
 



 

GEOMETRY OF THE DOLPO-MUGU FOLDS: IMPLICATIONS FOR THE DEEP 

CRUSTAL STRUCTURE OF CENTRAL NEPAL 

 

 

A Thesis  

Presented to 

 the Faculty of the Department of Earth and Atmospheric Science 

University of Houston 

 

 

In Partial Fulfillment of the Requirements for the Degree 

Master of Science 

 

 

By 

James K. Stutz 

May 2012 

 

 

  
 



 
 

 
 

ii 

GEOMETRY OF THE DOLPO-MUGU FOLDS: IMPLICATIONS FOR THE DEEP  

CRUSTAL STRUCTURE OF CENTRAL NEPAL 

 

 

____________________________________________ 

James K. Stutz 

 
Approved: 
 
 

____________________________________________ 

Dr. Michael Murphy, Chairman 

 

____________________________________________ 

Dr. Alex Robinson 

 

____________________________________________ 

Dr. Alex Webb 

 

____________________________________________ 

Dr. Mark A. Smith  
Dean, College of Natural Sciences and  
Mathematics 
 
 



 
 

 
 

iii 

 
ACKNOWLEDGEMENTS 

 
I’d like to first thank my wife Megan whose patience, support, and encouragement 

have been unwavering throughout the duration of this project. I’d also like to thank 

my son William for allowing his father to spend many hours at the office. I am also 

grateful to my parents who taught me the importance of education and hard work, 

and who inspired in me a curiosity about the world. I’d like to thank Dr. Michael 

Murphy for his help and mentorship in the development of this project; this could 

not have been completed without him. I also want to thank Dr. Alex Robinson and 

Dr. Alex Webb for their comments and feedback. Finally, I ‘d like to thank the many 

other family and friends who have supported me in my efforts. 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

iv 

GEOMETRY OF THE DOLPO-MUGU FOLDS: IMPLICATIONS FOR THE DEEP 

CRUSTAL STRUCTURE OF CENTRAL NEPAL 

 

 

An Abstract of a Thesis 

Presented to  

the Faculty of the Department of Earth and Atmospheric Sciences 

University of Houston 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

By 

James K. Stutz 

May 2012 

 

 

 



 
 

 
 

v 

Abstract: 

Current shortening calculations (700-300 km) across the strike of the 

Himalayan orogen are significantly less than what has been predicted by plate 

reconstruction models and other regional studies (1200-800 km). This study 

investigates  a region in the High Himalaya of western Nepal that contains 

shortening structures not currently accounted for in shortening budgets within the 

thrust belt. The first-order structures in the study area are a synclinorium and 

anticlinorium defined by the contact, -- the South Tibetan Detachment (STD) -- 

between two main tectonostratigraphic units: the Tethyan Himalayan sequence 

(THS) and the Greater Himalayan Crystallines (GHC). Because the STD is interpreted 

to have ceased movement ca. 19 Ma, the timing for these folds is bracketed between 

~19 Ma and ~11 Ma. A new geologic map is constructed by compiling previous 

maps and serves as the foundation for structural analysis. These folds can be traced 

for ~150 km in an east-west direction. Cross sections, structure contour maps, and 

stereoplots of the STD show an amplitude of ~9km with a shallow plunge to the SE.  

Three hypotheses for thrust belt architecture below the anticlinorium are 

considered. These are (A) a duplex, (B) a fault-bend fold and (C) a blind thrust. Each 

of these models makes predictions of horizontal shortening. The duplex hypothesis 

predicts ~33 km of horizontal shortening, the fault-bend fold model predicts ~25 

km of shortening, and the blind thrust model predicts ~8 km of shortening. Based 

on geometry and structural position I correlate the Dolpo-Mugu folds with similar 

folds to the east and west along the strike of the orogen; the Gurla Mandhata 

Crystalline complex is ~150 km to the west of Dolpo-Mugu, and the Manaslu folds 

are ~200 km to the east for a cumulative along strike axis of 350 km. These models 

predict vertical thickening within the GHC in contrast to previous models that show 

constant thickness in this region of the Himalaya.  
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1. INTRODUCTION 

The Himalayan orogen, produced from the convergence of the Indian sub-

continent with Eurasia, is considered the paradigm for continent-continent collision. 

With its towering peaks and an along-strike trace of over 2500 km the orogenic belt 

provides an opportunity to explore fault geometries, kinematics, and shortening 

budgets in an active convergent zone. Studies on the Himalayan orogen indicate that 

approximately 2500 km of Cenozoic convergence has occurred between Asia and 

India since collision at ~50 Ma (Achache et al., 1984; Patriat and Achache, 1984; 

Besse et al., 1984; Besse and Courtillot, 1988). Recent GPS studies, regional 

structural studies, and mass balance calculations suggest that approximately one 

third to one half of that convergence can be accounted for by crustal shortening 

along the fold-thrust belt (Le Pichon et al., 1992). This predicts 800-1200 km of 

shortening along strike.  However, actual minimum estimates for shortening range 

from >280 km in eastern Nepal (Schelling, 1992), ~400-500 km in western Nepal 

(Robinson, 2006),  ~470 km in Pakistan (Coward and Butler, 1985) and >700 km in 

northern India (Srivastava and Mitra, 1994). The discrepancy between predicted 

and observed shortening presents a challenge to current understandings of the 

development of the Himalayan orogen. 
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 Figure 1. From Murphy (2011) based on data compiled by Decelles et al.,1998. 
 

 Approximate shortening budgets for major shortening events of the 

Himalayan orogen are represented in figure 1 (Murphy, 2011). Currently ~650 km 

of shortening can be accounted for by these units, but a shortening deficit exists 

according to regional studies (Le Pichon et al., 1992) which predict upwards of 800-

1200 km of shortening as discussed above. In the high Himalaya of the Dolpo-Mugu 

region of west-central Nepal there is a large antiform/synform pair that has hitherto 

not been integrated into regional shortening estimates (figure 2). The shortening 

accommodated by this structure may contribute to closing the gap between 

predicted and observed shortening calculations. 
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 In the 1960’s and 1970’s Austrian scientist Gerhard Fuchs explored this 

region of central-west Nepal and produced a detailed geologic map of the 

synclinorium (Fuchs 1977). Many advancement have since been made in the overall 

understanding of the nature of Himalayan thrust belt such as the identification of 

the South Tibetan Detachment zone which spans the length of the central Himalaya 

including the Dolpo-Mugu area. This study will build on Fuchs’ early work in this 

region and bring it into the 21st century.  

