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Abstract

In order to research the anisotropy and dispersion features of media with aligned

fractures, models which approximately describe the media are constructed. For

the case in which crack density is very high and aspect ratio may be very low, the

cracked medium can be described as a layered periodic medium, in which the aligned

fractures in question are described as layers.

Given a layered periodic medium consisting of all solid layers, the effect of the

contrast between individual layers on the behavior of anisotropy is examined. The

effect of shear modulus contrast on anisotropy is essential. If shear moduli of two

layers are equal, the effective medium is isotropic. The increase of bulk modulus

contrast shifts the maximum SV -wave velocity point to that of smaller angle.

For the layered periodic medium consisting of alternating solid and fluid layers,

the effects on both anisotropy and frequency dispersion are then examined. There

will be dispersion for propagating P-wave, and thereby stop-bands exist. For the

wave propagates perpendicular to the layering, the stop-bands as a function of phys-

ical properties of individual layers are studied. When wavelength is much greater

than the spatial period of the medium, there are two modes of P-wave, the fast and

slow P-wave.

For cases in which crack density is low and aspect ratio is relatively high, the

anisotropy is characterized using the Eshelby-Cheng method. The increase of bulk

modulus contrast will increase the anisotropy of the effective medium. As the aspect

ratio increases from 0.1 to 0.5, the anisotropy of P-wave and SV -wave increases.
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Chapter 1

Introduction

Layered media theory is a significant topic of exploration geophysics. Layering

exists in sedimentary basins at multiple scales, from microscopic to macroscopic.

This thesis will focus on periodic layering and the effect of material contrast on the

behavior of the anisotropy and dispersion of velocity in periodic media. Emphasis

will be placed not only on layered media consisting of all solid layers, but also on

media consisting of alternating solid and fluid layers.

On the small scale, shales, which commonly exist in sedimentary basins, can be

treated as a layered medium. Vernik and Nur (1992) show that kerogen-rich shales

can be effectively modeled using alternating layers of illite and kerogen.

On the large scale, cyclical geological processes can generate periodic sections.

Figure 1.1 shows an aggradational parasequence set formed by the rise and fall of

local sea level, which can be indicated by periodic media. And as shown in Figure

1.2, cyclical climatic changes create sedimentary layers consisting of alternating

limestones and mudstones.

For the sake of simplicity, in this thesis the x3 axis of the coordinate system is

always set to be perpendicular with respect to layering; the layers themselves are
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always assumed to be infinite in both x1 and x2 directions.

Figure 1.1: Aggradational parasequence set modified from Van Wagoner et al. (1990)

Chapter 2 discusses a simple case in which all the layers of the periodic media

are solid and the wavelength is much greater than the period of the media. For

the long wavelength case, effective anisotropy is researched with the focus on how

different material contrasts control the behavior of the anisotropy of phase and group

velocities.

Chapter 3 considers more complex scenarios in which the periodic media con-

sist of alternating solid and fluid layers. Such consideration extends to taking into

account cases of differing wavelengths. As the velocity changes with the frequency,

stop-bands can be observed, which are the frequency bands which only make al-

lowance for waves in a state of decay. Under certain conditions, the periodic media

consisting of alternating solid and fluid layers can approximately describe the media

with aligned, penny-shape fractures which have low aspect ratio and high crack

density.

Chapter 4 studies the long wavelength limit of the periodic media with alternat-

ing solid and fluid layers.

Chapter 5 considers the media with aligned, penny-shape fractures having low

2



Figure 1.2: Interbedded limestones and mudstones from Coe (2003)
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crack density.

It is assumed that readers here have a basic knowledge of elastic wave equations

associated with anisotropic media.

4



Chapter 2

Layered Periodic Media with All

Solid Layer at Conditions of Long

Wavelength

2.1 Background model

In order to study wave propagation occurring in layered media, we should start from

the simplest and most studied case, which involves periodic media consisting of thin

layers. It is a problem carrying with it a long history that has been researched in

various fields, such as materials science, engineering, and geophysics (Postma, 1955;

Backus, 1962; Delph et al., 1978; Berryman, 1979). In this chapter, we will focus

on a case in which all layers are solid. The layered periodic media is composed

of two alternating layers of isotropic and homogeneous materials. Each layer is

characterized by its elastic constants Cijkl, density ρ, and thickness d. The spatial

period of the alternating layers is H. In this study, intrinsic attenuation is ignored.

The word ‘thin’ indicates a situation in which the seismic wavelength is much greater
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than the period of the given media. The thin layering conduction is illustrated in

Figure 2.1.

Figure 2.1: Model in which wavelength much greater than the period of the media

For the case in which the individual layers are isotropic, the effective symmetry

type of the layered periodic media is transversely isotropic. Whereas a multitude of

previous research has covered this topic, there are two basic methods to characterize

the elastic constants of the effective media and the corresponding wave propagation

in the layered media. Backus’ method is one of the most significant works to char-

acterize the behavior of elastic waves in thin layered media (Backus, 1962). There

are two major advantages to Backus’ average method. First, it provides explicit

expression for the stiffness as an average calculated in algebraic quantities. Second,

this method is able to extend to non-periodic layered media with more than two

constituents, including media that may be anisotropic. However, Backus’ average

method only considers scenarios involving long wavelength; nominally, these occur-

rences indicate no dispersion effect. Backus’ method is a generalization of Postma’s

method, in which only two periodic constituents are discussed (Postma, 1955).
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2.2 Elastic waves: Isotropic constituents

Elastic wave propagation in homogeneous and isotropic media is controlled by Lamé

parameters, λ and µ, and density ρ. The thickness for each layer, d1 and d2, in the

periodic layered media must also be considered. Usually, the bulk modulus K is

more frequently used instead of λ. In the isotropic and homogeneous conditions,

phase velocity is expressed as follows:

Vp =

√
λ+ 2µ

ρ
=

√
K + 4

3
µ

ρ
(2.1)

Vs =

√
µ

ρ
(2.2)

For a case involving long wavelength, according to Postma’s method, the stiff-

ness of the effective media can be expressed explicitly with the parameters of the

constituent layers as such:

c11 =
1

D
{(d1 + d2)2(λ1 + 2µ1)(λ2 + 2µ2)

+ 4d1d2(µ1 − µ2)[(λ1 + µ1)− (λ2 + µ2)]}

c12 =
1

D
{(d1 + d2)2λ1λ2 + 2(λ1d1 + λ2d2)(µ2d1 + µ1d2)}

c13 =
1

D
{(d1 + d2)[λ1d1(λ2 + 2µ2) + λ2d2(λ1 + 2µ1)]}

c33 =
1

D
{(d1 + d2)2(λ1 + 2µ1)(λ2 + 2µ2)}

c44 =
(d1 + d2)µ1µ2

d1µ2 + d2µ1

c66 =
µ1d1 + µ2d2

d1 + d2

(2.3)

where

D = (d1 + d2)[d1(λ2 + 2µ2) + d2(λ1 + 2µ1)]

7



The Backus formulae are generalizations pointing to higher number of con-

stituent layers and VTI constituents:

C11 = < c11 − c2
13c
−1
33 > + < c−1

33 >−1< c13c
−1
33 >2

C12 = < c12 − c2
13c
−1
33 > + < c−1

33 >−1< c13c
−1
33 >2

C13 = < c−1
33 >−1< c13c

−1
33 >

C33 = < c−1
33 >−1

C44 = < c−1
44 >−1

C66 = < c66 >

(2.4)

where the average notation <> represents thickness weighted average, shown as

Equation 2.5. The upper case C on the left side represents the stiffness of the

effective medium, and lower case c on the right side represents the stiffness of the

given constituent layer.

< c >=

∑N
n=1 dncn∑N
n=1 dn

(2.5)

In VTI media, three phase velocities can be calculated with these six (five in-

dependent) elastic constants. The value of the velocities can be obtained from the

Green Christoffel equation (Equation 2.6).

