
A COMPARATIVE STUDY OF HEIGHT-BALANCED TREE

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Computer Science

By

Ronghuey Alice Wang

December, 1987

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Professor Stephen Huang for his advice

and guidance in every stage of this work. Appreications are due to Professors Anne L.

Simpson and Tiee-Jian Wu for serving on my committee.

Last but not least, special thanks to my parents and husband, Allen, for their love and

encouragement.

A COMPARATIVE STUDY OF HEIGHT-BALANCED TREE

An Abstract of Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Computer Science

By

Ronghuey Alice Wang

December, 1987

ABSTRACT

Height-balanced trees (H-trees), a recently proposed data structure, is a variant of

B-trees. An H(P, y, 8) tree is defined by three parameters: P, the size of a node; y, the

minimal number of grandsons which a node must have; and 8, the minimal number of

leaves which bottom nodes must have. The purpose of this research is to study H-trees

empirically. Algorithms, to insert and delete elements, are implemented. The results of

our experiments confirm the validity of existing theories. For example, by varying the

parameters 8 and y, significant changes in the tree's performance are observed: the height

of H-trees decreases as y increases, and the storage utilization increases as 8 increases.

Moreover, comparisons of H-trees with other variants of B-trees are shown to

demonstrate the superiority of H-trees. Specifically, the average storage utilization of

H-trees may be higher than that of B-trees by almost 20%.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT iii

ABSTRACT

LIST OF FIGURES viii

LIST OF TABLES viiii

CHAPTER I INTRODUCTION AND DEFINITIONS 1

1.1 Introduction .. 1

1.2 Definitions .. 4

CHAPTER n INSERTION, DELETION ALGORITHMS AND PROPERTIES

OF HEIGHT-BALANCED TREES 7

2.1 Basic Operations 8

2.2 Insertion and Deletion Algorithms 9

2.3 Examples and Properties of Height-Balanced Trees 19

CHAPTER m COMPARISONS OF HEIGHT-BALANCED TREES AND

OTHERS 24

3.1 B*-trees.. ..24

3.2 Dense Multiway Trees 26

3.3 Comparisons 29

CHAPTER IV CONCLUSIONS...33

REFERENCES ...36

APPENDIX A Basic Subroutines Adapted by Program HTREE, DMT, and B*.... 65

APPENDIX B Main Part of Program HTREE - Construction of an H-tree.................66

APPENDIX C Main Part of Program B* - Construction of a B*-tree..........................76

APPENDIX D Main Part of Program DMT - Construction of a DMT-tree................ 79

vii

LIST OF FIGURES

Figure Page

Figure 1.1 An H(3,5,2) -tree with 32 keys...................... 37

Figure 2.1 Examples of operation SHIFT......... 38

Figure 2.2 Examples of operation PACK... 38

Figure 2.3 Examples of operation MERGE.. 38

Figure 2.4 Examples of operation SPLIT..................... 39

Figure 2.5 Examples of operation UNPACK... 39

Figure 2.6 Randomly generated input data in the range of 1 to 134 of example

2.1...40

Figure 2.7 Construction of an H(3,5,2) tree with input data in Figure 2.6........ 41

Figure 2.8 Relationship between height and storage utilization of Example 2.1.47

Figure 3.1 Three classes of trees with h = 1,2, and nk = 1,3...............................48

Figure 3.2 Three classes of trees with h = 3, and nk = 11..................................... 49

viii

LIST OF TABLES

Tahk Ease

Table 2.1 Height, number of nodes, storage utilization of example 2.1..............50

Table 2.2 H-trees with various degrees of 5 and y (N = 1024, p = 7)................ 52

Table 2.3 H-trees with various degrees of 5 and y (N = 1024, p = 7)53

Table 3.1 Theoretical estimates of height, storage utilization, access cost and

insertion cost of H(3,5,2), B*(3), andDMT(3,1).......................... 54

Table 3.2 Experimental results of 10 data, each with N = 128, by program

HTREE(3,5,2)..55

Table 3.3 Experimental results of 10 data, each with N = 128, by program

B*(3)... 56

Table 3.4 Experimental results of 10 data, each with N = 128, by program

DMT(3,1)...57

Table 3.5 Tree performance comparisons derived from Table 3.2,3.3, and

3.4.. 58

Table 3.6 Tree performance comparisons in ratio derived from Table 3.5...........59

ix

Table 3.7 Experimental results of 10 data, each with N = 256, by program

HTREE(3,5,2).. 60

Table 3.8 Experimental results of 10 data, each with N = 256, by program

B*(3).. 61

Table 3.9 Experimental results of 10 data, each with N = 256, by program

DMT(3,1)... 62

Table 3.10 Tree performance comparisons derived from Table 3.7,3.8, and

3.9.. 63

Table 3.11 Tree performance comparisons in ratio derived from Table 3.10..... 64

X

CHAPTER I

Introduction and Definitions

1.1 Introduction

The B-tree [1] and its variants have been widely used in recent years as a data

structure for storing large files of information, especially on secondary storage devices.

The guaranteed small search, insertion, and deletion time for these structures makes them

quite appealing for database applications. However, each of these has had a serious flaw.

Here, a parameterized variant of B-trees is demonstrated to be able to eliminate the

weakness of the other variants.

Knuth [4] defines B-trees as the followings:

A B-tree of order m is a tree that satisfies the following conditions:

1) Every node has < m sons.

2) Every node, except for the root and leaves, has £ m / 2 sons.

3) The root has at least two sons (unless it is a leaf).

4) All leaves appear on the same level, and carry no information.

5) A nonleaf node with k sons contains k -1 keys.

1

2

B-trees can be considered as multiway trees of order m 3 where each internal node

has k sons and k -1 keys for \m 121 < k < m. Each node corresponds to a page of fixed

size which can hold up to m - 1 keys and m pointers. But pages may be only partially

filled. Information is transferred between main memory and backup storage device in

units of pages. Insertion of new key and deletion of unwanted keys is quite simple for

B-trees. The insertion of a new key ensues by the recursive strategy of splitting an

"overfull" node (or page) having m keys into two and then moving one of its keys

upward. It can easily be seen that in the worst case each page is at least half filled. The

average storage utilization is much better. Yao [6] has shown that after a sequence of

random insertions into an initially empty B-tree of high order, the storage utilization is

approximately In 2 « 69 percent However, if the keys are inserted in ascending order into

an initially empty B-tree, the worst case lower bond of 50 percent storage utilization

becomes significant An attempt to solve this "sparsity problem" for B-trees is the main

idea of "overflow" introduced by Bayer and McCreight [1], which leads to the notion of

B*-trees; instead of splitting an overfull node, look first at its left (or right) brother. Say

the immediate right brother has only /keys and j + 1 sons where j <m- 1. Then the

overfull node "flow[s] over" into its brother node, i.e., shifts its additional keys to the

right or left brother node. If the brother node is already full, then split both nodes and

create three new nodes, each about two-thirds full. The result of this modification is an

increase in storage utilization; at least two-thirds of the available space is utilized. More

discussion about B*-trees will be seen in the subsequent chapter. Basically, the scheme of

the new variant also applies the idea of "overflow". However, instead of looking at both

immediate right and left brothers, it examines a small number of neighboring brother

3

nodes around, so that the storage can be fully utilized.

The definition of B-trees is too general. For a given number of keys, it may

construct a lot of different representations. Different representations with same number of

keys may possess different heights, which could make severe difference in the access cost

and storage utilization. For example, a skinny tree with larger height needs more time to

access. Meanwhile, each node in the tree, if not fully utilized, causes poor storage

utilization.

Generally, to solve this problem, most of the variants apply two approaches: either

adding conditions on the tree to constrain its development more constrictively, or finding

the subset containing all B-trees that are optimal with respect to some measure. B*-tree is

a typical application of the first approach. Another example is the dense multiway tree.

Dense multiway tree [2] is featured in its unique parameter r. A time/space trade-off

is available by adjusting the value of r. The tree is called weakly dense tree with little

effort to insert and delete when r = 1. On the other hand, it becomes strongly dense as r

approaches m and the storage utilization tends higher at the expense of higher cost for

insertion and deletion. However, the time/space trade-off works out quite unsatisfactorily.

Because the performance does not change "smoothly" as r changes, it is almost impossible

to find a proper value of r which promises both existence of acceptable storage utilization

and insertion/deletion time. Since the insertion and deletion time can still guarantee O(log

TV), however, the worst storage utilization (r+l)/(m + l) becomes extremely small for

weakly dense tree. On the contrary, the strongly dense tree is able to maintain larger worst

4

storage utilization (r+l)/(m+l) and provides terrible insertion and deletion algorithm

O(AD.

The new class of variant to be presented also adopts the first approach. Several

parameters are provided to constrain the tree's construction. There also exists a time/space

trade-off under its definition. Nevertheless, this trade-off is guaranteed to be "smooth,"

and meets the minimum requirement of at least 50 percent utilization and O(log N)

insertion and deletion time which are the attraction of B-trees. Not only the "satisfactory"

time/space trade-off, but also the definition, by its simplicity, generality, and wide

application, is highlighted.

The definition of H-trees shall be introduced in the next section. More detailed

insertion and deletion algorithms can be found in Chapter II. Chapter II also points out

several properties of this class of trees. The tree's charm is displayed most in Chapter JU

by the comparisons between it and two other classes of trees mentioned above. Finally, a

brief summary and conclusion is presented in the last chapter.

1.2 Definitions

The class of height-balanced tree [3] is defined by three parameters: 0, the size of a

node; y, the minimal number of grandsons a node must have; and 5, the minimal number

of leaves bottom nodes must have.

5

Huang [3] defines this class of tree as followings:

A height-balanced tree of order (0, y, 8), or an H(0, y, 8), is a B-tree of order 0

such that:

1) Every node, except the root and those nodes in the bottom level, must have at least y

grandsons.

2) All nodes on the bottom level must have at least 8 leaves.

