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ABSTRACT

Using Euler-Bernoulli beam theory an investigation 

of the dynamic behavior of an eccentric rotating shaft, 

subject to linearly varying or constant tension, was made. 

The shaft has distributed mass and elasticity and is 

suspended in a fluid. Initial lack of straightness was 

also included in the analysis. The local mass eccentricity 

is assumed to be a deterministic function of the axial 

coordinate.

For the variable-tension case the response was 

determined for a vertical shaft simply supported at the top 

and vertically guided at the bottom. The constant-tension 

case was analyzed for a shaft simply supported at its ends. 

The solution was obtained using modal analysis. It is in 

series form and is expressed in terms of characteristic 

functions of the free vibration shaft.

External damping was linearized by equating the 

energy dissipated per revolution by quadratic and equivalent 

viscous damping.

Displacements and stresses were computed along the 

shaft at a specific speed of rotation. Also maximum stress
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and displacement were computed for speeds in the neighbor

hood of a natural frequency. Results are given in graphical 

form for several values of the tension and different eccen

tricity functions.

vi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ........................................  iii

ABSTRACT ................................................ v

LIST OF SYMBOLS ........................................ ix

LIST OF FIGURES ........................................ xiv

Chapter

1. INTRODUCTION ................................... 1

2. STATEMENT OF THE PROBLEM ...................... 5

3. DERIVATION OF THE GOVERNING DIFFERENTIAL
EQUATIONS ...................................... 8

3.1 Definitions ......................... 8

3.2 Differential Equations of Motion ......... 1-

4. SOLUTION OF GENERAL EQUATIONS BY MODAL
ANALYSIS ....................................... 18

4.1 The Characteristic Functions of a Shaft
Running in Ideal Bearings 

4.2 Orthogonality of the Mode Shapes ........ 23

4.3 Normal Coordinates of the Shaft ......... 25

4.4 Displacements, Bending Moments and
Stresses .................................. 88

4.5 Stability of the System .................. 8^



Chapter Page

5. SPECIAL CASES OF TENSION ....  38

5.1 Shaft Under Linearly Varying Tension .... 39

5.2 Shaft Under Constant Tension ............ 50

6. EXAMPLE PROBLEMS ............................... 54

6.1 The Problems and Their Characteristics
Parameters . ............................... 54

6.2 Discussion of Results ..................... 62

7. SUMMARY AND CONCLUSIONS ....................... 91

REFERENCES .............................................. 93

Appendix

1. STEADY-STATE SOLUTION FOR A SHAFT WITH 
CONSTANT TENSION USING FOURIER SINE
TRANSFORMS ..................................... 95

2. EQUIVALENT VISCOUS DAMPING COEFFICIENT <KO
OR LINEARIZATION OF QUADRATIC DAMPING ........ 100

3. NON-DIMENSIONAL FORM OF DISPLACEMENTS AND
BENDING MOMENTS ................................ 105

4. LISTING OF THE COMPUTER PROGRAMS ............. 112

viii



LIST OF SYMBOLS

Vto

CL,' L components of shaft eccentricity in the 
U and V directions, respectively

^>1/ ^*7 , C-ll J coefficients of the four independent 
solutions in the power series expansion
of A '

»A,^, C„,=U Fourier coefficients in the eigenvalue 
series expansion of cl, bt Uo and vo , 
respectively

^-Ao, !>AA , t-'Ao, Eqs. (5.43) - (5.46)

* , * *• 
dt

Eqs. (5.57) - (5.60)

viscous damping coefficient, slug/ft. sec 

inside diameter of shaft

e arbitrary unit of eccentricity

en
^>/U

^A.
^-zt, "f d*

yLyEI , dimensionless pseudo-weight 
parameter
"KL jEI. , dimensionless tension

A- /T7

ix



r / f t 1
L./ -LJ , non-dimensional /Lth

natural frequency

mass per unit length participating in 
motion

'mo mass per unit length of the surrounding 
fluid, with the same shape as a solid 
shaft

number of-disks

normal coordinates, unknown in the eigen
value series expansion of u and v , 
respectively

time

u, v displacements of the shaft central axis in 
the U and directions, respectively

Do, Vo components of the initial lack of 
straightness in the V and "V directions 
respectively

X-T displacements of the shaft central axis 
in the X and X directions, respectively

y
A.

distance along the X -direction

Tlth arbitrary constant

00 / =0 , .

V (n-} / V /L L 

"Mc.0 / '*1^.0

j) outside diameter of shaft

EI bending stiffness of the shaft
L

1 normalizing constant

L length of shaft



Mo ei^iT
Mo^, M„(y) components of bending moment measured 

along the XJ and V directions
si 1 + "^lo! ''VL

ratio of the Ath natural frequency to 
the speed of the shaft, for zero tension 
along the shaft

Rvo ratio of the Ath natural frequency to 
the speed of the shaft

Soi^, SvQ.) components of shear force in the XJ and 
V directions

T<y) tension at a section with distance 
from the bottom of the shaft

To tension at the bottom end of the shaft; 
or constant tension along the shaft

Tu<?),Tv(^T/^) components of shaft tension in the XJ , V 
and 2_ directions

uvz rotating reference

X'TZ. fixed (inertial) reference

z axis of rotation; centerline of bearings

« c /'vn. viscous damping coefficient, sec--*-

<Y X4> c. /^vt JL , non-dimensional viscous damping 
coefficient

y weight per unit length of the shaft, in 
the fluid

one half of the thickness of the ^xth 
disk

^oZ one half of the non-dimensional thickness 
of the x’th disk

xi



non-dimensional components of eccen
tricity of the xth disk in the tZ and 
V directions, respectively

+ x , complex normal coordinate

X Eqs. (4.44); or index of the solution for 
the power series expansion of ,
Eq. (5.12)

ratio of the mass per unit length of the 
X-th disk plus shaft to the mass per unit 
length of the shaft

non-dimensional components of the 
deflection in the U and V directions, 
respectively

^(4), vjy non-dimensional components of the initial 
lack of straightness in the and V
directions, respectively

non-dimensional distance along E, -axis

non-dimensional distance of the xth disk 

maximum bending stress at a section

Oq

/- A- th modal shape

Eq. (5.26)

w-,a Ath natural frequency for zero tens ion 
along the shaft

zuth natural frequency

MM MM non-dimensional components of the bending 
moment measured along the LT and 
directions, respectively

i^) total non-dimensional bending moment at 
a section

xii



speed of rotation of the shaft

Subscripts 

refers to xth disk 

'zvth coefficient in the power series 
expansion.of

refers to yith normal mode

refers to UVZ reference

v. r refers 
and Z.

to components along the U , 1/" 
axes

refers to XYZ reference

Superscripts 

refers to zith normal mode 

refers to a shaft with constant tension

xiii



LIST OF FIGURES

Figure Page

1. Shaft with Linearly-Varying Tension in its
Deflected Position  7

2. (Circular) Cross Section of the Shaft  I®

3. Forces and Bending Moment on a Shaft Element
of AL Length - Plane UZ  12

4. Position of pt. C in the Complex Plane  20

5. Eccentricity Functions for Example Problem
No. 1  58

6. Eccentricity Functions for Example Problem
No. 2  58

7. Example Problem No. 3:> a) General Configuration
of the Disks on the UZ Plane, b) Actual 
Dimensions of the Shaft and Disks Considered

8. Solution of the Frequency Equation (5.21),
Function f(k^) vs. k^ 

9. Modal Shapes 

10. Modal Moments  68

11. Example Problem No. 1 - Displacement of the
Shaft on the UZ Plane  71

12. Example Problem No. 1 - Displacement of the
Shaft on the VZ Plane  72

13. Example Problem No. 1 - Total Bending Stress
along the Shaft  73

xiv



Figure Page

14. Example Problem No. 1 - Maximum Displacement
of the Shaft vs. Speed of Rotation ......... 74

15. Example Problem No. 1 - Maximum Bending Stress
on the Shaft vs. Speed of Rotation ......... 75

16. Example Problem No. 2 - Displacement of the
Shaft on the UZ Plane ....................... 76

17. Example Problem No. 2 - Displacement of the
Shaft on the VZ Plane ....................... 77

18. Example Problem No. 2 - Total Bending Stress
along the Shaft .............................. 78

19. Example Problem No. 2 - Maximum Displacement
of the Shaft vs. Speed of Rotation..... .. 79

20. Example Problem No. 2 - Maximum Bending Stress
on the Shaft vs. Speed of Rotation ......... 80

21. Example Problem No. 3 - Displacement of the
Shaft on the UZ Plane for h = 2.16 ......... 81

22. Example Problem No. 3 - Displacement of the
Shaft on the VZ Plane for h = 2.16 ......... 82

23. Example Problem No. 3 - Total Bending Stress
along the Shaft for h = 2.16 ............... 83

24. Example Problem No. 3 - Maximum Displacement
of the Shaft vs. Speed of Rotation for 
h = 2.16 ..................................... 84

25. Example Problem No. 3 - Maximum Bending Stress
on the Shaft vs. Speed of Rotation for 
h = 2.16 ..................................... 85

26. Example Problem No. 3 - Displacement of the
Shaft on the UZ Plane for = 0.05 ........ 86

27. Example Problem No. 3 - Displacement of the
Shaft on the VZ Plane for o< = 0.05 

xv



Figures Page

28. Example Problem No. 3 - Total Bending Stress
along the Shaft for °< = 0.05 .............. 88

29. Example Problem No. 3 - Maximum Displacement
of the Shaft vs. Speed of Rotation for

= 3.8 .................................... 89

30. Example Problem No. 3 - Maximum Bending Stress
on the Shaft vs. Speed of Rotation for

=3.8 .......................   90

xvi



Chapter 1

INTRODUCTION

The dynamic behavior of rotating shafts has been 

the object of a great deal of attention in the past. Early 

studies consider only heavy discs mounted on a massless 

elastic shaft. Due to the inadequacy of that theory to many 

of the modern rotors, intensive investigations of shafts 

with distributed mass and elasticity have been made over the 

past decade or so.
Jeffcott [1]^ was the first to establish in a 

rational basis the theory of the whirling of a shaft. He 

considered a single (heavy) mass attached to a thin elastic 

shaft. Linear damping was included. The behavior of the 

shaft was studied close to the natural frequency of the sys
tem. This theory was experimentally proved by Taylor ^2^, 

who also simplified Jeffcott1s analysis, using non-dimen

sional parameters. An important step forward was made by 

Robertson I 3J who introduced the rotating system, providing

Numbers in brackets designate References at the 
end of the dissertation.
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a better understanding of the problem. Johnson |_4J, |_5j 

first introduced the equations for distributed mass and 

elasticity, considering a rotating body in general and 

analyzing the response with normal coordinates. As special 

cases of rotating bodies, he considered: (1) thin circular 

shaft, simply supported at the ends, (2) the previous case 

with a heavy rigid wheel attached to the shaft, and (3) 
thin uniform ring. Following Johnson's approach. Bishop ^6 

particularized and extended the theory of rotating bodies 

to the case of rotating flexible shafts. The response of 

unbalance was developed by modal analysis using normal 

coordinates. Based on this theory a modal balancing was 
first suggested for flexible rotors. Parkinson 7J sum

marized work done by Bishop and co-workers between 1959 and 

1967, explaining in simple terms the fundamental behavior 
of rotating shafts. Ariaratnam 8^ extended Bishop's 

theory to the case of a shaft with unequal stiffness, 

including also the effect of gravity force.

Closely related to the problem of a rotating shaft 

subject to non-uniform tension is that of a vibrating beam 
with the same kind of tension. Graham et al. ^9^ derived 

equations for a drill string considering elastic, dynamic 

and drag forces. The actual string was then assumed to be 
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a short beam under constant tension at its ends and a long 

perfectly flexible cable under variable tension in its 

central part. Exact solutions were found for both cases 

and the solution for the drill string was obtained joining 

the beam and cable solutions subject to boundary conditions 

at each joint. The analysis was for a plane motion and 

forcing functions were considered as boundary conditions. 
Huang et al. loj analyzed a similar problem as Graham, but 

obtained an improved solution, with the tension varying 

throughout the beam. However, their analysis was restricted 

to a two-dimensional case.

At present no one has considered the response of a 

eccentric rotating shaft, with distributed mass and elas

ticity and variable tension over its full length and in a 

spatial rather than a plane configuration.

Many shafts have to run through several natural 

frequencies to reach the running speed. Thus the study 

around the fundamental frequency does not give the true pic

ture of the problem. The objective of this dissertation is 

to show the behavior of the shaft under tension around the 

natural frequency closer to the operational speed. The 

instability and the influence of tension on the displacement 

and stress are discussed. Where applicable, a comparison 
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is made between the response of a shaft under linearly 

varying tension and one with constant tension (average 

value).

The differential equations of motion of an eccentric 

rotating shaft subject to non-uniform tension are derived 

in Chapter 3. They are two partial differential equations 

of fourth order with constant and variable coefficients.

The system is then solved by modal analysis, using charac

teristic functions of a rotating shaft. The basic theory 

is developed in Chapter 4 for any kind of non-uniform 

tension. Two particular cases are studied in Chapter 5, 

namely: (1) linearly varying tension and (2) constant 

tension. In Appendix 1, the problem of constant tension is 

also solved by means of Fourier Sine Transforms. Numerical 

examples are given in Chapter 6, where the eccentricity 

functions chosen are defined there.



Chapter 2

STATEMENT OF THE PROBLEM

The object of the present study is to determine 

analytically the effect of linearly varying or constant 

tension on the dynamic behavior of an eccentric shaft, 

rotating in a fluid medium. The analysis considers a 

shaft with distributed mass and elasticity. The eccen

tricity is assumed to be a deterministic function of the 

axial coordinate. The effect of small initial lack of 

straightness is also considered.

In the derivation of the differential equations of 

motion for a shaft with non-uniform axial tension in Chapter 

3, the following assumptions are made:

1. The shaft material is linearly elastic.

2. Only lateral deflection is considered which is 

assumed small enough such that linear theory can be applied.

3. Transverse shear and rotatory inertia are 

negligible.

4. The diameter (or characteristic dimension of 

cross section) of the shaft is small compared to its length, 

so that Euler-Bernoulli theory for beams is valid.
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5. Internal damping is negligible by comparison to 

external damping.

The shaft under consideration is shown in Fig. 1, 

loaded axially by its own weight and the force To . Fig. 2 

is a cross section of the shaft, showing the center of mass 

(CM) and the components of shaft eccentricity (a, and b) of 

the section.

As for the constant-tension case everything above 

holds but the shaft being simply supported at both ends.
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Fig. 1

Z

Shaft with Linearly-Varying Tension in its Deflected 
Position



Chapter 3

DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS

The differential equations of motion for the shaft 

described in the previous chapter are derived here using 

Newton's Second Law. For this aim the equilibrium is set 

up for an element of the shaft of length ^JL and mass Am 

(shown in Fig. 3) acted upon the following external forces: 

gravity, tension, shear, lift and drag. According to the 

assumptions made in Chapter 2, the mass of the element can 

be thought of as concentrated in its center of mass.

The equations in a rotating system show advantages 

over those of the fixed one since in the latter, time

variable coefficients govern the equations. The rotating 

system is then used to describe the motion.

In this chapter there is no restriction on the 

variation of axial tension with distance along the shaft.

3.1 Definitions

Consider a vertical shaft with uniform section as 

shown in Fig. 1. To obtain the equilibrium equations, the 

following coordinate systems are used:
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XY^,- fixed (inertial) reference with ^-axis

vertical, positive upward,

UVZ_ rotating reference with 2--axis the same 

as in Xyjz£. i the U and V axes are 

perpendicular to 2. and rotate with a 

constant angular velocity _fL

In connection with these references, there are two 

sets of unit vectors:
X} "K. - unit vectors for X Yreference,

eu i - unit vectors for U Vreference.