(Γik − ρV 2δik)Uk = 0 (2.6)

where Γ is called the first Green-Christoffel tensor, and U make up the eigenvectors

of Γ, physically representing the direction of particle displacement. Γ is calculated

using stiffness and the direction of wave propagation:

Γik = Cijklnjnl (2.7)

8



where n is the unit vector representing the direction of wave propagation. The

modulus of phase velocities can be calculated from the eigenvalues of Γ with known

density. Additionally, the group velocities can be calculated as follows:

V
(group)
j =

1

ρ|V(phase)|
CijklUiUknl (2.8)

For the case of VTI media, the phase velocities can be expressed explicitly in

the form indicated below (Thomsen, 1986):

V 2
P (θ) =

1

2ρ
[c33 + c44 + (c11 − c33)sin2θ +D] (2.9)

V 2
SV

(θ) =
1

2ρ
[c33 + c44 + (c11 − c33)sin2θ −D] (2.10)

V 2
SH

(θ) =
1

ρ
[c44cos

2θ + c66sin
2θ] (2.11)

where

D2 ≡(c33 − c44)2 + 2[2(c13 + c44)2 − (c33 − c44)(c11 + c33 − 2c44)]sin2θ

+ [(c11 + c33 − 2c44)2 − 4(c13 + c44)2]sin4θ

(2.12)

There exists a conclusion that it is the shear modulus contrast which dominates

the degree of anisotropy. It means that there is no effective anisotropy unless a dif-

ference in shear modulus exists, regardless of what differences occur within any other

parameters (Mavko et al., 2009; Berryman, 2005). This can be seen by substituting

µ1 = µ2 into Equation 2.3. The result is that c11 = c33, c13 = c12, c11−c12 = 2µ, c44 =

c66 = µ. It becomes an isotropic media with effective λ is given by λeff = c12. The

consequence is that the essential conditions for layered media showing anisotropy is

that µ must vary between layers. For instance, if two layers consistes of identical

isotropic rock with different fluid saturations, there would be no shear modulus con-

trast, therefore it would not show anisotropy. As a result, a difference in Poisson’s

9



ratio between layers does not necessarily produce long wavelength layer anisotropy

where Poisson’s ratio σ is given by:

σ =
(VP/VS)2 − 2

2((VP/VS)2 − 1)
(2.13)

In order to get a further study on sensitivities of contrast among such elastic

constants, a quantitative definition should then be made:

anisotropy coefficient =
velocity(θ)− velocity(θ = 0◦)

velocity(θ = 0◦)
(2.14)

where θ = 0◦ is perpendicular to the layers and the velocity is phase velocity. The

first approach in studying sensitivities is to examine the effect of each parameter

separately. However, taking such an approach is not geologically realistic. Such

an approach assists with indicating which physical property is more significant in

affecting layer-induced anisotropy.

Figure 2.2 indicates the effect on phase velocities of varying shear modulus con-

trast between two layers, with other parameters remaining constant. The variation

of the shear modulus contrast is produced by variation of shear modulus of the sec-

ond layer. This shows that the angle in which the maximum velocity of SV -wave

occurs causes a shift to smaller values; thus the degree of anisotropy increases as

shear modulus contrast increases. Figure 2.3 shows what effect all this has on group

velocities. The width of the triplication zone of the SV -wave and the degree of

anisotropy involved both increase as shear modulus contrast increases.

Figure 2.4 illustrates the effect on phase velocities of varying bulk modulus con-

trast, maintaining a constant shear contrast. The bulk modulus contrast has no

effect on the anisotropy of the SH-wave, the reason being that the SH-wave velocity

10
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Figure 2.2: Effect of varying shear modulus contrast on angular anisotropy of phase
velocities. The first layer: K = 20.35 GPa, µ = 13.24 GPa, ρ = 2.37 g/cm3; the
second layer: K = 7.13 GPa, ρ = 2.1 g/cm3. The thickness of the two layers are
equal. The legend gives fractional shear modulus contrasts.
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Figure 2.3: Effect of varying shear modulus contrast on angular anisotropy of group
velocities. The first layer: K = 20.35 GPa, µ = 13.24 GPa, ρ = 2.37 g/cm3; the
second layer: K = 7.13 GPa, ρ = 2.1 g/cm3. The thickness of the two layers are
equal. The legend gives fractional shear modulus contrasts.
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only depends on c44 and c66. It is shown that the angle corresponding to the max-

imum anisotropy of SV -wave becomes smaller as bulk modulus contrast increases.

Figure 2.5 shows the effect on group velocities.

As thickness contrast increases, the anisotropy will become less significant, be-

cause the properties of the whole material will be closer to that of the thicker layer.

This behavior can be observed in Figures 2.6 and 2.7, showing cases involving phase

and group velocities respectively. Density does not contribute to anisotropy, so there

is no need to take such into account.
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Figure 2.4: Effect of varying bulk modulus contrast on angular anisotropy of phase
velocities. The first layer: K = 20.35 GPa, µ = 13.24 GPa, ρ = 2.37 g/cm3; the
second layer: µ = 0.95 GPa, ρ = 2.1 g/cm3. The thickness of the two layers are
equal. The legend gives fractional bulk modulus contrast.
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Figure 2.5: Effect of varying bulk modulus contrast on angular anisotropy of group
velocities. The first layer: K = 20.35 GPa, µ = 13.24 GPa, ρ = 2.37 g/cm3; the
second layer: µ = 0.95 GPa, ρ = 2.1 g/cm3. The thickness of the two layers are
equal. The legend gives fractional bulk modulus contrast.
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Figure 2.6: Effect of varying layer thickness contrast on angular anisotropy of phase
velocities.The first layer: K = 20.35GPa, µ = 13.24GPa, ρ = 2.37g/cm3; the second
layer: K = 7.13 GPa, µ = 0.95 GPa, ρ = 2.1 g/cm3. The legend gives fractional
thickness contrast.
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Figure 2.7: Effect of varying layer thickness contrast on angular anisotropy of group
velocities.The first layer: K = 20.35GPa, µ = 13.24GPa, ρ = 2.37g/cm3; the second
layer: K = 7.13 GPa, µ = 0.95 GPa, ρ = 2.1 g/cm3. The legend gives fractional
thickness contrast.
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Chapter 3

Layered Periodic Media with

Alternating Solid and Fluid Layers

3.1 Background of wave propagation in elasto-

acoustic medium

In petroleum reservoirs, fractures can significantly increase permeability and conse-

quently enhance production capabilities (Baird et al., 2013). Limited by low reso-

lution, seismic studies are usually unable to effectively image individual fractures.

However, the seismic anisotropy produced by the presence of aligned fracture sets

can be used as a method to characterize such a reservoir overall (Lynn and Thom-

sen, 1990). In order to simplify the model, aligned sets of fractures with low aspect

ratio can be approximately regarded as thin layers containing fluid. Therefore, Such

a model becomes one of layered periodic media, with alternating solid and fluid

layers, thus one presenting an elastoacoustic medium (Schoenberg, 1984), as shown

in Figure 3.1.
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Figure 3.1: the model of periodic layered medium with alternating solid and fluid
layers

3.2 Schoenberg’s solution for elastoacoustic media

In observing the alternating solid and liquid layers, there are several facts to con-

sider. First, boundary conditions between a solid and ideal (shear stress free) fluid

lead to phenomena that differ from one involving a solid-solid case. Second, the ex-

act solution at all frequencies and wave numbers parallel to stratification can help to

explain the meaning of theories on wave propagation in porous media (Schoenberg,

1984). The Rytov (1956) approach shows that there is one wave speed for propa-

gation perpendicular to the layering, while for propagation parallel to the layering,

there are two speeds, both of which correspond to compressional waves. The exis-

tence of two compressional modes is predicted by Biot’s theory of wave propagation

in porous media. Hereafter such a periodic layered medium composed of alternating

elastic solid and ideal fluid layers should then be called an elastoacoustic medium.

The 4× 4 transfer matrix for an elastic layer of general case can reduce to the 2× 2

matrix when applied to an elastic layer, in which shear stress vanishes on both sur-

faces. In order to solve the problem of wave propagation in periodic layered media,

the method of propagator matrices is used (Gilbert and Backus, 1966). A matrix

19



Q relates values of continuous field parameters at one depth in the periodic layered

medium to another depth one period deeper in the same medium. For the boundary

conditions, the fluid layers are considered to be composed of ideal fluid; therefore

viscous shear stress vanishes and tangential displacement at a solid-fluid interface

can no longer be continuous. The propagator matrix Q, which is a 2×2 matrix with

a determinant equal to one, describes the relationship of the continuous variables,

σ33, the normal stress, and ν3, the normal particle velocity, between the upper and

the lower surfaces of one period (i.e. one solid layer and one fluid layer). In the

following, the derivation of Q from an elastoacoustic medium is present. The matrix

equation across one period, H, is

y(H) =

σ33

ν3


x3=H

= Q(s1, ω)

σ33

ν3


x3=0

≡ Qy(0) (3.1)

Q is decomposed into eigenvector and eigenvalue matrices,

Q = V · Λ · V −1
=

v11 v12

v21 v22

 ·
λ1 0

0 λ2

 ·
 v22 −v12

−v21 v11

 /det V (3.2)

where λi are the eigenvalues, and [v1i, v2i]
T are the eigenvectors corresponding to λi.