0, the order of a tree, is the maximum number of sons a node can have. The other

extreme for the sons' requirement is a which stands for the minimum number of sons a

node can have. As a subclass of B-trees, each node in the H-trees also carries the property

of at least half full capacity. So a is at least 0/2. For the purpose of easy insertion

and deletion, we always choose a = F 0/21. Parameter y restricts the number of

grandsons each node can have in order to prevent the tree from becoming too sparse. It

provides a generalization of the brother condition. Because many keys reside in the bottom

level of the tree, the density of the node on the bottom level dominates the storage

utilization of the whole tree. However, they are unable to be constrained by the restriction

of having y grandsons. Therefore, parameter 8 is used to require the minimum number of

6

leaves these nodes must have.

By varying the parameters, H-trees can perform like many other trees. For example,

the 2-3 tree, which requires each node to have two or three sons, is one case of H-trees

with y = 5. And the class of B-trees of order m can be obtained by choosing 0 = m, y =

(.m 12)^ and 5 = f m / 2 "I.

Figure 1.1 is an example of H(3,5,2) tree with 32 keys.

CHAPTER n

Insertion, Deletion Algorithms and Properties of Height-Balanced Tree

More detail about the Height-Balanced Tree is studied in this chapter. The algorithm

to insert and delete a key in H-tree and its properties will be described. Moreover, several

examples will be used to illustrate the properties. Before discussing the insertion and

deletion algorithms of H-tree, several basic operations that are needed will be introduced in

the subsquent section. First of all, let's look at the data type and notations which will be

used later

TYPE

ptr = Anode;

item = RECORD

key : integer,

p :ptr,

END;

node = RECORD

fptr :ptr, (father pointer)

ns : O..maxi; (number of sons)

ngs :0..maxi; (number of grandsons)

pO : ptr,

son : array [1.. 100] of item;

7

8

END;

2.1 Basic operations

Three basic operations mentioned in Huang [3] are summarized below:

1) SHIFT(B, N, m) Shift m sons from node B to node N, where nodes B and N are

adjacent brother nodes with the same father F. Since the construction of H-tree also uses

the idea of "overflow" introduced by Bayer and McCreight [1] and which leads to B*-tree,

operation SHIFT is the one that serves this purpose. Node B can be either the left or right

hand side brother of node N. An example of SH1FT(8, N, 1) can be found in Figure

2.1 where B is the left adjacent brother of N.

2) PACK(2V, m) Reduce the number of sons of node N to m. However, the number of

TVs grandsons should not be changed. To preserve the requirement of an H-tree, m must

be at least Pngs / pl. Figure 2.2 gives an example of PACK(TV, 2).

3) MERGE(B, TV) Node B is merged into its adjacent brother TV. The MERGE operation

is a special case of SHIM with m = the number of sons of node B. The difference is that

B vanishes after the operation. An example of MERGE operation is illustrated in Figure

2.3.

We found the following two additional operations useful in the explanation of the

algorithms.

9

4) SPLITCN, NEW, m) Split m sons of node N to the newly created subtree NEW, so

that the number of sons of subtree NEW will be m. Figure 2.4 gives an example of

SPLITS, NEW, 2).

5) UNPACK(2V, m) Increase the number of sons of node N to m. This operation is the

reverse of the PACK operation except that the number of sons of N is increased rather

than reduced after the operation. Therefore, the number of Ns grandsons still remains the

same. SPLIT operation will be performed for (m - number of sons of node N) times in

UNPACK operation, and the NEW subtree after each SPLIT is going to be inserted into

node TV. An example of UNPACK(TV, 4) is given in Figure 2.5.

The above two operations SPLIT and UNPACK are applied in most cases of

propagating to the upper level.

2.2 Insertion and deletion algorithms

The insertion and deletion algorithms introduced below are to construct an H-tree

which is based on "dynamic" construction analysis compared with the "static" analysis.

Because the random insertions and deletions which constitute the dynamic analysis give a

better understanding of the average behavior of classes of trees than the corresponding

static analysis, the insertion and deletion algorithm of B-tree can be applied to insert and

delete an H-tree. However, several major changes will be made to satisfy the conditions

required by H-tree.

10

2.2.1 Insertion algorithm

The same algorithm for finding the node N on the bottom level where the key should

be inserted into a B-tree can be applied to insert a new key into an H-tree. In order not to

contravene any of the conditions of H-tree, caution must be exercised for inserting the new

key after the node is found. In order to take care the different conditions seperately, the

insertion algorithm is divided into two phases: the first phase deals with the nodes on the

bottom level, and the second phase deals with higher levels.

Phasel The problem in the first phase occurs when a node has to be split into two

nodes. Each will have only a (or a + 1 if P is even) sons. Because the value of 5 is at

least oc, this may violate the condition that each node on the bottom level must have at least

8 sons. To ’'overflow" to other nonfull brothers is one obvious way to solve this problem

. In case all brothers are full, we just add another node and average all the keys over all

brothers. If the father was full originally, it may be forced to split. This problem shall be

handled in the second phase.

There is an obvious disadvantage in the above algorithm, though it works. That is,

in the worst case, the operation cost is always P, no matter how small 5 may be. Another

algorithm whose cost is not only of function of 8, but also equal to that of B-trees when 8

11

= a, will be replaced.

The modified alogrithm works as follows: Suppose m is the number of full nodes

around node N. Instead of waiting until all the brothers of node N are full, we average all

the keys of these m full nodes (plus the new key) over one more node as soon as m is

large enough. In other words, all the keys in the m nodes and m -1 keys between them in

father F plus the newkey, that is (p - l)m + (m - 1) + 1 keys in total, are distributed over

m + 1 nodes. Considering the condition that each bottom node should have at least 5

sons, the following inequality must hold:

(P - l)m + (m -1) + 11> (8 -1) (m + 1) + m.

The smallest integer solution of the above inequality is

m = r(8- l)/(p-8)l

It may be worth pointing out that m is a fairly small number, except when 8 is near

its maximum value. Thus, the cost is quite small compared with averaging the keys over

all brother nodes.

Phase 1 of the insertion algorithm is given below.

JNSERTH_PHASEl(^ey, N, NEWKEY):

12

INPUT key The key to be inserted.

N Node found at the bottom level where the key should be

inserted.

OUTPUT NEWKEY Subtree generated as input of Phase 2.

ALGORITHM

Step 1 Add key into node N. If N is not full, then go to Step 6.

Step 2 If N is the root, then go to Step 5. Otherwise, if all the brothers of N are full

then go to Step 4.

Step 3 SHIFT 1 subtree of N to B via any nodes in between N and B, where B is the

nearest nonfull brother of N, go to Step 6.

Step 4 If FA.ns > m, then average the keys in N and its m -1 full brothers into m + 1

nodes. Otherwise, average the keys in the FA.ns full nodes into FA.ns + 1

nodes (UNPACK(F, FA.ns + 1)). Go to Phase 2 to insert the NEWKEY into

F.

Step 5 SPLIT N into two nodes, and increase the height of the tree by creating a new

root with the two nodes as its sons.

Step 6 STOP.

Phase 2 In the second phase, we are given a node N on level L of H(P, y, 5) tree

T of height h, a key called newkey, and a subtree of height h-L, called newson, such

that there is an i which satisfies one of the following conditions:

13

1) k" < newkey <k* < JVA.key[z],

where k' is any key in new son and k" is any key in 2VA.son[i];

2) jVA.key[i] < k* < newkey < k",

where k* is any key in new son and k" is any key in NA.son[z + 1].

We also assume that node N is the jth son of its father F if N is not the root of the tree.

The task on this level is to merge NEWKEY and NEWSON into node N or his

brothers (if possible) or to go up one level if N must be split At the end of this iteration,

we either stop or we reduce the problem to a higher level. We present the iterative

algorithm below. Note that node B is always the adjacent brother of node N.

INSERTH_PHASE2(NEWEy/, N, NEWKEY 2)

INPUT NEWKEY 1 Subtree to be inserted

N Node where NEWKEY1 should be inserted

OUTPUT NEWKEY2 Subtree generated as the input to be inserted for the

next iteration

ALGORITHM

Step 1 Add NEWKEY1 into N. If N is not full, then go to Step 10.

Step 2 If N is the root, then go to Step 9. Otherwise, if N is splittable (i.e., if both the

leftmost and rightmost half of the sons have at least y grandsons), then SPLIT a

14

node as NEWKEY2 and go to Step 8.

Step 3 If adjacent brother B is not full, then SHIFT(7V, B, 1) and go to Step 10.

Step 4 If N has no more than P1 2 grandsons, then PACK(?V, P) and go to Step 10.

1) Whether 2V, the node to be inserted, is full or not, the NEWKEY1 is always inserted

in the very first step.

2) In Step 2, node N is checked to see if it is the root or not. If it is, it must be also full,

then action to split the root and increase the height of the tree must be taken.

Otherwise, continue.

Step 5 SHIFT(N, B, 1). If B is splittable, then split B into two nodes as in Step 2, go

to Step 8.

Step 6 If B has no more than P2 grandsons, then PACK(B, P) and go to Step 10.

Step 7 Add a new node W between N and B. Distribute the 2P + 1 sons in B and N

into nodes B, W and N, such that each node has at least a sons and y

grandsons.

Step 8 N :=7VA.fptr, go to Step 1.

Step 9 SPLIT N into two nodes, and increase the height of the tree by creating a new

root with the two nodes as its sons.

SteplO STOP.

The above insertion algorithms are somehow different from those in Huang [3] in the

following aspects:

15

3) In INSERTH_PHASE1, one more condition is taken with care. That is, when all the

brothers of node N are full and their aggregate plus N (FA.ns) is smaller than m,

then the number of nodes whose keys to be averaged into is FA.ns + 1 instead of m +

1.

2.2.2 Deletion algorithm

Similarly, the deletion algorithm is also divided into two phases: the first phase deals

with the nodes on the bottom level (level h - 1); the second one handles the rest. The key

we are deleting is assumed to be located at the bottom level, as in the case of B-trees. If

not, a key on the bottom level which is the next higher or lower can be found to replace it

Phase 1 This is almost the reverse of Algorithm INSERTHJPHASEl. The

algorithm is slightly different in that we have to check not only for the number of sons, but

also for the number of grandsons. Suppose a key is deleted from a node N on the bottom

level. If node N has less than 8 sons, there are two ways to solve this problem: either

borrow keys from its brothers ("underflow"), if possible, or reconstruct nodes such that TV

has one less brother. This may require examining TV's grandfather. Because of the

requirement of minimum number of grandsons, after insuring that TV has enough sons, we

check that TVs father has enough grandsons. The deletion algorithm is given below, with

w= r(p-l)/(P-8)l = m + l.