A (circular) cross section of the shaft is shown in

Fig. 2, where the following are defined:

- displacements of the shaft axis, 

~ components of shaft eccentricity, 

constant at each section in UV2.

reference,

- position vector of origin of UVZ 

with respect to X X 2. reference,

- position vector of the center of 

mass (CM) of the element,

‘UJ - angular velocity vector of U VE

system,

A. - position vector of the centroid of

the element.
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Fig. 2 (Circular) Cross Section of the Shaft. 
XYZ - Fixed Reference; UVZ - Rotating Reference; u, v - 
Components of Shaft Displacement; a, b - Components of 
Shaft Eccentricity; C - Centroid; CM - Center of Mass
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Also, it is implied, by Fig. 2 that the whirling 

frequency of the shaft is assumed to be synchronous with 

shaft rotational speed and takes place about the vertical 

3L -axis.

3.2 Differential Equations of Motion

3.2.1 Acceleration

Let be the absolute acceleration of center of

mass of the slice (as observed from the X reference) .

Then

t io) + 5. cu X p) +coxp -t- 
! /wy- / /uvy ! (3.1)

where the dots have their familiar meaning. The vectors

X ,p and are given by (see Fig. 2)

X = 0 (origins always coincident),

p = (ui-o-J % t (v + k)ev + 7

io =_<2. A .

Taking the time derivatives of these vectors and

substituting in Eq. becomes

5. - Lu - 2.£lv -£l (u+<x)Jeu + Lv + ~^(v+2>)Je . (3.2)

3.2.2 External Forces

The components of tension in the U2. plane are

shown in Fig. 3. The net tension and gravity force acting 

on the element are:
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Fig.3 Forces and Bending Moment on a Shaft Element 
of AL Length - Plane UZ
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fi -Vj)]eu * -rv(j.)]ev +

where Tu(r^ is the component of tension in the U 

direction, at a distance ^-+" from the bottom. The 

assumption of small displacements leads to

where I is the total tension at a section.

The drag forces are linearized by equating the 

energies dissipated per cycle by quadratic and equivalent 

viscous damping as shown in Appendix 2. The linearized 

force is given by

Et = " C vxw (3.4)

where is the equivalent viscous damping coefficient

is the absolute centroidal velocity 

by
+ ) + cu x -7.

From Fig. 2, the vector zt is

(constant) and

of the element, given

Vxv, = R
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= ev * v €v y
which yields for the velocity

Substitution of this expression into (3.4) yields for the 

viscous force

c (6-XLv)e.v - C (v*lLu)e.v* (3.4a)

The resultant shear force, denoted by , is

Fs = [-S”(J + jl|)+S“(3)]% l'Svfr4p+ Sv(j)]£v (3-5)

where the components along the Z. -direction have been 

neglected. Note that in Fig. 3 only the U -component of 

, is shown.

The lift force can be written as"*"

Fz = e„ + (F^v £„] . (3.6)

3.2.3 Scalar Equations in the and V Directions

Using Eqs. (3.2), (3.3), (3.4a), (3.5) and (3.6) 

the equation of motion in the (/-direction is

1 See explanation at the end of tne chapter.
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where -hi. is the total mass per unit length. Dividing both 

sides of this equation by -vnAy and letting Ay approach 

zero, the following differential equation is obtained:

-tn u

where ( /^ )y is the U-component of the lift force per unit 

mass.

The shear So can be eliminated, using a moment 

equation in the U-direction. From Fig. 3

+ SJ^.) - tAl) * T— +
\ \ J Z

+ +T^)]_4£_ - O.

Dividing now by Ay and letting the tension terms

cancel out, leaving

5U x _5_Ml (3.8)

The bending moment Mu is related to the net curvature of 

a beam by the well-known relation

mu = ei a^u-uj
2,

(3.9)

where El is the bending stiffness of the beam and 

is the coordinate representing the initial lack of 

straightness of the shaft, constant with time in the U VZ" 
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system. Using Eqs. (3.8) and (3.9) a substitution can be

made for tD'Su in Eq. (3.7), which with the notation 
3^

= (3.10)
•wt.

yields

U »2iLv-^(u+a.)= _Fl3Xu-Qo) + _L
AAA.

- o< (u-D_v) 5- (Fjt)v

(3.11a)

The equilibrium equation in the V -direction is 

easily obtained if one recalls that in going front the 

(V-axis to the V-axis, a positive rotation of 90° is 

necessary. Calling J the operator that performs this 

transformation, such that J u = v , J v =- U , 

/ ( u ) = — ( / U ) , etc., the equation in theu dtr dt: J 
V -direction is

(3.11b)

No expression in the literature is available at

present for the transient lift force of a body moving in

a real fluid. The steady lift force for an ideal fluid is

where is the circulation
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of the surrounding fluid.density

If the same procedure used for the

here (dividing by and

shown that the steady lift force per unit mass is

vector and is the mass

other forces is applied

letting 0) , it can be

8. = e., + ev ) (3.12)
-'W. z

where is the mass per unit length of the fluid with the 

same shape as the (solid) shaft.

The steady inertia "force" per unit mass is
S’ _ -

-tt-u 6-u + dJL v e.v , so by Eq. (3.12) the steady lift force 

is a fraction of the inertia "force".



Chapter 4

SOLUTION OF GENERAL EQUATIONS BY MODAL ANALYSIS

The differential equations of motion. Eqs.

(3.11a,b), will be solved in this chapter by eigenfunction 

expansions. It is assumed that the displacements v and 

v of the shaft central axis can be represented by the 
following series of orthogonal functions A = 

«x>

“(a.*1- Z; <4'lal
oO

where

are unknown functions of time (known as

normal coordinates),

is the /Lth modal shape, or /z.th normal 

function.

It should be noted that such an expansion into 

orthogonal functions is always possible.

The functions depend on the particular

kind of tension and boundary conditions of the freely
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vibrating shaft. Section 4.1 shows how to obtain them. In 

order to find •jo/L ( and ), the orthogonality of

the functions is necessary and is shown in Section

4.2. The question of stability (critical speeds) arises, 

while solving for (^7) and and this is discussed

at the end of the chapter.

4.1 The Characteristic Functions of a Shaft Running in 

Ideal Bearings

Dropping the terms involving tfo , , <x, r A , °<

and also ()v and ( Fj^ from Eqs. (3.11a,b), i.e. 

disregarding the effects of lack of straightness, eccen

tricity, damping and lift force, the following differential 

equations governing free vibration of the shaft are 

obtained:

(4.2a)

(4.2b)
4

be defined byLet a complex variable

(4.3)

If Eq. (4.2b) is multiplied by the imaginary x and added to
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(4.4)

Eq. (4.2a) the following equation results:

Another complex quantity is now introduced

through the relation

(4.5)

which can be visualized by reference to Fig. 4 as the 

complex variable which defines the position of point C with

respect to the system. This variable can also be

written as

- X. + . (4.6)

If Eq. (4.4) is multiplied by g. , the left

hand side can be shown to be W" . Thus, using Eq. (4.5),

Fig. 4 Position of pt. C in the complex plane:

(4.7)
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The solution of Eq. (4.7) is assumed to be of the 

form

(4.8) 

where A' is a complex constant, ^(J') a function of J- 

only and to (^7) a function of time . Substituting 

yz( Jx-, ^7) in Eq. (4.7) and dividing by , one obtains 

(by the method of separation of variables) the following 

two ordinary differential equations:

Eq. (4.10) has the well-known solution

A cos o3^+ B sin If K is expressed in its real

and imaginary parts, can be written as

fej (A c<r2> + B/v.'vv, cu -

Separation of complex and imaginary parts gives the 

following two equations:

14, CtiTb

Ccrb oot- 4- 6. (4.11b)
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where A, = A , = 'A, b , Az = A , 3^ = 3 are

arbitrary constants. Thus, the most general motion of the 

point C (jc,y*), position of shaft central axis at a 

height , is an ellipse on a plane parallel to the X / 

plane, with angular velocity co .

Equation (4.9) has to be solved for a specific 

tension T (^), with the appropriate boundary conditions. 

It constitutes an eigenvalue problem with as the 

eigenvalue and A as the eigenfunction. The latter 

is the modal shape used in the expansion of U and

V ( ^7) , Eqs. (4.1a,b) .

For certain types of tension 7* (it is possible 

to evaluate the natural frequencies and mode shapes of the 

shaft in a closed form. However, in general this is not 

possible; approximate methods must be used, such as 

truncated Power Series or Fourier Cosine and Sine Series. 

Fortunately, only a few functions (^-) and in 

practice are necessary for the solution of the problem of 

rotating shafts with acceptable accuracy.

In Chapter 5, the determination of is

presented for two different cases: (1) linearly varying 

tension, simply supported at the top and vertically guided 

at the bottom and (2) constant tension, simply supported 

at both ends.
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4.2 Orthogonality of the Mode Shapes

Consider two distinct modal functions and

(^-) associated with the natural frequencies ^a. and , 

respectively. Since each function is a solution of Eq.

(4.9), one can write

(4.12)

(4.13)

»t Z nt Z
where and . (4.14), (4.15)

El
Multiplying Eq. (4.12) by an<^ (4.13) by <^A. ,

subtracting the second from the first and integrating 
between and L , yields

t 4- I E (4.K
-_L f-(K -
El q d'^''

Integrating by parts the first, third and fourth 

integrals and simplifying, the following is obtained:
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L

L

For any coiribination of the 3 common boundary 

conditions (pinned, clamped or sliding end) the expressions 

inside the brackets are zero. Also they are zero if the 

tension vanishes at the free end of the shaft.

If it is considered that the shaft meets the above 

requirements. Eq. (4.17) reduces to

4. L

Since S , or , the integral in Eq. (4.18)

must vanish. For the special case = -S , the integral 

is a non-zero quantity , called the normalizing 

constant. Summarizing,

L f O , for 7^ -s* (4.19)
M i = 

° I I Hzx. , for ^--S. (4.20)

Thus, it has been shown that the modal shapes
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Y-4 () form a complete set of orthogonal functions in the 

interval (O, L ) for shafts which have pinned, clamped or 

sliding ends in any combination, or with free ends (zero 

shear force and bending moment) in which the tension 

vanishes.

4.3 Normal Coordinates of the Shaft

It remains now to obtain the expressions for the

( ^') and <5-^ ( ) in order to evaluate normal coordinates

are supposedu and v from Eqs. (4.1a,b). Th 

known, although in general it is not an easy task to find 

them unless the tension is of a very special function of the 

axial coordinate. Eqs. (4.1a,b), repeated here for 

convenience, are

(4.1a)

(4.1b)

It is assumed also that the following expansions 

are valid:

(4.21)

(4.22)
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co
El A. CM = L

■w. «iy

co (4.23)

(4.24)

where is the natural frequency associated to y>a. 

in Eq. (4.9) , and « , cl^ are constants

obtained from the expressions

(4.25)

(4.26)

(4.27)

(4.28)

Eq. (4.25), for example, is obtained by multiplying Eq.

(4.21) by integrating in the interval (O, L ) and

making use of Eqs. (4.19) and (4.20).

Substitution of Eqs. (4.1a,b) and (4.21)-(4.24) 

into Eqs. (3.11a,b) yields (disregarding for now ( )u 

and ( )v )
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The first plus the third term in the right-hand side of

these equations can be simplified. For Eq. (4.29a), 

/w\_

oo

since the expression in the brackets is equal to - 

according to Eq. (4.9). Similarly, the first and third 
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terms of the right-hand side of Eq. (4.29b) are equivalent 

to
CO

If these two last expressions are introduced in Eqs.

(4.29), the following equations are obtained:

E --QZpl + = °

oo

This pair of equations are satisfied if all the coefficients 

of the functions vanish simultaneously. That is to 

say

(4.30a)

+ (c*)^ =5. 4-XL , (4.30b)

In order not to digress (from the main purpose of 

finding solutions for and , the above equations 

will be solved now. However, in Section 4.5 the stability 

of the system will be discussed, starting with Eqs. (4.30).

Define now three new complex quantities

= (4-31a)

^-•L OA (4.31b)
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(4.31c)

Multiplying Eq. (4.30b) by the imaginary unit -t and 

adding it to Eq. (4.30a) yields

7^ i-(c<i-k2lL)T)A + [(a)^ .

(4.32)

This is a second-order differential equation in the complex 

variable 7^, with constant complex coefficients and 

constant forcing functions. The solution is then easily 
obtained by familiar methods [11] . Introducing the 

notation

o( =
/

Equation (4.32) admits the solution

(4.33)

(4.34)

-pA-x t a. XL)
7^=Ae + 8 & +
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It should be noted that H/t= --- is the
cu^t >2.»? cU/,

damping ratio of the ^ith mode.

The first two terms of Eq. (4.35) constitute the 

homogeneous solution of Eq. (4.32), where A and B are 

arbitrary complex constants. They represent two inward 

spiral motions in the complex plane. The first term gives 

a motion counter to that of the rotation of the shaft and 

the second term in a direction which depends on the 

damping coefficient , since (o< ) , Both

motions are damped by the term C . This agrees

with the result of Section 4.5 which says that the damped 

system is always stable. If damping is not present, i.e., 

= 0, it follows that = 0 and = 1. In such a 

case, the first two terms represent circular motions, the 

first being counter to that of the rotating axis, and the 

second being dependent upon the values of and -TL

The last two terms of Eq. (4.35), the particular 

solution of Eq. (4.32), represent a steady configuration 

in the complex plane. Relation (4.36) shows an important 

well-known characteristic of these particular solutions. 

If AX = , the imposed speed equal to one of the

natural frequencies of the shaft, it follows that = JI— . 

Then, from Eq. (4.35)
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where VAt'*ie Part:*-cular solution only. This 

equation shows that the /rth component of the deflection of 

the shaft lags 90° behind the total rth component of the 

exciting forces. If o< = o ( ^1/!.= 0) this /rth component 

of deflection is unstable.

The remaining part of this dissertation deals with 

the steady-state solution of the rotating shaft. For this 

purpose, the particular solution of Eq. (4.32) follows in 

detail.

The particular solution is assumed to be

constant, say = * Substituting in Eq. (4.32), it

follows that

Rat iona1izing,

Substituting Eqs. (4.31) in the above expression and 

separating the real and imaginary parts, the following 

expressions for and are obtained:

h, ) = U„ = + c<s. , (4 38a)
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Tn a ?
Kw^-AL) 4- oc. al (4.38b)

where the particular solutions of /!.(*) and % 

have been renamed by and V^. , respectively. The 

constants , C-a. and d/x. are given by Eqs. (4.25) ~

(4.28) .

If the steady lift force, mentioned at the end of

Chapter 3, is included in the steady-state analysis, it

can be shown that the particular solutions are

~ 0 Ca,4- SL^a.1) (4.3 3d)

Eqs. (4.38c,d) indicate that the resonance 

frequencies (for C<= 0) are not the same as the natural 

frequencies of the shaft. The new values are smaller and 

given by
--/2

.0 = I I + CO^Ae» 1 • 1 7

depending on the ratio zvv\t>/-w^.
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4.4 Displacements, Bending Moments and Stresses

From Eqs. (4.1), the series solutions for the 

displacements in the rotating reference V£ are

co
(4.39a)

oo

in which the time 12 has been dropped from the notation 

u 

the steady-state solutions of the displacements.

The bending moment in the UZ: plane has the

^7) and v (^,Z), meaning that U (^-) and V (are

following expression

With the same notation used above, the steady-state bending 

moment Mu () can be obtained with the expression of

U (^-) from Eq. (4.39a).

CO
M„ (J) = ELL 11 - £I<l2u.(y) (4.40a)

A similar expression holds for Mv ( 1^) .

oo
(4.40b)
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The maximum positive bending stress of a circular

shaft is

M(^) 
IF2)3[

(4.41)

where J) and ct are the outside and inside diameters of

the shaft, respectively, and

(4.42)

4.5 Stability of the System

Although some conclusions have been drawn in 

connection with Eq. (4.35) it is intended in this section 

to study in greater detail the problem of stability.

The free motion of the shaft is governed by the 

homogeneous part of the differential equations 

These are

K+ h-+ = °

Solutions are sought in the form

(4.30) .

(4.43a)

(4.43b)
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= G C (4.44b)

where F,G and A are real constants. Substitution in

Eqs. (4.43) gives, after simplification

■*F - [zm +«h]g = o

F - [^+0<a G = o.

