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Abstract—In the paper, we consider delay-optimal charging be charged periodically. Then the EV charging becomes an
scheduling of the electric vehicles (EVs) at a charging stain  important topic [4], [5]. In particular, there are some wark
with multiple charge points. The charging station is equipped on the scheduling of EV charging in literatufe [6][20].

with renewable energy generation devices and can also buy . . T .
energy from power grid. The uncertainty of the EV arrival, In [6], the EV battery charging behavior was optimized with

the intermittence of the renewable energy, and the variatio of ~the objective to minimize charging costs, achieve satisfgc
the grid power price are taken into account and described as state-of-energy levels, and optimal power balancingd.|ntfié

independent Markov processes. Meanwhile, the charging engy  problem of optimizing plug-in hybrid electric vehicle (PNE
for each EV is random. The goal is to minimize the mean .harge trajectory (i.e. timing and rate of the charging) was

waiting time of EVs under the long term constraint on the ; .
cost. We propose queue mapping to convert the EV queue to studied to reduce the energy cost and battery degradation.

the charge demand queue and prove the equivalence betweenFOr the purpose of improving the satisfiability of EVs, a
the minimization of the two queues’ average length. Then we reservation-based scheduling algorithm for the chardiziips

focus on the minimization for the average length of the charg to decide the service order of multiple requests was prapose
demand queue under long term cost constraint. We propose a in [8]. In [9], a joint optimal power flow (OPF)-charging (dy-

framework of Markov decision process (MDP) to investigate his - S .
scheduling problem. The system state includes the charge mhand namic) optimization problem was formulated with the goal of

queue length, the charge demand arrival, the energy level ithe Minimizing the generation and charging costs while satisfy
storage battery of the renewable energy, the renewable engy the network, physical and inelastic-load constraints.[16],

arriva!, and the grid power price. Additionally the number of utilizing the particle swarm optimization, a proposed aitmn
charging demands and the allocated energy from the storage optimally manages a large number of PHEVs charging at

battery compose the two-dimensional policy. We derive two icinal Ki tati Tl th inimizati f
necessary conditions of the optimal policy. Moreover, we dcuss a municipal parking station. In_[11], the minimization o

the reduction of the two-dimensional policy to be the number the waiting time for EV charging via scheduling charging
of charging demands only. We give the sets of system statesactivities spatially and temporally in a large-scale roativork
for which charging no demand and charging as many demands was investigated. By modeling an EV charging system as
as possible are optimal, respectively. Finally we investale the 5 cyper-physical system, a decentralised online EV chgrgin
proposed radical policy and conservative policy numerica. scheduling scheme was developed.inl [12].1n [13], the asthor
Index Terms—Electric vehicle, charging scheduling, renewable formulated the EV charging scheduling problem to fill the
energy, Markov decision process. electric load valley as an optimal control problem, and a
decentralized algorithm was derived. In_[14], a strategy to
|. INTRODUCTION coordinate the charging of plug-in EVs (PEVs) was proposed
As an important method of operation to mitigate the shorky using the non-cooperative gamés][15]. Flexible charging
age of the fossil fuel and severe environmental problenss, thptimization for EVs considering distribution grid coratits,
electric vehicle (EV) technology has attracted much irgerepoth voltage and power, was investigated finl [16]. n] [17],
in recent years. Compared to conventional vehicles, EVe haye trade off between distribution system load with quality
advantages in the following aspects: energy efficiency; ecgf charging service was considered, and the centralizeat alg
effect, performance benefits, and energy independerice Hthms to schedule the charging of vehicles were desigmred. |
However, a fuel driven vehicle can produce less CO2 the[.1|8] and [19], real-time scheduling policies of EV charging
an EV if the charging energy is entirely produced by coalyere considered when both the renewable energy and energy
fired power plants [2]. Thus, the renewable energy (e.garsofrom the grid are available. I [20], the PEV charging and
or wind energy|[8]) should be the energy source of the E\(§ind power scheduling were integrated, and the synergistic
fU”y or at least partlally to achieve the real enVironmént%ontr(ﬂ a|gorithm of p|ug_0n vehicle Charging and wind powe
advantages. scheduling was proposed.

Since EVs are propelled by an electric motor (or motors) | the paper, we focus on the scheduling approach of
that is powered by rechargeable battery packs, EVs needgt9 charging at a charging station. The charging station has
T. Zhang is with the School of Information Science and Engjiimgy, Shan- multiple charge points and is equipped with renewable gnerg
dong University, Jinan 250100, China. He is also with Tsimgluniversity. generation devices and storage battery. The charged eatrgy
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station chooses some EVs from the head of the queue fotenewable Storage
charging. Meanwhile, the station also determines how mudh energy T battery
energy is supplied from the storage battery (the rest of the— — — — —— —————— — — —
required energy is supplied from the power grid). The olject

is minimizing the mean waiting time of EVs under the longElectric b — !
term cost constraint. ‘;er:"f;f —t =@—!—»

Since the amount of charging energy (i.e., the number E— !