The equation describing relationship across n periods is

y(nH) =Q
n
(s1, ω)y(0) = V

λn1 0

0 λn2

V −1
y(0)

=

λn1
v11

v21

[v22 −v12

]
+ λn2

v12

v22

[−v21 v11

]y(0)/det V

(3.3)

If y(0) is arbitrary decomposed into a linear combination of eigenvectors,
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y(0) =
2∑
i=1

ci

v1i

v2i

 ≡ 2∑
i=1

civi (3.4)

then y(nH) can be written as

y(nH) =
2∑
i=1

ciλ
n
i vi (3.5)

which is the sum of two solutions. For any value of x3, (x3 = (n + δ)H, 0 6 δ < 1),

y is related to y(nH) by a 2x2 matrix Q
′
(δH), with Q

′
(H) = Q. Then

y(x3) =Q
′
(δH)y(nH) = Q

′
(δH)

2∑
i=1

ciλ
n
i vi =

2∑
i=1

λn+δ
i ciλ

−δ
i Q

′
(δH)vi

=
2∑
i=1

(λ
1/H
i )x3ci(λ

1/H
i )−δHQ

′
(δH)vi ≡

2∑
i=1

(λ
1/H
i )x3fi(δH)

(3.6)

and as fi(0) = fi(H) = civi, two continuous periodic functions fpi (x3) are induced

by period H. As a result, when x3 = (n+ δ)H, (0 6 δ < 1), fpi (x3) = fi(δH). Then

y(x3) =
2∑
i=1

(λ
1/H
i )x3fpi (x3) (3.7)

fpi (x3) indicates the mode shapes within each period, each mode being related to a

different wave. Because Q is a 2x2 matrix whose determinant equal to one, λ1λ2 = 1,

and the value of λ1 and λ2 are only decided by the trace of Q. A parameter C is

introduced with C = (q11 + q22)/2, representing half the trace of Q. Then the

solution of the quadratic equation can be given such value (in eigenvalues):

λ2 − 2Cλ+ 1 = 0 (3.8)

For C, there are two cases: (1)|C| 6 1, λ1, λ2 are complex conjugates, and their

absolute values are equal to one. (2) |C| > 1, λ1, λ2 are real reciprocals of each
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other. For the first case, one has λ = e±iωs3H , where ωs3H can be calculated from

C = cos ωs3H (3.9)

s3 is the component of slowness in the x3 direction, i. e. the real apparent slowness

along given x3 axis. For the second case, let λ1 be the eigenvalue with smaller

absolute value, so that |λ1| < 1, |λ2| > 1. Then

λ1 =C[1− (1− C−2)
1
2 ]

λ2 =C[1 + (1− C−2)−
1
2 ]

(3.10)

and λ1 is related to evanescent waves which decay in direction along a positive x3

axis, and λ2 ,along a negative x3 axis. C and λi have the same sign. Therefore, if λi

are negative, there is phase reversal between adjacent periods as the wave decays,

but if λi are positive, there is no phase reversal.

In what follows, we discuss the periodic layered medium with alternating solid

and fluid layers. Consider a periodic layered medium whose spatial period is H in

direction along the x3 axis. Within a period, for example, 0 < x3 < H, one layer

of the region 0 < x3 < hsH is formed with a homogeneous isotropic elastic solid

whose P-wave velocity is α, S-wave velocity is β, and density is ρ; another layer of

the region hsH < x3 < H, with width hfH = (1− hs)H, is formed with ideal fluid

whose P-wave velocity is αf and density is ρf . The porosity of this elastoacoustic

medium is hf . Because of an expected x1 and t dependance, eiω(s1x1−t), there is

offered a general solution of the equations of elasticity in a solid layer - a linear

combination of +x3 and −x3 propagating or decaying P-waves and S-waves of the

form
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Y(x3) =



σ33

σ31

ν1

ν3


x3

= B ·D(x3) ·A (3.11)

where

B =



ρα2Γ −2ρβ4s1ss B11 −B12

2ρα2β2s1sp ρβ2Γ −B21 B22

−α2s1 −β2ss B31 −B32

−α2sp β2s1 −B41 B42



D(x3) =



eiωspx3 0 0 0

0 eiωssx3 0 0

0 0 e−iωspx3 0

0 0 0 e−iωssx3


ss =(β−2 − s2

1)
1
2

sp =(α−2 − s2
1)

1
2

Γ =1− 2β2s2
1

(3.12)

and where A is the coefficient vector, which equals B
−1

Y(0). Then

Y(x3) = B ·D(x3) ·B−1 ·Y(0) ≡ P (x3) ·Y(0) (3.13)
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where

P =



β2s2
1Cs + ΓCp

is1(2β2s2
pSp − ΓSs)

s1(Cs − Cp)/ρ

−i(s2
pSp + s2

1Ss)/ρ

−is1(2β2s2
sSs − ΓSp)

2β2s2
1Cp + ΓCs

−i(s2
sSs + s2

1Sp)/ρ

P31

2ρβ2s1Γ(Cs − Cp)

−iρ(4β2s2
1s

2
pSp + Γ2Ss

P22

P21

−iρ(4β4s2
1s

2
sSs + Γ2Sp)

P13

P12

P11


Cs =cos ωssx3 Cp =cos ωspx3

Ss =s−1
s sin ωssx3 Sp =s−1

p sin ωspx3

(3.14)

P (hsH) is the transfer matrix across one solid layer. The value of Ss and Sp

are set to be so that as ω approaches 0, Ss ≈ Sp ≈ ωx3. Because the solid layer

is bounded by ideal fluid on both surfaces, Y3 = ν1, the horizontal component of

particle velocity ν is not continuous across a solid-fluid interface, and the shear stress,

Y2 = σ31, becomes zero when x3 = 0, hsH. Thus, from Equation 3.11(Schoenberg,

1984)

0 = P21(hsH)Y1(0) + P23(hsH)Y3(0) + P24(hsH)Y4(0) (3.15)

Y3(0) can be expressed in terms of Y1(0) and Y4(0). Substitute Y3(0) as this

expression into the first and fourth elements of Equation 3.11 ( as Y1 and Y4 must

be continuous within the whole medium along x3 axis). Then
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y(hsH) =

Y1

Y4


hsH

=

P11 − P21P13

P23
P14 − P24P13

P23

P41 − P21P43

P23
P44 − P24P43

P23


hsH

·

Y1

Y4


0

≡qsy(0) =

(4β2s2
1s

2
pCsSp + Γ2CpSs)/κ −iρξ/κ

−is2
pSsSp/ρκ qs11

y(0)

(3.16)

where

ξ =8β4s2
1Γ2(1− CsCp) + (16β8s4

1s
2
Ss

2
p + Γ4)SsSp

κ =4β4s2
1s

2
pSp + Γ2Ss

(3.17)

Here, Cs, Cp, Ss and Sp are calculated at x3 = hsH. Where Γ2 = 1− 4β4s2
1s

2
s.

For the fluid layer of region hsH < x3 < H, under the assumption that there

exists eiω(s1x1−t) dependance on x1 and t, the general solution can be expressed as a

linear combination of +x3 and −x3 propagating or decaying P-waves. Then

y(x3) =

σ
ν3


x3

= bd(x3 − hsH)a (3.18)

where

b = ρfα
2
f

 1 1

− sf
ρf

sf
ρf


d(δ) =

eiωsf δ 0

0 e−iωsf δ


sf = (α−2

f − s
2
1)

1
2

(3.19)

and where σ is the negative of the acoustic pressure, and a is the coefficient vector

describing the relationship between the place at any value of x3 in the fluid layer

and the place at x3 = hsH. And a = b
−1

y(hsH), δ = x3 − hsH, thus

25



y(x3) = bd(x3 − hsH)b
−1

y(hsH) ≡ qf (x3 − hsH)y(hsH) (3.20)

where

qf =

 Cf −iρfSf

−is2
fSf/ρf Cf


Cf = cos ωsfδ

Sf = s−1
f sin ωsfδ

(3.21)

There are two parameters, both along lines of which Q should be expressed: qs

- transfer matrix across one solid layers, and qf - transfer matrix across one fluid

layer.