For non-trivial solutions of F and Gj , the determinant 

of their coefficients must vanish, which gives

A +o< (4.45)

or A + A3 + A2 A + A, A + = o

where

2
A4- 2(^ n-2-1 AL ) 4- c<

A, = -flf)

Ac = (^n - FL ) t oc FL .

(4.46a)

(4.46b)

(4.46c)

(4.46d)

(4.46e)

In practice it is not necessary to determine the 

roots of Eq. (4.46a) explicitly; it is sufficient to know 

the sign of the real part of the roots. If all roots A 
have negative real values, the solutions for (Z-) and 

9^ (/fc) will always be bounded. If one or more A has 
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positive real value, the amplitude will increase expo

nentially, making the motion unstable. For the fourth

order algebraic equation (4.46a) in , the condition of 

stability (non-positive real parts) is given by Routh's 
criteria [12^ :

(1) all coefficients (X =0,1, -2y3 ) must be of 

the same sign (positive, the sign of 4. ) and

(2) the following inequality must be true

> At At Ao.

The first condition is automatically satisfied, 

since all coefficients are positive ( c< ?• O ) e

Using Eqs. (4,46b,c,d,e), the second condition is 

equivalent to

4- oC1 (4. + c< ) > Oy

which is always satisfied.

The conclusion is that, with damping present, the 

free motion of the shaft is always stable.

The undamped system can be analysed from Eq. (4.45) 

in which is taken equal to 0. Then

} + ^(cuA 4-31. j + (^A -3L 7^0, (4.47)

This equation has the following roots:

= - ( cu^ 4- IL ) ± 2 AL . (4.48)
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Supposing now that the speed of rotation -SL is equal to 

one of the natural frequencies of shaft, i.e., ,

the roots are
% 2. -2'

/^ = -2. ± Z , or

= 0

^2 = o
A j = +■ •< Z

— Az Z

Then with -Q- = ( H. = ), the value 1 = 0 is a

double root of Eq. (4.47), which corresponds to solutions of 

the form

/?.(*) -
making the system unstable, since *jDA (and 

increase with time without bound.

G) p G 4 t -t f

The stability has been discussed based on the 

assumption of tension varying only with the distance , 

since Eq. (4.9) was obtained by the method of separation of 

variables, in which is implied that the tension is "T . 

A tension varying also with time, T (j^,^), would require 

a slightly different approach. However, the case with 

time-varying tension is of less practical significance and 

beyond the scope of this study.



Chapter 5

SPECIAL CASES OF TENSION

The solution of the general equations by modal 

analysis was derived in the last chapter as a series 

expansion in the normal coordinates and modal shapes of the 

associated free-vibrations problem. The former, for a 

steady-state case, were given by Eqs. (4.38 c",d), while the 

latter were shown to satisfy the differential equation (4.9) 

which is repeated here for convenience

El - । cL ly - co2,<A> = O . (5.1)
Wl cl

In this chapter. Eq. (5.1) will be solved for 

particular tension functions, 'T' (^) , and boundary 

conditions. Two cases of tension are considered: (1) 

linearly varying tension and (2) constant tension. The 

first case involves a shaft with one end simply supported 

and the other guided (sliding), while in the second case 

a simply-supported shaft (at both ends) is considered. 

Following the solution of Eq. (5.1), final expressions for 

displacements, bending moments and stresses are given.
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5.1 Shaft Under Linearly Varying Tension

5.1.1 Free-Vibration Analysis

Let the tension at a section of the shaft be given

by

(5.2)

(5.3)

Substituting Eq. (5.2) into Eq. (5.1) and

is the acceleration of gravity.

(in the fluid) . The value of is

Y = (^-^0)0/

TV = T= +
in which is the weight per unit length of the shaft

multiplying by *>*1 /ET i yields

I ? - J_ dz-ftT; + yy'l — CO 'WV <j> o . (5.4) 

d/ « drJ ex

The boundary conditions are
<j> (°) = ° , (5.5a)

° , (5.5b)

( L ) = O f (5.5c)

( L ) = ° . (5.5d)

The homogeneous Eq. (5.4) with the homogeneous

boundary conditions (5.5) constitute an eigenvalue problem.

Let a dimensionless variable £ be defined as

(5.6)
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Eq. (5.4) can now be written as

where , and are three dimensionless parameters

defined by

(5.8)

(5.9)

(5.10)

With the introduction of the independent variable

, the boundary conditions (5.5) become
<j> (°) = ° , (5.11a)

( O) = O (5.11b)

4* ( 1 ) = °/ (5.11c)

( I ) = O . (5. lid)

Equation (5.7) will be solved by assuming for the 
dependent variable <^> a power series in near the point 

=0. The reason for this expansion is due to the 

presence of the variable coefficient, arising from the 

variable axial force. As a consequence of this variable 
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coefficient, the function may not be expressible in 

terms of known elementary functions. Thus, it is assumed 

that 
oo

<j) f^) = (5.12)

where the 1 <> and A are constants to be determined.

Because the coefficients involved in Eq. (5.7) are analytic 

for any finite value of the variable , the function 
<|> ( ) can be represented by the assumed series, being

absolutely and uniformly convergent everywhere in the 
finite domain ^1^ .

The differential equation is of the fourth order, 

thus admitting four linearly independent solutions, which 

can be obtained by the method of Frobenius.

Substituting Eq. (5.12) into (5.7) an equation 

involving a power series in is obtained, whose sum is 

equal to zero. In order to satisfy the equation, each 

coefficient in the series must be zero. The first of these 

coefficients gives the indicial equation

cp A (A-l)(A-2)(A-3) = o

which is satisfied by

= 0 , = 1 , ^3=2, 3 (5.13)

with Co arbitrary. The differences between the values of
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3 1A a are integer numbers. In such cases the method of 

Frobenius assures solutions of the type of (5.12) only for 

the largest value of X . But since the equation to be 

solved is ordinary at = 0, the method still gives the 

four independent solutions for the other remaining <>, 
with a suitable choice of the arbitrary constants J14] . The 

other coefficients in the power series equation have to be 

set equal to zero for each value of X , thus giving four 

independent solutions. Letting . b-n , C, and 

be the coefficients of Eq. (5.12) for the four solutions, 

one obtains
<XO= 1, CL,= 0, Clz =_A. , Q3 = _2C , 

2,0 4-0

4-Q-w - -H-3 +---- -3^------- ^-4 }

(^+3)(yM+2)(7M + »)

('Vt £ 4-) 

bo= 1, L>, = 0, , !d3 = 3^ ,

I L 30

___ k___ .......................... _________________ ^-3 +______________ k_________ ^-4,

(■vi >4-)

Co = 1, Cj = 0, C£ = 0 ' c3 = -
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c4i=___ k__ +............c^_3 +4 C^-4-
('m-l)'i'L (aa +1) -I) (-V)-2)

(-vt^-4)

cLo= 1, d2= o, cl3= o.

=L dv_2 + ^-3) 0(^.4.

•^(■*>-1) ■vi('m--i)(ii-2) -ii (*i-i)(*i-2)('n-3}

^7 >4-;

(5.14)

Using the values of given by (5.13), the series

solution can be written as

(5.15)

where A , B , C and 2D are arbitrary constants and

1 C"v\ , c^-'ut. given by Eqs. (5.14) . The 

arbitrary constants A , B , C and T> may be obtained 

using the boundary conditions (5.11). Application of 

condition (5.11a) gives
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-D = o.
From (5.15), with (5.16), the first derivative of 

equal to

oO

+ C (^4-j) .
^1=0

OO CO

Applying condition (5.11b) yields

C = o.
Substituting (5.16) and (5.17) in (5.15), condition

gives
CO OO

A E + B E = o.
41=0 _o

With C = J) = 0, the second derivative of <P ()

44-0

Applying condition (5.lid) to (5.19), the following

equation is obtained:

CO <50

A * B E> ('t/* + ■2-)(zVl + I •
-V)=O 42=0

(5.16)

(^ ) is

(5.17)

(5.11c)

(5.18)

(5.19)

(5.20)
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Equations (5.18) and (5.20) form a set of two homogeneous

equations in the unknowns A and B For non-trivial

solution the determinant of their coefficients must vanish.

i.e.

Expanding and dividing by — , one finally obtains
*5.0

(5.21)

This is the frequency equation, which gives the value of 

the natural frequencies. The 1are related to the 

coefficients CI-m and through Eqs. (5.14) and (5.10). 

Once the frequency equation has been solved, the power 

series expansion of ) can be obtained.

From Eq. (5.18), the constant -B can be written as

(5.22)

Values of B , C and D , given by (5.22), (5.17) 
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and (5.16), can now be substituted in (5.15) and written

as functions of the original variable = ^/L ) . The

function (^) then becomes

(5.23)

where the subscript has been introduced for

since for each value of there is a correspondent

modal function < ?-) -

5.1.2 Steady-State Response of the Shaft.

The displacements for steady-state conditions are 

given by

cx>

Eqs. (4.39). Substitution of and Va. from Eqs.

(4.38 c,d) yields the final expressions for the 

displacements. These are

coV 1 . > 2. 2 / z । । (5.24a)
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where o-(5.24c)
and <^1 (^) is given by Eq. (5.23). Similarly, 

substituting Eq. (5.23) into (4.40) with (4.38 c,d) the 

following expressions for the bending moments are obtained:

(5.25a)

El 
(5.25b)

where

The relations for displacements, bending moments

and stress will be in non-dimensional form by defining the
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following quantities and variables:

Rn= ratio of the Ath natural (5.28)

°<o =

e

e

frequency to the speed of the 

shaft, 

non-dimensional damping 

coefficient, 

arbitrary unit of eccentricity, 

non-dimensional displacement 

in U02: plane ,

(5.29)

(5.30)

V(E.)

e

e

e

non-dimensional displacement (5.31)

in VO plane.

non-dimensional

straightness in

lack of

uoz plane.

(5.32)

non-dimensional

straightness in

lack of

VOZ: plane.

(5.33)

M, = ETe
L?

a characteristic moment. (5.34)

M„ «)= M«te)
Mo

non-dimensional bending 

moment in U0£ plane.

(5.35)

Mv(y non-dimensional bending (5.36)
Mo

r
moment in VOZ plane.
2 Va.

m, cy
(5.37)
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(J„ = M„ = ETe a characteristic stress, (5.38)
J5 L1 J)3

(T(S) non-dimensional stress. (5.39)

It is shown in Appendix 3 that, using Eqs. (5.28)- 

(5.39), the non-dimensional form for the displacements, 

bending moments and stress are

(5.40a)

(5.40b)

(5.41a)

(5.42)
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where Q/x, () and ) are obtained from Eqs. (5.23) and

(5.26) respectively, together with Eq. (5.6) and

(5.43)

(5.44)

CA» = _EL__ _L_ , (5-45)
Jo

h-I I f cl4 A(y d? (5.46) 
'Via 41^ -1 cL^4*

J I5)) d^_ (5.47)

5.2 Shaft Under Constant Tension

5.2.1 Free Vibration Analysis

With the tension constant along the shaft the

differential equation (5.1) written ascan be

(5.48)

the boundary conditionssatisfy
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for a simply-supported shaft, which are

(5.49 a,b,c,d)

The eigenvalue problem stated by Eqs. (5.48) and
(5.49) has the solution ^isj

A.lfy (5.50)

(5.51)

5.2.2 Steady-State Response of the Shaft

Expressions for the displacements are the same as

Eqs. (5.24), with the functions given by Eq. (5.50).

Thus,

(5.52a)

co

/uvn A li

(5.52b)

where are given by Eq. (5.51).
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The bending moments in this case are

- El cl Vo(^) . (5.53b)

Non-dimensional forms corresponding to these

expressions are obtained using Eqs. (5.28)-(5.36) together 

with the ratio

(5.54)

where is the /tth natural frequency of a shaft with

zero tension. Substitution in Eqs. (5.52) and (5.53) yields

/1=' (5.55a)



(5.56a)

where

sinAlf^

(5.56b)

(5.57)

(5.58)

(5.59)

(5.60)



Chapter 6

EXAMPLE PROBLEMS

To provide further insight into the problem, 

numerical solutions of three examples are presented in 

this chapter. Also results of the freely-vibrating shaft 

are shown for the linearly-varying-tension case.

6.1 The Problems and Their Characteristics Parameters

Problem 1 - Linearly Varying Tension

Consider a hollow shaft with the following 

eccentricity and lack of straightness functions:

o
- e.

for

for
a.(y) = <

3e - 4-e.^/L for

O for

b (y) = O for

u. (y) = O for

v-’(^) = O for

LA - Y - H2- ,
L/Z £ 3L/4- t

(6.1)

^L/A- Y - I .

O ^4= L (6.2)

O (6.3)

O ^4L. (6.4)

The eccentricity functions are shown in Fig. 5.
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In this case, the equations for the displacement, 

bending moment and stress are (5.40), (5.41) and (5.42), 

respectively. The parameters , C- zio and cL Ao 

involved in these equations are given by Eqs. (5.43)-

(5.47). Using Eqs. (6.1)-(6.4) one obtains

. V V / (a' i M i\
K =: An, L L °-k CU - 5,CR b^__. t CR L

.&=o y ^+^14-6 + S" / (6.5)

^AO 3-2 +1 a,
■41+4- ^+5 \

3-2 til 
Lf-m-4-)(-n+3) 4-'H+3j

O

(6.6)

(6.7), (6.8), (6.9)

The surrounding fluid is assumed to be sea water

and the geometric parameters of the shaft chosen are: 
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length = 400 ft , 
outside diameter (}) ) = 6.625 in. I 6,,ND, Sch.80 

inside diameter (cl) = 5.761 in. I steel

unit of eccentricity 6. = 0.1 J)

Problem 2 - Linearly-Varying Tension

Consider a hollow shaft with the following eccen

tricity and lack of straightness functions:

-e for o £ L/A- /

. (y) =< o for L/a- SL[A- / (6.10)

e for ^l/a- y - L a

o for O — ! 2^,
•

(?') =< e for t (6.11)

o for ^LjArL. Y * 'L*
r

U. (y) = o for o< L (6.12)

V„ (^) = o for ° ^-L- (6.13)

The eccentricity function for this case is shown

to be

are again (5.40)- (5.47), the parameters Clused
and d AO being

</4- <x> co
-vi+ 3

AO A1=O

in Fig. 6. For this example problem the equations
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. or

{
■H-i- S 4- 3

or

where -^a, is given by Eq. (6.5) .

(6.16), (6.17)

The dimensions and surrounding fluid are the same

as in the previous problem.

Problem 3 - Constant Tension

Consider a solid shaft with heavy eccentric

discs as shown in Fig. 

following eccentricity
O

O

7a. For the X th disc the 

functions can be defined: 

for — ,

for - y —, (6.18)
for £



58

Fig.5 Eccentricity Functions for Example Problem No. 1

Fig.6 Eccentricity Functions for Example Problem No. 2



59

for

for

for

(6.19)

where is the distance of the x.th disc from the origin.

2. is its thickness and ~l - - I "I - J -

In order to consider the influence of the ■js discs

(6.20)

X=|
(6.21)

where A>c = Mi //wl is the ratio of the mass per unit 

length of the x.th disc plus shaft to the mass per unit 

length of the shaft.

Let the lack of straightness functions be

Vo (^) = ° for (6.22)

Va (^) = ° for o £ £ L (6.23)

For this example problem the equations to be used

are (5.55)-(5.60) . Introducing the quantities

• =. non-dimensional distance (6.24) 
L

of the Xth disc,

•2 ^-oj_ =. -2. €4 non-dimensional thickness (6.25)

of the a. th disc.
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and are

(6.26)

similarly

the parameters Cl

^/vo — Z L X;

A.1T 't~l
3^2 tsa,-v\, a, u x>a-vl A.//€ox ■ (6.27)

C'Ao = dL = >O • (6.28), (6.29)

Finally, let the actual values chosen be £> = and

vU eo; 2k
1 49 .01389 .111 .500 .866

2 16 .01111 .222 .866 .500

3 25 .01389 .445 -.500 .866

4 25 .01389 .555 -.866 .500

5 16 .01111 .778 .500 .866

6 49 .01389 .889 .707 .707

The dimensions of the shaft for this case are as
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Fig.7 Example Problem No. 3: a) General Configuration 
of the Disks on the UZ Plane (replace by for VZ Plane), 
b) Actual Dimensions of the Shaft and Disks Considered
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follows:

material: steel, 

length = 15 ft , 

diameter (J) ) = 4 in. , 

unit of eccentricity 6. = 0.001 3) ,

Surrounding fluid = air.

