A Dissertation
 Presented to
 the Faculty of the Department of Mechanical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

by
Victor Prodonoff
May 1972

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to the following:

Dr. C. D. Michalopoulos, his advisor, for suggesting the subject of this dissertation, for providing initial literature and for guidance and assistance throughout the entire research;

Conselho Nacional de Pesquisas, a research institute of the Brazilian Government, for financial support for his doctoral study program;

Mrs. Shirley Brunson who kindly read the manuscript;
and above all to Vivina, his wife, who always
encouraged him in pursuing graduate study despite the sacrifice and homesickness (Rio de Janeiro:) that it would require, which she bore in silence, and to Victor Jr. and Viviane, his children, whose smiles impel the author to accept any challenge.

THE EFFECT OF TENSION ON THE DYNAMIC BEHAVIOR OF ECCENTRIC SHAFTS ROTATING IN FLUID MEDIUM

An Abstract of a Dissertation Presented to the Faculty of the Department of Mechanical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

by
Victor Prodonoff
May 1972

ABSTRACT

Using Euler-Bernoulli beam theory an investigation of the dynamic behavior of an eccentric rotating shaft, subject to linearly varying or constant tension, was made. The shaft has distributed mass and elasticity and is suspended in a fluid. Initial lack of straightness was also included in the analysis. The local mass eccentricity is assumed to be a deterministic function of the axial coordinate.

For the variable-tension case the response was determined for a vertical shaft simply supported at the top and vertically guided at the bottom. The constant-tension case was analyzed for a shaft simply supported at its ends. The solution was obtained using modal analysis. It is in series form and is expressed in terms of characteristic functions of the free vibration shaft.

External damping was linearized by equating the energy dissipated per revolution by quadratic and equivalent viscous damping.

Displacements and stresses were computed along the shaft at a specific speed of rotation. Also maximum stress
and displacement were computed for speeds in the neighborhood of a natural frequency. Results are given in graphical form for several values of the tension and different eccentricity functions.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS iii
ABSTRACT v
IIIST OF SYMBOLS ix
LIST OF FIGURES xiv
Chapter

1. INTRODUCTION 1
2. STATEMENT OF THE PROBLEM 5
3. DERIVATION OF THE GOVERNING DIFFERENTIA工 EQUATIONS 8
3.1 Definitions 8
3.2 Differential Equations of Motion 11
4. SOLUTION OF GENERAL EQUATIONS BY MODAL ANALYSIS 18
4.1 The Characteristic Functions of a Shaft Running in Ideal Bearings 19
4.2 Orthogonality of the Mode Shapes 23
4.3 Normal Coordinates of the Shaft 25
4.4 Displacements, Bending Moments and Stresses 33
4.5 Stability of the System 34
5. SPECIAL CASES OF TENSION 38
5.1 Shaft Under Linearly Varying Tension 39
5.2 Shaft Under Constant Tension 50
6. EXAMPLE PROBLEMS 54
6.1 The Problems and Their Characteristics Parameters 54
6.2 Discussion of Results 62
7. SUMMARY AND CONCLUSIONS 91
REFERENCES 93
Appendix
8. STEADY-STATE SOLUTION FOR A SHAFT WITH CONSTANT TENSION USING FOURIER SINE TRANSFORMS 95
9. EQUIVALENT VISCOUS DAMPING COEFFICIENT α_{0} OR IINEARIZATION OF QUADRATIC DAMPING 100
10. NON-DIMENSIONAL FORM OF DISPLACEMENTS AND BENDING MOMENTS 105
11. IISTING OF THE COMPUTER PROGRAMS 112

a, b	components of shaft eccentricity in the U and V directions, respectively
$a_{n}, b_{n}, c_{n}, d_{n}$	coefficients of the four independent solutions in the power series expansion of ϕ_{Ω}
$a_{n}, b_{n}, c_{n}, d_{n}$	Fourier coefficients in the eigenvalue series expansion of a, b, d_{0} and v_{0}, respectively
$a_{n 0}, b_{n o}, c_{n o}$, $d_{\text {no }}$	Eqs. (5.43) - (5.46)
$\begin{aligned} & a_{r 0}^{*}, b_{r o}^{*}, c_{r o}^{*}, \\ & d_{r 0}^{*} \end{aligned}$	Eqs. (5.57) - (5.60)
G	viscous damping coefficient, slug/ft. sec.
d	inside diameter of shaft
e	arbitrary unit of eccentricity
e_{n}	$a_{r}+i b_{r}$
f_{r}	$c_{n}+i d_{n}$
g	parameter $L^{3} / E I$, dimensionless pseudo-weight
h	$T_{0} L^{2} / E I$, dimensionless tension
h_{n}	$\int_{0}^{1} \phi_{r}^{2}(\xi) d \xi$
i	$\sqrt{-1}$

k_{n}	$\left[m \omega_{2}^{2} L^{4} / E I\right]^{1 / 4}$, non-dimensional nth natural frequency
m	mass per unit length participating in motion
m	mass per unit length of the surrounding fluid, with the same shape as a solid shaft
p	number of disks
$p_{n}(t), q_{n}(t)$	normal coordinates, unknown in the eigenvalue series expansion of u and v, respectively
t	time
u, v	displacements of the shaft central axis in the U and V directions, respectively
u_{0}, V_{0}	components of the initial lack of straightness in the U and V directions, respectively
x, y	displacements of the shaft central axis in the X and Y directions, respectively
z	distance along the \mathcal{Z}-direction
A_{n}	rth arbitrary constant
C_{R}	$\sum_{n=0}^{\infty} a_{n}^{(n)} / \sum_{n=0}^{\infty} b_{n}^{(n)}$
D	outside diameter of shaft
EI	bending stiffness of the shaft
H_{r}	$\int_{0}^{L} \phi_{r}^{2}(z) d z \quad, \text { normalizing constant }$
L	length of shaft

Mo	$\text { EIe/L } L^{2}$
$M_{u}(z), M_{v}(z)$	components of bending moment measured along the U and V directions
R_{m}^{2}	$1+m_{0} / m$
$R_{0, n}$	ratio of the nth natural frequency to the speed of the shaft, for zero tension along the shaft
R_{n}	ratio of the rth natural frequency to the speed of the shaft
$S_{u}(z), S_{v}(z)$	components of shear force in the U and V directions
$T(z)$	tension at a section with distance $\mathcal{\gamma}$ from the bottom of the shaft
To	tension at the bottom end of the shaft; or constant tension along the shaft
$T_{u}(z), T_{v}(z), T_{z}(z)$	components of shaft tension in the U, V and Z directions
$U V Z$	rotating reference
$X Y Z$	fixed (inertial) reference
Z	axis of rotation; centerline of bearings
α	c / m viscous damping coefficient, $\sec ^{-1}$
α_{0}	$c / m \Omega$, non-dimensional viscous damping coefficient
γ	weight per unit length of the shaft, in the fluid
ϵ_{i}	one half of the thickness of the ith disk
$\epsilon_{0 i}$	one half of the non-dimensional thickness of the ith disk

ζ_{i}, η_{i}	non-dimensional components of eccentricity of the ith disk in the U and V directions, respectively
η	$p_{r}+i q_{r}$, complex normal coordinate
λ	Eqs. (4.44); or index of the solution for the power series expansion of ϕ_{n}. Eq. (5.12)
λ_{i}	ratio of the mass per unit length of the ith disk plus shaft to the mass per unit length of the shaft
$\mu(\xi), \nu(\xi)$	non-dimensional components of the deflection in the \mathcal{U} and V directions, respectively
$\mu_{0}(\xi), \nu_{0}(\xi)$	non-dimensional components of the inicial lack of straightness in the U and V directions, respectively
ξ	non-dimensional distance along Z-axis
ξ_{i}	non-dimensional distance of the ith disk
σ	maximum bending stress at a section
σ	$\text { EIe/ } L^{2} D^{3}$
ϕ_{n}	Mth modal shape
ψ_{n}	Eq. (5.26)
$\omega_{0, n}$	几th natural frequency for zero tension along the shaft
ω_{n}	nth natural frequency
$M_{\mu}(\xi), M_{\nu}(\xi)$	non-dimensional components of the bending moment measured along the U and V directions, respectively
$M_{\mu \nu}(\xi)$	total non-dimensional bending moment at a section

speed of rotation of the shaft

Subscripts
refers to ith disk
n
\imath
uvj
u, v, z
$x y z$
refers to $X Y Z$ reference

Superscripts

(n)
*
refers to nth normal mode
refers to a shaft with constant tension

LIST OF FIGURES

Figure Page

1. Shaft with Linearly-Varying Tension in its Deflected Position 7
2. (Circular) Cross Section of the Shaft 10
3. Forces and Bending Moment on a Shaft Element of ΔL Length - Plane UZ 12
4. Position of pt. C in the Complex Plane 20
5. Eccentricity Functions for Example Problem No. 1 58
6. Eccentricity Functions for Example Problem No. 2 58
7. Example Problem No. 3: a) General Configuration of the Disks on the UZ Plane, b) Actual Dimensions of the Shaft and Disks Considered 61
8. Solution of the Frequency Equation (5.21), Function $f\left(k^{2}\right)$ vs. k^{2} 66
9. Modal Shapes 67
10. Modal Moments 68
ll. Example Problem No. l - Displacement of the Shaft on the UZ Plane 71
11. Example Problem No. 1 - Displacement of the Shaft on the VZ Plane 72
12. Example Problem No. 1 - Total Bending Stress along the Shaft 73
13. Example Problem No. 1 - Maximum Displacement of the Shaft vs. Speed of Rotation 74
14. Example Problem No. 1 - Maximum Bending Stress on the Shaft vs. Speed of Rotation 75
15. Example Problem No. 2 - Displacement of the Shaft on the UZ Plane 76
16. Example Problem No. 2 - Displacement of the Shaft on the VZ Plane 77
17. Example Problem No. 2 - Total Bending stress along the shaft 78
18. Example Problem No. 2 - Maximum Displacement of the Shaft vs. Speed of Rotation 79
19. Example Problem No. 2 - Maximum Bending Stress on the Shaft vs. Speed of Rotation 80
20. Example Problem No. 3 - Displacement of the Shaft on the UZ Plane for $h=2.16$ 81
21. Example Problem No. 3 - Displacement of the Shaft on the VZ Plane for $h=2.16$ 82
22. Example Problem No. 3 - Total Bending Stress along the Shaft for $h=2.16$ 83
23. Example Problem No. 3 - Maximum Displacement of the Shaft vs. Speed of Rotation for $h=2.16$ 84
24. Example Problem No. 3-Maximum Bending Stress on the Shaft vs. Speed of Rotation for $\mathrm{h}=2.16$ 85
25. Example Problem No. 3 - Displacement of the Shaft on the UZ Plane for $\alpha=0.05$ 86
26. Example Problem No. 3-Displacement of the Shaft on the VZ Plane for $\alpha=0.05$ 87
27. Example Problem No. 3-Total Bending Stress along the shaft for $\alpha=0.05$ 88
28. Example Problem No. 3 - Maximum Displacement of the Shaft vs. Speed of Rotation for $\alpha=3.8$ 89
29. Example Problem No. 3-Maximum Bending Stress on the Shaft vs. Speed of Rotation for $\alpha=3.8$ 90

Chapter 1

INTRODUCTION

The dynamic behavior of rotating shafts has been the object of a great deal of attention in the past. Early studies consider only heavy discs mounted on a massless elastic shaft. Due to the inadequacy of that theory to many of the modern rotors, intensive investigations of shafts with distributed mass and elasticity have been made over the past decade or so.

Jeffcott $[1]^{1}$ was the first to establish in a rational basis the theory of the whirling of a shaft. He considered a single (heavy) mass attached to a thin elastic shaft. Linear damping was included. The behavior of the shaft was studied close to the natural frequency of the system. This theory was experimentally proved by Taylor $[2]$, who also simplified Jeffcott's analysis, using non-dimensional parameters. An important step forward was made by Robertson $[3]$ who introduced the rotating system, providing

[^0]a better understanding of the problem. Johnson $[4],[5]$ first introduced the equations for distributed mass and elasticity, considering a rotating body in general and analyzing the response with normal coordinates. As special cases of rotating bodies, he considered: (1) thin circular shaft, simply supported at the ends, (2) the previous case with a heavy rigid wheel attached to the shaft, and (3) thin uniform ring. Following Johnson's approach, Bishop [6] particularized and extended the theory of rotating bodies to the case of rotating flexible shafts. The response of unbalance was developed by modal analysis using normal coordinates. Based on this theory a modal balancing was first suggested for flexible rotors. Parkinson [7] summarized work done by Bishop and co-workers between 1959 and 1967, explaining in simple terms the fundamental behavior of rotating shafts. Ariaratnam $[8]$ extended Bishop's theory to the case of a shaft with unequal stiffness, including also the effect of gravity force.

Closely related to the problem of a rotating shaft subject to non-uniform tension is that of a vibrating beam with the same kind of tension. Graham et al. [9] derived equations for a drill string considering elastic, dynamic and drag forces. The actual string was then assumed to be
a short beam under constant tension at its ends and a long perfectly flexible cable under variable tension in its central part. Exact solutions were found for both cases and the solution for the drill string was obtained joining the beam and cable solutions subject to boundary conditions at each joint. The analysis was for a plane motion and forcing functions were considered as boundary conditions. Huang et al. [10] analyzed a similar problem as Graham, but obtained an improved solution, with the tension varying throughout the beam. However, their analysis was restricted to a two-dimensional case.

At present no one has considered the response of a eccentric rotating shaft, with distributed mass and elasticity and variable tension over its full length and in a spatial rather than a plane configuration.

Many shafts have to run through several natural frequencies to reach the running speed. Thus the study around the fundamental frequency does not give the true picture of the problem. The objective of this dissertation is to show the behavior of the shaft under tension around the natural frequency closer to the operational speed. The instability and the influence of tension on the displacement and stress are discussed. Where applicable, a comparison
is made between the response of a shaft under linearly varying tension and one with constant tension (average value).

The differential equations of motion of an eccentric rotating shaft subject to non-uniform tension are derived in Chapter 3. They are two partial differential equations of fourth order with constant and variable coefficients. The system is then solved by modal analysis, using characteristic functions of a rotating shaft. The basic theory is developed in Chapter 4 for any kind of non-uniform tension. Two particular cases are studied in Chapter 5, namely: (1) linearly varying tension and (2) constant tension. In Appendix 1, the problem of constant tension is also solved by means of Fourier sine Transforms. Numerical examples are given in Chapter 6, where the eccentricity functions chosen are defined there.

Chapter 2

STATEMENT OF THE PROBLEM

The object of the present study is to determine analytically the effect of linearly varying or constant tension on the dynamic behavior of an eccentric shaft, rotating in a fluid medium. The analysis considers a shaft with distributed mass and elasticity. The eccentricity is assumed to be a deterministic function of the axial coordinate. The effect of small initial lack of straightness is also considered.

In the derivation of the differential equations of motion for a shaft with non-uniform axial tension in Chapter 3, the following assumptions are made:

1. The shaft matexial is linearly elastic.
2. Only lateral deflection is considered which is assumed small enough such that linear theory can be applied.
3. Transverse shear and rotatory inertia are negligible.
4. The diameter (or characteristic dimension of cross section) of the shaft is small compared to its length, so that Euler-Bernoulli theory for beams is valid.
5. Internal damping is negligible by comparison to external damping.

The shaft under consideration is shown in Fig. 1 , loaded axially by its own weight and the force T_{o}. Fig. 2 is a cross section of the shaft, showing the center of mass (CM) and the components of shaft eccentricity (a and b) of the section.

As for the constant-tension case everything above holds but the shaft being simply supported at both ends.

Fig.l Shaft with Linearly-Varying Tension in its Deflected Position

Chapter 3

DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS

The differential equations of motion for the shaft described in the previous chapter are derived here using Newton's Second Law. For this aim the equilibrium is set up for an element of the shaft of length ΔI and mass Δm (shown in Fig. 3) acted upon the following external forces: gravity, tension, shear, lift and drag. According to the assumptions made in Chapter 2 , the mass of the element can be thought of as concentrated in its center of mass.

The equations in a rotating system show advantages over those of the fixed one since in the latter, timevariable coefficients govern the equations. The rotating system is then used to describe the motion.

In this chapter there is no restriction on the variation of axial tension with distance along the shaft.

3.1 Definitions

Consider a vertical shaft with uniform section as shown in Fig. 1. To obtain the equilibrium equations, the following coordinate systems are used:
$X Y Z$ - fixed (inertial) reference with Z-axis vertical, positive upward,

UV Z- rotating reference with Z-axis the same as in $X Y Z$; the U and V axes are perpendicular to Z and rotate with a constant angular velocity Ω.

In connection with these references, there are two sets of unit vectors:

$$
\begin{aligned}
& \bar{x}, \bar{y}_{2}, \bar{k} \text { - unit vectors for } X Y Z \\
& \bar{e}_{u}, \bar{e}_{v}, \bar{e}_{y} \text { - unit vectors for } U V Z \text { reference. }
\end{aligned}
$$

A (circular) cross section of the shaft is shown in
Fig. 2, where the following are defined:

$$
\begin{aligned}
& U(z), v(z) \quad \text { - displacements of the shaft axis, } \\
& a(z), b(z) \quad \text { - components of shaft eccentricity, } \\
& \text { constant at each section in } U V Z \\
& \text { reference, } \\
& \bar{R} \quad \text { position vector of origin of } U V Z \\
& \text { with respect to } X Y Z \text { reference, } \\
& \bar{\rho} \quad \text { position vector of the center of } \\
& \text { mass (cm) of the element, } \\
& \bar{\omega} \quad \text { angular velocity vector of } U V Z \\
& \text { system, } \\
& \bar{r} \quad \text { position vector of the centroid of } \\
& \text { the element. }
\end{aligned}
$$

Fig. 2 (Circular) Cross Section of the Shaft. XYZ - Fixed Reference; UVZ - Rotating Reference; u, v Components of Shaft Displacement; a, b - Components of Shaft Eccentricity; C - Centroid; CM - Center of Mass

Also, it is implied by Fig. 2 that the whirling frequency of the shaft is assumed to be synchronous with shaft rotational speed and takes place about the vertical $\not Z$-axis.
3.2 Differential Equations of Motion

3.2.1 Acceleration

Let $\bar{a}_{x y z}$ be the absolute acceleration of center of mass of the slice (as observed from the $X Y Z$ reference). Then

$$
\begin{equation*}
\left.\left.\bar{a}_{x y z}=\ddot{\bar{R}}+\dot{\bar{\rho}}\right)_{v v y}+2 \bar{\omega} \times \dot{\bar{p}}\right)_{u v y}+\dot{\bar{\omega}} \times \bar{\rho}+\bar{\omega} \times(\bar{\omega} \times \bar{\rho}) \tag{3.1}
\end{equation*}
$$

where the dots have their familiar meaning. The vectors $\bar{R}, \bar{\rho}$ and $\bar{\omega}$ are given by (see Fig. 2)
$\bar{R}=0$ (origins always coincident),
$\bar{\rho}=(u+a) \bar{e}_{u}+(v+b) \bar{e}_{v}+z \bar{e}_{z}$,
$\bar{\omega}=\Omega \bar{k}$.
Taking the time derivatives of these vectors and substituting in Eq. (3.1), $\bar{a}_{x y z}$ becomes
$\bar{a}_{x y z}=\left[\ddot{u}-2 \Omega \dot{v}-\Omega^{2}(u+a)\right] \bar{e}_{u}+\left[\ddot{v}+2 \Omega \dot{v}-\Omega^{2}(v+b)\right] \bar{e}_{v}$.