DELETEH_PHASEl(^y, TV)

16

INPUT key

N

key to be deleted

Node contains the key

OUTPUT N Node in the higher level that needs to process because

it fails to meet the definitions after the deletion

ALGORITHM

Step 1 Delete the key from node N. If N has at least 8 sons, go to Step 5.

Step 2 If a nearest brother B of N that has more than 8 sons is found, then SH1FT(B,

N, 1) and go to Step 5.

Step 3 If FA.ns w, then redistribute FA.ns nodes, including N and all the other sons

of F, and all the keys separating them over w -1 of the nodes (PACK(F, w -

1)). Otherwise, redistribute them into FA.ns -1 nodes (PACK(F, FA.ns - 1)).

Delete the extra node.

Step 4 If N’s grandfather G exists and does not have enough grandsons, then go to

Step 6.

Step 5 If ATs father F has enough grandsons, go to Step 7. Otherwise, go to Step 6.

Step 6 If F is not the root, then

N:=F;

F := 7VA.fptr;

go to Phase 2.

17

Step 7 STOP.

Phase 2 The deletion algorithm for H-trees is more difficult than the insertion

algorithm compared with other kinds of trees. We present an iterative algorithm that goes

up one level at a time. The invariant of each iteration is such that node N may have lost up

to one son and P grandsons in the previous iteration; we go up one level, and the above

invariant must be true for the new node N if the whole process has not been terminated.

DELETEH_PHASE2(2V)

INPUT N Node fails to meet the definitions of H-trees

OUTPUT N Node in the higher level that needs to process because

it fails to meet the definitions after the deletion

ALGORITHM

Step 1 If node N has at least a sons, go to Step 7.

Step 2 If shifting one son from adjacent node B to N will not violate any of the H-tree

restrictions for node B (i.e., BA.ns > a and Z?A.ngs £ y + p), execute

SHIFT(5, N, 1) and go to Step 7.

Step 3 If AA.ngs + BA.ngs < p2’ then MERGE(B, N), PACK(N, p) if 2VA.ns > p,

and go to Step 7.

18

Step 4 Let B' be another brother of N such that N, B, and B* are adjacent. If B* has at

least P sons and at least P£P - 1) grandsons, go to Step 6. Otherwise,

PACK(S', P - 1).

Step 5 (B* has at most P -1 sons, and hence can absorb a son if we merge B and TV.)

MERGE(TV, B), PACK(TV, p + 1), SHIFT(7V, B\ 1), and go to Step 7.

Step 6 If node B* is also adjacent to N, then SHIFT(B', N, 1). Otherwise,

SHIFT(B',B, 2) and SHIFT(B,TV, 1).

Step 7 If node TV has less than y grandsons, go to Step 2. Otherwise, if F is the root,

check to see if it has to be deleted, then go to Step 8. If F is not the root, then

TV:=F;

F := TVA.fptr,

and go to Step 1.

Step 8 STOP.

The deletion algorithms above have some difference with those in Huang [3] in the

following aspects:

1) Similar to 3) in the insertion algorithm comparisons, one more condition is added in

Step 3 of DELETEHJPHASEl. If FA.ns is less than w, the redistribution node

number, because it is not big enough for w -1, will be FA.ns - 1.

2) In order to prevent the null pointer, node G’s existence will be insured before the

19

number of its grandsons is checked in Step 4 of DELETEH_PHASE1. For the same

reason, an examination is performed in Step 6 of DELETEH_PHASE1 to see if node

F is the root.

3) In the Step 4 of Phase 2 in Huang's algorithm, two conditions are discussed. If

B'A.ns £ p and B'A.ngs P(P - 1) then algorithm flows to Step 6, otherwise, if

B'A.ns < P then B* is going to be packed into P - 1 sons. However, the situation 'if

B'A.ns > P and B'A.ngs < P(P - 1)' is missing. Therefore, the above algorithm

takes this condition into consideration in Step 4. No matter what value B'A.ns might

be, B* will be packed into P -1 sons as long as its number of grandsons is less then

PIP -1).

2.3 Examples and properties of Height-Balanced Tree

A Pascal program HTREE which is implemented to build a height-balanced tree

consisting of the insertion and deletion procedures can be found in Appendex B. Several

experiments are made using this program. It is easier for us to get a better idea and

understanding of H-trees and their properties through the results of the experiments in the

format of tables and figures.

Example 2.1

20

Table 2.1 and Figure 2.7 are the outcome of the execution of program HTree with £

= 3, y = 5, 8 = 2 and 128 random integers as input data which are listed in Figure 2.6.

Figure 2.7 illustrates the final construction of this H-tree and Table 2.1 shows the

information, including the height, number of nodes, storage utilization, about it as each

increment of input data (keys). Also Figure 2.8 which is a double Y-axis chart with

number of keys N as the X-axis and both the height and storage utilization as the Y-axis is

drawn according to the data of Table 2.1.

Let's now look at some interesting phenomon in Figure 2.8 from the aspects of the

two components of Y-axis: height and storage utilization. First, as we can see, the range

of N becomes wider and wider as the height increases. This simply means the higher tree

contains more keys then the lower one. Next, let's focus on the storage utilization. As

with the same property of B-trees, the storage utilization of this H-tree moves cyclically

between 0.5 and 1.0. However, the extreme values 0.5 and 1.0 only occure in the little

number of keys where the curve is extremely unstable. As the number of keys N

increases, the curve also becomes smooth. It stays steadily between 0.8 and 0.9 after

about 100 key insertions. This gives us an idea of the value of the approximate average

storage utilization of H-tree. This value which approaches 1.0 is significantly higher than

other trees. More detailed comparisions between H-trees and other trees will be discussed

in the following chapter.

Besides, it is obvious that the storage utilization curve drops sharply every time the

height curve goes up one level. The increased nodes that result from every time the tree

21

getting higher are responsible for the sudden drop of storage utilization. However, the

storage utilization usually keeps increasing, though not continuously, in the same level of

height as the number of keys increases. The reason it does not increase continuously is

that the increment of nodes causes the decline of the storage utilization.

The following examples demonstrate the relationships between the parameters, and

how the two additional parameters 5 and y influence the performance of height-balanced

tree.

Example 2.2

Tables 2.2 and 2.3 which contain several height-balanced trees with (3 = 7, and

various degrees of 8 and y using two sets of input data, each with number of keys = 1024,

individually are two seperate results of the execution of program HTREE. The existence

of an H-tree requires specific values of 8 and y [3]. In other words, they must locate in

the following ranges: < y < (P^ + 1) / 2, a < 3 < (aP - P + 1). Thus, 16 < y < 25 and

4 < 8 < 5 for P = 7. Although both are based on different input data, the results are

quite the same: except the height always remains 4,the average storage utilization and

average accumulated insertion cost are increased; however, the average access cost

declines as y increases. On the other hand, the values in every catagory, except height,

22

increase when 5 goes up to 5.

The increment of y means a node owns more grandsons. This will result in fewer

nodes in the whole tree which causes the higher storage utilization. As Chapter HI will

state more clearly, access cost is the number of nodes accessed to find the node containing

a particular key, and insertion cost is the number of nodes visited to insert a key.

According to Huang [3], the average access cost will be controlled by the height.

However, the increment of y results in more keys accommodated in each level which will

decrease the height of the tree. Therefore, the access cost declines while the height

decreases. Meanwhile, the increment of y also results in more effort to insert a key

because the number of nodes in each level increases.

Now, let's study the influence of the parameter 5 on H-trees. The increment of 5

gets the nodes residing on the bottom more sufficiently utilized. So, it is obvious that 5

controls the storage utilization. Nevertheless, the increment of keys on the bottom level

will also result in higher cost for access or insertion.

We have already found how 5 and y control the height, storage, and operation cost

of the Height-Balanced Trees. Apparently, there exists the time/space trade-off when

choosing the parameter values. However, the time/space trade-off is quite "smooth"; since

23

the changes of 8 and yonly cause relatively small changes in performance. Thus, the class

of trees gives arbitrarilly good performance by choosing suitable parameter values. Some

properties concerning the H-trees can also be seen in the next chapter.

CHAPTER III

Comparisons of Height-Balanced Tree and Others

To illustrate that H-tree has satisfactory performance, comparisons of H-tree with

other classes of trees are made in this chapter. The tree structures selected for

comparisons are B*-tree and dense multiway tree. The properties and insertion algorithms

of these two tree structures will be reviewed in the following section. Some important

measures to judge the performance of the tree structures - height, storage utilization,

access cost, and insertion cost - are used for comparisons. Also, some experimental

results will be listed for comparison with the theoretical estimates, and between several

classes of tree structures.

3.1 B*-tree

B*-tree is an improvement upon the basic B-tree structure. The modified tree by

Knuth [4] utilizes at least two-thirds of the available space in every node. The definition

and insertion algorithm of the B*-tree are detailed below.

A B*-tree of order m is a tree which satisfies the following properties:

24

25

1) Every node except the root has at most m sons.

2) Every node, except for the root and the leaves, has at least (2m - 1) / 3 sons.

3) The root has at least two and at most 2 L(2m - 2) / 3 + 1J sons.

4) All leaves appear on the same level.

5) A nonleaf node with k sons contains k -1 keys.

Suppose node N is found on the bottom level to insert a new key with B as its

adjacent brother node. The insertion algorithm of B*-tree INSERTB*(7V, NEWKEY) is

given as below:

Step 1 Add key into N. IfN is not full, then go to Step 5.

Step 2 If IV is the root, then go to Step 4. Otherwise, if adjacent brother B is not full,

then average the keys in nodes N and B (i.e., SHIFT(2V, B, (m + BA.ns) / 2)

and go to Step 5.