Shown in Fig. 7b are the shaft and discs considered.

6.2 Discussion of Results

Representative results for the freely vibrating 

shaft under linearly-varying tension are presented in Figs. 

8 through 10 and Table 1. Fig. 8 shows the solution of the 

frequency equation (5.21) for values of = 1510 and = 

151. Graphical representation, for those values, of the 

modal shapes <?■ ) and the modal moments are shown in 

Figs. 9 and 10, respectively. As expected, the amplitudes 

are greater near the bottom where the tension is smaller but 

the distances between nodes are greater near the top. Table 

1 gives a comparison between the natural frequencies of a 

shaft under linearly-varying tension and one with constant 

tension, the constant value being equal to the average value 

of the first case. A better agreement percentagewise 

exists for the higher frequencies.

Graphical results for example problem No. 1, for 

damping coefficients °<= 0, 0.16, 0.32 and 1.6, are 
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presented in Figs. 11 through 15. Fig. 11 is a schematic 

of the deflection of the shaft central axis, projected on 

the Uplane. Fig. 12 is the projection on the perpen

dicular plane, • While for small damping the influence 

of the seventh modal shape is clearly evident, for 

relatively high damping the shaft has a tendency to deflect 

into a shape resembling the eccentricity distribution. Fig. 

13 illustrates the variation along the shaft of the total 

bending stress in the section. Maximum displacements and 

stresses for a range of speeds, including the seventh 

resonant frequency, are shown in Figs. 14 and 15, 

respectively. In these two figures the value of-Q.t>= 75.9 

rpm is marked to show the speed of rotation for which Figs. 

11 through 13 were computed. The best value of the damping 

coefficient that fits the physical parameters of example 

problem No. 1 is = 0.16.

Representative results for example problem No. 2, 

for damping coefficients = 0, 0.08, 0.32 and 1.6, are 

presented in Figs. 16 through 20. Fig. 16 is the 

displacement on the V£■ plane. Fig. 17 is the displacement 

on the perpendicular plane V? . Fig. 18 shows the 

variation of the total bending stress along the shaft. 

Maximum values of deflection and bending stress for a range 

of speeds, including the seventh resonant frequency, are 
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shown in Figs. 19 and 20. Fig. 19 illustrates the maximum 

displacement while Fig. 20 shows the maximum bending stress. 

For this example problem No.2 the value of the damping 

coefficient that best fits its physical parameters is 

°< = 0.32.

The results for example problem No. 3 are presented 

in Figs. 21 through 30. The first part. Figs. 21 through 

25, depicts the influence of the damping coefficient, for 

a specific value of the dimensionless tension, •/? = 2.16. 

The second part. Figs. 26 through 30, demonstrates the 

influence of the constant tension of the shaft. The latter 

curves are for the values of nondimensional tension = 0, 

1.08, 2.16, 4.32 and 8.64 and for IX = 0.05 or 3.8. Fig. 21 

is the projection of the displacement of the shaft central 

axis on the plane while Fig. 22 is the projection on 

the VZ plane. Fig. 23 gives the total bending stress 

along the shaft axis, as a function of distance. These 
last three figures were computed for -^Lo = 2415 rpm.

Maximum displacements and stresses of the shaft for a range 

of speeds, including the second resonant frequency, are 

shown in Figs. 24 and 25, respectively. As already observed 

in the first two examples, the higher the damping, the 

smaller the displacements. Figs. 26 through 28 were 

computed for -^2-o = 2415 rpm, tX. = 0.05 and for the values 
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of the dimensionless tension mentioned above. Fig. 26 is a 

schematic of the deflection of the shaft projected on the 

plane. Fig. 27 is the projection on the V 2. plane 

and Fig. 28 represents the bending stress along the shaft. 

The influence of the tension on the displacement and stress 

can be better understood by reference to Figs. 29 and 30. 

These curves are for a range of speeds which includes the 

second resonant frequency. As shown, an increase or 

decrease in the tension which brings the resonant frequency 

closer to the operational speed -D-o , will increase the 

displacement and bending stress. The value of the damping 

coefficient that fits best the parameters of the third 

example problem is = 0.05.
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Fig. 8 Solution of the Frequency Equation (5.21), Function f(k2) vs. k2 , 
for g=1510 and h-151 (5 in. ND, Sch. 80, L=800 ft)
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Fig. 10 Modal Moments
M'=(ML2/eIxo)10-2
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Table 1. Comparison of the Natural Frequencies (cpm) 
of a Shaft under Linearly-Varying Tension and one with 
Constant Tension (Average Value) for a Guided (Sliding) 
Shaft at the Bottom End and Simply Supported at the Top.

Frequency Linearly-Varying Constant

number Tension Case Tension Case

Diameter = 6 in. ND, Sch. 80 L = 200 ft

1 13.92 13.56

2 36.52 36.18

3 70.58 70.30

4 116.65 116.42

5 174.87 174.68

6 245.28 245.11

7 327.90 327.75

Diameter = 6 in. ND, Sch. 80 L = 400 ft

1 6.447 6.357

2 14.142 13.952

3 23.870 23.634

4 36.112 35.861

5 51.115 50.868

6 69.009 68.774

7 89.862 89.641

8 113.71 113.50

9 140.58 140.39

10 170.49 170.30

11 202.92 203.25
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Table 1 (continued)

Frequency Linearly-Varying Constant

number Tension Case Tension Case

Diameter = 6 in. ND, Sch. 80 L = 600 ft

1 4.535 4.631

2 9.496 9.589

3 15.101 15.159
4 21.559 21.564

5 29.012 28.966

6 37.562 37.477

7 47.285 47.171
8 58.233 58.101

9 70.497 70.302

10 84.026 83.797

Diameter = 6 in. ND, Sch. 80 L = 800 ft

1 3.619 3.810

2 7.463 7.743

3 11.593 11.915
4 16.113 16.429

5 21.093 21.372

6 26.582 26.816

7 32.657 32.818

8 39.608 39.424
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Fig. 11 Example Problem No. 1 - Displacement of the Shaft on the UZ Plane



.15
Di

sp
la

ce
me

nt

Fig. 12 ' Example Problem No. 1 - Displacement of the Shaft on the VZ Plane
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Fig. 13 Example Problem No. 1 - Total Bending Stress along the Shaft
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Fig. 14 Example Problem No. 1 - Maximum Displacement of the Shaft vs. Speed 
of Rotation
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Fig. 15 Example Problem No. 1 - Maximum Bending Stress on the Shaft vs. Speed 
of Rotation
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Fig. 17 Example Problem No. 2 - Displacement of the Shaft on the VZ Plane



Fig. 18 Example Problem No. 2 - Total Bending Stress along the Shaft
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Fig. 19 Example Problem No. 2 - Maximum Displacement of the Shaft vs. Speed 
of Rotation
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Fig. 20 Example Problem No. 2 - Maximum Bending Stress of the Shaft vs. Speed 
of Rotation co o
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Fig. 21 Example Problem No. 3 - Displacement of the Shaft on the UZ Plane 
for h = 2.16
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Fig. 22 Example Problem No. 3 - Displacement of the Shaft on the VZ Plane 
for h = 2.16



Fig. 23 Example Problem No. 3 - Total Bending Stress along the Shaft 
for h = 2.16
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Fig. 24 Example Problem No. 3 - .Maximum Displacement of the Shaft vs. Speed 
of Rotation for h = 2.16
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Fig. 25 Example Problem No. 3 - Maximum Bending Stress on the Shaft vs. Speed 
of Rotation for h = 2.16
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for c< = .05
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Fig. 27 Example Problem No. 3 - Displacement of the Shaft on the VZ Plane 
for c<=.05
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Chapter 7

SUMMARY AND CONCLUSIONS

This dissertation has presented an analytical 

investigation of the effect of tension on the dynamics of 

eccentric shafts rotating in fluid medium. Solutions were 

constructed using eigenfunction expansions. The eigen

functions were obtained from the associated free-vibration 

problem of an ideal shaft (with no eccentricity).

Solutions for two special cases of tension were 

derived, namely: (1) linearly-varying tension and (2) 

constant tension. The method of analysis, however, could 

accommodate any variation of tension with axial distance 

provided that it is not a function of time.

Displacement and bending stress were computed along 

the shaft for a specific speed -$-o • Also maximum values 

of displacement and stress at each speed were computed for 

a range of speeds which includes one resonant frequency.

It has been shown that the system is always bounded 

for a damped motion. For an undamped system it is unbounded 

at the resonant frequencies.

Comparison of the natural frequencies between a 
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shaft with linearly-varying tension and an identical shaft 

with constant tension (average value of the first) shows 

that they are nearly the same. Better agreement is 

observed at the higher frequencies.

Besides the change on the resonant frequency due to 

the damping effect, the surrounding fluid induces a further 

decrease on the value of the resonant frequency due to the 

lift force. For a small damping, most of the contribution 

to the total displacement and stress is due to the eigen

function (modal shape) corresponding to the nearest 

resonant frequency. However, for high damping the shaft 

has a tendency to deflect into a shape similar to the 

(smoothed) eccentricity function.

Considering a fixed speed of rotation Ql the 

following statement can be made concerning the effect of a 

change in tension: in general, there will be a decrease in 

displacement and bending stress if the change in tension 

moves the nearest resonant frequency away from the 

operational speed. Note that this is true for an increase 

or decrease of the tension.

Numerical results presented were obtained by 

including up to 11 eigenfuctions. The eigenvalues were 

calculated by the method of false position (secant method) 

using double precision mode on a 1108 Univac computer.
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Appendix 1

STEADY-STATE SOLUTION FOR A SHAFT WITH CONSTANT

TENSION USING FOURIER SINE TRANSFORMS

The differential equations governing the steady

state motion of the shaft are obtained from Eqs. (3.11) if 

one disregards the time-variable terms. Introducing the 

steady-lift force, given by (3.12), one has for the 

differential equations governing steady-state motion of the 

shaft

.2
•wio jZ v

(Al.lb)

Define now three complex quantities

W = U + A. V

e = <x + x b

= O0 + A. vo .

(Al. 2a)

(Al. 2b)

(Al.2c)
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Multiplying Eq. (Al.lb) by the imaginary unit x. and

adding it to Eq. (Al.la) yields

(Al. 3)

Consider only constant 

substitution L

4.
Eq. (Al.3) by 'W) L 

E I

tension I = I o . Making the 

and multiplying both sides of 

, one obtains

(Al.4)

where the following non-dimensional constants have been 

introduced:

Z (Al.5a)

(Al. 5b)

4- 
(A1.5c)

(A1.5d)
AHA

For a simply-supported shaft, the complex variable

W must satisfy the following boundary conditions:
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(Al.6 a,b,c,d)

Using the non-dimensional variable , the Finite

Fourier Sine Transform is defined as
f‘

w = / w(^) 11^, (Al.7)
o 

with similar expression for Wo and G . Then, 

applying the transform to Eq. (Al.4) yields

(Al. 8)

Solving for W and rationalizing leads to

w = e t -t- A x e

(/i41f4+ -^i

(Al. 9)

If the numerator and denominator are divided by , 

the following final expression for w is obtained:

_ X I & / (Al. 10)

since, according to Eqs. (Al.5), (5.28), (5.51) and (5.54),
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A A. 4-/^" A
/V 11 El f I = ^o.n =

S 4- 14- f)^' n-^-wi [_ JL -1L

_^-=—= ■
A

Applying the transform to Eqs. (Al.2) and substituting in

Eq. (Al.10), a separation of the real and imaginary parts 

yields the following expressions for U and V :

U = Uo)+ + Vo)

-rs1 \ -2- a(j?A

(Al.Ila)

(Al.11b)

The inverse Sine Transforms are defined as

(Al. 12a)

(Al. 12b)

Substituting Eqs. (Al.11) into(Al.12) one finds for the
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nondimensional displacements M and (after dividing 

by e )

(Al.13a)

It should be noted that Eqs. (Al.13) are the same

as (5.55) which were derived by modal analysis.



Appendix 2

EQUIVALENT VISCOUS DAMPING COEFFICIENT

OR LINEARIZATION OF QUADRATIC DAMPING

The damping coefficient used in the governing 

equations has been assumed to be linear. It's value can 

be obtained from the quadratic damping coefficient. 

Equating the energy dissipated by viscous and quadratic 

damping in one revolution of the shaft, the equivalent 

viscous damping coefficient can be determined. For steady- 

state motion the equality just mentioned is

L r"
l(2l[w)(C-rLwcL^) - I (2 11 w)(clJ15dy) (A2.1)

•o J°

where w is the total displacement of the shaft, always 
positive and d is the quadratic damping coefficient. 

Simplifying the above equation, the value of can be 

expressed as

c=<L£lI^Y_ .

J xX/'2 

pvvtSL , /L and theUsing
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non-dimensional form of the linear damping coefficient is

obtained.

(A2.2)

(A2.3)

According to Eqs. (5.40) and (5.55), the displacements

p (^ ) and Y* (^ ) are also functions of o . It follows 

that Eq. (A2.2) has to be solved for <>(<, by trial and 

error.

In what follows, a procedure is developed to find 

an initial value for o . For simplicity, a shaft with 

constant tension and simply supported will be used in the 

analysis.

lack of

(A2.4a)

(A2.4 b,c,d) 

given by

for A— 
for 71 13 '

Assume the following eccentricity and 

straightness functions:

this problem, 

(A2.4) , are

The characteristic parameters of

Eqs. (5.57)- (5.60) together with
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■*

Ca< o. (A2.5 a,b,c,d)

Substituting Eqs. (A2.5) into (5.55) yields

(A2.6a)

(A2.6b)

Further substitution of (A2.6) into (A2.3) leads to

(A2,7)

where the absolute value of the sine function has been used

for agreement with the definition of '‘JV .

The integrals involved in Eq. (A2.2) are then

(A2.8a)

(A2.8b)
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Introduction of these integrals in (A2.2) gives the

following equation for :

72,

This equation can be rewritten as

4- /A x-2- 4 8de = o.
31f 'Wi/

(A2.9)

the quadratic damping coefficientFor a circular shaft.

is defined as

(A2.10)

where is the mass per unit volume of the damping

fluid and is the drag coefficient for lateral motion
of a cylinder. Since Po = . 4, the last term of

irj>z

(A2.9) becomes

8cle = IC, Cn e (rL - i) (A2.li)

3 /I 'W) 3 i| D

where use of Eq. (5.24c) has been made.

Finally, if (A2.ll) is substituted into (A2.9) the

following bi-quadratic equation is obtained for oCo :

+ (R^ (r! -i)4c64Lel2' = O.
IK4 I 2>l (A2.12)
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For example problem No. 1, the eccentricity function

is comparable to the first mode, that is = 1. Using the 

geometric parameters defined for that problem

.67516
7.9500

= .084926 ,

1 + -222sl
/VV3

! + I5-35?. = 1.37908 ,40.498

1.2

0.1

values in (A2.12) yields the equationSubstitution of these

c<o + 1.882 °<o - .0006055 = 0,

from which

= .01871 .

With this value, the dimensional damping coefficient oC 

becomes

o< = C<OJL = .01871 x 7.9500 = .1487 sec.-1

Thus, the starting value <X = .15 should be used in the 

first problem.



Appendix 3

NON-DIMENSIONAL FORM OF DISPLACEMENTS AND

BENDING MOMENTS

The dimensional form of displacements and bending 

moments were shown to be expressed by
<x> oo

uq)=E Ua v<?), E Va. f;-)

/l»l 1 ^=1

OO oo
Muto) = El Z: -ET^u»(3) -Eld-iM-  

0 /1»| 1^4, J,Z ' A^I A, -2

Major changes occur in and ^n. when these expressions 

are transformed to a non-dimensional form. But \Zi can 

be easily obtained from ^Ja. . For this reason only (^ ) , 

non-dimensional form of U (^), is derived here. The other 

three variables, V (and Mp(^), can be 

written by inspection.