3.2.2 External Forces

The components of tension in the $U Z$ plane are shown in Fig. 3. The net tension and gravity force acting on the element are:

Fig. 3 Forces and Bending Moment on a Shaft Element of ΔL Length - Plane UZ

$$
\begin{aligned}
F_{t}= & {\left[T_{u}(z+\Delta z)-T_{u}(z)\right] \bar{e}_{u}+\left[T_{v}(z+\Delta z)-T_{v}(z)\right] \bar{e}_{v}+} \\
& {\left[T_{z}(z+\Delta z)-T_{z}(z)-F_{g}\right] \bar{e}_{z} }
\end{aligned}
$$

where $T_{u}\left(z+\Delta_{z}\right)$ is the component of tension in the U direction, at a distance $z+\Delta z$ from the bottom. The assumption of small displacements leads to

$$
\begin{align*}
F_{t}= & {\left[\left(T \frac{\Delta u}{\Delta z}\right)_{z+\Delta z}-\left(T \frac{\Delta u}{\Delta z}\right)_{z}\right] e_{u}+\left[\left(T \frac{\Delta v}{\Delta z}\right)_{z+\Delta z}-\left(\frac{T \Delta v}{\Delta z}\right)_{z}\right] \bar{e}_{v}+} \\
& +\left[T(z+\Delta z)-T(j)-F_{z}\right] \bar{e}_{z} \tag{3.3}
\end{align*}
$$

where T is the total tension at a section.
The drag forces are linearized by equating the
energies dissipated per cycle by quadratic and equivalent viscous damping as shown in Appendix 2. The linearized force is given by

$$
\begin{equation*}
F_{d}=-(\Delta y) C \bar{v}_{x y z} \tag{3.4}
\end{equation*}
$$

where \mathcal{C} is the equivalent viscous damping coefficient (constant) and $\bar{V}_{x y z}$ is the absolute centroidal velocity of the element, given by

$$
\left.\bar{v}_{x y z}=\dot{\bar{R}}+\overline{\bar{z}}\right)_{v v_{z}}+\bar{w} \times \bar{r}
$$

From Fig. 2, the vector \bar{r} is

$$
\bar{z}=u \bar{e}_{v}+v \bar{e}_{v}+j \bar{e}_{z},
$$

which yields for the velocity

$$
\bar{v}_{x y z}=(\dot{u}-\Omega v) \bar{e}_{v}+(\dot{v}+\Omega u) \bar{e}_{v}
$$

Substitution of this expression into (3.4) yields for the viscous force

$$
\begin{equation*}
\bar{F}_{d}=-\Delta_{z} C(\dot{u}-\Omega v) \bar{e}_{u}-\Delta_{j} C(\dot{v}+\Omega u) \bar{e}_{v} \tag{3.4a}
\end{equation*}
$$

The resultant shear force, denoted by $\overline{F_{s}}$, is

$$
\begin{equation*}
\bar{F}_{s}=\left[-S_{v}(j+\Delta z)+S_{v}(z)\right] \bar{e}_{u}+\left[-S_{v}(z+\Delta z)+S_{v}(\bar{z})\right] \bar{e}_{v} \tag{3.5}
\end{equation*}
$$

where the components along the Z-direction have been neglected. Note that in Fig. 3 only the U-component of F_{s}, S_{u}, is shown.

The lift force can be written as ${ }^{\text {l }}$

$$
\begin{equation*}
\bar{F}_{l}=\Delta_{z}\left[\left(F_{l}\right)_{u} \bar{e}_{u}+\left(F_{l}\right)_{v} \bar{e}_{v}\right] \tag{3,5}
\end{equation*}
$$

3.2.3 Scalar Equations in the U and V Directions

Using Eqs. (3.2), (3.3), (3.4a), (3.5) and (3.6)
the equation of motion in the U-direction is

$$
\begin{aligned}
& m \Delta z\left[\ddot{u}-2 \Omega v+\Omega^{2}(u+a)\right]=-S_{u}(z+\Delta z)+S_{u}(z)+ \\
& +\left(T \frac{\Delta u}{\Delta z}\right)_{z+\Delta z}-\left(T \frac{\Delta u}{\Delta z}\right)_{z}-\Delta z C(\dot{v}-\Omega v)+\Delta z\left(F_{q}\right)_{u}
\end{aligned}
$$

${ }^{1}$ see explanation at the end of the chapter.
where m is the total mass per unit length. Dividing both sides of this equation by $m \Delta y$ and letting Δy approach zero, the following differential equation is obtained:

$$
\ddot{u}-2 \Omega \dot{v}+\Omega^{2}(u+a)=-\frac{1}{m} \frac{\partial S_{u}}{\partial z}+\frac{1}{m} \frac{\partial}{\partial j}\left(T \frac{\partial u}{\partial z}\right)-\frac{G}{m}(\dot{u}-\Omega v)+\left(F_{l}\right)_{u}(3.7)
$$

where $\left(F_{2}\right)_{0}$ is the $\left(U_{\text {-component of }}\right.$ of lift force per unit mass.

The shear S_{μ} can be eliminated, using a moment equation in the U-direction. From Fig. 3

$$
\begin{aligned}
& {\left[S_{u}(z+\Delta z)+S_{u}(z)-\left(\frac{T \Delta u}{\Delta z}\right)_{z+\Delta z}-\left(\frac{T \Delta u}{\Delta z}\right)_{z}\right] \frac{\Delta z}{2}+} \\
& {[T(z+\Delta z)+T(z)] \frac{\Delta u}{2}-M_{u}(z+\Delta z)+M_{u}(z)=0 .}
\end{aligned}
$$

nividing now by Δz and letting $\Delta z \rightarrow 0$ the tension tarms cancel out, leaving

$$
\begin{equation*}
S_{u}=\frac{\partial M_{v}}{\partial z} \tag{3.8}
\end{equation*}
$$

The bending moment M_{u} is related to the net curvature of a beam by the well-known relation

$$
\begin{equation*}
M_{u}=E I \frac{\partial^{2}\left(u-u_{0}\right)}{\partial z^{2}} \tag{3.9}
\end{equation*}
$$

where EI is the bending stiffness of the beam and $v_{0}(\mathcal{y})$ is the coordinate representing the initial lack of straightness of the shaft, constant with time in the $U V \mathcal{Z}$
system. Using Eqs. (3.8) and (3.9) a substitution can be made for $\frac{\partial S_{u}}{\partial y}$ in Eq. (3.7), which with the notation

$$
\begin{equation*}
\alpha=\frac{G}{m} \tag{3.10}
\end{equation*}
$$

yields
$\ddot{u}-2 \Omega v-\Omega^{2}(u+a)=-\frac{E I}{m} \frac{\partial^{4}\left(u-u_{0}\right)}{\partial z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left(T \frac{\partial u}{\partial z}\right)-\alpha(\bar{u}-\Omega v)+\left(F_{l}\right)_{u}$

The equilibrium equation in the V-direction is easily obtained if one recalls that in going from the U-axis to the V-axis, a positive rotation of 90° is necessary. Calling j the operator that performs this transformation, such that $j u=V, j v=-U$, $j \frac{\partial}{\partial t}(u)=\frac{\partial}{\partial t}(j(u)$, etc.. the equation in the V-direction is

$$
\begin{equation*}
\ddot{v}+2 \Omega \dot{v}-\Omega^{2}(v+b)=-\frac{E I}{m} \frac{\partial^{4}\left(v-v_{0}\right)}{\partial z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left(\frac{T}{\partial v}\right)-\alpha(\bar{v}+\Omega v)+\left(F_{l}\right)_{v} \tag{3.11b}
\end{equation*}
$$

No expression in the literature is available at present for the transient lift force of a body moving in a real fluid. The steady lift force for an ideal fluid is

$$
\bar{F}_{l s}=\frac{1}{2} \rho_{0} \Delta z\left(\bar{V}_{0, x y z} \times \Gamma\right)
$$

where $\bar{v}_{0, x y}$ is the steady velocity, $\bar{\Gamma}$ is the circulation
vector and ρ_{0} is the mass density of the surrounding fluid. If the same procedure used for the other forces is applied here (dividing by $m \Delta y$ and letting $\Delta_{y} \longrightarrow 0$), it can be shown that the steady lift force per unit mass is

$$
\begin{equation*}
\bar{F}_{l s}=\frac{m_{0}}{m}\left(\Omega^{2} u \bar{e}_{v}+\Omega^{2} v \bar{e}_{v}\right) \tag{3.12}
\end{equation*}
$$

where m_{0} is the mass per unit length of the fluid with the same shape as the (solid) shaft.

The steady inertia "force" per unit mass is
$\Omega^{2} u \bar{e}_{u}+\Omega^{2} v \bar{e}_{v}$, so by Eq. (3.12) the steady lift furce is a fraction of the inertia "force".

Chapter 4

SOLUTION OF GENERAL EQUATIONS BY MODAL ANALYSIS The differential equations of motion, Eqs. (3.lla,b), will be solved in this chapter by eigenfunction expansions. It is assumed that the displacements u and \checkmark of the shaft central axis can be represented by the following series of orthogonal functions $\phi_{n}(z)$:

$$
\begin{align*}
& v(j, t)=\sum_{n=1}^{\infty} p_{n}(t) \phi_{r}(z) \tag{4.1a}\\
& v(j, t)=\sum_{r=1}^{\infty} q_{r}(t) \phi_{r}(z) \tag{4.15}
\end{align*}
$$

where
p_{n}, q_{n} are unknown functions of time (known as normal coordinates),
\oint_{Ω} is the $几$ th modal shape, or Ω th normal function.

It should be noted that such an expansion into orthogonal functions is always possible. The functions $\phi_{\mu}(\xi)$ depend on the particular kind of tension and boundary conditions of the freely
vibrating shaft. Section 4.1 shows how to obtain them. In order to find $f_{r}(t)$ and $q_{r}(t)$, the orthogonality of the functions $\phi_{\Omega}(\xi)$ is necessary and is shown in section 4.2. The question of stability (critical speeds) arises. while solving for $f_{\mu}(t)$ and $q_{r}(t)$ and this is discussed at the end of the chapter.
4.1 The Characteristic Functions of a Shaft Running in

Ideal Bearings

Dropping the terms involving $b_{0}, v_{0}, a, b, \alpha$ and also $\left(F_{l}\right)_{v}$ and $\left(F_{l}\right)_{v}$ from Eqs. $(3.11 a, b)$, i.e. disregarding the effects of lack of straightness, eccentricity, damping and lift force, the following differential equations governing free vibration of the shaft are obtained:

$$
\begin{align*}
& \ddot{u}-2 \Omega \dot{v}-\Omega^{2} u=-\frac{E I}{m} \frac{\partial^{4} u}{\partial z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left(T \frac{\partial u}{\partial z}\right) \tag{4.2a}\\
& \ddot{v}+2 \Omega \dot{u}-\Omega^{2} v=-\frac{E I}{m} \frac{\partial^{4} v}{\partial z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left(T \frac{\partial v}{\partial z}\right) \tag{4.2b}
\end{align*}
$$

Let a complex variable \mathcal{G} be defined by

$$
\begin{equation*}
\zeta=u+i v=n e^{i \theta} \tag{4.3}
\end{equation*}
$$

If Eq. (4.2b) is multiplied by the imaginary \dot{x} and added to

Eq. (4.2a) the following equation results:

$$
\begin{equation*}
\ddot{\zeta}+2 i \Omega \dot{\varphi}-\Omega^{2} \xi=-\frac{E I}{m} \frac{\partial^{4} \zeta}{\partial z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left(T \frac{\partial \zeta}{\partial z}\right) \tag{4.4}
\end{equation*}
$$

Another complex quantity is now introduced
through the relation

$$
\begin{equation*}
\psi=\xi e^{i \Omega t}=r \cdot e^{i(\theta+\Omega t)} \tag{4.5}
\end{equation*}
$$

which can be visualized by reference to Fig. 4 as the complex variable which defines the position of point c with respect to the $X Y Z$ system. This variable can also be written as

$$
\begin{equation*}
y=x+i y \tag{4.6}
\end{equation*}
$$

If Eq. (4.4) is multiplied by $e^{i \Omega t}$, the lefthand side can be shown to be $\ddot{\ddot{\psi}}$. Thus, using Eq. (4.5).

$$
\begin{equation*}
\frac{E I}{m} \frac{\partial^{4} \psi}{\partial z^{4}}-\frac{1}{m} \frac{\partial}{\partial z}\left(T \frac{\partial \psi}{\partial z}\right)+\dot{\psi}=0 \tag{4.7}
\end{equation*}
$$

Fig. 4 position of pt. C in the complex plane:

$$
\zeta=r e^{i \theta} ; \quad \psi=n e^{i(\theta+\Omega t)}
$$

The solution of Eq. (4.7) is assumed to be of the form

$$
\begin{equation*}
\psi(j, t)=K \phi(j) \quad \sigma(t) \tag{4.8}
\end{equation*}
$$

where K is a complex constant, $\phi(z)$ a function of z only and $\mathscr{G}(t)$ a function of time t. Substituting $\psi(z, t)$ in Eq. (4.7) and dividing by $\phi \zeta$, one obtains (by the method of separation of variables) the following two ordinary differential equations:

$$
\begin{align*}
& \frac{E I}{m} \frac{d^{4} \phi}{d z^{4}}-\frac{1}{m} \frac{d}{d z}\left(T \frac{d \phi}{d z}\right)-\omega^{2} \phi=0, \tag{4.9}\\
& \ddot{\sigma}+\omega^{2} \varphi=0 .
\end{align*}
$$

Eq. (4.10) has the well-known solution $\bar{\sigma}=A \cos \omega t+B \sin \omega t$. If K is expressed in its real and imaginary parts, ψ can be written as

$$
\psi=\left(k_{1}+i k_{2}\right)(A \cos \omega t+B \sin \omega t) \phi(\xi) .
$$

Separation of complex and imaginary parts gives the following two equations:

$$
\begin{align*}
& x(z, t)=\left[A, \cos \omega t+B_{1} \sin \omega t\right] \phi(j) \tag{4.11a}\\
& y(z, t)=\left[A_{2} \cos \omega t+B_{2} \sin \omega t\right] \phi(y) \tag{4.11b}
\end{align*}
$$

where $A_{1}=k_{1} A, B_{1}=k_{1} B, A_{2}=k_{2} A, B_{2}=k_{2} B$ are arbitrary constants. Thus, the most general motion of the point $C(x, y)$, position of shaft central axis at a height \mathcal{F}, is an ellipse on a plane parallel to the $X Y$ plane, with angular velocity ω.

Equation (4.9) has to be solved for a specific tension $T(\xi)$, with the appropriate boundary conditions. It constitutes an eigenvalue problem with ω_{μ} as the eigenvalue and $\phi_{\Omega}(\xi)$ as the eigenfunction. The latter is the modal shape used in the expansion of $u(z, t)$ and $v(j, t)$, Eqs. (4.la,b).

For certain types of tension $\boldsymbol{T}(\mathcal{j})$ it is possible to evaluate the natural frequencies and mode shapes of the shaft in a closed form. However, in general this is not possible; approximate methods must be used, such as truncated Power Series or Fourier Cosine and Sine Series. Fortunately, only a few functions $\phi_{r}(\xi)$ and ω_{r} in practice are necessary for the solution of the problem of rotating shafts with acceptable accuracy.

In Chapter 5, the determination of $\phi_{n}(\mathcal{j})$ is presented for two different cases: (1) linearly varying tension, simply supported at the top and vertically guided at the bottom and (2) constant tension, simply supported at both ends.
4.2 Orthogonality of the Mode Shapes

Consider two distinct modal functions $\phi_{n}(z)$ and $\phi_{s}(\xi)$ associated with the natural frequencies ω_{r} and ω_{s}, respectively. Since each function is a solution of Eq. (4.9), one can write

$$
\begin{align*}
& \frac{d^{4} \phi_{\phi_{A}}}{d z^{+}}-\frac{1}{E I} \frac{d}{d z}\left(T \frac{d \phi_{n}}{d z}\right)-k_{n}^{4} \phi_{n}=0 \tag{4.12}\\
& \frac{d^{4} \phi_{s}}{d j^{4}}-\frac{1}{E I} \frac{d}{d z}\left(T \frac{d \phi_{k}}{d z}\right)-k_{s}^{4} \phi_{s}=0 \tag{4.13}
\end{align*}
$$

where $k_{n}^{4}=\frac{m \omega_{r}^{2}}{E I}$ and $k_{s}^{4}=\frac{m \omega_{s}^{2}}{E I} \quad$ (4.14). (4.15) Multiplying Eq. (4.12) by ϕ_{s} and (4.13) by ϕ_{r}. subtracting the second from the first and integrating between O and L, yields

$$
\begin{aligned}
& \int_{0}^{L} \phi_{s} \frac{d^{4} \phi_{n}}{d z^{4}} d y-\int_{0}^{L} \phi_{n} \frac{d^{4} \phi_{s}}{d z^{4}} d z+\frac{1}{E I} \int_{0}^{L} \phi_{n} \frac{d}{d z}\left(\frac{T d \phi_{s}}{d z}\right) d z- \\
& \left.-\frac{1}{E I} \int_{0}^{L} \phi_{s} \frac{d}{d z}\left(\frac{\tau d \phi_{n}}{d z}\right) d z-/ k_{n}^{4}-k_{s}^{4}\right) \int_{0}^{L} \phi_{n} \phi_{s} d_{j}=0 .
\end{aligned}
$$

Integrating by parts the first, third and fourth integrals and simplifying, the following is obtained:

$$
\begin{align*}
& {\left[\phi_{s} \frac{d^{3} \phi_{r}}{d j^{3}}-\frac{d \phi_{s}}{d z} \frac{d^{2} \phi_{n}}{d z^{2}}+\frac{d^{2} \phi_{s}}{d z^{2}} \frac{d \phi_{n}}{d z}-\frac{d^{3} \phi_{s}}{d \xi^{3}} \phi_{n}\right]_{0}^{L}+} \\
& +\frac{1}{E I}\left\{\left[\phi_{n} T \frac{d \phi_{s}}{d z}\right]_{0}^{L}-\left[\phi_{s} T \frac{d \phi_{n}}{d z}\right]_{0}^{L}\right\}-\left(k_{n}^{4}-k_{s}^{4}\right) \int_{0} \phi_{s} \phi_{n} d y=0 . \tag{4.17}
\end{align*}
$$

For any combination of the 3 common boundary conditions (pinned, clamped or sliding end) the expressions inside the brackets are zero. Also they are zero if the tension vanishes at the free end of the shaft.

