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Abstract

The purpose of this study was to examine whether it is
possible for concentration oscillations to occur in the
case of the isothermal reaction A(g) + B(g)=———>A3, which
is taking place on a catalytic foil. By assuming a
Langmuir-Hinshelwood kinetic mechanism in which the energy
of activation for the final step depends linearly on the
coverage by adsorbed B(g), we were able to derive the
differential equations for the net rates of adsorption
of A(c¢) and B(g). The necessarv and sufficient conditions
for stability were derived for the special case kl[A]=k2[B].
In addition, unigueness criteria'were derived for various
ranges of the kinetic parameters. Wumerical integration of
the dynamic ecquations proved the possible existence of
sustained oscillations in the case of a unigue, unstable
steady state, with a period between 11-17 seconds. However,
we have not been able to find any examples of limit cycles
for a case in which multiple steady states exist. Application
of bifurcation theory did not lead to the finding of limit

cvcles in the case of multiple steady states.
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CHAPTER T
Introduction
During the past few years a number of publications
have reported phenomena involving catalytic pellets,

wires and foils, which cannot be explained by the

already existing dynamic models of lumped and
distributed parameter systems.

The puzzling behavior observed during these experiments
was temperature and composition 6scillations.in isothermal
and nonisothermal heterogeneous catalytic systems. For
example, Uicke and coworkers [1l] observed concentration

and temperature oscillations with amplitudes up to 60 °C

and periods from minutes up to hours during the oxidation
of hydrogen on a 8 mm spherical, 0.4% Pt on silica-alumina

catalytic pellet. The causes for these low frequency
oscillations and their mechanism is unknown and the existing

dynamic models are incapable of predicting this phenomenon.
Wicke attempted to explain the periodicity by assuming

that "it originates from particular reaction mechanisms
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which produce long time periodic changes in the nature
of the active catalyst surface" [1]. Another possibility

might be the effect of temperature on the adsorption and
desorption rates of the reacting species [6].

For the isothermal case, Wicke and coworkers [1]
investigated the CO oxidation over a 3X3 mm cylindrical,

0.3% Pt on y-A1203 catalytic pellet. The reaction rate

goes through a maximum with increasing concentration of
the reactants (self-poisoning), because the strong
chemisorption of CO inhibits the reaction rate at higher
CO partial pressures. When this is the case, the reacting
system may become unstable even under isothermal operating
conditions. In fact, temperature and concentration

oscillations do appear when the feed's temperature is

below 250°. A mechanism explaining this phenomenon has
to be presented.

Hugo and Jakubith [3] have reported similar concentration

oscillations during the isothermal oxidation of CO on a

platinum gauze. They attributed the observed phenomenon



to the existence of two types of adsorbed CO molecules.
Dauchot and Cakenberghe [4] experimented with the
catalytic oxidation of CO -under isothermal conditions-
on a thin platinum film evaporated on silica. Again,
concentration oscillations were observed. They interpreted
this phenomenon by postulating that the reaction mechanism
shifts from an Eley-Rideal to a Langmuir-Hinshelwood type.
When oxygen has been mostly adsorbed, the hot catalytic
surface begins to cool down and CO is progressively
adsorbed -with or without the contribution of an
Eley-Rideal reaction. After an induction éeriod the reaction
starts and proceeds rapidlv. The CO is eliminated by a
Langmuir-Hinshelwood reaction, the hot resulting surface
is again instantly covered with oxygen, and the cycle
is repeated. They suggest that thé interaction between the
local surface temperature and concentration causes this
oscillatory behavior.

McCarthy [19] has shown in his study of CO oxidation
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over supported Pt that the mechanism for this reaction is

complex, with a two-step rate control ( O2 adsorption and

gaseous CO reacting with adsorbed O, ). The observed rate-CO

2
concentration behavior is, in fact, a competitive conspiracy

of two distinct rate processes: (1) Chemisorption of 0,

upon a surface partially covered with CO, and (2) an

Eley-Rideal-type reaction of gaseous CO with adsorbed

0,. In the regioﬁ in which both rates are of comparable
magnitude, isothermal limit cycling is observed. This

suggests that the CO oxidation over supported Pt is not

a unique reaction between surface adsorbed species, which
would give rise to

R=k $(0,,) #(CO,) % (1+K (C0) ) ™2
because this equation is based on a model of a one-step
rate control and, consequently, could not give rise to

limit cycling.

Recently, Slinko and coworkers [5] have observed

concentration oscillations during the isothermal oxidation

of hydrogen on a nickel foil. They claim that these
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oscillations can be explained by a surface kinetics
mechanism where the rate limiting step is the reaction
between adsorbed hydrogen and adsorbed oxygen. In other

words, they assume a Langmuir-Hinshelwood-type mechanism
in which the rate constant for the limiting step depends
on the surface coverage by oxygen. Their paper, however,
does not contain any kinetic parameter values, or numerical
simulations whic; demonstrate that the proposed kinetic
mechanism agrees with experimental results.

The main purpose of our research work has been to test
the claim of Slinko and coworkers [5] by investigating
the stability characteristics of the same surface kinetics

mechanism. The question is asked whether there exist parameter

values for which the ordinary differential equations
representing the rates of adsorption of the gaseous

reactants on the catalytic surface exhibit oscillatory
behavior. In other words, we are attempting to determine
kinetic parameters for which oscillatory solutions exist.

The kinetic scheme chosen for this study and the basic
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assumptions are expounded in the next chapter along with
the mathematical equations representing the physical model.
One cannot avoid noticing the similarity between our
differential equations and those of Poore and coworkers [9,101],
who investigated the stability characteristics of a continuously
stirred tank reactor (CSTR). The methodology shown in the
work of Poore and coworkers [9,10] is similar to the one
followed in our study, although our differential equations
are considerably more complicated. As result of this
complexity, some of the mathematical techniques used by
Poore to predict the direction of bifurcation of the
periodic orbits as one of the parameters is varied cannot
be employed here.
The fact that existing dynamic models do not predict
the experimental phenomena mentionéd in the above
publications is an indication that certain important
chemical processes have not been taken into account.

What has been heretofore neglected is the inclusion
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of the adsorption capacity of the various reacting species
on the catalytic surface. Elnashaie and Cresswell [7,8]
have demonstrated that neglecting the dynamics of the
adsorption-reaction-desorption process may produce a
very oversimplified picture of the behavior and stability
of catalytic pellets. One is inclined to believe that what
is needed is the use of more sophisticated dynamic models
han those used up until now. Such models would not only
represent more accurately the actual physical situation,
but would also be more helpful for design and industrial
purposes. It is hoped that the present study is a small

step in this direction.
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CHAPTER II

Here, we discuss the following topics: First, the

heterogeneous catalytic mechanism postulated for the

general chemical reaction

A(g) + B(g) —~——>»AB

Second, the basic assumptions accompanying the kinetic

mechanism chosen- for this reaction. Third, the derivation

of the differential equations for the rates of chemisorption

of reactants A(g) and B(g) on the catalytic surface; and,

fourth, the form of the steady state equations.

Iia] Postulated kinetic mechanism

Suppose that the chemical reaction

A(g) + B(g) =—>AB

takes place on a catalytic surface. The mechanism assumed

for this reaction consists of the following kinetic

steps:

A(g) + [S8] ———> (A-9)

B(g) + [S] ———+(B-5)
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(A-S) + (B-S) ———>» AB + 2([S]

where [S] denotes an active surface site, while (A-S)
and (B-S) denote the adsorbed reactants A(g) and B{(g),
respectively. The mechanism for which both reactants
have to be adsorbed on the surface for the final product
to be formed is known as a Langmuir-Hinshelwood mechanism.

Instead of a Langmuir-Hinshelwood we could have assumed
an Eley—Rideal mechanism. In the latter, only one reactant
has to be chemisorbed on the catalytic surface while the
other has to strike the adsorbate from the gas phase in
order to form a bond between them. For the@ reaction chosen
in our study, an IEley-Rideal mechanism consists of the
following kinetic steps:

A(g) + [8] —————> (&-5)

(A-S) + B(g) = AB + [S]

In the present work, however, the mechanism postulated
for the reaction was a Langmuir-Hinshelwood rather than an

Eley-Rideal-type, because the mathematical analysis is less
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complicated. Hopefully, in some later time an analysis will

be attempted assuming an Lley-Rideal mechanism, or a hybrid

of an Eley-Rideal and Langmuir-Hinshelwood. In either case,

analytical results should be compared with experimental

to decide whether the kinetic model is realistic.

a) Let {S } denote the number of active surface sites

which are not occupied at time t. Then, the total number

of active sites on the catalytic surface, L, is given by

L= {8} + {a-s} + {B-s}

where {A-S} and {B-S} denote the number of active sites

occupied at time t by adsorbed A(g) and B(g), respectively.

Then

"{s)= - {a-s}-{B-S}

and after dividing both sides by L

t= l-x-y

where

t: represents the fraction of active surface sites
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which are not occupied at time t.

x: represents the coverage of the catalytic surface with
adsorbed A(g) at time t.

y: represents the coverage of the catalytic surface with

-

adsorbed B(g) at time t.

b) For the kinetic mechanism
A(g) + [8] ———>» (A-9)
B(g) + [8]———> (B-5S)
(A-S) + (B-S) —>»AB + 2[S]
we assume that the number of sites on the adsorbent is
constant, and each site can adsorb one species only. All

sites are identical but the activation energy for adsorption

increases linearly with coverage due to induced
heterogeneity: i.e., (i) there are lateral (repulsive)
interactions between adsorbed molecules which are uniformly
distributed over the available sites, or (ii) the adsorbate
molecules by perturbation of the adsorbent surface, change
the properties of the remaining free sites such that the

activation energy increases with coverage. In our
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study we postulate that the adsorbed B(g), (B-S), changes
the properties of the catalytic surface and the greatest
influence is in the third step. In that case, the energy
of this step depends on the coverage by adsorbed B(g)

E=E0

3 3 + URTy (1)

where u is the coefficient of heterogeneity of the

catalytic surface. The above relation for the energy of
activation of the adsorption process is identical to the
one shown in the work of Slinko and coworkers [5]; its
derivation and more extensive discussions can be found in
the works of Brunauer et. gl. [21], Aharoni and Tompkins
[22], as well as Weber and Lou¥ka [15].

The rate constant for the surface reaction is given
= k,, e E3/RT

30 (2)

Because of (1), we can rewrite (2) as

0
ky = (ky, e 03 /RTy o~y (3)
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c) We assume that the reaction
A(g) + B(g) ——>2B
occurs under isothermal conditions. If this is the case,
we can rewrite equ. (3) as
k, = k e Y (4)
where
k= k,, o E3 /R (5)
T 730
Finally, assuming a first order rate dependence with
respect to (A-S) and (B-S), the rate for the surface reaction
is given by
2

r = k3 xyLn (6)

Because of (4), we can rewrite (6) as

1
r=%ke " xyla (7)
IIc] ___Dynamic_eguations ________

The net rates of adsorption of A(g) and B(g) on the
catalytic surface are given by the following nonlinear,

coupled, ordinary differential equations:

o ~I¥#
%-: Ki[A] (1-X’})“KLX "Ks € X %’ = fi(xﬂjD

(8)
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o ~IYf
%:&[BJG—X-}})—’Q}“@Q xngz(X,}fl) (9)

wilere [A] and [B] denote concentrations of A(g) and
B(g), respectively, and
kg =kL

note that the above differential equations, although
considerably more complicated, are similar to the
equations appgaring in the work of Poore and coworkers [9,10].

In our study we want to investigate whether for some
values of the six kinetic parameters ( kl[A], kz[B], k_l,

_o+ k3 , u) sustained oscillations can exist.

At steady state, equations (8) and (9) become:

o ”P%E
o=K[Al (1-XS‘%S)-K1XS—K,3€ XY, (10)

o ~HY
o= Ki[B] (1‘)(5"3'5) ‘K,_%S-K;; € Xg ys (11)

where X and Y denote the steady state values of x and

y, respectively.
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combining (10) and (11) we obtain

Yg =P1 X5 * By (12)

where

B- ik, +K [A1-K [B]} ﬁ_sz(gj_;g[;\]}
1 ZK':?-— K—i[A]‘F Kz[B]S 7-—{‘-(:2_,’(‘[/\]_'_'(1[6]} (12a)

Assuming that Bl # 0, which implies k—l + kl [A] # k2[B],

(12) gives
-‘-—--( -ﬁ (13)
ALY
substituting (13) in (10) and further assuming that

yg (Yg~B,)# 0, we obtain
K B ING-B) +A[KAKITOR)] ek Meh)
K3 %(% Pz K (yg pz (14)
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CIAPTER III

Here we linearize equations (8) and (9) about the
steady state and use the first method of Liapunov to
determine the local stability of the critical points.
Next, we derive expressions for the determinant and
trace of A in the special case kl[A] = k2[B]. Qur
purpose is to demonstrate that when 82 = 0 it is easier
to classify the critical points of the linearized system
(27) by determining the sign of detA and trA, than when

3, # 0.

IIIa]l Linerization of the dynamic_equations.

. e B G Gt " ———— o —_n St e ot oy Tt Wi e s . ot e ot il it Gkt Bt e ey A ———

The net rates of adsorption of reactants A{(g) and B(g)
on the catalytic surface are given by the ordinary

differential equations:

o -1 |
DX aicp)-KX-K e XY = 5, (0 3) -

o -
%‘fﬂgtmo-x-y)-&‘i’&eka}ffzf"»w g
Our purpose is to investigate whether for some values
of the six kinetic parameters sustained oscillations can
exist. In other words, we want to find kinetic parameters
for which equations (8) and (9) give rise to limit cycles.
. The first method of Liapunov consists of examining the

properties of equations (8) and (9) linearized about the

steady state. Linearization of (8) and (9) yields
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where - ’351 (D§1 T

X-Xs -,3? —ﬁ:
Y= _1} ) A: 5, o5,
R N B Y X=X
where - ~ y HS

¢
B [AKKY e ?fi.--g,[mk x e P Cpy1)
2% ., [6]- gge”"'*, %Sz--xz[m g 0 e gD

The local stability character of the steady states 1is

determined by the sign of the real part of the eigenvalues
of A. These eigenvalues, Al' Az, are the roots of the

characteristic equation

2P-(ArA)) +(detA) =0

_ where the determinant of 2

95 0%, 5. ’DS
deth : [ DX' T fm(‘;]x Xs

and the trace of A

tvA = [%‘ fbg,z]xzxs

ﬁ' J=ds
Algebraic substitution yields
-pv
de{A = 0(1 LA s[ 23’5+o€3x5 (Hg's'1>] (15)

~Pis

trh=-prioe “[x(0-47  ae

wzd kK BIE K KIN+KK T
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%oz Ky {K‘L[B]‘K'[A]"'K.z?l (18)
«yz Ko JKCBI-KAT-Ky§ o
ngxi[hlﬂgﬁg[g]ugz’s (20)

We can elininate x_ from (15) and (16) by using the relation(13),

to obtain ) Xs= ("&S-pi)/ 81
deth = o + é”’i“z}s*'%(‘b‘é%)(ﬁs'l)} (21)

trh =Btk éwsi‘*‘ds‘”(g‘s‘é‘f&)‘ffsﬁ @2

We can eliminate the exponential term in (21) and (22) by

using (14) : ~
S B I0t-B) 1B LK D110 T (KR [AIiAE)]
to obtain K3 §s({s=B2) K3 (}fs-/;a)
edA=x, + % (o6 -O4s) o3 (M-1)( -84
detfl = %y 3 (45-B2) * KB (23)

(36“@}7‘;) +(935'1)(Jé"@'§‘5) (24)
("3'5" 1) Blﬂjs

L KK (8]
J6 = K1[A](B1*BZ)TE‘_P;“ K +1K,_EB]—K1 A (25)

trA --p-

wiiere

KKK BT HKK DAL
K, +K [81-K [A]

IIIb] _Classification_of the_critical points of the ________

@ =[K +K[AI(1+)]-

We found that the linearized equations are given by

d!/‘“"l_\. Y (27)
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and the determinant and trace of A are given by (23) and

(24) , respectively. We now state the following theorem[Q]:

Theorem 3.l1. Let D = (tré)z— 4 (dethA). Then, the critical
points of the linearized system (27) are classified as
follows:
1. If detA< 0, then the critical point is a saddle point.
2, Let detA> 0. Then
(i) The steady state is an unstable focus if trA > 0 and
D< 0, and an unstable node if trA > 0 and D >0.
(ii) The steady state is a stable focus if trA <0 and
D<0, and a stable node if trA <0 and D > 0.
(iii) The steady state is a center if trA = 0.
(iv) The steady state is a stable or unstable node if D=0.
3. Let detA = 0. The critical point is degenerate in the
sense that the phase plane consists entirely of critical
points or entirely of parallel straight lines and
critical points.
The type of critical point for the nonlinear equations
(8) and (9) is the same as that for the linear problem in
cases 1 and 2 above except in the case of the center. The
critical point is either a center or a spiral for the

nonlinear problem.

