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Abstract

The purpose of this study was to examine whether it is 

possible for concentration oscillations to occur in the 

case of the isothermal reaction A(g) + B(g)------ >A)3, which

is taking place on a catalytic foil. By assuming a 

Langmuir-Hinshelwood kinetic mechanism in which the energy 

of activation for the final step depends linearly on the 

coverage by adsorbed B(g), we were able to derive the 

differential equations for the net rates of adsorption 

of A(g) and B(g). The necessary and sufficient conditions 

for stability were derived for the special case k^[A]=k2[B]. 

In addition, uniqueness criteria were derived for various 

ranges of the kinetic parameters. Numerical integration of 

the dynamic equations proved the possible existence of 

sustained oscillations in the case of a unique, unstable 

steady state, with a period between 11-17 seconds. However, 

we have not been able to find any examples of limit cycles 

for a case in which multiple steady states exist. Application 

of bifurcation theory did not lead to the finding of limit 

cycles in the case of multiple steady states.
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CHAPTER I

Introduction

During the past few years a number of publications 

have reported phenomena involving catalytic pellets, 

wires and foils, which cannot be explained by the 

already existing dynamic models of lumped and 

distributed parameter systems.

The puzzling behavior observed during these experiments 

was temperature and composition oscillations in isothermal 

and nonisothermal heterogeneous catalytic systems. For 

example, Wicke and coworkers [1] observed concentration 

and temperature oscillations with amplitudes up to 60 °C 

and periods from minutes up to hours during the oxidation 

of hydrogen on a 8 mm spherical, 0.4% Pt on silica-alumina 

catalytic pellet. The causes for these low frequency 

oscillations and their mechanism is unknown and the existing 

dynamic models are incapable of predicting this phenomenon. 

Wicke attempted to explain the periodicity by assuming 

that "it originates from particular reaction mechanisms 
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which produce long time periodic changes in the nature 

of the active catalyst surface" [1]. Another possibility 

might be the effect of temperature on the adsorption and 

desorption rates of the reacting species [6].

For the isothermal case, Wicke and coworkers [1] 

investigated the CO oxidation over a 3X3 mm cylindrical, 

0.3% Pt on y-A^Og catalytic pellet. The reaction rate 

goes through a maximum with increasing concentration of 

the reactants (self-poisoning), because the strong 

chemisorption of CO inhibits the reaction rate at higher 

CO partial pressures. When this is the case, the reacting 

system may become unstable even under isothermal operating 

conditions. In fact, temperature and concentration 

oscillations do appear when the feed's temperature is 

below 250 °C. A mechanism explaining this phenomenon has 

to be presented.

Hugo and Jakubith [3] have reported similar concentration 

oscillations during the isothermal oxidation of CO on a 

platinum gauze. They attributed the observed phenomenon 
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to the existence of two types of adsorbed CO molecules.

Dauchot and Cakenberghe [4] experimented with the 

catalytic oxidation of CO -under isothermal conditions- 

on a thin platinum film evaporated on silica. Again, 

concentration oscillations were observed. They interpreted 

this phenomenon by postulating that the reaction mechanism 

shifts from an Eley-Rideal to a Langmuir-Hinshelwood type. 

When oxygen has been mostly adsorbed, the hot catalytic 

surface begins to cool down and CO is progressively 

adsorbed -with or without the contribution of an

Eley-Rideal reaction. After an induction period the reaction 

starts and proceeds rapidly. The CO is eliminated by a 

Langmuir-Hinshelwood reaction, the hot resulting surface 

is again instantly covered with oxygen, and the cycle 

is repeated. They suggest that the interaction between the 

local surface temperature and concentration causes this 

oscillatory behavior.

McCarthy [19] has shown in his study of CO oxidation 
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over supported Pt that the mechanism for this reaction is 

complex, with a two-step rate control ( adsorption and 

gaseous CO reacting with adsorbed O2 ). The observed rate-CO 

concentration behavior is, in fact, a competitive conspiracy 

of two distinct rate processes: (1) Chemisorption of O2 

upon a surface partially covered with CO, and (2) an 

Eley-Rideal-type reaction of gaseous CO with adsorbed 

O2. In the region in which both rates are of comparable 

magnitude, isothermal limit cycling is observed. This 

suggests that the CO oxidation over supported Pt is not 

a unique reaction between surface adsorbed species, which 

would give rise to

-2 R=k,jfc(O2)*(CO2)*(l+K(CO) )

because this equation is based on a model of a one-step 

rate control and, consequently, could not give rise to 

limit cycling.

Recently, Slinko and coworkers [5] have observed 

concentration oscillations during the isothermal oxidation 

of hydrogen on a nickel foil. They claim that these 
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oscillations can be explained by a surface kinetics 

mechanism where the rate limiting step is the reaction 

between adsorbed hydrogen and adsorbed oxygen. In other 

words, they assume a Langmuir-Hinshelwood-type mechanism 

in which the rate constant for the limiting step depends 

on the surface coverage by oxygen. Their paper, however, 

does not contain any kinetic parameter values, or numerical 

simulations which demonstrate that the proposed kinetic 

mechanism agrees with experimental results.

The main purpose of our research work has been to test 

the claim of Slinko and coworkers [5] by investigating 

the stability characteristics of the same surface kinetics 

mechanism. The question is asked whether there exist parameter 

values for which the ordinary differential equations 

representing the rates of adsorption of the gaseous 

reactants on the catalytic surface exhibit oscillatory 

behavior. In other words, we are attempting to determine 

kinetic parameters for which oscillatory solutions exist.

The kinetic scheme chosen for this study and the basic 
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assumptions are expounded in the next chapter along with 

the mathematical equations representing the physical model. 

One cannot avoid noticing the similarity between our 

differential equations and those of Poore and coworkers [9,10], 

who investigated the stability characteristics of a continuously 

stirred tank reactor (CSTR). The methodology shown in the 

work of Poore and coworkers [9,10] is similar to the one 

followed in our study, although our differential equations 

are considerably more complicated. As result of this 

complexity, some of the mathematical techniques used by 

Poore to predict the direction of bifurcation of the 

periodic orbits as one of the parameters is varied cannot 

be employed here.

The fact that existing dynamic models do not predict 

the experimental phenomena mentioned in the above 

publications is an indication that certain important 

chemical processes have not been taken into account.

What has been heretofore neglected is the inclusion 
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of the adsorption capacity of the various reacting species 

on the catalytic surface. Elnashaie and Cresswell [7,8] 

have demonstrated that neglecting the dynamics of the 

adsorption-reaction-desorption process may produce a 

very oversimplified picture of the behavior and stability 

of catalytic pellets. One is inclined to believe that what 

is needed is the use of more sophisticated dynamic models 

than those used up until now. Such models would not only 

represent more accurately the actual physical situation, 

but would also be more helpful for design and industrial 

purposes. It is hoped that the present study is a small 

step in this direction.
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CHAPTER II

Here, we discuss the following topics: First, the 

heterogeneous catalytic mechanism postulated for the 

general chemical reaction

A(g) + B(g) ----- >AB

Second, the basic assumptions accompanying the kinetic 

mechanism chosen-for this reaction. Third, the derivation 

of the differential equations for the rates of chemisorption 

of reactants A(g) and B(g) on the catalytic surface; and, 

fourth, the form of the steady state equations.

Ila] Postulated kinetic mechanism

Suppose that the chemical reaction

A(g) + B(g) ------->AB

takes place on a catalytic surface. The mechanism assumed 

for this reaction consists of the following kinetic 

steps:

A(g) + [S] -------- > (A-S)

B(g) + [S] *(B-S)
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(A-S) + (B-S)--------- >AB + 2[S]

where [S] denotes an active surface site, while (A-S) 

and (B-S) denote the adsorbed reactants A(g) and B(g), 

respectively. The mechanism for which both reactants 

have to be adsorbed on the surface for the final product 

to be formed is known as a Langmuir-Hinshelwood mechanism.

Instead of a Langmuir-Hinshelwood we could have assumed 

an Eley-Rideal mechanism. In the latter, only one reactant 

has to be chemisorbed on the catalytic surface while the 

other has to strike the adsorbate from the gas phase in 

order to form a bond between them. For the reaction chosen 

in our study, an Eley-Rideal mechanism consists of the 

following kinetic steps:

A(g) + [S] -------- >(A-S)

(A-S) + B(g) -------- >AB + [S]

In the present work, however, the mechanism postulated 

for the reaction was a Langmuir-Hinshelwood rather than an

Eley-Rideal-type, because the mathematical analysis is less 
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complicated. Hopefully, in some later time an analysis will 

be attempted assuming an Eley-Rideal mechanism, or a hybrid 

of an Eley-Rideal and Langmuir-Hinshelwood. In either case, 

analytical results should be compared with experimental 

to decide whether the kinetic model is realistic.

lib]  Basic_assumptions

a) Let (S 1 denote the number of active surface sites 

which are not occupied at time t. Then, the total number 

of active sites on the catalytic surface, L, is given by

L= {S } + {A-S} + ' {B-S }

where {A-S} and {B-S} denote the number of active sites 

occupied at time t by adsorbed A(g) and B(g), respectively. 

Then

' {S }= L- {A-S } - {B-S }

and after dividing both sides by L

?= 1-x-y

where

represents the fraction of active surface sites 
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which are not occupied at time t.

x: represents the coverage of the catalytic surface with 

adsorbed A(g) at time t.

y: represents the coverage of the catalytic surface with 

adsorbed B (g) at time t.

b) For the kinetic mechanism

A(g) + [S] --------> (A-S)

B(g) + [S]-------- > (B-S)

(A-S) + (B-S)------- >AB + 2 [S]

we assume that the number of sites on the adsorbent is 

constant, and each site can adsorb one species only. All 

sites are identical but the activation energy for adsorption 

increases linearly with coverage due to induced 

heterogeneity: i.e., (i) there are lateral (repulsive) 

interactions between adsorbed molecules which are uniformly 

distributed over the available sites, or (ii) the adsorbate 

molecules by perturbation of the adsorbent surface, change 

the properties of the remaining free sites such that the 

activation energy increases with coverage. In our 
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study we postulate that the adsorbed B(g), (B-S), changes 

the properties of the catalytic surface and the greatest 

influence is in the third step. In that case, the energy 

of this step depends on the coverage by adsorbed B(g)

E3 = E° + pRTy (1)

where t is the coefficient of heterogeneity of the 

catalytic surface. The above relation for the energy of 

activation of the adsorption process is identical to the 

one shown in the work of Slinko and coworkers [5]; its 

derivation and more extensive discussions can be found in 

the works of Brunauer et. al. [21], Aharoni and Tompkins 

[22], as well as Weber and Lou^ka [15].

The rate constant for the surface reaction is given 

by

k3 = k30 e"E3/RT (2)

Because of (1), we can rewrite (2) as

k3 = ( k3Q e"E3 /RT) e"^ (3)
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c) We assume that the reaction

A(g) + B(g) --------->AB

occurs under isothermal conditions. If this is the case.

we can rewrite equ.(3) as

k3 = k e"uy (4)

where

k = k30 e-E° /HT (5)

Finally, assuming a first order rate dependence with 

respect to (A-S) and (B-S), the rate for the surface reaction 

is given by

1.
r = k3 xyL (6)

Because of (4), we can rewrite (6) as 

.2.
r = k e xy U (7)

lie] ___ _______________________________

The net rates of adsorption of A(g) and B(g) on the 

catalytic surface are given by the following nonlinear, 

coupled, ordinary differential equations:
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^xKjBJd-X-p-KJ-K^ xpfjx,p

where [A] and [13] denote concentrations of A(g) and

B(g), respectively, and

k3 =kL

note that the above differential equations, although 

considerably more complicated, are similar to the 

equations appearing in the work of Poore and coworkers [9,10].

In our study we want to investigate whether for some 

values of the six kinetic parameters ( k^[A], k2 [B] , k_^, 

k-2z k3 * sustained oscillations can exist.

lid] Steady_state_eguations

At steady state, equations (8) and (9) become:

cK.tAKi-x.-V-K/,-^ sx\ 
KM

where xg and ys denote the steady state values of x and

y, respectively.
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combining (10) and (11) we obtain

ys =tsi xs+ b2 (12)
where . ,  -

P n fyej-K,[a]}
1 [ltr-l<M + K2[B]] + (12a)
Assuming that 0, which implies k_^ + [A] k2[B],

(12) gives

xs = ^;C^-^) <i3)

substituting (13) in (10) and further assuming that

y (y -^2)^ 0/ we obtain
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CIIAPTER III

Here we linearize equations (8) and (9) about the 

steady state and use the first method of Liapunov to 

determine the local stability of the critical points. 

Next, we derive expressions for the determinant and 

trace of A in the special case [A] = k2[B]. Our 

purpose is to demonstrate that when ^2 = 0 it is easier 

to classify the critical points of the linearized system 

(27) by determining the sign of detA and trA, than when 

32 0.

Illa] _tinerization_of_the dynamic equations^

The net rates of adsorption of reactants A(g) and B(g) 

on the catalytic surface are given by the ordinary 

differential equations:

5 x K.CA3 = ^(x,^) (8)

iC[B](i-x-p-K J-K,’ e (9)
Our purpose is to investigate whether for some values 

of the six kinetic parameters sustained oscillations can 

exist. In other words, we want to find kinetic parameters 

for which equations (8) and (9) give rise to limit cycles.