If it is considered that the shaft meets the above requirements, Eq. (4.17) reduces to

$$
\begin{equation*}
\left(k_{r}^{4}-k_{s}^{4}\right) \int_{0}^{L} \phi_{s} \phi_{r} d z=0 \tag{4.18}
\end{equation*}
$$

Since $r \neq s$, or $k_{n} \neq k_{s}$, the integral in Eq. (4.18) must vanish. For the special case $\Omega=S$, the integral is a non-zero quantity H_{r}, called the normalizing constant. Summarizing,

$$
\int_{0}^{L} \phi_{r} \phi_{s} d z=\left\{\begin{array}{lll}
0, & \text { for } & r \neq s \tag{4.19}\\
H_{r}, & \text { for } & r=s
\end{array}\right.
$$

Thus, it has been shown that the modal shapes
$\phi_{r}(z)$ form a complete set of orthogonal functions in the interval (O, L) for shafts which have pinned, clamped or sliding ends in any combination, or with free ends (zero shear force and bending moment) in which the tension vanishes.

4.3 Normal Coordinates of the Shaft

It remains now to obtain the expressions for the normal coordinates $p_{n}(t)$ and $q_{n}(t)$ in oxdex to evaluate u and v from Eqs. (4.la,b). The ϕ_{r} 's are supposed known, although in general it is not an easy task to find them unless the tension is of a very special function of the axial coordinate. Eqs. (4.la,b), repeated here for convenience, are

$$
\begin{align*}
& v(z, t)=\sum_{n=1}^{\infty} p_{n}(t) \phi_{n}(z) \tag{4.1a}\\
& v(z, t)=\sum_{n=1}^{\infty} q_{r}(t) \phi_{r}(z) . \tag{4.1~b}
\end{align*}
$$

It is assumed also that the following expansions are valid:

$$
\begin{align*}
& a(j)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(j) \tag{4.21}\\
& b(j)=\sum_{n=1}^{\infty} b_{n} \phi_{n}(j) \tag{4.22}
\end{align*}
$$

$$
\begin{align*}
& \frac{E I}{m} \frac{d^{4} u_{0}(z)}{d z^{4}}=\sum_{n=1}^{\infty} c_{n} \omega_{n}^{2} \phi_{n}(z) \tag{4.23}\\
& \frac{E I}{m} \frac{d^{4} v_{0}(z)}{d z^{4}}=\sum_{n=1}^{\infty} d_{n} \omega_{n}^{2} \phi_{n}(z) \tag{4.24}
\end{align*}
$$

where ω_{M} is the natural frequency associated to $\phi_{r}(\bar{\gamma})$ in Eq. (4.9), and $a_{r}, b_{r}, c_{n}, d_{r}$ are constants obtained from the expressions

$$
\begin{align*}
& a_{r}=\frac{1}{H_{r}} \int_{0}^{1} a(z) \phi_{r}(z) d z \tag{4.25}\\
& b_{n}=\frac{1}{H_{r}} \int_{0}^{1} b(z) \phi_{n}(z) d z \tag{4.26}\\
& c_{r}=\frac{E I}{m \omega_{r}^{2} H_{r}} \int_{0}^{\frac{d^{4} v_{0}(z)}{d z^{4}} \phi_{n}(z) d z} \tag{4.27}\\
& d_{r}=\frac{E I}{m \omega_{n}^{2} H_{r}} \int_{0}^{L} \frac{d^{4} v_{n}(z)}{d_{z}^{4}} \phi_{n}(z) d z \tag{4.28}
\end{align*}
$$

Eq. (4.25), for example, is obtained by multiplying Eq. (4.21) by $\phi_{5}(\xi)$. integrating in the interval (O, L) and making use of Eqs. (4.19) and (4.20).

Substitution of Eqs. (4.1a,b) and (4.21)-(4.24) into Eqs. (3.lla,b) yields (disregarding for now (F_{l}) u and $\left.\left(F_{l}\right)_{v}\right)$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \ddot{p}_{n} \phi_{n}-2 \Omega \sum_{n=1}^{\infty} \dot{q}_{n} \phi_{n}-\Omega^{2}\left[\sum_{n=1}^{\infty}\left(p_{n}+a_{n}\right) \phi_{n}\right]=-\frac{E I}{m} \sum_{n=1}^{\infty} p_{n} \frac{d^{4} \phi_{n}}{d z^{4}}+ \\
& +\sum_{n=1}^{\infty} c_{n} \omega_{n}^{2} \phi_{n}+\frac{1}{m} \frac{\partial}{\partial_{z}}\left[T \sum_{n=1}^{\infty} p_{n} \frac{d \phi_{n}}{d z}\right]-\alpha\left[\sum_{n=1}^{\infty} \dot{p}_{n} \phi_{n}-\Omega \sum_{n=1}^{\infty} q_{n} \phi_{n}\right]
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \ddot{q}_{n} \phi_{n}+2 \Omega \sum_{n=1}^{\infty} \dot{p}_{n} \phi_{n}-\Omega^{2}\left[\sum_{n=1}^{\infty}\left(q_{n}+b_{n}\right) \phi_{n}\right]=-\frac{E X}{m} \sum_{n=1}^{\infty} q_{n} \frac{d^{4} \phi_{n}}{a^{4}}+
$$

$$
+\sum_{n=1}^{\infty} d_{n} \omega_{n}^{2} \phi_{n}+\frac{1}{m} \frac{\partial}{\partial z}\left[T \sum_{n=1}^{\infty} q_{n} \frac{d \phi_{n}}{d z}\right]-\alpha\left[\sum_{n=1}^{\infty} \dot{q}_{n} \phi_{n}+\Omega \sum_{n=1}^{\infty} p_{n} \phi_{n}\right]
$$

The first plus the third term in the right-hand side of these equations can be simplified. For Eq. (4.29a),

$$
\begin{aligned}
& -\frac{E I}{m} \sum_{n=1}^{\infty} p_{n} \frac{d^{4} \phi_{n}}{d z^{4}}+\frac{1}{m} \frac{\partial}{\partial z}\left[T \sum_{n=1}^{\infty} p_{n} \frac{d \phi_{n}}{d z}\right] \\
& =\sum_{n=1}^{\infty} p_{n}\left[-\frac{E I}{m} \frac{d^{4} \phi_{n}}{d z^{4}}+\frac{1}{m} \frac{d}{d z}\left(T \frac{d \phi_{n}}{d z}\right)\right] \\
& =-\sum_{n=1}^{\infty} p_{n} \omega_{n}^{2} \phi_{n}
\end{aligned}
$$

since the expression in the brackets is equal to $-\omega_{n}^{2} \phi_{n}$, according to Eq. (4.9). Similarly, the first and third
terms of the right-hand side of Eq. (4.29b) are equivalent to

$$
-\sum_{n=1}^{\infty} g_{n} \omega_{n}^{2} \phi_{n}
$$

If these two last expressions are introduced in Eqs. (4.29), the following equations are obtained:

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[\ddot{p}_{n}-2 \Omega \dot{q}_{n}-\Omega^{2} p_{n}-\Omega^{2} a_{n}+\omega_{n}^{2} p_{n}-\omega_{n}^{2} c_{n}+\alpha \dot{p}_{n}-\alpha \Omega q_{n}\right] \phi_{n}=0 \\
& \sum_{n=1}^{\infty}\left[\ddot{q}_{n}+2 \Omega \dot{p}_{n}-\Omega^{2} q_{n}-\Omega^{2} b_{n}+\omega_{n}^{2} q_{n}-\omega_{n}^{2} \alpha_{n}+\alpha \dot{q}_{n}+\alpha \Omega p_{n}\right] \phi_{n}=0
\end{aligned}
$$

This pair of equations are satisfied if all the coefficients of the functions ϕ_{r} vanish simultaneously. That is to say

$$
\begin{aligned}
& \ddot{p}_{n}+\alpha \dot{p}_{r}+\left(\omega_{r}^{2}-\Omega^{2}\right) p_{r}-2 \Omega \dot{q}_{n}-\alpha \Omega q_{n}=\omega_{n}^{2} c_{n}+\Omega^{2} a_{r} \quad \text { (4.30a) } \\
& \ddot{q}_{r}+\alpha \dot{q}_{n}+\left(\omega_{n}^{2}-\Omega^{2}\right) q_{r}+2 \Omega \dot{p}_{n}+\alpha \Omega p_{n}=\omega_{n}^{2} d_{n}+\Omega^{2} b_{n} . \quad \text { (4.30b) }
\end{aligned}
$$

In order not to digress (from the main purpose of finding solutions for p_{n} and q_{2}, the above equations will be solved now. However, in Section 4.5 the stability of the system will be discussed, starting with Eqs. (4.30). Define now three new complex quantities

$$
\begin{align*}
& \eta_{n}=p_{n}+i q_{n} \tag{4.3la}\\
& e_{n}=a_{n}+i b_{n} \tag{4.31b}
\end{align*}
$$

$$
\begin{equation*}
f_{n}=c_{n}+i d_{n} . \tag{4.31c}
\end{equation*}
$$

Multiplying Eq. (4.30b) by the imaginary unit $\underset{\sim}{i}$ and adding it to Eq. (4.30a) yields

$$
\begin{equation*}
\ddot{\eta}_{r}+(\alpha+i 2 \Omega) \dot{\eta}_{n}+\left[\left(\omega_{n}^{2}-\Omega^{2}\right)+i \alpha \Omega\right] \eta_{r}=\omega_{n}^{2} f_{n}+\Omega^{2} e_{r} \tag{4.32}
\end{equation*}
$$

This is a second-order differential equation in the complex variable η_{n}, with constant complex coefficients and constant forcing functions. The solution is then easily obtained by familiar methods [11]. Introducing the notation

$$
\begin{align*}
& \alpha=2 \mu_{n} \omega_{n} \tag{4.33}\\
& \nu_{n}=\sqrt{1-\mu_{n}^{2}} \tag{4.34}
\end{align*}
$$

Equation (4.32) admits the solution

$$
\eta_{n}=A e^{-\mu_{n} \omega_{n} t-i\left(\nu_{n} \omega_{n}+\Omega\right) t}+B e^{-\mu_{n} \omega_{n} t+i\left(\nu_{n} \omega_{n}-\Omega\right) t}+
$$

$$
\begin{equation*}
+\frac{f_{n} e^{-i \theta}}{\left[\left(1-\Omega^{2} / \omega_{n}^{2}\right)^{2}+4 \mu_{n}^{2} \Omega^{2} / \omega_{n}^{2}\right]^{1 / 2}}+\frac{e_{n} e^{-i \theta}}{\left[\left(1-\omega_{n}^{2} / \Omega^{2}\right)^{2}+4 \mu_{n}^{2} \omega_{n}^{2} / \Omega^{2}\right]^{1 / 2}} \tag{4.35}
\end{equation*}
$$

where $\theta=\tan ^{-1} \frac{\alpha \Omega}{\omega_{n}^{2}-\Omega^{2}}=\tan ^{-1} \frac{2 \mu_{n} \omega_{n} \Omega}{\omega_{n}^{2}-\Omega^{2}}$.

It should be noted that $\mu_{n}=\frac{\alpha}{2 \omega_{n}}=\frac{S}{2 m \omega_{n}}$ is the damping ratio of the ruth mode.

The first two terms of Eq. (4.35) constitute the homogeneous solution of Eq. (4.32), where A and B are arbitrary complex constants. They represent two inward spiral motions in the complex plane. The first term gives a motion counter to that of the rotation of the shaft and the second term in a direction which depends on the damping coefficient α, since $\nu_{n}=f(\alpha)$. Both motions are damped by the term $e^{-\mu_{n} \omega_{n} t}$. This agrees with the result of Section 4.5 which says that the damped system is always stable. If damping is not present, i.e., $\alpha=0$, it follows that $\mu_{n}=0$ and $\nu_{n}=1$. In such a case, the first two terms represent circular motions, the first being counter to that of the rotating axis, and the second being dependent upon the values of ω_{Ω} and Ω. The last two terms of Eq. (4.35), the particular solution of Eq. (4.32), represent a steady configuration in the complex plane. Relation (4.36) shows an important well-known characteristic of these particular solutions. If $\Omega=\omega_{\pi}$, the imposed speed equal to one of the natural frequencies of the shaft, it follows that $\theta=\frac{\pi}{2}$. Then, from Eq. (4.35)

$$
\eta_{n(p)}=\frac{-\left(f_{n}+e_{n}\right) i}{2 \mu_{n}}
$$

where $\eta_{n}(p)$ is the particular solution only. This equation shows that the nth component of the deflection of the shaft lags 90° behind the total ruth component of the exciting forces. If $\alpha=0\left(\mu_{\Omega}=0\right)$ this nth component of deflection is unstable.

The remaining part of this dissertation deals with the steady-state solution of the rotating shaft. For this purpose, the particular solution of Eq. (4.32) follows in detail.

The particular solution $\eta_{n(p)}$ is assumed to be constant, say $\eta_{n(p)}=K$. Substituting in Eq. (4.32), it follows that

$$
\eta_{n(\beta)}=\frac{\omega_{n}^{2} f_{n}+\Omega^{2} e_{n}}{\left(\omega_{n}^{2}-\Omega^{2}\right)+i \alpha \Omega}
$$

Rationalizing,

$$
\eta_{n(p)}=\frac{\left(\omega_{n}^{4}-\omega_{n}^{2} \Omega^{2}\right) f_{n}+\left(\omega_{n}^{2} \Omega^{2}-\Omega^{4}\right) e_{n}-i \alpha \Omega \omega_{n}^{2} f_{n}-i \alpha \Omega^{3} e_{n}}{\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}}
$$

Substituting Eqs. (4.31) in the above expression and separating the real and imaginary parts, the following expressions for $p_{n(p)}$ and $q_{n(p)}$ are obtained:

$$
p_{n(p)} \equiv U_{n}=\frac{\left(\omega_{n}^{2}-\Omega^{2}\right)\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}}, \text { (4.38a) }
$$

$$
q_{n(p)} \equiv V_{n}=\frac{\left(\omega_{n}^{2}-\Omega^{2}\right)\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}}
$$

where the particular solutions of $\rho_{n}(t)$ and $g_{n}(t)$ have been renamed by U_{n} and V_{n}, respectively. The constants a_{n}, b_{n}, c_{n} and α_{n} are given by Eqs. (4.25)(4.28).

If the steady lift force, mentioned at the end of Chapter 3, is included in the steady-state analysis, it can be shown that the particular solutions are

$$
\begin{aligned}
& U_{n}=\frac{\left[\omega_{n}^{2}-\left(1+m_{0} / m\right) \Omega^{2}\right]\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left[\omega_{n}^{2}-\left(1+m_{0} / m\right) \Omega^{2}\right]^{2}+\alpha^{2} \Omega^{2}}(4.38 c) \\
& V_{n}=\frac{\left[\omega_{n}^{2}-\left(1+m_{0} / m\right) \Omega^{2}\right]\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left[\omega_{n}^{2}-\left(1+m_{0} / m\right) \Omega^{2}\right]^{2}+\alpha^{2} \Omega^{2}}=\text { (4.38d) }
\end{aligned}
$$

Eqs. (4.38c,d) indicate that the resonance
frequencies (for $\alpha=0$) are not the same as the natural frequencies of the shaft. The new values are smaller and given by

$$
\Omega_{\text {res }}=\left(1+m_{0} / m\right)^{-1 / 2} \omega_{r}
$$

depending on the ratio m_{0} / m.

4.4 Displacements, Bending Moments and Stresses

From Eqs. (4.1), the series solutions for the displacements in the rotating reference $U \vee Z$ are

$$
\begin{align*}
& u(z)=\sum_{n=1}^{\infty} U_{n} \phi_{n}(z) \tag{4.39a}\\
& v(j)=\sum_{n=1}^{\infty} V_{n} \phi_{n}(z) \tag{4.39b}
\end{align*}
$$

in which the time t has been dropped from the notation $u(\xi, t)$ and $v(z, t)$, meaning that $u(z)$ and $v(\xi)$ are the steady-state solutions of the displacements.

The bending moment in the $U Z$ plane has the following expression

$$
M_{u}(z, t)=E I \frac{\partial^{2}\left(u-u_{0}\right)}{\partial z^{2}}
$$

With the same notation used above, the steady-state bending moment $M_{u}(z)$ can be obtained with the expression of u (z) from Eq. (4.39a).

$$
\begin{equation*}
M_{u}(z)=E I \sum_{n=1}^{\infty} U_{n} \frac{d^{2} \phi_{n}(z)}{d z^{2}}-E I \frac{d^{2} u_{0}(z)}{d z^{2}} \tag{4.40a}
\end{equation*}
$$

A similar expression holds for $M_{v}(z)$.

$$
\begin{equation*}
M_{v}(z)=E I \sum_{n=1}^{\infty} V_{n} \frac{d^{2} \phi_{n}(z)}{d z^{2}}-E I \frac{d^{2} V_{0}(z)}{d z^{2}} \tag{4.40b}
\end{equation*}
$$

The maximum positive bending stress of a circular shaft is

$$
\begin{equation*}
\sigma(z)=\frac{32 M(y)}{\pi D^{3}\left[1-\left(\frac{d}{D}\right)^{4}\right]} \tag{4.41}
\end{equation*}
$$

where D and d are the outside and inside diameters of the shaft, respectively, and

$$
\begin{equation*}
M(z)=\left[M_{u}^{2}(z)+M_{v}^{2}(z)\right]^{1 / 2} \tag{4.42}
\end{equation*}
$$

4.5 Stability of the System

Although some conclusions have been drawn in
connection with Eq. (4.35) it is intended in this section to study in greater detail the problem of stability.