Q = qf (hfH)qs (3.22)

C, which equals to half the trace of Q, is expressed by

C ≡ cos ωs3H

=
1

κ

[
Cf (4β

4s2
1s

2
pCsSp + Γ2CpSp)−

1

2
Sf (

ρf
ρ
s2
pSsSp +

ρ

ρf
s2
fξ)

] (3.23)

It shows that C is an even function of ω, sp, ss, and sf . Figure 3.2 describes the

behavior of C as a function of horizontal slowness s1 and angular frequency ω, for a

physical model with combination of materials and low velocity contrast . Commonly

suggested choices are layers of Plexiglas and water, which are of equal thickness. The

plane of frequency and parallel slowness is divided into: (a) regions (white) within

which propagating waves exist, (b) regions (\\\\\\\\\) where there are waves that

are evanescent in the perpendicular direction with no phase change between adjacent

periods, and (c) regions (////////) where there are evanescent waves with a 180◦

phase change between adjacent periods. Lines indicated by the heavy dark lines
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represent discontinuity of the trace of Q which separates the different modes of

propagation (Schoenberg, 1984).

As shown in Figure 3.2, when |C| < 1, it corresponds to pass-bands, which are

regions on the plane of the s1 and ω for where waves propagating in the direction

of x3 axis exist. When C > 1, corresponding to positive stop-bands, it denotes

regions where evanescent waves exist. It is for these waves, from period to period

along a line of direction that indicates decaying, that the amplitude of the next

period is multiplied by a positive factor λi. When C < −1, it corresponds to

negative stop-bands, where amplitude of waves is multiplied by negative factor λi

in the same way as that of the former case; this leads to a phase reversal from

period to period. In some cases, the value of κ vanishes while the numerator of C

is non-zero, which leads to the value of C approaching infinite. This phenomenon

is denoted by the heavy black lines in the plane of s1 and ω, indicating the infinite

discontinuity of C(s1, ω). The plane is divided by these lines into different modes of

propagation. When s1 = 0, the numerator of C also becomes zero at ωhsH/β = nπ,

therefore the lines of discontinuity fade at the ω axis when they intersect the ω axis

perpendicularly. For the case of low frequency wave propagation, κ vanishes and C

approaches infinity when s2
1 = 1/α2

pl, where αpl is the long wavelength plate velocity

of the solid layer. κ must be non-zero for any frequency when s1 > 1/β. At low

frequencies, as shown in Figure 3.2, the range of s1 is divided by 1/αpl into two

possible modes, a fast-wave mode and a slow-wave mode.
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Figure 3.2: A Plexiglas and water model of 50% porosity. White regions: propa-
gating waves exist; regions marked by ( \\\\\\\\\ ): there are waves evanescent
in the perpendicular direction with no phase change between adjacent periods; re-
gions marked by ( //////// ): there are evanescent waves with a 180◦ phase change
between adjacent periods. Lines indicated by the heavy dark lines represent dis-
continuity of the trace of Q which separates the different modes of propagation.
(Schoenberg, 1984)
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3.3 Dispersion of wave propagation perpendicu-

lar to the layering

L. Brillouin’s research is the most comprehensive early work in the field of wave

propagation in periodic structures (Brillouin, 1946). The most impressive contri-

bution of his study is the indication of the existence of stop-bands, which appears

at the boundaries between the so-called ‘Brillouin zones’. Within these frequency

bands, waves are attenuated but do not propagate in periodic structures. Brillouin

suggests that considering wave number within the range −π/H 6 k 6 π/H is

enough to fully describe wave behavior in periodic media, where H is the period of

the medium and k indicates the wave number. In order to illustrate this, the first

case to be studied is for wave propagation perpendicular to the respective layers.

For the case in which wave propagation perpendicular to layers, s1 = 0 is substi-

tuted into Equation 3.23. Then the equation that describes the relation between

frequency ω and wave number k is constructed as follow:

C(ω) = cos(kH) (3.24)

where k = ωs3, and the function C(ω) can be expressed by the right-hand side of

Equation 3.23. For a medium that consists of isotropic shale layers and water layers

of equal thickness, the full solution of ω − k spectrum of real solutions is shown in

Figure 3.3.

The frequency bands where there is no real solution for wave number are stop-

bands. The equation 3.24 denotes that the dispersion relation is even, therefore

there is the following relationship: ω(k) = ω(−k). This fully allows description of

the dispersion relation by considering wave number within the interval 0 6 k 6 π/H.

In this way the reduced zone scheme is obtained (Lee and Yang, 1973; Ziman, 1972),
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Figure 3.3: Entire frequency spectrum for alternating solid and fluid layer. solid
layer: K=7.13 GPa, µ=0.95 GPa, ρ=2.1 g/cm3, thickness: 0.5 m. liquid layer:
K=2.2 GPa, ρ=1g/cm3, thickness: 0.5 m.
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as shown in Figure 3.4.
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Figure 3.4: Reduced zone frequency spectrum for alternating solid and fluid layer.

Usually, it is convenient to work with wave number k covering all positive real

values, leading to the need for an extended diagram (Lee and Yang, 1973). The

non-unique solution is due to the fact that observation of a wave only at positions

at equal distance from each other does not determine the wavelength, hence wave

number and phase velocity cannot be determined either (Brillouin, 1953). The

extended representation can be obtained by unfolding the values of ω(k) on the

reduced diagram with respect to the axis k = π/H as it is shown in Figure 3.5. The

numbers on the side of each curve in this figure show how the curves unfold, with
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the same numbers representing the same points on the lines. (Perdomo, 2012). This

is a diagram only indicating the method of unfolding the curves, with no actual

meaning of the curves involved.

Figure 3.5: Example of the reduced diagram (left) and extended diagram (right).
(Lee and Yang, 1973).

From the extended zone scheme, the phase velocities can be evaluated in the

normal way where v = ω/k (Lee and Yang, 1973). This is shown in Figure 3.6. It is

now able to examine how the phase velocity varies with frequency and wave number

using the extended zone scheme from a calculated dispersion relation.

Figure 3.7 shows the phase velocity of P-wave as a function of angular frequency

and Figure 3.8 shows the phase velocity of P-wave as a function of wavelength

divided by the period of the layered medium, λ/H.

From the two figures, stop-bands can be clearly observed. As a given frequency

increases, or wavelength decreases, the range of the velocity becomes narrower. The

velocity finally converges at the limit of high frequency velocity, or at the limit of

short wavelength velocity, which is equal to ray velocity.

The behavior of phase velocity as a function of frequency is affected by bulk

modulus contrast, density contrast and thickness contrast. In order to examine the
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Figure 3.6: Extended zone frequency spectrum for alternating solid and fluid layer.
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Figure 3.7: Angular frequency vs velocity with propagation normal to layers for
alternating solid and fluid layer.
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Figure 3.8: λ/H vs velocity with propagation normal to layers for alternating solid
and fluid layer.
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exact result about how contrast of one parameter affects the dispersion behavior,

each parameter will be studied separately. Figures 3.9 - 3.14 show how varied bulk

modulus contrast influences behavior of phase velocity as a function of frequency

with density and thickness constant. Figures 3.15 - 3.20 show the cases that only

density contrast varies, Figures 3.21 - 3.25 show cases in which only thickness con-

trast varies.
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Figure 3.9: Dispersion of P-wave phase velocity, with K contrast = 1:1. solid layer:
K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; thickness h = 0.5 m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.
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Figure 3.10: Dispersion of P-wave phase velocity, with K contrast = 2:1. solid layer:
K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; thickness h = 0.5 m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.
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Figure 3.11: Dispersion of P-wave phase velocity, with K contrast = 4:1. solid layer:
K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; thickness h = 0.5 m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.
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Figure 3.12: Dispersion of P-wave phase velocity, with K contrast = 6:1. solid layer:
K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; thickness h = 0.5 m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.
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Figure 3.13: Dispersion of P-wave phase velocity, with K contrast = 8:1. solid layer:
K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; thickness h = 0.5 m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.
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Figure 3.14: Dispersion of P-wave phase velocity, with K contrast = 10:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
µ = 0GPa; ρ = 1 g/cm3; thickness h = 0.5m.

The parameters of solid layers are set constant, with bulk modulusK = 7.13GPa,

shear modulus µ = 0.95 GPa, and density ρ = 2.1 g/cm3. While K and ρ of fluid

layers change respectively, to achieve different contrasts, µ of fluid layers is always

0. For the study of K contrast and density contrast, the thickness of both layers are

equal. From all those cases, it is indicated that phase velocity converges at a value as

frequency approaches positive infinity, corresponding to ray velocity. Additionally,

the figures clearly show the stop-bands, which are the frequency bands at which a

real velocity value does not exist.
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Figure 3.15: Dispersion of P-wave phase velocity, with density contrast = 1:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.16: Dispersion of P-wave phase velocity, with density contrast = 2:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.17: Dispersion of P-wave phase velocity, with density contrast = 4:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.18: Dispersion of P-wave phase velocity, with density contrast = 6:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.19: Dispersion of P-wave phase velocity, with density contrast = 8:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.20: Dispersion of P-wave phase velocity, with density contrast = 10:1. solid
layer: K = 7.13GPa;µ = 0.95GPa; ρ = 2.1 g/cm3; thickness h = 0.5m; fluid layer:
K = 2.2GPa;µ = 0GPa; thickness h = 0.5m.
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Figure 3.21: Dispersion of P-wave phase velocity, with thickness contrast = 1:9. solid
layer: K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; fluid layer: K = 2.2 GPa;µ =
0GPa; ρ = 1 g/cm3. The thickness of period is 1 m.