 

 
Figure 2. Tectnostratigraphic map of Nepal modified from Robinson, 2008. Box outlines field area of 
Fuchs, 1977. Gurla Mandhata core complex and Manaslu folds are also highlighted for reference. 
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2. REGIONAL GEOLOGY 

2.1 Regional Fault Systems 

 The Himalayan orogenic belt evolved during the Cenozoic collision of the 

Indian continent with the Eurasian plate beginning at approximately 55-50 Ma. The 

resultant fold-thrust belt which developed is characterized by major strike-parallel 

lithotectonic units which are bounded by north-dipping fault systems. From south to 

north these fault systems are the Main Frontal Thrust (MFT), the Main Boundary 

Thrust (MBT), the Main Central Thrust (MCT), and the South Tibetan Detachment 

(STD) (figures 2 & 3).   

 

 
Figure 3. Major lithotectonic units and fault zones. The LHS is toward the SW, followed by the GHS 
and THS toward the NE respectively.  Adapted from Robinson, 2008. 

 

2.1.1 Lesser Himalayan Sequence 

The structurally lowest lithotectonic unit is the Lesser Himalayan Sequence 

(LHS), which is bounded below by the MBT and above by the MCT. The LHS lies 

primarily along the foothills of the Himalaya and is generally poorly exposed. It 

consists of lower-greenschist to lower-amphibolite-facies clastic metasedimentary 

units. The LHS has a structurally complex system of fold-and-thrust nappes (Hodges, 

2000), and the cumulative stratigraphic thickness is approximately 8-10 km. 

GHC   
  

  NE SW 
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2.1.2 Greater Himalayan Crystalline complex 

The Greater Himalayan Crystalline complex (GHC) is structurally above the 

LHS and is bounded above by the STD. The GHC is primarily high-grade meta-

sedimentary and meta-igneous rocks (Hodges, 2000). Following the classification 

scheme of Le Fort (1975), the GHC is subdivided into three successive units referred 

to as Formation I, II, and III. At the base of the GHC Formation I consists 

predominantly of biotite-muscovite gneiss and ranges widely in thickness 

throughout the Himalayan orogen (Hodges, 2000).  In western Nepal Formation I is 

~6 km thick (Robinson, 2006). Above Formation I, Formation II is predominantly 

composed of banded calc-silicate gneiss and in central Nepal is approximately 2-4 

km thick, though in several central Himalayan areas this unit is entirely absent 

(Robinson, 2006). The upper most section is Formation III is a nearly homogeneous 

augen orthogneiss that can be traced continuously from eastern to central Nepal. It 

is approximately 300 m thick (Hodges, 2000).  The upper sections of the GHC 

contain intruded late Oligocene to middle Miocene leucogranites (Robinson et al., 

2006). Those will be discussed in more detail below. 
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2.1.3 Tethyan Himalayan Sequence 

The Tethyan Sedimentary Sequence (THS) is a nearly complete Paleozoic to 

Mesozoic stratigraphic record of the northern continental margin of the paleo-

Indian sub-continent before collision with Eurasia. It is well exposed throughout the 

Dolpo-Mugu synclinorium and is ~7000 meter thick (Hodges 2000). 

Structurally above the STD, the THS is predominantly unmetamorphosed strata, 

although some low-grade metasedimentary units can be found at its base. Its units 

can be subdivided into Paleozoic and Mesozoic components. Paleozoic units are 

composed of quartzites, calc-silicates, quartz sandstone, minor limestones and 

dolostone, and are ~5.2-6.0 km thick. The Mesozoic units are composed of 

fossiliferous and silty limestone, and interbedded sandstone and shale. These unit 

are ~ 3.3-4.4 km thick. (Murphy and Yin, 2003).  

 

2.2 South Tibetan Detachment System and Main Central Thrust 

 The South Tibetan Detachment (STD) zone has traditionally been interpreted 

as a system of top-to-the-north normal faults that extend across the length of the 

Himalayan thrust belt. However, some models describe the STD as a passive roof 

thrust in which the THS remains relatively stationary while the underlying GHC 

propagates forward (Webb, 2007). The STD is the contact between two major 

Himalayan lithotectonic domains; the sedimentary and meta-sedimentary rocks of 

the structurally higher Tethyan Himalayan Sequence (THS), and the structurally 

lower Greater Himalayan Crystalline complex (GHC).       The STD juxtaposes the 
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low-grade metasedimentary rocks of the THS in the hanging wall against 

amphibolite-facies gneisses of the GHC in the footwall (Hodges, 2000). Shear sense 

indicators have suggested both a normal top-to-the-north sense of shear as well as 

reverse top-to-the-south sense of shear (Webb et al., 2007), suggesting that the STD 

has a history of reversals in shear sense. It has been suggested that the STD had an 

early thrust component (Weismayr & Grasemann, 2002) that has been overprinted 

by several phases of normal, reverse, and possibly strike-slip sense motion (Godin et 

al., 1999). However, these observations may be best accounted for by a tectonic 

wedge model for GHC extrusion which will be discussed below. A minimum estimate 

of 35 km of slip for the STD has been suggested (Birchfield et al. 1992). The STD 

consists of a complex zone of multiple strands that may have operated at different 

times and under different mechanical conditions (plastic to brittle) (Godin et al., 

2006). Timing estimates for the STD indicate that it ceased moving at ca. 19-16 Ma 

(Searle and Godin, 2003; Godin et al., 2006; Gleeson & Godin, 2005) which implies 

that the Dolpo-Mugu synclinorium and anticlinorium developed after or during the 

early Miocene. 

 At the base of the GHC the Main Central Thrust (MCT) system defines the 

contact between the GHC and the Lesser Himalayan Sedimentary sequence (LHS) 

below. With top-to-the-north normal sense shear of the STD which bounds the top 

of the GHC, and top-to-the-south reverse sense shear along the bottom at the MCT, 

the GHC has been described, through various competing models, as having been 

extruded from mid-crustal levels. GHC extrusion probably ceased by ~19 Ma 
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according to dating of latest slip on the STD in central Nepal (Gleeson and Godin, 

2006). 