The free motion of the shaft is governed by the homogeneous part of the differential equations (4.30). These are

$$
\begin{align*}
& \ddot{p}_{n}+\alpha \dot{p}_{n}+\left(\omega_{n}^{2}-\Omega^{2}\right) p_{n}-2 \Omega \dot{q}_{n}-\alpha \Omega q_{n}=0 \tag{4.43a}\\
& \ddot{q}_{n}+\alpha \dot{q}_{n}+\left(\omega_{n}^{2}-\Omega^{2}\right) q_{n}+2 \Omega \dot{p}_{n}+\alpha \Omega p_{n}=0 \tag{4.43b}
\end{align*}
$$

Solutions are sought in the form

$$
\begin{equation*}
p_{n}(t)=F e^{\lambda t} \tag{4.44a}
\end{equation*}
$$

$$
\begin{equation*}
q_{n}(t)=G e^{\lambda t} \tag{4.44b}
\end{equation*}
$$

where F, G and λ are real constants. Substitution in
Eqs. (4.43) gives, after simplification

$$
\begin{aligned}
& {\left[\lambda^{2}+\alpha \lambda+\left(\omega_{n}^{2}-\Omega^{2}\right)\right] F-[2 \Omega \lambda+\alpha \Omega] G=0} \\
& {[2 \Omega \lambda+\alpha \Omega] F-\left[\lambda^{2}+\alpha \lambda+\left(\omega_{n}^{2}-\Omega^{2}\right)\right] G=0}
\end{aligned}
$$

For non-trivial solutions of F and G, the determinant of their coefficients must vanish, which gives

$$
\lambda^{4}+2 \alpha \lambda^{3}+\left[2\left(\omega_{n}^{2}+\Omega^{2}\right)+\alpha^{2}\right] \lambda^{2}+2 \alpha\left(\omega_{n}^{2}+\Omega^{2}\right) \lambda+\left[\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}\right]=0 \quad \text { (4.45) }
$$

or $\lambda^{4}+A_{3} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=0$
where $\quad A_{3}=2 \alpha$
(4.46b)

$$
\begin{align*}
& A_{2}=2\left(\omega_{n}^{2}+\Omega^{2}\right)+\alpha^{2} \tag{4.46c}\\
& A_{1}=2 \alpha\left(\omega_{n}^{2}+\Omega^{2}\right) \tag{4.46d}
\end{align*}
$$

$$
\begin{equation*}
A_{0}=\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2} \tag{4.46e}
\end{equation*}
$$

In practice it is not necessary to determine the roots of $\mathrm{Eq} .(4.46 \mathrm{a}$) explicitly; it is sufficient to know the sign of the real part of the roots. If all roots λ have negative real values, the solutions for $p_{n}(t)$ and $g_{n}(t)$ will always be bounded. If one or more λ has
positive real value, the amplitude will increase exponentially, making the motion unstable. For the fourthorder algebraic equation (4.46a) in λ, the condition of stability (non-positive real parts) is given by Routh's criteria $[12]=$
(1) all coefficients $A_{i}(i=0,1,2,3)$ must be of the same sign (positive, the sign of λ^{4}) and
(2) the following inequality must be true

$$
A_{1} A_{2} A_{3}>A_{1}^{2}+A_{3}^{2} A_{0}
$$

The first condition is automatically satisfied,
since all coefficients are positive $(\alpha>0)$.
Using Eqs. (4.46b, c, d,e), the second condition is equivalent to

$$
4 \alpha^{2} \omega_{n}^{2}\left(4 \Omega^{2}+\alpha^{2}\right)>0
$$

which is always satisfied.
The conclusion is that, with damping present, the free motion of the shaft is always stable.

The undamped system can be analysed from Eq. (4.45), in which α is taken equal to 0 . Then

$$
\begin{equation*}
\lambda^{4}+2\left(\omega_{n}^{2}+\Omega^{2}\right) \lambda^{2}+\left(\omega_{n}^{2}-\Omega^{2}\right)^{2}=0 \tag{4.47}
\end{equation*}
$$

This equation has the following roots:

$$
\begin{equation*}
\lambda^{2}=-\left(\omega_{n}^{2}+\Omega^{2}\right) \pm 2 \omega_{n} \Omega \tag{4.48}
\end{equation*}
$$

Supposing now that the speed of rotation Ω is equal to one of the natural frequencies of shaft, i.e., $\Omega=\omega_{n}$, the roots are

$$
\begin{aligned}
& \lambda^{2}=-2 \omega_{n}^{2} \pm 2 \omega_{n}^{2}, \text { or } \\
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=+i 2 \omega_{n} \\
& \lambda_{4}=-i 2 \omega_{n}
\end{aligned}
$$

Then with $\Omega=\omega_{n}(\eta=1,2,3, \cdots)$, the value $\lambda=0$ is a double root of Eq. (4.47), which corresponds to solutions of the form

$$
p_{2}(t)=F_{1}+F_{2} t \quad q_{n}(t)=G_{1}+G_{2} t
$$

making the system unstable, since $p_{n}(t)$ and $g_{n}(t)$ increase with time without bound.

The stability has been discussed based on the assumption of tension varying only with the distance z, since Eq. (4.9) was obtained by the method of separation of variables, in which is implied that the tension is $T(z)$. A tension varying also with time, $T(\mathcal{z}, t)$, would require a slightly different approach. However, the case with time-varying tension is of less practical significance and beyond the scope of this study.

Chapter 5

SPECIAL CASES OF TENSION

The solution of the general equations by modal analysis was derived in the last chapter as a series expansion in the normal coordinates and modal shapes of the associated free-vibrations problem. The former, for a steady-state case, were given by Eqs. (4.38 c,d), while the latter were shown to satisfy the differential equation (4.9) which is repeated here for convenience

$$
\begin{equation*}
\frac{E I}{m} \frac{d^{4} \phi}{d z^{4}}-\frac{1}{m} \frac{d}{d z}\left(T \frac{d \phi}{d z}\right)-\omega^{2} \phi=0 . \tag{5.1}
\end{equation*}
$$

In this chapter, Eq. (5.1) will be solved for particular tension functions, $T(\mathcal{Z})$, and boundary conditions. Two cases of tension are considered: linearly varying tension and (2) constant tension. The first case involves a shaft with one end simply supported and the other guided (sliding), while in the second case a simply-supported shaft (at both ends) is considered. Following the solution of Eq. (5.1), final expressions for displacements, bending moments and stresses are given.

5.1 Shaft Under Linearly Varying Tension

5.1.1 Free-Vibration Analysis

Let the tension at a section of the shaft be given by

$$
\begin{equation*}
T(z)=T_{0}+\gamma z \tag{5.2}
\end{equation*}
$$

in which γ is the weight per unit length of the shaft (in the fluid). The value of γ is

$$
\begin{equation*}
\gamma=\left(m-m_{0}\right) g- \tag{5.3}
\end{equation*}
$$

where g_{0} is the acceleration of gravity.
Substituting Eq. (5.2) into Eq. (5.1) and
multiplying by $m / E I$, yields

$$
\begin{equation*}
\frac{d^{4} \phi}{d z^{4}}-\frac{1}{E I} \frac{d}{d z}\left[\left(T_{0}+\gamma z\right) \frac{d \phi}{d z}\right]-\frac{\omega^{2} m}{E I} \phi=0 . \tag{5.4}
\end{equation*}
$$

The boundary conditions are

$$
\phi(0)=0
$$

$$
\begin{equation*}
\frac{d \phi}{d z}(0)=0 \tag{5.5b}
\end{equation*}
$$

$$
\begin{align*}
\phi(L) & =0 \tag{5.5c}\\
\frac{d^{2} \phi}{d z^{2}}(L) & =0
\end{align*}
$$

The homogeneous Eq. (5.4) with the homogeneous boundary conditions (5.5) constitute an eigenvalue problem. Let a dimensionless variable ξ be defined as

$$
\begin{equation*}
\xi=\frac{z}{L} \tag{5.6}
\end{equation*}
$$

Eq. (5.4) can now be written as

$$
\begin{equation*}
\frac{d^{4} \phi}{d \xi^{4}}-g \xi \frac{d^{2} \phi}{d \xi^{2}}-h \frac{d^{2} \phi}{d \xi^{2}}-g \frac{d \phi}{d \xi}-k^{4} \phi=0 \tag{5.7}
\end{equation*}
$$

where g, h and k are three dimensionless parameters defined by

$$
\begin{align*}
& g=\frac{\gamma L^{3}}{E I} \tag{5.8}\\
& h=\frac{T_{0} L^{2}}{E I} \tag{5.9}\\
& k^{4}=\frac{m \omega^{2} L^{4}}{E I} \tag{5.10}
\end{align*}
$$

With the introduction of the independent variable ξ, the boundary conditions (5.5) become

$$
\begin{align*}
\phi(0) & =0 \tag{5.11a}\\
\frac{d \phi}{d \xi}(0) & =0 \tag{5.1lb}\\
\phi(1) & =0 \tag{5.11c}\\
\frac{d^{2} \phi}{d \xi^{2}}(1) & =0 \tag{5.11d}
\end{align*}
$$

Equation (5.7) will be solved by assuming for the dependent variable ϕ a power series in ξ near the point $\xi=0$. The reason for this expansion is due to the presence of the variable coefficient, arising from the variable axial force. As a consequence of this variable
coefficient, the function ϕ may not be expressible in terms of known elementary functions. Thus, it is assumed that

$$
\begin{equation*}
\phi(\xi)=\xi^{\lambda} \sum_{n=0}^{\infty} c_{n} \xi^{n} \tag{5.12}
\end{equation*}
$$

where the C_{n} 's and λ are constants to be determined. Because the coefficients involved in Eq. (5.7) are analytic for any finite value of the variable ξ, the function $\phi(\xi)$ can be represented by the assumed series, being absolutely and uniformly convergent everywhere in the finite domain $[13]$.

The differential equation is of the fourth order, thus admitting four linearly independent solutions, which can be obtained by the method of Frobenius.

Substituting Eq. (5.12) into (5.7) an equation involving a power series in ξ is obtained, whose sum is equal to zero. In order to satisfy the equation, each coefficient in the series must be zero. The first of these coefficients gives the indicial equation

$$
c_{0}[\lambda(\lambda-1)(\lambda-2)(\lambda-3)]=0
$$

which is satisfied by

$$
\begin{equation*}
\lambda_{1}=0, \quad \lambda_{2}=1, \quad \lambda_{3}=2, \quad \lambda_{4}=3 \tag{5.13}
\end{equation*}
$$

with C_{0} arbitrary. The differences between the values of
λ 's are integer numbers. In such cases the method of Frobenius assures solutions of the type of (5.12) only for the largest value of λ. But since the equation to be solved is ordinary at $\xi=0$, the method still gives the four independent solutions for the other remaining λ 's, with a suitable choice of the arbitrary constants $[14]$. The other coefficients in the power series equation have to be set equal to zero for each value of λ, thus giving four independent solutions. Letting a_{n}, b_{n}, c_{n} and d_{n} be the coefficients of Eq. (5.12) for the four solutions, one obtains

$$
a_{0}=1, \quad a_{1}=0, \quad a_{2}=\frac{h}{20}, \quad a_{3}=\frac{g}{40}
$$

$$
\begin{aligned}
& a_{n}=\frac{k}{(n+3)(n+2)} a_{n-2}+\frac{n g}{(n+3)(n+2)(n+1)} a_{n-3}+\frac{b^{4}}{(n+3)(n+2)(n+1) n} a_{n-4}, \\
& b_{0}=1, \quad b_{1}=0, \quad b_{2}=\frac{h}{12}, \quad b_{3}=\frac{g}{30}
\end{aligned}
$$

$$
\begin{array}{r}
b_{n}=\frac{h}{(n+2)(n+1)} b_{n-2}+\frac{(n-1) g}{(n+2)(n+1) n} b_{n-3}+\frac{k^{4}}{(n+2)(n+1)(n)(n-1)} b_{n-4}, \\
(n \geq 4)
\end{array}
$$

$$
c_{0}=1, \quad c_{1}=0, \quad c_{2}=0 \quad c_{3}=\frac{8}{24}
$$

$$
\begin{aligned}
& c_{n}=\frac{h}{(n+1) n} c_{n-2}+\frac{(n-2) g}{(n+1) n(n-1)} c_{n-3}+\frac{k^{4}}{(n+1) n(n-1)(n-2)} c_{n-4}, \\
& d_{0}=1, \quad d_{1}=0, \quad d_{2}=0, \quad d_{3}=0
\end{aligned}
$$

$$
d_{n}=\frac{\frac{g}{n}}{n(n-1)} d_{n-2}+\frac{(n-3) g}{n(n-1)(n-2)} d_{n-3}+\frac{k^{4}}{n(n-1)(n-2)(n-3)} d_{n-4}
$$

$$
\begin{equation*}
(n \geq 4) \tag{5.14}
\end{equation*}
$$

Using the values of λ given by (5.13), the series solution can be written as
where A, B, C and D are arbitrary constants and $a_{n}, b_{n}, c_{n}, d_{n}$ given by Eqs. (5.14). The arbitrary constants A, B, C and D may be obtained using the boundary conditions (5.11). Application of condition (5.lla) gives

$$
\begin{equation*}
D=0 . \tag{5.16}
\end{equation*}
$$

From (5.15), with (5.16), the first derivative of $\phi(\xi)$ is equal to

$$
\begin{aligned}
\frac{d \phi}{d \xi}= & A \sum_{n=0}^{\infty}(n+3) a_{n} \xi^{n+2}+B \sum_{n=0}^{\infty}(n+2) b_{n} \xi^{n+1}+ \\
& +C \sum_{n=0}^{\infty}(n+1) c_{n} \xi^{n}
\end{aligned}
$$

Applying condition (5.11b) yields

$$
\begin{equation*}
C=0 \tag{5.17}
\end{equation*}
$$

Substituting (5.16) and (5.17) in (5.15), condition (5.11.c) gives

$$
\begin{equation*}
A \sum_{n=0}^{\infty} a_{n}+B \sum_{n=0}^{\infty} b_{n}=0 . \tag{5.18}
\end{equation*}
$$

With $C=D=0$, the second derivative of $\phi(\xi)$ is

$$
\begin{equation*}
\frac{d^{2} \phi}{d \xi^{2}}=A \sum_{n=0}^{\infty}(n+3)(n+2) a_{n} \xi^{n+1}+B \sum_{n=0}^{\infty}(n+2)(n+1) b_{n} \xi^{n} \tag{5.19}
\end{equation*}
$$

Applying condition (5.11d) to (5.19), the following equation is obtained:

$$
\begin{equation*}
A \sum_{n=0}^{\infty}(n+3)(n+2) a_{n}+B \sum_{n=0}^{\infty}(n+2)(n+1) b_{n}=0 \tag{5.20}
\end{equation*}
$$

Equations (5.18) and (5.20) form a set of two homogeneous equations in the unknowns A and B. For nontrivial solution the determinant of their coefficients must vanish, ie.

$$
\left|\begin{array}{ll}
\sum_{n=0}^{\infty} a_{n} & \sum_{n=0}^{\infty} b_{n} \\
\sum_{n=0}^{\infty}(n+3)(n+2) a_{n} & \sum_{n=0}^{\infty}(n+2)(n+1) b_{n}
\end{array}\right|=0 .
$$

Expanding and dividing by $-\sum_{n=0}^{\infty} b_{m}$, one finally obtains

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+3)(n+2) a_{n}-\left(\sum_{n=0}^{\infty} a_{n} / \sum_{n=0}^{\infty} b_{n}\right) \sum_{n=0}^{\infty}(n+2)(n+1) b_{n}=0 . \tag{5.21}
\end{equation*}
$$

This is the frequency equation, which gives the value of the natural frequencies. The ω_{n} 's are related to the coefficients a_{n} and b_{n} through Eqs. (5.14) and (5.10). Once the frequency equation has been solved, the power series expansion of $\phi(\xi)$ can be obtained. From Eq. (5.18), the constant B can be written as

$$
\begin{equation*}
B=-A \frac{\sum_{n=0}^{\infty} a_{n}}{\sum_{n=0}^{\infty} b_{n}} \tag{5.22}
\end{equation*}
$$

$$
\text { Values of } B, C \text { and } D \text {, given by (5.22), (5.17) }
$$

and (5.16), can now be substituted in (5.15) and written as functions of the original variable $\gamma(\xi=\xi / L)$. The function $\phi(z)$ then becomes

$$
\begin{equation*}
\phi_{n}(z)=A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)}\left(\frac{z}{L}\right)^{n+3}-\left(\sum_{n=0}^{\infty} a_{n}^{(n)} / \sum_{n=0}^{\infty} b_{n}^{(n)}\right) \sum_{n=0}^{\infty} b_{n}^{(n)}\left(\frac{z}{L}\right)^{n+2}\right] \tag{5.23}
\end{equation*}
$$

where the subscript n has been introduced for $\phi(z)$, since for each value of ω_{Ω} there is a correspondent modal function $\phi_{r}(\gamma)$.
5.1.2 Steady-State Response of the Shaft.