Step 3 Dsitribute evenly the 2m - 1 keys in nodes N and B into N, B and NEWKEY

which is just created, such that each node is about two-thirds full, and insert the

new node into F,

N:=F;

F:=NA.fptr,

go to Step 1

(i.e., SHIFT(2V,B, (2m - 2) / 3), SPLIT(5, NEWKEY, (2m - 1) / 3) and

26

INSERTB*(F, NEWKE1T)\

Step 4 If 2VA.ns > 2(2m - 2) / 3 + 1 then split N into two nodes, and increase the height

of the tree by creating a new root with the two nodes as its sons.

Step 5 STOP.

3.2 Dense Multiway Tree

Another tree structure, known as dense multiway tree (DMT), which also improves

the storage utilization of a B-tree was developed by K. Culik, Th. Ottmann, and D. Wood

[2]. A parameter r is introduced into the definition of B-trees. Dense Multiway Tree T is

defined as follows.

An m-ary tree T is said to be r-dense, where l<r<m-liffthe following hold:

1) The root of T is at least binary.

2) Each nonfull node different from the root has either only full brothers and at least one

such brother or at least r full brothers

3) All leaves have the same depth.

In other words.

1) If a node p is the only son of its father F, then p must be full.

27

2) If a node p has k sons, then

i there are at least r full sons of p if t^r+1;

ii otherwise, there is at most one nonfull node among the sons of p.

The insertion algorithm for dense multiway tree INSERTDMT(A^, NEWKEY)

operates as below, where N and B are exactly the same as those in the B*-tree algorithm.

Step 1 Add key into N. If N is not full, then go to Step 7.

Step 2 If N is the root, then go to Step 5. Otherwise, if an unsaturated brother B is

found then SHIFT 1 subtree of N to B via any nodes inbetween N and B, go to

Step 7.

Step 3 If F is unsaturated, then SPLIT the leftmost son of N as NEWKEY and go to

Step 6.

Step 4 If N is not the rightmost son of F, then SPLIT the rightmost, otherwise, the

leftmost, son of N as NEWKEY and go to Step 6.

Step 5 Create a new root with N as its only son and go to Step 3.

Step 6 N:=F;

F := 2VA.fptr;

go to Stepl

(i.e., INSERTDMT(F,NEWEy)).

Step 7 STOP.

To insure that the SHIFT procedures in Step 2 of INSERTDMT, do not destroy the

28

strongly dense tree structure (r = m -1), the SHIM1 operation in DMT insertion is a little

different from that of H-tree:

Step 1 If r = m -1, then SIDESAT(N).

Step 2 SHIFTS, B, 1).

Procedure SIDESAT(2V, tf_right) makes rightmost (if tf_right = 'true') or leftmost

(if tf_right = 'false') son of N saturated. Let tf_right = 'true', q be the rightmost son of

N, and Bq be the immediate left brother of q which must be saturated.

The algorithm of SIDES AT operates as:

Step 1 If q is saturated, then go to Step 4.

Step 2 If ^A.ns = 1, then make the leftmost son of Bq saturated and SHIFT m -1 sons

to q (i.e., SIDESAT(B^, (NOT tf_right)), SHIFT(B^, q, m -1)) and go to Step

4.

Step 3 For i := 1 to m - #A.ns do

SIDESAT(B7, tCright);

SHIFTS, q, 1).

Step 4 STOP.

To better illustrate the structural difference between H-tree, B*-tree and dense

multiway tree, Figures 3.1 and 3.2 are demonstrated. They show three classes of tree

29

structures with equal height (1,2, and 3) and number of keys (1,3, and 11) respectively.

3.3 Comparisons

To make comparisons of the performance of these three classes of trees, there are

several criteria that can help us to judge the performance of a tree structure T including:

1) Height

The height h of T is the number of edges in the longest path from root to a leaf.

According to Huang [3], the maximal and minimal height for an H-tree with N keys are 12

+ 2 logy((7V + 1) / 25)J and Fl + logp((2V + 1) / 2)1 respectively. However, every

r-dense zn-ary tree with N keys is of height h < 2 logm(7V + 1) +1.

2) Storage utilization

Intuitively storage utilization u is the ration of the used portion of all the nodes.

number of keys in T

u =

(number of nodes in T) (node size -1)

30

where number of keys usually is denoted as N and node size is the maximum number of

sons a node can have. It is equal to P in H-tree case. Therefore, (node size -1) represents

the maximum number of keys a node can have.

The number of nodes visited during an operation of T also provides a measure of its

performance.

3) Access Cost

Access cost (ac) is the number of nodes accessed in order to find the node containing

a particular key. The range of average access cost for an H(P» y, 5) tree of N keys ac

yields:

l)/p<ac^/i-l/8

4) Insertion Cost

Insertion cost is the number of nodes visited in order to insert a key into T. The cost

is at most 2(h -1) + P + (5 -1) / (P - 5) + 1 for H(P, y, 5).

31

Since the H(3,5,2) tree is the H-tree with smallest order, we can afford a detailed

study of this case. The competitors for B* tree and dense multiway tree are B*(3) and

DMT(3, 1). Table 3.1 shows the theoretical estimates of the height, storage utilization,

access cost and insertion cost for H(3,5,2), B*(3), and DMT(3,1).

To support the theoretical issue, three Pascal programs, HTREE, B* and DMT in

appendix B, C, and D, which build these three classes of trees, are implemented according

to respective insertion algorithm for realistic execution and proof.

Table 3.2 which is generated under the execution of the HTREE program illustrates

the height, average storage utilization, average access cost, and average accumulated

insertion cost of H-tree for ten different data sets each with N = 128. Tables 3.3 and 3.4

show the corresponding results derived from programs B* and DMT respectively, using

the same data. The average storage utilization is the average of 128 storage utilization for

each key insertion. Similarly, average accumulated insertion cost is the average of 128

accumulated insertion costs for each key insertion. No matter under which tree structure,

the heights for N = 128 in these three tables all yield 5.

The averages of the ten data sets for Tables 3.2,3.3, and 3.4 are collected into Table

3.5. In addition, the theoretical estimates according to Table 3.1 are also illustrated. We

can see that, in Table 3.5, each experimental result is within the range of, or even perform

better than the theoretical estimates.

32

Surprisingly important, we find that H-tree has the best performance in almost every

category. This is stated more clearly in Table 3.6 which demonstrates the ratio of every

figure in Table 3.5 to the figure of H-tree in each criteria. Among three classes of tree

structures, B*-tree obviously has the worst performance because of lowest storage

utilization and highest access and insertion costs. The access cost of dense multiway tree

is about 3% lower than that of H-tree. On the contrary, H-tree has better storage

utilization and insertion cost Compared with the average storage utilization 0.69 in the

case of B-tree [6], the improved B-tree variant - H-tree makes almost 20% progress in

storage utilization.

Table 3.7 - Table 3.11 are corresponding to Table 3.2 - Table 3.6 except that N is

increased to 256. They provide a confirmative support to the results of comparison

because the ratio comparisons between the trees in Table 3.11 are quite similar with those

in Table 3.6. Nevertheless, by comparing Table 3.5 and Table 3.10, there are some

interesting differences. It is undoubtful that the height is raised because of the increment

of N and all the operation costs are increased because of the increment of height. On the

other hand, the storage utilization of H-tree and DMT also increases by the increment of

N. However, this is not true for B*-tree. Reviewing the storage utilization of Table 2.2

and Table 2.3 which is with 1024 keys, we can conclude that the storage utilization of

H-tree tends to 1 as N tends to the limit. This is another property of H-tree.

CHAPTER TV

Conclusions

We have presented a new class of balanced multiway trees, the height-balanced tree

which is a generalization of B-trees. Some experimental results of this class of trees and

the comparisons between it and others are given. Apparently, some strong evidence in

favor of this new class has been demonstrated.

We have compared the storage utilization of the two classes - H-trees and B-trees for

insertions. This has indicated that the H-trees do indeed have a better storage utilization

than B-trees. In particular, we have shown that the average storage utilization tends to 1

as N and 8 tend to the limit, but this is not true for B-trees. Furthermore, the experimental

results prove that H-trees not only perform better in storage utilization than B-trees, but

also perform better than B*-trees and even dense multiway trees. As a matter of fact, the

results indicate that the actual application for H-trees shows even higher average storage

utilization than the theoretical estimate.

As mentioned, H-trees with high parameters have excellent storage utilization and

smaller heights. However, it becomes difficult to maintain these tree increases with an

increase in the parameters y and 8. Fortunately, the increment is relatively small compared

to other trees. There is obviously some kind of trade-off between the amount of work for

33

34

insertion and the density of trees obtained by performing iterative insertions.

Though varying r, the basic parameter of dense multiway tree, can also allow a

time/space trade-off. However, the performance of dense multiway tree is not

satisfactory. And this is because no value of r guarantees both acceptable worst-case

storage utilization and O(log N) insertion and deletion time. Besides, the time/space

trade-off is not so "smooth" as that of H-trees. "Smooth" time/space trade-off means that

small changes in the parameters cause relatively small changes in performance.

Not looking at brothers at all, as the scheme for B-trees, is very simple but generates

quite sparse trees which waste the space of memory. On the other hand, looking at all

brothers could be very messy and time consuming. However, this utilizes the storage

most sufficiently. Thus we may consider these two classes of trees as the two endpoints

of a whole variety of trees and insertion schemes in between; they are obtained by looking

at more and more brothers.

Whether or not a scheme is appropriate depends on the actual environment. This is

determined mainly by the number of search operations compared with the number of

updates which have to be carried out and, furthermore, by the time which is necessary to

settle a backup storage request

The parameters 8 and y in H-trees are defined as user's specification. As we

discussed in Chapter II, they can make significant changes to the tree's performance.

Thus, it is convenient to change the parameters dynamically according to the user's need

35

under different environments. The user may select a small 5 value to enjoy efficient

insertion and deletion when there is quite sufficient storage. Once he has the need to

utilize storage more efficiently, higher storage utilization can be traded by higher insertion

and deletion costs simply by adjusting the value of 8 higher without shutting down the

whole system for reorganization. Similarly, this can be applied to the parameter y.