A3.1 Linearly-Varying Tension

Eq. (5.24a), repeated here for convenience, is

(A3.1)
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Dividing the numerator and denominator of the
a4-fraction by . yields

where

(A3.2)
n»i

and Eqs. (5.28) and (5.29),

respectively. Dividing now both sides of (A3.2) by the

arbitrary unit of eccentricity e and introducing , the

non-dimensional displacement |4 ) is

(A3.3)

in which J L , ^ (^ ) =

(5.30), respectively. Since 

obtains

u (^ )/e , Eqs. (5.6) and

4 . , from (4.25) one

Similarly,
i

(A3.6)

In the same way. Eq. (4.27) must be used to express .
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in which Eqs. (A3.5), (5.6) and (5.30) have been used.

Similarly,
i

= Ei । fAy.
K j= (a3'8

Comparison of the expressions derived here with those in 

Chapter 5, permits one to observe the agreement of the 

following pairs of equations: (A3.3), (5.40a); (A3.4), 

(5.43); (A3.6), (5.44); (A3.7), (5.45); (A3.8), (5.46) and 

(A3.5), (5.47). This establishes Eq. (5-.40a) for the 

non-dimensional displacement M (^ ) .

A3.2 Constant Tension

The dimensional form of U ( ) is given by Eq.

(5.52a), repeated here for convenience.

/)=./
(A3.9)
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The expression for M () is obtained by dividing the

numerator and denominator of the fraction in (A3.9) by 

and then both sides of (A3.9) by e_ . This yields

(A3.10)

in which use has been made of Eqs. (5.28) and (5.29), and

Ctzu> = ^-21

(A3.11 a,b,c,d)

As the modal shapes are sine functions, for this case, the 

expression for p (y) can be modified. Using Eq. (4.25) 

can be written as

= L^\a = L JAa ^_L_Aa z (A3.12)
But 

which yields

(A3.13)
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where

(A3.14)

Similarly

^AO — ^■'VO

A. (A3.15)

where

A* i) d,

-Z. <=> (A3.16)<> e

Eqs. (5.28), (A3.11c) and (4.27) will now be used 

to evaluate "RA ^-/vo , as follows:

L
Z

no

where Eqs. (A3.12), (5.6) and (5.32) were used in this 

derivation. Integrating by parts 4 times and simplifying 

yields

(A3.17)

since the function M»(^ ) must satisfy the boundary
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conditions of the problem. The third fraction in (A3.17) 

is the square of the natural frequency for a shaft with 

zero tension, i.e.

which can be obtained from (5.51). If the notation of

(5.54) is also introduced into (A3.17), one finally

obtains

(A3.18)

(A3.19)

Similarly,

A.

o

(A3.20)

(A3.21)

Substituting Eqs. (A3.13), (A3.15), (A3.18) and 
(A3.20) into (A3.10) and using = ?/L , the A/x, 

simplifies and the constant 2 can be moved in front of

the summation sign. The result is
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(A3.22)

This last equation is the same as (5.55a). The agreement 

can be observed by comparison of the following pairs of 

equations: (A3.14), (5.57); (A3.16), (5.58); (A3.19), (5.59) 

and (A3.21), (5.60). Eq. (5.55a) is thus established.
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Appendix 4

LISTING OF THE COMPUTER PROGRAMS

c R4 IN
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10
20

c 
c

MAIN 
COMPUTATION Of O?SPLACFMENTS» PENDING MOMENTS AND STRESSES CM AN MAIN

30
40

0 ECCENTRIC rotating shaft subject to linearly varying tension. main SO
c IN CONNECTION WITH THIS PROBLEM THE MODAL SHAPES ANO THE MODAL HAIN CO
c MOMENTS OF A HFAM ARE COMPUTED* ONE E.NO IS CLAMPED AND THE OTHER HAIN 10
f IS SIMPLY SUPPORTED. MAIN 80
c 
c

KAIN
DESCRIPTION of parameters HAIN

90
100

c KZ -ACTUAL VALUE FOR FIRST DIMENSION OF CU»CV,CRUfCRV« MAIN 110
c KA -SAMC AS KZ FOR SECOND DIMENSION. HAIN 120
c KS -SAME AS KZ FUR THIRD DIMENSION. MAIN 130
c RHODE -NUMOER OF TERMS USED IN THE SERIES. MAIN 140
c KCASE -INDICATES KIND OF PROGRAM RFQUIRED. MAIN 150
c KCASE*ltCUHPUTES 01SPLACEM5NIS ANO STRESSES FOR SEVERALM&IN 160
c VALUES OF AFOf AT A SPECIFIC SPEED. MAIN 170
c KCASE-2.COMPUTES MAXIMUM DISPLACEMENTS AND STRESSES ON MAIN 100
c THE SHAFT FUR SEVERAL AFO AT SEVERAL SPEEDS. MAIN 190
c KPART -INDICATES PART OF THE RESPONSE COMPUTED. MAIN 2 00
c KPARJ-l, ECCENTRICITY OF THE SHAFT IS CONSIDERED ONLY* MAIN 210
c KPART»2fONLY LACK OF STRAIGHTNESS IS CONSIDERED. HAIN 220
c KPART-3. tiOTH CASES AUOVE ARE CONSIDERED* MAIN 230
c RL -Lr.NGHT OF THE SHAFT MAIN 240
c CM -WflCHT PER UNIT LENGhT OF THE SHAFT* IN FLUID MEDIUM. MAIN 250
c T -TENSION AT THE BOTTOM OF SHAFT HAIN 260
c Al -INERTIA MOMENT OF CROSS SECTION AREA ABOUT A DIAMETER MAIN 270
c RM -MAiS PER UNIT LENGHT PARTICIPATING IN POTION MAIN 280
c OHG -SPEED OF ROTATION OF SHAFT MAIN 290
c DO -OUTSIDE DIAMETER OF SHAFT HAIN 3C0
c DI -INSIDE DIAMETER OF SHAFT KAIN 310
c E -YOUNG’S MODULUS HAIN 320
c ECC -ARBITRARY UNIT OF ECCENTRICITY* MAIN 310
c CSl -NONDIMENSION DISTANCE OF A SECTION. MATRIX* MAIN 340
c RIUZ -MATRIX, CONTAINS THE BENDING MOMENTS ON UOZ PLANE* DUB HAIN 350
c TO LACK OF STRAIGHTNESS. SUBTRACTED FROM FINAL M0MENTSHA1N 360
c RIVZ -SAME A$ ABOVE, ON VDZ PLANE HAIN 370
c CU -THREE-OlMFNStON MATRIX. DISPLACEMENTS ON UZ PLANE. MAIN 380
c FIRST DIMENSION POINTS DISTANCE ALONG SHAFT HAIN 390
c SEC'JNO OIHCNSION INDICATES AMOUNT OF DAMP INO. MAIN 4C0
c THIRD DIMENSION SPECIFIES THE SPEED ONG* MAIN 410
c cv -samf as amove, on vz plane. main 420
c CRU •TIIRtE-OIMEUSION MATRIX. 6EN0ING MOMENTS ON UZ PLANE. MAIN 430
c SAME DIMENSIONS AS CU. MAIN 4*0
c CRV -same AS ABOVE, ON VZ PLANE. MAIN 450
c N -.VUMRER OF TERMS USED IN THE SERIES SOLUTION OF THE BEAMMAIN 460
c OMCR -RTH NATURAL FREUULNCY, HAIN 470
c DR ^PARAHEIIR PROPORTIONAL TO OMCR MAIN 480
c HR -NORMALIZING CONSTANT* INTEGRAL OF SCUARE OF THE MODAL MAIN 490
c SHAPE MAIN SCO
c AR -RTh WEIGHTING PARAMETER,DUE TO ECCENTRICITY ON UZ PLANEMAIN 5)0
c BR -SAHb AS ABOVE FDR VZ PLANE, MAIN 520
c CR -RTH WEIGHTING PAKAHETfeR, OUE TO LACK OF STRAIGHTNESS ONKAIN 530
c UZ PLANE. MAIN 540
c DR -SAME AS ABOVE FOR VZ PLANE* MAIN 550
c AFO -AMOUNT OF DAMPING. MATRIX. MAIN 56C
c TH -MATRIX. TOTAL SENDING MOMENT AT A SECTION. MAIN 5 70

581 C SICOkE-HATRIX. MAXIMUM STRESS AT A SECTION DUE TO TH. MAH 5*0
591 C STCTwn-MATRIX* STRESS AT A SECTION DUE TO THE TENSION KAIN 590
60: c SIGMAZ-MATRIX. MAXtMuM STRESS AT A SECTION. IT IS EsUAL TO MAIN 6D0
6U C SIGUNE ♦ SlCfwO. PAIN 610
62: c PHI -MATRIX, CONTAINS THE MODAL SHAPE OF THE BEAM MMN 620
631 c PSIKZ -MATRIX, CONTAINS THE HDOAL MOMENT OF Th£ QfAM MAIN c.n
641 c YREL -MATRIX. NDNUIMFHSinNAL MODAL SHAPE. RATIO OF ACTUAL HAIN 6 ‘i 0
65: c AND MAXJPI/M. DlSTLACrMlNTS MMN 650
661 c PS) REL-MATRIX, NO.iDM'.NSICNAL MODAL MOMENT* RATIO OF ACTUAL P.A »•* 5 60
671 c AND MAXIMUM BcNl>!NG MOMENT MAIN a 7 'i
68: c OMGTAU-THPEE DtMfNSTUM MATRIX, TABLE OF RESULTS. MAXIMUM D!5P t «ATf 6<0
69: c AND STRESSES FOR SEVLRAL SPEEDS. TmI'ID DIMFNSICN POINT 5SA . N f-vy
7Ct c AMOUNT OF DAMPING. F'JM 703
lit c MAIN 710
721 c DESCRIPTIONS OF PARAMETERS IN SUBROUTINES DR FUNCTIONS ARE IKE ma:m 720
731 c SAME A$ IN MAIN PROGRAM MAIN 7
741 c MAIN 7<.O
751
762

*» r.

c M.’ IN 7A0
77: IMPLICIT DOUBLE PRECISION (A-H,O-n HAIN 770
78: DIMENSION AC 150),BII50),RA(15O),RPC1501,RIUZ<511fRIVZ(51> MAIN 7 30
79: DIMENSION PMHSl), PSIKZ (51 I, YREL (SD.PSIREL (51), AFO C 0 ) ,CS1C 511 MAIN 76Q
801 REAL CA(51,9>,CB<51,9),CC<51,9>,CF(30,6),CG(30,6) MA IN ano
811 c MAIN 610
B2: COMMON CUI51.5,15).CVf 5!,5,15),CRU(51,5,15)-CRVt51,5,15)*TM(51). MAIN P20
83: 1TDPK51),SIG0NE(51),SIGTWOI51),SIGMAZI 51),OMGTAU(15,5.8) MA ! V 8 30
84! c MAIM 8 40
85: KEX-0 MMN 850
86: 5 READ (5,81 KZrKA,KS* KMUDE,KCASt,KPART,INS,IOS MA :n 940
87: 8 FDRMAT(815) MAIN 2 70
681 WRITF (6.9) KZ.KA.KS, KMODE,KCASE,KPART,INS,1 DS MAIN 8B9
892 9 FORMATC’IKZ «»,I4.//,1X.*KA «•.J 4,//,IX,*KS *•. 14,//,IX* KAIN 040
90$ 1 •KMCOEa',14.//,U.'KCASE-’,I4f//,1X*’KPART»’,I4,//* MAIN 9C0
91: 21X,’INS ■’ , 14,//,IX. • 10$ -',14) PAIN 910
92: READ (5,10) GM,RL,T,RIfRH,DD,OI,E*JSTOPfCMG,RMO MA :h 920
931 10 FORMAT!7D1Q.4,/,D)5.4,15,2010.4) MAIN 930
94: KIX.Kex*i MAIN 9AQ
95: ECC»D0/10 MAIN 950
96: WRITE 16,20) RL,T*RI*RM,CKG,DO,DI,E,ECC*JSTOP,RHO,GM HAIN 960
97: 20 FORMAT!////,IX,’RLW’*026.IF,//,1X,’T -',D26.18,//*IX,•R!■’*026*1E .MAIN 9 TO
98: I//,1X *1RM«•*D26.18*//* 1X.’OMG-’,D25.18*//* I X *’DO-'*026.I 0,//* IX*’DMA[N 9£ 
99: 21*’*026. 18,//,1X,'E «'*026.18•//♦IX*’ECC*’,025.18*//* IX,1JSTOP-1 * HA’N 9'0

1001 33,//*IX,’RHO*',02$.16,//,IX,’GM-’,026.18) MAIN* oco
101: IF(J$TDP.EO.O| STOP INtOLO
10?: c MAIN’;020
1032 PI»3.14159265358979324 MAltll 0)0
1041 AF4(f.M»RL*»3)/(C»Rl) HAIN! 040
1052 B!»(T*RL»*2)/(l»Rt) MACNiOSO
1062 RMMS- WRHO/RM MA I^ICSQ
lor: WRITE 16,301 AF.DT.RMKS HA!’:-.0 70
106$ SO FORMAT(*0•*//*IX,»AF-e*036.16»//.IK*’BT-•,C26*18*//*IX*»RKMSet*D2 AMAIN)1050
1092 1*18) MAjMl 0*0
no: AFG(l>*0 MA IN11C0
iiu AF0(2Im80-2 MAJIdnU
112: AFQ(3)-l6D-2 MA IN 1 > *0
IB: AFO(4)»32D-2 MA INI I 30
1142 AF0(5)*L6D-l M/ IHH40