The displacements for steady-state conditions are given by

$$
u(z)=\sum_{n=1}^{\infty} U_{n} \phi_{n}(z) \quad \text { and } \quad v(z)=\sum_{n=1}^{\infty} V_{n} \phi_{r}(z)
$$

Eqs. (4.39). Substitution of U_{r} and V_{r} from Eqs. ($4.38 \mathrm{c}, \mathrm{d}$) yields the final expressions for the displacements. These are

$$
\begin{aligned}
& U(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \phi_{n}(\eta)^{(5.24 a)} \\
& V(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \phi_{n}(\eta)
\end{aligned}
$$

where

$$
\begin{equation*}
R_{m}^{2}=1+m_{0} / m \tag{5.24c}
\end{equation*}
$$ and $\phi_{1}(z)$ is given by Eq. (5.23). Similarly, substituting Eq. (5.23) into (4.40) with (4.38 cod) the following expressions for the bending moments are obtained:

$$
\begin{align*}
& M_{u}(z)=\frac{E I}{L^{2}} \sum_{n=1}^{\infty}\left[\frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{1}^{2} c_{n}+\Omega^{2} \alpha_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} \alpha_{1}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \psi_{n}(\gamma)\right]- \\
& -E I \frac{d^{2} u_{0}(x)}{d z^{2}}, \tag{5.25a}\\
& \left.M_{v}(z)=\frac{E I}{L^{2}}\right\rangle\left[\frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} \alpha_{1}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \psi_{n}(\gamma)\right]- \\
& -E I \frac{d^{2} v_{0}(z)}{d z^{2}} . \tag{5.25b}
\end{align*}
$$

where
$\psi_{n}(z)=A_{n}\left[\sum_{n=0}^{\infty}(n+3)(n+2) a_{n}^{(n)}\left(\frac{z}{L}\right)^{n+1}-C_{R} \sum_{n=0}^{\infty}(n+2)(n+1) b_{n}^{(n)}\left(\frac{z}{L}\right)^{n}\right]$
in which $\quad C_{R}=\sum_{n=0}^{\infty} a_{n}^{(n)} / \sum_{n=0}^{\infty} b_{n}^{(n)}$.

$$
\begin{equation*}
C_{R}=\sum_{n=0}^{\infty} a_{n}^{(n)} / \sum_{n=0}^{\infty} b_{n}^{(n)} . \tag{5.26}
\end{equation*}
$$

The relations for displacements, bending moments and stress will be in non-dimensional form by defining the
following quantities and variables:

$$
\begin{align*}
& R_{n}=\frac{\omega_{n}}{\Omega} \quad \text { ratio of the } n \text {th natural } \tag{5.28}\\
& \text { frequency to the speed of the } \\
& \text { shaft, } \\
& \alpha_{0}=\frac{\alpha}{\Omega} \quad \text { non-dimensional damping } \tag{5.29}\\
& \text { coefficient, } \\
& \text { e } \\
& \mu(\xi)=\frac{u(\xi)}{e} \tag{5.30}\\
& \text { arbitrary unit of eccentricity, } \\
& \text { non-dimensional displacement } \\
& \text { in UOZ plane, } \\
& \nu\left(\xi_{5}\right)=\frac{V\left(\xi_{1}\right)}{e} \quad \text { non-dimensional displacement } \tag{5.31}\\
& \text { in } V O Z \text { plane, } \\
& \begin{array}{ll}
\mu_{0}(\xi)=\frac{U_{0}(\xi)}{e} \quad \text { non-dimensional lack of } \\
& \text { straightness in UOZ plane, }
\end{array} \tag{5.32}\\
& \nu_{0}(\xi)=\frac{v_{0}(\xi)}{e} \quad \text { non-dimensional lack of } \tag{5.33}\\
& \text { straightness in VOZ plane, } \\
& M_{0}=\frac{E I e}{L^{2}} \quad \text { a characteristic moment, } \tag{5.34}\\
& M_{\mu}(\xi)=\frac{M_{u}(\xi)}{M_{0}} \quad \text { non-dimensional bending } \tag{5.35}\\
& \text { moment in } U O Z \text { plane, } \\
& M_{\nu}(\xi)=\frac{M_{V}(\xi)}{M_{0}} \quad \text { non-dimensional bending } \tag{5.36}\\
& \text { moment in VOZ plane, } \\
& M_{\mu \nu}(\xi)=\left[M_{\mu}^{2}(\xi)+M_{\nu}^{2}(\xi)\right]^{1 / 2}, \tag{5.37}
\end{align*}
$$

$$
\begin{array}{ll}
\sigma_{0}=\frac{M_{0}}{D^{3}}=\frac{E I e}{L^{2} D^{3}} & \text { a characteristic stress }, \\
S(\xi)=\frac{\sigma(\xi)}{\sigma_{0}} & \text { non-dimensional stress. } \tag{5.39}
\end{array}
$$

It is shown in Appendix 3 that, using Eds. (5.28)-
(5.39), the non-dimensional form for the displacements, bending moments and stress are

$$
\begin{equation*}
\mu(\xi)=\sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m 1}^{2}\right)\left(R_{n}^{2} c_{n 0}+a_{10}\right)+\alpha_{0}\left(R_{n}^{2} d_{10}+b_{n 0}\right)}{\left(R_{n}^{2}-R_{1 m}^{2}\right)^{2}+\alpha_{0}^{2}} \oint_{n}(\xi) \tag{5.40a}
\end{equation*}
$$

$$
\begin{equation*}
\nu(\xi)=\sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} d_{10}+b_{n 0}\right)-\alpha_{0}\left(R_{n}^{2} c_{n 0}+a_{n 0}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \phi_{n}(\xi) \tag{5.40b}
\end{equation*}
$$

$$
M_{\mu}(\xi)=\sum_{n=1}^{\infty}\left[\frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} c_{n 0}+a_{n 0}\right)+\alpha_{0}\left(R_{n}^{2} d_{20}+b_{n 0}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \psi_{n}(\xi)\right]-\frac{d^{2}}{\frac{d}{d} \xi^{2}} \mu_{0}(\xi)
$$

$$
M_{r}(\xi)=\sum_{n=1}^{\infty}\left[\frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} \alpha_{n_{0}}+b_{n 0}\right)-\alpha_{0}\left(R_{n}^{2} c_{n 0}+a_{n 0}\right)}{\left(R_{n}^{2}-R_{n}^{2}\right)^{2}+\alpha_{0}^{2}} Y_{n}(\xi)\right]-\frac{d^{2} \nu_{0}(\xi)}{d \xi^{2}}
$$

$$
\begin{equation*}
\rho(\xi)=\frac{32}{\pi\left[1-\left(\frac{d}{D}\right)^{4}\right]} M_{\mu \nu}\left(\frac{\xi}{7}\right) \tag{5.42}
\end{equation*}
$$

where $\phi_{\Omega}(\xi)$ and $\psi_{\Omega}(\xi)$ are obtained from Eqs. (5.23) and (5.26) respectively, together with Eq. (5.6) and

$$
\begin{align*}
& a_{n 0}=\frac{1}{h_{n}} \int_{0}^{1} \frac{a(\xi)}{e} \phi_{n}(\xi) d \xi, \\
& b_{n 0}=\frac{1}{h_{n}} \int_{0}^{1} \frac{b(\xi)}{e} \phi_{n}(\xi) d \xi, \\
& c_{n 0}=\frac{E I}{m \omega_{n}^{2} L^{4}} \frac{1}{h_{n}} \int_{0}^{\frac{d^{4}}{d \xi^{4}} \mu_{0}(\xi) \phi_{n}(\xi) d \xi} \\
& d_{n 0}=\frac{E I}{m \omega_{n}^{2} L^{4}} \frac{1}{h_{n}} \int_{0}^{1} \frac{d^{4} \nu_{0}(\xi)}{d^{4}} \phi_{n}(\xi) d \xi \tag{5.46}\\
& h_{n}=\int_{0}^{1} \phi_{n}^{2}(\xi) d \xi \cdot \tag{5.47}
\end{align*}
$$

5.2 Shaft Under Constant Tension
5.2.1 Free Vibration Analysis

With the tension constant along the shaft the differential equation (5.1) can be written as

$$
\begin{equation*}
E I \frac{d^{4} \phi}{d z^{4}}-T \frac{d^{2} \phi}{d z^{2}}-m \omega^{2} \phi=0 \tag{5.48}
\end{equation*}
$$

$\phi(z)$ must also satisfy the boundary conditions
for a simply-supported shaft, which are

$$
\begin{equation*}
\phi(0)=\frac{d^{2} \phi}{d z^{2}}(0)=\phi(L)=\frac{d^{2} \phi}{d z^{2}}(L)=0 \tag{5.49a,b,c,d}
\end{equation*}
$$

The eigenvalue problem stated by Eqs. (5.48) and (5.49) has the solution $[15]$

$$
\begin{align*}
& \phi_{n}(z)=A_{r} \sin \frac{n \pi z}{L} \tag{5.50}\\
& \omega_{r}^{2}=\frac{E I}{m} \frac{r^{4} \pi^{4}}{L^{4}}\left[1+\frac{T L^{2} / E I}{n^{2} \pi^{2}}\right] \tag{5.51}
\end{align*}
$$

5.2.2 Steady-State Response of the Shaft

Expressions for the displacements are the same as

 Eqs. (5.24), with the functions $\phi_{\mu}(z)$ given by Eq. (5.50). Thus,$$
\begin{aligned}
& u(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{1}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} A_{n} \sin \frac{n \beta z}{L} \\
& v(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{1}^{2} d_{n}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{1}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} A_{n} \frac{\sin \frac{n \pi z}{L}}{(5.52 b)}
\end{aligned}
$$

where ω_{n} 's are given by Eq. (5.51).

The bending moments in this case are

Non-dimensional forms corresponding to these
expressions are obtained using Eqs. (5.28)-(5.36) together with the ratio

$$
\begin{equation*}
R_{0, r}=\frac{\omega_{0, n}}{\Omega} \tag{5.54}
\end{equation*}
$$

where $\omega_{0, \imath}$ is the $几$ th natural frequency of a shaft with zero tension. Substitution in Eqs. (5.52) and (5.53) yields

$$
\mu(\xi)=2 \sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{0, n}^{2} c_{n 0}^{*}+a_{n 0}^{*}\right)+\alpha_{0}\left(R_{0, n}^{2} d_{n 0}^{*}+b_{n 0}^{*}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin n \overparen{H \xi}
$$

$$
\nu(\xi)=2 \sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{0, n}^{2} d_{n 0}^{*}+b_{n 0}^{*}\right)-\alpha_{0}\left(R_{0, n}^{2} c_{n 0}^{*}+a_{n 0}^{*}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin n^{2} \| \xi
$$

$$
\begin{align*}
& M_{u}(z)=-\frac{\pi^{2} E I}{L^{2}} \sum_{n=1}^{\infty}\left[\frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{1}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-R_{m=n}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} A^{2} \sin \frac{n \pi z}{L}\right]- \\
& \text { (5.53a) } \\
& -E I \frac{d^{2} u_{0}(z)}{d z^{2}}, \\
& M_{v}(z)=-\pi^{2} \frac{E I}{L^{2}} \sum_{n=1}^{\infty}\left[\frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)-\alpha \Omega\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \eta^{2} \sin \frac{n H z}{L}\right]- \\
& -E I \frac{d^{2} v_{0}(z)}{d z^{2}} . \tag{5.53b}
\end{align*}
$$

$$
\begin{align*}
& M_{H}(\xi)=-2 \pi^{2} \sum_{n=1}^{\infty}\left[\frac{\left.\left.\left(R_{n}^{2}-R_{m m}^{2}\right)\left(R_{0, n}^{2} C_{n 0}^{*}+a_{n 0}^{*}\right)+\alpha_{0}\left(R_{0, n}^{2} d_{n 0}^{*}+b_{n 0}^{*}\right) r^{2} \sin n \pi \xi\right]-1 R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}}{\left(R_{0}\right.}\right]- \\
& -\frac{d^{2}}{d \xi^{2}} H_{0}(\xi), \\
& \text { (5.56a) } \\
& M_{\nu}(\xi)=-2 \pi^{2} \sum_{n=1}^{\infty}\left[\frac{\left.\left.\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{0, n}^{2} d_{n 0}^{*}+b_{n 0}^{*}\right)-\alpha_{0}\left(R_{0, n}^{2} C_{n 0}^{*}+a_{n 0}^{*}\right) n^{2} \sin n \pi \xi\right]-1 R_{n}^{2}-R_{n n}^{2}\right)^{2}+\alpha_{0}^{2}}{\left(R_{n}\right.}\right] \\
& -\frac{d^{2} y_{0}(\xi)}{d \xi^{2}}, \tag{5.56b}
\end{align*}
$$

where

$$
\begin{align*}
& a_{n}^{*}=\int_{0}^{1} \frac{a(\xi)}{e} \sin \wedge \pi \xi d \xi \text {, } \tag{5.57}\\
& b_{n 0}^{*}=\int_{0}^{1} \frac{b(\xi)}{e} \sin \pi \xi d \xi, \tag{5.58}\\
& C_{n 0}^{*}=\int_{0}^{1} \mu_{0}(\xi) \sin \pi \xi \xi d \xi, \tag{5.59}\\
& d_{n o}^{*}=\int_{0}^{1} \nu_{0}(\xi) \sin \pi \pi \xi d \xi \text {. } \tag{5.60}
\end{align*}
$$

EXAMPLE PROBLEMS

To provide further insight into the problem, numerical solutions of three examples are presented in this chapter. Also results of the freely-vibrating shaft are shown for the linearly-varying-tension case.
6.1 The Problems and Their Characteristics Parameters Problem 1-Linearly Varying Tension

Consider a hollow shaft with the following eccentricity and lack of straightness functions:

$$
\begin{align*}
& a(z)=\left\{\begin{array}{ccc}
0 & \text { for } & 0 \leq z \leq L / 4, \\
4 e z / L-e & \text { for } & L / 4 \leq z \leq L / 2 \\
3 e-4 e z / L & \text { for } & L / 2 \leq z \leq 3 L / 4, \\
0 & \text { for } & 3 L / 4 \leq z \leq L
\end{array},\right. \tag{6.1}\\
& b(z)=0 \tag{6.2}
\end{align*}
$$

In this case, the equations for the displacement, bending moment and stress are (5.40), (5.41) and (5.42), respectively. The parameters $a_{n o}, b_{\text {no }}, c_{\text {no }}$ and $d_{\text {no }}$ involved in these equations are given by Eqs. (5.43)(5.47). Using Eqs. (6.1)-(6.4) one obtains

$$
\begin{align*}
& n_{n}=\int_{0}^{1} A_{n}^{2}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-C_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right]^{2} d \xi \text {, or } \\
& h_{n}=A_{n}^{2} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{a_{k}^{(n)} a_{n}^{(n)}}{k+n+7}-2 C_{R} \frac{a_{k}^{(n)} b_{n}^{(n)}}{k+n+6}+c_{R}^{2} \frac{b_{k}^{(n)} b_{n}^{(n)}}{k+n+5}\right), \\
& \begin{aligned}
a_{n 0} & =\frac{1}{h_{n}} \cdot \int_{\frac{1}{4}}^{1 / 2}(4 \xi-1) A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-c_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right] d \xi+ \\
& +\frac{1}{h_{n}} \int_{1 / 2}^{3 / 4}(3-4 \xi) A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-c_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right] d \xi, \text { or }
\end{aligned} \\
& a_{n 0}=\frac{A_{\Omega}}{h_{n}} \sum_{n=0}^{\infty}\left[\left(\frac{3^{n+5}-2^{n+6}+1}{(n+5)(n+4) 4^{n+4}}\right) a_{n}^{(n)}-C_{R}\left(\frac{3^{n+4}-2^{n+5}+1}{(n+4)(n+3) 4^{n+3}}\right) b_{n}^{(n)}\right], \\
& b_{r 0}=c_{n 0}=d_{r 0}=0 \text { (6.7), (6.8), (6.9) } \tag{6.6}
\end{align*}
$$

The surrounding fluid is assumed to be sea water and the geometric parameters of the shaft chosen are:
length $=400 \mathrm{ft}$,
outside diameter $(D)=6.625$ in. $\} 6$ ND, Sch. 80 ,
inside diameter $(d)=5.761$ in. \int steel
unit of eccentricity $e=0.1 D$

Problem 2-Linearly-Varying Tension
Consider a hollow shaft with the following eccentricity and lack of straightness functions:

$$
\begin{align*}
& a(z)=\left\{\begin{array}{lll}
-e & \text { for } & 0 \leq z \leq L / 4 \\
0 & \text { for } & L / 4<z<3 L / 4 \\
e & \text { for } & 3 L / 4 \leq z \leq L
\end{array}\right. \tag{6.10}\\
& b(z)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leq z<L / 2 \\
e & \text { for } & L / 2 \leq z \leq 3 L / 4 \\
0 & \text { for } & 3 L / 4<z \leq L
\end{array}\right. \\
& u_{0}(z)=0
\end{align*}
$$

The eccentricity function for this case is shown in Fig. 6. For this example problem the equations to be used are again (5.40)-(5.47), the parameters $a_{n o}, b_{n 0}$. $c_{\text {no }}$ and $d_{\text {no }}$ being

$$
a_{n 0}=\frac{1}{h_{n}} \int_{0}^{1 / 4}-A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-c_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right] d \xi+
$$

$$
\begin{aligned}
& +\frac{1}{h_{n}} \int_{3 / 4}^{1} A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-c_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right] d \xi \quad \text {, or } \\
& a_{n 0}=\frac{A_{n}}{h_{n}} \sum_{n=0}^{\infty}\left[\left(\frac{4^{n+4}-3^{n+4}-1}{(n+4) 4^{n+4}}\right) a_{n}^{(n)}-C_{R}\left(\frac{4^{n+3}-3^{n+3}-1}{(n+3) 4^{n+3}}\right) b_{n}^{(n)}\right] r^{(6.14)} \\
& b_{n 0}=\frac{1}{h_{n}} \int_{1 / 2}^{3 / 4} A_{n}\left[\sum_{n=0}^{\infty} a_{n}^{(n)} \xi^{n+3}-c_{R} \sum_{n=0}^{\infty} b_{n}^{(n)} \xi^{n+2}\right] d \xi \quad \text {. or } \\
& b_{n 0}=\frac{A_{n}}{h_{n}} \sum_{n=0}^{\infty}\left[\left(\frac{3^{n+4}-2^{n+4}}{(n+4) 4^{n+4}}\right) a_{n}^{(n)}-C_{R}\left(\frac{3^{n+3}-2^{n+3}}{(n+3) 4^{n+3}}\right) b_{n}^{(n)}\right]_{(6.15)}, \\
& c_{n 0}=d_{n 0}=0 \quad(6.16),(6.17)
\end{aligned}
$$

where h_{r} is given by Eq. (6.5).
The dimensions and surrounding fluid are the same as in the previous problem.

