Society, 66:373-375, 1960 .
19. Stallings, J. R. "Polyhedral homotopy-Sphercs," Bulletin of the American mothentical Socicty, 66:485-488, 1960 .
20. Wjgiution, C. L. "Monotone Simplicial Mappinge of S^{3}," Mjmeographed Notes, 1965.
21. Zeeman, E. C. Scminars on Corbinatorial Topology. Mimoographed Notes, 1963.
22. ... "The Poincaré Conjecture for $n \geq 5$," Topolooy of 3 -ianjfolds and Related Tonice. Edited by M. K. Fort, Jr. Englewood Cliffs, New Jersey: PrenticeHa11, Inc., 1962. Pp. 198-204.