112



list 3* DO 35 !-UXA MA1N1150 1861 CO TO 100 MAIN1860
1161 35 kRIT6<6,36) It AFOID MAIN1160 1871 86 AR-AFCTRlNeAOfA,BO,8tSGASGB,ECC,RLtHR) MA IN 1870
H7t 36 FORMATI/ tlXt'AFOtSIlt •)«',016.8> MAINU70 188* BR-0 MA INI 880
1161 C NAINIIBO 1891 CR-CFCTR(N,AO,A,RO,B.SGASCB,RL,ECC|E,RI,R«.OMGR,HR) MAINtn90
1191 C INITIAL NOMENTSt DUE TO LACK OF STRAIGHTNESS MAINU90 190* DR-DFCTR(NeA0,A,B0,8,SGA$GB,RL,CCC,EeRltRM,0MGR,HR) MA1NJ9C0
1201 C NA1N120O 191* C NAIN1910
1211 IFCXPART.EQ.ll GO TO *5 NAIN121O 192* C CUMULATIVE DISPLACEMENTS CU,CV ANO MOMENTS CRU,CRV MA IN1920
1221 CONST—E*RI*ECC/RL*»2 MAIN1220 193* C MAIN1910
1231 WRITE t6t*0) MAIN12 30 19** 100 00 190 X-l,KS MAIN19*O
124.1 *0 FORMATI*! Z*,6X,•INITIAL MOMENTS ON UOZ RLANEet4Xt«INITIAL KOMENMAINI 2*0 195* IF(KS.EQ.l) GO TO 107 MAIN195O
1251 ITS ON VOZ PLANE*,/) MAIN1250 196* 0MGm(1NS*K)/IOS MA IN1960
1261 *5 DO 60 I-l,KZ MAIN1260 197* 107 DO 180 J-l.KA MA INI 1 70
1271 !REl«ll-l)*2 MAIN1270 198* PSS-((C)MGR**2-RMMS»OMG*»2)»(OMGR*»2*CR*OMG»»2*AR)*AFO(J)90M6»(OMCRMA|niG10
1281 CSHD-tREL/lOO FAIN128O 199* l«*2*OR*nMG»»2*»R))/I(OMGR**2-RMH$»nHG**7)*»2*AF0IJ1•♦2*0MG*»2) MA IN)970
129: IFIKPART.FO.U GO TO 55 KAINI290 2001 OSS-l 1 C1MGR**2-RMMS»OMG*»2 )• 1 OMGR • »2 ♦ DR*OkG-♦ 2 • DR ) - A f 0 ( J ) •Oe<G» tOMCRMA IN2CC0
1301 RIU2( 1 )«CUr4ST»l2O*CSH 1) ••3* 12«CS! I T )•♦2-*2*CSW I)*10) MAIN1300 201: 1**2*CR*OMC»*2»AR))/{10KGR**2”RMMS*UMC**2I**2*AFOI J)•*2•OMC**2 ) NA|‘;2010
13H RrvZH)sr.ONST»(lOOO»CSim»*3-1650»CSI(! l»«2*l*25/2»CSUI)-l25/2) HAIN1310 202* IFIXS.NE.L) GO TO 110 MA I »J20.’0
132* WRITE (6,50* IRELtRlUZm.RlVZIU MAIN132O 203* WR!T£16,109) J,AR,BR,CR,OR,PSS,OSS FAINJ030
133* 50 FORMAT(15,2032.16) MAIN1330 20*: 109 FORMAT(L2X, •J* *,1 1,2X,•AR-•,D11.5»2X,•BR-•,DIU5,2X,*CR»•,DI 1.5, 2XMA ’NZO^O
13** GO TO 60 MAINl3*0 205* 1,’OR-1,DI 1.5#2X,•PSS-*,011.5,2X,*OSS-*,011.5) MAIN7050
135* 55 RIUZ( U»0 KAIN1350 206* 110 DO 1*0 1-1,KZ MAIN20A0
136* R1VZ1 I)«0 KAIN136O 207* CUI l,J.K)-CUH,J,K)*PSS»PHHI) KA[N2v70
137* 60 CCriTlNUE MAIN1370 208: CVII,J,K)-CVII,J,K)*OS5*PHMI I MAIHCDfiO
136* C MAIN1380 209* CRUtI,J,K)«CRU(I,J,K)*C*Rt»PSS»PSIKZIT1 MAlN/btO
1391 C INITIALIZATION OF DISPLACEMENTS CUeCVt ANO MOMENTS CRUtCRV MAIN1390 210* CRV( I, J.K)=CRV( I ,J,K)*E»RI»QSS»PStKZm MAIN21C0
1*0* C MAIN1AC0 211* 1*0 CONTINUE MAIM*I 10
1*1 * DO 78 K-UXS MAlNl*10 212* IF(L.LT.KMOOE) GO TO 180 ha:n2I’o
1*2* DO 76 J»l,KA MAlNl*20 213* C KAiriznc
1*3* DO 7* l»l,KZ MAIN1A30 21*: CALL STRESSIRLtJtK.OO.DI.TfGH.AFOiOHGtPI,ECC,KZtXCASE.CF,CG,K6X, MA1N2LA0
1 ** * CU(l,J,K)-0 MA|Nl**U 215: IKS,CSI,RUE) MAIN215O
1*5: CV( I , J,X)*0 MAlhl*50 216* C MAIN2I60
1*6* CRUtI,J,XI-RIUZ<1) MAINl*60 217* GO TO 1151,180), KCASE MAJNJITO
1* r* 7* CRVI| , J.K )«R1VZ111 MA|N1*70 218* 151 WR!TE(6,152) J.AFOtJ) MATNSieO
1*8* 76 CONTINUE MAIN1*8O 219* 152 FORMAT!// ,lX,*AFQI*,n,*)**,D10.*) MA In;190
1*9: 78 CONTINUE MA|N1*9O 220* WRITE (6.15*) MAIN22C0
150* C MA1N1500 221* IREL-Il-l>*2 MA !N22i.O
151* C TERMS |N THE SERIES MAINL510 222: 15* FORMAT I//,3X,•Z*,6X,*CU(Z)•,1IX,1CV12)1,1IX,•CRU(2)•,10X,*CRV(Z) *,MAIS2220
152* C MA1NI52O 223* 17X,•BENDING MOMENT*,2Xt•BENDING STRESS*,2X,’TOTAL STRESS*,/> MAIN2230
153* DO 300 L»1,KMOOE MAUU53O 22*t DO 158 l-UKZ MA 1N22*O
i**: READ 15,90) N,QR MAIN15A0 225* WRITE 16,156) |REL,CU( I, J,K UCVCUUK UCRUt!,J,K UCRV(I,J,K) MAIN2250
155* 90 FORMAT!15.025.10) NAIN1550 226* l,TM( I ) .SIGONEU) ,SICHAZ( I) H,MN2260
156* OMGR-OR/<RL»*2)»D$QRT(E/RH*Rl) MA1N1560 227* 156 FORMATII*,7016.6) MAIN22 '0
157* omi;m»om(,r/p:»3o MAIN1570 226* 158 CUNTINUE MAI'l22tiO
156: WR!TEt6,92> L,N,OR,OMGR,OMGN MAINI560 2291 MAIK2290
159* 92 FORMATI//,IX,'MUUE NO.•*,12,*X,•N»•,13,*X,*QR**,026.18t*Xf•QMGR*• ,MA|N1590 230* DO 160 l-l.KZ MAI’42300
160* 1012.6,*X,>0MGh»*,Dt2.6) MA1N16G0 231* CAI 1,1)«CSH I > MAINZ 310
Ibl* C MAIN1610 232* CB{f,l)»CSH1) MAINZ 320
162* C CALL FOR SUBROUTINES AND FUNCTIONS HA1N1620 233* CCt UU-CSII t) MAIN233O
163* C MAIN1630 23*1 1F(DABSICUU,J,K) ) .LT. 10-36) CUI UJtKI-0 MA|N2**0
16** CALL CDEFFC(N,AF,BT,QR,AO,A,BO,8,RAD,RA,RB0,R8,JKAX) MA1N16*O 235* JFtDABStCVII,J,X)).LT.ID-361 CVIUJ.KJ-0 H* tN'2 3 50
165* CALL FREOUT1N»AO,A,hn,b,RA0,R*,Rb0,R8«SGASGB.OR) MAIN1650 236* IF ( SI GOVE I!) .LT. 10-36) SIGONEG )-0 MA IN?) 60
166* CALL MOOSUP(N,AO,A,8O|B,SCA$G8,RL»L,PHt,yO,YREL,KZ,CSn MA1N1660 237* CAU,JPU«CU( UJ,K)/ECC MAIN,13 70
167* CALL MDUMOMtN,HAO,kA,RBQ,RD,SGASCQ,RL»L,PSUZ,YO,PSlRELiKZtCSI) MA IM 1670 236* CDHrUPU-CVt I.J,K)/ECC MA|H2’.8O
168* HRuHFCTRIRL.PHUKZ) MAIN1660 239: 160 CC( 1, JPU-SIGUNE (I )/(E/RL»»2*R!/C0»*3*CCC) KA:N239Q
169* IFIKCASE.EQ.2) GO TO 81 MAIN1690 2*0* C MA tN2*00
170* , WR!TF(6,nB0) MAIN17C0 2*1* CALI ALFAOTIKZiTDPL,RR,PI,AFO,ECC,DO,JtRMOtOHG) MtIH2*10
171* aeo FORHA T (//, 1X » • CSI ,.HX,,PHPt15X,,PHIREl.‘ilZX,,MI«,1lZX,,PSlHAtMTlO 2*2* C MAIN2*2O
172* 1REL*,/) NA1N172O 2*3* 180 CONTINUE MA*N?*30
173* CO 885 l-UXZ NA1N173O 2**: C MA!N2**0
17** 885 WRirE(6,690) CSHl),PHHnr YREL (I) ,PSI KZ (I), PS 1REL < I) XAIN1740 2*5* 190 CONTINUE MAIN2*50
175* 890 F0RMAT(0l0.*,*DI6.a) MAIN175O 2*6* C MAIV?*6O
176: 81 GO TO 182,8*,06), APART MAIN176C 2*7* 300 CONTINUE MA!N2*70
177* 02 AR»AFCTRlN,A0,Af80,5,5G*SG8,ECC,RLtHR) MAIN177O 2*3t GO TO 1310,320), KCASE MAINZ*80
1781 8R-0 KAIN1780 2*9: 310 K*CDL-KA*1 M.« !N2*S0
179* CR-0 MAir«1790 250* CAl|. PLOT (10,CA,KZ,KACOl,101,0) MA IN25C0
1601 DR-0 MAIN1800 2511 CALL PLOT (20»Ce,KZ,KACnL,10UO) MAINZSIO
1611 GO TO 100 MAIN1810 252: CALL PLOT (30,CC,KZ,KAC0l,lOUO) MAINZSZO
162* 8* AR-0 MAIN182O 253* GO TO 5 MALv/S^O
1831 BK»O MAIN1R30 25** 320 DO 328 J-UKA MAtN25*0
18* * CR-CFCTR(N,AO,A,B0,8,SGASG8,RL«ECC,E,Rt•RMfOMGR,HR) MA LN 19*0 2551 WRITE (6,322) J,AFC(J) MA IN?550
1851 CR-*0FCTR(N,A0.A,8O,B,SG*SCB,RLfeCC,E,Rl,RM,0MGR,HR) MA1N1850 256* 322 FORMATI*! AFOi••U,•>»♦,010,*) MAIN2560
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25T: WRITE (6.326) XAIN2570 it SUBROUTINE FREOUTIN.AOtA.BO.B.RAO.RA.RBO.RB.SGASGB.QR) FP.ro 10
2581 32* FORMAT(///.6X,"OHG',8Xe•Z8ENOe,*X«•BENOMAX*,6X,»ZDPL•• 8X»e0PLMAX',MAIN2580 21 C FREQ 20
2591 1/3 MAIN2590 3t C THIS SUBROUTINE CHECKS THE FREQUENCY EQUATION FOR THE VALUE QR FREQ 30
2601 00 326 I-l.KS MA IN26C0 *1 C FREQ 40
261 : WRITE 16.325) OMGTAU(1»I.4>iOMGTAUII•2»J1.OMGTAUt1»3.J) lOMGTAUI!.*,MAIN2610 51 IMPLICIT DOUBLE PRECISION (A-H.O-Z) FREQ 50
262$ 1J).OMGTAUtI,5,J) MAIN2620 61 DIMENSION A<150).Bl 150).RAI 150),RBt150) FRIO 60
261: 325 FORMAT!5012,5) HAIN2630 71 SUMA-AO FREQ 70
26*1 326 CONTINUE MAIN2640 81 SUHB-00 FRCQ 00
2651 328 CONTINUE MA(N2650 91 5UHODA«6*AO FREO 90
2661 lF(KEX.NE.KEX/2*2) GO TO 5 MA1N2660 101 $UM0Dn-2*B0 FREQ ICO
2671 XACUL«KA*1 XAIN2670 11: DO 310 l»L,N • FREQ 110
2681 KST2-KS»2 MAIN2680 121 SUMAaSUMA*A<T) FRLQ 120
2691 CALL PLOT (*0,CFeKST2,KAC0L,88.0) MAIN2690 131 $UMB«SUMB*R( I) FREQ 130
2?0l CALL PLOT (50.CG.KST2.KACOL.88.0) MAIN27OO 1*1 $UMnnA»SUMOOA*RA(I) FREO 140
271: CALL PLOT (400,CF,KST2,KAC0L.120,0) MAIN271O 151 SUHODB=SUMGDB*RB(1) FREQ ISO
2721 CALL PLOT (500,CG.KSTZiKACOL,120.0) MATN2720 161 310 CONTINUE FP.EC 160
2731 GO TU 5 XAIN273O 17: SGASGftsSUHA/SUMB FREQ 170
27*1 ENO KAIN2740 18: FCTCR»SUMQOA-SGASGB*$UHODB FREO ISO

l»: RETURN FPEO 190
201 EMO FREQ 2C0

11 SUBROUTINE COEFFCIN.AF.BT.Q.AO,A.BO.B.RAOtRA.RBO.RBeJNAX) COEF 10
21 C COEF 20
31 C THIS SUBROUTINE COMPUTES THE COEFFICIENTS A(K) AND B<K> OF THE COEF 30
*1 C SERIES SOLUTION OF A VIBRATING BEAM COEF 40
5: C ALSO COMPUTES RA(K)•(K*3)•(K*2)*AIK) ANO RB(K)«(K*2)*(K*1)*B(K) COEF 50
61 C COEF 60
71 IMPLICIT DOUBLE PRECISION IA-H,O-Z) COEF 70
Lt DIMENSION AlL50),B1150).RAI ISO),RBI 150) COEF 80
9: 210 AO>1 COEF 90

10: A(l)»O COEF 100
11: A I 2)*BT/15*4) COEF no
121 A(3)«(3*AF)/|6*5**) COEF 120
13t A14 ) ■181*A12) )/(7*6)♦(4*AF*A{ 1))/(7*6*5)4(0**2*AOI/17*6*5**) COEF 130
141 RAD«6 COEF 140
151 RAI 1)*12»A( 1) COEF 150
>6: RA(2)»20*AI2) COEF 160
17: RA|3)■30*A ( 3 ) COEF 170
161 RAI*)«42«A(4) COEF 180
19t 80» I COEF 190
201 Bl 11-0 COEF 2C0
2i: Bl2)«fiT/(4*3) COEF 210
221 Bt3)-I2*AF)/I5*4*31 COEF 220
23: B(4)-(&T»BI2))/(6*5)4(3*AFe8a))/<6*5**)*<Q**2*B0)/(6*5*4*3) COEF 2 30
24: RBO-2 COEF 240
25: RBI l)»6*B(I) COEF 250
26* RBI2)-12*8(2) COEF 260
271 RR(3)»20*8(3) COEF 270
28: R0(4)«3O*B(4) COEF 280
291 225 DO 289 K-5.N COEF 29Q
301 AtK)-A(K-2)/(K*3)*8T/(K*2)*A(K*3)/(K*3>*AF/<Kt2)*K/(K*l)*A<K-*)9Q/C0EF 3C0
3i: ll(K»l|tlKi711»Q/(|K»U*Kl COEF 310
32: IF <A(K).LT..10-24) AIK)»O COEF 320
33: 8IK)»9(K-2)/CK*2 )*8THK*1 )*9(K-3»/<K*2)»AF/(K*l)*(K«l)/K*8(K-4)*Q/(.CtF 330
34: 11 (Kt?)*lK*n )*0/(K*(K-M ) COEF 340
35: IFIB(K).LT».ID-24) B(K)*Q COEF 350
36: RAIK)»(K*3)*<K»2I*A(K) COEF 360
371 RH<k)-(k*2)»(K*1)*B<K) c°rF 370
381 289 CONTINUE COEF 3C0
SO: JP.AX-2 COEF 390
*0: APAX-AI2) COEF 400
*U DO 270 KK-3.N COEF 410
*2: IF(amax-auk) ) 260.270,270 COEF 420
*31 260 Ahax.A(KK) COEF 430
44 1 JMAX-KK COEF 4«,0
*51 270 CONTINUE COEF 450
*61 RETURN COEF 460
*71 ENO COEF 470

It SUBROUTINE MOOSHPCN,AO.A,BO.BtSGASGBfRL,L,PHf,YO,YREL,KZ,CSt) MOOS IO
2: C WOOS 20
31 C THIS SUBROUTINE OBTAINS THE MODAL SHAPE CORRESPONDING TO FREQ.DMGRMOCS 30
*: C MOOS 40
5: IMPLICIT DOUBLE PRECISION (A-H.O-Z) MODS 50
61 DIMENSION Al ISO).01150),PHI( 5D.YRELI 51), YABSI 51),CS!(51) MOCS 60
7t DO 480 I-l.KZ MOOS 70
e: PHI 11 )«A0*CSH I )**3-SGASGB*BO*C$H I )**2 MOOS 80
91 DO 450 M-l.N MODS 90

lot PH 11!)«PH|11)*A(M)*CSI11)♦*IH*3)-SGASGD*BIH)*CS! I I)**CM*2) HODS ICO
in *50 CONTINUE POOS no
121 *60 CONTINUE MOOS 120
13: CO 485 1*1.KZ MODS 130
141 *85 YABSI M«DABS(PH! 1 II) MOOS 1-10
151 YOeYAtiSCl) MODS 150
161 DO 486 1*2,KZ MODS 163
171 *86 Y0*DMAXllYD,YABSII)) MCrS 170
161 DO 491 1-1,KZ MCCS 180
19: YRELID-PHIIM/YO MOBS 190
201 *91 CONTINUE MOOS 2C0
2U RETURN MODS 210
221 ENO PCOS 220