Remark 1l: For some combination of the six kinetic
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parameters (k;[A]l, k,[B], k_l,'k_z, kg, u) each of the cases
in (1)-(3) actually occurs for the nonlinear system.

in the interval (0,1).

ITIc] The special case kl[A] = kz[B]

Suppose that kl[A] = kz[B]. Then (l2a) become
By = k_l/k_2 (28)
B, =0 (29)

Equations (17)-(20) become

«4EiK,[A](K1+Kt) +K~'—K’-7$ (30)

«z K3 Ko (31)
a3z - k3K, (32)
Bg{lﬁ[ﬂ]+gi+|§zg (33)

Equations (25)-(26) become

365 KfM] K.1 /K.z (34)
@3 [K_”’ﬁ[ﬂ (1 +“K—_1;)] (35)

Since 82 = 0, (23) and (24) become

(3{5“635)[0‘181 +°‘3(H%5q1)] (36)
K§ 31 '3‘5

_ (36‘@35)[(}*35‘1)’/31] (37)
trA =-f+-5 Bul

Since Bl >0, ag < 0, and 0 < Yg < 1, it follows that

dﬁiﬂ = °‘1 +

sgn (deth) = sgn(@(ys)) and sgn(trd) = sgn(G(ys))
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where

43(35)5[-15.;:%5/“3](46{5) RRETS
6(33)5 (-/;135) (f}'lﬂ) (39)

Substituting (28)-(35) in (36)-(37) and then in

(38)-(39), we obtain that

CP(}{) X%’s €Ys +0 (40)
G (y)=-yy +€y - (41)

SELRATENCREDY ”

ez [K, +K[A](1+—’—)+FK[A] ] .
Pz [2K (A1 £L K’ ] | (44)
£’z [k, [A] Ko "* +K[A](1+(~L))] (s)
3,/ K1(A]K1 (1+ K ) (46)

Note that when k [A] = k, [B1, B, = 0, equation (14)

where

:;fzﬁﬁp +K(‘U(1+K' }} K[A]( ) O un

and the critical points are roots of (47), where 0<yS < 1.
Remark 3: Undoubtedly, theorem 3.1 also applies in the
special case kl[A] = kz[B], where instead of examining
the sign of detA and trA we are interested in the sign

of the polynomials @(ys) and G(ys) which are given by
(40)-(41).
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Consider the equations

$(E)=§3 ek +P=0 (48)
6 (w)=-yw't £w-D=0

(49)
Let A¢ and AG denote the discriminants of the
equations (48) and (49), respectivelv. Then
2
A¢ =t - 4&3“ (50)
/
- g% @’ (51)

Suppose now that

¢Cp)=P(p)=0 |
" e(R):6(V)=0 |

Then

;£+‘\/82‘4x%‘ﬁ f:i—\/ﬁl-4xa" (52)
1” 2Y 12 2y

and

Y £ +V5'2- 440 _ e'—VE’%- 449
’ 2

2
Remark 4: When ﬁ"4‘b’®'—'o ’ then?,:ﬁz‘-'-f:% (54)
a2 /
then g’_‘w%:O , then lﬁ'zwl:lp: "'/QX (55)
Remark 5: pys P, are also roots of the equ. detA = 0.

¥, ¥, are also roots of the equ. trA = 0.
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CHAPTER IV

Here we describe a procedure which helps in classifying
the critical points of the linearized system (27) for the
special case kl[A] = k2[B]. We emphasize the importance
of the nature and relative positions of Pyr Pou Wl, Wz, and
derive necessary and sufficient conditions for all possible
arrangements for the root positions for the polynomials

¢(ys) and G(ys).

In the previous chapter we derived expressions for deta

and trA for the special case kl[Aj = kz[B]. We also obtained
2
4)(%5):2{1}5'8155".9’ (40)
9 / _ /
G’(%s):'x%s+a}}s b (41)

which have the same sign as detA and trA, respectively. These

the polynomials

polynomials are very helpful in classifying the critical
points of the linearized system (27) for various values of

the kinetic parameters, by using theorem 3.1.

pzqif(zhnz-aww

are given by (52), while the roots Wl,

6 (W)=~ +£} 9’ 0

are given by (53). Note that pPyr P, are roots of detA and Wl,

The roots pl,
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¥, are roots of tra.
The following cases can be distinguished with respect
to the nature of the roots Pis Poy Wl, Wz:
(A) The roots of ¢(£) =0 and G(w) =0 are all real and unequal;
that is, Py > 0y and ?l > Wz and the two equations have no
common roots.
(B) Pyr Pos Wl, Wz are real. however, the roots of either
®(¢) =0 or G(w) =0 are equal; that is, Py =Py =P and Wl > Wz,

or ¥, =Y, =Y and Py > P There is also the trivial case

1 2 2°

Py = Py =¥ =¥,
(C) The roots of either ¢(£) =0, or G(w) =0, or of both of
them are complex. Here, we can distinguish the following
subcases:

(i) Pyr P, are complex and Wl > Wz.

(ii) pPys P, are complex and Wl = Wz =Y,

(iii) Wl, ¥2 are complex and Py > Poe

(iv) Tl, Wz are complex and pPp = Py = P.

(v) Pyr Py Wl, ?2 are complex.

Tvbl  Relative positions of oir Par *ar¥or .
According to theorem 3.1, we need to know the sign of
¢(ys) and G(ys) in order to classify the critical points of

the linearized system (27). The sign of @(ys) and G(ys)
depends, in turn, on the position of ySEE(O,l) with respect

to the roots of ¢(§) =0 and G(w) =0.
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However, before examining the position of yséa(o,l)

with respect to Pyr Py Wl, Wz, it should be emphasized

that for the cases (A)-(C) a large number of possible

arrangements for the root positions exists, and that it

is relatively easy to derive the necessary and sufficient

conditions for each of them.

The necessary and sufficient conditions for all possible

arrangements for the root positions for cases (A)-(C) are

presented next. The detailed derivation of these conditions

is shown in the Appendix.

al]

az]

a3l

0 <p2 < 1{J2_<pl <wl <1
y (-3 < (- £ )(eP-e V)
2y € ¢
(y-¢+9')>0
0 < Py <‘P2 <py < 1 < ‘y ,
(L)L (6-€) (£De)
£< inf(e2y)
-MCY<e-¥)

0 <p, <¥, <l‘<pl <Wl

y (- &)% (e-¢)(P-£D)
8 >t
y  inf [(E.’- @’I),(f--%)]
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a5]

bll]

b2]

b3]

b4]

. <

<Y
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< <1l <W2 <pl <W
y(O-P)* ¢ Ce- a)(&'ﬁ’-aﬁ’)
£y sup (€,2y)

(59 (< (e-)
p2.<‘}’2 <pl <w
Y (-9 Ce- (-t )
ryceces
(y-e+¥) >0

<W2.< Py <\y1,<pl <1
Y (DY) (e-¢)(0-£D)
z(a(zx
(f-£+0) >0
<T2 <p2 <¥l <1 <p
y(d- D) < (e- a’)(aﬁ’-a?")
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CASE C
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CIAPTER V

Here we classify the critical points of the linearized
system (27) for the special case kl[A] = kz[B], for all
possible arrangements of the root positions of the polynomials

@(ys) and G(ys), by using theorem 3.1.

-

Vval Introduction

According to theorem 3.1, we need to know the sign of
detA and trA in order to classify the critical points of the
lineafized system (27). For the special case kl[A] = kz[B],
we were able to derive the polynomials @(ys) and G(ys) which
have the same sign as detl and trA, respectively. Now, the
sign of @(ys) and G(ys) depends on the position of ySE(O,l)
with respect to Pis Py Tl, Wz, as well as on the nature
of these roots. In the previous chapter, we distinguished
cases (2)-(C) according to the nature of the roots Pir Py
Wl, Wz; for these cases we obtained a large number of
possible arrangements of the root positions, and derived
the necessary and sufficient conditions for each arrangement.

Next, we show that for each possible arrangement of the
root positions a number of subcases can be distinguished
depending on the magnitude of ySEXO,l), and that in each
subcase the sign of @(ys) and G(ys) can be determined and
the critical points classified. Recall that @(ys) and G(ys)

are given by
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q)('éfs) =X'al:‘ 535"'9’ (40)
G-y +EY P

where y > 0. For the special case kl[A] = kZ[B]’ the critical

points are roots of the equation

P 'L"‘Py's K.1 _K[A K1 -0

K3(ése +z}§1+'<1[A](1+7(:— 1(1(5 1 ] K.-z, - (47)
where ysEfO,l).

Vb] _Classification_of the critical points_for the special _

For cases (A)-(C), we classify all possible arrangements
for the root positions, taking into account the magnitude
of ySEKO,l). This allows us to determine the sign of @(ys)
and G(ys), so that we can classify the critical points by
using theorem 3.1. The results of this classification are
presented in tabular form for each group listed; for the
"type of steady state" we use the notation:

1l: Stable focus (or stable node).

2: Unstable focus (or unstable node).

3: Saddle point.
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CASE A
Table 5.1

Arrangement Sign of Sign of Type of Steady

- ®(y,) G(y.) State
all 0<p2<W2<pl<Wl<ys<1 + - 1
al2 0<p2<w2<p1<ys<wl<1 + + 2
al3 0<p2<W2<ys<pl<Wl<1 ) . 5
al4 .0<p2<ys<W2<p1<W1<1 - - 3
al5s 0<ys<p2<W2<p1<Wl<1 + - 1
a2l 0<p2<‘P2<pl<ys<1<ly1 + + 2
a22 0<p2<‘i’2<ys<pl<1<‘£’1 - + 3
a23 0<pz<ys<'~112<p1<1<‘~P1 - - 3
a24 0<ys<p2<\{’2<p1<1<ql1 + - 1
a3l 0<p2<‘{’2<ys<1<pl<\y1 - + 3
a32 0<p2<ys<‘i’2<1<p1<‘{’1 - - 3
a33 O<ys<p2<\1’2<1<p1<\{11 + - 1
a4l 0<p2<ys<1<‘£’2<p1<l{!1 - - 3
a4?2 O<ys<p2<1<‘i’2<p1<\y1 + - 1
as + - 1

0<ys<l<py<¥y<o<¥y
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Table 5.2
Arrangement Sign of Sign of Type of Steady
o(y,) G(y,) State
bll 0<W2<p2<W1<pl<ys<1 + - 1
bl2 O<?2<p2<W1<ys<p1<1 - - 3
bl3 0<?2<p2<ys<wl<p1<1 - + 3
bl4 O<‘1’2<ys<p2<‘i’1<p1<1 + + 2
bl5 0<yS<W2<p2<W1fp1<1 + - 1
b21 O<‘1’2<p2<\P1<ys<1<p1 - - 3
b22 0<‘P2<p2<ys.<‘1’1<1<p1 - + 3
b23  0<¥,<y <p,<¥, <I<p . . 5
b24 O<ys<‘{’2<pz<‘i’1<1<p1 + - 1
b31 O<‘i’2<p2<ys<1<‘1’1<p1 - + 3
b32 O<‘1"2<ys<pz<1<‘}’l<p1 + + 2
b33 O<ys<‘}'2<p2<1<‘¥1<p1 + - 1
b4l 0<‘1f2<ys<1<p2<\y1<p1 + + 2
b42 0<ys<\y2<1<p2<\yl<p1 + - 1
b5 + - 1

0<ys<l¥ypy<¥i<ry
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Table 5.3
Arrangement Sign of Sign of Type of Steady
Q(ys) G(ys) State
cll g<p2<wz<wl<p1<ys<1 + - 1
cl2 0<p2<W2<W1<ys<p1<1 - - 3
cl3 O<p2<Y2<yS<Wl<p1<1 - + 3
cl4 0<p2<ys<W2<W1<p1<1 - - 3
cl5 p<ys<p2<vz<wl<pl<1 + - 1
c2l 0<p2<‘1/2<‘1’1<ys<1<p1 - - 3
c22 0<p2<\1’2<ys<\1’1<1<p1 - + 3
c23 0<p2<ys<‘1’2<‘1’1<1<p1 - - 3
c24 0<ys<p2<‘i’2<‘i’1<l<p1 + - 1
c31 0<p2<‘i’2<ys<1<\yl<p1 - + 3
c32 0<p2<yS<W2<1<Wf(p1 - - 3
c33 O<ys<p2<‘}’2<1<‘l’1<p1 + - 1
c4l 0<p2<ys<1<‘1’2<‘i’1<p1 - - 3
c42? 0<ys<p2<1<‘y2<‘yl<p1 + - 1
¢S 0<ys<1<p2<‘i’2<‘i’1<p1 + - 1
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Table 5.4
Arrangement Sign of Sign of Type of Steady
e(y.) G(y,) State
dil -0<W2<p2<p1<wl<ys<1 + - 1
d12 0<W2<p2<p1<ys<w1<1 + + 2
d13 O<‘~F2<p2<ys<p1<‘i’1<1 - + 3
d14 0<W2<ys<p2<p1<w1<1 + + 2
d15 ~O<ys<‘}’2<p2<p1<\yl<1 + - 1
d21 0<‘i’2<p2<p1<ys<1<ty1 ‘+ + 2
d22 O<‘i’2<p2<ys<p1<1<ly1 - + 3
d23 O<‘i’2<ys<p2<p1<1<‘1l1 + + 2
d24 O<ys<‘l’2<p2<p1<1<‘¥1 + - 1
d3l 0<¥,<p,<y <1<p,<¥; - + 3
d32 0<‘P2<ys<p2<1<pl<\yl + + 2
d33 0<ys<‘1’2<p2<1<p1<‘}’1 + - 1
d41 0<\P2<ys<1<p2<pl<‘y1 + + 2
d42 0<ys<‘i12<1<p2<p1<lyl + - 1
ds + - 1