|

to a charge demand queue. In the charge demand queue,

each demand means an energy block that need to charge and

some consecutive demands correspond to an EV’'s required

charing energy. We prove that the minimization of the averag

EV queue length is equivalent to the minimization of the A charging station with M charge

average charge demand queue length. Then we focus on the points (charge capacity =)

charge demand queue minimization under the cost constraint

The scheduling problem can be equivalently reconstrucsedfg. 1. System model

follows. The demand arrives according to a discrete-tintetba

Markovian arrival process (D-BMAP) and waits in the charge ) ) ) _

demand queue before service (charging). In each period, f{§&rging no demand is optimal. We also obtain the system

charging station chooses some demands from the head of $f€ conditions when charging as many demands as possible

charge demand queue for charging. Meanwhile, the statithoptimal. _ _

also determines how much energy is supplied from the storagd e rest of the paper is structured as follows. In Section

battery (the rest of the required energy is supplied from the the system model is described and we formulate an op-

power grid). The objective is minimizing the mean length dimization prqblem that can be stud_ied under the framework

the charge demand queue under the long term cost constrafhtVIDP. Section Il presents a spacial case of the formulated
Next, we find that the reconstructed optimization problefPtimization problem as a constrained MDP to demonstrate

can be studied under a Markov decision process (MDPJe Solving process of the general case. Next, we analyze

framework. The system state contains the charge demdf8 optimal policy of the constrained MDP in Section IV. In

queue length, the demand arrival, the energy level in tpection V, the numerical results are performed. Finallgtisa

storage battery of the renewable energy, the renewablgyneY! concludes the paper.

arrival, and the grid power price. Meanwhile, the number of

charging demands and the allocated energy from the storage Il. SYSTEM MODEL AND PROBLEM FORMULATION

battery constitute the two-dimensional policy. We find that 4 is divided into periods of length each. The EVs

the general case of the reconstructed optimization problef e ot the charging station according to a finite-stageic

can be analyzed similarly as the analysis of a special cagg, oy chain {A[n]}. The EVs wait in a queue before

, i I'E’?'Farging as illustrated in Fi@l 1. The charging station héas

IS f_ormulated_as a_constralned MDPE_]21]. We analyze t%arge points, i.e., at mogt/ EVs can be charged in each
optimal tvyo-dlmen5|onal policy of the const_ralned MDP b_ eriod. The charging station has renewable energy geograti
transforming to an average cost MDP and its correspondifig,ices and it can also gets power from the power grid. The
@scount cost MDP thereaftgr. First, the con_stralned MDRnewable energy is modeled as another finite-state ergodic
is converted to an unconstrained MDP by using Lagrangigp, .oy process{ E.[n]}. The renewable energy is viewed
relaxation. Moreover, we derive that the optimal solutidn Q¢ free and the price for the grid power during theh

_the uncon_strained MDP V_Vi?h a certain _Lagrangian multipligfe iod is denoted aB[n]. The grid power price remains static
is the optimal for the original constrained MDP. Next, th_ uring each period and changes between different peridus. T

unconstrained MDP can be analyzed by transforming to 'é%quence of the pricé P[n]}, is a finite-state ergodic Markov

corresponding discount cost MDP. We obtain two necessaljin \we assume that the charged energy at one charging
conditions for the optimal solution. Third, we analyze th

. ; _point during a period is constant, and is denoteds&s In
relations between the two elements of the two-dimensiongl, .. period, k[n] EVs from the head of the EV queue

polic_y, and find that the number _Of charging demdnits _are allowed to charge. During theth period, the charging
dommantbl'l'hus, webprop(ése adconjecture that g;e con.srt]t a;:%‘?ation allocatess[n] power from the storage battery, and the
MDP problem can be reduced to a MDP problem with thg,q; o\ er will be supplied by the power grid. Assume that

policy to be the number of charging demands only. We thqﬂe required charaing enerav of the EN.. is independent on
derive the conditions of the system state when the policy tha a ging 9y e 1S Incep

2|t is assumed that if an EV utilizes: charge points during a period, the
1 In the special case, we can use “EV” and “demand” interchaipige amount of charged energy is€.

i
Charge point I

|
of energy blocks to charge) for each EV is random, the | Queue !
scheduling problem is very challenging. We propose queue |
mapping method to solve the difficulty. We map the EV queue | |

!

i

!



EV queue 0 (7, m;, - -+ ) with 7., generating an actiofk [n], w[n]) with a

EVarrival | | | B2 EV1 | probability [21], [24] at then-th period. We denote the set of
| | 2 | all policies asll'. Let 2’ [n] = (ge[n],a'[n ], es[n], ea[n], pln])
| = OB | be a (fixed) system state The feasméle[ J,w[n]) in state
i ! ! z'[n | belongs toIC( = {0,1,- - ,min{ge[n], M}} x
|

an energy block | minimizes the mean charge demand queue length under the

| ;
T
l
! :> W(z'[n]) = {0, L, , e*’T["] } B The optimization problem that
I
|
|

|
| ~— 1 long term cost constraint3, can be expressed as

|
! I
—>
I | | [l | 1 n—1
Demand arrival ! ' | | ! 71’ . 7'r
Required energy  Required energy HllIl D - hm sup ]E Qe (2)
of EV2 of EV1 mell’ n—oo M =0

Charge demand queue 0O,

Fig. 2. Queue mapping

n—1
BT, = limsup 11Eg, Y Clil| <B (33
each other, andv. = L& with L being uniformly distributed n—oo T i=0
n[L,2,..ClHie,L~ul,..c). S.t. K/[i] < min{Q.[i], M}, (3b)
Direct analysis of the EV queue length under the long term Ey[i]
cost constraint is difficult due to the randomnessiofWe Wil < —, (3¢)

propose the queue mapping method as shown in[fFig. 2. Each
EV in the EV queue corresponds to several consecutive chavgéh initial statex” = (qe,d , ep, €q, p).-
demands (the number of the demands denotes the amount dince D-BMAP can be represented by a two-dimensional
required energy) in the charge demand qufkTtie number discrete-time Markov chain (DTMC) [22], the optimization
of EVs at the beginning of the-th period isQ[n] and the problem in [2) can be analyzed in the framework of MDP.
length of the charge demand queue is denote@ds]. We Moreover, the following lemma proves the equivalence of the
convert the average EV queue length minimization to thgean energy demand queue length minimization and the mean
average charge demand queue minimization. Furthermore, i queue length minimization.
will prove that they are equivalent.