 

2.3 Deformation History 

 Crustal thickening of the THS predominantly occurred during Eocene-

Oligocene time (Godin et al., 1999; Godin et al., 2001; Lee et al., 2000; Aoya et al., 

2005; Kellet and Godin, 2009; Aikman et al., 2008). This activity induced 

metamorphism and anatectic melting within the GHC (Godin et al., 2006; Aoya et al., 

2005; Lee and Whitehouse, 2007; Larson et al., 2010), which is associated with 

numerous leucogranites along the upper portions of the GHC. Furthermore, this 

thickening is also interpreted to be associated with early Miocene initiation of 

normal sense slip along the STD (top-to-north) and thrust sense slip along the MCT 

(top-to-south), resulting in displacement of GHC toward the foreland. Large-scale 

folding of the STD and adjacent lithotectonic packages began after cessation of STD 

slip, but before extensional faulting in the Thakkola graben which cross-cut the folds 

ca. 11 Ma (Garzione et al., 2003), bracketing folding of the STD to within 19-11 Ma. 
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2.4 Kinematic Models of GHC Extrusion 

There have been a number of models put forth to explain the relationship 

between the STD and the MCT and the kinematics of GHC extrusion. These models 

can largely be summarized by two end-member hypotheses.  

 

 
Figure 4. Models of GHC extrusion (a) critical taper (Robinson et al., 2006; Kohn, 2008); (b) channel 
flow (Beaumont et al., 2001; Jamieson et al., 2004). 
 

The first is the channel flow model (Bird, 1991; Grujic et al., 1996; Beaumont 

et al., 2001; 2004; 2006) in which the GHC at mid-crustal levels is significantly less 

viscous than bounding lithotectonic units. The over-thickened crust below Tibet and 

the thinner sub-India crust create a lithostatic pressure gradient to which the GHC 

reacts by lateral flow towards a rapidly eroding southern boundary (figure 4a). 

 The second end-member model is the critical taper wedge model in which 

the GHC is translated and deformed in the hanging wall of a thrust that has 

propagated in order to thicken the Himalayan orogenic wedge in response to a taper 

angle that is less than the critical taper angle (Kohn, 2008) (figure 4b).  

An alternative model for GHC extrusion is the tectonic wedge model (Price, 

1986; Yin, 2006; Webb et al., 2007). This model interprets the GHC as a tectonic 
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wedge in which the STD branches off of the MCT at the foreland point of the wedge 

where it tapers out (figure 5).  

 
Figure 5. Schematic diagram of the tectonic wedge model of GHC extrusion. Adapted from Webb et al., 
2007. 
 

The STD has been mapped westward into the Rhotang La area of north India 

where it was observed to merge with the MCT defining a branch line of a 

southward-tapering GHC wedge (Webb et al., 2007; Yin, 2006). Other models of GHC 

extrusion do not predict this relationship between the STD and MCT. Shear-sense 

indicators in the STD in northern India were also observed to show both normal 

sense and thrust sense motion. In this model top-to-the-south shear-sense 

indicators in the STD are interpreted to be records from the MCT hanging-wall 

forward of the MCT-STD branch line that have been transported through the branch 

line and into the hanging-wall (hinterward) of the STD as the GHC wedge 

propagates forwards (Webb et al., 2007). These alternating shear-sense fabrics are 

inconsistent with a channel flow model which predict only normal shear-sense 

indicators in the hanging-wall of the STD. Channel flow models also require slip on 

the STD and MCT to cease at their branch line, but there is evidence of >100 km of 
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MCT slip in the region of the branch line which is inconsistent with channel flow 

(Webb, 2007).  
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3. STRATIGRAPHY AND TECTONOSTRATIGRAPHY OF DOLPO-MUGU FOLDS 

The Dolpo and Mugu districts in Nepal contain exposures of a pair of regional 

scale folds (Fuchs, 1964; Fuchs, 1977) that are defined by the STD; the contact 

between the GHS and the THS (figure 6).  

 

3.1 Tethyan Stratigraphy  

In the western Dolpo and eastern Mugu regions of central-west Nepal the 

THS contains deposits from the Cambrian to the Jurassic (Fuchs 1977) (figure 7).  

The THS lies in structural contact above the Greater Himalayan Sequence along the 

South Tibetan Detachment system.  

 

Dhaulagiri Carbonate 

 At the base of the THS lies the 3-4 km thick Dhaulagiri metamorphic 

carbonate and limestone sequence. It has been suggested that the incredible 

thickness is due to subsidence at time of deposition coupled with rapid sediment  

deposition (Fuchs 1977). Based on fossil evidence the Dhaulagiri formation is 

primarily Ordovician age, making it broadly correlative with the Nilgiri limestone of 

the Annapurna region, although the possibility remains that its 

lower portions are Cambrian in age (Fuchs 1977). The lower portions of the 

sequence are described as a metamorphic carbonate series with banded calc-silicate 

marbles, grey medium to course-grained marbles, fine-grained 
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Figure 7. Generalized stratigraphic column of the Tethyan 
Himalayan Sequence in the Dolpo-Mugu synclinorium. 

 

carbonate-biotite gneisses, and medium-grained biotite schists (Fuchs 1977).  

 The upper section of this thick carbonate sequence is the limestone portion 

of the Dhaulagiri formation. This consists of rhythmic alterations of fine-grained 

limestones, silty limestones, calcareous sandstone and siltstone, carbonate schists, 

and rare occurances of dolomite (Fuchs 1977). Sedimentary structures such as 

graded bedding, ripple cross-laminations, and current bedding suggest a dynamic 

depositional environment. 
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Silurian Limestones and Dolomite 

 The Silurian is represented as series of variable limestones and carbonate 

quartzites. There is significant variation from section to section of the Silurian, but 

commonly it is observed that the base and the top of the Silurian are composed of 

blue-grey marly limestones, silty limestones, and dolomite. The center sections of 

the Silurian are generally composed of multi-colored (red, green, grey, purple) 

schistose carbonates and rare dark slate. At any particular location any member 

may be missing from the sequence. For example, in the Phoksundo region the red 

and purple sediments disappear from the northwest to the southeast, and a band of 

green-grey and dark silty slates is present towards the southeast. The thickness of 

this formation is highly variable, ranging from 150-200 m in some locales to as 

much as 1000 m in other places (Fuchs 1977). 