The first method of Liapunov consists of examining the 

properties of equations (8) and (9) linearized about the 

steady state. Linearization of (8) and (9) yields
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wnere O

He"^ ,
The local stability character of the steady states is 

determined by the sign of the real part of the eigenvalues 

of A. These eigenvalues, X^r are tae roots of the 

characteristic equation

/-(lrA)a+C<ie4A) = o
where the determinant of A

and the trace of A

Algebraic substitution yields

Jet A =»e1'1’ [«J( (fSs-O]

where

«r4WB]+

(15)

(16)

(17)
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c<t= K3 [K (is)

O<3 £ K3 { KXCB] - Kj fA] -K-l^ (19)

P = l-KL+^(20)
We can eliminate x from (15) and (16) by using the relation(f3), 

to obtain ^S-(VM/h
det A t *1+ e**k^ls+« (Jkj&L)^-i)j (21)

trA = -P t< e ,s^-1)(^-{|s] (22)

We can eliminate the exponential term in (21) and (22) by

(23)

(24)

where

using (14) :

toottLn "A"
attA-o< +°<t(<36-0^)

~ 1 «<is-h) ‘-M

Pt is

<36 5 ^CAJ (Pj tPi) T A • 1- [B J -(A J (25)

1X1(1^)] =
^UzrB]-Kx[AJ

(26)

Illb] Classification_of the critical £oints_of_the

linear ized_systemi.

We found that the linearized equations are given by
CLY/^MX (27) 
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and the determinant and trace of A are given by (23) and 

(24), respectively. We now state the following theorem£93 2
2Let D ~ (tr^) - 4(detA). Then, the critical 

points of the linearized system (27) are classified as 

follows:

1. If detA< 0, then the critical point is a saddle point.

2. Let detA> 0. Then

(i) The steady state is an unstable focus if trA > 0 and 

D< 0, and an unstable node if trA > 0 and D >0.

(ii) The steady state is a stable focus if trA < 0 and 

D< 0, and a stable node if trA < 0 and D > 0.

(iii) The steady state is a center if trA = 0.

(iv) The steady state is a stable or unstable node if D=0.

3. Let detA = 0. The critical point is degenerate in the 

sense that the phase plane consists entirely of critical 

points or entirely of parallel straight lines and 

critical points.

The type of critical point for the nonlinear equations 

(8) and (9) is the same as that for the linear problem in 

cases 1 and 2 above except in the case of the center. The 

critical point is either a center or a spiral for the 

nonlinear problem.

Remark 1: For some combination of the six kinetic
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parameters (k^ [A] , k2 [B] , k^, k_2, k®, u) each of the cases 

in (1)—(3) actually occurs for the nonlinear system.

Remark_22 The critical points are roots of equation (14) 

in the interval (0,1).

IIIc] The special case k^[A] = k2[B]

Suppose that k^[A] = k2[B]. Then (12a) become

31 = k-l/k-2 (28)

B2 = 0 (29)

Equations (17)-(20) become

o<t= K-i
0(3 = - K3 K_|

$ = ^2PU +
Equations (2 5)- (2 6) become

3iS= Ki CW K.t / K L

Since g2=0

dclA - ji +

, (23) and (24) become

Qfe-egs)kPit^(pys-i)]
^3 fl ^3

irA + C36-0#s)[(Hs-i)-hJ

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

Since > 0, < 0, and 0 < yg < 1, it follows that

sgn(detA) = sgn(4>(yg)) and sgn(trA) = sgn(G(yg))
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where

<38>
GQs)= CMj) CirA) (39)

Substituting (28)-(35) in (36)-(37) and then in 

(38)-(39), we obtain that

GQs)=-y^+£X"^ <41)
where r, v

1 (44)

E^fr^rAjXL+^^^^jy)] (45)

-z
Note that when k^[A] = [B], = 0/ equation (14)

becomes

and the critical points are roots of (47) , where 0< ys < 1. 

Remark_3.: Undoubtedly, theorem 3.1 also applies in the 

special case k^[A] = k£[B], where instead of examining 

the sign of detA and trA we are interested in the sign 

of the polynomials $(ys) and G(ys) which are given by 

(40)-(41) .
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Illd] _Ro2ts_of_the_2olYnomials_ (4041),^

Consider the equations
(48)

(49)
Let and ZL denote the discriminants of the 

y g
equations (48) and (49) , respectively. Then

= s2- 4^'5' (so)
A6=e,2-4^ (51)

Suppose now that
<?><?!>= <PCp12.) = 0

and g(^)--GC%)=o
Then 

' (52)

It- ’ 11 2-y

and

/

> (53)

E (54)Remark

(55)

roots of the equ. detA = 0.Remark

4: When
When S'-4^=0

5: piz P2 are also

■Ve7 - 4jf&

^1, T2 are also roots of the equ. trA = 0.
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CHAPTER IV

Here we describe a procedure which helps in classifying 

the critical points of the linearized system (27) for the 

special case [A] = k2(B]. We emphasize the importance 

of the nature and relative positions of p^, P2# 'f'2z an<^

derive necessary and sufficient conditions for all possible 

arrangements for the root positions for the polynomials 

$ (yg) and G(yg).

IVa] The nature of the roots of detA =0 and trA =0.

In the previous chapter we derived expressions for detA 

and trA for the special case k^[A] = k2[B]. We also obtained 

the polynomials . a (V

which have the same sign as detA and trA, respectively. These 

polynomials are very helpful in classifying the critical 

points of the linearized system (27) for various values of 

the kinetic parameters, by using theorem 3.1.

The roots pn, p- of1 K2 o CL

are given by (52), while the roots T°f

G(u))=-^+e'y-^=o
are given by (53). Note that p^, P2 are roots of detA and
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^2 ar© roots of trA.

The following cases can be distinguished with respect 

to the nature of the roots p^, P2, 2:

(A) The roots of 4> (£) =0 and G(o)) =0 are all real and unequal

that is, > P2 and 3, > 2 an<^ t^e two e<2uati°ns have no

common roots.

(B) p^, P2# ’I'2 are real* However, the roots of either

$ (£) =0 or G(co) =0 are equal; that is, p^ =?2 =P and T

or T= W and p^ > p2» There is also the trivial case 

Pl= p2 =W2.

(C) The roots of either $(£) =0, or G(w) =0, or of both of 

them are complex. Here, we can distinguish the following 

subcases:

(i) p^, P2 are complex and T

(ii) p^, p2 are complex and Y = I' = Y .

(iii) 1'2 are complex and p^ > p2«

(iv) 1'^, ’P 2 are complex and p^ = P2 = p.

(v) p. , p9, ’F , , Y - are complex.

IVb] Relative positions of p., p9, Y., V

According to theorem 3.1, we need to know the sign of 

$(ys) and G(ys) in order to classify the critical points of 

the linearized system (27). The sign of $(ys) and G(yg) 

depends, in turn, on the position of yg£,(0,l) with respect 

to the roots of <X> (5) =0 and G(a)) =0.
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However, before examining the position of ys£(0,l) 

with respect to p^, P2» V2# it should be emphasized

that for the cases (A)-(C) a large number of possible 

arrangements for the root positions exists, and that it 

is relatively easy to derive the necessary and sufficient 

conditions for each of them.

The necessary and sufficient conditions for all possible 

arrangements for the root positions for cases (A)-(C) are 

presented next. The detailed derivation of these conditions 

is shown in the Appendix.

CASE A

al] 0 < p2 < W 2 . < p1 < Yj < 1
y( S')1 < ( E- t-'Ki-'d'- E-d1')

a2] 0 < p2 < Y2 < PT < 1 < Y1

E<

a3] 0 < p2 <’lr2 < 1 < P]. < Y1
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a4] 0 < p2 < 1 < Y 2 < Pjl < ’f'1

ce-t') (£'<?•-1^')
V >s«p (£,2jr) 

Ct,-8>,)<y<a-9-)
aS] 1. < p2 <¥2 < P1 <Y1

S’)2 < Ci- £') (t-'^-£ 
iy< £< £/

(y-t+S,)>o
bl] 0 < T2. < p2 < 1'1. < pj^ < 1 

y(9-'-9)z< Ci-OCL'd-'ty)
£'<£<2y

b2] 0 < < P2 < 1,1 < 1 < p1

c e-soc t.'y-t.y) 
i'CnJ (EAf)

b3] 0 <^2 < p2 < 1 <'F1 < P1

t;<t , ,, .
y<in51(i-»), (£-»'>}

b4] 0 < W 2 < 1 < p2 < 1'1 < P1

y(d'-d’)2<
2>Sup(£',2y)

y< ct'-y)
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b5] 1. <^2 < P2 <T1 <

2jr<£.,<£ 
(y-t,+ 9,')>o

cl] 0. < P2 <¥2 <f1 < Pj < 1

E'1- 4)f5’,>0
f (» - !>/ > i.^)

t'(L-L) 
n5upl

c2] 0 P2 ’1'2 • <^1 < 1 < PT

yG9t.9)2)(t-8/)(^

(t-'-yx y<u-x?)

c3] 0<p2<'i'2<l<'*'1<P1
L/^- 4 Y Oy (»> - />1 > <5- -1') c £ y)

I'-LXtyC^)
(X-M'X0

c4] 0 < p9 < 1 < Y9 <')' < p

V1- 4^,>°
r ( > (£- i-'X ^-txX)

(L,-9>)4y< U-9-)
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=5) fl

(t-frXK 4 

t2-4j-8'>0

y>5u(> I
d21 0<V1<f1<f1<l<Y1

^(l-t)>2yC9,-^)
sup^ £ > < jf < (i.'-^')

d3]
r1- 4 y i) > 0

i(t'-t) >2&>-'&’)

d4]

t1-4^>o 
t(-fr'-it)>O t-KUP-w)
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d5i i<1’x< p1<f1< ’Pl

Ct/-ih')< f< 
ell 0<f1<p14 %.4'1P1<1 

tl-4yd- >0

£ < £'<2^
' Cy-t'+S’^^O

e2]
£,i 4y3’>o

e3] 0<(>1<(>1<l<’l,l<'ll'i
t1- 4-

V > (£-£')( 1-^')
£(l'-t) <2>f (y-S’X 

suri|>(£'-y),(£.e>)^<y< 1
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e4] 0 < fl<1 < fl <

t'-l-yS1 >o 
r(&’-D')2->C£-E.06^-iy) 

€(£.z-t) < Z.yCg’-^X t'CL-L)

e5] 1 < fl < fj. < ^2 <
eM^>o

t(£.'-b) <ijr (9>-^) 
2$ C t < t' 

Cj-t+v’)>o

ill o<'P1<V1<Pi<p1<l

t( £.-t)< ijfC< £-(t-t)
V <£.<2f

f21 0<V1<1l4<Pt<i<fl
s1-4y9’>o

k-(e'-9')1>Ct-2)6SVLi-^) ,
t ( t- L) < 2 y (^-S1) < t'C £.-1)

< 0
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f3]

f4]

f5]

V — v ✓ y v. j

6,-4J0‘>o

0

sl-4y^ >°
. O A X. A

L<4-^>o

£'-4yb’'>°
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ty»'>

CASE B

a4] Uf^^i
^..4^ 
i'1-4jrd,>0 
lyd*' > Z-G - f)
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bl]

b2]

b3]

b4]

cl]

K> SuH-^

tl -- 4jr^
V-4-ir^ >o

x^< £/<t- 
(fr-i/j-fmo

o<fl<Yl<Kf

i.' -4<r9'>°, 4 x

O<X<1 < 1Pl<f 
t1--- A-^

o < rz rt < f s j-

L*l-4^tP>o
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(fc'-D'1) <j$< 4
ai] 0<Y<fl<r1<i , 

V1- 
Lx-4)(\P>o ,/

t,'<
> o

32] 0< V < 1 <fl
L'1- 4^ 
tl-4yiP>o , 
i^> ^C£-t)

<0

sup|£ ,u-^)^<ir<
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d4] K1P<fi<pi z
£'1-4j<ih

el] o<fl<fl<Y<l z

?x

e2] OC fl<Pl<i<1P z

supIlt-S’),
e31 0<^<l<f>t<V ,

V1 = 4rdi

$.'><-
(jr-ttd’X0

e4] ,

V1 - 4^
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fl]

f2]

f3]

f4]

gi]

r / , I / n

g2]

,»x

(t-o>) <ir< x

I L. " /

< t'Ct--^)

0<P1.<1p<l<fj. ,
£'2 -- 4<r^z £ \

0<fi<l <W1,

Kf<1>
* ^4^, 

^<c<s
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hl] 0<'P<f<l

i'1,4$^

h2] 0<^(l<P

v - 4^

h3] l<V<f

11] o < P - V< 1

4-S^1

12] Kf:^
^-4^, 
^1"-- 4^5'
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J*! ? Jx

a21 Wz.

a31 fl>px.

bll f<> Pl

Ml ?bfx

C11

c2J 1Fl,Vl

CASE C

are complex and

V1 >4jr52 ,

are complex and
4j;6> 

C|f-2,V8>')<o
are complex and

£,x ? 4j,g>

are complex and

8'

are complex and

are complex and

tl>4^ 
K>s*t I T>(

are complex and
Vt< 4f8>, 

(jz-849>)< 0

o<^<1Pi4i

0<^<l<1Pl

0<V<i

0<fl ^IVi.
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c3] are complex ,and

dl]

d2] are complex and

- 4^

> 4j'9’ 
C£.-iP)<y<l
are complex and

e- 4^

e] Yj. and fl, are complex.

tV4^
t'1 < 4j(tr>
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CHAPTER V

Here we classify the critical points of the linearized 

system (27) for the special case [A] = k2[B], for all 

possible arrangements of the root positions of the polynomials 

$(ys) and G(ys)z by using theorem 3.1.