The demand arrival can be given by [n] = Zf‘:[’f] L;,
whereL; ~ U]1,...,C].

Remark: As{A[n]} is a Markov chain, we can derive that

Lemma 1. The minimization of the mean charge demand
gueue length is equivalent to the minimization of the mean
EV queue length.

{A'[n]} is a D-BMAP. Proof: See AppendiXA. n
In the n-th period, k'[n] demands from the head of the
charge demand queue are allowed to charge. During:the I1l. SIMPLIFIED PROBLEM

th period, the charging station allocate$:] power from the . ) . .
storage battery, and the rest power will be supplied by theFOr conciseness, we give a special case of protilem (2) in the

power grid. Denote the number of charged demands Irmhesectlon and investigate this relatively simplified problienthe
th period ask’ [rn]. The evolution of the charge demand queufé)IIOWIng of the paper to show the solving process. General
length, Q.[n], is Qc[n + 1] = Q. [n] — ,[ ]+A'[ . Denote cases can be analyzed through similar solving process.

° c ° WhenC = 1, we haveL; = 1. Then the queue mapping is

the capacity of the renewable energy storage battedy, as;. o . "
The stored battery energy at the beginning of thth period an identity transform and “EV” and “demand” are interchange
ble. Thus, we can directly analyze the EV queue using the

is Ey[n]. The battery energy evolution can be expressed as? ; y
'S By[n] y gy evolt xR MDP framework. We have([n] = K [n], A[n] = A [n] and

Eyn + 1] = min { Ey[n] — W[n]t + Eu[n], Emas } Q[n] = Q.[n]. The queue length evolution is
= (By[n] = W[n]r + Eq[n]) . (1) Qn+1] = Qn] — K[n] + Aln). (4)
The cost in the:-th period isC'[n] = (@—W{n])JFP[n]. The battery energy evolution is the same[ds (1). The cost at

Denote the state space &% and denote the action spacd/€ 7-th period is given by

as A'". Let the (random) system state and action in mhth K[n)€ +

period be X [n] = (Qc[n], A'[n]. Ey[n], Ea[n], Pln]) € X' Clnl = (=75 = Winl) Pl ®)

and (K" [n], W[nl) € A, respectively. Define a policy’ = where ()™ := max{-,0}. The system state becomes
3C is a given constant. X[n] = (Q[n], Aln], Ey[n], Eq[n], P[n]) with state space

4A demand means energy (i.e., an energy block) need to be charged. 1A and the action is(K[n], W[n|) with action spaceA.

Fig. [3, the first EV (EV 1) in the EV queue wants to chagyex £, then [ X'[n], (K [n], Wn])} is a controlled Markov process. Define

it corresponds to the first three consecutive charge demeantise charge . - .
demand queue. The second EV (EV 2) chargesé, then it corresponds to & policy m = (mo,m1,---) that =, generates an action

the two consecutive charge demands after the first EV's sporeding charge
demands. 5The energy has been discretized.



(k[n],w[n]) with a probability at the beginning of the-
th period. We denote the set of all policies & The
feasible (k[n], w[n]) in state z[n] belongs toK(z[n]) =
{0,1,-- ,min{g[n], M}} x W(z[n]) = {0,1,..., ey,
A stationary deterministic policy iss = (g,g,---), where
g is a measurable mapping frodi to K(z[n]) x W(z[n]).

Our objective is to find a policy that minimizes the mea
gueue delay under the long run constraint on the cost. T é
optimization problem (i.e., the constrained MDP) is given b

o1

min D7 = limsup %ES lz% Q[i]l (6)
1 [ed _

BT = nﬁso%p ~E] [Z; Cli]| < B, (7a)

St K] < min{Q[i), M}, (7b)

wii) < 200, (70)

wherex = (g, a, ep, €4, p) € X is the initial system state.

Remark: [(6) is the special case 01 (2) with=1.C =1
means that EVs charge the same amounts of enérdg,g.,
an EV production company).

IV. ANALYSIS OF THE OPTIMAL POLICY

In this section, we perform theoretical study on the optimal
policy. First, we prove that the constrained MDP can be
analyzed through an unconstrained MDP. Then, we focus on
the analysis of the unconstrained MDP. We analyze the uncon-
strained MDP by using its corresponding discount MDP. Next
we consider the dimension reduction of the two-dimension@

policy. Finally, we propose two stationary deterministiip
cies based on the theoretical results.

A. Transformation to the unconstrained MDP and discount

MDP

Define f5(z, k,w) := B(E
following unconstrained MDP (i.e., UJ.

n—1
min J§ () := lim sup %Eg > fg(X[i],K[i],W[i])] . (8)

Remark: UR; is an average cost MDP. Its optimal solution

is referred to as the average cost optimal policy.

The following lemma reveals that the constrained proble

has the same solution as pJ®ith a certain/.

Lemma 2. There exists? > 0 for which the optimal solution
of the unconstrained MDP i ](8) (i.e., YPis also optimal

for the constrained MDP i {6).
Proof: See AppendixB. [ |

Next, we define a discount cost MDP with discount factor

a corresponding to U for each initial system state =
(g,a,ep, €q,p), With value function

Vo(e) = minEf | Yo' f5 (X[, K[, W[D)| . (9)
1=0

— w)+p + ¢q. We have the

The optimal solution for the discounted problem is called a
discount optimal policy.

The following lemma reveals the existence of the optimal
stationary deterministic policy of Uf and furthermore, how
to derive the average cost optimal policy.