Problem 3-Constant Tension
Consider a solid shaft with p heavy eccentric discs as shown in Fig. Ta. For the l th disc the
following eccentricity functions can be defined:

$$
a_{i}(z)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leq z<l_{i}-\epsilon_{i} \tag{6.18}\\
\zeta_{i} e & \text { for } & \ell_{i}-\epsilon_{i} \leq z \leq l_{i}+\epsilon_{i} \\
0 & \text { for } & l_{i}+\epsilon_{i}<z \leq L
\end{array}\right.
$$

Fig. 5 Eccentricity Functions for Example Problem No. I

Fig. 6 Eccentricity Functions for Example Problem No. 2

$$
b_{i}(z)= \begin{cases}0 & \text { for } \tag{6.19}\\ \eta_{i} e & \text { for } \\ 0 & \ell_{i}-\epsilon_{i} \leq z \leq l_{i}+\epsilon_{i} \\ 0 & \text { for } \\ & l_{i}+\epsilon_{i}<z \leq L\end{cases}
$$

where l_{i} is the distance of the i th disc from the origin, $2 \epsilon_{i}$ is its thickness and $-1 \leq \zeta_{i} \leq 1,-1 \leq \eta_{i} \leq 1$.

In order to consider the influence of the p discs, $a(z)$ and $b(z)$ become now

$$
\begin{align*}
& a(z)=\sum_{i=1}^{p} \lambda_{i} a_{i}(z) \tag{6.20}\\
& b(z)=\sum_{i=1}^{p} \lambda_{i} b_{i}(z) \tag{6.21}
\end{align*}
$$

where $\lambda_{i}=M_{i} / m$ is the ratio of the mass per unit length of the eth disc plus shaft to the mass per unit length of the shaft.

Let the lack of straightness functions be

$$
\begin{array}{lll}
U_{0}(z)=0 & \text { for } & 0 \leq z \leq L \\
v_{s}(z)=0 & \text { for } & 0 \leq z \leq L \tag{6.23}
\end{array}
$$

For this example problem the equations to be used
are (5.55)-(5.60). Introducing the quantities

$$
\begin{array}{ll}
\xi_{i}=\frac{\ell_{i}}{L} & \text { non-dimensional distance } \\
2 \epsilon_{0 i}=\frac{2 \epsilon_{i}}{L} & \text { of the ith disc } \\
\text { non-dimensional thickness } \tag{6.25}\\
\text { of the } i \text { th disc }
\end{array}
$$

the parameters $a_{r 0}^{*}, b_{r 0}^{*}, c_{r 0}^{*}$ and $d_{n 0}^{*}$ are

$$
\begin{align*}
& a_{n 0}^{*}=\sum_{i=1}^{p} \lambda_{i} \int_{0}^{1} \frac{a_{i}(\xi)}{e} \sin n \pi \xi d \xi \\
& =\sum_{i=1}^{p} \lambda_{i} \int_{\xi_{i}-\epsilon_{0 i}}^{\xi_{i}+\epsilon_{\Delta i}} \xi_{i} \sin \pi \Pi \xi d \xi \text {, or } \\
& a_{n o}^{*}=\frac{2}{2 \pi} \sum_{i=1}^{p} \lambda_{i} \zeta_{i} \sin r \pi \xi_{i} \sin r \epsilon_{0 i} ; \tag{6.26}\\
& \text { similarly } \\
& b_{n 0}^{*}=\frac{2}{n \pi} \sum_{i=1}^{p} \lambda_{i} \eta_{i} \sin \mu \bar{\Pi} \xi_{i} \sin \Omega \pi \epsilon_{0 i} ; \tag{6.27}\\
& c_{r 0}^{*}=d_{20}^{*}=0 \text {. }
\end{align*}
$$

Finally, let the actual values chosen be $p=6$ and

The dimensions of the shaft for this case are as

Fig. 7 Example Problem No. 3: a) General Configuration of the Disks on the UZ Plane (replace ζ by η for VZ Plane), b) Actual Dimensions of the Shaft and Disks Considered
follows:

> material: steel, length $=15 \mathrm{ft}$, diameter $(D)=4 \mathrm{in}$. unit of eccentricity $e=0.001 \mathrm{D}$
> Surrounding fluid $=$ air.

Shown in Fig. 7b are the shaft and discs considered.

6.2 Discussion of Results

Representative results for the freely vibrating
shaft under linearly-varying tension are presented in Figs. 8 through 10 and Table 1. Fig. 8 shows the solution of the frequency equation (5.21) for values of $g=1510$ and $h=$ 151. Graphical representation, for those values, of the modal shapes $\phi_{\Omega}(z)$ and the modal moments are shown in Figs. 9 and 10, respectively. As expected, the amplitudes are greater near the bottom where the tension is smaller but the distances between nodes are greater near the top. Table l gives a comparison between the natural frequencies of a shaft under linearly-varying tension and one with constant tension, the constant value being equal to the average value of the first case. A better agreement percentagewise exists for the higher frequencies.

Graphical results for example problem No. 1, for damping coefficients $\alpha=0,0.16,0.32$ and 1.6 , are
presented in Figs. 11 through 15. Fig. 11 is a schematic of the deflection of the shaft central axis, projected on the UZ plane. Fig. 12 is the projection on the perpendicular plane, VZ. While for small damping the influence of the seventh modal shape is clearly evident, for relatively high damping the shaft has a tendency to deflect into a shape resembling the eccentricity distribution. Fig. 13 illustrates the variation along the shaft of the total bending stress in the section. Maximum displacements and stresses for a range of speeds, including the seventh resonant frequency, are shown in Figs. 14 and 15, respectively. In these two figures the value of $\Omega_{0}=75.9$ rpm is marked to show the speed of rotation for which Figs. 11 through 13 were computed. The best value of the damping coefficient that fits the physical parameters of example problem No. 1 is $\alpha=0.16$.

Representative results for example problem No. 2, for damping coefficients $\alpha=0,0.08,0.32$ and 1.6, are presented in Figs. 16 through 20. Fig. 16 is the displacement on the UZ plane. Fig. 17 is the displacement on the perpendicular plane $V Z$. Fig. 18 shows the variation of the total bending stress along the shaft. Maximum values of deflection and bending stress for a range of speeds, including the seventh resonant frequency, are
shown in Figs. 19 and 20. Fig. 19 illustrates the maximum displacement while Fig. 20 shows the maximum bending stress. For this example problem No. 2 the value of the damping coefficient that best fits its physical parameters is $\alpha=0.32$.

The results for example problem No. 3 are presented in Figs. 21 through 30. The first part, Figs. 21 through 25, depicts the influence of the damping coefficient, for a specific value of the dimensionless tension, $h=2.16$. The second part, Figs. 26 through 30, demonstrates the influence of the constant tension of the shaft. The latter curves are for the values of nondimensional tension $h=0$, 1.08, 2.16, 4.32 and 8.64 and for $\alpha=0.05$ or 3.8. Fig. 21 is the projection of the displacement of the shaft central axis on the $U Z$ plane while Fig. 22 is the projection on the $V Z$ plane. Fig. 23 gives the total bending stress along the shaft axis, as a function of distance. These last three figures were computed for $\Omega_{0}=2415 \mathrm{rpm}$. Maximum displacements and stresses of the shaft for a range of speeds, including the second resonant frequency, are shown in Figs. 24 and 25, respectively. As already observed in the first two examples, the higher the damping, the smaller the displacements. Figs. 26 through 28 were computed for $\Omega_{0}=2415 \mathrm{rpm}, \alpha=0.05$ and for the values
of the dimensionless tension mentioned above. Fig. 26 is a schematic of the deflection of the shaft projected on the $U Z$ plane, Fig. 27 is the projection on the $V Z$ plane and Fig. 28 represents the bending stress along the shaft. The influence of the tension on the displacement and stress can be better understood by reference to Figs. 29 and 30. These curves are for a range of speeds which includes the second resonant frequency. As shown, an increase or decrease in the tension which brings the resonant frequency closer to the operational speed Ω_{0}. will increase the displacement and bending stress. The value of the damping coefficient that fits best the parameters of the third example problem is $\alpha=0.05$.

Fig. 8 Solution of the Frequency Equation (5.21), Function $f\left(k^{2}\right)$ vs. k^{2}, for $g=1510$ and $h=151$ (6 in . ND, Sch. $80, L=800 \mathrm{ft}$)

Fig. 9 Moãal Shapes

Fig. 10 Modal Moments
$M^{\prime}=\left(M L^{2} / E I x_{O}\right) 10^{-2}$

Table 1. Comparison of the Natural Frequencies (cpm) of a Shaft under Linearly-Varying Tension and one with Constant Tension (Average Value) for a Guided (Sliding) Shaft at the Bottom End and Simply Supported at the Top.

Frequency number	Linearly-Varying Tension Case	Constant Tension Case
Diameter $=6$ in. ND, Sch. $80 \quad \mathrm{~L}=200 \mathrm{ft}$		
1	13.92	13.56
2	36.52	36.18
3	70.58	70.30
4	116.65	116.42
5	174.87	174.68
6	245.28	245.11
7	327.90	327.75
Diameter $=6$ in. ND, Sch. $80 \quad L=400 \mathrm{ft}$		
1	6.447	6.357
2	14.142	13.952
3	23.870	23.634
4	36.112	35.861
5	51.115	50.868
6	69.009	68.774
7	89.862	89.641
8	113.71	113.50
9	140.58	140.39
10	170.49	170.30
11	202.92	203.25

Table 1 (continued)

Frequency number	Linearly-Varying Tension Case	Constant Tension Case
Diameter $=6$ in. ND, Sch. $80 \quad \mathrm{~L}=600 \mathrm{ft}$		
1	4.535	4.631
2	9.496	9.589
3	15.101	15.159
4	21.559	21.564
5	29.012	28.966
6	37.562	37.477
7	47.285	47.171
8	58.233	58.101
9	70.497	70.302
10	84.026	83.797

Diameter $=6$ in. ND, Sch. $80 \quad L=800 \mathrm{ft}$

1	3.619	7.463
2	11.593	3.810
3	16.113	7.743
4	21.093	11.915
5	26.582	21.372
6	32.657	26.816
7	39.608	32.818

Fig. 11 Example Problem No. 1 - Displacement of the Shaft on the UZ Plane

Fig. 12. Example Problem No. I - Displacement of the Shaft on the VZ Plane

Fig. 13 Example Problem No. 1 - Total Bending Stress along the Shaft

Fig. 14 Example Problem No. 1-Maximum Displacement of the Shaft vs. Speed of Rotation

Fig. 15 Example Problem No. 1 - Niaximum Bending Stress on the Shaft vs. Speed of Rotation

Fig. 16 Example Problem No. 2 - Displacement of the Shaft on the UZ Plane

Fig. 17 Example Problem No. 2 - Displacement of the Shaft on the VZ Plane

Fig. 18 Example Problem No. 2-motal Bending Stress along the Shaft

Fig. 19 Example Problem No. 2 - Maximum Displacement of the Shaft vs. Speed

Fig. 20 Example Problem No. 2 - Maximum Bending Stress of the Shaft vs. Speed of Rotation

Fig. 21 Example Problem No. 3-Displacement of the Shaft on the UZ Plane for $h=2.16$

Fig. 22 Example Problem No. 3-Displacement of the Shaft on the VZ Plane
for $h=2.16$

Fig. 23 Example Problem No. 3-Total Bending Stress along the Shaft for $h=2.16$

Fig. 24 Example Problem No. 3-Maximum Displacement of the Shaft vs. Speed of Rotation for $\mathrm{h}=2.16$

Fig. 25 Example Problem No. 3 - Maximum Bending Stress on the Shaft vs. Speed of Rotation for $h=2.16$

Fig. 26 Example Problem No. 3 - Displacement of the Shaft on the UZ Plane for $\alpha=.05$

Fig. 27 Example Problem No. 3-Displacement of the Shaft on the VZ Plane

Fig. 28 Example Problem No. 3-Total Bending Stress along the Shaft for

Fig. 29 Example Problem No. 3-Maximum Displacement of the Shaft vs. Speed of Rotation for $\alpha=3.8$

Fig. 30 Example Problem No. 3-Maximum Bending Stress on the Shaft vs. Speed of Eotation for $\alpha=3.8$

Chapter 7

SUMMARY AND CONCLUSIONS

This dissertation has presented an analytical investigation of the effect of tension on the dynamics of eccentric shafts rotating in fluid medium. Solutions were constructed using eigenfunction expansions. The eigenfunctions were obtained from the associated free-vibration problem of an ideal shaft (with no eccentricity).

Solutions for two special cases of tension were derived, namely: (1) linearly-varying tension and (2) constant tension. The method of analysis, however, could accommodate any variation of tension with axial distance provided that it is not a function of time.

Displacement and bending stress were computed along the shaft for a specific speed Ω_{0}. Also maximum values of displacement and stress at each speed were computed for a range of speeds which includes one resonant frequency.

It has been shown that the system is always bounded for a damped motion. For an undamped system it is unbounded at the resonant frequencies.

Comparison of the natural frequencies between a
shaft with linearly-varying tension and an identical shaft with constant tension (average value of the first) shows that they are nearly the same. Better agreement is observed at the higher frequencies.

Besides the change on the resonant frequency due to the damping effect, the surrounding fluid induces a further decrease on the value of the resonant frequency due to the lift force. For a small damping, most of the contribution to the total displacement and stress is due to the eigenfunction (modal shape) corresponding to the nearest resonant frequency. However, for high damping the shaft has a tendency to deflect into a shape similar to the (smoothed) eccentricity function.

Considering a fixed speed of rotation $\Omega_{0,}$ the following statement can be made concerning the effect of a change in tension: in general, there will be a decrease in displacement and bending stress if the change in tension moves the nearest resonant frequency away from the operational speed. Note that this is true for an increase or decrease of the tension.

Numerical results presented were obtained by
including up to 11 eigenfuctions. The eigenvalues were calculated by the method of false position (secant method) using double precision mode on a 1108 Univac computer.

REFERENCES

1. Jeffcott, H. H. "The Lateral Vibration of Loaded Shafts in the Neighbourhood of a Whirling Speed. - The Effect of Want of Balance," Phil. Mag., 37 (March, 1919), 304-14.
2. Taylor, H. D. "Shaft Behavior at Critical Speed," Gen. Elect. Rev., 32, 4 (April, 1929), 194-200.
3. Robertson, D. "The Whirling of Shafts," Engineer, Lond.. 158 (July-December, 1934), 216-17, 228-31.
4. Johnson, D. C. "Free Vibration of a Rotating Elastic Body," Aircr. Eng., 24 (August, 1952), 234-36.
5. \qquad - "Forced Vibration of a Rotating Elastic Body," Aircr. Eng., 24 (September, 1952), 271-73.
6. Bishop, R. E. D. "The Vibration of Rotating Shafts," J. Mech. Eng. Sci., 1, 1 (1959), 50-65.
7. Parkinson, A. G. "An Introduction to the Vibration of Rotating Flexible Shafts," Bull. Mech. Eng. Educ.. 6 (1967), 47-62.
8. Ariaratnam, S. T. "The Vibration of Unsymmetrical Rotating Shafts," J. Appl. Mech. (March, 1965). 157-62.
9. Graham, R. D., M. A. Frost, III, and J. C. Wilhoit, Jr. "Analysis of the Motion of Deep-Water Drill Strings-Part l: Forced Lateral Motion; Part 2: Forced Rolling Motion," J. Eng. Ind., Trans. ASME. Paper no. 64-Pet 6,7 (1964).
10. Huang, T., and D. W. Dareing. "Buckling and Lateral Vibration of Drill Pipe," J. Eng. Ind. (November, 1968). 613-619.
11. Hildebrand, F. B. Advanced Calculus for Applications. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1965. Pp. 8-13.
12. Hartog, J. P. Den. Mechanical Vibrations. New York: McGraw-Hill Book Company, Inc., 1956. P. 289.
13. Ince, E. L. Ordinary Differential Equations. New York: Dover Publications, Inc., Pp. 284-86, 356-57.
14. Brand, L. Differential and Difference Equations. New York: John Wiley \& Sons, Inc., 1966. P. 418.
15. Nowacki, W. Dynamic of Elastic Systems. London: Chapman \& Hall Ltd., 1963. Pp. 137-40.
16. Meirovitch, L. Analytical Methods in Vibrations. New York: The MacMillan Company, 1967.
17. Sneddon, I. N. Fourier Transforms. New York: McGrawHill Book Company, Inc., 1951.
18. Erdélyi, A. (ed.). Higher Transcendental Functions. Vol. 1. New York: McGraw-Hill Book Company, Inc., 1953.
19. Southworth, R. W. and Deleeuw, S. L. Digital Computation and Numerical Methods. New York: McGraw-Hill Book Company, Inc., 1965.