Va] Introduction

According to theorem 3.1, we need to know the sign of 

detA and trA in order to classify the critical points of the 

linearized system (27). For the special case k^[A] = k2[B], 

we were able to derive the polynomials ^(ys) and G(yg) which 

have the same sign as detA and trA, respectively. Now, the 

sign of 4 (yg) and G(yg) depends on the position of ys£(0,l) 

with respect to p^, P2' as as on t^ie nature

of these roots. In the previous chapter, we distinguished 

cases (A)-(C) according to the nature of the roots p^, P2, 

^l' ^2' f°r ^ese cases we obtained a large number of 

possible arrangements of the root positions, and derived 

the necessary and sufficient conditions for each arrangement.

Next, we show that for each possible arrangement of the 

root positions a number of subcases can be distinguished 

depending on the magnitude of yg£(0,l), and that in each 

subcase the sign of $(ys) and G(yg) can be determined and 

the critical points classified. Recall that <Hyg) and G(yg) 

are given by
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--nV «o>
-4i)

where y > 0. For the special case k^[A] = [B], the critical

points are roots of the equation 

where ys£(0,l).

Vb] _Classification_of_the_critical_points_for_the_special 

case k1[A] = k2(B].

For cases (A)-(C), we classify all possible arrangements 

for the root positions, taking into account the magnitude 
of ys^(0,l). This allows us to determine the sign of $ (y ) 

and G(ys), so that we can classify the critical points by 

using theorem 3.1. The results of this classification are 

presented in tabular form for each group listed; for the 

"type of steady state" we use the notation:

1: Stable focus(or stable node).

2: Unstable focus(or unstable node).

3: Saddle point.
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CASE A

Table 5.1

Arrangement Sign of Sign of 
G(ys)

Type of Steady 
State

all 0<p2<T2<p1<T1<ys<l + 1

al2 0<po<’t' <p.<y <T <1 2 2 1s 1 + + 2

al3 0<p2<Y2<ys<p1<'l,1<l - + 3

al4 0<p2<ys<'F2<p1<'F1<l - - 3

al5 0<ys<p2<'P2<p1<T1<l + - 1

a21 0<p2<'P2<p1<ys<l<T1 + + 2

a22 0<P2<T2<ys<p1<l<'i'1 - + 3

a23 0<p2<ys<1,2<p1<l<T1 - - 3

a24 0<ys<P2<'t,2<P1<K'F1 + - 1

a31 0<p2<T2<ys<Kp1<'l,1 - + 3

a32 0<p2<ys<T2<Kp1<'i'1 - - 3

a33 0<ys<p2<?2<l<p1<?1 + - 1

a41 0<p2<ys<K'P2<p1<T1 - - 3

a42 0<ys<p2<l<’P2<p1<T1 + - 1

a5 0<ys<l<p2<'?2<p1<'?1 + - 1
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Table 5.2

Arrangement Sign of 
S(ys)

Sign of 
G(ys)

Type of Steady
State

bll 0<'P2<p2<’P1<p1<ys<l + - 1

bl2 0<Y2<p2<’i,1<ys<p <1 - - 3

b!3 0<'i'2<p2<ys<'P1<p1<l - + 3

bl4 0<'?2<ys<p2<'F1<p1<l + + 2

bl5 0<ys<'F2<p2<1,1<p1<l + - 1

b21 0<T2<p2<’l'1<ys<l<p1 - - 3

b22 0<T„<po<y x'P <Kpn - + 3

b23 0<'F2<ys<p2<'l,1<l<p1 + + 2

b24 0<ys<ttr2<p2<x£f1<l<p1 + - 1

b31 0<Y2<p2<ys<l<’l,1<p1 - + 3

b32 0<’lF„<y <p_<l<Y <p. + + 2

b33 0<ys<T2<p2<K'i'1<p1 + - 1

b41 0<Y. <y <Kp_<'l' <p. + + 2

b42 0<ys<'P2<l<p2<T1<p1 + 1

b5 0<ys<l<'P2<p2<1'1<p1 + - 1
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Table 5.3

Arrangement Sign of 
t(ys)

Sign of 
G(ys)

Type of Steady 
State

ell 0<p2<’l'2<'P1<p1<ys<l + - 1

cl2 0<p2<'P2<'P1<ys<p1<l - - 3

cl3 0<p2<Y2<ys<T1<p1<l - + 3

cl4 o<P2<ys<'F2<i,i<pi<1 - - 3

C15 0<ys<p2<'1,2<'I,l<Pl<1 + - 1

c21 0<p2<'P2<'F1<ys<l<p1 - - 3

c22 0<p2<'F2<ys<’l'1<l<p1 - + 3

c23 0<p2<ys<1r2<T1<i<p1 - - 3

c24 0<ys<p2<'F2<'1'l<1<Pl + - 1

c31 0<p2<'P2<ys<K'l,1<p1 - + 3

c32 0<P2<ys<'F2<1<'i'l^Pl - 3

c33 0<ys<p2<'P2<K'yi<p1 + - 1

c41 0<p2<ys<1<'F2<'Fl<Pl - - 3

c42 0<ys<P2<1<'F2<'1,l<Pl + - 1

c5 0<ys<Kp2<'P2<'K1<p1 + - 1
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Table 5.4

Arrangement Sign of 
S(ys)

Sign of Type of Steady 
State

dll -0<’t'2<P2<Pl<’l,1<ys<l + - 1

dl2 0<'i'2<p2<p1<ys<1'1<l + + 2

dl3 0<Y2<p2<ys<p1<Y1<l * + 3

dl4 0<'P2<ys<P2<Pl<'Pl<1 + + 2

dl5 0<ys<tP2<p2<p1<xP1<l + - 1

d21 0<’P2<p2<p1<ys<l<'?1 + + 2

d22 0<'i'2<P2<ys<pl<1<’Fl - + 3

d23 0<'P2<ys<p2<p1<1<1'i + + 2

d24 0<ys<'P2<p2<p1<K'P1 + - 1

d31 0<H'2<p2<ys<Kp1<V1 - + 3

d32 0<’l'2<ys<p2<l<p1<’l'1 + + 2

d33 0<ys<Y2<p2<Kp1<'P1 + - 1

d41 0<'F2<ys<1<p2<pl<'Fl + + 2

d42 0<ys<'F2<l<p2<p1<’i,1 + - 1

d5 0<ys<1<'F2<P2<Pl<'Fl + - 1



-46-

Table 5.5

Arrangement Sign of 
S(ys)

Sign of 
G(ys)

Type of Steady 
State

ell 0<p2<p1<'l'2<'P1<ys<l + - 1

e!2 0<p2<p1<Y2<ys<T1<l + + 2

el3 0<p2<p1<ys<'P2<'l'1<l + - 1

el4 0<P2<ys<pi<’l,2<'i,i<1 - - 3

el5 0<ys<p2<pl<V'Fl<1 + - 1

e21 0<p2<p1<’P2<ys<KY1 + + 2

e22 0<p2<p1<ys<'F2<l<1'1 + - 1

e23 0<p2<ys<p1<T2<K'l'1 - - 3

e24 0<ys<P2<Pl<T2<1<'Fl + - 1

e31 0<p2<p1<ys<K'l,2<'i,1 + - 1

e32 o<p2<ys<Pi<1<'l,2<'Fi - - 3

e33 0<ys<p2<p1<K'l'2<’l'1 + - 1

e41 0<P2<ys<1<Pl<'1'2<?l - - 3

e42 o<ys<p2<i<p1<'r2<f1 + - 1

e5 0<ys<l<p2<p1<'P2<'P1 + - 1
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Table 5.6

Arrangement Sign of 
3(ys)

Sign of 
G(ys)

Type of Steady 
State

£11 0<'l,2<’l'1<p2<p1<ys<l + - 1

£12 0<'P2<’l,1<p2<ys<p1<l - 3

£13 0<'l'2<1'1<ys<p2<p1<l + 1

£14 0<’1'2<ys<'I'l<p2<pl<1 + + 2

£15 0<ys<T2<’i'l<P2<Pl<1 + - 1

£21 0<T2<'i'1<p2<ys<l<p1 * - 3

£22 0<'F2<'i,1<ys<p2<l<p1 + - 1

£23 0<'ir2<ys<'yi<P2<1<Pi + + 2

£24 0<ys<'P2<'Pi<p2<1<pi + - 1

£31 0<Y <Y <y <Kp <p2 1s 2 1 + - 1

£32 0<'t'2<ys<'l'i<1<p2<pi + + 2

£33 0<ys<’r2<'i'l<1<P2<Pl + - 1

£41 (XY <y <1<Y <p <p2 s 1 2 1 + + 2

£42 0<ys<'P2<l<l'1<p2<p1 + - 1

£5 0<ys<l<Y2<'P1<p2<p1 + - 1
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CASE B

Table 5.7

Arrangement Sign of 
^CXs)

Sign of 
G(ys)

Type of Steady
State

all 0<p<'P2<T1<ys<l + - 1

al2 0<p<'i,_<y <T <12 s 1 ■ + + 2

alS 0<p<y <^<¥.<17s 2 1 + - 1

al4 0<ys<p<'?2<'P1<l + - 1

a21 0<p<T2<ys<K'i'1 + + 2

a22 0<p<ys<'P2<K'P1 + - 1

a23 0<ys<p<1,2<l<Y1 + . - 1

a31 0<p<ys<l<’i,2<'P1 + - 1

a32 0<ys<p<KY2<'i,1 + - 1

a4 0<ys<Kp<T2<’l,1 + - 1

bll 0<Y„<T <p<y <12 1 M 7 s + - 1

bl2 0<1,2<T1<ys<p<l + - 1

bl3 OCT <y <'?1<p<l2 7s 1 + + 2

bl4 0<ys<'i,2<Ti<p<l + - 1

b21 0<'P2<1,1<ys<l<p + - 1

b22 octvy2 7s 1 + + 2

b23 0<ys<'F2<'i’l<1<P + - 1

b31 0<'l'2<ys^l<i'1<p + + 2

b32 0<ys<’1'2<1<'1'i<p + - 1

b4 0<ys<K'P2<'F1<p + - 1
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Table 5.8

Arrangement Sign of 
S(ys)

Sign of 
G(ys)

Type of Steady 
State

ell o<'P2<p<xP] <ys<i + - 1

C12 0<’t'2<p<ys<'F1<l + + 2

C13 0<1,o<y <p<'P1<l2 s 1 + + 2

cl4 0<y <’l'n<p<T1<l s 2 1 + - 1

c21 0<tP„<p<y <1<1,12 s 1 + + 2

c22 0<'1'2<ys<P<1<'1,-l + + 2

c23 °<ys<'i,2<P<1<'i'i + - 1

c31 0<'i/2<ys<1<:p<’1,l + + 2

c32 0<ys<’1'2<1<p<’1'i + - 1

c4 0<ys<l<’l,2<p<'P1 + - 1

dll 0<Y<p2<p1<ys<l + - 1

dl2 0<?<p2<ys<p1<l - - 3

dl3 0<'P<ys<p2<p1<l + - 1

dl4 0<ys<xi,<p2<p1<l + - 1

d21 0<’i'<p2<ys<l<p1 - - 3

d22 0<’P<ys<p2<l<p1 + - 1

d23 0<ys<Y<p2<Kp1 + - 1

d31 0<’P<ys<l<p2<p1 + - 1

d32 0<ys<’i'<l<p2<p1 + - 1

d4 0<ys<l<’i,<p2<p1 + - 1
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Table 5.9

Arrangement Sign of 
S(ys)

Sign of 
G(ys)

Type of Steady 
State

ell 0<p2<P1<’l,<ys<1 + - 1

el2 0<p2<p1<ys<'P<l + - 1

el3 0<p2<ys<P1<'l,<l - - 3

el4 0<ys<p2<Pi<1,<1 + - 1

e21 0<P2<Pi<ys<1<’p + - 1

e22 0<p2<ys<p1<l<'P - - 3

e23 0<ys<p2<p1<1<'P + - 1

e31 0<p2<ys<1<pi<'1' - - 3

e32 ' O^p^Kp^ + - 1

e4 0<ys<l<p2<p1<'}' + - 1

fll 0<p2<T<p] <ys<l + 1

£12 0<p2<'P<ys<p1<l - - 3

£13 0<P2<ys<'i,<p1<1 - - 3

£14 0<ys<p2<'F<p1<l + - 1

£21 O<p2<1'<ys<l<p1 - - 3

£22 0<p2<ys<'F<Kp1 - - 3

£23 0<ys<p2<'P<l<p1 + - 1

£31 °<P2<ys<1<’i,<P1 - 3

£32 0<ys<p2<1<'1'<Pi + *• 1

£4 0<ys<l<p2<'F<p1 + - 1
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Table 5.10

Arrangement Sign of 
SCXs)

Sign of 
G(ys)

Type of Steady
State

gl 0<p<'F<l + - 1

g2 0<p<l<'F + - 1

g3 l<p<'E + - 1

hl 0<'F<p<l + - 1

h2 0<’F<l<p + - 1

h3 l<¥<p + - 1

il 0<p=Y<l + - 1

12 Kp=Y + - 1
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CASE C

Table 5.11

Arrangement Sign of 
S(ys)

Sign of 
G(ys)

Type of Steady 
State

all P1’P2 are complex and 0<’P2<'P1<ys<l + - 1

al2 pi>p2 are complex and 0<’P„<y <'P <12 s 1 + + 2

a!3 pi,p2 are complex and 0<y <'PO<'P <1s 2 1 + - 1

a21 P1»P2 are complex and 0<'Po<y <1<'P12 s 1 + + 2

a22 P1,P2 are complex and 0<y <'P_<K’P1s 2 1 + - 1

a3 prp2 are complex and 0<ys<K'P2<xP1 + - 1

bl P1’P2 are complex and O^l + - 1

b2 P1’P2 are complex and K'P + - 1

ell are complex and 0<P2<Pi<ys<1 + - 1

C12 Tl-V2 are complex and o<p2<ys<Pi<1 - - 3

C13 'P .'p 1’ 2 are complex and o<ys<P2<P1<i + - 1

c21 1’2 are complex and o<p2<ys<1<Pi - - 3

c22 are complex and 0<ys<p2<l<p1 + - 1

c3 are complex and 0<ys<l<p2<p1 + - 1

dl V1’V2 are complex and 0<p<l + - 1

d2 T1’V2 are complex and 1<P + - 1

e and Pj>P2 are complex + - 1
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From these tables we see that the steady state will be an 

unstable focus(or an unstable node) only in the following 

cases:

table_ CASE arrangement

5.1- A al2, a21

5.2 A bl4, b23, b32, b41

5.4 A dl2, dl4, d21, d23, d32, d41

5.5 A el2, e21

5.6, A fl4, f23, f32, f41

5.7 B al2, a21, bl3, b22, b31

5.8 B cl2, cl3, c21, c22, c31

5.11 C al2, a21

If the steady state is unique, then sustained oscillations 

will be observed for each of the above arrangements. Necessary 

and sufficient conditions for uniqueness can be derived.