H-tree features a variation of parameters. By selecting proper parameters, it can

perform like many other trees. Therefore, it certainly provides a framework for comparing

various trees. As shown in the previous chapter, H-tree has the better performance over

B*-tree and dense multiway tree. After comparing them to H-trees, there is not much

reason to search for efficent insertion algorithms for B*-trees and dense multiway trees.

36

REFERENCES

1. BAYER, R., And McCREIGHT, E. "Organization and maintenance of large ordered

indexes," Acta Inf. 1 (1972), 173-189.

2. CULIK, K., OTTMANN, T., AND WOOD, D. "Dense multiway trees," ACM

Trans. Database Syst. 6, 3 (1981), 486-512.

3. HUANG, S. "Height-Balanced Trees of Order (p, y, 8)," ACM Trans. Database

Syst. 10, 2 (1985), 261-284.

4. KNUTH, D. E. "The Art of Computer Programming, vol. 3, Sorting and

Searching," Addison-Wesley, Reading, Mass., 1973.

5. ROSENBERG, A. L., AND SNYDER, L. "Time and space optimality in B-trees,"

ACM Trans. Database Syst. 6,1 (1981), 174-193.

6. Yao, A. "On random 2-3 trees," Acta Inf. 9,2 (1978), 159-170.

Figure 1.1 An H(3,5,2)-tree with 32 keys

38

Figure 2.1 Example of operation SHIFT.

Figure 2.2 Example of operation PACK.

Figure 2.3 Example of operation MERGE.

39

Figure 2.4 Example of operation SPLIT.

Figure 2.5 Example of operation UNPACK.

40

25 75 127 63 32 85 38 66 86 20 116 9 109 88 65 107 82 129 89 77 7 57 133 19 91 59
34 48 96 90 69 80 118 2 117 134 115 27 24 60 128 26 104 41 23 130 4 62 39 124 47
132 52 114 15 105 12 121 16 36 8 56 131 94 73 45 84 68 93 18 44 106 126 28 112 95
42 53 1051 11171 108 30 6176 21 125 83 17 31 14 1 70 120 5411072 13 4678 5
101 43 22 11 106 33 29 3 123 92 119 55 79 64 74 37 50 103 87 122 67 40 81 6 58 35
00

Figure 2.6 Randomly generated input data, in the range of 1 to 134, of example 2.1

Figure 2.7 Construction of H(3,5,2) with input data in Figure 2.6

Figure 2.7 (cont.) Construction of H(3,5,2) with input data in Figure 2.6

N>

Figure 2.7 (cont) Construction of H(3,5,2) with input data in Figure 2.6

Figure 2.7 (cont.) Construction of H(3,5,2) with input data in Figure 2.6

15>

Figure 2.7 (cont.) Construction of H(3,5,2) with input data in Figure 2.6

Figure 2.7 (cont.) Construction of H(3,5,2) with input data in Figure 2.6

H
EI

G
H

T

NO. OF KEYS

FIGURE 2.8 Relationship between height and storage utilization of Example 2.1

STO
R

AG
E U

TILIZATIO
N

48

Figure 3.1 Three classes of trees with h=1, 2 and nk=1, 3

49

H(3, 5, 2)

B*(3)

DMT(3, 1)

Figure 3.2 Three classes of trees with h=3 and nk=11

50

Table 2.1 Height, number of nodes, storage utilization of example 2.1

HEIGHT NO. Of KEYS NO. Of NODES STORAGE UTILIZATION
1 1 1 9.5000
1 2 1 1.9009
2 3 3 0.5000
2 4 3 9.6667
2 5 3 9.8333
2 6 4 0.7500
2 7 4 9.8750
2 a 4 1.0000
3 9 7 0.6429
3 19 7 0.7143
3 11 7 0.7857
3 12 8 0.7500
3 13 9 0.7222
3 14 9 0.7778
3 15 9 0.8333
3 19 9 0.8889
3 17 11 0.7727
3 18 11 0.8182
3 19 12 0.7917
3 20 12 0.8333
3 21 12 0.8750
3 22 13 0.8462
3 23 13 0.8846
3 24 13 0.9231
3 25 13 0.9615
4 26 17 0.7647
4 27 17 0.7941
4 28 17 0.8235
4 29 18 0.8056
4 30 18 0.8333
4 31 20 9.7750
4 32 20 0.8000
4 33 21 0.7857
4 34 22 9.7727
4 35 22 0.7955
4 36 22 0.8182
4 37 23 0.8043
4 38 23 0.8261
4 39 23 0.8478
4 40 23 0.8696
4 41 23 0.8913
4 42 25 0.8400
4 43 25 0.8600
4 44 25 0.8800
4 45 25 0.9000
4 46 28 0.8214
4 47 29 0.8103
4 48 30 0.8000
4 49 30 0.8167
4 50 30 0.8333
4 51 32 0.7969
4 52 32 0.8125
4 53 32 0.8281
4 54 32 0.8438
4 55 32 0.8594
4 56 33 0.8485
4 57 33 0.8636
4 58 34 8.8529
4 59 35 0.8429
4 60 35 0.8571
4 61 35 0.8714
4 62 36 0.8611
4 63 36 0.8750
4 64 36 8.8889
4 65 36 0.9028
4 66 36 0.9167
4 67 38 6.8816
4 68 39 0.8718
4 69 39 0.8846

51

Table 2.1 (cont.) Height, number of nodes, storage utilization of example 2.1

HEIGHT NO. OF KEYS NO. OF NODES STORAGE UTILIZATION
5 ?• 44 6.7955
5 71 44 6.8668
5 72 47 6.7666
5 73 48 6.7664
3 74 48 6.7768
5 75 48 6.7813
5 76 48 6.7917
5 77 56 6.7766
5 78 56 6.7866
5 7» 51 6.7745
5 86 51 6.7843
5 81 52 6.7788
5 82 52 6.7885
5 83 52 6.7981
5 84 53 6.7925
5 85 54 6.7876
5 86 54 6.7963
5 87 54 6.8056
5 88 54 6.8148
5 89 54 6.8241
5 96 54 6.8333
5 91 54 6.8426
5 92 55 6.8364
5 93 55 6.8455
5 94 55 0.8545
5 95 55 6.8636
5 96 55 6.8727
5 97 55 6.8818
5 98 57 6.8596
5 99 57 6.8684
5 166 57 6.8772
5 101 57 6.8860
5 102 57 6.8947
5 103 59 6.8729
5 104 62 6.8387
5 105 63 6.8333
5 106 65 6.8154
5 107 65 6.8231
5 168 65 6.8308
5 109 65 6.8385
5 110 65 0.8462
5 111 67 0.8284
5 112 67 0.8358
5 113 67 0.8433
5 114 68 6.8382
5 115 69 6.8333
5 116 69 0.8406
5 117 69 0.8478
5 118 69 0.8551
5 119 69 6.8623
5 120 76 0.8571
5 121 71 0.8521
5 122 71 0.8592
5 123 75 6.8200
5 124 75 6.8267
5 125 75 6.8333
5 126 77 6.8182
5 127 77 6.8247
5 128 78 6.8205

52

Table 2.2 H-trees with various degrees of delta and gamma

^■^xGAMMA

DELTA*^^ 16 19 22 25

Height

4 4 4 4 4

5 4 4 4 4

Average Storage
Utilization

4 0.8513 0.8573 0.8712 0.8936

5 0.8543 0.8597 0.8723 0.8965

Average Access
Cost

4 3.6797 3.6797 3.6611 3.6191

5 3.7236 3.6992 3.6748 3.6289

Average Accumulatec
Insertion Cost

4 4.5938 4.7109 4.7598 4.9473

5 4.7578 4.7959 4.9063 5.1533

N= 1024, beta = 7

53

Table 2.3 H-trees with various degrees of delta and gamma

^"■^GAMMA

DELTA>*>*X^ 16 19 22 25

Height

4 4 4 4 4

5 4 4 4 4

Average Storage
Utilization

4 0.8592 0.8560 0.8721 0.8922

5 0.8612 0.8601 0.8795 0.8990

Average Access
Cost

4 3.7080 3.7080 3.6650 3.6279

5 3.7080 3.7080 3.6641 3.6289

Average Accumulatec
Insertion Cost

4 4.6396 4.6055 4.7178 4.9580

5 4.7686 4.7725 4.8809 5.0137

N= 1024, beta = 7

Table 3.1 Theoretical estimates of height, storage utilization, access cost, and
insertion cost of H(3, 5, 2), B*(3), and DMT(3,1).

H(3, 5, 2) B*(3) DMT(3, 1)

Height
log(N+1)

2+2log((N+1)/2 8))

log(N+1)

1+log((N+1)/2))

log(N+1)

2log(N+1)+1

Storage Utilization 0.754 - 0.719 - 0.816

Access Cost
h-(h-1)/p

h-1/ 5
- -

Insertion Cost 2(h-1)+ p+(5-l)/(p-5)+l -

Table 3.2 Experimental results of 10 data, each with N = 128, by program HTREE(3, 5, 2)

Xu DATA

H(3, 5,
0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 5 5 5 5 5 5 5 5 5 5 5

Average
Storage
Utilization

0.8241).8149 0.8118 0.8190 0.8292 0.8254 0.8346 0.8235 0.8109 0.8220 0.8216

Average
Access
Cost

4.1641 4.1719 4.1875 4.1563 4.1094 4.1484 4.1406 4.1719 4.1250 4.1484 4.1524

Average
Accumulated
Cost

4.9766 5.1641 5.1016 5.0547 5.0313 5.1406 5.0781 5.0234 5.0313 5.1094 5.0711

Lh

Table 3.3 Experimental results of 10 data, each with N = 128, by program B*(3)

X. DATA

B*(3) \
0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 5 5 5 5 5 5 5 5 5 5 5

Average
Storage
Utilization

0.7774 0.7898 0.7948 0.7794 0.7888 0.7873 0.7948 0.7961 5.7918 0.7906 5.7891

Average
Access
Cost

4.2969 1.2266 4.1953 1.2656 4.2500 4.2344 4.2656 4.2266 1.2109 4.2578 1.2430

Average
Accumulated
Cost

5.7578 5.7969 5.7109 5.8906 5.8438 5.8750 5.8516 5.7969 5.7578 5.7656 5.8047

OS

Table 3.4 Experimental results of 10 data, each with N = 128, by program DMT(3, 1)