Appendix 1

STEADY-STATE SOLUTION FOR A SHAFT WITH CONSTANT TENSION USING FOURIER SINE TRANSFORMS

The differential equations governing the steadystate motion of the shaft are obtained from Eqs. (3.11) if one disregards the time-variable terms. Introducing the steady-lift force, given by (3.12), one has for the differential equations governing steady-state motion of the shaft

$$
\begin{align*}
& -\Omega^{2}(u+a)=-\frac{E I}{m} \frac{d^{4}\left(u-u_{0}\right)}{d z^{4}}+\frac{1}{m} \frac{d}{d z}\left(\frac{T}{d u}\right)+\alpha \Omega v+\frac{m_{0}}{m} \Omega^{2} \tag{Al.1a}\\
& -\Omega^{2}(v+b)=-\frac{E I}{m} \frac{d^{4}\left(v-v_{0}\right)}{d z^{4}}+\frac{1}{m} \frac{d}{d z}\left(\frac{T d v}{d z}\right)-\alpha \Omega u+m_{0} \Omega^{2} v . \tag{A1.1b}
\end{align*}
$$

Define now three complex quantities

$$
\begin{align*}
& w=u+i v \tag{A1.2a}\\
& \epsilon=a+i b \tag{A1.2b}\\
& w_{0}=u_{0}+i v_{0} \tag{A1.2C}
\end{align*}
$$

Multiplying Eq. (Al.1b) by the imaginary unit \underline{i} and adding it to Eq. (Al .la) yields

$$
\begin{equation*}
-\Omega^{2}(w+\epsilon)=-\frac{E I}{m} \frac{d^{4}\left(w-w_{0}\right)}{d z^{4}}+\frac{1}{m} \frac{d}{d z}\left(T \frac{d w_{1}}{d z}\right)-i \alpha \Omega w+\frac{m_{0} \Omega^{2} w .}{m} \tag{A1.3}
\end{equation*}
$$

consider only constant tension $T=T_{0}$. Making the substitution $z=\xi L$ and multiplying both sides of Eq. (Al.3) by $\frac{m L^{4}}{E I}$, one obtains
$\frac{d^{4}}{d \xi^{4}}\left(w-w_{0}\right)-h \frac{d^{2} w}{d \xi^{2}}+i g w-k^{4} R_{m}^{2} w-k^{4} \epsilon=0$,
(Ale)
where the following non-dimensional constants have been introduced:

$$
\begin{align*}
& h=\frac{T_{0} L^{2}}{E I} \tag{Al.5a}\\
& g=\frac{\alpha \Omega m L^{4}}{E I} \\
& k^{4}=\frac{m \Omega^{2} L^{4}}{E I} \tag{Al.5b}\\
& R_{m}^{2}=1+\frac{m_{0}}{m} \tag{Al.5C}
\end{align*}
$$

For a simply-supported shaft, the complex variable
W must satisfy the following boundary conditions:

$$
w(0)=w(L)=\frac{d^{2} w}{d \xi^{2}}(0)=\frac{d^{2} w}{d \xi^{2}}(L)=0
$$

$$
(A 1.6 a, b, c, d)
$$

Using the non-dimensional variable ξ, the Finite Fourier Sine Transform is defined as

$$
\begin{equation*}
\bar{w}=\int_{0}^{1} w(\xi) \sin \pi \pi \xi d \xi \tag{A1.7}
\end{equation*}
$$

with similar expression for \bar{W}_{0} and $\bar{\epsilon}$. Then, applying the transform to Eq. (Al.4) yields

$$
\begin{equation*}
r^{4} \pi^{4} \bar{w}-r^{4} \pi^{4} \bar{w}_{0}+h r^{2} \pi^{2} \bar{w}+i g \bar{w}-k^{4} R_{m}^{2} \bar{w}-k^{4} \bar{\epsilon}=0 . \tag{A1.8}
\end{equation*}
$$

Solving for \bar{W} and rationalizing leads to

$$
\bar{w}=\frac{\left(k^{4} \bar{\epsilon}+r^{4} \frac{4}{1} \bar{w}_{0}\right)\left[\left(r^{4} \pi^{4}+h r^{2} \pi^{2}-k^{4} R_{m}^{2}\right)-i g\right]}{\left(r^{4} \pi^{4}+h r^{2} \pi^{2}-k^{4} R_{m}^{2}\right)^{2}+g^{2}} .
$$

(A1.9)
If the numerator and denominator are divided by k^{8}. the following final expression for \bar{w} is obtained:

$$
\begin{equation*}
\vec{w}=\frac{\left(\bar{\epsilon}+R_{0, r}^{2} \bar{w}_{0}\right)\left[\left(R_{n}^{2}-R_{n n}^{2}\right)-i \alpha_{0}\right]}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}}, \tag{A1.10}
\end{equation*}
$$

since, according to Eqs. (Al.5), (5.28), (5.51) and (5.54),

$$
\begin{aligned}
& \frac{r^{4} \pi^{4}}{k^{4}}=\frac{E I}{m} \frac{r^{4} \pi^{4}}{L^{4}} \frac{1}{\Omega^{2}}=\frac{\omega_{0, n}^{2}}{\Omega^{2}}=R_{0, n}^{2}, \\
& \frac{r^{4} \pi^{4}}{k^{4}}+\frac{h r^{2} \pi^{2}}{k^{4}}=\left[\frac{E I}{m} \cdot \frac{r^{4} \pi^{4}}{L^{4}}+\frac{T_{0}}{m} \frac{r^{2} \pi^{2}}{L^{2}}\right] \frac{1}{\Omega^{2}}=\frac{\omega_{n}^{2}}{\Omega^{2}}=R_{n}^{2} \\
& \frac{g}{k^{4}}=\frac{\alpha}{\Omega}=\alpha_{0} .
\end{aligned}
$$

Applying the transform to Eqs. (Al.2) and substituting in Eq. (Al.10), a separation of the real and imaginary parts yields the following expressions for \bar{u} and \bar{v} :

$$
\begin{align*}
& \bar{u}=\frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(\bar{a}+R_{0, n}^{2} \bar{u}_{0}\right)+\alpha_{0}\left(\bar{b}+R_{0, n}^{2} \bar{v}_{0}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}}, \tag{A1.11a}\\
& \bar{v}=\frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(\bar{b}+R_{0, n}^{2} \bar{v}_{0}\right)-\alpha_{0}\left(\bar{a}+R_{0, n}^{2} u_{0}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \tag{Al.11b}
\end{align*}
$$

The inverse Sine Transforms are defined as

$$
\begin{align*}
& u(\xi)=2 \sum_{n=1}^{\infty} \bar{u} \sin n \pi \xi \tag{Al.12a}\\
& v(\xi)=2 \sum_{n=1}^{\infty} \bar{v} \sin n \pi \xi \tag{A1.12b}
\end{align*}
$$

Substituting Eqs. (Al.11) into(Al.12) one finds for the
nondimensional displacements μ and ν (after dividing by e)

$$
\begin{align*}
& \mu(\xi)=2 \sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(a_{n 0}^{*}+R_{0, n}^{2} c_{n 0}^{*}\right)+\alpha_{0}\left(b_{n 0}^{*}+R_{0, n}^{2} d_{n 0}^{*}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin r \pi \xi, \\
& (A 1.13 a) \\
& \nu(\xi)=2 \sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{n}^{2}\right)\left(b_{n 0}^{*}+R_{0, n}^{2} d_{n 0}^{*}\right)-\alpha_{0}\left(a_{n 0}^{*}+R_{0, n}^{2} c_{n 0}^{*}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin n \| \xi, \tag{Al.13b}
\end{align*}
$$

where $a_{n 0}^{*}=\frac{\bar{a}}{e} ; b_{n 0}^{*}=\frac{\bar{b}}{e} ; c_{n 0}^{*}=\frac{\bar{u}_{0}}{e} ; d_{n 0}^{*}=\frac{\bar{v}_{0}}{e}$. (Al. 14 alb, $c, d)$

It should be noted that Eqs. (Al.13) are the same as (5.55) which were derived by modal analysis.

EQUIVALENT VISCOUS DAMPING COEFFICIENT α_{0} OR LINEARIZATION OF QUADRATIC DAMPING

The damping coefficient used in the governing equations has been assumed to be linear. It's value can be obtained from the quadratic damping coefficient. Equating the energy dissipated by viscous and quadratic damping in one revolution of the shaft, the equivalent viscous damping coefficient can be determined. For steadystate motion the equality just mentioned is

$$
\begin{equation*}
\int_{0}^{L}(2 \pi w)(c \Omega w d z)=\int_{0}^{1}(2 \pi w)\left(d \Omega^{2} w^{2} d z\right) \tag{A2.1}
\end{equation*}
$$

where W is the total displacement of the shaft, always positive and d is the quadratic damping coefficient. Simplifying the above equation, the value of \leq can be expressed as

$$
c=d \Omega \frac{\int_{0}^{L} w^{3} d z}{\int_{0}^{L} w^{2} d z}
$$

Using $\alpha_{0}=\epsilon / m \Omega, \xi=\xi / L$ and $w_{\mu \nu}=w / e$ the
non-dimensional form of the linear damping coefficient is obtained.

$$
\begin{equation*}
\alpha_{0}=\frac{d e}{m} \frac{\int_{0}^{1} w_{\mu \nu}^{3} d \xi}{\int_{0}^{1} w_{\mu \nu}^{2} d \xi} \tag{A2.2}
\end{equation*}
$$

According to Eqs. (5.40) and (5.55), the displacements $\mu(\xi)$ and $\gamma^{\gamma}(\xi)$ are also functions of α_{0}. It follows that Eq. (A2.2) has to be solved for \mathcal{Q}_{0} by trial and error.

In what follows, a procedure is developed to find an initial value for α_{0}. For simplicity, a shaft with constant tension and simply supported will be used in the analysis.

Assume the following eccentricity and lack of straightness functions:

$$
\begin{align*}
& a(z)=e \sin \frac{p \pi z}{L} \tag{A2.4a}\\
& b(z)=v_{0}(z)=v_{0}(z)=0
\end{align*}
$$

The characteristic parameters of this problem, given by Eqs. (5.57)-(5.60) together with (A2.4), are

$$
a_{r 0}^{*}=\int_{0}^{1} \sin p \pi \xi \sin n \pi \xi d \xi \begin{cases}=1 / 2, & \text { for } n=p \\ =0, & \text { for } n \neq p,\end{cases}
$$

$$
b_{n 0}^{*}=c_{n 0}^{*}=d_{n 0}^{*}=0 . \quad(A 2.5 \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

Substituting Eqs. (A2.5) into (5.55) yields

$$
\begin{align*}
& \mu(\xi)=\frac{R_{p}^{2}-R_{m}^{2}}{\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin p \pi \xi, \tag{A2.6a}\\
& \nu(\xi)=-\frac{\alpha_{0}}{\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin p \pi \xi . \tag{A2.6b}
\end{align*}
$$

Further substitution of (A2.6) into (A2.3) leads to

$$
\begin{equation*}
w_{\mu \nu}=\frac{|\sin p / 1 \xi|}{\left[\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}\right]^{1 / 2}} \tag{A2,7}
\end{equation*}
$$

where the absolute value of the sine function has been used for agreement with the definition of \mathbb{W}.

The integrals involved in Eq. (A2.2) are then
$\int_{0}^{1} w_{\mu \nu}^{3} d \xi=\frac{p}{\left[\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}\right]^{3 / 2}} \int_{0}^{1 / p} \sin ^{3} p^{\beta \xi} d \xi$

$$
\begin{equation*}
=\frac{4}{3 \pi} \frac{1}{\left[\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}\right]^{3 / 2}} 1 \tag{A2.8a}
\end{equation*}
$$

$\int_{0}^{1} W_{\mu \nu}^{2} d \xi=\frac{1}{\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \int_{0}^{1} \sin ^{2} p \pi \xi d \xi$

$$
\begin{equation*}
=\frac{1}{2} \frac{1}{\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \tag{A2.8b}
\end{equation*}
$$

Introduction of these integrals in (A2.2) gives the following equation for α_{0} :

$$
\alpha_{0}=\frac{8 d e}{3 \pi m} \frac{1}{\left[\left(R_{p}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}\right]^{1 / 2}} .
$$

This equation can be rewritten as

$$
\begin{equation*}
\alpha_{0}^{4}+\left(R_{p}^{2}-R_{m}^{2}\right)^{2} \alpha_{0}^{2}-\left(\frac{8 d e}{3 \pi m}\right)^{2}=0 \tag{A2.9}
\end{equation*}
$$

For a circular shaft, the quadratic damping coefficient \underline{d} is defined as

$$
\begin{equation*}
d=\frac{\rho_{0} D C_{D}}{2} \tag{A2.10}
\end{equation*}
$$

where ρ_{0} is the mass per unit volume of the damping fluid and C_{D} is the drag coefficient for lateral motion of a cylinder. Since $p_{0}=\frac{4 m_{0}}{\pi D^{2}}$, the last term of (A2.9) becomes

$$
\begin{equation*}
\frac{8 d e}{3 \pi m}=\frac{16}{3 \pi^{2}} C_{D} \frac{e}{D}\left(R_{m}^{2}-1\right) \tag{A2.11}
\end{equation*}
$$

where use of Eq. (5.24c) has been made.
Finally, if (A2.11) is substituted into (A2.9) the following bi-quadratic equation is obtained for α_{0} :

$$
\alpha_{0}^{4}+\left(R_{p}^{2}-R_{m}^{2}\right)^{2} \alpha_{0}^{2}-\frac{256}{9 \pi^{4}}\left(R_{m}^{2}-1\right)^{2} C_{0}^{2}\left(\frac{e}{D}\right)^{2}=0
$$

For example problem No. 1 , the eccentricity function is comparable to the first mode, that is $p=1$. Using the geometric parameters defined for that problem

$$
\begin{aligned}
& R_{p}=\frac{\omega_{1}}{\Omega}=\frac{.67516}{7.9500}=.084926 \\
& R_{m}^{2}=1+\frac{m_{D}}{m}=1+\frac{15.352}{40.498}=1.37908 \\
& C_{D}=1.2 \\
& \frac{e}{D}=0.1 .
\end{aligned}
$$

Substitution of these values in (A2.12) yields the equation

$$
\alpha_{0}^{4}+1.882 \alpha_{0}^{2}-.0006055=0
$$

from which

$$
\alpha_{0}=.01871
$$

With this value, the dimensional damping coefficient α becomes

$$
\alpha=\alpha_{0} \Omega=.01871 \times 7.9500=.1487 \mathrm{sec}^{-1}
$$

Thus, the starting value $\alpha=.15$ should be used in the first problem.

Appendix 3

NON-DIMENSIONAL FORM OF DISPLACEMENTS AND

BENDING MOMENTS

The dimensional form of displacements and bending moments were shown to be expressed by

$$
\begin{aligned}
& u(z)=\sum_{n=1}^{\infty} U_{n} \phi_{n}(z), \quad v(z)=\sum_{n=1}^{\infty} V_{n} \phi_{n}(z), \\
& M_{u}(z)=E I \sum_{n=1}^{\infty} U_{n} \frac{d^{2} \phi_{n}(z)}{d z^{2}}-E I \frac{d^{2} u_{0}(z)}{d z^{2}}, \quad M_{v}(z)=E I \sum_{n=1}^{\infty} V_{n} \frac{d^{2} \phi_{n}(z)}{d z^{2}}-E I \frac{d v_{n}(j)}{d z^{2}} .
\end{aligned}
$$

Major changes occur in U_{n} and V_{n} when these expressions are transformed to a non-dimensional form. But V_{Ω} can be easily obtained from U_{Ω}. For this reason only $\mu\left(\xi_{;}\right)$, non-dimensional form of $U(\mathcal{Z})$, is derived here. The other three variables, $\mathcal{V}(\xi), M_{\mu}(\xi)$ and $M_{\mu}(\xi)$, can be written by inspection.

A3.1 Linearly-Varying Tension

Eq. (5.24a), repeated here for convenience, is

$$
\begin{equation*}
u(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left(\omega_{1}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} \oint_{n}(z) \tag{A3.1}
\end{equation*}
$$

Dividing the numerator and denominator of the fraction by Ω^{4}, yields

$$
\begin{equation*}
u(z)=\sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} c_{n}+a_{n}\right)+\alpha_{0}\left(R_{n}^{2} d_{n}+b_{n}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \phi_{n}(z) \tag{A3.2}
\end{equation*}
$$

where $R_{\Omega}=\frac{\omega_{r}}{\Omega}$ and $\alpha_{0}=\frac{\alpha}{\Omega}$, Eqs. (5.28) and (5.29), respectively. Dividing now both sides of (A3.2) by the arbitrary unit of eccentricity E and introducing ξ, the non-dimensional displacement $\mu^{\prime}(\xi)$ is

$$
\begin{equation*}
\mu(\xi)=\sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} c_{n 0}+a_{n 0}\right)+\alpha_{0}\left(R_{n}^{2} d_{n 0}+b_{n 0}\right)}{\left(R_{n}^{2}-R_{n n}^{2}\right)^{2}+\alpha_{0}^{2}} \oint_{n}(\xi) \tag{AB.3}
\end{equation*}
$$

in which $\xi=\xi / L, \mu(\xi)=u(\xi) / e$, Eqs. (5.6) and (5.30), respectively. since $a_{n 0}=\frac{a_{n}}{e}$, from (4.25) one obtains

$$
\begin{equation*}
a_{n}=\frac{1}{H_{n}} \int_{0}^{L} \frac{a(z)}{e} \phi_{n}(z) d z=\frac{1}{h_{n}} \int_{0}^{1} \frac{a(\xi)}{e} \phi_{n}(\xi) d \xi \tag{A3.4}
\end{equation*}
$$

where $h_{r}=\frac{H_{r}}{L}=\int_{0}^{1} \phi_{n}^{2}(\xi) d \xi$.

Similarly,

$$
\begin{equation*}
b_{n 0}=\frac{1}{h_{\pi}} \int_{0}^{1} \frac{b(\xi)}{e} \phi_{n}(\xi) d \xi \tag{A3.6}
\end{equation*}
$$

In the same way, Eq. (4.27) must be used to express Gro.
$\begin{array}{ll}c_{n 0}=\frac{c_{n}}{e}=\frac{E I}{m \omega_{n}^{2} H_{n}} \int_{0}^{L} \frac{d^{4}\left[u_{0}(z) / e\right]}{d z^{4}} \phi_{n}(\xi) d z & \text {,or } \\ c_{n 0}=\frac{E I}{m \omega_{n}^{2} L^{4}} \frac{1}{h_{n}} \int_{0}^{1} \frac{d^{4} \mu_{0}(\xi)}{d \xi^{4}} \phi_{n}(\xi) d \xi & \text { (A3.7) }\end{array}$
in which Eqs. (A3.5), (5.6) and (5.30) have been used.
Similarly,

$$
\begin{equation*}
d_{r}=\frac{E I}{m \omega_{n}^{2} L^{4}} \frac{1}{h_{r}} \int_{0}^{1} \frac{d^{4} \nu_{2}(\xi)}{d \xi^{4}} \phi_{r}(\xi) d \xi . \tag{A3.8}
\end{equation*}
$$

Comparison of the expressions derived here with those in Chapter 5, permits one to observe the agreement of the following pairs of equations: (A3.3), (5.40a): (A3.4), $(5.43) ;(A 3.6),(5.44) ;(A 3.7),(5.45) ;(A 3.8),(5.46)$ and (A3.5), (5.47). This establishes Eq. (5.40a) for the non-dimensional displacement $\mu(\xi)$.