3.4 Stop-bands at direction normal to the layering

Two major phenomena of scattering in periodic layered media are dispersion and

stop-bands. The stop-bands are generated due to destructive interference (Rich,

2006). The characteristics of stop-bands are affected by two factors, namely the

relative thickness of layers, and the impedance contrast between the solid and the

fluid layers. The impedance is the product of the velocity and the density, with the

impedance of P-wave Ip = vp×ρ, and the impedance of S-waves Is = vs×ρ. Figures

3.26 - 3.28 show the stop-bands on a plane of angular frequency and impedance

contrast for P-waves propagating or decaying normal to the layering.

In Figure 3.26, the varied impedance contrast is produced by the variation of

bulk modulus of fluid layers; in Figure 3.27, it is produced by the variation of density
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Figure 3.22: Dispersion of P-wave phase velocity, with thickness contrast = 3:7. solid
layer: K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; fluid layer: K = 2.2 GPa;µ =
0GPa; ρ = 1 g/cm3. The thickness of period is 1 m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

1.5

2

2.5

3

3.5

4

4.5

5

Angular frequency (rad/s)

V
e
lo

c
it
y
 (

k
m

/s
)

Figure 3.23: Dispersion of P-wave phase velocity, with thickness contrast = 5:5. solid
layer: K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; fluid layer: K = 2.2 GPa;µ =
0GPa; ρ = 1 g/cm3. The thickness of period is 1 m.
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Figure 3.24: Dispersion of P-wave phase velocity, with thickness contrast = 7:3. solid
layer: K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; fluid layer: K = 2.2 GPa;µ =
0GPa; ρ = 1 g/cm3. The thickness of period is 1 m.
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Figure 3.25: Dispersion of P-wave phase velocity, with thickness contrast = 9:1. solid
layer: K = 7.13 GPa;µ = 0.95 GPa; ρ = 2.1 g/cm3; fluid layer: K = 2.2 GPa;µ =
0GPa; ρ = 1 g/cm3. The thickness of period is 1 m.
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of fluid layers. In Figure 3.28, the porosity is the ratio of the volume of fluid layers

to the total volume. This is also equal to the thickness of fluid layer divided by

thickness of the whole period, since the fluid layers are regarded as inclusion.

Figure 3.26: stop-band as a function of angular frequency and impedance contrast
with change of contrast of bulk modulus only. solid layer: K = 7.13 Gpa, µ =
0.95Gpa, ρ = 2.1 g/cm3, thickness: 0.5 m; liquid layer: ρ = 1 g/cm3, thickness: 0.5
m. The green zones are regions within which propagating waves exist; the yellow
zones and the blue zones are stop-bands. In the yellow zones, waves are evanescent
with no phase change between adjacent periods, while in the blue zones, waves are
evanescent with a 180◦ phase change between adjacent periods.
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Figure 3.27: stop-band as a function of angular frequency and impedance contrast
with change of contrast of density only. solid layer: K = 7.13Gpa, µ = 0.95Gpa, ρ =
2.1g/cm3, thickness: 0.5 m; liquid layer: K = 2.2GPa, thickness: 0.5 m. The green
zones are regions within which propagating waves exist; the yellow zones and the
blue zones are stop-bands. In the yellow zones, waves are evanescent with no phase
change between adjacent periods, while in the blue zones, waves are evanescent with
a 180◦ phase change between adjacent periods.
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Figure 3.28: stop-band as a function of angular frequency and porosity. solid layer:
K = 7.13 Gpa, µ = 0.95 Gpa, ρ = 2.1 g/cm3, thickness: 0.5 m; liquid layer: K =
2.2 GPa; ρ = 1 g/cm3, thickness: 0.5 m. The green zones are regions within which
propagating waves exist; the yellow zones and the blue zones are stop-bands. In the
yellow zones, waves are evanescent with no phase change between adjacent periods,
while in the blue zones, waves are evanescent with a 180◦ phase change between
adjacent periods.
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Chapter 4

The Low Frequency Limit for

Elastoacoustic Medium

4.1 Schoenberg’s theory for the low frequency limit

4.1.1 Phase velocity

In order to discuss the case of long wavelength in which the widths of layers are

much thinner than a wavelength, it is then required to take the limit as angular

frequency, ω, to approach zero. From Equation 3.16

lim
ω→0

ξ

(ωhsH)2
= lim

ω→0

κ

ωhsH
= 1− 4(1− β2

α2
)β2s2

1 ≡ 1− α2
pls

2
1 (4.1)

where αpl = 2(1− β2/α2)
1
2β < α, the long wavelength velocity of extensional plate

wave with S-wave velocity, β, and P-waves velocity, α. Therefore, from Equations

4.1, 3.16, and 3.21, in the low frequency regime, it follows:
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qf (hfH) =

1− 1
2
(ωsfhfH)2 +O(Ω4) −iωρfhfH +O(Ω3)

−iωs2
fhfH/ρf +O(Ω3) qf11(hfH)


qs =

 1− (ωsphsH)2

2(1−α2
pls

2
1)+O(Ω4)

−iωρhsH +O(Ω3)

− iωs2phsH

ρ(1−α2
pls

2
1)

+O(Ω3) qs11


(4.2)

where Ω is a parameter that is ωH divided by some convenient material speed,

indicating a dimensionless frequency. Then C, half of the trace of Q is

C =1− (ωH)2

2
f(s2

1) +O(Ω4)

f(s2
1) =(hfρf + hsρ)

[
hf
s2
f

ρf
+ hs

s2
p

ρ(1− αpls2
1)

]
= < ρ >

〈
α−1 − s2

1

ρ(1− α2
pls

2
1)

〉 (4.3)

where the plate velocity of the fluid layer is zero, and <> represents the thickness

weighted average. For long wavelengths and a solid-fluid medium, the overall wave

slowness is [f(s2
1)]

1
2 + O(Ω2), with eigenvalues of Q equal to e±iωH

√
f(s21) + O(Ω3).

The relation of components of slowness for the long wavelength case in elastoacoustic

medium is

F0(s2
3, s

2
1) = s2

3 − f(s2
1) = 0 (4.4)

For the discussion below, multiplying the equation on both sides by (α−2
pl − s2

1)

(α−2
pl − s

2
1)

[
s2

3

< ρ >
+ s2

1

〈
1

ρ

〉
−
〈

1

ρα2

〉]
=

1

ρ
s2

1hs(α
−2 − s2

1) (4.5)

the solution to this slowness equation are indicated by the slowness surfaces. In

Figure 4.1, the solid line denotes the real value of s3 as a function of s1 for the
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model that portrays a low contrast Plexiglas-water combination. For the parameters

of the model, α/αf = 1.8, β/αf = 0.92, ρ/ρf = 1.2. All slowness and velocities are

normalized with respect to the speed of water.

In Figure 4.2, we have a case for a high contrast aluminum-water combination.

For the parameters of the model, α/αf = 4.3, β/αf = 2.1, ρ/ρf = 2.7.

There are two solid lines in each graph, of which the one closer to origin of

the coordinate system represents the fast P-wave and the other one represents the

slow P-wave. For every real value of s2
1, only one real value of s2

3 exists, except

when s2
1 equals 1/αpl

2. s1 = 0, denotes the case of normal incidence. s2
3 =< ρ > · <

1/ρα2 > satisfies the theory of propagation through layered media in cases of normal

incidence. s2
3 decreases monotonically as s1 increases, until s1 equals the slowness

of fast P-wave, when s2
3 = 0. As s1 continues to increase and becomes greater

than α−1, f(s2
1) becomes negative and grows to negative infinity as s1 approaches

α−1
pl . When sfast < s1 < α−1, s2

3 is negative, so that s3 is imaginary, showing that

when horizontal slowness equals such value of s1, it is not possible that propagation

wave exists through the medium. This indicates what is then called stop-band in

horizontal slowness. As s1 approaches α−1
pl from the negative side, the rate of decay

of the evanescent wave in x3 direction approaches infinity.