0<ys<1<‘{’2<p2<p1<\y1
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Table 5.5
Arrangement Sign of Sign of Type of Steady
o(y,) G(y,) State
ell 0<p2<p1<wz<wl<ys<1 + - 1
el2 O<p2<pl<W2<ys<?l<1 + + 2
el3 0<p2<pl<yS<W2<W1<1 + - 1
el4 0<p2<ys<p1<wz<wl<1 - - 3
el5 O<ys<p2<p1<W2<Wl<l + - 1
e21 O<p2<p1<‘P2<ys:21<‘4,J1 + + 2
e22 0<p2<p1<ys<\1‘2<1<l{l1 + - 1
e23 O<p2<ys<p1<‘?2<1<\y1 - - 3
e24 O<ys<92<p1<‘{’2<1<\{l1 + - 1
e3l 0<p2<p1<ys<1<\112<\y1 + - 1
e32 0<p2<ys<p1<l<‘!’2<‘y1 - - 3
e33 0<ys<p2<p1<1<\{’2<\y1 + - 1
edl 0<p2<y5<1<p1<\{/2<‘?1 - - 3
e42 0<ys<p2<1<pl<\y2<\y1 + - 1
e5 + - 1

O<ys<1<p2<p1<‘¥2<‘¥1
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Table 5.6
Arrangement Sign of Sign of Type of Steady
o(y,) Gly) State
f11 0<‘P2<‘¥1<p2<p1<ys<1 + - 1
f12 0<W2<?1<p2<ys<p1<l - - 3
f13 0<W2<?1<ys<p2<p1<1 + - 1
f14 O<?2<yS<Wl<p2<p1<1 + + 2
f15 0<yS<W2<W1<pzfpl<1 + - 1
f21 0<‘P2<‘1’1<p2<ys<1<p1 - - 3
f22 0<‘1’2<‘}‘1<ys<p2<1<p1 + - 1
f23 0<‘Y2<y5<‘i’1<p2<1<p1 + + 2
£24 0<ys<\1!2<\}'1<p2<1<p1 + - 1
£31 0<\1’2<l;11<ys<'1<p2<p1 . - 1
£32 0<‘i’2<ys<‘¥1<1<p2<p1 + + 2
£33 0<ys<‘1’2<‘P1<1<p2<p1 + - 1
f41 0<‘P2<ys<1<‘¥1<p2<p1 + + 2
f42 0<ys<\y2<1<‘yl<p2<p1 + - 1
f5 + - 1

0<ys<1<\1’2<‘1‘1<pz<pl
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CASE B
Table 5.7
Arrangement Sign of Sign of Type of Steady
@(ys) G(ys) State
all 0<p<W2<W1<yS<1 + - 1
al2 0<p<?2<ys<wl<1 + + 2
al3 0<p<ys<W2<W1<l + - 1
al4 0<ys<p<W2<Wl<l + - 1
a2l 0<p<‘P2<ys<1<‘¥1 + + 2
a22 O<p<ys<‘~P2<1<\P1 +. - 1
a23 0<ys<p<‘~1’2<1<‘1’1 +. - 1
a3l 0<p<ys<1<‘Y2<‘P1 + - 1
al32 0<ys<p<1<‘1’2<‘i’l + - 1
ad 0<ys<1<p<\y2<ly1 + - 1
bll 0<W2<Y1<p<ys<l + - 1
bl2 O<W2<?1<ys<p<1 + - 1
bl3 0<W2<ys<?l<p<1 + + 2
b14 0<ys<‘P2<‘P1<p<1 + - 1
b2l 0<W2<W1<ys<1<p + - 1
b22 0<?2<ys<W1<1<p + + 2
b23 0<yS<W2<Wl<l<p + - 1
b3l 0<¥,<y C1<¥ <p . . 2
b32 0<ys<W2<1<W1<p + - 1
b4 0<y5<1<W2<W1<p + - 1
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Table 5.8

Arrangement Sign of Sign of Type of Steady

@(ys) G(ys) State
cll 0<W2<p<wl<ys<1 + - 1
cl2 0<W2<p<yS<W1<1 + + 2
c13 0<W2<ys<p<wl<1 + + 2
cl4 0<ys<W2<p<Wl<1 + - 1
c21 0<‘1’2<p<ys<1<l1’1 + + 2
c22 0<‘I’2<ys<p<1<‘1’_1 + + 2
c23 O<ys<‘i’2<p<l<‘i’1 + - 1
c31 0<‘¥2<ys<1<p<‘}'1 + + 2
c32 0<ys<‘1’2<1<p<‘1’1 + - 1
c4 0<ys<1<‘}’2<p<‘i’l + - 1
dl1 O<W<p2<p1<ys<1 + - 1
d1z 0<?<p2<y5<p1<1 - - 3
d13 0<?<ys<p2?pl<1 + - 1
d14 0<ys<w<p2<pl<1 + - 1
d21 0<‘}’<p2<ys<1<p1 - - 3
d22 0<1¥<ys<p2<1<pl + - 1
d23 0<ys<\P<p2<1<p1 + - 1
d3l 0<‘i’<ys<1<p2<p1 + - 1
d32 0<ys<‘P<1<p2<pl + - 1
d4 + - 1

O<ys<1<‘{’<p2<p1
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Table 5.9

Arrangement Sign of Sign of Type of Steady
@(ys) G(ys) State
ell O<p2<pl<w<ys<1 + - 1
el2 O<p2<p1<ys<?<1 + - 1
el3 0<p2<ys<pl<W<1 - - 3
el4d 0<ys<p2<p1<W<1 + - 1
e2l 0<p2<p1<ys<1<w + - 1
e22 0<p2<ys<p1<l<W - - 3
e23 0<y <p,<p <1<¥ " - 1
e3l 0<p2<ys<1<pl<Y - - 3
e32’ 0<ys<p2<1<p1<‘1’ + - 1
ed 0<ys<1<p2<p1<w + - 1
fl1 0<p2<W<pl<ys<1 + - 1
f12 O<p2<W<ys<pl<1 - - 3
f13 0<p2<ys<W<pl<1 - - 3
f14 0<ys<p2<w<p1<1 + - 1
f21 O<p2<‘i’<ys<1<p1 - - 3
f22 0<p2<ys<‘i‘<1<p1 - - 3
£f23 0<ys<p2<‘£’<1<p1 + - 1
£31 O<p2<ys<1<‘¥<p1 - - 3
£32 0<ys<p2<1<‘l’<p1 + - 1
f4 + - 1

0<ys<1<p2<‘{’<p1
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Table 5.10
Arrangement Sign of Sign of Type of Steady
®(y.) G(y,) State

gl
g2
g3
hl
h2
h3
il

i2

0<p<Y¥<1
0<p<1<¥
1<p<¥

0<¥<p<1
0<¥<1<p
I<¥<p

0<p=¥<1

1<p=Y

+

+
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CASE C

Table 5.11

Arrangement Sign of Sign of Type of Steady
Q(ys) G(ys) State
all pl,p2 are complex and O<W2<W1<ys<1 + - 1
al2 pl,p2 are complex and O<W2<yS<W1<1 + + 2
al3 pl,p2 are complex and O<ys<W2<Y1<1 + - 1
a2l pl,p2 are complex and 0<‘{’2<ys<1<‘}’1 + + 2
a22 p,»p, are complex and 0<ys<‘{’2<1<‘i’1 + - 1
a3 pl,p2 are complex and 0<ys<l<Y2<Tl + - 1
bl PP, are complex and 0<¥<1 + - 1
b2 pl,p2 are complex and 1<Y¥ + - 1
cll Wl,?z are complex and O<p2<p1<ys<1 + - 1
cl2 ?I,Wz are complex and 0<p2<ys<pl<1 - - 3
cl3 Wl,?z are complex and 0<ys<p2<p1<1 + - 1
c2l Wl,Wz are complex and 0<p2<y5<1<p1 - - 3
c22 Wl,?z are complex and 0<ys<p2<1<p1 + - 1
c3 Wl,?z are complex and 0<ys<1<p2<p1 + - 1
d1 WI,WZ are complex and 0<p<l + - 1
d2 Wi,Wz are complex and 1<p + - 1
e ¥ ,¥, and + - 1

1°°2

pl,p2 are complex
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From these tables we see that the steady state will be an

unstable focus (or an unstable node) only in the following

cases:
TABLE_ CASE ARRANGEMELIT
5.1~ A alz2, a2l
5.2 A bl4, b23, b32, b4l
5.4 A diz, di4, d21, 423, 432, 441
5.5 A el2, e2l
5.6, A f14, £23, £32, f41
5.7 B al2, a2l1, bl3, b22, b3l
5.8 B clz, ci3, c2l, c22, c31
5.11 C al2, a2l

If the steady state is upique, then sustained oscillations
will be observed for each of the above arrangements. Necessary
and sufficient conditions for uniqueness can be derived.

In the case of multiple steady states, the fact that a
critical point is an unstable focus (or an unstable node)
does not necessarily mean that limit cycles exist. The only
way to investigate this problem is by integrating numerically

the dynamic equations.
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CIIAPTER VI

Here, we derive the conditions under which a unique
steady state solution exists for a lumped system described

by the nonlinear algebraic equation

-1Y ]
CR AL m‘(rfz[&#%[»w+/%ﬂ_[t<,+fsl;ugwé‘s -
3 3

Multiplication of both sides of the above egquation by

K/ LK +KTAT(+R)]

ytélds, '/ty%
K3 %s(ys"g?-) e __{ + B K [A1(1-,) g_y,

[K +KLAJO+)] ’i LK HEAP)]

Le

(56)

(57)

. i NLAUIC
=L LB HETAIGHB,)]
But according to (l2a),
LA ORI /31:[ k.[8)- & [4) 7)
UER,-kTAY ek [e3) 7 LK - K TR +K o)
Substituting in (57), it yields
9. KK, (8]
K KIBI KK, +K KA)

where 0 <§ < 1.

(58)
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Using (57), we can write (56) as

EyB) e o
[K +K[A)(1+B) ] (935)

e G} 1
X I

4 (4-B)

(59)

5 %5 [Ki fK [A](1 -}—ﬁ’)] (61)
T= k) (62)
Then, we can write (60) as &(%)
- s/ _ 1
F(L&s)" (5»_35) T (63)

From (63) we have that
(Sd"%s):t 5:(” S) (64)

where 0 <yg # 8§ < 1.
At this point, we would like to examine the sign of f(ys)

which is defined by (61l). We have the following possibhilities:

Suppose that

k,(8]-K [A}50
LE.-K [AD + Kl[BJS 70

Then,
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Using (12a), we have

[X, +% [A] (1+f31)]

and

0l p, <1

Ky ( K[BJ)J'K K1[R]>O
2~ KTAT+K [B]]

where

B,= {x[B)-K[A} /1K K [A1+K [E] ]

Since O(j (i , we cannot draw in this case any conclusions
about the sign of (] ﬁz . By looking at equ. (60), however,
we see that since the right-hand side of this equation is

positive, we must have either that

B<y <8

(ii) S<¥5< Pz

When pz( 165(8' , we have that 5’(}5) > O .
When 8<3$< Pz , we have that S.(%S)<O .

or

CASE I1I

Suppose that

Ke[B]-K, [AJKO (65
Then either K +K [B]-K“_[A] < QO ., or we have that

K. +K [6]-K [A] >0 .
(i) If in addition to (65) we have that K 'l*-K [B] K[A]<O
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then

[k, +K[AT(1+B)] < O

B.>1
As result, (‘Js- ﬁz.) < o, a‘nd, consequently, 5'(35)>0 .

and

(ii) If in addition to (65) we have that

| K, +K[B]-K[A] >0
then

LK, +K[AJG+B)] >0

p.<0
As result,('és-.pz) >O , and, consequently, 8‘(35) ) 0.

and

CASE III

Suppose that
Kz[B]'K1[A]:O
then

[Ei +K, [A] (HFO] >0

f2=0
As result, (}S-Pz) ) O ., and, consequently', ‘S'(‘és)>o .

and

Conclusion: f(\d,s)>o ‘SO'L o<1és#8~< 1 , eXcept in case
I(id.
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following possibilities in connection with cases II and

III only:

D v.€ (0,8)

2) ¥ € (Q')i)

In case (1), (9:33)'>.o. , and the lumped system is
described by equ. (64):

(8-45) =T §(y)

In case (2), (9—33) < O , and the lumped system is
described by

(4-8) = -T 3 (%)

This equation, however, cannot be satisfied, because the
left-hand side is positive, while the right-hand side is

negative. As result, there are no steady state solutions

for ‘4.6(5‘1) in cases II and III.

- —————— ——— ———— - —— ———— S — ——— T — ——— i - SN -0 . S S S S W S = S S TE ) WD WD - A Lk S imd st

(i) Here we have that P(’J, <(S" . If the function
F(4s) = 504/ (F-4s)
is monotonic, a unique solution exists. lience, a necessary
and sufficient condition for uniqueness for all T is that
( 3C4s) \
dys §-Ys

Differentiating and multlplylng by ((S\—y,s) , we have

(s'\ds) ‘S’(gs) t S(&s) 70
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T899 $s) >- 50

dividing both sides by f(ys)>O , it yields
(8-3:) §'C4s) 4
and since | S(as) >
dln§s) _ 1 di9_ 5
dYs His) dds 7 §4y)

we can rewrite it as

d & $0Ys)
| (3-4s) .d}sg >_1.
py < o) e
[K +KIATCHB) ]
me(‘ds) S Q/“Hs(‘as'p?—)]—rt(}s_w[gﬁ ]S [A}(Hﬁ ).]

and differentiating,

din [§497 _(2¥5-B2)
NG R |

'Thus; the necessary and sufficient condition for all 1:
’ 2s-B.)

S. [( Nk _:l _1

C4) | Yors,-by 117

" (64.) (245-B) aul(s
%503, Py LA (9%
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Multiplying both sides of this inequality by Yoo it yields

(5"35)(235'31) - A‘. S
(35'B;> > yS-‘.rys( ‘\} )

Consequently,

‘-'Z.ys +(28"ﬁ2) +

”;-(HFSUS +28 > B(Zyi‘-d_sp_f;) (78)

Since (55-132))0 , we can multiply both sides of (78)

B.(S-p.)

N Yo H1Ys (65 )

by this term to get

B8+ 8GR Y- [rpBeD]Y Y > 0

Now, making the substitution

_(y ‘Fz)
o o= (35-32) ¢!

we can rewrite the above inequality as

A(s)zb,+b o 4b, c™1b o> 0

where

LO = Pz
by = (8-B2)(2-pp)

b= (8-Po) [p(2p,-8)-1]
baz p(8-B.)"