 

Muth Dolomite 

The Devonian aged Muth dolomite varies in thickness from 800-1200 m. It is 

predominantly composed of thick-bedded, massive dolomites that are light grey to 

almost black in color. Banding, fine laminations, occasional graded bedding, oolites, 

intraformational breccias, ripple cross-laminations, ripple marks, and desiccation 

cracks are among the sedimentary structures that characterize the Muth dolomite 

and indicate a shallow marine depositional environment (Fuchs 1977).  
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Thini Chu 

 Fuchs dated the Thini Chu formation as Permian, but later researchers have 

suggested an age for the Thini Chu of mid-Carboniferous to Permian (Garzanti, 

1999). The Thini Chu is composed of white, grey, and green quartzites and 

conglomerates, sandy limestones and silty or sandy shales. Current bedding and 

burrows suggest a deep shelf depositional environment (Fuchs 1977).  In some 

areas the Thini Chu is only 30-70 m thick, whereas in other areas it is several 

hundred meters thick. 

 

Scythian Limestone (L. Triassic) 

 The Scythian formation is a marker bed at the base of the Triassic. Deposited 

above the Thini Chu, the Scythian formation is composed of thin-bedded and dense 

limestones that are light grey, brown, and dark grey in color. Subordinate grey 

shales are occasionally found interbedded. The Scythian formation is weather 

resistant and can be identified from afar, being easily traceable in the field (Fuchs 

1977). 

 

Mukut Limestone 

 Stratigraphically above the Thini Chu formation is the middle Triassic Mukut 

formation. The Mukut limestone is an intensely folded layer varying from 50 to 300 

meters in thickness. It is a well bedded dark blue limestone with dark marls and 

rare black shales (Fuchs 1977).  
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Tarap Shales 

  The Tarap formation of upper Triassic age is dark grey or green silty shale 

with impure sandstone stringers. The thickness varies between 300-400 m, but in 

places is tectonically reduced to tens of meters. The Tarap shales compose a 

significant portion of the outcropping TSS in the Dolpo synclinorium. 

 

Quartzite beds and Kioto Limestone 

 Of very late Triassic to mid Jurassic age, the quartzite beds and Kioto 

limestones deposited after the Tarap shales have a cumulative thickness of 200-400 

meters. The quartzite beds are about 50 m thick, and alternate between 

green/white/grey/brown quartzites, carbonate quartzites, sandy dolomites, 

blue/grey limestones, marls, and grey/green shales. The quartzite beds indicate a 

marked regression in the formation, and are noticed throughout the Himalayan 

Tethys (Fuchs 1977). 

 The Kioto limestone above the quartzite beds is a thick bedded, light-dark 

grey or blue limestone and dolomite package. A few arenaceous beds are 

occasionally interbedded.  
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Lumachelle limestones and shales 

 Representing the middle Jurassic is the Lumachelle formation. These thin 

bedded grey/dark blue limestones, marls, and dark shales appear only rarely in the 

Dolpo synclinorium. Fuchs (1977) reports that they appear only in the region south 

of Sya Gompa. 

 

Spiti shales 

 The highest stratigraphic unit of the  Tethyan Sedimentary Sequence in the 

Dolpo area is the upper Jurassic Spiti shale formation. Like the Lumachelles, this 

formation is rare in the Dolpo synclinorium and was observed only in the same 

region as the Lumachelle formation This attenuated, black shale contains 

concretions as well as fragments of belemnite. 

 

3.2 Greater Himalayan Leucogranites 

 The Greater Himalayan rocks are intruded by discrete leucogranitic bodies 

found within all units of GHC rocks. These granites, which appear in scale ranging 

from sills and dikes a few centimeters across to plutons of several hundred 

kilometers, were produced from anatectic melting of GHC rocks, especially 

Formation 1 (Le Fort et al, 1987). The age, range, and relationships of these 

leucogranites have been very influential in models of Himalaya evolution (Hodges, 

2000).  
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 In the Dolpo-Mugu region the Mugu leucogranite intrudes the GHC. Based on 

their field relationships with respect to deformational fabrics, it appears that the 

Mugu leucogranites represent several distinct episodes of anatactic melting. This 

granite has been dated as ca. 20.76 Ma to ca. 17.6 Ma. (Hurtado et al., 2007).  

The Mugu leucogranite is a light colored, fine to medium grained, two-mica 

granite with pegmatites containing garnet, silliminite, tourmaline, biotite, and 

muscovite (Fuchs, 1977). This description is similar to other leucogranites in the 

region such the Manaslu leucogranites just north of the Annapurna range. That 

granite intrusion is described as a sill located along the top of the GHC (Godin et al., 

2006). The Manaslu leucogranites are thought to be a minimum-melt granite 

derived from a source similar to Formation I of the GHC. This leucogranite is dated 

to ca. 22.9 Ma to 19.3 Ma (Harrison et al., 1999). 
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4. STRUCTURAL GEOLOGY OF DOLPO-MUGU SYNCLINORIUM 

Fuchs mapped the Dolpo-Mugu synclinorium in 1977 (Fuchs, 1977) and his 

mapping provides the framework for investigating folding and shortening across the 

fold (figure 6). The axial traces of these folds, inferred from mapping by Fuchs 

(1964; 1973), extend for ~200 km and have a half wavelength of between 20-50 km, 

and are south verging.  The core of the synform contains Mesozoic sedimentary 

rocks that are part of the THS which has a minimum thickness of ~9 km (Fuchs, 

1964; Colchen et al., 1981). The core of the antiform is composed of GHC rocks 

(LeFort, 1976). The structural relief between rocks exposed in crest of the antiform 

to the trough of the synform is >9 km. The wavelength and structural relief of these 

folds, and the observation that Greater Himalayan rocks are involved in the folding, 

indicates that deformation is deep-seated in the Himalayan orogenic wedge. 