It SUBROUTINE MOOMOM(N,RAO,RAeRBO,RO.SGASCBlRL,LiP$!«Z*YOePSIRElfKZ,CMDCM 10
21 lsi) xoih 20
3t C MODH 20
*: C THU SUBROUTINE OBTAINS THE MODAL MOMENT CORRESPONDING TO FR» OHGRMur.H 40
5t C MOL'M 50
61 IMPLICIT DOUBLE PRECISION IA-H.O-Z) MOCK 60
71 DIMENSION RA( 159) .RBIlfO) .P$1KZ( 51),P$tREL< 5U,CSI<5U MO.M 70
Si PSIKZIII* -SGA$GB*RQ0/RL**2 MOCK 00
9c PSIRCLI U-PSIKZH |*RL»*2/Y0 nook 90

10: DO 5R0 1*2,KZ MCCM 100
IM PS!KZm*RAO*CS!IU-SGASGB»RBO MOCK no
121 DO 550 M*l,N HOOK 120
131 PSTKZU )*PSIKZU )*RA(M)*CSm )♦• (M*1 )-SGASGB*RBIM)*CS111 )**M MOCK 130
141 550 CONTINUE M0CM no
I5t 5*0 PS1KZU)*PSIKZU)/RL**2 MCOM 150
16: PSIRELI I )*P$tKZm*RLe*2/V0 KODM 160
171 580 CONTINUE WTH 170
181 RETURN HOCH ICO
19: ENO KOCK 190

114



11 COUBLC PRECISION FUNCTION AFCTRIN,*0,A,80,6,SCASG8tECCeRUHR) AFCT 10
21 C AFCT 20
31 C AFCTR IS A WEIGHTING FUNCTION* DUE TO THE ECCENTRICITY ON PLANE AFCT 30
*i C uoz. AFCT *0
51 C AFCT 50
6i C FIRST EXAMPLE AFCT 60
71 C AFCT 70
6i IMPLICIT DOUBLE PRECISION (A-H,O-Z) AFCT 60
91 DIMENSION M150>.611501 AFCT 90

101 *FCTR-(3**5~2**6*l)/{5**»*»**)*AO-SGASGB*(3«»*-2**5*l)/(*»3»**e3)<• AFCT 100
111 160 AFCT 110
121 DO 710 KN-l.N AFCT 120
131 AFCTR-AFCTR*{3e*tKN*5)-2»*(KN*6)*l)/((KN*5)»<KN**)**9*tKN**)>eA(KNAFCT 130
1*1 l)-SGASGB»(3**(KN**)-2**lKN*5)*l)/l(KN**)•<KN*3)•*••(KN*3)>»81KN> AFCT 1*0
151 T10 CONTINUE AFCT 150
161 AFCTR«AFCTR*ECC*RL/HR AFCT 160
171 WRITE (6,720) AFCTR AFCT 170
181 720FORM*T('0 AFCTR-«,026.18) AFCT 180
191 RETURN AFCT 190
201 END AFCT 200

If DOUBLE PRECISION FUNCTION CFCTRIN,AO,6,80,8,SGASGB,Rt»ECC,ltRURM ,CFCT 10
21 10MGR.HR) CFCT 20
31 C CFCTR IS A WEIGHTING FUNCTION. DUE TO THE LACK OF STRAICHTENESS OKCFCT 30
*t C PLANE UOZ. CFCT *0
51 C CFCT 50
6: C THIRD EXAMPLE CFCT 60
7i C CFCT 70
at IMPLICIT 0CU8LE PRECISION (A-HrO-Z) CFCT eo
91 DIMENSION A(L50), 61150) CFCT 90

10$ CFCTR«25/20*A0-SGASG8*19/12*00 CFCI too
111 DO 910 KN«l,N CFCT 110
121 CFCTR«CFCTR*(6*KN*25>/I(KN*5)»IKN**))»A<KN)~SGASGB*(6*KN*19)/((KN*CFCT 120
131 1*)*IKN*3) )»BIXN) CFCT 130
1*1 910 continue CFCT 1*0
151 CFCTR«CFCTR»2*/RM»E/RL»*3*RI/0MGR**2*ECC/HR CFCT 150
161 WRITE (6,920) CFCTR CFCT 160
171 920 FOPMtTt'O CrCTR-SOZe.lB) CFCT 170
let RETURN CFCT 180
191 END CFCT 190

11 DOUBLE PRECISION FUNCTION 0FCTR(N,AO,A,80,6,SGASG8,RLeECC,Ei*1,^>l ,OFCT 10
21 1QNGR.HR) DFCT 20
31 C DFCT 30
*» C CFCTR IS A WEIGHTING FUNCTION DUE TO THE LACK OF STRAIGHTNESS ON DFCT *0
51 t plane VOZ. DFCT 50
61 C DKT 60
7$ C THIRD EXAMPLE DFCT 70
81 C DFCT 80
91 IMPLICIT DOUBLE PRECISION U-H.0-Z) DFCT 90

101 DIMENSION A( 150). 81 150) DFCT 100
111 CFCTR-7b/2O*AO-SGA$GB»*8/12*8O CFCT 110
121 DO 1010 KN«UN DFCT 120
131 DFCTR-OFCTR*l27*KN*75)/((KN*5)*(KN**))•A(KN)-SGASG8»I27*KN**8)/<(KDFCT 130
1*1 1N**)*(KN*3))»6(KN) DFCT 1*0
151 1,010 C')NT1NUE DFCT 150
16$ CFCTR -«DFCTR*100/RM*E/RL*»3»RI/0MGR*»2»eCC/HR DFCT 160
171 WRITE (6,1020) DFCTR DFCT 170
18: |,020 FObMATPO DFCTR** ,026.161 DFCT I BO
193 re turn DFCT 190
201 ENO DFCT 200

11 DOUBLE PRECISION FUNCTION HFCTR <RL,PHI,KZ) HFCT 10
21
31

C HFCT
C THIS FUNCTION COMPUTES THE INTEGRAL 10.L) OF THE SQUARE OF MODAL MFCT

20
30

*t 
5t 
61 
71 
8$ 
9x 

101 
lit 
12$ 
13$ 
l*t
15:
16: 
17$ 
18: 
19$ 
20$ 
211 
22: 
23$ 
2*: 
25$ 
26$ 
27$ 
28: 
291

11 
2$ 
3t

C SHAPE, HFCTR*lNT/(PHt(Z))»»2*0Z/.
C

IMPLICIT double precision ia-h,o-z> 
DIMENSION PH!( 51), PHISQRI 51)
DO 605 t»l,KZ 

605 PH ISOR11)■(PH 1(I))»*2
SUMA«19*(PH IStiRI1)*PHISQRCKZ)) 
SUMR-0 
KZM5»KZ-5 
DO 630 K!»6,KZM5r5 

630 SUMa»SUMD438*PHlS0R(Kl) 
SUMC«O 
KZM3=KZ-3 
DO 635 KJ«3,KZM3,5 
KK-KJ+1 

635 SUMC-SUHC*50*(PHlSQRtKJ)-»PH!SQR(KK)) 
SUMD=0 
KZM*=KZ-4 
DO 6*0 KL*2,KZM*,5 

• KM»KL*3 
6*0 SUMO»SUHO*75*(PHISOR(KL)*PHISOR(KM>) 

MFCTR»RL/2880*(SUMA*SUH8*SUMC*SUM0) 
WRITE (6,650) HFCTR 

650 FORMAT!//, IX,•HFCTR-♦,026.18) 
RETURN 
ENO

SUBROUTINE ALFAOKKZ ,TDPL,RM,PI ,AF0,ECC,D0, J, RMO, 
C
C THIS SUBROUTINE CHECKS THE ASSUMED VALUE ASSIGNED

HFCT 
HFCT 
MFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT 
HFCT
HFCT

DKG) ALFA
ALFA 

TO THE DAMPING ALFA

*0 
50 
60 
70 
to 
90 

100 
110 
120 
130 
1*0 
150 
160
1 10 
leo 
190 
2C0 
210 
220
2 30 
2*0 
250 
260 
? 70 
200 
290

10 
20 
30

*: 
5$ 
61 
71 
8$ 
9$ 

10: 
11$ 
12$ 
13: 
1*: 
151 
16$ 
171 
183 
191 
20: 
2lt 
22t 
231 
2*t 
25: 
261 
27$ 
28$ 
29$ 
30$ 
311 
32: 
331 
3*1 
35: 
361 
37$

C COEFFICIENT AFQ
C 

IMPLICIT DOUBLE PRECISION lA-H.O-Z) 
DIMENSION TOPLI 511, FCTI 51), W(3),AF0(8>

C 
DO 660 M-2.3 
DO 610 1-1.KZ 

610 FCT(I)«(TDPL(I))*«M 
620 SUMA»l9«(FCT(l)*FCT!KZ)) 

SUMR-0 
KZM5-KZ-5 
DO 630 1-6.KZM5.5 

630 $UMB=SUMB*38»FCT(I) 
SUMC-0 
KZMJ-KZ-3 
DO 635 l*3,KZM3,5 
IPl-lFt

635 SUM.C-SUMC*5C*(FCT|D*FCT(IPU) 
SUMO-0 
KZHA-KZ-A 
DO 6*0 K*2,KZK*,5 
KP3*:X*3

6*0 SUMD-SUMD*75*(FCT(K)*FCT(KP3)) 
W(M)«SUMA*SUH6*SUMC*SUMO 

660 CONTINUE
C
C NEW AFO FOR SHAFT ROTATING IN SEA-WATER
C ECC/OO-.l ANO CO-1.2
C

RAFO-2/P!*RM0/RM»U2/00«0MG/W(2)•«(3) 
WRITE (6,6701 AFO(J), RAFQ

670 FORMAT I///.IX,<AFO(*,010.*,*)■•,DIO.*) 
RETURN 
FNO

ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
Al FA 
ALFA 
ALFA 
ALFA 
ALT# 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA 
ALFA

*0 
50 
60 
70 
eo 
90 

100 
110 
120 
:?o 
1*0 
150 
160
1 70 
180 
190 
200 
210 
??3 
230 
2*0 
250 
260
2 70 
2R0 
290 
300 
310 
320 
3?0 
3sO 
350 
360 
370

115



It SUBROUTINE STRESS(RL|J>KtDO,01•T»GM»AFO»OMGtFf.eCC,KZ,KCASEfCF» STRE 10 1: DOUBLE PRECISION FUNCTION AFCTRlN,AO,A,R0,B,SGASG8,ECC,RL,HR) AFCT 10
21 ICG,KEX,KS,CS!,RI,E> STRE 20 2: c > FCT 70
31 C STRE 30 3: c AFCTR IS A WEIGHTING FUNCTION, DUE TO THE ECCENTRICITY ON PLANE AFCT 30
Al C THIS SUBROUTINE COMPUTES THE STRESSES (MAXIMUM AT A SECTION) ALONGSTRE *0 *: c uoz. A FCT
5i C THE SHAFT. ALSO POINTS THE MAXIMUM STRESS ANO MAXIMUM 01SPLACEMENT5TRE 50 5: c AFCT 50
*i c ON the shaft. SIRE 60 6: c SECOND EXAMPLE AFCT L 0
It c STRE 70 7: c A FCT 70
ei IMPLICIT DOUBLE PRECISION (A-H,O-Z) STRE 80 8: IMPLICIT DOUBLE PRECISION IA-H,O-Z) A fCT .10
91 REAL CF(30,6),CGI3O,6) STRE 90 9: DIMENSION At 150),0( 150) AFCT

10x DIMENSION AFO(ti),CSI(51) STflt- 100 10: ArCTR■(***6-3»♦*—l)/(*•****)•AO-SGASGA«t***3-3*«3-l)/(3****3)*BO A f Ct 100
li: c STRE 110 lit OU 710 KN*1,N A FFT 110
121 COMMON CUI51,5,15),CVf51,5,15),CRUl51,5,15),CRV<51,5,151,TM<51)• STRE 120 12: ArCTR« AFCTR *(<•••< KH-tA l-3»« IKN»A I-l > Z ( 1 KN «* KN»4 1 )«*( KN)-Sr.ASC-t Ftr I 23

1TDPLI51)♦SICONEI51),SIG TWO!51),SIGMAZC51UONGTAUI15,5,8) STRE 130 13: l6*(***(KN+3)-3«*(KN+3)-l)/((XN+3)•*•♦(KN+3))*B(KN) A FCT I 30
L*i c STRE 1*0 1*: 710 CONTINUE A rry
lit DO 1110 l«l,KZ STRE 150 15: AFCTR-AFCTR*ECC*RL/HR AFCT
16t 1U0 SIGTwDI I) ■*/?!»( T*GM*CSHU*RL)/lD0*»2-0l*»2) STRE 160 16: RETURN
17: S!CMX<0 STRE 170 17: ENO AFCT
19: 2ZMX*0 STRE 180
19: DO 1160 I»!,XZ STRE 190
20: THH ) •DSORT HCRUt I, J ,K )) ••2*( CRV( I, J,K)) «e2) STRE 200
2Lt SI CONE I I )«32*DO»TMH)/(PI»IDO»**-OI*»*) ) STRE 210
221 SIGNAZm-SICONEU ) ♦SIGI MOI 11 SIRE 220
231 !H SIGMX-SIGMAZlI)) 1150,1160,1160 STRE 2 30
2*t 1150 S!GHX«SIGHA711) STRE 2*0
29: Z2MX=tl-D/50 STRE 250
251 1160 CONTINUE STRE 260 1: DOUBLE PRECISION FUNCTION BFCTR(N,AO,A,BO,B,SGASGeiECC,RL,HR) BFCT 10
27: 66NOMX«S1CONEII} STRE 270 2: c f!'-CT 20
281 ZBEND’O „ SIRE 280 31 c BFCTR IS A WEIGHTING FUNCTION, DUE TO THE ECCENTRICITY ON PLANE BFCT 30
29: DO 1180 1*2,KZ STRE 290 At c VOZ. b^CT *0
301 C-BfNnMX SIRE 300 51 c BFCT 50
311 B(HDMX,U**AXt {BEN0MX,SlG0NEm > STRE 310 6: C SECOND EXAMPLE B?CI 60
32: IFIC.LT.bENDMX) ZBENO-11-1)/50 STRb 320 7: c BFCT 70
331 1180 CUN IINUE STRE 330 6: IMPLICIT DOUBLE PRECISION (A-H,O-Z) O'CT 30
3*t DU 1190 !*1,KZ STRE 3*0 9: DIMtNSION Atl50>, 3(150) BrCT 90
35: 1190 TDPLI 1 )«0s0RT(tCU(UJeK))»*2*(CVtl,J,K))O2) STRE 350 10: BFCTR-(J*»*-2»»*)/(6**»**)»AO-SGASGD»(3»»3~2*»3)/(3*A*»3)»BO B^CT ICO
361 DPL.<X»TDPL<1> STRE 360 11: DO 810 KN«1,N BFCT I 10
37: ZOPL-O STRE 370 12: BFCTR-BFCTR* ( 3«» (KN^* )-?*♦ (<)<♦*) )/( • KN*6 )♦*••( KN+ 6 ) ) *A(KNl-SGASGB ♦BFCT 120
38: CO 1198 1-2,XZ STRE 380 13: l(3»*tKN*3)-2»*(KN*3>)/(tKN,3)»**e(KN*3))»B(KN) ReCT
391 D-DPLHX STRE 390 I*: 810 CONTINUE b'".T P.O
*0: OPLMX-DMAXlIOPLHX.TDPLd ) ) STRE *00 15: BFCTR*OFCTR*ECC*PL/HR BFCT 1 50
*1$ IFIU.LT.DPLMX) ZOPL-1 I<!»I )/50 STRE 610 16: RETURN BFCT
A2: 1198 CONTINUE STrE *20 17: END BFCT 170
*3: C STRE *30
*A: CO TO (1130,11*0),KCASE STRE **0
*51 1130 MRITE (6,1135) AFO(J I•Z8END,8ENDMXeZDPL,DPLMXeZZMX,SICMX STRE *50
*61 
*7:

1135 FORMAT!//,IX,‘AFO-*♦DIO.*,/,IX,,HAX. STRESS ZBEND-*•D10.*,*X,•
1 ENDMAX.',OI2.6,*X,'MAX. 01SPL•1»*X,'ZOPL••,010.6,AX,'OPLMAX-•,012

8STRE
• STRE

*60
*70 Note: The subroutine PLOT is

*a: 26,/,IX,'TOTAL MAX, STRESS ZZMX-',0l0.*,6XeeSIGMX**f012.6) STRE *80 ilable in the IBM 360 Scientific*9: GO TO 1280 STRE *90 ava
sot 11*0 OMCTAUU, 1, J )«OMG STRE 500

52:
OxGTAU I X,2,J)■ZOENO 
UMf,TAU{K, 3,JI«BEN0MX

STRE
STRE

510
520 Subroutine Package.