Sufficient conditions for A(U))O , whenever 0{0<] )
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are according to [17]
LozP,_ 70
by +3b, Vo0
bi+ba VO
51+3$3770

Substituting, we have that the sufficient conditions for

uniqueness for all Tfare in this case:

A

(ig‘ﬁz) ($- B )

(ii) Here we have that S<y5 < Fz , and f(ys) < O

Again, if the function

FOY,) = $Us) [/ (8-3s)

is monotonic, a unique solution exists. Hence, a necessary

and sufficient condition for uniqueness for all T is

F0Ys) > < O

dyS 3-85

Following the same procedure as in case I(i), we arrive at

equ. (78). Multiplying both sides of (78) by (55- p?.) <0,

) iepzs‘ +6 (z+y}31)j5 - [1 +p (8.+8) ] j;wyj’ {0

Making the substitution

e weWs=8) 4
T IN

and multiplying both sides by minus one we arrive at




B(w): L: +L:’w +L: w* +L_:w3>o
whereL:E g—
by = FS(F{‘?)
by = (B-5) [~ (25-B,)+1]
L;E"‘(ﬁz—g)l

Sufficient conditions for uniqueness for all Z' are in

this case[l7]:

(i). Here we have that pz) 1 , ana (Js'ﬁ.._)<0. Multiplying
both sides of (78) by -(:’s-ﬁz) it yields

/ ! / 2 / 3
ACREL L Jsto, ¥y to,y. 20

where YSG(O)S) , and
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The above inequality can be rewritten as

* %
Z(Dza +o c'+a o' +a 67 0
where /-~ j

0 o'= S (1

ag 2 pz?

- _ 8% (2+pp.)

2 8 [rap (Bt ]

5

Sufficient conditions for Z (O' ))O , Whenever 0'6(0)1)

are accordlng to [17]:

G. 70
fou +(n- V+1)OL DAY (=t

where n is the degree of Z(o‘ ) .

*
]

=
7}

g
O x
"

The first condition is automatically satisfiedb the second

condition can be written in its full form as
% )
ok +3d, Yo
% 3
% 0, 20
¥ %
@, +3a,>0

Substituting, we can write these conditions as

'517<|‘<(3' ;i)
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r(zx—]gz) <1

In a better form, we can write that the sufficient conditions

for uniqueness for allrt 1n this case are:

-g-<y<(—“§i—-—;—z> (28P><T

(ii) Here we have that p2_<0 and (HS_ pz)>0 .

Multiplying both sides of (78) by (]S-ﬁz) it yields

N(e)zetac'tao a0’ >0

where

0l o = ys L1

@ -."p‘z
Vi 5'2(7.1»”32
@ --8 [1+V(P +3)]
rS’
Slmllarly, we can derive sufficient conditions for uniqueness

for all T [17]:
- ;‘z>< l; { ——

(ZS’P?-_} D4 ’ri:'
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Here we have that F?-E O . Then equ. (78) becomes

pyZ-(1+p8)Y 28 Y0 10m

Recall also that YSE(O,S) .

AU 2y (epd) Y 20

and 0:' ,6'1 be the roots of A(y )=0.
Then, 2
5 :(1+|18‘)-W—}a8‘) ~4p8
. Zp
rA
’, = (1448 ) +V(1-|A8) - ‘H"S
2’( .
In connection with the sign of the discriminant

A = (1-p8) = p8

we can distinguish the following subcases:

a) (1-\A8)z( 4-}49 (109)

Then Al(y,) Y, 0 for any real value of y_. Thus,the

condition (1-*\8)2( 4?6\ is a sufficient condition

for (108) to hold.
b) (1—‘18)7'; «H&X

Then 0, =0 = (H' }\8) , and Ay )70 if in addition
1 2 2r s
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1

we have that v< —_—

3
@ (1-p8)*y 4pd

Then .0‘1 )0—2. are real and unequal; in fact, we can prove
that they are positive. )
Now, we can distinguish the following subcases:

(1) Suppose that P( %:- ; then, we have that A(ys))O .
(2) Suppose that r)i/g" . Then, °'1:°'z.€-(°38) .
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CHAPTER VII

Here we present sets of parameter values for which the
dynamic equations, when numerically integrated, give rise
to limit cycles. These values are such that a unique steady

state solution exists for equ. (14), when kl[A] = k2[B].

VIiIal] Kinetic_parameter values

In this study, our purpose is to prove the existence of
oscillatory solutions for some values of the kinetic
parameters. In other words, we need to find parameter values
for which the dynamic equationslgive rise to limit cycles.
For simplicity, we restrict our search by choosing values
such that kl[A] = k2[B], and for which (109) -the

sufficient condition for uniqueness for all 1- is
satisfied.

For a unique steqdystate solution for which kl[A] = kz[B],
the dynamic equations give rise to limit cycles, if the

kinetic parameter values are such that

detA > 0
trA > 0

For illustration, we present the following two examples:

EXAMPLE 1

Suppose that
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kl[A] = k2[B] = 2,00
k_y = 1/6
k_, = 0.2640065
k3 = 237.1082966
u = 14.00
0 .
where kl[A], k2[B], k—l’ k_2 apd k3 have units
(sec)—l.

Then, using (42)-(46) we obtain

Y = 48.00966577

™
i

21.10559431

0 = 2.525190352

e/ = 20.47340573
¥ = 2.059668465
Since

A¢= €2 - 4yd = -39.48806784 < 0
we conclude that Pys P, are complex.
Using (53), we obtain

¥

wl = 0.1626017947

Thus, Pys P, are complex and 0 -<W2 <<Tl <1l . This is the

0.2638416181

arrangement (Cal) as shown on page 38.

Using (47), we find that the steady state equation is

14
(31.1082366)4. € +3.419261841Y-126I5%1%=0 1,

since B, = 0 and 8; = k_,/ k_, = 0.631297588, (12)
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yields
X, = ys/ 0.631297588 (111)
The solution of (110) in (0,1) is g
Yg = 0.20, and using (111) we have X, = 0.3168078 .
A sufficient condition for uniqueness
for all 1t for equation (110) is
(1 - u8)2 < a6y (109)
Using (58), we obtain
§ = 0.3681827853
Thus, -
(1 - u6)? = 17.26036044
4ﬁ5 = 20.61823598
Therefore, (109) is satisfied for the values assumed in
this example.
According to table 5.11, when Pys P, are complex and
0 <‘l’2 <Y¥g <‘1’l < 1 we have that
¢(ys) >'0
Glyy) >0
and the steady state is either an unstable focus or an
an unstable node.
Using (30)-(33), we obtain
= 0.9053474166
= 62.59813151
0y = -39.51804943
B = 4.430673167

According to (15)-(16), we have
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detf = « + é”s [ oY +9X (f‘#s‘i)]
1:76 = -ﬁ + K;e"?‘éls [XS(F(‘{;i)"ySJ

Substituting, we find that

detA = 0.2962920094 > 0
trA = 0.9078607617 > O
Since ‘

D = (trA)2 - 4(deta) = -0.3609568729 < 0, then
according to theorem 3.1 the point (0.3168078, 0.20) is an
unstaple focus.

The characteristic equation for the linearized system
is

A2 = (trA)A + (deta) = 0

_(krh) tV(tTA)?:-‘i-(da{é)
A 1 7

Tiie eigenvalues are

Ay

Xl = (0.4539303809 + i (0.3003984325)

)
For this example,

>
]

2 0.4539303809 - i (0.3003984325)

EXAMPLE 2

This example is related to the previous one. Suppose that

kl[A] = kz[B] = 2.00

k_y = 1/6
k_, = 0.2640065
kg = 339.3304816

u = 15.83025413 0 1
where kl[A], k2[B], k-l' k_2 and k3 have units (sec) ~.
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Using (42)-(46), we obtain
Y = 54.28608642
e = 23.41646432

0 = 2,525190352

¢ = 22.78427579
f = 2.059668465
Since
ZC\¢»= e2 _ 4y = -5.2526%*10"° <0, we conclude that

pl, p2 are complex.
Using (53), we obtain

Y.= 0.2879407886

1
T2= 0.1317666778
Thus, pyr P, are complex and O ‘<¥2 <‘¥l <1 . This is the

arrangement Cal as shown on page 38.

Using (47), we find that the steady state eqguation is

g ~15.830254/3
(339.330481¢) ;]l:e + ‘%‘",42?26; 3¢l gs-l.uzsqs:o (112)

We also have that

X, = ys/ 0.631297588 (113)

A sufficient condition for uniqueness for
all 1 for equation (112) is

(1 - pu6)? < aps (109)
Using (58), we obtain
§ = 0.3681827853
Thus,
(1 - u6)2 = 23.31370783

4ud = 23.313708823
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Therefore, (109) is satisfied for the values assumed in
this example.

The solution of (112) in the interval (0,1) is

Yg = 0.25
and using (113)
X, = 0.39600975

Since Pys P, are complex and 0 <‘P2 <¥g <‘Pl <1l, we

have the arrangement (Cal2). According to table 5.11, for

this arrangement

) @(ys) >0
Glyg) > 0
and the steady state solution is either an unstable focus

or an unstable node.

Using (30)-(33) we obtain

0 = 0.9053474166
a, = 89.58545279
ag = -56.55508027

B = 4.430673167

According to (15)-(16), we have

debh =y + gFIs [y +2 X5 (pg-1) ]
trA=-p+K &% X (pds-1)-4s ]
Substituting, we find that
| detA = 0.0675377564 > 0
trA = 1.542981473 > 0
Since

D = (trd)? - 4(detd) = 2.110640802 > 0 , then
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according to theorem 3.1, the point (0.39600975, 0.25) is
an unstable node.

The eigenvalues are

A

1 1.497892967

A 0.0450885062

2

In examples 1 and 2, parameter values were presented
for which a unique, unstable steady state solution exists

for equation (47). In other words, these values are such

that
: 2
(1 - ud) < 4ué
and
deta > 0
trA > 0

Here, the dynamic equations

o =
%{_,gm(:-x-g)-g,x-@ e X} (8)

o -HY
di -k [810-x-y)-K 4K € XY ®

give rise to limit cycles.

Dividing (9) by (8), we obtain y'

d¥ L OBI0-g)-K Y -Ksxy e
oL X -ng](l-X-y)_g'x~K30xg'e-l‘}

(114) is a nonlinear, ordinary differential equation which

(114)
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can be solved numerically. As initial values for.xéz(o,l)
and y€ (0,1), we can choose values along the sides of a
square with corners the points (0,0), (0,1), (1,1) and (1,0).

The numerical integration technigue used in this study
was a fourth order Runge-Iutta; we employed subroutine RK2,
which~can be found on page 332 of [18]. The programs were
run on the UNIVAC 1108 computer at the University of Houston.

For the parameter values cited in the two examples,
equation (114) was numerically integrated with different x
and y. initial values for each run. The integration was
performed with a stepsize 10—3, and the resulting trajectories
were plotted in order to examine tlie phase plane behavior
of equations (8)-(9).

In both examples, limit cycling was observed as shown in
figures 7.1 and 7.2. By perturbing the unique, unstable
steady state, we were able to eliminate the possibility of
an unstable limit cycle sufrounded by a stable one. The
figures show that trajectories originating from the inside
give rise to a stable limit cycle.

Figure 7.1 represents example 1, while figure 7.2
corresponds to example 2. The time dependence of x and y
for each of these examples can be determined by integrating
numerically the dynamic equations (8)~(9). The numerical
integration was performed by using subroutine RKGS [18],
and the results are shown in figures 7.la and 7.2a

corresponding to examples 1 and 2, respectively. From figure
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7.la we read that the period of oscillations is approximately
11 seconds, while from figure 7.2a we see that it is about

17 seconds.
RRhkhkhkhkkkhkkkkkhkhkhkhkhkhkhkhkhkikkhhkhkhkhkhhhhkkhkhkhhkhkhhhkhkkhkhkkkhkkhkhkkhkhkikhkhkhkkkkkk

IMPORTANT REMARK

-
kkhkkhkkkrhkkhkhkkhhkkhkkhkkhkhkhkkhkkhkhkhkkhkhkkkhkkhhkhkhkkhhkkhkhhkhkkkhkhkhkk

It is essential to emphasize at this point that our
region of interest is not the above mentioned square, but
actually the orthogonal triangle which has as sides the
positive X and Y axes and the line x+y=1. Thus, our search
is reduced by a factor of two, because if a limit cycle

exists it should definately be restricted in this region.

At this point, it is pertinent to state the following
important theorem:
BENDIXSON'S_SECOND_THEQREM: Consider a two-dimensional
system whose state variables are bounded, and which has a
unique, unstable steédy state. Then all system trajectories

aré either a stable limit cycle, or-else approach a stable

limit cycle asymptotically.

A statement of this theorem can be found in:
N. Minorsky, "Nonlinear Oscillations", Ch. 3, Van Nostrand,

Princeton,N.J., 1962.
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CHAPTER VIII

Here we investigate whether sustained oscillations occur
when equ. (47) has multiple steady state solutions. The

investigation is carried out by using bifurcation theory.

In the previous chapter, welpresented examples demonstrating
that the dynamic equations can give rise to limit cycles in
the case of a unique, unstable steady state solution.

Since we are interested in the phase plane bhehavior of
equs. (8)-(9), we need to investigate whether limit cycles
can occur when multiple steady state solutions exist. We
will commence our investigation by presenting the following
numerical example.

Suppose that

ky[A] = k,[B] = 1.00 (sec) T
k_y = 2.00 (sec) ™1

k_, = 4.00 (sec)”t

0 -1
k3 = 1604.719045 (sec)

u = 50.00

Then using (42)-(46) we obtain

y = 175.00
e = 28.50
5 = 1.00
¢ = 26.25
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/
9 = 0.75

Using (52)-(53) we obtain

Py = 0.1116994573

Py = 0.0511576855
Wl = 0.1115962527
Wz = 0.0384037472
Thus,

0,<‘1’2A<p2 <‘1’l.<pl <1
This is the arrangement (Abl) as shown on page 26.

Using. (47), we find that the steady state equation is
S0

-50§
(160‘/-.’7/90"‘5)y:e +3.535‘0-5 =0 (115)

(115) does not satisfy the sufficient
condition for uniqueness
(1 - u8)? < 4us (109)
Using (58), we obtain
5 = 1/7
Thus,
(1 - u8)2 = 37.73469
4pé = 28,571428
Therefore, (109) is not satisfied for the parameter values
assumed in this egample, and, consequently, equ.(115) has
multiple steady states.
Since B, = 0 and By = k_y/k_,= 0.5, (12) yields

X, = 2y, (116)
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Equ. (115) has the following solutions in (0,1) :

Yg1 = 0.045; using (116), Xgq = 0.090
Yy = 0.132, and X o = 0.264
Yg3 = 0.058, and Xg3 = 0.116

Using (30)-(33), we obtain

al = 14.00

ay = 6418.87618
a3 = -3209.43809
B = 8.00

According to (15)-(16), we have
deth = oy texp(-pys) [d, 45+ Xs(fd1) ]
0 _

tr A = -BHK exp (1Y) # L Xs (pys-1)-4%s)

Since 0 <‘¥2 <Yg1 <Py <‘Pl,< Py < l, we have the
arfangement (Abl4). According to table 5.2, for this
arrangement we have that

Q(ysl) >0
G(ysl) >0
and the steady state is either an unstable focus or an

unstable node,

Substituting, we find that for Yo1 = 0.045 and Xgq = 0.09
detA = 6.388873565 > 0
tra = 3.416689651 > 0
Since
D = (tra)? - 4(detd) = -13.88172607 <0, then

according to theorem 3.1 the point (0.090,0.045) is an

unstable focus.
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Since 0 <‘i’2.<p2 <‘¥l <P Y5 <1, we have the
arrangement (Abll). According to table 5.2, for this
arrangement

®(ysz) >0

G(Ysz) <0
and the steady state is either a stable focus or a stable
node.

Substituting, we find that for Ygp = 0.132 and Xiy = 0.264

2

detA = 8.6973908959 > 0

trA = -5.060797358 < 0
Since .

D = (trg—})2 - 4(deta) = ;9.179965917 < 0, then
according to theorem 3.1 the poiﬂt (0.264,0.132) is a stable
focus.