In the case of multiple steady states, the fact that a 

critical point is an unstable focus(or an unstable node) 

does not necessarily mean that limit cycles exist. The only 

way to investigate this problem is by integrating numerically 

the dynamic equations.
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C1IAPTER VI

Unigueness_Criteria

Here, we derive the conditions under which a unique 

steady state solution exists for a lumped system described

by the'nonlinear algebraic equation

|(O 1^0
Multiplication of both sides of the above equation by

yiBlds, _U<u
<; fe(U) e y‘. ff

[yV'OWP
Xit: u *

o f 6 AiK,[Rl(l-L) I

But according to (12a),
? - B : f 1
1"I Rf <"A3 fti} 1 M (B) J
Substituting in (57) , it yields

j>_ [83_________
mm *• <• ’*1 - 4, * *» 1

where 0 <6 < 1.
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Using (57) , we can write (56) as

(iVttAlM)] »5V
or

C^s) ‘ K3°
Let

C(IJ x _ e

and
T = k° (62)

Then, we can write (60) as

r(u \ _ Kfls) 1
?s C^s)

From (63) we have that

(59)

(60)

(61)

(63)

(64)

where 0 < ys / 6 < 1.

At this point. we would like to examine the sign of f(yg)

v/hich is defined by (61). We have the following possibilities:

CASE I

Suppose that
K,[B]-KirA]>0

Then,

[^-Ki[A3 + KjB3^>0
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Using (12a) , we have

and
0< < 1

^-KtCA] +KJB]]

where
Mj /\M\ W+KJe] j

Since O < J 1 , 
about the sign of 

we see that since

we cannot draw in this case any conclusions 
(j ”^2. looking at equ. (60) , however, 

the right-hand side of this equation is 

positive, we must have either that

or
(ii) S <

When , we have that >0 •

When 3 i have that H^s)<o-

CASE II

Suppose that

KtCBj-^TA] < 0 (65)
Then either ki+k2[b3-K1M<o , or we have that

^+K1C6]-Kl[Aj>0 .
(i) If in addition to (65) we have that n-K[B]-J<fA]<0
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then

As result, <l-p‘K0 and. consequently.

(ii) If in addition to (65) we have that

+ >0
then

[K.+KJAIG+PJJ >0
and A

^<0
As result, (js”Px) ) 0 and, consequently

CASE III

Suppose that

^[B]-KfCAj =o
then

E^ + ^cajch-^j
and

^1=0
As result, 0 * and, consequently, ^5)>0 . 

lon: i’l °<Vs/^< i
Kii)

except in case

Since F(ys)-^oO as ys~> we can distinguish the



following possibilities in connection with cases II and

III only:

21 Ys€ (S',!)
In case (1), > 0. , and the lumped system is

described by equ.(64):
C^-^s) = r Sc v

In case (2) , (8"- js) < o , and the lumped system is 
described by

This equation, however, cannot be satisfied, because the 

left-hand side is positive, while the right-hand side is 

negative. As result, there are no steady state solutions 

for in cases II and III.

Now, we will develop uniqueness criteria for cases I-III.

CASE I

(i) Here we have that .If the function
Ft-^^CV/C^s)

is monotonic, a unique solution exists. Hence, a necessary
and sufficient condition for uniqueness for all 7T is that

_L > o;>0 _u 2
Differentiating and multiplying by ' we have

(^s)V^s)^icP>o



-59-

c^$)5^s)>-W
dividing both sides by f(y )0 , it yields

s‘ cr-y$) f'cs$)

and since

dCn
djs

we can rewrite it as

zj-.u ) xI*' 3$7 4us / 1
Taking the logarithm of both sides of

u Zu _R y :^s
£(v ) - os r

we have.that r -
(s$s)=vk[-if *Mo^' 0

and differentiating,

<(^[5(^)1 (2jf5-^) k
. 4^s 'Js(^-^)'r

Thus, the necessary and sufficient condition for all

or
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Multiplying both sides of this inequality by y , it yields

>-^s +^5(^s)

Consequently,

-rys +(2^-^) 1) 
Us *ri)

or

lJs~ P2.)
Since Mz)>0 , we can multiply both sides of (78)

by this term to get

Now, making the substitution

0 < CT - / 1
we can rewrite the above inequality as

A C<t) nlo + k <r +L cri+ L <r3 > 0
* ** o

where

i>i =

l>3=
Sufficient conditions for A((T)>0 , whenever o<r<l >
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are according to [17]

l> O = Pz 0
l,1+3l>.>0

l>2.4 3^3 0
Substituting, we have that the sufficient conditions for 

uniqueness for all 7Tare i-n this case:

(ii) Here we have that d f 2 , and f (yg) 0
Again, if the function

F()s)^tj5)/C^s)

is monotonic, a unique solution exists. Hence, a necessary 

and sufficient condition for uniqueness for all is

1 r
d)$\ Ms

0

Following the same procedure as in case I(i), we arrive at 

equ. (78). Multiplying both sides of (78) by 

we get

-fJ+- [in (/un] j/+h53 < 0
Making the substitution

.<w = <v£2.

and multiplying both sides by minus one we arrive at
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B(w)hL*U*w + I>* wz+L*w3>o

where
U‘1 J
t;£ rr(f.-s) •

Sufficient conditions for uniqueness for all are in 

this case[17]:

up.-s)
Remark: In case I, it is impossible•to have

_CASE_II__

(i). Here we have that ’ an<^ Multiplying

both sides of (78) by — f M — 8 'X it yields
Z(js)^o'4Uta';^\x3>0

where y 6(0,8)-^.
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where

and

a

Sufficient conditions for
s --

The above inequality can be rewritten as

are according to [17]:

<x* >0

VOL +0-^+1) CL ^0 , r v y r-l z
where n is the degree of Z(<r') •
The first condition is automatically satisfied^ the second 

condition can be written in its full form as

a.*+3a.*>o 

a-/ + cl* > o 

<L*+3cl* >0
Substituting, we can write these conditions as

X< f-S_____L?)
s I < s- f J
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|< < 1
In a better form, we can write that the sufficient conditions 
for uniqueness for all % in this case are:

_L < u. < ( — - — A (o.S’-B *\ <^ —8 I S- Pa. ) , V2-6 X u.

(ii) Here we have that

Multiplying both sides of (78)

and > 0 .
bv (V -B it yields

nCr^^ag+aor'icia-^+acr/3 > o
where

0< ^=-^-<1
and .

[i+|*(P1+8’)3 
a3 = |aS5

Similarly, we can derive sufficient conditions for uniqueness
for all T [17]:

(Z^-Pz) —z |A
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CASE III

Here we have that 0 • Then equ. (78) becomes

(1°8)

Recall also that ysE(°>?) •

Let x 0

and 0^ ^2. be the roots o£ A(ys> = 0*

Then>

1 " 2p

_ otp?) +"V(i"PS)2-‘I"Ia^
" Zu

In connection with the sign of the discriminant

zx - (i-j*?)1-
we can distinguish the following subcases:

a) (109)

Then A(y ) 0 for any real value of yg. Thus,the
condition (t-|A&)Z4 + (*^ is a sufficient condition 

for (108) to hold.

b>
Then <T zCT : (i + b? ) , ana A(y )>0 i£ in adaltion
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we have that U .
' $■

c> > 4^$*"

Then ff’l, Fl are real and unequal; in fact, we can prove 

that they are positive.

Now, we can distinguish the following subcases:

(1) Suppose that |A. . then, we have that A(ys)^O .

(2) Suppose that . Then, tfj } (T^ € ( 0J .
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CHAPTER VII

Here we present sets of parameter values for which the 

dynamic equations, when numerically integrated, give rise 

to limit cycles. These values are such that a unique steady 

state solution exists for equ.(14), when k^[A] = [B] .

Vila] _Kinetic_parameter values_

In this study, our purpose is to prove the existence of 

oscillatory solutions for some values of the kinetic 

parameters. In other words, we need to find parameter values 

for which the dynamic equations give rise to limit cycles. 

For simplicity, we restrict our search by choosing values 

su'ch that k^ [A] = k2 [B] , and for which (109) -the 

sufficient condition for uniqueness for all t- is 
satisfied.

For a unique steadlj state solution for which k^[A] = k2[B], 

the dynamic equations give rise to limit cycles, if the 

kinetic parameter values are such that

detA > 0

trA > 0

For illustration, we present the following two examples:

EXAMPLE 1

Suppose that 
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k1[A] = k2[B] = 2.00 

k_! = 1/6 

k_2 = 0.2640065 
k° = 237.1082966

U = 14.00

where k^[A], k2[B], k_^, k_2 and kg have units 

( sec )

Then, using (42)-(46) we obtain

y = 48.00966577

£ = 21.10559431

d = 2.525190352

£* = 20.47340573

d7 '= 2.059668465

Since

Z\^ = e2 - 4yd = -39.48806784 < 0 

we conclude that p^, p2 are complex. 

Using (53), we obtain

= 0.2638416181

Y1 = 0.1626017947

Thus, p^, p2 are complex and 0 < f 2 <T< 1 . This is the 

arrangement (Cal) as shown on page 38.

Using (47), we find that the steady state equation is 
-14-j

(137.1082166)^C + 3.429261841 (110)

Since 82 = 0 and 8^ = k_^/ k_2 = 0.631297588, (12) 
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yields

xs = °-631297588 (111)

The solution of (110) in (0,1) is ;

ys = 0.20, and using (111) we have xs = 0.3168078 . 

sufficient condition for uniqueness

for all t for equation (110) is
(1 - p6)2 < 46p (109)

Using (58) , we obtain

6 = 0.3681827853

Thus,

(1 - p6)z = 17.26036044

4p6 = 20.61823598

Therefore, (109) is satisfied for the values assumed in 

this example.

According to table 5.11, when p^, P2 are complex and

0 < ¥ 2 <YS < 1 < we have that

$ (yg) > 0

G(yg) > 0

and the steady state is either an unstable focus or an 

an unstable node.

Using (30)-(33), we obtain

aT = 0.9053474166

a2 = 62.59813151

a3 = -39.51804943

8 = 4.430673167

According to (15)-(16), we have
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-P^s , n

fcrA=-^ + k; e -i) - ys]
Substituting, we find that

detA = 0.2962920094 > 0

trA = 0.9078607617 > 0

Since 
2D = (trA) - 4(detA) = -0.3609568729 < 0, then 

according to theorem 3.1 the point (0.3168078, 0.20) is an 

unstable focus.

The characteristic equation for the linearized system 

is
2

X - (trA)X + (detA) = 0

The eigenvalues are -. . s /T: ..2 / ' ■ “
X .(M) L V(trA)t4(e(€^A)

1 1 i_
For this example,

X1 = 0.4539303809 + i (0.3003984325)

X2 = 0.4539303809 - i (0.3003984325)

EXAMPLE 2

This example is related to the previous one. Suppose that 

k_2 = 0.2640065 
k® = 339.3304816 

p = 15.83025413
where k^^tA], k2[B], k_x, k_2 and k° have units (sec)”1 

k-jA] = k2[B] = 2,00 

k-j = 1/6 
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Using (42)-(46), we obtain 

y = 54.28608642 

e = 23.41646432 

9 = 2.525190352 
e* = 22.78427579 

9Z = 2.059668465

Since

= - 4y9 = -5.2526*10 ® < 0, we conclude that

pi, P2 are complex.

Using (53) , we obtain

0.2879407886

Y2= 0.1317666778

Thus, p^, P2 are complex and 0 <^2 <^1 < the

arrangement Cal as shown on page 38.

Using (47), we find that the steady state equation is

(3M.3304to)|ls £ + (H2)

We also have that

xg = y / 0.631297588 (113)

/\ sufficient condition for uniqueness for

all t for equation (112) is

(1 - p6) < 4p6 (109)

Using (58), we obtain

6 = 0.3681827853

Thus, 
2(1 - pfi) = 23.31370783

4p6 = 23.313708823
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Therefore, (109) is satisfied for the values assumed in 

this example.