Lemma 3. There exists a stationary deterministic policy
k. w) that solves UR, which can be obtained as a limit of
count optimal policies as — 1.

Proof: See AppendiXx C. [ ]
Based on the above analysis, we find that the constrained
MDP can be analyzed through the defined average cost MDP
and its corresponding discount cost MDP thereafter. Hence,
we first investigate the solution of the discount cost MDP in
the following subsection.

B. The discount optimal policy

For state-action paifx = (g, a, ep, €4, D), (k, w)), let u =
g—k andn = e, — wr. Then (u(z),n(x)) can also define
a stationary deterministic policy. Then, the discountedtco
optimality equation([233],[[24] is given by

Val(g,a,ep,€q,p) = min
v €{0,1, - ,min{q, M}}
ne{0,1, - ,ep}
—u)l ey, —n\t
{B((q . 77) p+q
T T

+ aEge,p [Va(u +AA (n+E,),E,, P)} },(10)

nd the corresponding value iteration algorithm (or susiees
]Pproximation method) is

Vf!m(Qv a, €p, eaap) = min
we {01, min{q, M}}
776{0717"'761)}
—u)l e —n\t
{ﬁ((q )€ e n) bt ax
T T

Ea,ea,p [Va,n—l (u + Aa A7 (77 + Ea)_a Ea7 P)} }(11)

Wlth Va,O(Q7 a, ey, ea7p) = 0.
First, regardingV,(q, h,a,ep, e), we have the following
properties (Propertyl 1 - Propefty 3).

Property 1. V., (g, h,a, e, e) is an increasing function af.
Proof: See AppendixD. [ |

E'roperty 2. Vo (q,a,ep, eq,p) is a non-increasing function of
€p.
Proof: See AppendikE. [ |

In practice, the allocated renewable energy will not suspas
the required charging energy. Thus; > wr, i.e.,

(q—uw)é e —n
T T

>0. (12)

Property 3. V. (q, a, ep, eq,p) is convex in(g, ep).

Proof: See AppendiXFF. [ |
Next, the following two lemmas reveal two necessary con-
ditions for the optimality, respectively.



Lemma 4. In statex = (g, a, ep, €q,p), (u(z),n(z)) is not
the discount optimal solution ifi(x) > ¢ — min{q, M} and
n(z) + eq > Enax-

Remark: Lemmal4 reveals the sufficient condition for the~1
non-optimality, and it can also be viewed as the necessary

Lemma 6. Given statex = (g, a, ep, €4, p), the average cost
optimal policy (u*(x),n*(x)) should satisfy the following
inequality array

< 3
Z (u*vavn*aeaap) S B;p S ZI(U* + 150‘777*78(171))? (20)

condition for the optimality. That is to say, any optimal

solutions should not satisfy the condition.

ZQ(U*7aan*7eaap)§ﬁ_T SZZ(uaaan*+1aeaap)a (21)

Lemma 5. Denote the discount optimal policy in state

z = (q,a,ep, €q,p) as (u*(x),n*(z)). Then, (u*(z),n*(z))
satisfies the following inequality arfiay

&
Zl(u*aavn*veaap) S B;p S ZI(U* + laavn*aeaap)v (13)
Z2(U*7aa77*7€a7p) SB_TP SZQ(uvaan*+1aea7p)v (14)

Z3(U*7aan*7eaap) S ﬁg(s - 1)
S Z3(U*+17aan*+1aea7p)a (15)
where

Zl(uaaanaetmp)
= aEge,p [Gl (u+ A A, (n+ Eq)™, Eq, P)] (16)

with
GI(Q7aaebaeaap) =
Va(Q7 a, ey, eaap) - Va(q - 11 a, €p, ea7p)a (17)
ZQ(uaa7naeaap)
= Oé]Ea_’ea_’p[Va(u—f-A,A, (U+EG)77E¢15P)
- VQ(U+A3A7(77_1+Ea)77E¢laP>]a (18)
and

Z3(U7aa7776a7p) =
aE%eaﬁD [Va(u + Aa A7 (77 + Ea)ia Eaa P)
— Valu—14+A4,4,(n—1+ E,)",E,, P)]. (19)

Proof: See Appendix G. [ |

23(U*7aa77*7€a,p) < Bg(g - 1)

S 23(U*+17aa77*+178&7p)7 (22)

where

Zl(ua a,1, eaap) = (1!1_)H11 Zl(ua a,1, ea7p)a

ZQ(U, a,1, eaap) = (1!1_)rnl ZQ(U, a,1, ea7p)a

and

Z3(ua a,1, eaap) = (1!1_)rnl Z3(U, a,1, ea7p)'

D. Reducing the policy’s dimension

The number of charging EV& and the power allocation
from the batteryw are coupled together, they affect each
other. However, if we assume thathas been chosen, then
the required total power has been fixed. In this case, we will
allocate as much power as possible from the battery to meet
the required total power, i.e., the greedy policy for thedrgt
power allocation. This is because the power from the battery
is free (please refer td](5)). We can guess that the greedy
allocation strategy of battery power is the optimal policy.
However, it is difficult to prove. The difficulty lies in the ¢a
that the remaining battery energy will affect the futurei@ct
and cost (e.g.[{10)). On the other hand, ondeas been fixed,
the power allocation from the power grid can also affiecin
summary, whenk is chosen, the optimab* is the greedy
policy. By contrast, ifw is fixed, the optimalk is not fixed,
we need to solve the power allocation from the power grid
to find the optimalk*. Thus, we can reduce the policy from
(k,w) to k. We have the following conjecture.