Since O<‘P2 <p2 <yS3 <‘1’l <pl <1, we have the
arrangerment (Abl3). According to table 5.2, for this
arrangement

Q(ys3) <0
G(YS3) > 0
and the steady state is a saddle point.

Substituting, we find that for Vg3 = 0.058 and x_., = 0,116

s3
detA = -4.436373749 <0

trA = 6.339401805 > 0
Therefore, the point (0.116,0.058) is a saddle point

according to theorem 3.1.
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Conclusion : For the parameter values cited in this example,

equ. (47) has multiple steady state solutions in the interval

(0,1); these solutions are:

Yg1 = 0.045, X 1 < 0.090 : Unstable focus.
Ygp = 0.132, Kooy = 0.264 : Stable focus.
Yg3 = 0.058, X 4 = 0.116 : Saddle point.

Numerical integration of (114) for the above mentioned
parameter values with a stepsize lO—3 does not give rise
to limit cycles. By using values along the boundaries of
the feasible domain as initial values for x and y, we see
that all trajectories go to the stable focus; the same is
true when we perturb the unstable focus, as shown in figure
8.1. We cannot conclude, however, that limit cycles do not
arise for other kinetic parameter values for which (47) has
multiple steady state solutions in (0,1).

Thus, we would like to examine whether it is possible to
have sustained oscillations in the case of multiple steady
state solutions for equ. (47). We will try to solve this
problem by using bifurcation theory: We will examine whether
limit cycles bifurcate(originate) from critical points,
which are centers. for the linearized problem associated
with the dynamic equations. Poore and coworkers have
published in their work [9,10] a large number of examples

where bifurcation theory is applied.
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Bifurcation theory is concerned with the variation of

a single parameter. In the following example we will vary

kg and let the other five kinetic parameters have the same
values as in the previous example; that is, let

k,[A] = k,[B] = 1.00 (sec)” T

k_; =-2.00 (sec) 1

k_, = 4.00 (sec) ™2

u = 50.00

Using equ. (47), we find that in this case the steady

state equation is

, -5%s
K3 35 C +3 57615-0 S O (117)

504
@ 5-3.5%5) €
Is

Since kg >0, Ys is restricted in the interval (0,0.1428571429).

Then,

(118)

We can draw a graph of Yy Vversus kg>, as shown in figure
8.2.

The characteristic equation for the linearized system

A2 = (tra)A + (detd) = 0
The eigenvalues are
’ ) ) '\/(trA) 4(deth)
1,2 2

Bifurcation of periodic solutions can occur only from
the center or possibly at those points at which one of the

eigenvalues of A is equal to zero [9]. According to theorem
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3.1, the critical point (xs,ys) will be a center for the
linearized problem if the eigenvalues of A are purely
imaginary:
trA = 0 and detA > 0
For the parameter values cited in this section, the
center is
yg =¥, = 0.0384037472, x, = 0.0768074944

s

Using (118), we find that at the center k3 = 1691.103454.
Thus, we are able to locate the center for the linearized
problem on the Yy, versus kg graph (fig. 8.2). By increasing

the value of kg above its value at the center, and integrating

numerically the ordinary differentﬁal equation
ol'}::KJB]("X’E)‘K&‘K;W € ¢
dx K [A] (-x--KX-Koxy g

we find that there are no limit cycles in the phase plane;

(114)

the same is true when we integrate (114) for values of kg

which are smaller than its value at the centerxr. The
numerical integrations were carried-out with a stepsize 10_3.

Therefore, we can draw the conclusion that this particular
set of kinetic parameters does not give rise to limit cycles.
It is possible, however, that there are other parameters

for which sustained oscillations may exist in the case of

multiple steadv state solutions.
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CHAPTER IX

Conclusions

- — —— o — — ——

In this study, we have attempted to investigate the
stability characteristics of a surface kinetics mechanism
representing a general chemical reaction. Our main objective
was to examine the validity of statements made hy Slinko
and coworkers [5] concerning the cbservance of concentration
oscillations during the isothermal oxidation of hydrogen
on a nickel foil.

Because we wanted to keep the mathematical analysis as
simple as possible, rather than working on a specific
cheni.cal reaction we prefered to analvze the general
reaction A(g) + B(g) =———> 2B. Ve assumed that the
heterogeneous catalytic mechanism for tliis reacticn is
a Langmuir-Einshelwood type, and the adsorbed B(g) changes
the properties of the catalytic surface such that the
energy of activation for the surface reaction depends
linearly on the coverage by adsorbed B(g).

We derived the differential equations for the net rates
of adsorption of A(g) and B(g), and linearized them about
the steady state in order to investigate the local stability
characteristics of the critical points, by using the first
method of Liapunov. Expressions were derived for the

determinant and trace of the linearized matrix A, and for
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simplicity we decided to assume in our stability analysis
that kl[A] = kz[B].

The nature of the critical points depends on the sign
of detA and trA. We have been able to derive, however, the
polynomials @(ys) and G(ys) having the same sign as detaA
and trA. The signs of ®(y,) and G(y,) depend on the size
of the critical point with respect to the relative positions
of the roots of the equations ¢(£) = 0, G(w) = 0, in the
interval (0,1). We have also been able to derive the
necessary and sufficient conditions for all possible
arrangements of the root positions for the equations
() = 0, G(w) = 0, in (0,1).

Uniqueness criteria were deveioped for the steady state
sdlutions both for the general case and when kl[A] = kZ[B]'
Using these uniqueness criteria and the necessary and
sufficient conditions for the arrangement of the root
positions for the equations ¢(§) = 0, G(w) = 0 in the
interval (0,1), we were able to find parameter values for
which the dynamic equations give rise to limit cycles.
These limit cycles were found for the case of a unique,
unstable steady state solution.

We used principles of bifurcation theory to investigate
the existence of sustained oscillations for the case of
multiple steady states. By varving one of the kinetic
parameters and numerically integrating the dynamic equations,

we checked whether periodic orbits bifurcate{originate) from
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critical points which are centers for the linearized
problem. Our efforts have led us to conclude that limit
cycles do not exist for the kinetic parameter values chosen
in that particular example. It is possible, however, that
there are other values for which sustained oscillations
could be observed in the case of nmultiple steady state
solutions; this is, of course, only an assumption and will
have to be proved,

Slinko and coworkers [5] do not give in their paper any
kinetic parameter values, or show numerical simulations to
demonstrate that their proposed kinetic mechanism gives
rise to limit cycies such that ié in agreement with
experimental results. Our study ﬁas shown that there are
pérameter values for which sustained oscillations arise
in the case of a unigue, unstable steady state. Our kinetic
mecnanism, although simpler than Slinko's, dees have
similar features and is based on the same assumptions.

In our study, the stability analysis was performed for
the special case kl[A] = kz[B]. It would be rather
interesting, however, to investigate the general case
kl[A] # kz[B], in order to get a picture of the phase
plane behavior of the dynamic equdtions.

It is possible that the chemical reaction proceeds
by an Eley-Rideal rather than a Langmuir-Hinshelwood
kinetic mechanism. Then it would be interesting to assume

that the reactiocn has features belonging to both possible
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kinetic mechanisms. An even more difficult problem to
consider is one where we take into account diffusional
limitations and mass tranfer resistance such as. in the

case of a catalytic pellet.
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APPENDIX

Section 1

Consider the polynomials

CP(}‘S)‘-‘Xg:‘&yS*F%’ (40)4
G-ty

then, we can state the following theorems [20]

unequal roots f)f . Then, the necessary and sufficient

conditions for M<P ¢ re: +
il >o yPlm)>0, m<f’ [

where m is a real number.

Theorem A2 : Suppose that the polynomial G(ys) has real and

unequal roots yi)% . Then, the necessary and sufficient

conditions for m('z%_( 1}»’1 are: w +fyj
Ag>o) -XG("-’Q)O ) 77?.(*——1,:-5- )

where m is a real number.

unequal roots, f;)PZ . Then, the necessary and sufficient
conditions for fl< h <M are: f }7
11/2

bg>0,yP(M)>0, M)

where M is a real number.
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Theorem A4 : Suppose that the polynomial G(ys) has real and
unequal roots 1& >1Pz . Then, the necessarv and sufficient
conditions for wx < 1}’1< M are: '\'U + ,W
1 2
B>0,-§6(M)>0 , M>T

where M is a real number.

roots of the polynomial ?{%s) ; then, we have that X?(rl)(o o

Theorem A5 : Suppose that f2<1l< Pi ; Where ﬂ' )f). are

The reverse is also true: If ’Yz is a real number and X?(Yl){o)
then the roots of ¢(5l$) are real and unequal and '7 lies

between the roots.

are roots of the polynomial G(ys); then, we have that "yG(?Z)(Oo
The reverse is also true: If YZ is a real number and —X@(q)<0,
then the roots of G(ys) are real and unequal and 7’ lies

between the roots.

Section 2

Suppose that we have the polynomials

?(%s):x\g— a},LS+ %’ (40)
6(1&5)'-‘—3%:1- 8’%5_%,’ (41)

where f;,fz are the roots of ?(})1'0 , and y{),% are the

roots of G@);‘.O . Then, the following relations exist :



s, =elY

AL

Y+, =y

%Y=/

pRafs =(£-RyP) /1"

V(e ¥/

KO0 + P = ¢ e +2y (D)

S ARAIAIEAE =2y (V-)

(A1)

(A2)

(A3)

(n4)

(a5)

(A6)

(A7)

(A8)

o= PRV ER)=FEQIGR)= B0)- et NeP-e9)

(o) =y
yP() =y (et )

-UG(O) =Y 9’,
6=y (§-¢ + P
Y6 (&/2y)= @"1--% (£ -E.')
PCETD=T+5 (5 -9)

Section 3

Consider the polynomials

(A10)

(A11)

(Al12)

(A13)

(A14)

(Al15)

(n9)
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Py, )=y - €Y+ (40)
2, /
6(}S)=~335+Ey;8’ (41)
which have no common roots. Let ﬁ ,& be the roots of ¢(5)=0,

and W ,‘4)1 be the roots of 6((1)):0 . Then, we state the

following theorem [20] :

Theorem A7 : Suppose that Pf’fQ are real and unequal)ﬁ’ 7f2 :
similarly, that ,‘g ’Wl are real and unequal,w >% . Then,.
we can distinguish the following subcases :
a [T,

The necessary and sufficient conditions for this

arrangement are

R6¢<O (A16)
f1+fz < 1& +w2 (A7)
b] 'lP2<F7_<1P1<f1

The necessary and sufficient conditions for this

arrangement are

RG?’ < O (A18)

ll»; +1P2< P,+Fz (a19)
o RCRCYLR
The necessary and sufficient conditions for this

arrrangement are

AG) o (A20)
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RG¢ > Y (A21)
X{CP('\Pi)‘f'sD(%)} {0 a2
a1 Y, << Py <Wi

The necessary and sufficient conditions for this

arrangemnent are

Asb ), 0 (A23)
RG¢ 0 (a24)

{646} <0 n2s
el F1<P1<wz<% g ﬁ r }

The necessary and sufficient conditions for this

arrangement are

A¢)O (A26)
A 5O (327)

RG¢ >0 (n28)
L ACARLTICA) DT (329)
{6 +6(p)] ¥ 0 30
PP (Y Y, (a31)
0 YW <RLR,

The necessary and sufficient conditions for "this

arrangement are
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A¢)O | | (A32)

JAY D XC, (A33)

RG¢ 70 (A34)
s {9 +8(1)] ¥ 0 235)
-x{G(ﬂ){”G(fﬂ} >0 (A36)

Y, + ’lP?_ ¢ P’ tP, ‘ (A37)

Section 4

We can now use theorems (Al)-(A7) to derive the necessary
and sufficient conditions for all possible arrangements for

the root positions shown in chapter IVb.

al] °<f’1<‘Vz<f1<‘V,<1

For the arrangement

Pz<:1P;‘<‘% <.1HL

we have from theorem A7a that the necessary and sufficient
conditions are (Al6)-(Al7). Using relations (A9), (Al), and

(A3), we can write (Al6)-(Al7) in the form

L) (e- ) (€P-ed) 23
¢ < 8/ | (A39)
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The necessary and sufficient conditions for zero to be
smaller than f’ ,fl, are according to theorem Al :
fy +P.
Agy0 , yP(@)y0 , ol
Using (A10), (Al), we can write these conditions as

82_4*?)5 >0 (A40)
88’) O (a41)
E,/ZX >0 (a42)

Since x,a‘, and € are all positive by definition, it is
obvious that (A41) and (A42) are automatically satisfied.
Condition (A40) is actuallv repetitive, because (A38)
guarantees thét the roots R',f; are real and unequal;
therefore, we do not have to require that (A40)-(A42) be
satisfied.

According to theorem A4, the necessary and sufficient
conditions for 1 to be greater than 1)” ,7/{ are

Ag>o0 , -§6(1)y0 , 1y —Huthe

Using (Al3), (A3), we can write these conditions as
8'1—453”)0 (A43)
(y-£'+¥)yo0 (a44)
1y €/2y (a45)

However, since (A38) guarantees that F"ﬁl are real and

unequal and we have the arrangement h( ‘%-(')1 ( wi , it
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is obvious that q,,qg will also be real and unequal; therefore,
we do not need to include (a43).
In summary, the necessary and sufficient conditions for

the arrangement

o< p, < Vo (<Y <L

L) (et ) () .
e< ¢ (39)

(y-e'+D') Yo (a41)

2 Y ¢’ (245)

Or in a more compact form,

(=Y (e-e ) (€P- D)
(y-¢'+00') »0
2¥>¢e>¢

221 ol P, (W, P <LK W

The necessary and sufficient conditions for the

arrangement
0L <Pl <Y

are as before

X(ﬁ‘iﬁ‘y( (8~L')(8'17‘-£8"’) (A38)
¢ <€ (A39)

The necessary and sufficient conditions for 1 to be

between ?{ and 4& are according to theorem A6

-y6(1)<o



-97-

Using (Al3), we can write this condition as
y(y-v'+%) <o
and since x>0 ’

[} /
(X-i{'@’)(O (A46)
The necessary and sufficient conditions for 1 to be greater
than h , ft , are according to theorem A3

Bgyo , yP(1)y0 , 1 y-tcth

Using (All), (Al), we can write these conditions as

t”-4xa’)0 (A47)
(K-t+a‘) 70 (A48)
| LS i/iX (A49)

Since (A47) is repetitive, we end-up with the conditions
K(Q‘ia‘)?'( (8-8')(2'8’-61())’) (A38)
e e (a39)
(-2 +9) <0 (246)
(y-e+P) » O (a48)
2y > & (A49)

Or in a more compact form,

F(P-D) ¢ (g-e) (£0-eD)
¢ ¢ in§ (&,2))
(-9) Cy =)
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a3] 0<f,_<w7_<i<f’1 <\P1

The necessary and sufficient conditions for 1 to be

between V‘,yi and between ﬁ 'fl are according to theorems

Aes B —ye(1)<0
¥ (1) <o

Using (Al3), (All), we can write these conditions as
, .
X(X'a"*%’ )(O (A50)
x(x-a{-%‘)(O (a51)

Since x>0, we can rewrite these as

(h" £’+ %‘,< 0 (A52)
(K-tfﬁ’)(o (A53)

For the arrangement
0(?1('le<f1<Wi

we have again that the necessary and sufficient conditions

y(O-P) ¢ Ce-e) (£ D)