The solution of (112) in the interval (0,1) is

ys = 0.25 

and using (113)

x = 0.39600975 s
Since p^, P2 are complex and 0 <^2 < <^1 < we

have the arrangement (Cal2). According to table 5.11, for 

this arrangement

$(yg) > 0

G(ys) > 0 

and the steady state solution is either an unstable focus 

or an unstable node.

Using (30)-(33) we obtain

a1 = 0.9053474166

a2 = 89.58545279

ag = -56.55508027

6 = 4.430673167

According to (15)-(16), we have
dehft +

Substituting, we find that

detA = 0.0675377564 > 0

trA = 1.542981473 > 0

Since

D = (trA)z - 4(detA) = 2.110640802 > 0 , then 
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according to theorem 3.1, the point (0.39600975, 0.25) is 

an unstable node.

The eigenvalues are

A1 = 1.497892967

A2 = 0.0450885062

Vllb] _Numerical_integration_of  _the_dYnamic_eguationsil_

In examples 1 and 2, parameter values were presented 

for which a unique, unstable steady state solution exists 

for equation (47). In other words, these values are such 

that
(1 - p6)z < 4u6 

and

detA > 0 

trA > 0

Here, the dynamic equations

dr
^=Kj8](i-x^)-Q-K3°e X^- (9)
give rise to limit cycles.

Dividing (9) by (8) , we obtain nn

4 (ii4)

(114) is a nonlinear, ordinary differential equation which 
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can be solved numerically. As initial values for xC(0,l) 
and yC (0,1) , we can choose values along the sides of a 

square with corners the points (0,0), (0,1), (1,1) and (1,0).

The numerical integration technique used in this study 

was a fourth order Runge-Kutta; we employed subroutine RK2, 

which-can be found on page 332 of [18]. The programs were 

run on the ULIIVAC 110 8 computer at the University of Houston.

For the parameter values cited in the two examples, 

equation (114) was numerically integrated with different x 

and y.initial values for each run. The integration was
-3 performed with a stepsize 10 , and the resulting trajectories

were plotted in order to examine the phase plane behavior 

of equations (8)-(9).

In both examples, limit cycling was observed as shown in 

figures 7.1 and 7.2. By perturbing the unique, unstable 

steady state, we were able to eliminate the possibility of 

an unstable limit cycle surrounded by a stable one. The 

figures show that trajectories originating from the inside 

give rise to a stable limit cycle.

Figure 7.1 represents example 1, while figure 7.2 

corresponds to example 2. The time dependence of x and y 

for each of these examples can be determined by integrating 

numerically the dynamic equations (8)-(9). The numerical 

integration was performed by using subroutine RKGS [18], 

and the results are shown in figures 7.1a and 7.2a 

corresponding to examples 1 and 2, respectively. From figure 
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7.1a we read that the period of oscillations is approximately 

11 seconds, while from figure 7.2a we see that it is about 

17 seconds.
**********************************************************

IMPORTANT REMARK 

**********************************************************

It is essential to emphasize at this point that our 

region of interest is not the above mentioned square, but 

actually the orthogonal triangle which has as sides the 

positive X and Y axes and the line x+y=l. Thus, our search 

is reduced by a factor of two, because if a limit cycle 

exists it should definately be restricted in this region.

At this point, it is pertinent to state the following 

important theorem: 

2SII2I^§2S1§_§5COND_THEOREM: Consider a two-dimensional 

system whose state variables are bounded, and which has a 

unique, unstable steady state. Then all system trajectories 

are either a stable limit cycle, or else approach a stable 

limit cycle asymptotically.

A statement of this theorem can be found in:

N. Minorsky, "Nonlinear Oscillations", Ch. 3, Van Nostrand, 

Princeton,N.J., 1962.
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Fig. 7.1a. Dinensionless concentrations of adsorbed reactants 

versus tine, example 1, u=14.0





30 ' 50 ' 70 ' 30
-t- TIME , DIMENSION CSEC)

Fig 7.2a. Dimensionless concentrations of adsorbed reactants 

versus time, example 2, u=15.83025413
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CHAPTER VIII

Here we investigate whether sustained oscillations occur 

when equ.(47) has multiple steady state solutions. The 

investigation is carried out by using bifurcation theory.

Multiple_steady_states_and_a]2]Dlications_of_bifurcation_  theory^

In the previous chapter, we presented examples demonstrating 

that the dynamic equations can give rise to limit cycles in 

the case of a unique, unstable steady state solution.

Since we are interested in the phase plane behavior of 

equs. (8)-(9), we need to investigate whether limit cycles 

can occur when multiple steady state solutions exist. We 

will commence our investigation by presenting the following 

numerical example.

Suppose that
[A] = k2 [B] = 1.00 (sec) 1

k_1 = 2.00 (sec)"1

k_2 = 4.00 (sec)"1

k° = 1604.719045 (sec)"1

U 50.00

Then using (42)-(46) we obtain

Y = 175.00

e = 28.50

9 = 1.00
E7 = 26.25
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/
9 = 0.75

Using (52)-(53) we obtain 

p1 = 0.1116994573 

P2 = 0.0511576855

Yj, = 0.1115962527

¥2 = 6.0384037472

Thus,

0 ’ < Y2 ’ < p2 < ^l' < P1 <1

This is the arrangement (Abl) as shown on page 26.

Using. (47), we find that the steady state equation is

i
G(0V.7/?fly5)jfs e + 3.S- o.5 - 0 (115>

(115) does not satisfy the sufficient

condition for uniqueness :
2 (1 - p6) < 4p6 (109)

Using (58), we obtain

6 = 1/7

Thus z
2(1 - p6)z = 37.73469

4p6 = 28.571428

Therefore, (109) is not satisfied for the parameter values 

assumed in this example, and, consequently, equ.(115) has 

multiple steady states.

Since 62 = 0 and 8^ = k_^/k_2= 0.5, (12) yields 

xs = 2ys (116)
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Equ.(115) has the following solutions in (0,1) :

ysl = 0.045; using (116), xs^ = 0.090

ys2 = 0.132, and = 0.264

ygg = 0.058, and xgg = 0.116

Using (30)-(33), we obtain

a1 = 14.00

a2 = 6418.87618

a3 = -3209.43809

8 = 8.00

According to (15)-(16), we have
delA z +exf(-^s) <

[ xs Cl-^-1)-^
Since 0 < Y2 < ysi < P2 < 1 P1 < ' we have the 

arrangement (Abl4). According to table 5.2, for this 

arrangement we have that

S(ysl) > 0

G(^sl) > 0

and the steady state is either an unstable focus or an 

unstable node.

Substituting, we find that for yg^ = 0.045 and xg^ = 0.09 

detA = 6.388873565 > 0

trA = 3.416689651 >' 0

Since 
2D = (trA)z - 4(detA) = -13.88172607 < 0, then 

according to theorem 3.1 the point (0.090,0.045) is an 

unstable focus.
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Since 0 < Y 2 < P2 < 1 < Pj < yS2 < If we have the

arrangement (Abll). According to table 5.2, for this 

arrangement

»(ys2) > 0

0(732) <0

and the steady state is either a stable focus or a stable 

node.

Substituting, we find that for y^ = 0.132 and = 0.264 

detA = 8.697908959 > 0 

trA = -5.060797358 < 0

Since
2D = (trA) - 4(detA) = -9.179965917 < 0, then

according to theorem 3.1 the point (0.264,0.132) is a stable 

focus.

Since 0 < 'F 9 < p9 <¥0 < Y < p, < 1, we have the 

arrangement (Abl3). According to table 5.2, for this 

arrangement

»(ys3) <0

0(733) > 0

and the steady state is a saddle point.

Substituting, we find that for y^ = 0.058 and = 0.116 

detA = -4.436373749 <0

trA = 6.339401805 > 0

Therefore, the point (0.116,0.058) is a saddle point 

according to theorem 3.1.
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For t^e parameter values cited in this example, 

equ.(47) has multiple steady state solutions in the interval 

(0,1); these solutions are:

ysi = 0.045, x , = 0.090 si : Unstable focus.

*s2 = 0.132, = 0.264 S Z : Stable focus.

*s3 =^0.058, x^ = 0.116 s 3 : Saddle point.

Numerical integration of (114) for the above mentioned 
-3 parameter values with a stepsize 10 does not give rise 

to limit cycles. By using values along the boundaries of 

the feasible domain as initial values for x and y, we see 

that all trajectories go to the stable focus; the same is 

true when we perturb the unstable focus, as shown in figure 

8.1. VJe cannot conclude, however, that limit cycles do not 

arise for other kinetic parameter values for which (47) has 

multiple steady state solutions in (0,1).

Thus, we would like to examine whether it is possible to 

have sustained oscillations in the case of multiple steady 

state solutions for equ. (47) . We will try to solve this 

problem by using bifurcation theory: We will examine whether 

limit cycles bifurcate(originate) from critical points, 

which are centers, for the linearized problem associated 

with the dynamic equations. Poore and coworkers have 

published in their work [9,10] a large number of examples 

where bifurcation theory is applied.
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Bifurcation theory is concerned with the variation of

a single parameter. In the following example we will vary 

kg and let the other five kinetic parameters have the same 

values as in the previous example; that is, let 

k1[A] = k2[B] = 1.00 (sec)"1

k_j- =-2.00 (sec) 1 

k_2 = 4.00 (sec) 1 

p = 50.00

Using equ.(47), we find that in this case the steady 

state equation is
. l-50^

e +3.5^s-0.5=O (ii7)

Then' S0^s
V° - Co.5-3.5ys)e (118)
d U^-03

Since kg > 0, yg is restricted in the interval (0,0.1428571429).

V7e can draw a graph of yg versus kg , as shown in figure 

8.2.

The characteristic equation for the linearized system 

is
9

k - (trA)X + (detA) = 0

The eigenvalues are  ‘ ----
. (tvA) /V^T^)-4tielA)

2. 2
Bifurcation of periodic solutions can occur only from 

the center or possibly at those points at which one of the 

eigenvalues of A is equal to zero [9]. According to theorem
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3.1, the critical point (xs/yg) will be a center for the 

linearized problem if the eigenvalues of A are purely 

imaginary:

trA = 0 and detA > 0

For the parameter values cited in this section, the 

center is

y =YO = 0.0384037472, x = 0.0768074944 s 2 s
Using (118), we find that at the center kg = 1691.103454. 

Thus, we are able to locate the center for the linearized 

problem on the yg versus kg graph (fig. 8.2). By increasing 

the value of kg above its value at the center, and integrating 

numerically the ordinary differential equation

(n4)

we find that there are no limit cycles in the phase plane; 

the same is true when we integrate (114) for values of kg 

which are smaller than its value at the center. The
-3 numerical integrations were carried-out with a stepsize 10

Therefore, we can draw the conclusion that this particular 

set of kinetic parameters does not give rise to limit cycles. 

It is possible, however, that there are other parameters 

for which sustained oscillations may exist in the case of 

multiple steady state solutions.
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CIIAPTER IX

In this study, we have attempted to investigate the 

stability characteristics of a surface kinetics mechanism 

representing a general chemical reaction. Our main objective 

was to examine the validity of statements made by Slinko 

and coworkers [5] concerning the observance of concentration 

oscillations during the isothermal oxidation of hydrogen 

on a nickel foil.

Because we wanted to keep the mathematical analysis as 

simple as possible, rather than working on a specific 

chemical reaction we prefered to analyze the general 

reaction A(g) + B(g) —-■■■■ ■> AB. We assumed that the 

heterogeneous catalytic mechanism for this reaction is 

a Langmuir-Hinshelvvood type, and the adsorbed B(g) changes 

the properties of the catalytic surface such that the. 

energy of activation for the surface reaction depends 

linearly on the coverage by adsorbed B(g).

We derived the differential equations for the net rates 

of adsorption of A(g) and B(g), and linearized them about 

the steady state in order to investigate the local stability 

characteristics of the critical points, by using the first 

method of Liapunov. Expressions were derived for the 

determinant and trace of the linearized matrix A, and for 
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simplicity we decided to assume in our stability analysis 

that [A] = k2[B].

The nature of the critical points depends on the sign 

of detA and trA. We have been able to derive, however, the 

polynomials $(ys) and G(ys) having the sane sign as detA 

and trA. The signs of $(ys) and G(yg) depend on the size 

of the critical point with respect to the relative positions 

of the roots of the equations $(£) = 0, G(w) = 0, in the 

interval (0,1). We have also been able to derive the 

necessary and sufficient conditions for all possible 

arrangements of the root positions for the equations 

$ (5) = 0, G(w) = 0, in (0,1) .

Uniqueness criteria were developed for the steady state 

solutions both for the general case and when [A] = k2[B]. 

Using these uniqueness criteria and the necessary and 

sufficient conditions for the arrangement of the root 

positions for the equations £(£) = 0, G(w) = 0 in the 

interval (0,1), we were able to find parameter values for 

which the dynamic equations give rise to limit cycles. 

These limit cycles were found for the case of a unique, 

unstable steady state solution.

We used principles of bifurcation theory to investigate 

the existence of sustained oscillations for the case of 

multiple steady states. By varying one of the kinetic 

parameters and numerically integrating the dynamic equations 

we checked whether periodic orbits bifurcate(originate) from 
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critical points which are centers for the linearized 

problem. Our efforts have led us to conclude that limit 

cycles do not exist for the kinetic parameter values chosen 

in that particular example. It is possible, however, that 

there are other values for which sustained oscillations 

could be observed in the case of multiple steady state 

solutions; this is, of course, only an assumption and will 

have to be proved.