A3.2 Constant Tension

The dimensional form of $U(z)$ is given by Eq.
(5.52a), repeated here for convenience.
$u(z)=\sum_{n=1}^{\infty} \frac{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)\left(\omega_{n}^{2} c_{n}+\Omega^{2} a_{n}\right)+\alpha \Omega\left(\omega_{n}^{2} d_{n}+\Omega^{2} b_{n}\right)}{\left(\omega_{n}^{2}-R_{m}^{2} \Omega^{2}\right)^{2}+\alpha^{2} \Omega^{2}} A_{n} \sin \frac{n \pi z}{L}$

The expression for
$\mu(\xi)$ is obtained by dividing the numerator and denominator of the fraction in (A3.9) by Ω^{4} and then both sides of (A3.9) by e. This yields

$$
\begin{equation*}
\mu(z)=\sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m}^{2}\right)\left(R_{n}^{2} c_{n 0}+a_{n 0}\right)+\alpha_{0}\left(R_{n}^{2} d_{n_{0}}+b_{n 0}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} A_{n} \sin \frac{n \pi z}{L} \tag{A3.10}
\end{equation*}
$$

in which use has been made of Eqs. (5.28) and (5.29), and

$$
a_{n 0}=\frac{a_{n}}{e}, \quad b_{n 0}=\frac{b_{n}}{e}, \quad c_{n 0}=\frac{c_{n}}{e}, \quad d_{n 0}=\frac{d_{n}}{e} .
$$

As the modal shapes are sine functions, for this case, the expression for $\mu(z)$ can be modified. Using Eq. (4.25)
a no can be written as

$$
a_{n s}=\frac{1}{H_{r}} \int_{0}^{L} \frac{a(z)}{e} A_{r} \sin \frac{r \pi z}{L} d z .
$$

But

$$
\begin{equation*}
H_{n}=L h_{n}=L \int_{0}^{1} A_{n}^{2} \sin ^{2} \pi \pi \xi d \xi=\frac{L}{2} A_{r}^{2} \tag{A3.12}
\end{equation*}
$$

which Yields

$$
a_{n 0}=\frac{2}{L A_{n}^{2}} L \int_{0}^{1} \frac{a(\xi)}{e} A_{n} \sin r \pi \xi d \xi,
$$

or

$$
\begin{equation*}
a_{n 0}=\frac{2}{A_{n}} a_{n 0}^{*} \tag{A3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n 0}^{*}=\int_{0}^{1} \frac{a(\xi)}{e} \sin r \pi \xi d \xi \tag{A3.14}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
b_{n 0}=\frac{2}{A_{r}} b_{n 0}^{*} \tag{A3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n 0}^{*}=\int_{0}^{1} \frac{b(\xi)}{e} \sin n \pi \xi d \xi \tag{A3.16}
\end{equation*}
$$

Eqs. (5.28), (A3.11c) and (4.27) will now be used to evaluate $R_{n}^{2} C_{\text {mo }}$, as follows:

$$
\begin{aligned}
R_{n}^{2} c_{n} & =\frac{\omega_{n}^{2}}{\Omega^{2}} \frac{E I}{m \omega_{n}^{2} H_{n}} \int_{0}^{L} \frac{d^{4}\left[u_{0}(z) / e\right]}{d z^{4}} A_{r} \sin \frac{n \pi z}{L} d z \\
& =\frac{2 E I}{m \Omega^{2} L A_{n}} \frac{L}{L^{4}} \int_{0}^{1} \frac{d^{4} \mu_{0}(\xi)}{d \xi^{4}} A_{n} \sin \frac{n \pi \xi}{L} d \xi,
\end{aligned}
$$

where Eqs. (A3.12), (5.6) and (5.32) were used in this derivation. Integrating by parts 4 times and simplifying yields

$$
\begin{equation*}
R_{n}^{2} c_{n 0}=\frac{2}{A_{n}} \frac{1}{\Omega^{2}} \frac{E I n^{4} \pi^{4}}{m L^{4}} \int_{0}^{1} \mu_{0}(\xi) \sin n \pi \xi d \xi, \tag{A3.17}
\end{equation*}
$$

since the function $\mu_{0}\left(\xi_{1}\right)$ must satisfy the boundary
conditions of the problem. The third fraction in (A3.17) is the square of the natural frequency for a shaft with zero tension, i.e.

$$
\omega_{0, n}^{2}=\frac{E I n^{4} \pi^{4}}{m L^{4}}
$$

which can be obtained from (5.51). If the notation of (5.54) is also introduced into (A3.17), one finally obtains

$$
\begin{equation*}
R_{\pi}^{2} c_{r 0}=\frac{2}{A_{r}} R_{0, \mu}^{2} c_{n 0}^{*} \tag{A3.18}
\end{equation*}
$$

where $\quad c_{r 0}^{*}=\int_{0}^{1} \mu_{0}(\xi) \sin \pi \pi \xi d \xi$.

Similarly,

$$
\begin{align*}
R_{n}^{2} d_{n 0} & =\frac{2}{A_{n}} R_{0, n}^{2} d_{n 0}^{*}, \tag{A3.20}\\
d_{n 0}^{*} & =\int_{0}^{1} \nu_{0}(\xi) \sin \mu \pi \xi d \xi
\end{align*}
$$

Substituting Eqs. (A3.13), (A3.15), (A3.18) and (A3.20) into (A3.10) and using $\xi=\xi / L$, the A_{μ} simplifies and the constant 2 can be moved in front of the summation sign. The result is

$$
\begin{equation*}
\mu(\xi)=2 \sum_{n=1}^{\infty} \frac{\left(R_{n}^{2}-R_{m n}^{2}\right)\left(R_{0, n}^{2} c_{n 0}^{*}+a_{n 0}^{*}\right)+\alpha_{0}\left(R_{0, n}^{2} d_{n 0}^{*}+b_{n 0}^{*}\right)}{\left(R_{n}^{2}-R_{m}^{2}\right)^{2}+\alpha_{0}^{2}} \sin n \pi \xi . \tag{A3.22}
\end{equation*}
$$

This last equation is the same as (5.55a). The agreement can be observed by comparison of the following pairs of equations: (A3.14), (5.57); (A3.16), (5.58); (A3.19), (5.59) and (A3.21), (5.60). Eq. (5.55a) is thus established.

LISTING OF THE COMPUTER PROGRAMS

 324 FOR 111017160
 1J.0hGialti,5,s
325 finmatisolz.5i
326 COMTINUE
conilinue

CALL PLOT (40, CF,KSTZ,KACOL, 88,01
CALL PLOT ${ }^{(50, C G, K S T 2, K A C O L, 88,01}$
CALL PLOT $1400, C F, K S T 2, K A C O L, 120,0$
CALL PLOT 1500, CG,KST2,XACOL, 120,0
Ga tu 5
ENO

this suerdutine computes the coffficients a(k) and e(k) of the SERIES SOLUTION OF A VIBRATING BEAR

IHPLICIT OCUBLE PRECISION (A-H,O-I)
210 DiO
$A O=1$
$A(l)=0$
A(2$)=01 /(5 * 4)$
A(3):(3*AF) $(10 * 5 * 4)$
RAOEB
RA(z)=20*A(2)
$R A(3)=30-A(3)$
$R A(4)=42$
$R A(b)=42=A(4)$
$B A=1$
8012 l
Bilfo
B121~8T/(4*3)
(a) 3)/\{2*AF)/(5*4431

B(4) $=(87 * 8(2) 1 /(6 * 5)+(3 * A F * B(1) /(16 * 5 * 4)+(0 * * 2 * B D) /(6 * 5 * 4 * 3)$
RBO $=2$
R B_{1} I $1=6$
$R A(2)=12 \times 8(2)$
RQ(4) $=30$ * $3(4)$
$22500289 \mathrm{~K} \alpha \mathrm{~S}$. N

If $\mid A(K)=L T \cdot(10-24) \quad A(x)=0$

$A A(K)=(x+3) \in(x+2) * A(K)$
$R H(A)=(x+2)=(x+1) *(K)$
259 COHTINGE
jraxnz
A Pax $^{2}=A(2)$
DO $270 \mathrm{kK}=3, \mathrm{~N}$
260
60
Amax=AikK
JMaxexk
COMTHAKE
70 COMTIHLUE
REr rua
EMO

COEF
CGEF
CDEF
COEF
COEF
COEF
COEF
COEF
COEF
CDEF
COEF
COEF
COEF
COEF
COEF
COEF
COEF
COEF
COEF
CDEF
COFF
CVIF
COEF
COEF
COEF $\$ 70$

SURRDUTINE FREOUTIN,AO,A,BO,B,RAD,RA,RBD,RB,SGASGB,ORS
this subroutine checks the frequency equation for the value or
IT dOURLE PRECIS:ON $(A-H, O-Z)$
SumaxaO
Suraso
SUMODB-2*日D
DO $3101=1, \mathrm{~N}$
 SUMORA $=$ SUMOD $A+$ RAI SUMORS = sumons + RB(i)
310
scascgas uma/sumb
FCTGR S SUMODA-SGASGB*SUMDDG RETU
EMO

SUBROUTINE MOUSHPSN,AD, A, BO,B,SGASGE,RL,, PMT,YO,YREL,KZ,CSI)
this sucroutine obtains the modal shape corresponding to freg.omgr IYPLICIT DOUBLE PRECISICN (A-H,O-Z)
 $004801=1, \times 2$

480 continue
YABSIII=DABS(PHIISI) yoryausiti
486
 $00{ }^{491} 1=1, \times 2$
$Y R E L(1)=P H 1(1)$
491 CONTINUE
RETUR
END

SUBROUTINE MOOMOMIN,RAO,RA,RBO.RD,SGASGD.RLHL,PSIKZ.YO,PSIREL,RZ.CNGCY :O

IMPLICIT OQUALE PRECISION (A-H,O-2)

$00 \leq 80 ~ t=2, \mathrm{KI}$
PSIK $2(1)=R A O-G S 1(11-S G A S G B * R B O$
$C O S S O$

550 cuntrmuf

CUNTINUE
RETURA
RETUR
END

18			afct	10
23	c		AFCT	0
33		afctr is a weighting funciton, due to the eccentricity on plane	AFCT	30
41	c	uoz.	AfCt	40
52	c		AFCT	50
$6:$	c	first example	${ }^{\text {af Ci }}$	60
72	c		AFCT	70
$8:$		PMPLICIT DCUBLE PRECISION (A-H, $\mathrm{O}-2)$	AFCT	80
97		DIMEMSION A1501.6itsol	AFCT	90
$10:$		AFCTR $-(3 * * 5-2 * * 6+1) / 15 * 5 * 4 * * 4) * A C-S C A S C B * 13 * * 4-2 * * 5+1) / 14 * 3 * 4 * * 3) *$ (Arcy	100
11:		380	AFCT	110
$12:$		DO $710 \mathrm{KN}=1, \mathrm{~N}$	AFCT	120
137				130
$14:$			AFGT	140
19:	710	CGiathue	${ }^{\text {afCr }}$	150
$16:$		AFCIR=AFCTR*ECC*RL/HR	AFCT	150
17:		WRITE (6,720) AFCTR	$A F C T$	170
18:	720	FOQMAT('O AFCTR='.026.18)	AFCT	180
198		return	AFCt	190
$20:$		End	AfCT	200

oduble precision function hfctr lrl, phit, kz)
this function cohputes the integralio.l) of the souare of modal SHAPE. MFCTR=INT/(PHITZI)**2*DL/*

THPLICIT DOUBLE PRECISION $|A-H, O-Z|$ DO 605 i=1,kz
605 PMTSOR:1)=(PHI(1)1)**2
 $\operatorname{SUM} \mathrm{F}=0$
$X Z M S=K 2-5$
0 On $630 \times 1=6, \times 2 \mathrm{KL}, 5$
$630 \begin{aligned} & S U M B=S U M D+3 日 * P H I S O R(K I) \\ & S U M C=0\end{aligned}$ $S U^{M} C=0$
$\times 2 M 3=K 2-$ $K 2 M 3=K 2-3$
$00635 K$ OO $635 \quad K J=3 . \times 2 \mathrm{M} 3.5$

635 SumC= SUM
SUMO $=0$ $00640 \mathrm{KL}=2, \times 2 \mathrm{H} 4,5$

- $\mathrm{KH}=\mathrm{KL}+3$

640 SUMOX SUMO $45 *(P H I S O R(K L)+$ PHISOR(KH)) MF $(1 R=R L / 288 O *(S U M A+$ SUMB + SUMC + SUMO)
 RETURN
END.

SUBROUTINE ALFAOTIKZ,TDPL,RM,PI,AFO,ECC,DO,J,RHO, DKG)
this subroutine checks the assumeo value assigneo to the ohbping
3MPLICIT OOUBLE PRECISION (A-H,O-Z)
C

610 FCTH11: $001=1 . \mathrm{KZ}$
610 FCTH1)=1TOPL(I) $1 \times * M$
SUMA
SUNR $=0$ KZM5:xZ-s

$S U Y C=0$
$X Z N 3=K 2$
$00635 \quad 103, \times 2 \mathrm{M} 3,5$
635
sumce sum
Sunc:o
кZMA=
$0640 \mathrm{~K}=2 . \mathrm{H} 2 \mathrm{RA}$,
49 $\begin{gathered}K P 3=X+3 \\ \text { SUYO } \\ \text { Sum }\end{gathered}$
640 SUYDa SUMD+75* (FCTIK) FFCT(KP3)
660 K(M)ASSUMA SUMB\& SUMC+SUMD
c
c
c
c
c
nfia afo for shaft gotating in sea-hater EEC/OO=. 1 ANO CO=1. 2

RACO:2/P\} *RMO/PM*1.2/00-0NG/W(2)*W(3)
MRITE 10,670 I AFOIJ. RAFO
 RETURN
EVO

11			Stre	10
21		ICO, XEX,KS,CSI,RI, ES	Stre	20
31	c		Stre	30
41	c	this suordutime compures the stresses fmaximun ar a sections alon	citre	40
$5:$	c	the shaft. also points the maxinum stress and maxinum displatement	StaE	50
h:	c	on the shaft.	Stre	60
72	c		Stre	70
82		IMPLICIT DCUBLE PRECISION (A-H.O-2)	stae	80
98		REAL CFI 30.61, CGI30.6)	Stre	80
102		DIMENSION AFOIEI, CSIIS1)	Stre	100
$11:$	C		STRE	110
$12:$			Stre	120
132			stae	130
142	c		Stre	140
15.		001110 1=1,xz	Stre	150
168	1110		Stre	160
178		$\operatorname{sicmx}=0$	Stre	170
191		22بxa 0	Stre	180
191		D0 1180 1.1.xz	Stre	190
208			stre	200
21:			STRE	210
223		S!Gmazili= Sicovelil+sigimolil	Stre	220
$23:$		1Fisicmx-stgmallil) 1150,1160.1160	SiRE	230
24.	1150	sicmastratilil	STRE	240
251		21*x=11-11/50	STRE	230
261	1160	continue	STRE	269
272		BEHL4X $=51 \mathrm{GORE}$ (1)	Stre	270
28:		24ERD* 0	Stre	280
298		001180 1-2,kz	STRE	290
$30:$		cabinime	STRE	300
$31:$		behcmx sumax IBENOMX, SIGONEIII)	Stre	310
378		[fic.litbendmal 2bendeli-1)/50	Stre	320
334	1180	cuv: INDE	STRE	330
34.		cu 1190 inl, $\times 2$	Stre	340
351	1190		STRE	350
361		DPLexatiplid)	STRE	360
37:		20pleo	Stre	370
38:		[0 1198 1=2, xz	STRE	380
39:		-0.0ヶLHx	STRE	390
40:		OPLMX $=$ DMAXIIOPLMX, TDPL(1)	STRE	400
$41:$		1F(U.LT.DPLAX) 20PL-(1-1)/50	STRE	410
42:	1198	conilnue	STPE	420
$43:$	c		STRE	430
$4{ }^{4} 4$		CO TO (1130,11401, XCASE	STRE	440
451	1130		Stre	650
461	1135		Stre	450
478			STRE	470
4a:			Stre	480
47:		00101280	STRE	490
501	1140	umciaujx $1, \mathrm{~d})=0 \mathrm{mg}$	STRE	500
51:		DxCTaulx, 2. SI= 20 END	Stre	510
52:		UmGTautx, 3,JI*BENOMX	STRE	520
531		OHSTAU(K, $4,51=2092$	STRE	530
54,			Stre	540
35:		IFIKEx.Eu.xEx/2*2) GO 701145	Stre	550
56:		CFiK, 1l= DMG/Pie30	StRe	560
57:		CG(K.1)-04G/91:30	Stre	570
$53:$		$J P^{\prime}=1+1$	STRE	520
598		CF(K, JP') $=$ OLOG10(OPLMX/ECC)	stre	390
40:			stime	600
$61:$		G\% 801280	STRE	0.10
623	1145	ksinasjux	STRE	620
$63:$			STRE	630
ats:			STRE	640
097		JP1=J+!	STRE	620
6:3			STRE	660
671			STKE	670
68:	1280	RETURN	Sire	880
695		End	Stre	690


```
60 TO 130
120 1F/F2410) 130,123.130
```



```
    CNEGAR=C2/(RL**2)*OSQRJ(E/RM*R!)
    RPM=ONEGAR/(2*3.141592653589783)*60
    PRINT 126,OMEGAR,RPM
126 FOPMAT/'O',12X,OOHEGAR=',026.18,//.16X,'RPM=',D26-18)
    O 01=02
    99 CONTINUE
        NEDUNTANCOUNTA1
        ITHROUNT-EO.2) G0 YO 40
    PRINT 100
100
Furmatio values of Q exaustedes
COTO
```

```
SUBROUTINE COEFFCIN,AF,BT,O,AO,A,BO,B,RAC,RA,RBO,R&,J,JPRINT
    YHIS SUBROUTINE CALCULATES THE COEFFICIENTS A(K) AND B(K)
    MLSNCALCULAYES RAIKI=(K+3)*IK+2)*AI
    DIMENSIUNA(2SO),B(250),RA(250),RB(250)
    JTEST=1J-1//100*100
    IFIJTIST.NE.J-1) GO TO 210
    PRINTRNCO,0
200 fORMAIM1 ENTERING SUBROUTINE COEFFE FOR O=1,026.18.1/.4X,'K',23x
210
    l
    A(1)=0
    A121=07/1504)
    Rameb
    RA(1)=12*A(1)
    RA(z)=20*A(z)
    RA(4)=42*A(4)
    80=!
    80=1=0
    B(2)=日Y(4*3)
    A(3)*(2*AF)(9*403)
```



```
    RBOEF
    RR(1):G*B(1)
    RB(3)=20*013
    RA(4)=30*B(4)
    M,
    \FiJTEST.HE.J-11 GO TO 22S
M20 PKINI 2?O,AU,GO,RAO,RBO,(K,A(K),BIK),RA(X),RB(X),K=1,A)
```



```
    lal
    lal
    M8: (%)
    M8: (%)
```

nin


```
MEMOH
```

NAYF $4<0$
NATF $4: 0$
NaTF 430
Naif $4: 0$
NATF 420
NATE $4: 0$
NATF 430
NATF 440
NATE
NATF 440
NATF 450
NATF 410
NATE 450
NATF 48 C
NATF $4<\mathrm{C}$
NA:F
NATF
NATF 180
NATF
WATF
Ma
NayF 490
NATF 560
NATF SCO
MATF 510
NATF 500

NR:IF 530
Na:F 540
NA:F 540
NATF 550
NiATE 560

[^0]: 1 Numbers in brackets designate References at the end of the dissertation.