 

4.1 Identification of the South Tibetan Detachment  

 Early workers in the area did not detect the presence of the STD and 

interpreted there to be no tectonic disturbance at this boundary; it was thought that 

the Dhaluagiri limestone gradually passes through higher grades of metamorphism 

as it merges into the GHC crystallines below in one lithologic succession. (Fuchs 

1977). However, later mapping has identified the presence of the STD along the 

strike of the Himalayan orogen serving as the boundary between the THS and GHC 

for a total of over 2000 km (Searle and Godin 2003) from Zanskar (Searle and Rex 
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1989; Searle et al. 1999; Walker et al. 1999) to South Tibet (Burchfiel and Royden 

1985; Burchfiel et al. 1992). 

 Fuchs distinguished between the base of the Dhaulagiri limestone and 

metamorphic carbonates structurally beneath. That contact is interpreted as the 

location of the STD in this study. The metamorphic carbonates below the Dhaulagiri 

limestone are pervasively intruded by Mugu-Mustang leucogranites. This possibly 

correlates with the intruding Manaslu leucogranite north of the Annapurna range.  

Early workers described the Manaslu granite as intruding across the STD into the 

unmetamorphosed sediments of the Tethyan sedimentary sequence. However, p-t 

conditions of the carbonate rocks into which the Manaslu granite is intruded are 

high and do not show signs of contact metamorphism (Schneider & Masch 1993). 

Searle and Godin (2003) place the Manaslu leucogranites wholly within the GHC, 

similar to all other Himalayan leucogranites. Research continues into the structural 

relationships between the leucogranites and the STD, but present knowledge 

suggests that the Mugu-Mustang leucogranites are entirely below the STD in this 

region. 

 

4.2  Folding within the Synclinorium 

 Strike and dip measurements from within the synclinorium come from two 

sources: Fuchs’ approximate measurements and new strike and dip data retrieved 

remotely (below). Fuchs’ dip measurements were published as ranges, (0-5°; 6-20°; 

21-35°; 35-50°; 51-65°; 66-85°; 86-90°) , the exact strike angles were not published, 
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except as they are represented by the orientation of their symbol on Fuchs’ geologic 

map. For the present study Fuch’s strike measurements were individually measured 

on the geologic map (Appendix B). 

 A limited amount of other strike and dip data was determined remotely 

through the three-point-problem methodology using Google Earth satellite imagery. 

These were used primarily for reconstructing cross-section A-A’. An explanation of 

this methodology is given in Appendix A. 

 The geologic map of the Dolpo-Mugu synclinorium clearly shows the 

secondary folding within the synclinorium.  The axis of the synclinorium itself, 

though it curves gently, strikes in a NW-SE direction. Its secondary folds generally 

strike parallel to the synclinorium axis, although in several places they strike 

obliquely to the synclinorium. One prominent exception to this rule is a large 

northward-plunging anticline along the Changdi Khola valley that strikes almost 

perpendicular to the synclinorium. Reverse faulting within the synclinorium also 

generally strikes NW-SW.   

Stereonet projections (figure 8) illustrate the character of the synclinorium 

and some of its secondary folds. Folds strike NW-SE with a shallow, but consistent, 

plunge to the SE. The stereonet projections also illustrate a trend that is perhaps 

less obvious on the geologic map: observing fold axis orientations successively from 

north to south reveals that they incrementally pivot clockwise across the 

synclinorium. The axes of the folds along the northern limb of the synclinorium 
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trend S64°E, and successive trends become more southerly until fold axes in the 

southern limb of the synclinorium which trend S44°E. 

 

4.3 Cross Sections and Shortening 

 Cross sections were constructed across the synclinorium: three 

perpendicular to the strike of the folds and one along-strike (figures 6, 9A, 10A, 11A, 

12A).  Each of these cross sections is accompanied by a second cross section that 

predicts the orientation of bedding and THS folds before the STD folded (figures 9B, 

10B, 11B, 12B). 

 Shortening across these cross sections was calculated for three horizons: The 

STD, the top of the Dhaulagiri limestone, and the top of the Mukut limestone (Table 

1). In each case “absolute shortening” and “percent shortening” can be predicted. 

Absolute shortening refers to total shortening across the cross section in kilometers. 

This can be calculated by measuring the lengths of formation contacts including the 

portions which are folded, and contrasting that with an absolute length which 

measures a straight line across the cross section. For this study absolute shortening 

estimates were calculated using measurements along the STD, along the top of the 

Dhaulagiri limestone, and along the top of the Mukut formation. Among the across-

strike cross sections that were constructed, cross section A-A’ predicts ~3 km of 

shortening (average 3.005 km), cross section B-B’ predicts ~6-7 km of shortening 

(average 6.66 km), and cross section C-C’ predicts 3-7 km of shortening (average 

5.37 km). See Table 1 for details. 
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Percent shortening represents the percentage of original crustal length that 

is lost due to uplift and folding. Percent shortening perpendicular to strike is most 

pronounced towards the nose of the plunging synclinorium (cross section A-A’), and 

decreases towards the south-east as the synclinorium opens up. Cross section A-A’ 

predicts 20-28% shortening (average 24%), cross section B-B’ predicts 16-19% 

shortening (17.33%), and cross section C-C’ predicts 6-14% shortening (average 

11%). See Table 1 for details. 

 

4.4 The Effect of STD Folding on the orientation of THS folds 

 As discussed above, STD activation and folding post-dates the smaller scale 

folding of THS formations. In order to evaluate the effect of STD regional folding on 

the orientations of these older THS folds it was necessary to “unfold” the THS by 

constructing cross sections that illustrate the orientations of THS formations and 

their folds before the STD was folded (figures 9B, 10B, 11B, 12B). In each case the 

STD is restored to an unfolded orientation, and strike and dip measurements are 

taken along the limbs of various smaller scale THS synclines, and then contrasted 

with the orientation of those same limbs after STD folding as depicted in figures 9A, 

10A, 11A and 12A. The resulting rotations of the limbs of these synclines are 

illustrated in figures 14A and 14B, and their exact strikes, dips, and axial plane 

orientations are recorded in appendix C.1 and C.2. 