£ < 8/ (239)

(A38)

In summary, we have that the necessary and sufficient

conditions for the arrangement O ¢ f?- 4 ‘P,. (1< Pi < VI:[

are
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);(i)*'-«‘fl’)2 C(e-¢)(EP-eD)
e<e’
(- +D) <0
(y-e+¥) <0

Or in a more compact form,

Y (- %‘)"‘( (e-¢ ) D-eD)

£ye |
y<ing § (£-9), (-0}
atl 0P, <A< Y, <P kY

(A38)

(A39)

(A52)

(A53)

The necessary and sufficient conditions for 1 to be

than Vﬁ ,VQ , are according to theorem A2

-y6M) Yo , 1< (Y +%,)/2

Using (Al3), (A3), we write these conditiqns as
y(y-e+d') yo
1< e'/ay
since §»0 , we can rewrite (a54) as
(y-£+P)>0
ay<e’

(A54)

(A55)

(A56)

(A55)

The necessary and sufficient conditions for 1 to be

between j% 'P2 are according to theorem A5,

y$(1) <o

less
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Using (All), this condition can be written as
(y-¢t) <0 (857)

As before, the necessary and sufficient conditions are

X (0"-‘0’)1< (e-&') (e V-ed) (A38)

Xe4 (239)
In summary, the necessary and sufficient conditions for
the arrangement ‘0<P‘L< 1< %( P,’ < ?"Ui are
¥ (-9 (e-€) (e-ed)
¢ &/
(y-£'+9') 0
ay< e
(y-e+9) <0

Or in a more compact form,
(PP () (eP- D)
¢'ySup (&,2))
(£-¥) < ¥ < ()

aS] 1<P2<‘P2<?1<W1

The necessary and sufficient conditions for 1 to be less

than ?1,91 are according to theorem Al,

YO Yo , 1< (pip)/2

Using (All), (Al), we can write these conditions as

(x-iﬁl‘) >0 (a58)
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1< efay (a59)
As before, the necessary and sufficient conditions for
the arrangement ?1 < q)z < P1 < Wj. are
/
X(‘fp'.ﬁ’)l( (2-2')(&’3’—28’) (A38)
/
2 < ¢ (A39)

In summary, the necessary and sufficient conditions

for 4¢PV Py <V
Y (P-D) < (e-e)(eD- )
2y < e<e
(y-£+¥) >0
bl] o<1P,_<f,_<W1ép,<i
For the arrangement Y, < fo < Y, < P1 we
have from theorem A7b that the necessary and sufficient

conditions are
RG¢ o, Y +Y, < b1 T P2
Using (A9), (Al), (A3), we can write these conditions as
f(pL ¢ (e-2) (D= ed) a38)
¢'Ce
The necessary and sufficient conditions for zero to be

less than IP ;qé are according to theorem A2

¥60) S0, ol (¥+¥,)/a

Using (Al2), (A3), we can write these conditions as
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/

0 >0

]

£/2y>0

'/

Since X ,% , & are all positive by definition, it is obvious
that both these conditions are automatically satisfied.

The necessary and sufficient conditions for 1 to be greater
than P”fl are according to theorem A3

(Yo, 1>t/

Using (All), (Al), we can write these conditions as

(y-e+d) > o (260)
1y ¢e/ay (e

In summary, the necessarv and sufficient conditions for

the arrangement 0 < \Pz_ < Pa < 4}1 < P, < i are

K (D)L (-2 ) (£D- e D)
£'<t
(y-e+0)>0
A
Or in a more compact form, ,
YD) (e-2') (£ V-e)
(y-e+®) >0
g'¢ecty
021 6 (W, p, < Wi <1< Py

The necessary and sufficient conditions for 1 to be

between ?1,fz are according to theorem AS

¥ P(N Lo

Using (All),

(y-e+v) <0 (262)
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The necessary and sufficient conditions for 1 to be

greater than qﬁ :w& are according to theorém A4,

6Ny, 1> (WY /a

Using (Al3), (A3), we can write these conditions as

(y-¢'+¥") >0 (263)
19 El/RK (264)

The necessary and sufficient conditions for the

arrangement 0{ \Pz < P-,,( 1'H 4 Pi are as before,
t(ﬁ"- 0)*< (i-g) (£P-eD) (A38)
£t

In summary, the necessary and sufficient conditions

for the arrangement 0 ( ‘P?. <P?— ( 1% ( 1< Pi are
y (L) () (ED-eD)
¢t
(y-£40) <0
(y-e49') 70
2§ »¢f
Or in a more compact form, /
((BLD)" (- (£V-eD)
¢! ¢ in§ (g,2))
Ce-D') <y (e-P)

v31 04 Y, Cp, <L Wy <Py
" The necessary and sufficient conditions for 1 to be

between fl’P‘l and ‘Pi ,WL are according to theorems A5

and A6,
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¥y P(1) <o
-y6 (<o
Using (All), (Al3), we can write these conditions as
(y-£+v) <0 (265)
(g-£'+9H <o (a66)

The necessary and sufficient conditions for the

arrangement 0( wg_ < P’L ( ’W‘; < fi are as before,
Y (- D) (e-¢') E-edY)
¢’ e
In summary, the necessary and sufficient conditions for
the arrangement © <‘P7, < PL {1 K4 “-V1 4 Pi are
5(&'.%*)"((?:2')(&’%‘—23") |
- gl
(y-£40) o
(y-¢'+D") <0

Or in a more compact form,
Y (- ¢ (e-e) (P )
£ e
g Lin§ § (&), (£-9]
b4l o (P, L1 P LWy Ly

The necessary and sufficient conditions for 1 to be

between 1“,9&_ are according to theorem A6,

-y 6(1) <o

Using (Al3), we can write this condition as

(y-¢+ »)<o (267)
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The necessary and sufficient conditions for 1 to be less

than {4 'PL are according to theorem Al,

¥P(MW Y0 , 1< (p+p)/2

Using (All), (Al), we can write these conditions as

(X-HB’) 0 (268)
1< efey (269)

The necessary and sufficient conditions for the arrangement

o< \P?’< r 4 w1 < fi are as before,
‘ : Y(B-9)2 ¢ (s-¢') (£~ £ 5)
£/Ce

In summary, the necessary and sufficient conditions for
0<Wz<1<h<q"'1 (Pi are ,
Y (- 9) (- ) P-e )
£'¢e
(y-¢'+9')<0C
(y-£4+) Y0
1<
Or in a more compact form,
p ((0-9) 2 (e-) (£0- &)
¢ >sup (&),2))
Ce-D) C § < (e-D)

b3] 144’1(?1_( Yi {Py

The necessary and sufficient conditions for 1 to be less

than q4 ;qé. are according to theorem A2,

Y6 yo , 1< (V+¥,)/2

Using (Al13), (A3), we can write these conditions as
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(Xoi,'+'3") 0 (A70)
1< 8,/2()' (A71)

The necessaryv and sufficient conditions for w,_<fz< %(fi

are as before,

: Y (9-9)" ¢ (e-e" M EV-D)

¢'<e
In summary, the necessary and sufficient conditions for
the arrangement 1< \yz <Pl 4 1P1 < Pi are
(DM - (D))
¢'<e
(y-£'+P') v 0
ry<e’

Or in a more compact form,
(LML (e (£ D)
2§ e'<E
(J-¢'+D') 7 O
1l odp, K (Y <P <L
The necessary and sufficient conditions for h(%(% <Pi

are according to theorem A7c given by

A ¥ 0

Reg 2 ©
yLPCR) +P(Vy (<0

Using (A9), (A7), we can write these conditions as

g 4) a’l> 0 (A72)
(D) (- (£0- D) (a73)
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!
171
(g-e) C25(P-D) @a74)
The necessary and sufficient conditions for zero to be

less than f1’ft are according to theorem Al,

Ay>o, yPIv>o , 0L (ptp,)/2

Using (Al0), (Al), we can write these conditions as

(21-460’) 70 (a75)
50’ >0 (276)

efty>o (a77)

Conditions (A76), (A77) are automatically satisfied.

Condition (A75) is repetitive, because

R@¢ = );“P(‘ﬂ) (P(q)t) >0
Yo +0(W)§ <o

imply that Xq}(\h) <o
KCP(\PL) <0

which according to theorem A5 means that f' 'P& are real

and

and unequal. Therefore, we do not really need to require
that (&7348’0') 20

The necessary and sufficient conditions for 1 to be

greater than ﬂ' ’PL are according to theorem A3,

(o 5 1>(pHp)/2

Using (all), (Al), we can write these conditions as

(y-£+9) >0 a78)
1y e/2) (a79)
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In summary, the necessary and sufficient conditions for
the arrangement °<P1<1VL<1P1 { P1 {1 are
43;%‘ 20
K(“) M (& z')(af)’ D)
£'(£-2) < 2§ (P-)
¥> sup§ €/, (2-H)}

c2] 0(&_(%_(\"1(1(?1
The necessary and sufficient conditions for the
arrangement 0<f7‘< 1P 4 wi <Pi are as before
L 4yd'vo
X(ﬁ ) ‘>(z a)(aD’ )
g (£-e) LY (DLD)

The necessary and sufficient conditions for 1 to be
between ?1’?1 are according to theorem A5,

Y P(1)<o

Using (All), we can write this condition as
(y-e+P) <0

The necessary and sufficient conditions for 1 to be greater

than q% 'qé' are according to theorem A4,

Y60 . 1y (Piw)/2
Using (Al13), (A3), we can write these conditions as
(xi+&)>0
1y ey
In summary, the necessary and sufficient conditions for

the arrangement 0¢ P'l.( .‘Pz( w.' {1 < ?i are



('™ 4qﬁ)>o
y(ﬁw MY (¢- z)(zfﬂ-aﬁ*)
£(1-0) < LY (P-D)

e
(£-) Ly <(e-P)

c3] *O<P1(IP?_<1<1)U1 (Pi

The necessary and sufficient conditions for the

arrangement 0(?2'( le (1")1 (Pi are as before
43@ >0
r(o-9)° > (z a)(zﬁ’-ta’)

£'(£-1) <2y (D-D)
The necessary and sufficient conditions for 1 to be
between ﬂ’?t» and 1{_,#& are according to theorems A5 and

A6 given by

¥®(1){o
-y 6(1) <o

Using (All), (Al3), we can write these conditions as

(y-£+ D) <o
(y-£'+ ') <o
In summary, the necessary and sufficient conditions for
0Lp, (W, (1Y <Py are
L4050 /
L)LY ) (P ed)
' (-¢) Cry(D-)
(y-v+d) <o |
SIS RE R XN R
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The necessary and sufficient conditions for the

arrangement 0< <,‘P <w { are as before
’ SR TSh L 449'>0
y (- 8\) > (&- e D)

£'(se) < 2) (D-)
The necessary and sufficient conditions for 1 to be

between f‘ fz are according to theorem A5,

y P(1)<o
Using (All), we can write this condition as

(y-e+) O

The necessary and sufficient conditions for 1 to be

less than -Vi ,Q% are according to theorem A2,
6 yo , 1< (H%+Y)/2
Using (Al3), (A3), we can write these conditions as
(y-¢'+9)yo
1¢e/ry
In summary, the necessary and sufficient conditions for
the arrangement 0<f £ 1(1})?'( W1< Pi are
g4y >0
y (- {)\) S (& a)(aﬁ’ £)
¢'(e-¢) < 2y (9-P)
(y-t+0) <o
(y-¢+>')yo
2y (¢

Or in a more compact form,

4y >0

6’(:‘7‘ &) > (¢- a)(aﬁ‘-aﬁ“)
e/(t-2) {1y (M=)

(¢~ ﬁ*’)<g<(£ )

¢y 2y
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el 1<fz<%<'w1<f1

The necessary and sufficient conditions for I)?.< 1}{(% (/)1

are as before,

¢ 45@*’ >0
Y(-9)? > (e-£') (e )
£'(e-2) <25(-H)
The necessary and sufficient conditions for 1 to be
less than fq , h are according to theorem Al,

yp1)vo, 1<(ptp)/2

Using (All), (Al), we can write these conditions as
(-2 t¥)>0
1L /2y
In summary, the necessary and sufficient conditions for
the arrangement 1 4 f’1< %' <1}‘{, <fi are
| g4y >0
¥ (PLD) ) (e-') (£0> D)
e'(e-2) <L) (D-D)
(e-D)y<¢ &/2
a1] o< Y, {p, <p, < ¥, <1

The necessary and sufficient conditions for %'( PL<P1 (%

are according to theorem A7d given by (A23)-(A25). Using

(A9), (A8), we can write these conditions as
-4y o (50)
K( FLMD (e-¢') (£0- e) (A81)
£(ehe) Y 24 (=) (282)
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The necessary and sufficient conditions for zero to be
less than V’,Vﬁ are according to theorem A2,

Avo , =§G60)yo , o< (Y+¥,)/2

Using (Al2), (A3), we can write these conditions as

¢ 4;1‘)3'> 0 (283)
x@')o

(A84)

/
2 /ZX >O (A85)
! ’
Since x ,i? and ¢ are positive by definition, (#84)-(A85)

are automatically satisfied. Condition (A83) is repetitious,
b ' 2
ecause RG? =K 6()01) G(f,,_) >0
-¥§6 () + Glp) <o
imply that

-yG(py) <o
-y6(p) <o

which according to theorem A6 means that #J;Vi are real
and unequal. Therefore, we do not need to require that
£'£4a«®\’> 0 , because conditions (A81)-(A82)
guarantee this.
The necessary and sufficient conditions for 1 to be
greater than18 ;%i' are according to theorem A4,

Y6 yo , 1> (Hi¥)/2

Using (Al3), (A3), we can write these conditions as
!
(y-e+®') yo
/
17 /2y



-113-

In summary, the necessary and sufficient conditions for

the arrangenent 0K ¥ <p, < py <Yy <4
g4y »0 ’ ’
x(%"-g»)‘)(a-a')(aﬁ’.za»)
£(e-2) » 2 (9-D)
yysupl &fe, (-

a2l 0K W (P <p,<1<Y

The necessary and sufficient conditions for 1 to be
between V),V)l are according to theorem A6,
-y6(2)<o0
Using (Al3), (K— a’+®") < 5
The necessary and sufficient conditions for 1 to be
greater than §4 'Fl are according to theorem A3
Yo () yo , 1>(p+pa)/2
Using (al1l), (al), '
(y-t+d") 20
17 ¢l
The necessary and sufficient conditions for 0(\1)1(?2_(')1(1,}1
are (A80)-(A82).

In summary, the necessary and sufficient conditions for

the arrangement o< Wl 4 f?. 4 P1 (1 (’]I)i e
ASE AT ’
X({’J"-{‘.’J*)‘)(z-z,')(a’%’-a@’)

L(e-0) Y 2y (P-D) .
supy &, (e-?FLy < (-9)
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ds] O(q’zq,_( 14f (Wi

The necessary and sufficient conditions for °<Ipz<f;<f1 <1g
are (A80)-(a82).