When s1 is greater than α−1
pl , it corresponds to the regime of slow P-wave. As

s1 approaches α−1
pl from the positive side, f(s2

1) and thus s2
3 approaches positive

infinity. As s1 increases, s2
3 decreases monotonically until s1 = sslow, when s2

3 equals

zero. The velocity of the slow wave propagation parallel to the layering is always

slower than the P-wave velocity of the fluid. When s1 is greater than sslow, s
2
3 < 0,

there is no propagating wave in the x3 direction, and yet as s1 approaches infinity,

the rate of decay of the evanescent wave approaches infinity.

Transforming Equation 4.4 into polar coordinates, with s1 = s sin θ and s3 =
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Figure 4.1: long wavelength phase slowness surfaces (solid lines) and group veloc-
ity surfaces (dashed lines) for Plexiglas and water with layers of equal thickness
(Schoenberg, 1984)
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Figure 4.2: long wavelength phase slowness surfaces (solid lines) and group veloc-
ity surfaces (dashed lines) for aluminum and water with the solid layers twice the
thickness of the fluid layers (Schoenberg, 1984)
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s cos θ, then

(s2)2α2
pl sin

2 θ

(
hf sin

2 θ

ρf
+
cos2 θ

< ρ >

)
−s2

[
cos2 θ

< ρ >
+ sin2 θ

(〈
1

ρ

〉
+
hfα

2
pl

ρfα2
f

)]
+

〈
1

ρα2

〉
= 0

(4.6)

This is a quadratic equation of s2, which gives the relation of s and θ for all

values of θ except when θ = 0, in a case of normal incidence. At all other angle

of wave propagation, there are two real positive roots, one corresponding to a fast

mode, and the other to a slow mode of propagation respectively. From Equation

4.4 in the interval s1 > α−1
pl , the line representing slowness surface of slow wave

approaches an ellipse with the semiaxis α−1
f in the x1 direction and (< ρ > hf/ρf )

1
2

in the x3 direction. As shown in Figure 4.2, there is a solution s1 ≈ α−1
pl for almost

all values of θ; the stop-band then almost vanishes.

4.1.2 Group velocity

For periodic media, propagation exists when |C| < 1. In this case, s3 is calculated

by Equation 3.9 within a phase ambiguity of an integer number multiplyed by 2π.

Therefore, the dispersion is described with the form

F (k, ω) ≡ F (s, ω) = C(s2
1, ω)− cos ωs3H = 0 (4.7)

For anisotropic media, it it more convenient to describe the wave behavior in

terms of slowness instead of wavenumber, (k ≡ ωs). The group velocity, vg ≡

−∇kF/F,ω, with change occurring from k to s, is

vg =
∇sF

s · ∇sF − ωF,ω
(4.8)
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Then, from Equation 4.7, we get

vg =
2e1s1

∂C
∂s21

+ e3ωH sin ωs3H

2s2
1
∂C
∂s21
− ω ∂C

∂ω

(4.9)

where ei is a unit vector in the xi direction. For propagating waves, characterized

by C(s2
1, ω) when |C| < 1, the value of group velocity is unique, as given by Equaion

4.9. The sign of the term sin ωs3H is given by the sign of the imaginary part of λi.

For the scenario involving low frequency waves, substitute C from Equation 4.3

into Equation 4.9; we then obtain the result of the group velocity,

vg =
−f ′s1e1 + s3e3

−f ′s2
1 + s2

3

+O(Ω2),

f ′ ≡ df

d(s2
1)

= − < ρ >

hf
ρf

+
hs
ρs

(
1− β2/α2

1− α2
pls

2
1

)2
 (4.10)

As ω → 0, this expression becomes,

vg ≡
∇sF0

s · ∇sF0

=
en

|s| cos ∠(s, en)
(4.11)

where en is the outward unit vector perpendicular to the slowness surface. And thus

the modulus of the group velocity equals the reciprocal of the projection of s on the

direction perpendicular to the slowness surface at s, and the direction of the group

velocity is then normal to the slowness surface, as shown in Figure 4.3 (Schoenberg,

1984).

4.2 Anisotropy at low frequency limit and mate-

rial contrast

In order to study the sensitivity of angular dependent velocities to material contrast,

the effect of each parameter set will be examined separately. While this is not based
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Figure 4.3: Geometrical relation between phase slowness and group velocity showing
the polar reciprocal nature of the slowness and wave surface (Schoenberg, 1984)
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on a geologically realistic situation, it is designed for understanding how physical

rock and fluid properties control layer-induced anisotropy. In this numerical model,

there are two layers in each period, again a solid layer and a fluid layer. In the

following study, the physical parameters of the solid layer are constant, thus each

parameter of the fluid varies respectively to produce different parameter contrast

in each situation. In order to describe the anisotropy, an anisotropy coefficient

is defined in Equation 2.14. However, for the model with alternating solid and

fluid layers, the slow P-wave at 0◦ (perpendicular to the layer) is 0; therefore the

anisotropy coefficient must be redefined as follow:

anisotropy coefficient =
velocity(θ)− velocity(θ = 90◦)

velocity(θ = 90◦)
(4.12)

First, the influence of bulk modulus contrast is researched. In all figures below

in this chapter, the solid lines represent the velocities of the fast P-wave, and the

dashed lines represent the velocities of the slow P-wave. Figure 4.4 describes the

effect of varied bulk modulus contrast between solid and the fluid layers on angular

dependent phase velocities . Figure 4.5 shows the effect of varying contrasts in which

there is an anisotropy coefficient given. Figure 4.6 then shows what effect may occur

on group velocities. As Figure 4.5 shows, as bulk modulus contrast increases, the

angle where there is a turning point shifts to that of a smaller value. Figure 4.6

denotes that the range of angle in which a slow P-wave exists becomes wider as

the bulk modulus contrast increases. In a case of very high contrast, however, the

relatively constant parts of fast and slow waves tend to be continuous, with any

expected gap almost vanishing.

Figures 4.7 to 4.9 denote the influence of different density contrasts. As shown

in Figure 4.8, at low density contrast, the anisotropy coefficient of slow wave from

90◦ to 0◦ increases slightly first and then decreases. Thus the anisotropy coefficient

57



0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

angle from the axis perpendicular to the layer (degree)

p
h
a
s
e
 v

e
lo

c
it
y
 o

f 
p
 w

a
v
e
 (

k
m

/s
)

 

 
slow wave, K contrast=1:1

slow wave, K contrast=2:1

slow wave, K contrast=4:1

slow wave, K contrast=6:1

slow wave, K contrast=8:1

slow wave, K contrast=10:1

fast wave, K contrast=1:1

fast wave, K contrast=2:1

fast wave, K contrast=4:1

fast wave, K contrast=6:1

fast wave, K contrast=8:1

fast wave, K contrast=10:1

Figure 4.4: effect of varying bulk modulus contrast on angular dependent phase
velocity. solid layer: K=7.13 GPa; µ=0.95 GPa; density=2.1 g/cm3; fluid layer:
µ=0 GPa; density=1 g/cm3
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Figure 4.5: effect of varying bulk modulus contrast on anisotropy. solid layer:
K=7.13 GPa; µ=0.95 GPa; density=2.1 g/cm3; fluid layer: µ=0 GPa; density=1
g/cm3
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Figure 4.6: effect of varying bulk modulus contrast on angular dependent group
velocity. solid layer: K=7.13 GPa; µ=0.95 GPa; density=2.1 g/cm3; fluid layer:
µ=0 GPa; density=1 g/cm3
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Figure 4.7: effect of varying density contrast on angular dependent phase velocity.
solid layer: K=7.13 GPa; µ=0.95 Gpa; density=2.1 g/cm3; fluid layer: K=2.2 GPa;
µ=0 GPa;
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Figure 4.8: effect of varying density contrast on anisotropy. solid layer: K=7.13
GPa; µ=0.95 Gpa; density=2.1 g/cm3; fluid layer: K=2.2 GPa; µ=0 GPa;
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Figure 4.9: effect of varying density contrast on angular dependent group velocity.
solid layer: K=7.13 GPa; µ=0.95 Gpa; density=2.1 g/cm3; fluid layer: K=2.2 GPa;
µ=0 GPa;
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of fast wave at low density contrast first decreases and then increases slightly. It is

given then, that the behavior of lines with higher density contrasts, which are almost

monotonic, differs from how lines with lower density contrasts behave. It is already

discussed in a previous chapter that in a case involving the solid-solid medium, the

effective anisotropy is not influenced by density contrast; again from Equation 2.3

this can be examined. However, in the case of alternating solid and liquid layers,

density contrast has an effect on the anisotropy of the effective medium. This

phenomenon can be described by the effective medium theory of an elastoacoustic

medium at long wavelength (Schoenberg, 1984). The effective medium is described

as fluid, so S-wave cannot propagate through it, and it is anisotropic with more than

one P-wave. The particle velocity, ν, is related to negative pressure σ through an

equation of motion

∇σ = ρ
∂ν

∂t
≡

ρ‖ 0

0 ρ⊥


∂ν1∂t
∂ν3
∂t

 (4.13)

which shows anisotropy through the second rank tensor of density. In Figure 4.9,

it can be observed that the range of angle in which the slow wave exists becomes

narrower as the density contrast increases.