Slinko and coworkers [5] do not give in their paper any 

kinetic parameter values, or show numerical simulations to 

demonstrate that their proposed kinetic mechanism gives 

rise to limit cycles such that is in agreement with 

experimental results. Our study has shown that there are 

parameter values for which sustained oscillations arise 

in the case of a unique, unstable steady state. Our kinetic 

mechanism, although simpler than Slinko*s, does have 

similar features and is based on the saiiie assumptions.

In our study, the stability analysis was performed for 

the special case k^[A] = k^[B]. It would be rather 

interesting, however, to investigate the general case 

ki[A] k?[B], in order to get a picture of the phase

plane behavior of the dynamic equations.

It is possible that the chemical reaction proceeds 

by an Eley-Rideal rather than a Langmuir-Hinshelwood 

kinetic mechanism. Then it would be interesting to assume 

that the reaction has features belonging to both possible 
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kinetic mechanisms. even more difficult problem to 

consider is one where we take into account diffusional 

limitations and mass tranfer resistance such as. in the 

case of a catalytic pellet.
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APPENDIX

Section 1

Consider the polynomials

then, we can state the following theorems [20] :

Theorem Al : Suppose that the polynomial %) has real and

unequal roots Then, the necessary and sufficient

conditions for

where m is a real number.

are: p fp

Zheorem_A2_£ Suppose that the polynomial G(yg) has real and 

unequal roots • Then, the necessary and sufficient

conditions

where m is

for TH. <^1 are:

As > 0 > -y6(m)>0, m<—2—
a real number.

£ Suppose that theTheorem A3

are:

unequal roots, * T^en

conditions for P < P. / M

where M is a real number.

polynomial has real and

the necessary and sufficient
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Theorem A4_: Suppose that the polynomial G(Yg) has real and 
unequal roots V2. • Then, the necessary and sufficient 

conditions for are;
A6>o,-yG(M)>o,M>-al-A

where M is a real number.

Theorem A5 are

res

between the roots.

Theorem A6_£ Suppose that

The reverse is also true is a

are roots of the polynomial G(ys); then,

, where Ti , n
we have that

real number and -^(uKo,
are real and unequal and lies

2 Suppose that /1

; then, we have that

Tf is a real number and 

are real and unequal and

then the roots of G(yg) 

between the roots.

roots of the polynomial

The reverse is also true:

then the roots of

Section 2

Suppose that we have the polynomials

(40)

(41)

where ,j^ are the roots of , and are the

roots of G(to)=0. Then, the following relations exist :
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a tfx=fc/y (ai>

'a3*

yt ?i = W (a4)
<a5’

vlVfx1=(c,-2^,)/r1'

riM) tM}=(A7)

-)f [6(fi) t66f2)}= (as)

jf?("o) = ](1^ (AID)

y^(i)=y(^-4-+^) (All)

-y6(o) = y9) <Ai2)

(A13)

-y6(sAif)= y^+4 (4-£9 <al4>
'a151

Section 3

Consider the polynomials
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which have no common roots. Let P, ,P be th
AV ID 1 1

and Tl , Ti be the roots of G(uj)=o . Then
roots of

we state the

following theorem [20] :

simi

Theorem_A7 : Suppose that are real and

are :

unequal^

real and unequal,. Then,.

we can distinguish the following subcases :

The necessary and sufficient conditions for this 

arrangement are

R6^<0 (A16)

fi + ft < + <al7>
Yz<ft<Y,<f1

The necessary and sufficient conditions for this 

arrangement are

R6j6 < 0 (al8>
Yi+1Pt<f.+Pt <A19>

=! k<Yx<^<fx
The necessary and sufficient conditions for this 

arrrangement are

A6>0 (A20)
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0 (A21)

+ < 0 .XA22)

The necessary and sufficient conditions for this 

arrangement are

0 (A23)

> 0 (A24)

-rfGCfJ+GQ3\<0 <A25>
?x<W<3P1 '
The necessary and sufficient conditions for this 

arrangement are

Atf > 0 (A26)

(a27>

R^>o (M8>
(a29)

(A30)

<a3i>

The necessary and sufficient conditions for 'this 

arrangement are
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A^>0 (A32)

A6>0 (A33)

Rg0 >0
(A3 5)

(A3 6)

Ti + X < f, f k (M7>

We can now use theorems (A1)-(A7) to derive the necessary 

and sufficient conditions for all possible arrangements for 

the root positions shown in chapter IVb.

_CASE__A_

all O<ft<^<f1<1/'|<1
For the arrangement

Pz<Yl<f1<1Pi
we have from theorem A7a that the necessary and sufficient 

conditions are (A16)-(A17). Using relations (A9), (Al), and 

(A3), we can write (A16)-(A17) in the form

(A38)

V X (A39)



-95-

The necessary and sufficient conditions for zero to be

smaller than ' fx ' are according to theorem Al :

^>0 , , 0<
Using (A10), (Al), we can write these conditions as

€Z-4^>0 (A40)

^>0 (A41)

>0 (A42)

Since and 8 are all positive by definition, it is
obvious that (A41) and (A42) are automatically satisfied.

Condition (A40) is actually repetitive, because (A38) 

guarantees that the roots are rea^- an<^ unequal;

therefore, we do not have to require that (A40)-(A42) be 

satisfied.

According to theorem A4, the necessary and sufficient 

conditions for 1 to be greater than are

Ag>0 , -yG(D>0 > 1 > —
Using (A13), (A3), we can write these conditions as

E,1-4y9’>o (A43)

(y-e.'+th')>o

1 ,A45)
However, since (A38) guarantees that are real and

unequal and we have the arrangement
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is obvious that will also be real and unequal; therefore,

we do not need to include (A43).

In summary, the necessary and sufficient conditions for 

the arrangement 

are :

(a38)

£ (A39)

(y-CZ+lP ) ^0 (A44)

zy ) L (A45)

Or in a more compact form,

(jr-t'+th') >o
ZV> £'>£

a2] o<f,1<V2< f, < 1 <
The necessary and sufficient conditions for the

arrangement ,

are as before

y(O'-d')Z< (A3 8)

i* (A39)

The necessary and sufficient conditions for 1 to be 

between and are according to theorem A6

-yfidXo
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Using (A13), we can write this condition as
<o

and since ^^0 »
( jf- t'i 81 ) <( 0 (A46)

The necessary and sufficient conditions for 1 to be greater 

than f-j / r are according to theorem. A3

Using (All), (Al), we can write these conditions as

(A47)

( > o (A48)

i > <A49)

Since (A47) is repetitive, we end-up with the conditions

(A38)

£ < fc/ (A39)

(K-t'+^’X0 <a46)

(y-tt9')>o (A48)

2 jf > (A49)

Or in a more compact form, #

t < inj (t-'> ay) 
(t-fr) < y < (a'-xp1)
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«3J <^1
The necessary and sufficient conditions for 1 to be 

between Vf ?Pi and between are according to theorems

as, .ySdXo

Using (A13)z (All), we can write these conditions as

y (0 (A50)

(A51)

Since ^^0/ we can rewrite these as

(y-E.+d'<o (A52)

(y-t+d*)<o (A53)

For the arrangement ,,

we have again that the necessary and sufficient conditions

are

y(»,-9-)l<C£.s')(L'5'-^')

£< t (A39)

In summary, we have that the necessary and sufficient 

conditions for the arrangement 

are
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< Ct- O’- E&>/) (A38)

£< t (A39)

Ct-t'+d'') <0 (A52)

(J-t + S'XO (A53)

Or in a more compact form,
( £-£•')( td'-E.y) 

t'>t- ,
Jr < in-5 (t-fr) ,(£.-■9’)^ 

a41 O<^<1< ^<f1 <•%
The necessary and sufficient conditions for 1 to be less 

than z^. « are according to theorem A2

-y(bCi) >o , 1 < CV,+K)/i
Using (A13), (A3), we write these conditions as

y(|f-t.'+i>')>o (A54)

1 < £J73.^ (A55)

Since , we can rewrite (A54) as

(y-t' + ^,)> 0 (A56)

< £'/ (A55)

The necessary and sufficient conditions for 1 to be

between are according to theorem A5,
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Using (All), this condition can be written as

(jf-E+'ft1) < 0 (A57)

As before, the necessary and sufficient conditions are

(A38)

€ *0 (A39)

In summary, the necessary and sufficient conditions for 

the arrangement '0<pt< 1 Pl < Vl

t<£.z

^<S-'

Or in a more compact form,

t,>supCi>2jr)
(£'-&') < )$<

The necessary and sufficient conditions for 1 to be less

than are according to theorem Al,

k<P(i)>o > i<(fi+p1)A
Using (All), (Al), we can write these conditions as

(lf-«.+fr) >0 (A58)
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1 < (A59)

As before, the necessary and sufficient conditions for 

the arrangement h <^1 are

(£-£')((A38)

(A39)

In summary, the necessary and sufficient conditions 

e°r 1 < [>x < Ipt fl <. are

XX< EX t'
(y-t+'0>) >°

For the arrangement fl we
have from theorem A7b that the necessary and sufficient 

conditions are

K0<0 >
Using (A9), (Al), (A3), we can write these conditions as

y(t>’-?’)’'4 (£.-£-')(E-'d1-1.^') (A38)

t'<£
The necessary and sufficient conditions for zero to be 

less than are according to theorem A2

-XG(o)>o > o<(y<+^)/a.
Using (A12), (A3), we can write these conditions as



-102-

jO’So
t'/apo 

v JSince Y ,y , C are all positive by definition, it is obvious 

that both these conditions are automatically satisfied.

The necessary and sufficient conditions for 1 to be greater

than are according to theorem A3

pd)>o >
Using (All), (Al), we can write these conditions as

( +&’ ) > 0 (R60)

l>£/a^ <A61)

In summary, the necessary and sufficient conditions for

the arrangement 0 C Vi 1 are

Or in a more compact form,

<(£-$/) U’^')
(A-t + S’po

b2J

The necessary and sufficient conditions for 1 to be

between are according to theorem A5
p(1)<0

Using (All) ,

(J-E + O>) < 0 (A62)
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The necessary and sufficient conditions for 1 to be 

greater than are according to theorem A4,

-&G(i)>0 > l>(Vi+Va/5-
Using (A13), (A3), we can write these conditions as

<a63)

(A64)

The necessary and sufficient conditions for the 

arrangement 0^ Vi f x are as before

(A3 8)

In summary, the necessary and sufficient conditions 

for the arrangement Yi 4fj.<C 1 fl are 

y (d,-9')l< (i-t’)h' O’-tS’')
£.'<4.

(ii-t+9>)<0

Or in a more compact form, - /

(t-d-')

b31 0<1p1.<fi<l<XP1<fl
The necessary and sufficient conditions for 1 to be 

between and ,^2. are according to theorems A5

and A6,
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Using (All), (A13), we can write these conditions as

(y-t+S’Xo (A65)

(A66)

The necessary and sufficient conditions for the 
arrangement fl fl. are as before,

t'c t
In summary, the necessary and sufficient conditions for 

the arrangement are

t'<L
CX-e+^) <o

<o
Or in a more compact form,

t'Ct

b4’ o< 4'141 < fx<APi <- fi
The necessary and sufficient conditions for 1 to be

between ^,^2, are according to theorem A6,

-^6(1X0
Using (A13), we can write this condition as

(jf-t-' + <0 (A67)
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The necessary and sufficient conditions for 1 to be less

than are according to theorem Al,

K<p(»>o > 1< Ch+PD/2
Using (All), (Al), we can write these conditions as

+ (a68)

1 <A69)

The necessary and sufficient conditions for the arrangement

°<tP1.< fa.< fl are as before,

t'< t
In summary, the necessary and sufficient conditions for 

o<Vl<l<L<ip1 O.

(jr-t+d>) >o

2()r< e.
Or in a more compact form, , /

t>suf (s'.zar)
(e-9>) < is< Ce'-^')

The necessary and sufficient conditions for 1 to be less
than ,^2. are according to theorem A2,

-JG(1)>o , KCVi+fj/s.
Using (A13), (A3), we can write these conditions as
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(y-t+5>') > 0 (A70)

1< £-,/2j' (A71)

The necessary and sufficient conditions for

are as before, , . I a x2. . , /x , <x/x

t'ct-
In summary, the necessary and sufficient conditions for 

the arrangement 1 'Fl Pl are

Ct-V)(t d1- iy)

CK-L'+d*') > o
2y < £'

Or in a more compact form,

2^< £.'<£. 
cj-t'+y)>o

=11 0<f1<^C'p1<|>1 <1
The necessary and sufficient conditions for

are according to theorem A7c given by
Ag>o

Using (A9), (A7), we can write these conditions as

t*1"- V> 0 (A72)

(A73)
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(A74)

The necessary and sufficient conditions for zero to be

less than are according to theorem Al,

^>0 , ^(o)>o , o<(f1+p2.)/a

Using (A10),(Al), we can write these conditions as

(A75)

> 0 (A76)

t/ Zjf > 0 (A77)

Conditions (A76), (A77) are automatically satisfied.