 In cross section A-A’ the orientations of two synclines were measured both 

before and after they were rotated by folding of the underlying STD (for the 
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locations of the synclines see figures 9A and 9B).  The stereonet plots of these limbs 

are illustrated in figure 14A. Syncline 1 of cross section A-A’ is on the SW limb of the 

regional STD fold, and syncline 2 is on the NE limb. Each of these synclines was 

accordingly rotated by the STD, with their respective axial planes being rotated 

toward the axis of the STD regional fold.  

The folds in cross section A-A’, unlike folds in other cross sections, were also 

rotated by the plunging nature of the regional synclinorium which is focused in the 

nose of the synclinorium. The plunging nature of the STD in this location is best 

illustrated in cross section D-D’ (figure 12A). As will be illustrated by structure maps 

below, the plunging STD in the nose of thy synclinorium plunges from 43º to 23º on 

average. The structurally higher THS formations plunge at lower angles, with a THS 

syncline in cross section D-D’ rotated approximately 12º. (see figure 14B, appendix 

C.2 and figure 12B. D-D’ strikes perpendicular to the axis of the synclinorium, and 

the THS small-scale syncline measured along D-D’ strikes parallel to the axis of the 

STD plunge). Therefore, it is surmised that the axial planes in synclines in A-A’ are 

not only rotated towards the axis of the synclinorium, but also gain a plunge of 12º 

in a SE direction. 

 The orientations of synclines in cross sections B-B’ and C-C’ were also 

analyzed. Figures 14A and 14B illustrate that the amount of rotation these limbs 

underwent as a result of STD folding was a function their position along the STD 

fold. Those folds structurally above steeper STD folding were rotated more, while 
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those folds closer the center of the synclinorium, where STD folding is less 

pronounced, were rotated less.  

A fold can be described on the basis of the orientation of its axial plane. 

Following the system of Davis and Reynolds, 1996, the orientations of axial planes of 

each measured syncline is illustrated in figure 13 (precise data is provided in 

Appendix C.2). The synclines, pre-STD folding, were generally “upright to steeply 

inclined with horizontal plunges”. However, after STD folding several locations were 

rotated to such a degree that they now are “upright to steeply inclined with gently 

dipping plunges”. These locations are focused in the nose of the synclinorium, in 

cross section A-A’. 

 

 

 

 

 

 

 

 

 



 

27 



 

28 

  

1 
2 

Figure 9A: Cross section A-A’. Numbers 1-2 in the image are synclines whose orientations 
were analyzed pre- and post-STD folding. 

Figure 9B: Cross section A-A’ restored to pre-STD folding time. Numbers 1-2 in the image 
are synclines whose orientations were analyzed pre- and post-STD folding. 
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A STD Dhaulagiri 
A : Absolute Shortening 3.14 km 2.87 km 
A: Percent Shortening 20% 28 % 

 
B STD Dhaulagiri Mukut 
B : Absolute Shortening 7.28 km 7.16 km 5.54 km 
B: Percent Shortening 16 % 19 % 17 % 

 
C STD Dhaulagiri Mukut 
C : Absolute Shortening 2.98 km 7.00 km 6.13 km 
C: Percent Shortening 6% 14% 13% 

 
Table 1. Absolute and relative shortening across three cross sections: A-A’, B-B’, C-C’. 
 
 
 
 
 
 

 
Figure 13. The orientations of eleven syncline axial planes in THS formations are represented above 
(modified from Davis and Reynolds, 1996). Blue triangles represent orientations pre-STD folding, 
and red circles represent orientations of the same axial planes post-STD folding. 
 
 



 

33 

 
A-A’ fold 1  

A-A’ fold 2 

 
B-B’ fold 1 

 
B-B’ fold 2 

  
B-B’ fold 3 

 
B-B’ fold 4 

Figure 14A. A-A’ folds 1 and 2; B-B’ folds 1, 2, 3 and 4. Blue represents orientations of folds before 
STD folding, red represents orientations of folds post-STD folding. 
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B-B’ fold 5 

 
  C-C’ fold 1 

 
C-C’ fold 2 

 
C-C’ fold 3 

 
D-D’ fold 1 

 

Figure 14B. B-B’ fold 5; C-C’ folds 1, 2, and 3. Blue represents orientations of folds pre- STD folding, 
red represents orientations of folds post-STD folding 
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Figure 15A. Structure contour map of STD within the Dolpo-Mugu synclinorium. Contours are in 
units above sea level, with a contour interval of 500 m.  
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Figure 15B. Structure contour map of Dhaulagiri within the Dolpo-Mugu synclinorium. Contours are 
in units above sea level, with a contour interval of 500 m. Faults are represented in red. 
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Figure 15C. Structure contour map of Dhaulagiri within the Dolpo-Mugu synclinorium. Contours are 
in units above sea level, with a contour interval of 500 m.. Faults are represented in red. 
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4.5 Structural Character of the Synclinorium 

 The southeasterly plunging synclinorium, as observed in the cross sections, 

has steep dip along its limbs and becomes shallower toward the axial plane at every 

stratigraphic level.  This becomes increasingly clear when illustrated by structure 

contour maps (figure 15A, 15B, 15C). 

 Structure contour maps of the STD, Dhaulagiri limestone, and Mukut 

limestone were hand drawn using depth information from the series of cross 

sections in figures 9A, 10A, 11A, and 12A and elevation contours at outcrops on the 

geologic map (figure 6).  The STD, being the lower boundary of the THS, does not 

have the small-scale folding that developed in the THS prior to STD slippage and 

folding. All horizons have their steepest dips at points furthest from the axis of the 

synclinorium. 

Figure 15A illustrates variations in plunge along the axis of the folded STD. 

The steepest plunge is in the nose of the synclinorium where it averages 43° and 

then shallows to an average of 21°, and then finally becomes very shallow moving 

away from the nose toward the SE. Bedding dip along the limbs of the synclinorium 

average 27-38° in the northern limb and 38-42° in the southern limb; the southern 

limb generally has slightly steeper dip than the northern limb, causing the 

synclinorium to verge NE. 
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5. DISCUSSION 

5.1 Possible Fault Architecture below the Synclinorium and Predicted 

Shortening and Crustal Thickening 

 Three primary hypotheses for fault geometry are possible that relate to fold 

development. These are (A) a duplex, (B) a fault-bend-fold, or (C) a blind thrust. 