Figure 4.10 and Figure 4.11 indicate the effect of thickness on behavior of the

angular dependent velocity and given anisotropy coefficient.

4.3 Comparison between Backus’ and Schoenberg’s

method in extreme thickness contrast

Both Backus’ and Schoenberg’s method can be used to predict the behavior of

angular dependent phase velocity for a periodic layered medium when wavelength
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Figure 4.10: effect of varying thickness contrast on angular dependent phase velocity.
solid layer: K=7.13 Gpa; µ=0.95 Gpa; density=2.1 g/cm3; fluid layer: K=2.2 Gpa;
µ=0 Gpa; density=1 g/cm3
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Figure 4.11: effect of varying thickness contrast on anisotropy. solid layer: K=7.13
Gpa; µ=0.95 Gpa; density=2.1 g/cm3; fluid layer: K=2.2 Gpa; µ=0 Gpa; density=1
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Figure 4.12: effect of varying thickness contrast on angular dependent group velocity.
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µ=0 Gpa; density=1 g/cm3
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is much greater than the spatial period of the medium. Backus’ method can be

only used for a medium that consists of all solid layers; by contrast, Schoenberg’s

method can handle a case of a medium consisting of alternating solid and fluid layers.

However, if the thickness of the solid layer is much greater than that of the fluid

layer, the effective whole medium will be closer to a medium with all solid layers. In

this case, how the prediction of Backus’ method works out compared with that of

Schoenberg’s method is an interesting question. On the other hand, if the thickness

of the fluid layer is much greater than that of the solid layers, will Schoenberg’s

method yield a plausible prediction? What then is the result of Backus’s method

even if the behavior that results is not what is expected or thought to be correct?

We set a medium consisting of two kinds of isotropic media periodically, with

alternating solid and fluid layers. Equation 2.4 is applied to get results from Backus’s

method, and Equation 4.6 is used to calculate Schoenberg’s prediction. There are

two models. The physical parameters of the models are shown in Table 4.1.

Table 4.1: The physical parameters of the models

physical parameters Model I Model II
solid layer fluid layer solid layer fluid layer

K(GPa) 7.13 2.2 20.35 2.2
µ(GPa) 0.95 0 13.24 0
ρ(g/cm3) 2.1 1 2.37 1

Figures 4.13 - 4.22 give the predictions from Backus’ and Schoenberg’s meth-

ods at different thickness contrasts, in which the solid lines represent the result of

Backus’s method, and the dashed lines denote the result of Schoenberg’s method.

Figures 4.13 - 4.17 concern Model I, and Figures 4.18 - 4.22 concern Model II.
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Figure 4.13: Model I: thickness contrast: 1:100. The physical parameters are given
in Table 4.1.
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Figure 4.14: Model I: thickness contrast: 1:10. The physical parameters are given
in Table 4.1.
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Figure 4.15: Model I: thickness contrast: 1:1. The physical parameters are given in
Table 4.1.
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Figure 4.16: Model I: thickness contrast: 10:1. The physical parameters are given
in Table 4.1.
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Figure 4.17: Model I: thickness contrast: 100:1. The physical parameters are given
in Table 4.1.
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Figure 4.18: Model II: thickness contrast: 1:100. The physical parameters are given
in Table 4.1.
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Figure 4.19: Model II: thickness contrast: 1:10. The physical parameters are given
in Table 4.1.
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Figure 4.20: Model II: thickness contrast: 1:1. The physical parameters are given
in Table 4.1.
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Figure 4.21: Model II: thickness contrast: 10:1. The physical parameters are given
in Table 4.1.
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Figure 4.22: Model II: thickness contrast: 100:1. The physical parameters are given
in Table 4.1.
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Chapter 5

The Medium with Aligned

Fractures in Low Crack Density

5.1 Introduction

The periodic layered medium with alternating solid and fluid layers is an model

approximating a matrix with aligned fractures. In this approximation, the fluid

layers are supposed to simulate the aligned fractures which are flat and contain high

fracture density. However, for aligned fractures with relatively high aspect ratio

and low fracture density, another model instead of periodic layered medium will be

considered. J. D. Eshelby’s inclusion theory provides the basic theory for building

this model (Eshelby, 1957).

5.2 Eshelby’s inclusion

Eshelby (1957) devised a set of problems involving ellipsoidal elastic inclusions in

an infinite elastic body. According to Eshelby’s thinking, for a linear elastic body to
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contain an inclusion, the inclusion must have undergone a transformation (such as

localized thermal expansion or crystal twinning), but also the change of its shape and

size is restricted by the surrounding material. In this situation, the inclusion and the

surrounding material still occur in a stressed state. Eshelby provides the thought

that using a “sequence of imaginary cutting, straining and welding operations.”,

it is then found that the strain and stress fields inside the ellipsoidal inclusion are

uniform and thus provide a closed-form solution. In order to solve the transformation

problem, we shall make use of the set of imaginary cutting, straining and welding

operations. The first step, to cut around the target region (i.e. the inclusion) and

then remove it from the matrix, is shown in Figure 5.1(a). The second step is to

apply certain surface stress on the region to restore it to its original form, then to

put it back in the original position in the matrix to reintegrate the involved material

across the cut. Now the stress in the matrix equals zero, with a known constant

value as the inclusion. The surface traction is set along lines generated by a layer

of body force spread over the interface between the matrix and the inclusion. The

third step, this unwanted layer should be removed in order to complete the solution

by applying a layer of body force with equal and opposite values. The second and

third steps are shown in Figure 5.1(b) (Glas, 2011). As a result, the stress and strain

in the inclusion do not satisfy Hooke’s law, because part of the strain is generated

by a non-elastic twinning or other transformation within which no stress is involved.
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Figure 5.1: (a) Stress-free strain relative to the inclusion. (b) The three stages of
an Eshelbys process. (Glas, 2011)

5.3 Effective transversely isotropic medium of crack

model

Using this theory, we can obtain an exact solution of strain inside an ellipsoidal

inclusion in an isotropic matrix, with constant stress or strain applied, thus giving

us a static solution. Considering the potential energy of the total system, effec-

tive elastic moduli are obtained with volume V under a constant applied strain eA

(Cheng, 1993):

1

2
c∗ije

A
i e

A
j V =

1

2
c0
ije

A
i e

A
j V + Eint (5.1)

where c∗ is the stiffness matrix of the effective medium, c0 is the stiffness matrix of

the background matrix, and Eint is the change in the energy resulting from presence

of the crack:

Eint = −1

2
c0
ije

A
i e

T
j Vint (5.2)

eTj is the “stress-free” strain of the inclusion - the strain necessary to restore the

inclusion to its original shape under the applied strain eAj . This strain is associated

with the applied strain through a matrix, and thus a function of the volume, the
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aspect ratio of the inclusion, and its elastic properties. Vint is the volume of the

inclusion. The result is that

c∗ij = c0
ij − φc1

ij (5.3)

where φ is the porosity.