Conjecture 1. Let m, = (k[0],k[1],---), and [6) can be

Remark: Lemmd&]5 gives the necessary condition of thenverted to
discount optimality, i.e., the optimal policy (or polic)eshould
be the solution(s) of the inequality array. Specially, ik th
inequality array has a single solution, the corresponding
single solution is the optimal policy since the existencéhef

i

=0

(23)

. . 1
min B7* := limsup —E7*
Tk n—oo T

n—1 .
optimal policy. BT+ = lim sup lEgk [Z (K[l]g
n—oo N ; T
=0

S.t. 1 + —
——min {K[I€, B[]} ) Plil| < B, (24a)

K[i] < min{Q[i], M}, (24b)
\here the evolution of energy in the battery becomes

C. The average cost optimal policy

First, Lemmd¥ still holds for the average cost MDP. Next,
based on Lemm&]3 and Lemrhh 5, we have the followi

lemma.
Epli + 1] = (Ep[i] — min {K[i|€, Epli]} + Eu[i]) . (25)
6Using Property [B, we can derive thatZi(u,a,n,eq,p) < . . L .
Zilu + La,mea,p)y Zo(u,a,n,ea,p) < Z21(U7 an + 1,eap), Remark: The policy can be reduced in dimensign ¢) —

and Z3(u, a,n, €a,p) < Z3(u+1,a,n7+ 1, eq,p). k). If the stated3 in LemmaR satisfyingd > 1, Conjecture



can be proved based on {10) in addition with Lenfitha 3 alil Two stationary deterministic policies

LemmdD.

Based on all above theoretical analysis, we propose the

In the following, we discuss the optimal policy after dimenfg|jowing two specific stationary deterministic policieSor

sion reduction. For state-action pdit = (¢, a, ey, €4, p), k),
let v =

the properties of the optimal policy.

Lemma 7. Denote the discount optimal policy in state=
(g, a,ep, eq,p) asu*(z). Then,u*(z) satisfies

2(w') < Bop < 2 +1), (26)
T
where
Z(u) = aBqc, p|Va(u+ A, A, (n(u) + Ea) ", B, P)

— Valu—1+AA (n(u—1) +Ea)*,Ea,P)}

+ 5%,) (27)
with
n(u) := max{0,ep, — (¢ — u)€}. (28)

Furthermore, the average cost optimal policysatisfies

Z(u*) < 5§p < Z(u* +1) (29)
T
with
Z(u) = lim Z(u). (30)
a—1
Proof: See AppendixH.
Lemma 8. Forx = (q, a, ey, €4, p) Satisfying
. &
Z(q — min{q, M}) > B;p, (31)

u = ¢—min{q, M} is the discount optimal policy. In addition,

for (¢, a, ey, eq, p) satisfying

&
Z(q) < B, (32)
u = ¢ is the discount optimal policy.
Proof: See AppendiX]I. [ |

Remark:u = ¢ — min{q, M}, i.e., k = min{q, M} means points M = 50 and M =

qg — k, and u(xz) can also define a stationary
deterministic policy. We have the following lemmas to rdve

statex = (q,a,ep,eq,p), We define the radical policy as

k =min{q, M },w = M . That is to say, we charge
as many EVs as possible, and use the greedy policy for the
battery energy allocation, i.e., if the required energy @& n
greater than the battery energy, then all the energy will be
supplied from the storage battery and no grid power will be
used. Otherwise, all the storage battery energy is alld¢cate
and the rest will be supplied from the power grid.

In the radical policy, the average cost constraint is not
considered. Then we propose another policy (i.e., the con-
servative policy) that guarantees the average cost camistra
through satisfying the cost consétraints in each period. ¥ c
the policy (k = min{q, M, eb“;f},w = M the
conservative policy. That is to say, we first guarantee that t
cost of charging in each period is less than the average cost
constraint, then charge as many EVs as possible and utilize
the greedy policy for the battery energy allocation.

In the whole paper, we assume that the power from power
grid and renewable energy generator is sufficient to sbili
the queue length. The stability issue such as the bounds on
average generation rate of renewable energy or average EV
arrival rate will be studied in future work.

V. NUMERICAL RESULTS

In this section, we perform simulations to demonstrate the
relations among the mean EV arrival, mean renewable energy
arrival, upper bound of the average cost, average cost, and
average EV queue length. Meanwhile, we consider different
charge point numbers and capacities of the renewable energy
storage battery. In the simulations, the period lengthis 1,
and the size of the “energy block” & = 10.

Fig.[3d shows the average cost performance with respect to
the mean EV arrival,A. In the simulations, we utilize the
radical policy. We consider the i.i.d. cases 4f £, and P.

A takes0 and2A with equal probability).5. E, takes values
{0,50, 100} with probabilities{0.1,0.4,0.5}. P takes values
{5,10, 20} with probabilities{0.2,0.3,0.5}. The performance
is averaged ovet0® periods. We set the number of charge

8 in Fig. [3(@) and Fig[ 3(),

charging as many EVs as possible. If the number of EVs in th&pectively. Furthermore, we plot the curves for différen
queue is less than the charge point numbéy charge all the storage battery capacitie®,,,,, = 100, F,.. = 300 and
EVs. Otherwise, charg@/ EVs from the head of the queueinfinite capacity, respectively.

u = ¢, i.e., k = 0 denotes charging no EV.
Based on Lemm@al8 and Lemmh 3, we have

Lemma 9. Forx = (q, a, ey, €4, p) Satisfying

Z(q — min{g, JV[}) > Bép, (33)

In Fig. [3(@), we can see that whe# is small, the cost
is nearly zero. However, whed is large (e.g.,A > 10),
the cost increases rapidly with increase 4faccording to
roughly a linear function. It is because wheh is small,
the required energy is small and the battery can supply the
energy. Thus, no grid power will be consumed and the cost

u = q — min{q, M} is the average cost optimal policy. Inis zero. OnceA is larger than a certain value, the required

addition, for(q, a, e, e,, p) Satisfying

Z(q) < ﬂép,

u = ¢ is the average cost optimal policy.