531 OMGTAUIK,*,J)-ZDPL STRE 530
5*t 0MGTAU(K,5,J)>OPLMX STRE 5*0
55: iriKEX.EU.XEX/2*2> GO TO 11*5 STRE 550
56: CFtK,1)«0mg/P(»30 STRE 560
57: CG(K,I)"OMG/Pl»30 STRE 570
53: JP1-J+1 STRE 580
59: CF(K,JPi)-OLOGlO(OPLMX/ECC) STRE 590
60: CG(K,JPi)"DLOG1018EN0MX/(EeRl•ECC/(RL**2*D0AA3)11 STRE 600
6W GO TO 1280 STRE olO
62: 11*5 KS^K.KStK STRE 620
631 CF(KSP^,l).0HG/Pt»30 STRE 630
6*: CG(KSPK,U-CMG/PM30 STRE 6*0
65: SFPE 6d0
6'a CFIK5PK,JP!)-OLOGlO(DPLMX/ECC) STRE 660
671 Cr,!KSPK,JPl).DLOG10l6EN0HX/(EARI»ECC/(Rt6A2A00A»3)>) STRE 670
68t 1280 RE TURN STRE 680
69: END STRE 690

91
1



It 10
21 c this program calculates the natural frequencies of a seam subject main 20
3J C TO LINEARLY VARYING TENSION. MAIN 30
* ! C THE MAIN PROGRAM PLOTS THE FREQUENCY EQUATION AS A FUNCTION OF Q. MAIN 40
51 C The SUBROUTINE NATFRQ DETERMINES THE ROOTS OF THE FREQUENCY MAIN 50
61 C EQUATIUN FROM TWO CONSECUTIVES VALUES WITH OPPOSITE SIGNS OF THE MAIN 60
7 x C EQUATION. MAIN 70

91 IMPLICIT DOUBLE PRECISION lA-H.O-Z) MAIN 90
101 01 MENS I OH A(250).01250 I,RAI 250),RBI2501 MAIN ICO
111 READ S.GM.RU.T.RI.E.RM MAIN no
12: . 5 F0RHATI4F10.4,F15.4.F10.4) MAIN 120
13x PRINT 20,GM,RL,T,RI,E.RH MAIN ISO
lit 20 FORMAT I'O',026.16.//.1X,•RL*•»026.16,//.IX,«T ,026.IMA IN 140
151 18,//, IX, 'RI**,D26.U,//,1X,«E -',026.18,//, IX,'RM** ,026.18) MAIN 150
16: 25 READ 30,N,MIT MAIN 160
1T1 30 F0RM4TI214) KAIN 170
18: PRINT 40,N,MIT HAIN ieo
19: 40 FORMATI*0','N - 1,I 4,//,IX,«MtT-•,14) MAIN 190
20: IFIN.EC.O) STOP MAIN 2C0
211 AF»<GM»Rl♦♦3)/tE*RI) HAIN 210
221 Br-(r*RL»*2)/IE»Rl) RAIN 220
21: PRINT 45,AF,dT HAIN 230
2*: 45 FORMAT('O',//,IX,'AF,026.18,//•IX,•BT-•tD26.IB) MAIN 240
25i 01--.101 MAIN 250
261 Fl’.1002 MAIN 260
271 PRINT 42,01,Fl MAIN 270
281 42 FORMATI'I VALUES OF 01 AND Fl FOR INITIALIZATION ONLY Ql«»,026.1MAlN 2S0
291 18,6X,»F1«»,026.181 MAIN 290
301 JJ»I MAIN SCO
311 JK’101 MAIN 310
32: Jl-2 MAIN 320
33: NCOUNT-l MAIN 330
3*: GO TO 48 MAIN 340
35t 46 JJ-103 MAIN 350
361 JK-20L MAIN 360
371 JL-4 MAIN 370
sat CO TO 48 MAIN 360
39t 47 JJ-205 MAIN 390
*o: JK-300 MAIN 400
*11 JL-8 MAIN 410
*21 48 00 99 J-JJ,JK,JL MAIN 420
*31 C2-J-1 MAIN 430
4*1 JPRINT-1 KAIN 440
*5: CALL COEFFCIN,AF,BT,Q2,A0,A,B0,8,RA0,RA,RB0,R8,J,JPRINT) HAIN 450
46: JTEST■IJ~1)/100®100 HAIN 460
4.7 i SUMA-AO MAIN 470
*0t SUMtt-BO MAIN 480
*91 SUM00A»6»A0 MAIN 490
50: SUMO0rt«2*B0 MAIN SCO
511 IF(jirsi.NE.J-l) CO TO 51 MAIN 510
52: IFUPPlNr.EO.23 CO TO 51 MAIN 520

PRINT 50»SUMA.$UHB,SUMOOA,$UMODB MAIN 5?0
54t 50 FORMAT!»0 L1,13X,1SUMAe,2*X,'SUMS*f23X,•SUXODA*,22X,•SUXODB,e//.MAIN 540
551 14X,'0*.4028.IB) MAIN 550
561 51 CO 89 1=1,N MAIN 560
571 SUMA«SUMA»A(!) MAIN 570
58: SUHB*SUHu»niI 1 KAIN 580
593 SUPOOA«sumODA*RA(!) MAIN 590
603 SUMUim- J,UP-U)8*RBl 11 MAIN 600
Li 1 IFUTtSI .NE.J-U GO TO 89 MAIN 610
621 IF URP INT .10.21 CO TO 89 MAIN 620
631 PRINT 60, 1,SUHA,SUHe,SUMOOA,SUNOD» HAIM 630
6* i 60 FURHATI I 5,4028,18) MAIN 640
65: B9 CONTINUE MAIN 6
66t F2rS'jMUOA-SUMA/SUMB»SUMOOB MAIN 660
67: PRINT 7O,G2.F2 MAIN 670
681 70 FOkHlTl-O 0»,,026.10l6X,,FCTO««1026.ie> MAIN 680
69? F12-F I*F2 MAIN 690
701 IFIF12) 110,120,130 MAIN 7C0
7? : 110 CALL NATFR0lN,MlT,AF,ST1Ql,Fl,Q2,F2,J,kL,e,llltM> MAIN 710

72v co to no MAIN 720
731 120 1F(F2*1O) 130,123,130 MAIN 730
74t 123 PRINT 125,02,F2 KAIN 740
75: 125 FORMATt'O ROOT LOCATED, 0-e,026.18,6X,'FCTO-•*026.18) PAIN 750
76: CMEGAR»02/(RL**2)-DSQRT(E/RM®R11 MAIN 760
77t RPM=OMEGAR/t2-3.141592653589793)*60 MAIN 770
78: PRINT I26,OMEGAR,RPM MAIN 780
79: 126 FOPMAT I 'O',12X,•aHEGAR-*,O26.18,//,16X,eRPH-•,026.18) MAIN 790
60: 130 01 = 02 MAIN 8C0
81: F1-F2 MAIM 810
82: 99 CONTINUE MAIN 820
833 NCOUNTeNCOUNT*1 MA IN 820
84: iriNCOUNT.EQ.2) 60 TO 46 MAIN 840
85: IF(NC0UNT.EQ.3) GO TO 47 MAIN 850
86: PRINT 100 HAIN 860
873 100 FORMAT!'0 VALUES OF Q EXAUSTEDM MAIN e zo
88: CO TU 25 MAIN 980
39: END MAIN BYO

It SUBROUTINE C0EFFC(N,AF,BT,0,A0,A,B0,B,RAC,RA,R80,R8,J,JPRINT) COFF 10
2: C THIS SUBROUTINE CALCULATES THE COEFFICIENTS AIK) AND BIK) COEF 20
s: c ALSO CALCULATES RA1KI-(K + 3)•(K + 2)-A IK> ANO RO IK)*IK*2)•IK*1)♦8(K) COEF SO
41 IMPLICIT DOUBLE PRECISION (A-H.O-Z) CGCF 40
5: DIMENSION A( 250),B1250),RA(250),RBI250) CCEF 50
6: JT6ST-U-D/100-100 Cr-EF 60
71 IF!JTEST.NE.J-l) GO TO 210 COEF 70
e: IF(JPR(NT.E0.21 CO TO 210 CCCF 80
9t PRINT 200,0 COEF 90

lot 200 FORMATCI ENTERING SUBROUTINE COEFFC FOR 0-1,026.18,//•4X,*K•,13X ,COEF ICO
lit l,A<K|',24X,*B<K)',23X,'RA(K)«,23X,*R8tK)t) c?:f no
12: 210 AD-1 CCCF no
1st COEF 130
1*: Al2)-BT/!5»4) CO£F 140
15: A I 3 ) - I 3•AF)/f6®5*4) COIF ISO
16$ A«4)»IBT»A(Z))/(7»6)*{4-AF9A<l))/(7*6»5)*(Q®*2»A0>/(7®6*5»4) COEF 160
1/t RAD*6 COEF 170
18: R4(l>-12»A(l) COEF 180
193 FA(2)»20*A!2) COEF 190
20: RAI3)-3Q»A(3> CCEF 2C0
2U RAt4)*42-AC4) COEF 210
221 80-1 COEF 220
231 BIU-O COEF 230
24: B(2)-BT/f4*3) COEF 240
25: fi(3)*(2»AF)/(5»4»3) COIF 2 50
26: 8(4)=(8T»8t2>)/(6*5)*<3*AF»8(in/(6e5*4)4(Q*»2*80l/(6*5*4»3> CCEF ?60
27: Rpo*: co e:: ?70
28: Rnm»6*Bm CCCF 290
?9t PRI2)«IZ»H(2) COEF 290
30: RBI3)=20*0l3) CHEF 300
3i: RBI 4)«30*8141 CL'EF 310
32: IF!JTEST.NE.J-l) CO TO 225 COEF 320
33: IF!JPRINT.FQ.2) CO TO 225 COEF 330
341 PRINT 220,AU.BO.RAO.RBO,CK,AIKl,8fK),RA(K),RBIR),K-1,*) COEF 340
35 • 220 FORMAT I'0 O',4028.18,/.(15,4026.18)) COEF 350



36: 225 DO 289 K«5«N COEF 360 36t 320 FORMATf'O 1TR««,13,6X,•03-1,026.18,6X,•F3«*,026.18) NATF 360
373 A(K)-A<K-2)/(K*3>*BT/(K*2l*A(K~3)/tK*3)**F/(K*2)»K/tK*l)*A<K-*)*0/C0EF 370 37: 1F(0A3S<F3)•LT.EP$) GO TO 340 NATF 370
383 l((K*3>*IK*2))*Q/((K4l)»X> COEF 380 38t F13*FNl»F3 NATF 3?0
393 IF 1 A(K}.LT.aO-24) A(K)«0 CCEF 390 39: !F(F13) 330,340,350 NATF 390
403 B(K)«B(K-2)/(K*2>*8T/tK*l)*BtK-31/IK*2)*AF/(K*l>•(K-l)/K*8(K-41♦O/COEF 4C0 40: 330 QN2=Q3 NATF 4C0
*U l(CK*2)«|Ktl))eQ/(K»(K~l)> COEF *10 *1: FN2«F3 NATF 410
4?3 IF(D(K).LT..10-24) 8(K)-0 COEF 420 *2: GO TQ 379 NATF 420
43$ RAtK)K*3)»(K*2»»AIK) C06F 430 *3: 3*0 PRINT 360e03,F3 NATF 430
44: RBlK)-IK*2)*<K*l)*a(K) COEF 440 **: 360 FORMAT!*01,//»2X,1 ROOT LOCATED, Q3-e,026.18,6X,•F3-’,026.18) NATF 44Q
*5: IF(JTEST.NE.J-l) GO TO 289 COEF *50 *5: GO TO 380 na Tr 450
463 IF(JPR1NT.IQ.2) CO TO 289 CHEF 460 461 350 QNI-Q3 NATF 460
*?: PRINT 24OIK,A(K),B(K),RAIK),R8(K) COEF 470 47: FNI-F3 NATF 4 70
ABl 240 FORHATt15,4028.18) COEF 490 48: 379 CUNTTNUE NATF 4 80
493 289 CONTINUE COEF 490 49: PRINT 370 NATF 490
SOI IF<JTFST.NE.J-1) RETURN CO.F 500 50: 370 FORHATPO NO CONVERGENCE') NATF SCO
51: IFIJPRINT.E0.2) RETURN COEF 510 51: 380 UM£GAR.03/tRL*»Z)»DSQRT(E/RM*Rt) NATF 510
521 PRINT 230 COEF 520 52: RPM.OMEGAR/12*3.141592653589793)*60 HATF 520
53: 230 FORMATCO LEAVING SUBROUTINE COEFFC*) COEF 5 W 53: PRINT 326,0MCGAR,RPM NAIF 530
54: RETURN COEF 5*0 54: 326 FORMATl•O',12X,‘OMEGAR-',D26.18,//,16X,1RPM-1,D26.18,/,•1•) NATF 540
55: ENO COEF 550 55: RETURN NATF 550

56t ENO NATF 560

It SUBROUTINE NATFRQtN,M!T,AF,8T,Q1,Fi»02,F2»J,RL,E,RT,RN) NATF 10
2: C THIS SUBROUTINE DETERMINES THE ROOTS OF THE FREQUENCY EQUATION NATF 20
3: c TWO CONSECUTIVES VALUES OF OPPOSITE SIGNS OF THE FREQ EQUT ARE NATF 30
* 2 c GIVEN ANO THE SUBROUTINE MAKES AN ITERATION TO FIND THE ROOTS NATF *0
5: IMPLICIT DOUBLE PRECISION (A-H,t>-Z) NATF 50
6: DIMENSION *(250),81250),RA<250),RB(2501 NATF 60
7: QNl-Ql NATF 70
b: CN2-Q2 NATF 80
9: FN1-F1 NATF 90

io: FN2-F2 NATF 100
m PRINT 310,QNI,FN1,QN2,FN2 NATF 110
12: 310 FOt-KATCl NATURAL FREQUENCY IN THE INTERVAL QN1«» ,026.10,9X, •fnnatf 120
13X 11-',D26.18,//,39X,•QN2»',U26.18,8X,1FN2-',026.18) NAIF 130
I*: EPSl»0Nie,6 NATF 1*0
15: EPS2>1.0-26 NATF 150
161 EPS«-kPSl*EPS2 NAIF 160
17: PRINT 311,EPS NATF no
18: 311 FORMATI'O EPS-',026.10) NATF lao
19: DO 379 L»),MZT NAIF 190
20: D£LTAO-lIQN2-QN1)•DABS IFNI))/(DABS(FN1)*DABS<FN2)1 NATF 2C0
21: C3»QN1*DELTAQ NAIF 210
22$ JPR1NT-2 NATF 220
23: CALL CCEFFCIN,AF,eT,Q3,AO,A,BO,a,RAO,RA,RBO,RB,J,JPRINT) NATF 230
241 5UMA»AO NATF Z40
251 $UM8*B0 NATF 250
26: SUMCDA-6»A0 NATF 260
271 $UM0DB»2*B0 NATF 770
28: CO 369 ll»l,N NATF 290
29: SUMA«SUHA*-A(n) NATF 29Q
30: SUMB. SUMfHBC II ) NATF 300
31: SUMUUA*SUMODA*RA( II) NATF 310
32: SUMr!OB‘SukODB*RB( 11) NAIF 320
33: 369 CONTINUE NATF 330
34X F3«SUMOD4-SUMA/SUMB*SUNOO8 NATF 340
35: PRINT 3?0,L,Q3,F3 NATF 350
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