Figures16A, 16B, and 16C show these three possible variations of cross section C-C’' 

(figure 6) which extends to the NE in order to predict the sub-surface of the 

anticlinorium.  For purposes of simplicity the Mugu-Mustang leucogranites present 

within the GHC are not illustrated in these cross-sections, and are considered 

together with the GHC as one unit. Crustal thickening of the anticlinorium in each of 

the models suggested here is estimated to be 10-11 km of vertical thickening, or 

~45% increase in GHC crustal thickness. In each model “absolute shortening” and 

“percent shortening” across the entire length of C-C”, which spans both the 

synclinorium and the anticlinorium,  can be calculated (Table 2). 

 

 Absolute Shortening Relative Shortening 
Duplex 33.03 km 30% 
Fault-bend fold 25.13 km 24% 
Blind thrust 8.2 km 10% 
Table 2. Absolute shortening and relative shortening predicted by each of the three hypotheses for 
fault architecture. Absolute shortening refers to net shortening in the GHC across cross section C and 
its extension through the anticlinorium. Relative shortening represents the percentage of original 
crustal length that is lost due to uplift and folding. 
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Duplex 
 
 If development of a duplex is responsible for the anticlinorium it would 

represent the maximum amount of shortening possible. Figure 16A suggests the 

possibility of three to four large horses defined by subsidiary faults at 15-20° root 

into an intra-GHC floor thrust, and have their termination in the STD above which is 

the roof thrust for the structure. This model predicts ~33 km of shortening with 

30% relative shortening of original crustal length.  However, it is possible that a 

greater number of horses with more complex geometries exist which could predict 

even greater shortening.  The model proposed here predicts that slip along the STD 

during development of the duplex is localized to the portion of the STD spanning the 

horses, and no slip forward or hinterward of the duplex is necessary. In other 

words, the duplex could have developed within the GHC in the absence of bulk 

propagation of the GHC wedge. 

 

Fault-bend fold 

The development of the Dolpo‐Mugu synclinorium and 

anticlinorium may be products of southward movement of GHC‐THS thrust sheet 

over a crustal‐scale ramp (figure 16B). This model predicts the anticlinorium and 

synclinorium developed as fault‐bend folds. This geometry predicts the second 

greatest amount of shortening, with approximately 24% shortening across the 

anticlinorium/synclinorium for a total of ~25 km shortening. 
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Blind thrust 

 The third hypothesis for fault architecture is a blind thrust (figure 16C). A 

blind thrust rooted in the MBT or some intra-GHC detachment would terminate 

before reaching the STD. This would predict approximately 10% shortening across 

the anticlinorium/synclinorium for a total of ~8 km of shortening. 

 

5.2 Regional Extent of Dolpo-Mugu Folds 

The Dolpo-Mugu folds may be related to similar large scale folds to the east 

and west of the Dolpo-Mugu folds. In the Manaslu region of central Nepal, east of the 

Thakkhola graben and approximately 200 km from the Dolpo-Mugu folds, there is a 

pair of large-scale folds called the Chako antiform and Mutsog synform. Like the 

Dolpo-Mugu folds these folds developed after slip on the STD ceased and have GHC 

in the core of the antiform and THS in the core of the synform. The hinge of the 

Mustog synform plunges 10° towards the NW. The Chako antiform plunges 8° to the 

NW. The folds are upright, open folds with amplitude of ~4 km and a wavelength of 

~25 km (Gleeson and Godin, 2006). The large magnitude of these folds, like the 

Dolpo-Mugu folds, implies crustal-scale folding. 

 West of the Dolpo-Mugu region is the Gurla Mandhata metamorphic core 

complex. This complex is ~100 km long in the east-west direction (parallel to strike) 

and ~40 km in the north-south direction. Murphy (2007) identified Lesser 

Himalayan sedimentary rocks in this region which, as noted earlier, is a lithotectonic 
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unit structurally beneath than the THS and GHC. The complex sits atop a large 

antiform that has a corresponding southern synform. Unlike the models presented 

for the Dolpo-Mugu folds which place shortening structures entirely within the GHC, 

fault architecture within the Gurla Mandhata antiform have been interpreted to be a 

duplex structure or thrust fault within the LHS, which is at the core of the antiform, 

with horizontal shortening predicted to be a minimum of 100-150 km (Murphy, 

2007). The fold pair has an approximate half-wavelength of 40 km and an 

approximate amplitude of 18 km.  

 

 Gurla Mandhata Dolpo-Mugu Chako/Mutsog 

Amplitude ~18 km ~ 10 km ~ 4 km 

Half-wavelength ~ 40 km ~ 37 km ~ 25 km 

Table 3. Amplitude and half-wavelengths of three folds in the region of central, central-west, and 
far northwest Nepal. 

 
Assuming that the Gurla Mandhata core complex, the Dolpo-Mugu folds, and 

the Manaslu folds are related by a single deformational event or related events, the 

along strike extension of this folded section of the Himalayan orogen is ~350 km, 

which is a significant portion of its’ total ~2000 km strike. However, this folded 

section may be linked to even larger scale features. Larson et al., 2010 show that the 

leucogranites of the Dolpo-Mugu region lie within the axial trace of the gneiss domes 

of the Greater Himalayan Antiform. This interpretation suggests that structural 

deformation in the Dolpo-Mugu area may be related to first order folding within the 

hinterland of the Himalaya that extends for ~700 km. 
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5.3 Implications for Tectonic Wedge Geometry 

 Previous tectonic wedge models of GHC extrusion show the GHC wedge as 

having uniform thickness throughout the central-west region of Nepal (Webb et al., 

2007). The interpretation suggested in this study differs from previous 

interpretations by describing crustal shortening and vertical thickening within the 

GHC wedge in the Dolpo-Mugu region. As described above the tectonic wedge model 

predicts that STD and MCT branch from a single fault zone at the southern tip of the 

GHC wedge. This branch line is at least as far south as the southern edge of the 

Jarjarkot and Dadeldhura klippen as observed in regional geologic maps (figure 2). 