(34)

energy is larger than the battery energy, then the grid power
will be utilized. As M is large (compared to the considered
A), i.e., the restriction on the number of charge points woll n
influence the performance, we have= min{q, M} = ¢ with

a high probability. The grid power consumption will increas



with increase ofd. Moreover, whem is large, the grid power ~ 250 ‘

becomes the main energy source. Based bn (5), we derive
the cost varies withd roughly according to a linear relation. max Jo)
; . : 2000} --E__=300 RON
From Fig.[3(b), we can find that the average cost is ze .@.Ew:mo e
when A is small, and with increase ofl, the average cost max e
increases. But oncé is larger than a certain value, the averag
cost remains constant. It can be explained as follows: when
is small, the required energy can be supplied by the batte
with a very high probability and no grid power is needet @ yggol / /L ,
Then the average cost is zero. Whérincreases, the required < 0" ,Q’
energy increases. Once the battery energy is not enough, e ,,’/"
grid power will be consumed to fulfill the gap between th:  so0f e gf 1
required energy and battery energy. With increaselpthe /g 5
grid power consumption increases since the average batt » e
energy is constant. Thus, the average cost increases. ldowe 0 ‘ ‘
when A is large enough, we gét = min{q, M} = M with Mean EV arrival
a high probability becaus#/ is not large in this simulations. (@ M = 50
Then, the required energyx £ = M x &, i.e., it becomes a
constant. That means the grid power consumption is a canst
also. Thus, the cost remains static. O -
Fig. [ depicts the average cost performance with respi .| _E_Ema*=300 ,*"'"*---‘*“---'A'f
to the mean renewable energy arrival,. The radical policy h-E, =100 /’
is applied in the simulationsA takes value$) and 10 with e ¢
equal probability0.5. E, take values{0,2F,,2E,} with *
probabilities{0.1,0.4,0.5}, respectively.P is the same as in
Fig.[3 andM = 50. E,,4. = 100, E,,., = 300 and infinite
capacity are also respectively considered in the simuiatio £ 1o} /
From the figure, we can find that the cost decreases w /
increase off,. But oncek, is large enough, Ehe cost aI[nos /I ;zf /I
remains static. First, in the range of smdil,, when E, 501 +* P4
increases, more free renewable energy will arrive and bledto !
in the battery. And then, the cost will decrease. If the lvgtte Y /
capacity is large enough, all the arrived renewable eneagy ¢ OW
: . . = 0 5 10 15 20
be stored in the battery. With the increaseRy, the battery Mean EV arrival
energy will increase all the time. Once the battery energy Is
larger than the required energy for charging, no grid power
is needed then, and the cost becomes zero since that timg.3. The average cost performance visunder different values aEmag.
If the battery capacity is not large (e.g¢q. = 100 in the
figure), the overflow occurs wheh, is large. That is to say,
the battery energy will remaif,,,,, even though we increase
E,. On the other handE,,.. is smaller than the required
charge energy, so grid power is still needed. Consequently,
the cost is non-zero and remains static.

From Fig.[3 and Figl4, we can observe that the Iarg8pnservative policy is applied. In the simulationt,chooses

the battery capacity, the lower the cost. That is because wht lues {0,12} with equal probability0.5. E, and P have

E.nq. is larger, the probability of overflow will be lower (it is (e same setlings as in Figl 3. In the plotting, we consider

zero for infinite capacity). Then, less free renewable energ different values of the battery capacity and charge point
gmber. We can observe that the average length performance

wasted and the cost will be lower. Furthermore, we can deril) i £ d whena is | th
that if A is less a certain value d, is larger than a certain Improves IWI t;\ncrease 0 I’ anth w efn IS ar%er an aall
value, the average cost can be less than a certain value, ThHepain value, the average length performance become &imos

we claim that whenA is less a certain value dt, is larger constant. The reason is as follows: whénis small, k =

. e +§T . e +§T . . o
than a certain value, the radical policy is also optimal evenin{q, M, =—*—} = min{g, ===} with a high probability

when considering the constralht. and it increases with increase &f. Thus, the average EV
Fig.[d illustrates the average EV queue length performan@geue length performance increases. OBcis large enough,

with respect to the upper bounds of the average cost when Y& 9tk = min{g, M}, and the average length remains static
with respect taB. Additionally, by comparing the four curves,

"Notice that the radical policy is optimal for the mean EV cueielay W€ Can derive that the larger the capacity or the charge point
minimization without the average cost constraint. number, the better the length performance.
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VI. CONCLUSION

Meanwhile, if an EV comes earlier than another EV, it will
leave earlier in the EV queue serving. Using the queue
mapping mechanism, the earlier arrived EV will leave norlate
also in the energy demand queue serﬁnﬁhat is to say,
the queue mapping is an isotonic mapping. Then, we claim
that a policy minimizing the mean EV queue length results in
minimal mean demand queue length, and vice versa.

APPENDIXB
PROOF OFLEMMA [2

The proof is based on the results bf[25]. We prove that for
somef, the optimal policyr* of the unconstrained MDR](8)
(i.e., UPs) satisfies 1)r* yields B™ and D™ as limits for
all z € X; 2) B™ = B. Observe thatim sup andliminf are
equal for eachp > 0 (since the controlled chain is ergodic
and the policy is stationary [24]).