For a medium with isotropic matrix and horizontally aligned fractures evenly dis-

tributed in a vertical direction, the effective elastic moduli have the form (subscript

3 represent the vertical axis) as follows:

c1
11 =λ(s31 − s33 + 1)

+
2µ(s33s11 − s31s13 − (s33 + s11 − 2C − 1) + C(s31 + s13 − s11 − s33))

D(s12 − s11 + 1)

c1
33 =

(λ+ 2µ)(−s12 − s11 + 1) + 2λs13 + 4µC

D

c1
13 =

(λ+ 2µ)(s13 + s31)− 4µC + λ(s13 − s12 − s11 − s33 + 2)

2D

c1
44 =

µ

1− 2s1313

c1
66 =

µ

1− 2s1212

(5.4)

with
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D =s33s11 + s33s12 − 2s31s13 − (s11 + s12 + s33 − 1− 3C)

− C(s11 + s12 + 2(s33 − s13 − s31))

s11 =QIaa +RIa

s33 =Q(
4π

3
− 2Iacα

2) + IcR

s12 =QIab −RIa

s13 =QIacα
2 −RIa

s31 =QIac −RIc

s1212 =QIab +RIa

s1313 =
Q(1 + α2)Iac

2
+
R(Ia + Ic)

2

C =
Kf

3(K −Kf )

(5.5)

and

Ia =
2πα(cos−1α− αSa)

S3
a

Ic =4π − 2Ia

Iac =
Ic − Ia

3S2
a

Iaa =π − 3Iac
4

Iab =
Iaa
3

σ =
3K − 2µ

6K + 2µ

Sa =
√

1− α2

R =
1− 2σ

8π(1− σ)

(5.6)

where K and µ are the bulk modulus and shear modulus of the matrix respectively,

Kf is the bulk modulus of fluid in inclusions, and α is aspect ratio of the inclusion.
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5.4 Property contrast between the matrix and

the fluid in inclusions and aspect ratio of the

inclusion

In this section, the main point to articulate is to explain how the property contrast

between the matrix and the inclusion and the aspect ratio of the inclusion affects

the phase and group velocities in all directions. The effective elastic constants are

calculated with Equations 5.3 and 5.4. This algorithm is reliable only on condition

that the crack density of inclusion is small; therefore, the crack density is set to be

0.05. The relation between crack porosity, aspect ratio, and crack density is

φ =
4

3
π Nc α (5.7)

where φ is the crack porosity, α is the aspect ratio, and Nc is the crack density.

For this model, the properties of the matrix are constant, and variation in prop-

erties of the fluid in the crack produces different property contrasts. Figure 5.2 and

5.3 show that the anisotropy increases as bulk modulus contrast increases, except

in cases involving the SH-wave; the SH-wave velocities only depend on c44 and c66.

Besides, the triplication of group velocity occurs when bulk modulus contrast is

high. From Figure 5.4 and 5.5, it can be seen that density contrast does not have

any effect on anisotropy of the effective medium. As shown in Figure 5.6 and 5.7, a

higher aspect ratio of cracks generates a higher degree of anisotropy on velocities of

the P-waves and SV -waves.
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Figure 5.2: Effect on angle dependent phase velocities of variation of contrast of
bulk moduli. matrix: K = 7.13GPa;µ = 0.95GPa; density ρ = 2.1 g/cm3; fluid in
the inclusion: µ = 0GPa; density ρ = 1 g/cm3; aspect ratio = 0.1; crack density =
0.05
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Figure 5.3: Effect on angle dependent group velocities of variation of contrast of
bulk moduli. matrix: K = 7.13GPa;µ = 0.95GPa; density ρ = 2.1 g/cm3; fluid in
the inclusion: µ = 0GPa; density ρ = 1 g/cm3; aspect ratio = 0.1; crack density =
0.05
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Figure 5.4: Effect on angle dependent phase velocities of variation of contrast of
density. matrix: K = 7.13 GPa;µ = 0.95 GPa; density ρ = 2.1 g/cm3; fluid in the
inclusion: µ = 0GPa; K = 2.2Gpa; aspect ratio = 0.1; crack density = 0.05
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Figure 5.5: Effect on angle dependent group velocities of variation of contrast of
density. matrix: K = 7.13 GPa;µ = 0.95 GPa; density ρ = 2.1 g/cm3; fluid in the
inclusion: µ = 0GPa; K = 2.2Gpa; aspect ratio = 0.1; crack density = 0.05
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Figure 5.6: Effect on angle dependent phase velocities of variation of aspect ratio.
matrix: K = 7.13GPa;µ = 0.95GPa; density ρ = 2.1 g/cm3; fluid in the inclusion:
µ = 0GPa; K = 2.2Gpa; density ρ = 2.1 g/cm3; crack density = 0.05
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Figure 5.7: Effect on angle dependent group velocities of variation of aspect ratio.
matrix: K = 7.13GPa;µ = 0.95GPa; density ρ = 2.1 g/cm3; fluid in the inclusion:
µ = 0GPa; K = 2.2Gpa; density ρ = 2.1 g/cm3; crack density = 0.05
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5.5 Porous layered periodic medium

Consider a layered periodic medium whose layer itself is not homogeneous, for in-

stance, where aligned fractures exist. The model can be constructed that the layered

medium is composed alternately and periodically of two kinds of layers. The first

layer is porous, formed by water-saturated penny-shaped elliptical inclusions and an

isotropic background matrix; the second layer is isotropic and a homogeneous solid.

If the wavelength is much greater than the spatial period of the layered medium and

the crack density of the porous layer is lower than 0.1, the effective elastic constants

of the porous layer can be calculated using Cheng (1993)’s method.

By using Cheng’s method, we can obtain the effective transversely isotropic

medium with five independent elastic constants. However, this medium can be

further simplified. The effective transversely isotropic medium can be described

by two sets of effective isotropic medium, which are thus the Voigt average and

Reuss average (Chesnokov). The Voigt average is the effective bulk modulus and

shear modulus calculated based on assumption that the strain is uniform within the

medium, whereas the Reuss average is obtained under an assumption of uniform

stress.

For the medium with hexagonal (transversely isotropic) and trigonal symmetry,

the relations between the effective isotropic elastic constants and the original elastic

constants are

KV =
1

9
(2c11 + c33 + 4c13 + 2c12)

µV =
1

30
(7c11 + 2c33 − 5c12 − 4c13 + 12c44)

K−1
R = 2s11 + s33 + 2s12 + 4s13

µ−1
R =

2

15
(7s11 − 5s12 − 4s13 + 2s33 + 3s44)

(5.8)
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In order to make a comparison between the effect in layered periodic media of

the effective transversely isotropic media constructed by Cheng’s method and the

effective isotropic media produced by Voigt and Reuss average, the model shown in

Figure 5.8 can be used.

Figure 5.8: The three models of layered periodic media

As Figure 5.8 shows, each spatial period consists of two layers. The first layer

is the effective medium and the second layer is the isotropic medium. And the

effective elastic constants of the whole medium is calculated by Backus Average,

given in Equation 2.4. The physical properties of the matrix of the first layer

and the isotropic second layer are: bulk modulus K = 20.35 GPa, shear modulus

µ = 13.24 GPa, density ρ = 2.37 g/cm3; the fluid in the inclusions of the first layer

is: K = 2.2 GPa, ρ = 1 g/cm3. Figuress 5.9 - 5.11 show the behavior of angular

dependent phase velocity of these three models, giving different aspect ratio of the

inclusion in the porous layers. All three model have the same crack density assumed

to be 0.05.
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Figure 5.9: The behavior of angular dependent phase velocity of the three models.
Aspect ratio of the inclusions: 0.1
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Figure 5.10: The behavior of angular dependent phase velocity of the three models.
Aspect ratio of the inclusions: 0.3
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Figure 5.11: The behavior of angular dependent phase velocity of the three models.
Aspect ratio of the inclusions: 0.5
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Chapter 6

Conclusion and Discussion

In this thesis, the main result sought here is the numerical modeling in the forward

problem of both a layered periodic medium and a medium with evenly distributed

aligned penny-shape fractures. The model of layered periodic medium with alter-

nating solid and fluid layers given approximates media with aligned fractures which

have high crack density and low aspect ratio. The effects of different material con-

trasts on the behavior of anisotropy of phase and group velocity and the dispersion

of phase velocity at direction normal to the layering are examined.

For the model of layered periodic medium with all solid layers based on condition

of there being long wavelength, the effect of shear modulus contrast on anisotropy is

essential. If shear moduli of two layers are equal, the effective medium is isotropic.

The increase of bulk modulus contrast shifts the maximum SV -wave velocity point

to that of smaller angle.

For given model of elastoacoustic medium, there will be dispersion for propagat-

ing P-wave, and thereby stop-bands exist. For some wavelength values, there may

then be more than one corresponding value of velocity to be expected. The limit

of the velocity when frequency approaches infinity is equal to ray velocity. When
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wavelength is much greater than the spatial period of the medium, there are two

modes of P-wave, the fast and the slow P-wave. Different from the layered periodic

medium with all solid layers, the density contrast significantly influences anisotropy

of the velocity in this situation.

For the model of medium with aligned fluid-saturated fractures which have low

crack density, the increase of bulk modulus contrast will increase the anisotropy of

the effective medium. As the aspect ratio increases from 0.1 to 0.5, the anisotropy

of P-wave and SV -wave increases.

Future work will focus on randomly layered media, meaning that from layer to

layer there is no periodic change other than at random.
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