>^DATA

DMT(3, 1)\
0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 5 5 5 5 5 5 5 5 5 5 5

Average
Storage
Utilization

0.7774 0.7898 0.7948 0.7794 0.7888 0.7873 0.7948 0.7961).7918 0.7906).7891

Average
Access
Cost

4.2969 1.2266 4.1953 1.2656 4.2500 4.2344 4.2656 4.2266 1.2109 4.2578 L2430

Average
Accumulated
Cost

5.7578 5.7969 5.7109 5.8906 5.8438 5.8750 5.8516 5.7969 5.7578 5.7656 5.8047

58

Table 3.5 Tree Performance Comparisons derived from
table 3.2, 3.3, and 3.4

H(3, 5, 2) B*(3) DMT(3,1)

Height

Theoretical 5 - 6 5 - 7 5 - 9

Experimental 5 5 5

Average Storage
Utilization

Theoretical 0.754 - 0.719 - 0.816

Experimental 0.82155 0.78908 0.81161

Average Access Cost

Theoretical 3.667 - 4.50 - -

Experimental 4.15235 4.24297 4.03750

Average Accumulated
Insertion Cost

Theoretical worst 13 15 -

Experimental 5.07111 5.80469 5.47971

59

H(3, 5, 2) B*(3) DMT(3, 1)

Storage Utilization 1 0.9605 0.9880

Access Cost 1 1.0218 0.9723

Insertion Cost 1 1.1447 1.0806

Table 3.6 Comparisons in ratio derived from Table 3.5

Table 3.7 Experimental results of 10 data, each with N = 256, by program HTREE(3, 5, 2)

DATA

H(3, 5, 2?\
0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 6 6 6 6 6 6 6 6 6 6 6

Average
Storage
Utilization

0.8338).832O 0.8147 0.8241 0.8295 0.8248 0.8240 0.8187 0.8188 0.8220 0.8238

Average
Access
Cost

4.8672 4.8438 4.9453 4.8516 4.8320 4.8477 4.8906 4.8706 4.8711 4.8867 4.8707

Average
Accumulated
Cost

5.9141 5.7930 5.8086 5.7930 5.8320 5.9258 5.7773 5.7059 5.8023 5.8203 5.8172

Table 3.8 Experimental results of 10 data, each with N = 256, by program B*(3)

\DATA

B*(3) 0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 6 6 6 6 6 6 6 6 6 6 6

Average
Storage
Utilization

0.7848 0.7989 0.7733 0.7978 0.7863 0.7891 0.7774 0.7771).79O9 0.8043 5.7880

Average
Access
Cost

5.0273 1.9531 5.0352 1.9492 4.8789 5.0234 5.0898 5.0000 k8867 4.9805 1.9824

Average
Accumulated
Cost

6.6055 5.5195 6.6992 5.6250 6.5820 6.6875 6.6797 6.6000 6.5625 6.6133 5.6174

Table 3.9 Experimental results of 10 data, each with N = 256, by program DMT(3, 1)

DATA

DMT(3, 1)\
0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

Height 6 6 6 6 6 6 6 6 6 6 6

Average
Storage
Utilization

0.8185 0.8069 0.8199 0.8093 0.8098 0.8092 0.8226 0.8098).8167 0.8219).8147

Average
Access
Cost

4.7031 1.6875 4.7148 1.7383 4.6953 4.7070 4.7188 4.7020 1.7266 4.7109 1.7104

Average
Accumulated
Cost 6.2031 5.1719 6.2070 5.1992 6.1484 5.1797 6.2350 6.2745 6.3203 5.2268 5.2161

63

Table 3.10 Tree Performance Comparisons derived from
table 3.7, 3.8, and 3.9

H(3, 5, 2) B*(3) DMT(3,1)

Height

Theoretical 6 - 7 6 - 8 6 - 11

Experimental 6 6 6

Average Storage
Utilization

Theoretical 0.754 - 0.719 - 0.816

Experimental 0.82382 0.78799 0.81446

Average Access Cost

Theoretical 4.333 - 5.50 -

Experimental 4.87066 4.98241 4.71043

Average Accumulated
Insertion Cost

Theoretical worst 15 18 -

Experimental 5.81723 6.61742 6.21612

64

H(3, 5, 2) B*(3) DMT(3, 1)

Storage Utilization 1 0.9565 0.9886

Access Cost 1 1.0229 0.9671

Insertion Cost 1 1.1376 1.0686

Table 3.11 Comparisons in ratio derived from Table 3.10

APPENDIX A

Basic Subroutines Adapted by Program HTREE, DMT, and B*

The followings are some basic subroutines adpted by the preceding three programs:
HTREE, DMT, and B*. For the purpose of briefness, only the functions of the
subroutines and individual parameters are illustrated.
j--- SHIFT

Shift noshift sons from node Fromson which is the sonindex'th son of node
Father to node Toson, where nodes Fromson and Toson are brother nodes
with the some father Father. If boolean vorible right is true then Toson
is on the r.h.s. of Fromson. Otherwise, it is on the l.h.s. of Fromson.

PROCEDURE Shi ft(Fromson, Fatherzptr; noshift.sonindex:integer; right:boo lean);

{--- MERGE
Node Fromson which is the sonindex’th son of node Father is merged into
its r.h.s. brother.

PROCEDURE Merge(Fromson, Fother:ptr; eonindexzinteger);

|--- PACK
Reduce the number of sons of node pn to m.

PROCEDURE Pack(PN:ptr; m:integer);

{-- -- SPLIT
Keep ii sons in p and split the remainings to the newly created node
NewKey.

PROCEDURE Split(p:ptr; iizinteger; VAR Newkey:item);

}-- INVERSE_PACK
Increase the number of sons of node father to m. Split the increased sons
whose number is m-fathert.ns to the newly created node NewKey.

PROCEDURE Inverse_Pack(father:ptr; m:integer; VAR NewKey:itern);

|-- FOUNDBROTHER
Among node 0'1 sons, find a brother with index ’target’ of a’s sth son
which satisfies the criteria. If target Is not found then target—99 else
variable right indicates which side of a’s sth son target is located on.

PROCEDURE FoundBrother(o:ptr; e,criteria:Integer; smoller:boolean;
VAR rightzboolean; VAR target:integer);

{--- FINDADJBROTHER
Find on adjacent brother b of node a with index s which satisfies some
criteria. If found, then found:-’true‘ and variable right indicates which
side of a b is located on, else found:-’false'.

-- 1
PROCEDURE FindAdjBrother(a:ptr; s:integer; smallerzboolean; criteria:integer;

VAR found,rightzboolean; VAR b:ptr);

{--- MOVING
Nodes with index s and target ore two sons of node a. This procedure
moves 1 node out(/in) from s’th(/torget’th) son to target’th(/s'th) son.
Parameter targetright indicates the location of the node with index target.

PROCEDURE Moving(a:ptr; s.torgetzinteger; targetright,outzboolean);

65

APPENDIX B

Main Part of Program HtkEE - Construction of an H-tree
PROGRAM HTREE(input,output);
.{Construction of H-treej

{............. —...... -.........- INSERTION |

{--- I1_STEP1
Insert phosei — step 1

PROCEDURE I1_Step1(o:ptr; u:ltem; riinteger);

VAR i:integer;

BEGIN
WITH ot DO
BEGIN

AddSon(o.l);
FOR i:-ns DOWNTO r+2 DO eon[l]:-ton[l-1];
son[r+1]:-u;
IF u.pOnit THEN u.pt.fptr:-o;

END;
END; $I1_Step1j

{-- I21STEP3
Insert phose2 — step 3

PROCEDURE I2_Step3(o:ptr; •:integer; VAR foundibooleon);

VAR right : boo I eon;
brother : ptr;

BEGIN
FindAdjBrother(o,s,true,nn,found,right.brother);
IF found Then Shift(o,ot.fptr,1,e,right);

END; {I2_Step3|

{--- I2_STEP7
Insert phose2 — step 7

PROCEDURE I2_Step7(VAR o.bzptr; s: integer; VAR w:iteie);

VAR left : ptr;

BEGIN
IF s-ot.fptrt.ns THEN
BEGIN

Sh i f t(o.ot.fpt r,at.ns-n,s,fa Ise);
left:-b;

END
ELSE
BEGIN

Shift(b.bt.fptr,bt.ns-n,s+1,folse);
left:-a;

END;

66

67

IF odd(nn) THEN Split(left.n-1,w) ELSE SplIt(Ieft,n.w);
END; |I2_STEP7}

|--- SEARCH
Search key x on H-tree with root a; If not found, insert on item with key
x in tree. If on item emerges to be passed to a lower level, then assign
it to v; toph:-"tree a has become helgher”; h:«'continue'.