APPENDIXC
PROOF OFLEMMA [3]

First, we derive that the conditions of Proposition 2.1 iff][2
are satisfied. Then a discount optimal stationary policgtexi
Next, we prove that for somey, V,,(z) — V4. (z0) < oo. Third,
there exits a policyr € A and an initial statec € X such
that J§ < oo in the practical problem. Otherwise, the cost is
infinite for all policies and any policy is optimal. Accordjly,
we can prove the lemma by applying Theorem 3.8.in [26].

APPENDIXD
PrROOF OFPROPERTY]]

We verify the increasing property by induction. According

to (11),Va,0 =0 andV, = ((a-—minfg.0p)E—c1) P 4 q. The

increasing property i holds. Assude/a,n_l(q, a, €p, €q,P)
is increasing ing. Depending on the values dff, we have
the following two cases.

Case 1:M > q + 1. Fix (a,ep, eq,p), in the state(q +
1,a,ep, eq,p), the set of feasible is {0,1,--- ,g+1} whereas
itis {0,1,---,q} for state(q, a, ep, €4, p). Consider statéq+
1,a,ep,eq,p), let the optimal action béu*,n*) with u* €
{0,1,---,q}, hence

We consider the scheduling of the EVs’ charging at a Van(q¢+1,a,ep,¢€4,p) =

charging station whose energy is provided from both the powe
grid and local renewable energy. Under the uncertainty ef th
EV arrival, the renewable energy, the grid power price, dred t

_ * _ * +
ﬂ((Q+1 wE e 77) p+(g+1)+ax
T T

Ea,ea,p [Va-,nfl(u* + A7 Aa (77* + Etl)77 Eaa P)] (35)

charging energy of each EV, we study the mean delay optimal =~ =~ . teasible |
scheduling with the average cost constraint. We analyze thg (4":7") is feasible in statéq, a, ¢, q, p),

optimal policy of the formulated MDP problem. In addition,

two specific stationary policies (radical policy and conagive

policy) are applied in the simulations to reveal the impaxts

relevant parameters on the performance.

APPENDIXA
PROOF OFLEMMA [1I

—u*)E e —nt\T
Va,n(qvaaebveaap)gﬂ((q T ) - an) pt+q

+ aBac,p [Van-1(u* + A A (n* + Ea)”, Ea, P)]

< Va,n(q+ 17aaebaeaap)- (36)
If (u*,n*) with u* = ¢+ 1,
Va,n(q + 11 a, €p, eaap) =4q + 1

First, the energy demand queue length and the EV queue,_ 0Eqc, p [Va nor(q+ 1+ A, A (" + Ea)_,Ea,P)] .

length have the following relatior.[n] = ZQ:[T] L; with L;

K3

being irrelevant to the queue state. Thus the average energy

demand queue length 53" Q.[j] = L 7 S22V L.

T n

(37)

8Leave at the same time is possible.



Meanwhile, sincgq, n*) is feasible in statéq, a, ey, €4, D),

Va,n(Qa a, €p, eaap) S q
+ aEa;€a7P [Va,n—l(q + A7 A7 (77* + Ea)77

(a)
< Va,n(q+1uaaebaeaap)u

E,,P)]
(38)

where (a) holds since the induction hypothesis.

Case 2:M < q. The set of feasibles is {0,1,--- , M} in
both the statéq+1, a, ey, €4, p) and statdq, a, ey, e,, p). Then
we can prove the increasing propertylf ,, (¢, a, s, €4, p) by

using [3%) and[(36).

APPENDIXE
PROOF OFPROPERTY[Z

Based on [(111),
induction. First, we havel,, =

5((q—min{q,M})E~ eb)+p

0 and V,; =

in e holds forn = 0,1. Next, assumé/, ,,_1(q, a, ey, €4, D)
is a non-increasing functlon af,. Fix (q,a,eq,p), for state
(q,a,ep, eq,p), let (u*,n*) be the optimal policy. We get

g—u*)E ey —n*\*t
Va,n(qva,ebveavp)zﬁ(( = ) - an) p+

g+ aEqe, p [an,l(u* +A A (0" + E,)", Eq, P)] )
(39)

Since(u*, n*) is feasible in statéq, a, e, + 1, €4, p), we derive

—u*)E e+ 1—n*\*t
Va0, 4 1,e0,p) < (L8 X T2,

g+ aEqe, p [an,l(u* +AA (0" + E,)", Eq, P)] )

(40)
Combing [39) and{40), we get
Van(g,a,ep, eq,0) < Van(g,a, e, +1,e4q,D).
Then we complete the proof of the property.
APPENDIXF
PROOF OFPROPERTY3

First, we prove the following proposition.

Proposition 1. For ¢ € (0,1) and Vxi1,x2,y, We have
¢pmin{z1, y}+(1—¢) min{zs, y} < min{dzi+(1-¢)r2,y}.

Proof: The proposition can be verified by c0n5|der|nd-hen applyingS(u* + 1,7%) —

min{zi,z2} >y, max{z1,z2} <y, andmin{zy, z2} <y <
max{x1, 22}, respectively. [ ]

The convexity is proved by induction. Fer = 0, V, o =
0 and is convex. Assumé&,, ,_1(q, h,a,ep, e) is convex in
(g,ep). Fix (g, a,ep, eq,p), let (u1,n) and (uz,n2) be the

the property can be proved through c)

+ ¢. Thus the non-increasing property +

optimal policy for (¢q1, es1) and(ge, es2). Then, we get
¢Va,n(qla a, €p1, eavp) + (1 - ¢)Va,n(q27 a, €p2, eaap)

_ (1 — U1)5 €h1 — M1

= olo( ) +al

+ (1-9) [ﬁ(T(qQ _7“2)5 - 2R

P+Q2}

+ OB, p[@Vanoi(un + A, A, (1 + Ea)”, Ea, P)