The necessary and sufficient conditions for 1 to be
between f1,fL are according to theorem AS5,

yP(1)<o

Using (All),
(-t +) <0

In summary, the necessary and sufficient conditions for
the arrangement 0<{ \P7_< f’,'( 1< P,' (Wi are,
e-4ydyo -
¥ (- Y Ce-e) (£V-£D)
L (e-2) Y 2y (D-P)
(y-e+P) <0
a1 o<l <p <p<Yy
The necessary and sufficient conditions for o<‘i’;(f;<ﬂ4‘ﬁ
are (A80)-(A82).
The necessary and sufficient condotions for 1 to lie
between N, ¥ are according to theorem a6,

-y6()<o

Using (Al13),

! /
(y-e+90) <0
The necessary and sufficient conditions for 1 to be

less than ?1 ,fz are according to theorem Al,

yo(vo, 1<(pitp)/2

Using (All), (Al),
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(y-2+d) yo
1< ey

In summary, the necessary and sufficient conditions for the
arrangenene 0 (W, <1 (P, < fy <V are
¢ 433’ >0
y(»=- ) > (¢- z)(i’ff’ )
1Y (D-D
z((gi:. ﬁ\t)) ZX <XL(»?§ i )i [2, (¢- 3”)}
ds5] 1< \P < < fl 4 \Pi
The necessary and sufficient conditions for Ya{ f,_( £ < }U
are (A80)-(A82).
The necessary and sufficient conditions for 1 to be less
than ’ﬁ ,1201_ are according- to theorem A2Z,

Y61 >0, ol (H+¥)/2

Using (Al3), (A3),

(y-e'+D) Yo
ol ¢/
In summary, the necessary and sufficient conditions for

the arrangement 1< %<f1<‘)1 (1}/1 are,
-4y Yo
¥ (- ‘ba) »(¢- &)(53’-23’)

e(e- a))lm)* )
(¢-D) <Y< & 1

1l 0<P < py < K<Y <L
The necessary and sufficientconditions for 0<pz<f1<1ﬂ<"/}1

are according to theorem A7e,
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A¢>0, AG>0 ) RG¢>O
SN IUAL 4
- 160 +6 LT 20

prtp <Yt Ve

Using (A9), (A7), (a8), (Al), (A3), we can write these

conditions as

£ =4y 0 (286)

oL ayd'50 o

(LMY () (£D-2D) (a85)
g(t-v) » 2yl >-0) (289)
£(5-2) C 2§ (B-D) (290)

¢ e | (391)

The necessary and sufficient conditions for 1 to be
greater than q% 11”L are according to theorem A4,

~peyo Ly (Vd,)/2
Using (Al13), (A3), .

)
(y-£+V") >o
)
1> ¢/

In summary, the necessary and sufficient conditions for

the arrangement 0¢ f2_< P4 £ qu, 4 1‘}1 (1 are
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£- 4§ Yo |
245> 0

JE-M ) Ce-)(ED-£D)
£(e-2) (2 (D)  £/(¢-2)
g/ Cay
(y-¢'+¥') >0

2l 04, Lp (Y 1LYy

The necessary and sufficient conditions for O(f,"(ﬁ(%(%
are (A86)-(A91).

The necessary‘and sufficient conditions for 1 to 1lie

between \P1 ,“P_L are according to theorem A6,

-y&(1) <o
(y-e+d') <o

In summary, the necessary and sufficient conditions for

the arrangement 0¢ P1<P1 LKP2_< 1 (1’}1 are,
g~ 4500
g4y yo ,
g (LY (- £)(eV- )
L (g-e) L 2p(P-P) ¢ (£-8)

e
(y-£+ ) <0

31 0&p Lp 1KY LY

The necessary and sufficient conditions for OCPIKP’(II{(‘,Q

Using (Al3),

are (A86)-(A91).
The necessary and sufficient conditions for 1 to be

less than ‘#)1 ,1Pl are according to theorem A2
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¥6( yo , 1C(WHY)/L

Using (Al3), (a3),
(y-+D) Yo
1< ¢'/ay
The necessary and sufficient conditions for 1 to be
greater than f1 'PL are according to theorem A3,

yP(1) 20, 1> (P1tp2)/2

Using (All), (Al),
(y-£+¥) Yo
Ly ef2y

In summary, the necessary ana sufficient ccnditions for

the arrangement °<f?-<?1<1<w'- <1P1 . are,
£= 4y D0

g %33‘)0
g (9-P) Y (e- S (E0-)
a(t L) L Lp(HPED) C £/(E-€)

supy (£-D), (D), 8}43/(?«
e4] 0<P1<1<f,<%(‘/)1

The necessary and sufficient conditions for 0< P1<P1<V)z<z/.jt
are (A86)-(A91).
The necessary and sufficient conditions for 1 to lie

between fi ’Pl are according to theorem A5,

y $(1) <o
Using (all),
(y-1+9) <0



-119-

In summary, the necessary and sufficient conditions for
the arrangement 0 ¢ f'_ (1< ‘)1 { 1PL <1Pi are
£ 4xﬁ‘>o
45D »o
x(&-)* >(£-a)(a8’-i%’)
£(¢-¢) < 12{(%’ ) ! (e-¢)

g ¢
(y-e+00) <o

e5] 1(?,_("1(1,)14'\}}1,

The necessary and sufficient conditions for h( f, ‘f’ <Vﬁ
are (486)-(A91).

The necessary and sufficient conditions for 1 to be less
than fy , f’}. are according to theorem Al,

YP(1)yo , 1< (p+p.)/2

Using (All), (Al),

(¥-£+) Y0
1< g2y

In summary, the necessary and sufficient conditions
for the arrangement 1< P < P,' 4 IPZ <1Pi are,
£ 430‘70

g 43%’ 70 '

(f)’ Ity (&- £ )(aﬁ"-afb)

a(z £) (Y (D)< e/ (ee)

2y ey

(y-£+9)>0
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f1] °<1PZ<IHI<P1.<?4<1
The necessary and sufficient conditions for 0(11'.,,(1”1([’2(})1

are according to theorem A7f,

Agyo, g0, R >0
(PLH)+ B8] >0

Y 16G)+6(p) 0
Y + Vo <Py tPe

Using (A9), (A7), (a8), (Al), (A3), we can write these

conditions as
2724—6'3’ >0 (292)
¢ 4ﬁ)’l>o (293)
¥( D) " 7(5-3')(3'03‘534) (294)

z'(a’-a)) 23(1‘)’/- D) (295)
¢ (e-2)< 2()’(3"-8’) (A96)
eve’ o)

The necessary and sufficient conditions for 1 to be

greater than P’ ,Fz are according to theorem A3,

Y1) Yo , 1Y (ptp)/2

Using (All), (Aal),
(x-u{b»o
1y ¢/
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In summary, the necessary and sufficient conditions for

the arrangement 0 Yy (y {py py <L are,
-4y Yo
5'340’3”>°
§ (P (e-e) (e
e(£-1) < garw"-m {e(ehe)
Lyt
%§-2+%>)>0

221 0 Yo {Y <P <ALy
The necessary and sufficient conditions for o Y,{ ¥< PSP
are (492)-(a97).
The necessary and sufficient conditions for 1 to be
between f, 'fz are according to theorem A5,
y (1) <o

Using (All),

(y-e+?) <o
In summary, the necessary and sufficient conditions for

the arrangement © (1',);_ (1})1 <P1< 1 ( Pi are,
¢=4y¥ o

gL 4D’ >0 ,
x(a»'.ro’)‘>(i~z')éff@’-z?’)

£ (£-¢) L 2y (D) (e (€-8)

. ey e

(y-t+®) <o

3] o VoY1 <P, <py

The necessary and sufficient conditions for o(‘}’z< w1 <P1<Pi
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are (A92)-(a97).
The necessary and sufficient conditions for 1 to be less
than f1 ,Pz are according to theorem Al,

YoM yo > 1< (p1+p)/a

Using (Al1l), (Al), we can write these conditions as
- (y-e+) 0
1< /2y
The necessary and sufficient conditions for 1 to be
greater than ‘qé ,y%_ are according to theorem A4,

-y6 (1) Yo , 1y (H+¥)/2

Using (Al3), (Aa3),

(y-£ +9) 0
1y ¢/)
In summary, the necessary and sufficient conditions for
the arrangement 0< 1‘“;(% 4 1<P2. <P1 are
= 4ﬁP>0
2'143;3’ >0

y (PL9)* 7 (e- z)(eD’-aﬁ))
£ (g-1) L 2§ (DD %><a(e z,)

supd (-9, (=0, £ ¥y < &
£4] o<1P1<1<1P1<f.L<h

The necessaryv and sufficient conditions for o<§0;<2H<Pz_<P1
are (A92)-(A97).
The necessary and sufficient conditions for 1 to lie

between ‘q% 'THL are according to theorem A6,

-§y6()<o



-123-

Using (Al13),

! /
(y-¢+d)<o
In summary, the necessary and sufficient conditions for

the arrangement O("Pz, <1< 1P4 < P’L £ Pj_ are

e~ 4§P o

1k 43%" 70 , ,

K(g,'_@,)l)(i-z')(i,ﬁ’-&@’)

£(g-£) C2p(d-D)< £(e-E)

3

(y-¢'+9') Co

51 4P AW <Pl
The necessary and sufficient conditions for wz_<?{)1 <fZ<P1

are (A92)~-(A97). |

" The necessary and sufficient conditions for 1 to be

less than ¥4 ,V{ are according to theorem A2,

() yo , 1<(Wi+¥)/2

Using (A13), (a&3),

(x-£'+9) o

1 e'fry
In summary, the necessary and sufficient conditions for
the arrangement 1< WQr(W“ 4 Pi < Pi are,
edyiroo
g 43/17’ 70

x({’)’-&)%(e-a')u'a‘-ia’:) ,
¢ (¢-8) C Ly(DiD)L ele-e)
yde’Le
G-'+D) Yo
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al] ()<I’<.42<<1#1<f1
The necessary and sufficient condition for ¢(§’): O to

have a double root, f: E/za’ , is

2
£ = 4-(17’ (298)
The necessary and sufficient conditions for o<f(‘7uz,<%

are according to theorem A2,
A0, -y6(&/20)y0 , '—fg< (Y+¥.)/2

Using (Al4), (A3), we can write these conditions as

/
5'2"1*%) ) o (299)
'z.xﬂ‘, b 6( 6/... _2_5-_ (A100)

e (A101)

The necessary and sufficient conditions for 1 to be
greater than H ,1}; are according to thoerem A4,
46 vo , 1y(Hth) /2
Using (Al3), (A3), )
(y-£+P)>0
158 /2

In summary, the necessary and sufficient conditions for



=125-

the arrangement O<p <Y, < W1 <1 are
£2= 4X’3’
g 4x%"> 0
23’%3' S e(e- —f’i-)
e< €' <2y
(Yy-¢+9') >0
a2] 0<P<'\P2<1<'\P1
The necessary and sufficient conditions for o< p< Yo< ¥
are (A98)-(Al01).
The necessary and sufficient condition for 1 to lie
vetween % ,1}’7_ is according to theorem A6,
| -y&6(1)<¢o
Using (al3), '
(y-£+P) <0

In summary, the necessary and sufficient conditions

for the arrangement O<f<\Pg_< i < 1)1 are
il::‘;x{b
2 /
¢ 4yP>o0
2§y e(e-£)
e<e!
(y-¢'+¥ )<o0

a3] o(f(i( \UZ<\U1

The necessary and sufficient conditions for °<r<1pl<’4}i
are (A98)-(Al0l).

The necessary and sufficient conditions for 1 to be

less than IP R 1}%_ and greater than p are according to
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theorem A2,

y&6(Myo , 1< (H+¥)/ 2, e<2y

Using (Al3), (A3), /
(y-¢'+P)>0
1< ¢ /2y

e 2y
In summary, the necessary and sufficient conditions for
the arrangement o< P {1< “'Pz. 4 wi are,
¢t = 48'%:
1
¢ -4y >0

! /
259y e (e~ £) ,
! J £ a
SuP{(a—O’) ) 7}( Y <-2—
a4] i<(r<(1kl<:\P1
The necessary and sufficient conditions for P( \V2< Vfl
are (A98)-(al01).

The necessary and sufficient condition for 1 to be less

£y 2Y
In summary, the necessary and sufficient conditions for

the arrangement 1§ < ?( \Vz < Wi are,
=4y 0
¢=4yD >0
20y e(e-£)
2y<¢eC e
bl] °<‘P2_< ‘P1 <P<1

The necessary and sufficient conditions for 0<wz< ‘pf <f

than p is
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where p is a double root of the equation ¢(§)= 0 ’

are according to theorem A4,

&13‘“’&» “XG(8/2X)>° )%>(M+wl>/2:A@>o

Using (Al4), (A3), we can write these conditions as

813 4X& (A102)

i’l- 433}’) 0 (2103)
2x%’i"> ?.Cil—%:) (2104)
£ &I (A105)

The necessary and sufficient condition for 1 to be

greater inhan p is,
e 2y

In summary, tne necesssarv and sufficient conditions for

the arrangement 04 ¥, { Wy < P <L are
?,L: 4‘&’8”
¢ =4y¥ 70
3P yele-£)
¢'C ey
p2]  0< W, < 1P1<1<9
the necessary and sufficient conditions for o ¥, Y, <P
are (Al02)-(A105).
The necessary and sufficient conditions for 1 to be
greater than qi ,M and less than p, are according to

theorem 24,

~y6M Yo, 1y(Prv) /2, 22
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Using (Al3), (A3), ) /
(y-2+0) >0
1y ¢/
£y 2y
In summary, the necessary and sufficient conditions for

the arrangement O<\'Pz<wi<1<? are,
= 4yP

z"'451°>>0 ,

2%y e(e-%)

Suﬁ(t ), ¢/ <Y< &

31 oY, (A< Yy P

The necessary and sufficient conditions for 0<1P2,<IP1<?
are (A102)-(Al05).

The necessary and sufficient conditions for 1 to lie
between \Pj ’ wl are according to theorem A6,

~y6)<o
Using (Al1l3), .
(y-£+9) <o
In summary, the necessary and sufficient conditions for

the arzangenent 0L ¥, <1< Y, <p are,
¢ = 4y
g - 45%’)0
259 Y z(z—%)
p<t
(y-¢+v <0



=129-

b4] i(w‘z.(\yi < P
The necessary and sufficient conditions for W, { ¥y
are (A102)-(al05).
The necessary and sufficient conditions for 1 to be
less than ¥y . wz , are according to theorem A2,
Y6 (1)yo , 1< (Y+¥) /2
Using (Al3), (A3),
Cp-£+9) yo
1< e'f2y
In summary, the necessary and sufficient conditions for

the arrangeén;ent 1< \P,_ < W1_ < l) are,

1) < t’<’£
(y-£+® ) >0

c1] 0<Wz<f(wi(1

The necessary and sufficient conditions for O< 'P,_(p(‘[)l '

where p is a double root of ‘P(%) =0 , are according

o eoa‘;e{f;xrb’ , _XGC&/Z&)<O

Using (Al4),

£L= 4X’9’

(A106)

25%’,< ‘C—(ﬁ"‘%) (A107)
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The necessary and sufficient conditions for 1 to be

greater than \P' , l\‘)q_ are according to theorem 24,

Ag 70 (A108)

- XGU) >0 (109)
15 E‘I/?'X (A110)

Condition (Al108) is repetitious, because according to
theorem A6, the condition -K@(a/zk) <O guarantees
that ‘H ,"Pl are real and unequal. Thus, we can
disregard (Al108).