Condition (A75) is repetitive, because

>o

that i(wa<o
K<pWh<o

according to theorem A5 means that are real

and unequal. Therefore, we do not really need to require 

that

and

imply

which

The necessary and sufficient conditions for 1 to be

greater than p|
>0

Using (All), (Al)

are according to theorem A3,

, iXh+pa/a.
we can write these conditions as

>0
(A78)

i>V2jr (A79)
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In summary, the necessary and sufficient conditions for

the arrangement are
t.'l-4yy>o
kdy-S*)1 >

Mt > (t-fr)}
=21 0<fl<K<1Pi<i<Pi

The necessary and sufficient conditions for the

arrangement 0^ P are as before
£'l-4y8,'>o ,

s/a’-ix 2jr(fr-{»
The necessary and sufficient conditions for 1 to be

between are according to theorem A5,

IT o
Using (All), we can write this condition as

(^-t49>) <0
The necessary and sufficient conditions for 1 to be greater
than ,^2. are according to theorem A4,

-^6(1) >o , 1 > 4^)/1
Using (A13), (A3), we can write these conditions as

(ir-i't- &>') >o
i > Mi 2.y

In summary, the necessary and sufficient conditions for 

the arrangement <1 are
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(l-O') < ir

c3] 0<|t<XP1< 1 <
The necessary and sufficient conditions for the

arrangement are as before
, vl- 4jr6>' > o

<^jr
The necessary and sufficient conditions for 1 to be

between and are according to theorems A5 and

A6 given by
Y <P (i)< o

-YGC<)<o
Using (All), (A13), we can write these conditions as

Ur-Ufr) <0
c^-L’tyxo

In summary, the necessary and sufficient conditions for

<:pi
4' - 4$d1 > o

(Y-L'+t)>') < o
=4] 0< |)i< 1 < < 'Pl < f1
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The necessary and sufficient conditions for the 

arrangement are as before
t,x- fytPSo t

t-t) <
The necessary and sufficient conditions for 1 to be

between , |>^ are according to theorem A5,

y<P(1)<0
Using (All), we can write this condition as

(y-tt'fr) < o
The necessary and sufficient conditions for 1 to be

less than are according to theorem A2,

-x6(i)>o , K(^+K)/2
Using (A13), (A3), we can write these conditions as

(y-t'+9>') >o 
1 < t-'/ij-

In summary, the necessary and sufficient conditions for 

the arrangement are

S'-4^ 7 o z

(jr-tfth) <o

2-jr <s/
Or in a more compact form, t, , ti -4j[v'>o

S1)1 > s'd'-1.5>)

< y < (2-d-)
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=51

The necessary and sufficient conditions for 

are as before, x , a/
>0

The necessary and sufficient conditions for 1 to be

less than are according to theorem Al,

Using (All), (Al), we can write these conditions as

In summary, the necessary and sufficient conditions for
the arrangement W1<?i are

E.'-ljfd’ >0 
ir (tp'. O’)x > tt-1') Utf-10>')

n a-9>)<y< V2-
dij o< < 1

The necessary and sufficient conditions for <V1
are according to theorem A7d given by (A23)-(A25). Using 

(A9), (A8), we can write these conditions as

tL-4^>o (A80)

(A81)

£(£-0 >2y(d>-^) (A82)
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The necessary and sufficient conditions for zero to be 
less than f'41 are according to theorem A2,

A6>o , -jf6(°)>o , o< OPf+'yj/z
Using (A12), {A3), we can write these conditions as

t I
E,-4j"8)>0 (A83)

0 (A84)

(A85)

' /
Since , U and L are positive by definition, (A84)-(A85)

are automatically satisfied. Condition (A83) is repetitious.

because

imply that
-yfiCf.Xo

which according to theorem A6 means that are real

and unequal. Therefore, we do not need to require that

> o , because conditions (A81)-(A82) 

guarantee this.

The necessary and sufficient conditions for 1 to be

greater than are according to theorem A4,
-yG(i) >o , 1> C1H+^l)/2.

Using (A13), (A3), we can write these conditions as

(r-t-'+o') >o
17
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In summary, the necessary and sufficient conditions for 

the arrangement 0 Vi f l < j3 y < Vi i are

y>Sup\

d2j 0<ip1.<pt<p1 <KXPi
The necessary and sufficient conditions for 1 to be

between Vp are according to theorem A6,

-y6(l)<0
Using (A13),

(f-i.'+ihXo
The necessary and sufficient conditions for 1 to be

greater than are according to theorem A3

y<|>(O>o , i>(fxpD/2
Using (All) , (Al) ,

(y-ifd’) >o 
1> t-/2iT

The necessary and sufficient conditions for 0

are (A80)-(A82).

In summary, the necessary and sufficient conditions for 

the arrangement Vj. 1. are
tMfrtXo , ,

L($.'-L)> 2y(y-9>)
Sup^l
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33J 0<Vl<^<l<f>14'lP1
The necessary and sufficient conditions for

are (A80)- (A82).

The necessary and sufficient conditions for 1 to be

between are according to theorem A5,
y <?>ci) < o

Using (All) ,
Q-tt&’XO

In summary, the necessary and sufficient conditions for 

the arrangement are,

> o

cy-tt^) < o
d4]

The necessary and sufficient conditions for

are (A80)-(A82).

The necessary and sufficient condotions for 1 to lie 
between , Vl are according to theorem A6,

-ytSUXo
Using (A13) , , /

Q-t+S’JCo
The necessary and sufficient conditions for 1 to be

less than are according to theorem Al,

8<|>(i)>o) KCfXfj/i
Using (All), (Al),
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In summary, the necessary and sufficient conditions for the 

arrangement 0 <^<1 are

tl- > 0
K(0>- »)1 > t 1') C £-'^- i )

£({.’-1) , ,,

as)
The necessary and sufficient conditions for W<r^i 

are (A80) - (A82) .

The necessary and sufficient conditions for 1 to be less 

than are according to theorem A2,

Using (A13), (A3),

0< i-7v
In summary, the necessary and sufficient conditions for 

the arrangement 1 ft <pi are,
lt-4-yir>o

1.'

el] 0<^< f( < VX Vi < 1
The necessary and sufficientconditions for 

are according to theorem A7e,
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Ax o A "> o . R, o

+ >°
^Gtpi-6Cp] ?o 

htfl<xPa^

Using (A9),(A7), (A8), (Al), (A3), we can write these 

conditions as

t-4)fd,>0 (AS6)

(A87)

(A88)

t'(t'-t-) "> 2y(8>-9)) (A89)

(A90)

t < fc/ (A91)

The necessary and sufficient conditions for 1 to be 

greater than Vj are according to theorem A4,

Using (A13), (A3)f

i > t'/ajr
In summary, the necessary and sufficient conditions for 

the arrangement 0^ d are
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et-4^d’>o

t< b'<x^ 
Q-t-'+tp') >o

621

The necessary and sufficient conditions for 

are (A86)-(A91).

The necessary and sufficient conditions for 1 to lie

between are according to theorem A6,
-y6Cl) <o

Using (A13),
<o

In summary, the necessary and sufficient conditions for

the arrangement 0 are,
I*-. 4^0* > o

i<CZ ,
<o

631 0<Pt<p14i<V,t<1/l
The necessary and sufficient conditions

are (A86)-(A91).

The necessary and sufficient conditions 

less than Yl are according to theorem A2

for
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-y6CD>o >

Using (A13), (A3)z

1< V/2jr
The necessary and sufficient conditions for 1 to be

greater than fl * ft. are according to theorem A3,

Using (All) , (Al) ,

>0
i > 8-/2y

In summary, the necessary ano. sufficient conditions for 

the arrangement < 1 are,

sup! , 13< 2-
e4] 0<pt< 1 < <Y1<.

The necessary and sufficient conditions for OC.

are (A86)-(A91).

The necessary and sufficient conditions for 1 to lie

between are according to theorem A5,

Using (All),
cy-t-btf) < 0
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In summary, the necessary and sufficient conditions for 

the arrangement 0 < 0^ 4. 1 are
l-4|f0'>o

C|f-t+d>) Co

e5] 1 < ft < 4 ■%. <
The necessary and sufficient conditions for X 

are (A86)-(A91).

The necessary and sufficient conditions for 1 to be less

than are according to theorem Al

X<P(1)>O , l<(fi + Pt)/2
Using (All) , (Al) ,

Q-t+fr)>o

1 <
In summary, the necessary and sufficient conditions

for the arrangement fl <1'1 are,

^-4^'70
yUfr'-iP)1

tjj-C £< $/
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fl! 0<1Pl<V-l<fl<l,1<l
The necessary and sufficient conditions for

are according to theorem A7f,
A^>o, A6 >o , f^>o

Vi
Using (A9), (A7), (A8), (Al), (A3), we can write these 

conditions as

(a92)

>o (A93)

^(th'-^)* >(£-£.')(a94)

(A95)

(A96)

(A97)

The necessary and sufficient conditions for 1 to be 

greater than |>^ , are according to theorem A3,

XVtD >o , d>Cfi^/>,.)/2

Using (All), (Al) ,
Q-t-td’) >o 

i >
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In summary, the necessary and sufficient conditions for

the arrangement are,

tz-4^8> >0

Vs'

f21 0<K<1Pl<P1<l<fi
The necessary and sufficient conditions for 0<^t<

are (A92)-(A97).

The necessary and sufficient conditions for 1 to be 

between Pj , are according to theorem A5,

yWD
Using (All),

< o
In summary, the necessary and sufficient conditions for

the arrangement are,
1-4^ >o
s'14r&,>o
y( »)1 > I
e. (t-'-t.) < 2-ytft-^) < fc-'Cfc-'-t)

£,7 L*
<o

f3] 0<Vl <Vl < 1 fl < pl
The necessary and sufficient conditions for 0 
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are (A92)-(A97).

The necessary and sufficient conditions for 1 to be less 

than 3276 according to theorem Al,

y4>(O>o > KCh+f!)/^
Using (All), (Al), we can write these conditions as

>o 
i < i-Ajr

The necessary and sufficient conditions for 1 to be
greater than ' Vz, are according to theorem A4,

.-^GCD >o , 1 > (Vi iVA/2
Using (A13), (A3), #

i> t'/ijr
In summary, the necessary and sufficient conditions for 

the arrangement Cpi

y (81-O')2" > C s.-1') () 
tCt-'-t) < 2^(0)'-0>)^ (i-t)
5uplX< T • 

£41 O< < 1 <1P1 < fl <- p£
The necessary and sufficient conditions for

are (A92)-(A97).

The necessary and sufficient conditions for

between are according to theorem A6,

are

1 to lie
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Using (A13),
Q-£W)<0

In summary, the necessary and sufficient conditions for 

the arrangement

e-1-4^8’ >o

(jr-t'+^'Xo

The necessary and sufficient conditions

are (A92)-(A97).

The necessary and sufficient conditions 
less than JH. are according to theorem A2,

-frG(O>o > l<C1PiflPi)/z

Using (A13), (A3),

are

for

for 1 to be

In summary, the necessary and sufficient conditions for 

the arrangement 1 Vt. V't ft fl are»
ittfrOoc 
z'-4j'd’,>0

ta'-tx zycy-8>)<£-(^)

C^-£.'tVn')>0
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CASE B

al] 0<|<%< ^<1

The necessary and sufficient condition for 1)(V) = O to 

have a double root, i-J'' , is

(A98)

The necessary and sufficient conditions for 0<

are according to theorem A2,

A6>o , -^G(s/2y)>o , A-<

Using (A14), (A3), we can write these conditions as

£'-^^9>>o (A99)
/ z / 

(A100)

g < e/ <a101)
The necessary and sufficient conditions for 1 to be 

greater than ,^2 are according to thoerem A4,

-y(5(i)>o ,
Using (A13), (A3),

(K-£.' + 9»)>0
1 > ^72<r

In summary, the necessary and sufficient conditions for
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the arrangement Tj r 1 S * are

e,'-4^s> 0 
eCt'—)

(y-t'+V)>o

a2] O< p< 'VP2< 1 <41
The necessary and sufficient conditions for 0<P<V1<V1

are (A98) - (A101) .

The necessary and sufficient condition for 1 to lie 

between #^2. is according to theorem A6,

-yG(l)<o
Using (A13), f

(X-^9>)<o
In summary, the necessary and sufficient conditions 

for the arrangement
= 4^

(X-t'+t)1 )<o

o<p<t1<K1lk are

a3] 0<p<l<1{<4ll
The necessary and sufficient conditions for 0<|)<y2<l/i„

are (A98)-(A101).

Tne necessary and

less than

sufficient conditions for 1 to be

and greater than p are according to



-126-

theorem A2,

-yG(D>o , KCM^A >
Using (A13), (A3),

Q-t' + 9>')>0
i < E-Vzjr

In summary, the necessary and sufficient conditions for

the arrangement 0< p<K'tPZ. *^1. are,
£.,'=:4^6
t,'l-4|cih'>o

O-»* / , c \

a4] K[><V2<APj.
The necessary and sufficient conditions for f<y2<Vi

are (A98) - (A101) .

The necessary and sufficient condition for 1 to be less 

than p is

In summary, the necessary and sufficient conditions for 

the arrangement 1 are,
t1'=4^|

2Y<£<£'

The necessary and sufficient conditions for
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where p is a double root of the

are according to theorem A4, 

tMy^> -)r<5(e/2y)>o 
Using (A14), (A3), we can write

0
these conditions as

equation w=°

£,1-4^'>0

(A102)

(A103)

(A104)

(A105)

The necessary and sufficient condition for 1 to be 

greater than p is,

In summary, the necesssary and sufficient conditions Eor 

the arrangement 0 are
^4^
J-A 4^'70
2^' > £ C t-|)

b2] 0< Yt< <1 < j>
The necessary and sufficient conditions for 0

are (A102)-(A105).