+ (1= ¢)WVan 1(us+ A A, (s + Ea)”~, Ea, p)]

2 B[ (ofar ) + (1~ ) )€ — (6ern — )
+ (=)o —m)]| L + o

+ (1-¢)g]+ B, , [va,n,l(gbul +(1— d)us

+ AA S+ Ea)” A+ (L— o)+ Ea)*,Ea,P)}

ﬁ{(fb(m —u1) + (1 —¢)(g2 — uz))5 - (¢(8b1 —m)
(L= 9)(ers —m)) |2
+ [oa + (1= @)ge] + aEap, p [Va,n—l((bul

(L= @)uz + A A, (9m + (1 = ) + Eo) ", Eo, P)|

+

d
> Van(dq + (1 — @)ge, a, pepr + (1 — d)epa, €q, p),

—~
=

where (b) holds because of the convexity of
Van—1(¢, h,a,ep,e), (c) holds because of Proposition
1 as well as Property[12, and (d) holds since

(pur + (1 — Plug, ¢ + (1 — ¢)np2) is feasible for
¢(q17aaeblaea7p)+(1_¢)(q27a7eb27ea7p)'

APPENDIXG
PROOF OFLEMMA [

Let
—u)E _
S(u,n):ﬂ((q Tu) - ebT n)p+q

+ aEge,p [Va(u +A A (n+E,)”

,Eq., P)]. (41)
First, we have
&

+ oBae,p[Valu+1+A,A (n+E,)",
- Va(u'f'AaAa(n'i‘Ea)iaEaaP)}

E,, P)
(42)

and

S(u—1,m) = S(u,n) = ﬁ D
+ aJEa,ea,p[Va(u—HA,A, (n+E,)",E,,P)
— Valu+ A A (n+ E,)", Eq, P)]. (43)

S(u*,n*) > 0 and S(u* —
1,n7*) — S(u*,n*) > 0, we obtain [IIB) Similarly, as

S(u,m+1) = S(u,n) = ﬁ;
+ B, p[Valu+A,A (n+1+E,) ", E,, P)
— Valu+ A A (n+ E,)”,Ea, P)] (44)



and

S(u.n = 1) = S(u.n) = 4
+ Bae,p[Valu+ A A (n—1+E,)", Eq, P)

— Valu+ A A, (77+Ea)7,Ea,P)}, (45)

we can reach[{14) fron$(u*,n* + 1) — S(u*,n*) > 0 and
S(u*,n* —1) — S(u*,n*) > 0. In addition,
Su+1.m+1) = S(un) = BE(1 - €)
+ aEge,p[Valu+1+A, A4 (n+1+E,) ", E,, P)
— Va(u+ A A, (n+ Ey)", Ea, P)] (46)

and

S(u—1.m—1) = S(u.n) = BE(E ~ 1)

+ aBge,p[Valu—14+A,A (n— 14 E,)",E,, P)
— Va(u+ A, A (n+ Ey)”, E,, P)]. (47)

Then, [I5) can be obtained by applyisgu* — 1,n* — 1) —
S(u*,n*)>0andSw*+1,n*+1) — S(u*,n*) > 0.

APPENDIXH
PROOF OFLEMMA [7]

First, based on Conjectuid 1, we only need to considaf!

the policy set{(u,n)
Consequently,

(u,n = n(w) N (u,n) = (0,0)}.

Stun(w) = p(1L=0E 01y, 4

+ aEge,p [Valu+ A A (n(u) + E,)~, Eq, P)] .
(48)

Then applyingS(u* + 1, n(u* + 1)) — S(u*,n(u*)) > 0 and
S(u* = 1,n(u* — 1)) = S(u*,n(u*)) > 0, we getZ(u*) <

BEp < Z(u*+1). Next, using Lemmal3, we reach the secon

half of the lemma.

APPENDIX |
PROOF OFLEMMA [g

Following the proof of Lemmal7, we can prove the first
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Greenville, South Carolina, Mar. 2012.
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232, Jan. 2011.
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Sep. 2012.

[16] O. Sundstrom and C. Binding, “Flexible charging optation for

d electric vehicles considering distribution grid consitsj’ IEEE Trans.
Smart Grid vol. 3, no. 1, pp. 26-37, Mar. 2012.

[17] J. Huang, V. Gupta, and Y.-F. Huang, “Scheduling aldponis for PHEV
charging in shared parking lotsProc. Amer. Control Conf.Fairmont
Queen Elizabeth, Montral, Canada, Jun. 2012.
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Poolla, and P. Varaiya, “Real-time scheduling of defeeaiéctric loads,”
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half of the lemma by contradiction. Specifically, suppos[égl S. Chen and L. Tong, “iIEMS for large scale charging ottle vehicles:

u = ¢ — min{¢g, M} is not the optimal solution, then
S(u*—1,n(u*—1))—S(u*,n(u*)) > 0 should hold. We have
Z(q — min{q, M}) < Z(u*) < B£p and the contradiction

architecture and optimal online scheduling?roc. IEEE SmartGrid-
Comm’12 Tainan City, Taiwan, Nov. 2012.

[20] C.-T.Li, C. Ahn, H. Peng, and J. S. Sun, “Synergistic tcohof plug-in
vehicle charging and wind power schedulintfEE Trans. Power Syst.,
accepted for publication, 2012.

occurs. We can verify the second half of the lemma similarlyy] . Atman, Constrained Markov decision processésndon/Boca Ra-

by using contradiction. Assume = ¢ is not the optimal
solution, thenS(u* 41, n(u*+1)) — S(u*,n(u*)) > 0 should
be satisfied. Consequently, we dgétq) > Z(u* +1) > B£p.
The contradiction occurs then.
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