Using (Al3), we can write (Al09)-(All0) as

(y-+D") >0
¢ {1y
In swumary, the necessary and sufficient conditions for

the arrangement O<\})7_< f( w1 < L are,
L

P < e (e-%)
Y >sup { e/, (%'-1}”)75

c2] o(ll)?,(p(i('%
The necessary and sufficient conditions for O<1P1.<f<w1
are (Al06)-(al07).
The necessary and sufficient conditions for 1 to be
between \‘)‘ 'wl and greater than p are according to

theorem A6,
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-6 1) <o
g<y

Using (A13), )
t
(y~-¢ + V) <o
ey
In- summary, the necessary and sufficient conditions for

the arrangement ¢ ’\P,L< P {1 <K F"Pi are,
¢ = 4y 0y
21y® e(e-%)
£y Ce- > )
c3] o(‘P,_(i(PC\Pi
The necessary and sufficient conditions for 0 Y < P('-Pi
are (Al06)-(Al07).
The necessary and sufficient conditions for 1 to be
between 4’1 ,'\Pz, and less than p are according to theorem A6,
-~y 6N <o
vy 2§
Using (al3),
(g€ +9) Lo
ALY
In summary, tiie necessary and sufficient conditions for
the arrangement 0< Wy <1 <P Yy
£z 4y |
2P (v-§)
y<ingi e/e, (f»'-@”)g
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el 1< < p< q)i
" The necessary and sufficient conditions fér "PZ< P(Wi
are (Al06)-(A107).

The necessary and sufficient conditions for 1 to be less

than m' ,lpz are according to theorem A2,

~§6(1)>0 | 1< (Y+¥,) /2

Using (Al3), (Aa3), /
!
(x-¢+?) So
/
1< e/
In summary, the necessary and sufficient conditions for

the arrangement 1 ( ’\Pz 4 P 4 W1 are,
iz=4b'13’ ' -

2P Ce(e-L)

-y /e

SUE T 2R IR 1
The necessary and sufficient conditions for 0(‘4)( PL< Pi
where ¥ is a double root of 6(0)):0 , are according to

2’1':43'%",
£-4y >0
¥ PCe'f2y) Yo
¢'fry < (1) /2

Using (Al15), (Al), we can write these conditions as

/
8"’: 43’%’ (A111)
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gh- 4{3‘)0 (A112)

] /
153’) 7 (E--%-) (A113)
¢'¢e (A114)

The necessary and sufficient conditions for 1 to be
greater than ?1 'PZ , are according to theorem A3,
YO o, 1y (pytp)/2

Using (All), (al),

(y-£+P) Y0
1y ef2y
In summary, the necessary and sufficient conditions for
the arrangement 0<¢ \P 4 PL < Pi V4 i are,
¢tz 4y
L4y
1xﬁ>ila-_)

£/ ¢ <2y
(y-e+D)20

az] odYWLp, <L Py
The necessary and sufficient conditions for 0<1P<PZ<P_L
are (Alll)-(All4).
The necessary and sufficient conditions for 1 to lie
between 91 ,?2 are according to theorem A5,
y®(1) <o

Using (All),

(y-2+¥) <0

In summary, the necessary and sufficient conditions for
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the arrangement 0<‘P 4 P?— (1< fi are,
¢/t = 4y
g-4yvy0
P ye'(e-%)
<t
(5-i+3’) {o

-

as] o (YLLLP<Py

The necessary and sufficient conditions for O<1P<f’z<?i
are (Alll)-(All4).

The necessary and sufficient conditions for 1 to be less
than ‘ ?4 ’ ?1 and greater than ¥ are according to theorem

Al,

(Y0 , 14 p+p) /2, EC2y

Using (aAll), (Al),

(y-£+P) Y0
1< el
' 2y
In summary, the necessary and sufficient conditions for
the arrange,ment O( w < i < PQ« < Pi are,
¢tz 4{3”
g-4)0 >0

u? > (e-£)
supl €/, (e-M) <y <&/

asn 1{Y <P, <Py

The necessary and sufficient conditions for 1})( PZ<F1
are (Alll)-(all4).
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The necessary and sufficient condition for 1 to be less

than ¥ is,

£y 2y
In summary, the necessary and sufficient conditions for
the arrangement 1 <YL Pr <Py are,
¢t a4 r ﬁ"
L= 4o
24> e (e-&)

2y Cele
ell . 04 P, < 9, < Pt

The necessary and sufficient conditions for 0<P2_ (f1<’¥}

are according to theorem A3,
gt = 4(%"
g=4§0 0
xd( E'fry) Yo
¢fry > (§,+0)/2

Using (Al5), (al),
gt 433”’ (A115)
¢ 4&3’70 (A116)

16’8‘> i—'(i‘%") (A117)

¢! >¢E (A118)

The necessary and sufficient condition for 1 to be

greater than ¥ is

g2y
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In summary, the necessary and sufficient conditions for

the arrangement 0 < ’)2 < h 4 '\P {1 are,
' /
£ :43’3‘
g".4ﬁ’ >0 |
3Py’ (e-%)
£C £'< 2y

e2] 0<f1<p1<1<'4)

The necessary and sufficient conditions for O<P1—<P1 (w
are (All5)-(all8).

The necessary and sufficient conditions for 1 to be
greater than ?1 ’?’L and less than ¥ are according to
theorem A3, )

YO Yo, 15 +e) /2, ©r2f
Using (all), (A1),

(¥-e+ D) o
1y ey
f,' ; .2’3/\
In summary, the necessary and sufficient conditions for

tha arrangement o< 2 < (1 < 1P are,
gt = 4‘X%’ ? ?1

g-4yr>o0
247y e(e-%)

supd(e-D), el § < < £'/2
e3) 0l KL< p <Y

The necessary and sufficient conditions for o(rz< ‘)1<1P

are (All5)-(All8).
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The necessary and sufficient conditions for 1 to lie

between ?1 'fl are according to theorem AS,

Yy P(1)<o
Using (All),

(y-e+¥) <o
In summary, the necessary and sufficient conditions for

th:ﬂarrzr;g;\t;ent 0{ PL {41 /¢ h < w are,
g-4goyo
2P £'(e-£)
¢yE *
y-e+v) <0

et <P &P LY

The necessary and sufficient conditions for szP" UV
are (All5)-(Al18).
The necessary and sufficient conditions for 1 to be less

than 91 ,?1 are according to theorem Al,

P vo, 1(p+p)/2

Using (all), (al),
(y-t+W) o
1< efry
In summary, the necessary and sufficient conditions for
the arrangement 0¢ P'L (1< P{ { ’\P are,
¢t = 4(\'0"
-4y o0
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2Py (- )
1y <<
(y-£+ M) >0

£1] o(h(‘P( Py <1
The necessary and sufficient conditions for o<foP<Pi ’
where ¥ is a double root of G(W) =0 , are according

to theorem A5, /

¢/ s 483’

Yy (e/2y)<o
Using (Al5), il

¢/t = 45%” (8119)
el (g)

The necessary and sufficient conditions for 1 to be

greater than ?1 'Pz are according to theorem A3,

A‘f’ >0 (A121)
ye()>o0 (A122)
1 > tP)/2 (a123)

Condition (Al2l) is repetitious, because according to
theorem A5, the condition X@(i'/la’) < 0 guarantees
that ?1 ,P.‘_ are real and unequal. Therefore, we can
disregard (Al21), and using (All), (Al), we can write

(A122)-(A123) as



(y-e+P) Ho |
1> e/ry

In summary, the necessary and sufficient conditions for

the arrangement 0(?2(1[)(1)1 <4 are,
gt = 45%’
2y ¥< ¢/ (e-£)
(y-t¢+¥) o
£< 2y

Or in a more compact form,

'2—4K%J ,
2y < & (£
¢ >supl e/2, (e~

£2] o(?l(\P< 1< Py

The necessary and sufficient conditions for 0<P2< 1P<Pi

-

are (Al19)-(Al20).
The necessary and sufficient conditions for 1 to be
between 91 , ?’L and greater than ¥, are according to

theorem A5,

FP(ICo, ey

Using (All),
(y-e+?)<0
K
In summary, the necessary and sufficient conditions for

the arrangement o < P‘L < w (1<K Fi are,
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L4y D ’
< (-£)
B¢y <(e-D)

£3] o<‘>1(1<'\P<Pi

The necessary and sufficient conditions for O(f?_< w< Pi
are (Al1l9)-(Al20).

The necessary and sufficient conditions for 1 to be
between f1 'PZ and less than ¥, are according to theorem

A5,

(f-e+V) <0
!
DR
In summary, the necessary and sufficient conditions for

the arrangement o< f?. (1 < '\p (Pi are,
gt = 43%1
P (E-K)
y<in§ gl 7, (&- %’)}

£4l 1<P1<W<Pi

The necessary and sufficient conditions for f2.< w< Pi
are (Al19)-(Al20).

The necessary and sufficient conditions for 1 to be less
than ?1'fl are according to theorem Al,

x>0 , 1< (p+p)/2

Using (All), (Al),

(y-£+9)y0
1L ¢ef2y
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In summary, the necessary and sufficient conditions for

the arrangemer’lt 1 <f < \P< 1 are,
et= 4D p : r
PP < (e- &)
(e-P) CY< gfr

1 o< p< Y< !
21 o<lp<1<kVY
31 4<pKY
hi] oK P<p<
21 o Y1
n3l L CYLP
111 o< P2y
21 1< p=V¥
The necessary and sufficient conditions for the above

arrangements are shown in chapter IVb. The derivation of

these conditions is trivial, and will not be discussed.
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all - f‘l. are complex and 0 < \Pz 4 \P1 1

The necessary and sufficient conditions for fy , Pl to

be complex and for 0 < ‘P;. < \h < i are according
to theorem A4,
£ < 4y?
iL4yD' Y0
-y6 (1) >0
1Y (V+Y,)/a
Using (Al13), (a3),
9(4{%
' =4y Y0
(y-£ +&)yo
1y ¢'/2y

Or in a more compact form,

£ < 4yY
¢ 4yPvo
(ysupge/a, (-
a2) f‘ ' ?2. are complex and O<w1<1 <\U1

The necessary and sufficient conditions for P4 ,fq to

be complex and for ©0¢ \P‘L ( i <wi are according
to theorem 246,

gt 4x®’< )
-y6U)<o
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Using (Al13), 52'<4X8-"
(y-¢'+9) <o

f“ , P‘I. are complex and i < '\Pz < \Pi

The necessary and sufficient conditions for 2 ,Pz to

be complex and for 1 < \P,_ < wi are according to

theorem A2,

-4y U<o
a"-45i’ﬁ'>o
Y6 (1)>0
1 <(H ) /2

Using (Al13), (a3),

g 43%‘(0
g 4);{7’ >0
(y-2+) o0

1< e/

Or in a more compact form,
£ L4yT
v‘>4x®
(e-D') (y< 2/2.
bl] 0y - P'L are complex and o(\l) <1

b2] ?1 ’ ??. are complex and 1 <'\P

The necessary and sufficient conditions for these
arrangements are shown in chapter IVb. Their derivation is

trivial and will not be discussed.
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cl] \H "‘Pl are complex and °<P'L<?1 1 .

The necessary and sufficient conditions for ‘\'Pi ,]Pz to
be complex and for 0¢ PZ 4 91 (1 are according

to theorem A3, i"’. 4X'§”<O

et~ 4y P >o

¥PU) >o
15 (P4 *Pz)/l

Using (All),(Al), we can write these conditions as
et < 4yD
¢ty 4y
(y-e+P) >0
1y¢e/y
Or in a more compact form,
gt L4y
ASE I
grsupiela, e-0)§

c2] \P’ ,w,_ are complex and 0% P7—< 1< P1

The necessary and sufficient conditions for 1P1 ,Wl to
be complex and for 0<( P‘L (1 < Pi are according

to theorem A5, 2 '
'~ 4yv <o
¥o(1) <o

4y
(y-£+ D) <o

Using (a11),
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c3] ‘\P" ,w,, are complex and 1 < ‘)?’< Pi

The necessarvy and sufficient conditions for IPQ ,1,)2 to

be complex and for 1 ( fl 4 Pi are according to
theorem Al, 2 !
¢ -4yP <o
- g- 4o

yP() >o
1 (P 4p) /2

Using (all), (A1), a'?'< 4X'D"’
£ty 4y
(y-e+P) o
1 &/
Or in a more compact form, )
gt 44>
e-y 450
(=) <y E

dl] ‘-Pl ,l}),‘ are complex and 0 < P <1
dz2] \P1 ,‘PL are complex and 1 (P

e] ‘yj ,Wt and ?1 ,Pz are complex.

The necessary and sufficient conditions for the above
arrangements are shown in chapter IVb. Their derivation is

-trivial and will not be discussed.
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Nomenclature

a, : Constant defined in chapter VI.
al : 1t LIS LI ] Tt e
a s L ] | I | e LN
2

a3 . 11 e " e
]

a . 1 | 8 ] LIS ] e
0 *

/)

a s Tt . 11 11 LI}
1

]

a : 1 e LR} 19
2

a’3 : N (N ] 1 (N
A ¢ Reactant

2

Concentration of A

A : Linearized matrix defined in IIIa.

(A-S) : Adsorbed reactant A.

"{A-5 } : Number of active sites occupied by adsorbed A.
B : Reactant

[B] : Concentration of B.

(B-S) : Adsorbed reactant B.

"{B-S} : Number of active sites occupied by adsorbed B.
Eq ¢ Activation energy of adsorption. Defined in IIb.
£ ¢ Function defined in VI.

fl ¢ Function defined in IIc.

bd : " v e nr
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Function defined in VI.

Polynomial defined in IIIc.

Kinetic constant defined in IIb.

Kinetic constant for adsorption of A(g).

| o
[ 1]

L} s s 1L e B(g).

Kinetic constant for desorption of (A-S).

e e LI | e L} (B"S).

1
N
1)

Rate constant defined in IIb.

?V'w?ﬁ‘ A A R R /"R & T

Kinetic constant comprising k3.

w
oW
o
. ..

= kL

-

Kinetic constant for Eley-Rideal surface mechanism

Total number of active surface sites.

(]

Real number (see APPENDIX).

8

=2

Reaction rate defined in IIb.

L

R ¢ Universal gas constant

RG@ : Constant defined in the APPENDIX, page 91.

[s]
"{s}

T ¢t Temperature

Active surface site.

Number of active sites which are not occupied at time

t ¢ Time

Coverage of catalytic surface with adsorbed A(g).

© "

" "e T " " LR} B(g).

Vector defined in IIIa

<

[
(1]

Polynomial defined in VI,
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Greek characters

oy, ¥ 0(3 ,p : Constants defined in IIIa

B1 )‘32

Constants defined in IId

K : ve v '" IIIc.

8— . e 't ve VI
A?, AG . 1 ') 1 'IIId
E,&/ . X N 1t IIIc

o

Fraction of active sites left unoccupied at

/ :
;P, %)’,C) : Constants defined in IIIc

21 ) 22- : Eigenvalues of linearized matrix A

time t.

=

Coefficient of heterogeneity of catalytic
| surface.
}' : Unknown in equation ?(}):O .
Roots of equ. (P(%) =0, defined in IIId.

Double root of ?(})30 y = a/zx .

0

P
T : =k,
¢

-
-
-~
-5
~

Polynomial defined in IIIc

: Roots of equ.G(w):O , defined in IIId.
/!

Double root of equ. G(W) =0 , = 8/2-&' .

Unknown in equ. Gw)=o0o

=
<

Polynomial defined in VI.

Constant defined in IIIa.

& D €