PROCEDURE Search(x:integer; a:ptr; VAR toph,h:boolean; VAR v:item);

VAR k.I.r : integer;
A : ptr;

PROCEDURE Insert_Phose2(a:ptr; VAR NewKeytitem; i:integer);
VAR splitoble : boolean;

Emptybrother : boolean;
ogs.bgs : Integer;
b : ptr;
I1,r1,k1 : integer;

BEGIN
with of do
begin

I1_Step1(o,NewKey,I); $I2_Step1$
IF ns<»nn-1 Then h:-false
Else

IF fptronil then
Begin
BinarySeorch(fptr,son[1].key,II,r1,k1);
TestSpIit(a,splitoble.ags);
IF (splitoble) Then SplIt(o,n-1.Newkey)
Else
begin

I2_Step3(a,rl.Emptybrother); |I2_Step3}
IF (Emptybrother) then h:-folse
Else

IF ogs<-(nn»»2) then
begin |I2_Step4j

Pack(a,nn,false);
h:*folse;

end
Else
begin |I2_Step5|

IF rl-fptrt.ns then
begin

IF rl—1 then b:-fptrt.p0
else b:«fptrt.son[r1-1].p;

shift(o,fptr,1,r1,false)
end
else
begin

b:-fptrt.son[r1+1].p;
shift(a,fptr,1,rl.true)

end;
TestSpIi t(b,splItoble.bgs);
IF (splitable) Then
begin

Spllt(b,n-1.NewKey);

68

IF rl-fptrt.ne then r1:-r1-1 else r1:-r1+1;
end
else |I2_Step6j

IF bgs<"(nn**2) then
begin

pock(b,nn,folse);
h:efolse;

end
else
begin

I2_Step7(o,b,rl.Newkey); {I2_Step7j
IF rl-ot.fptrt.ns
then Insert_Phose2(bt.fptr.NewKey,r1—1)
else Insert_Phose2(bt.fptr,NewKey.r1);

end
end

end
End
Else TopRoot(o,teph,h,v);

IF h then
Insert_Phose2(fptr,NewKey,rl);

end;
END;|Insert_Phose2j

PROCEDURE Insert_Phose1;
VAR a.11,rl,k1.BrotherGot : integer;

o : real;
tf_right ; boolean;
Newkeyl : Item;

BEGIN (insert u to the right of at.sonfrll
Tophi-folse;
WITH ot DO
BEGIN

fI1_STEP1j
I1_Step1(a.v,r); |I1_Step1|
IF ns<«nn-1 THEN h:-false
ELSE

IF fptrOnil then
BEGIN

(node ot is full; find a nonfufl brother to ehlft|

{I1_STEP2J
BinorySeoreh(fptr,son[i].key,11,rl,k1);

Foundbrother(fptr,r1, nn,true,tf_right,BrotherGot);
IF BrotherGot>—0 then
(nonfull brother found|

{I1-STEP3j
begin

Moving(fptr,rl.BrotherGot,tf_rlght.true);
h:-false;

end
ELSE (no nunfull brother exists}

JI1_STEP4|
BEGIN

o:-(De1to-1)/(nn-DeIto);
■:-(Delto-l) div (nn-Oelto);
IF 1X0 then b:-1;
IF oxe then mtMH-l;
IF fptrt.nosXn then (brother no > m|

69

11_Step4(fptr,rl,»,NewKey1)
Elee (brother no <- i»$
BEGIN

Inve ree_Pock(f pt r,f pt rt.ne+2,NewKey1);
rl:-fptrt.ns;

END;
END;

END
ELSE TopRoot(o,toph,h,v);
IF h ond (ot.fptroni I) then

lneert_Phoee2(fptr.NewKey1,rl);
END:

END; |Ineert_Phoee1|

BEGIN (eeorch key x on node ct; h-falee}
IF o«niI THEN
BEGIN (item with key x ie not In tree|

IF root-nil then toph:-true elee toph:-falee;
h:-true;
WITH v DO
BEGIN

key:-x;
P:-nil

END;
END
ELSE
WITH ot DO
BEGIN

BinorySeorch(a,x,I,r,k);
IF I—r>1 THEN
BEGIN (found}

found:—true;
h:-folee

END
ELSE
BEGIN (Item le not on thie node}

IF r—0 THEN q:-p6
ELSE q:-eon[r).p;
Seorch(x,q,toph,h.v);
IF h THEN Ineert_Phoee1;

END
END;

END (eeorch};

DELETETION

PROCEDURE D1_Step2(o:ptr; e:integer; VAR found:booIeon);

VAR target : Integer;
right : boolean;

BEGIN
FoundBrother(a,e,DeIto,falee,right.target);
IF torget>—0 THEN found:-true ELSE found:-folee;

70

IF found THEN Moving(o,e,target.right.false);
END; |D1_Step2i

D1_STEP3|

PROCEDURE D1_Step3(a:ptr; VAR htboolean);
VAR r : real;

w : Integer;
BEGIN

r :-fnn-1)/(nn-DeIta);
w:«(nn-1) div (nn-Oelta);
IF row THEN w:-w+1;
IF at.ns>-w THEN PACK(a,at.ns,folee);

END; $D1_Step3|

D1_STEP5|

PROCEDURE D1_Step5(a:ptr; VAR h:boolean);
VAR gs : Integer;
BEGIN

Co<nputeGS(a,gs);
IF gs<Gama THEN h:«true {D1_Step6j
Else h:»false;

END; |D1_Step5j

D2_STEP2|

PROCEDURE D2_Step2(a:ptr; s:Integer; VAR found:boolean);
VAR b : ptr;

right : boolean;
bgs : Integer;

BEGIN
FindAdjBrother(a.s.false.n.found,right,b);
IF found THEN
begin

ComputeGS(b,bgs);
IF right THEN bgs:-bgs-bt.pet.ne-1 ELSE bgs:-bgs-bt.son[bt.ns].pt.ns~1;
IF bgs>—Goma THEN

IF right THEN Shift(b.bt.fptr.1,e+1,false) {brother found|
ELSE Shift(b.bt.fptr,1.0-1,true)

Else
IF (right) and (sO0) THEN {try the left brother}

BEGIN
IF s-1 THEN b:*at.fptrt.p0 ELSE b:-at.fptrt.son[s-1].p;
IF bt.ns>n THEN
BEGIN

CoaiputeGS(b,bgs);
bgs:»bge—bt.8on[bt.ns].pt.ns—1;

71

IF bgsXana THEN {left brother ie desired}
Shift(b,bt.fptr,1,s-1.true)

ELSE found:«false {left brother is not desired}
END
ELSE found:«folse;

END
ELSE found:-folse; {bothe right ond left brothers are not desired}

END;
END; {D2_Step2}

D2_STEP3}

PROCEDURE D2_Step3(VAR a:ptr; b:ptr; s:integer; VAR notq0:boolean;
VAR reploeedby:ptr);

BEGIN
IF s-ot.fptrt.ns THEN
BEGIN

MERGE(b,bt.fptr,s-1);
IF (ot.fptrt.ns-e) AND (at.fptrt.fptr-ni1) THEN
BEGIN

ot.fptr:-niI;
notq0:*true;
replocedby :“a;

END
ELSE IF s-1-e THEN at.fptrt.p0:-o ELSE ot.fptrt.son[s-l].p:-a;
IF at.ns>niv-1 THEN PACK(a,nn,false);

END
ELSE
BEGIN

MERGE(o.ot.fptr.s);
IF (bt.fptrt.ns-0) AND (bt.fptrt.fptr-niI) THEN
BEGIN

bt.fptr:«nlI;
notq0:»true;
replocedby :»b;

END
ELSE IF s-0 THEN at.fptrt.p0:-b ELSE at.fptrt.son[s].p:-b;
IF bt.ns>nn-1 THEN PACK(b,nn.false);

END;
END; {D2_Step3|

D2_STEP5}

PROCEDURE D2_Step5(a.b:ptr; ■:integer);
BEGIN

IF s-at.fptrt.ns THEN
BEGIN

MERGE(b.bt.fptr.e-l);
s:-s-1;

END
ELSE
BEGIN

72

MERGE(o.ot.fptr.»);
o:-b;

END:
PACK(o,nrW-1 .folae);
IF s-0 THEN Shift(o.ot.fptr.1.6.true) ELSE Shift(o.at.fptr,1,s,folee);

END; {D2_Step5|

D2_STEP6|

PROCEDURE D2_Step6(o,b,b1:ptr; s:integer);
BEGIN

IF s-ot.fptrt.ns THEN
BEGIN

Shi ft(bl,blt.fptr,2,3-2,true);
Shift(b,bt.fptr,1,s-1.true);

END
ELSE IF s-e Then

BEGIN
Shift(b1.b1t.fptr.2.s+2.folse);
Shi ft(b,bt.fptr.l,e+1,folee);

END
ELSE

Shi ft(bl,bit.fptr.l,e-1.true);
END; {D2_Step6j

DELETE|

PROCEDURE Delete(x:integer; a:ptr; s:integer; VAR h:booleon; VAR notq6:bool eon;
VAR replocedby:ptr);

{search ond delete key x In b-tree a; if o node underflow is necessary, balance
with adjacent node If possible, otherwiee Berge; h:»"node a ie undersize"!

VAR i.k.I.r : Integer;
q : ptr;

PROCEDURE Delete_Phose2(a:ptr; VAR h:booleon);
VAR cgs : Integer;

PROCEDURE D2STEP2;
VAR BrotherFound : boolean;

b.bl : ptr;
bgs : integer;
I1,r1,k1 : Integer;
nk : item;

BEGIN
BinorySeorch(at.f pt r,at.son[1].key,11,rl,kl);
D2_Step2(a,rl.BrotherFound); {D2_Step2|
IF BrotherFound
THEN {D2_STEP7|
ELSE

73

BEGIN
IF r1*ot.fptrt.n» {D2_Step3j
THEN IF r1-1 THEN b:-ot.fptrt.pe

ELSE b:«ot.fptrt.«on[rl-1].p
ELSE b:—at.fptrt.aon[r1+1J.p;
Computege(a.ogs);
Computegs(b,bgs);
IF ogs*bgs<»nnenn
THEN D2_Step3(o,b.rl,notq0,replocedby)
ELSE

IF n>-2 THEN
BEGIN |D2_Step4|

IF rl-0 THEN bl:*at.fptrt.«on[2].p
ELSE IF rl—1 Then bl:-ot.fptrt.p0

Elee IF rl-ot.fptrt.ns
Then IF rl-2

then bl:-ot.fptrt.p0
else b1:-ot.fptrt.sonrr1-2].p

else bl:-ot.fptrt.son[r1-1J.p;
Co<!iputegs(b1 .blt.ngs);
IF (b1t.ns<nn-1) or (b1t.ngs<nn»(nn-1)) Then
BEGIN