 

5.4 Conclusion 

Shortening from the Dolpo-Mugu folds ranges from 8-33 km, which does not 

appear to be sufficient to make up for the deficit in shortening budgets across the 

Himalayan orogen. The crustal thickening present in the Dolpo-Mugu folds is likely 

related to thickening in adjacent regions along strike. Detailed mapping and more 

precise strike and dip measurements along with focused field observations will help 

improve understanding of the Dolpo-Mugu synclinorium and anticlinorium and 

shed more light on sub-surface fault architecture responsible for crustal thickening.  
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6. APPENDICES 

Appendix A: Google Earth and the Three-Point-Problem 

Google Earth is quickly becoming the tool of choice for those interested in 

quickly and easily observing the Earth. Google Earth is a virtual three dimensional 

globe with a simple user interface that incorporates digitial elevation models and 

satellite imagery to bring suprisingly clear and accurate renderings of Earth's 

surface. These specifications will be explored further.  

In the absence of on-location field data in hard-to-reach areas, Google Earth 

provides a means of measuring the strike and dip of stratigraphic units by 

employing the three-point-problem methodology. This computation can be 

accomplished if the following information is known: (a) elevation of three points 

within the plane to be measured, (b) latitude and longitude of the three points, (c) 

the distance and bearing from the highest of the three points to the second highest 

of the three points, and (d) the distance and bearing from the highest of the three 

points to the lowest of the three points. This data defines two vectors within the 

strike and dip plane which, when multiplied, yield a cross-product that represents 

the pole to that plane. The pole is then converted into familiar strike and dip 

coordinates. For this research data was calculated using a spreadsheet created by 

David T. Allison at the University of South Alabama. Throughout the area mapped by 

Fuchs (1973) the strikes and dips of exposed beds were calculated via the three-

point-problem at forty-one locations. The locations of these stations and their strike 

and dip calculations can be found in Appendix B.  



 

47 

The three-point-problem methodology relies on an accurate digital elevation 

model and accurate geospatial positioning of satellite data. Using Google Earth for 

this task might be met with some resistance by those unfamiliar with the technical 

details of Google Earth's data. A brief discussion of Google Earth's data sources is 

appropriate. Google receives satellite images from a variety of sources, but this 

research project utilized images from only the GeoEye-1 satellite and the Quickbird 

satellite. 

  

GeoEye 

In 2008 Google became the exclusive online mapping site of imagery 

captured by GeoEye, Inc. GeoEye is a leading satellite imaging company with a 

number of satellites in operation. In 2008 GeoEye launched a satellite called 

GeoEye-1 that included the Google logo on the rocket. GeoEye-1 captures images 

from panchromatic cameras (at 0.41 m resolution) and multispectral cameras (at 

1.65 m resolution), although only panchromatic images were utilized in this 

research. Due to government restrictions, GeoEye-1 provides Google with re-

sampled panchromatic geospatial imagery at 0.5 m ground resolution instead if its 

maximum 0.41 m resolution. Half-meter ground resolution is currently the highest 

resolution commercially available.  These images have much higher resolution than 

ASTER images (at 15, 30, and 90 m resolution) and LANDSAT images (at 15-30 m 

resolution).  
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 Weighing in at 1955 kg (4310 lbs), GeoEye-1 also has an impressive 

geolocation accuracy. It boasts the ability to map features to within 5 meters of their 

actual locations without ground control points. The satellite makes fifteen orbits per 

day flying at an altitude of 681 km with an orbital velocity of about 7.5 km/sec. 

GeoEye-1 travels in a sun-synchronous orbit allowing it to pass over a given area at 

around 10:30 am local time every day. It has an inclination of 98 degrees from the 

equator and an orbital period of 98 minutes. Its nominal swath width is 15.2 km, 

and 9.44 km at nadir. Further technical details of the GeoEye-1 satellite can be found 

in the appendix. 

 

Quickbird 

 The Quickbird satellite is owned and operated by DigitialGlobe, Inc. 

Quickbird was launched in 2001 from Vandenberg Air Force Base in California. Its 

panchromatic images are at a resolution of 0.65 m, and multispectral images are 

capable of 2.62 m resolution. Only the panchromatic images were utilized in this 

research. Again, this is higher resolution than both ASTER and LANDSAT images.  

At 952 kg (2100 lbs), Quickbird locates features to within 23 m of their actual 

locations without the use of ground control points. Quickbird orbits the Earth in a 

sun-synchronous fashion, with an orbital period of 94.2 minutes. Quickbird has a 

swath width of 18 km. Further technical details of this satellite can be found in the 

appendix. 
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Digital Elevation Model 

 Google Earth does not release technical details  about the digital elevation 

models it employs. However, owing to the fact that NASA SRTM is freely available, it 

is assumed that in the Nepal region the DEM had an accuracy of at least 90 m. 

Extensive use if Google Earth in tandem with NASA SRTM in a GIS application 

(ArcGIS) indicates that Google Earth is in fact using SRTM, as no major discrepancies 

have been detected. 
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Appendix B.1 
 
Fuch’s Strike and Dip Measurements 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
 
 

 
 



 

63 

Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.1 Continued 
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Appendix B.2 
 
Stutz Strike and Dip Measurements 
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Appendix B.2 continued 
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Appendix C 

Appendix C.1 Strike and Dip of THS Fold Limbs 

The following strike and dip measurements describe the orientations of folds, 
primarily synclines, within the respective cross sections. Measurements are given 
for each syncline as it is predicted to have been oriented pre-STD folding as well a 
their current post-STD measurements. 
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Appendix C.2 Dip and Plunge of THS Fold Limbs 

The dip and plunge data for folds in each respective cross section are listed in the 
table below. 
 
Axial Planes pre-STD 
Folding Axial Planes post-STD folding 
A-A' Dip Plunge A-A' Dip Plunge 

1 85 0 1 86 12 
2 78 0 2 69 12 

      B-B' Dip Plunge B-B' Dip Plunge 
1 85 0 1 66 0 
2 86 0 2 77 0 
3 89 0 3 85 0 
4 75 0 4 82 0 
5 75 0 5 89 0 

      C-C' Dip Plunge C-C' Dip Plunge 
1 84 0 1 87 0 
2 85 0 2 86 4 
3 81 0 3 82 0 

      D-D' Dip Plunge D-D' Dip Plunge 
1 89 0 1 79 0 
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