The necessary and sufficient conditions for 1 to be 
greater than ,*4^ and less than p, are according to 

theorem A4,
, l>C?i+W2>
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Using (A13), (A3), (

i>

In summary, the necessary and sufficient conditions for

the arrangement O

ih:4ytP
t'-4p>o 
a.^'> 
5uPl(t'-y),71V^<T

Ml <f>
The necessary and sufficient conditions

are (A102)-(A105).

The necessary and sufficient conditions

between are according to theorem A6,

-yGGXo
Using (A13),

(X-t'+9>') <o
In summary, the necessary and sufficient conditions for

are,

for

for 1 to lie
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b4]

The necessary and sufficient conditions for 4^ 
are (A102)-(A105).

The necessary and sufficient conditions for 1 to be 

less than « are according to theorem A2,

-frGCi)>o >
Using (A13),(A3),

>0

1<
In summary, the necessary and sufficient conditions for 

the arrangement are,
4^

t,l-4Yin'>o

< t'< L
>o

The necessary and sufficient conditions for 0 
where p is a double root of nv=o , are according 

to theorem A6,

^4^ ,
Using (A14),

4^
(A106)

(A107)
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The necessary and sufficient conditions for 1 to be 

greater than are according to theorem A4,

0 (A108)

-YGC-i)>o
i > s'/iy

(A109)

(A110)

Condition (A108)

guarantees

is repetitious, because according to 

theorem A6, the condition -^(£/zjr)<o 
that Vi are real and unequal. Thus, we can 

disregard (A108).

Using (A13), we can write (A109)-(A110) as

In summary, the necessary and sufficient conditions for 

the arrangement 0 Vi f V| 1 are,

v>$up

=21 0< Vi < p t 1 < Vi
The necessary and sufficient conditions for o <Vu<f<' 

are (A106)-(A107).

The necessary and sufficient conditions for 1 to be 

between *4^ ,"4^ and greater than p are according to 

theorem A6,
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Using (A13),
(y-t'-f- S’ ) <0

€< 2^
In-summary, the necessary and sufficient conditions for

the arrangement 0<%4p<i < tPl4p r

=31 1< P <"%.
The necessary and sufficient conditions

are.

for 0<'/i<p<Vi
are (A106)-(A107).

The necessary and sufficient conditions for 1 to be

between and less than p are according to theorem A6,

-|jGCO4o

Using (A13),

In summary, the necessary and sufficient conditions for

the arrangement 0

‘‘ktp,,...
are,
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J 1 < % < f < 'Pi
The necessary and sufficient conditions for 

are (A106)-(A107).

The necessary and sufficient conditions for 1 to be less

than are according to theorem A2,

Using (A13), (A3),

>0 
i < l'It-X

In summary, the necessary and sufficient conditions for

the arrangement P are,

t'=4frtP
^cz-'-D

t < £/z
dl] 0<XP< [>t < f1< 1

The necessary and sufficient conditions for 

where T is a double root of G(cd) z o , are according to
theorem Al, ,

cixx<
Using (A15), (Al), we can write these conditions as

cz = (ahi)
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£?- > o (A112)

(A113)

(A114)

The necessary and sufficient conditions for 1 to be

greater than 'fl * are according to theorem A3,
¥<P(0>o ,

Using (All), (Al),
(X-t+9>)>o 

i> thy
In summary, the necessary and sufficient conditions for

the arrangement 0
t1'--
£,t4-^>o

t'< t < 2-y 
ci-t+fr)>0

32] o < 4* fl < i- < fl
The necessary and sufficient conditions

are.

for

are (Alli) - (A114) .

The necessary and sufficient conditions for 1 to lie

between are according to theorem A5,

^<P(1)^O
Using (All) ,

In summary, the necessary and sufficient conditions for



-134-

the arrangement 0 <Y<f> j. 4 i f* are,
t'1 = 4y8''
t1-4y$P>o
lyS1 > t'(. t-i)

Cjj-L+th) <o
33] 0 <1P< 1 < Pi < pi

The necessary and sufficient conditions for O^T^Pi^p^ 

are (Alli)-(A114).

The necessary and sufficient conditions for 1 to be less 

than an<^ greater than ? are according to theorem

A!, ,

^tD>o > Ktfj+MA ,
Using (All), (Al),

Q-2.+ ^)>o 
1<

In summary, the necessary and sufficient conditions for

the arrangement 0 <1p < i < p 1 pi are,

Ll-4-ytF>0
7£-'Ct--r)

sup^ jr<^A

34] 1 4^ < Pl <C Pl
The necessary and sufficient conditions for ^Pz<fi

are (Alli)-(A114).
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The necessary and sufficient condition for 1 to be less 

than f is,

In summary, the necessary and sufficient conditions for 

the arrangement 1 <y<f I- Pl. are,

2^ <£,'<£.

eH 0<|>l< < !p< 1
The necessary and sufficient conditions for 

are according to theorem A3,
t'1 =

X<l>( &7q)>o
t71P (fi+fi-V2-

Using (A15), (Al),

2^> ^'(2.--^)

^>E.

o<^<Y

(A115)

(All 6)

(A117)

(All8)

The necessary and sufficient condition for 1 to be 

greater than Y is •
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In summary, the necessary and sufficient conditions for 

the arrangement 0 are,
£,l= 4^tPz

e2] < l<1p
The necessary and sufficient conditions for 0 <h<Pi

are (A115)-(A118).

The necessary and sufficient conditions for 1 to be 

greater than and less than ? are according to

theorem A3,

yq>(i)>o,
Using (All), (Al),

i >

In summary, the necessary and sufficient conditions for 

tha arrangement 0 4. p are,
V1: 4^’
tl-4yfr>o ,

Sup^(t-9>), < E-/2

e3] 0< fl.< 1 < <'4>
The necessary and sufficient conditions for

are (A115)-(A118).
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The necessary and sufficient conditions for 1 to lie 

between ?1 'fl are according to theorem A5,

Using (All),
(y-tt-ti1) <°

In summary, the necessary and sufficient conditions for 

the arrangement 0 <ft< Kfj <1P are,

s1 ct-4)
£,'>t

<0

e4]

The necessary and sufficient conditions for 

are (Al15)-(All8).

The necessary and sufficient conditions for 1 to be less 

than are according to theorem Al,

X<PU)>6, i<(fi+fi)/a

Using (All) , (Al) ,

Cjf-H-^>)>o

In summary, the necessary and sufficient conditions for 

the arrangement 0^ 1 P-| are.
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fl]

Using (A15),

(A119)

(A120)

The necessary and sufficient conditions for 0 <^<P1.
where Y is a double root of G(w) = o , are according

to theorem A5,

ir) < o

£/L= 4^
I , -J >

The necessary and sufficient conditions for 1 to be 

greater than are according to theorem A3,

ZX^> > 0 (A121)

H(O>o (A122)

1 >CfltPl)/2 (A123)

Condition (A121) is repetitious, because according to

theorem A5, the condition guarantees

that are real and unequal. Therefore, we can

disregard (A121), and using (All), (Al), we can write 

(A122)-(A123) as
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In summary, the necessary and sufficient conditions for 

the arrangement 0 are,

Q-t+fr)>0

Or in a more compact form, /
t' ,

>Sup^ £/i ,€£-^>3

f2] 0<f1<V< 1 <pl
The necessary and sufficient conditions 

are (A119)-(A120).

The necessary and sufficient conditions 

between an<^ greater than V , are

theorem A5,

Using (All),

(_)[- i. + tj*) 0
$,'< tjf

In summary, the necessary and sufficient conditions for 

the arrangement 0 <3P< 1 ^Pi are,

for 1 to be

according to

for
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£3] O<^ < i
The necessary and sufficient conditions for 

are (A119)-(A120).

The necessary and sufficient conditions for 1 to be

between fl 'fl and less than Y

A5,
< o

are according to theorem

In summary, the necessary and sufficient conditions for

the arrangement 0^ <Tp<fi are,

X< $ v/i,
M] 1 < < j>i

The necessary and sufficient conditions for

are (A119)-(A120).

The necessary and sufficient conditions for 1 to be less

than are according to theorem Al,
^cn>o > KCfi+pj/a.

Using (All), (Al)
C>-t.4-xP)>0

1 <
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In summary, the necessary and sufficient conditions for

the arrangement

(t-8>) < X< i-ll- 
911 °< p < < 1

g2] o < f < 1 < V

93] 1 < f <

hl] 0 < V < p < 1

h2] 0<Y<l<p

h3] 1 < Y < f

11] 0< f < 1

12] j. < P

The necessary and sufficient conditions for the above 

arrangements are shown in chapter IVb. The derivation of 

these conditions is trivial, and will not be discussed.
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CASE C

al] ft , are complex and 0

The necessary and sufficient conditions for to

be complex and for 0 are according

to theorem A4,

-yGC1)>o

Using (A13), (A3),

t|1-

i >
Or in a more compact form, 4^ 

t'1- 4^9,'>° 
X V/a.

^2 ] are complex and 0<1pi<i<1Pl

The necessary and sufficient conditions for fl » PT tO 
be complex and for 0 <%<1 <^i are according 

to theorem A6, 7
$-4yV><0
-yGCl)<o
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Using (A13),

(y-t'+^'Xo

a3] fl 'ft are complex and KYt^i •

The necessary and sufficient conditions for pi , to 

be complex and for are according to 

theorem A2

-y6(1)>o 
i<CVii-K)/a-

Using (A13), {A3),
it-4)(d'<o

(y-'il+d>')>o
k

Or in a more compact form,

<x< t/a.
bl] are complex and 0<y < 1

b2] are complex and 1

The necessary and sufficient conditions for these 

arrangements are shown in chapter IVb. Their derivation is 

trivial and will not be discussed.
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cl] ,*4^ are complex and 4.1. •
The necessary and sufficient conditions for ,^2. to 

be complex and for 0^ |>^ <f1 <1 are according

to theorem A3, /
4yiP<D

E,1- 4 >0
>0

1 > Cfi
Using (All),(Al), we can write these conditions as

L't< 4^'
4^

Cjf-t-t-S*) > 0 
i> 4-/2^

Or in a more compact form,

t1 > 4^

c2] ,'41. are complex and 0^. 4 i 4

The necessary and sufficient conditions for 4^1 r 41 to 

be complex and for ^4p^4i fd. are according

to theorem A5, ,
£’l-4j><0
HU)<0

Using (All), .$.,x<4^
Cy-t4-8’)<o
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=3] are complex and Kf Pa
The necessary and sufficient conditions for to

be complex and for 1, p
theorem Al,

£,'l-4^<o
E,7-- 4 jih > o

$<P(1) >o 
i<Cfi+h)A

are according to

Using (All), (Al), /L,1'<
>o

1 < tjTX
Or in a more compact form,

4^'
€" >

(t-8>) <jr< 1
dl] Yx are complex and 0 4 p < 1 

d2 ] ,^PL are complex and 1 4 p

e] , ^Pt and are complex.

The necessary and sufficient conditions for the above 

arrangements are shown in chapter IVb. Their derivation is 

trivial and will not be discussed.
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Nomenclature

[A] : Concentration of A

ao • Constant defined in chapter VI.

al 2
i • । i ii ii 11

a2 2
। । 11 । । i i

a3 2 । i । । । i

/
ao- 2

। i । । i i

/
al 2 11 । । । । i i

/
a2 2 । i i । i । i i

/
a3 2 । । • । । i i ।

A 2 Reactant

A : Linearized matrix defined in Illa.

(A-S) : Adsorbed reactant A.

' {A-S } : Number of active sites occupied by adsorbed A.

B : Reactant

[B] : Concentration of B.

(B-S) : Adsorbed reactant B.

' {B-S} : Number of active sites occupied by adsorbed B.

Eg : Activation energy of adsorption. Defined in lib

f : Function defined in VI.

f^ : Function defined in lie.
# . ii ii iiiir2
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F : Function defined in VI.

G : Polynomial defined in IIIc.

k : Kinetic constant defined in lib.

k-^ : Kinetic constant for adsorption of A(g) .

k2 : " ' ' ' ' * " 1 * B(g).

k_j : Kinetic constant for desorption of (A-S).

k_2 : * * '' " * * (B-S).

kg : Rate constant defined in lib.

kgg : Kinetic constant comprising kg.

kg : = kL

kg : Kinetic constant for Eley-Rideal surface mechanism

L : Total number of active surface sites.

m. : Real number(see APPENDIX).

JuJ . I I I I II

r : Reaction rate defined in lib.

R : Universal gas constant

Rq^, : Constant defined in the APPENDIX, page 91.

[S] : Active surface site.

’ {S i : Number of active sites which are not occupied at time t.

T : Temperature

t : Time

x : Coverage of catalytic surface with adsorbed A(g).

y ; * ' • ' • ’ ' ’ ' ' ' ’ B(g) .

¥ : Vector defined in Illa

Z : Polynomial defined in VI.
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Greek characters

: Constants defined in Illa

Constants defined in lid
1 1 i i 11 IIIc.

1 1 i । ! 1 VI
1 1 । i 1 1 Hid
1 1 । i 1 1 IIIc

Fraction of active sites left unoccupied at

Constants defined in IIIc

time t.

: Eigenvalues of linearized matrix A 

: Coefficient of heterogeneity of catalytic

surface.

: Unknown in equation
: Roots of equ. ‘Hyiio, defined in Hid.

p : Double root of
t ■■ -k"

: Polynomial defined in IIIc 
: Roots of equ. G(u))zo , defined in Hid.

: Double root of equ. G(w)-o , =

: Unknown in equ. GCw) = o .

: Polynomial defined in VI.

Symbols_in_Scrigt

: Constant defined in Illa.