IF b1t.ns<nn-2 then
begin

INVERSE_P*CK(b1,nn-1,nk);
I1_Step1(b1,nk,b1t.ns);

end
Else IF b1t.ns>nn-2 then PACK(b1,nn-1,false);
D2_Step5(o,b.r1); |D2_Step5$

END
Else

D2_Step6(a,b.b1,r1) |D2_Step6j
end;

end;
END; (D2STEP2|

BEGIN
IF ot.ns<n-1 Then D2STEP2; |D2_Step1{
Computegs(a,ags);
IF cgs<Gonio Then

IF ot.fptr—nil Then h:-false Else D2STEP2;
IF ot.fptr—nil Then

IF at.ns—0 then h:-true
else IF notq0 then h:-true else h:-false

Else IF at.fptrOroot Then Delete_Phose2(ot.fptr,h);
END; |Delete_Phose2j

PROCEDURE Delete_Phose1(a:ptr; s:integer; VAR htbooleon);
VAR BrotherFound : boolean;

gs : integer;
BEGIN

IF ot.ns<Delto-1 then $D1_Step1|
begin

D1_Step2(ot.fptr,s,BrotherFound); |D1_Step2|
IF (BrotherFound)
then h:-false
else
begin

74

D1_Step3(ot.fptr,h); |D1_Step3}
IF ot.fptrt.fptroni I then
begin

ComputeGS(ot.fptrt.fptr,gs); iDI Step4|
IF gsXomo
Then D1_Step5(ot.fptr,h)
elee h:-true;

end
Else D1_Step5(ot.fptr,h);

end;
end
Else

DI Step5(ot.fptr,h); |D1_Step5j
IF (ot.fptrt.ns-e) end (ot.fptrt.fptr-niI) Then
begin

ot.fptrt.p0:-a;
h:«true;

end
Else
IF h Then IF ct.fptrOroot then Delete_Phose2(at.fptr,h); |D1 StepSl

END; {Delete_Phose1} *"

PROCEDURE del(p:ptr; VAR fother:ptr; VAR hiboolean);
VAR q : ptr;

i : Integer;
BEGIN

with pt do
begin

q:-son[pt.ns].p;
IF qOni I then

del(q.P.h);
Else
begin

ot.son[k].key:-pt.son[pt.ns].key;
pt.fptr:-fother;
for I :-1 to fathert.ns do fathert.son[l].pt.fptr:«fother;
Subson(p.l);
h:-pt.ns<DELTA-1;
IF h then IF fptr-a then Delete_Phose1fp,r,h)

else Delete_Phose1(p,pt.fptrt.ns,h);
end

end
END; {del]

BEGIN {Delete]
IF o-niI THEN
BEGIN

writelnCKEY IS NOT IN TREE');
h;-folse

END
ELSE
WITH ot DO
BEGIN

BinarySeorch(a,x,I.r,k);
IF r-e THEN q:-p0 ELSE q:-son[r].p;
IF l-r>1 THEN
BEGIN {found, now delete eon[k]{

found:-true;

75

IF q—nil THEN
BEGIN jo le o terminal node}

SubSon(o.l);
IF (pBonil) and (fptronll) THEN h:-falee ELSE h:-nt<n-1; -
FOR i:»k TO ns DO son[i]:-son[i+1];
IF at.fptronil then Delete_Phose1(o,e,h);

END
ELSE

del(q,a,h);
END
ELSE

Delete(x,q,r,h,notqB,replacedby);
END

END {Delete};

BEGIN
root:«niI;
InputParometer;
error:-folee;
reod(x);
WHILE (xOO) DO
BEGIN

found:»false;
eeoreh(x,root,toph.h.u);
IF toph THEN
BEGIN {insert new base node}

q:-root;
new(root);
WITH roott DO
BEGIN

ns:»1;
IF qonil then nos:™ns+1;
p0;-q;
son[1 J :«u;
IF pOOni I then
begin

p0t.fptr:-root;
■on[1J.pt.fptr:-root;

end;
END

END;
Printtree(root,1.error);
read(x);

END;
read(x);
WHILE (Xoe) DO
BEGIN

found:»false;
notq0:»folse;
De Ie t e(x,root,s,h,notq0,repIacedby);
IF h THEN
BEGIN (base node size was reduced}

IF roott.ns-0 THEN
BEGIN

q:-root;
IF notq0 THEN root:-replocedby ELSE root:*qt.p0; {dispose(q)}
IF (rootOnil) THEN IF (roott.fptrOni I) THEN roott. fptr:-ni I;

END
END;
Prlnttree(root,1.error);
reod(x);

END;
PrintTable;

END.

APPENDIX C

Main Part of Program B* - Construction of an B*-tree
PROGRAM B«(Input,output);
{Construction of B»— treej

PROCEDURE Step1(o:ptr; u:iten>; rzinteger);

VAR I:integer;

BEGIN
WITH ot DO
BEGIN

AddSon(a.l);
FOR i:-ns DOWNTO r+2 DO son[i]:-son[l-1];
eon[r+1]:-u;
IF u.ponil THEN u.pt.fptr:-a;

END:
END; {Step1|

TOPROOT|

PROCEDURE TopRoot(a:ptr; VAR h,toph:boolean; VAR NewKey:item);
BEGIN

IF odd(nn) THEN split(o,n-1.NewKey) ELSE epiit(o.n.NewKey);
h:—false;
toph:«true;

END; {TopRootj

{-- SEARCH
Search key x on B» tree with root a; If not found, insert an item with
key x in tree. If an Item emerges to be passed to a lower level, then
assign it to v; hi-’continue' or ’tree has become higher*.

PROCEDURE Search(x:Integer; azptr; VAR h.tophzboolean; VAR vzitem);

VAR k.I.r : Integer;
R : Ptr;

PROCEDURE Insert(a:ptr; VAR NewKey:Item; I:Integer);

VAR 11,rl,k1,shiftno : Integer;
Bfound,tf_rlght : boolean;
Bgot.b : ptr;

BEGIN {insert newkey to the right of at.son[r]|
WITH at DO
BEGIN

{STEP1|
Step1(a,Newkey,1); {Steplj
IF ne<-nn-1 THEN h;™false
ELSE

IF oOroot then
BEGIN

76

77

|STEP5|

END;

ELSE
BEGIN

q:-root;
new(root);
WITH root* DO
BEGIN

nos:-1;
p0:-q;
p0t.fptr;-root;

END;
SPLITOneL(o,NewKey,NewNode,InsL);
r1:-0;

END;
IF h THEN Insert(fptr.NewKey.NewNode,Ins I,M);

END
{Insert}

BEGIN {search key x on node at; b-folsel
IF o-nil THEN
BEGIN {item with key x is not In tree!

h:-true;
WITH v DO
BEGIN

key:»x;
P:-nil

END;
END
ELSE
WITH ot DO
BEGIN

BinarySeoreh(o,x,I,r,k);
IF l-r>1 THEN
BEGIN {found}

found:-true;
h:-false

END
ELSE
BEGIN {item Is not on this node}

IF r-0 THEN q:-p0
ELSE q:*son[r].p;
IF (qonil) AND (qt.ns-0) THEN

IF qt.p0onl I THEN
BEGIN

q;-qt.p0;
r:-0;

END
ELSE
BEGIN

WHILE (qt.ns-0) AND (rons) DO
BEGIN

r:-r+1;
y:-son[r].key;
•on[rj.key:-x;
x:-y;
q: -son[r].p;

END;
IF (r-ns) Ah© (qt.ns-0) THEN
WHILE (qt.ns-0) AND (r>-0) DO
BEGIN

y:-son[r].key;
son[r].key:-x;
x:-y;
r: -r~1;
IF r—0 THEN q:—p0 ELSE q:-son[r].p;

78

END;
END:

Seorch(x,q,h,v);
Insl:-folse;
IF h THEN Ineert(o,v,newnode,insl,r);

END
END

END {search}:

BEGIN
root:-niI;
InputParometer;
error:-fa Ise;
reod(x);
WHILE (xoe) DO
BEGIN

found:**false;
search(x,root,h,u);
IF h THEN
BEGIN {insert new base node}

q:«root;
new(root);
WITH roott DO
BEGIN

ns:-1;
IF qOnil then nos:-ns+1;
pe;-q;
son[l]:"u:
IF pBOni I then
begin

pBt.fptn-root;
son[l].pt.fptr:-root;

•nd;
END

END;
Print tree(root.1.error);
read(x);

END:
PrintTable;

END.

APPENDIX D

Main Part of Program DMT - Construction of an DMT-tree
PROGRAM DMT(input,output);
{Construction of Dense Multiway Tree}

{----------------- :--- SIDESAT
Ensure the I rightmost(/leftmost) son of p is saturated

PROCEDURE SideSat(p:ptr; tf„r:boolean);
VAR q.Bq : ptr;

index,i : integer;
BEGIN

IF pt. p0On i I THEN
BEGIN

IF tf_r THEN
BEGIN

q:-pt.son[pt.nsj.p;
index:*pt.ns—1;

END
ELSE
BEGIN

q:-pt.p0;
index:»1;

END;
Bq:-pt.son[index].p;
IF qt.ns<nn-1 THEN

IF qt.ns-0 THEN
BEGIN

Si deSat(Bq.(NOT tf_r));
SHIFT(Bq,p,nr>-1, index, tf_r) ;

END
ELSE
FOR i:»1 TO nn-qt.ns-1 DO
BEGIN

SideSot(Bq,tf_r);
SHIFT(Bq.p,1,index,tf_r);

END;
END;

END; {SideSat}

INSERTION

PROCEDURE Slept(a:ptr; u:item; newnodezptr; VAR Insl:boo I eon; r:integer);

VAR I:integer;

BEGIN
WITH at DO
BEGIN

AddSon(a.l);
FOR i:-ns DOWNTO r+2 DO •on[i]:-son[i-1);
son[r+1]:«u;
IF insl THEN
BEGIN

IF r-0 THEN p0:-newnode ELSE son[r].p:»newnode;
IF newnodeOnil THEN newnodet.fptr:«a;

79

80

inel:-fal»e;
END;
IF u.ponil THEN u.pt.fptr:-o;

END;
END; {Stepl}

I--- SEARCH
Search key x on DMT tree with root a; If not found, insert on Item with
key x In tree. If on Item emerges to be passed to o lower level, then
assign it to v; h:-'continue* or ’tree has become helgher*.

PROCEDURE Seorch(x:integer; o:ptr; VAR h:boolean; VAR v:ltem);

VAR k.I.r.y : Integer;
<1 : Ptr;
newnode : ptr;
I ns I : boolean;

PROCEDURE Insert(a:ptr; VAR NewKey:ltem; VAR NewNoderptr;
VAR InsL:booleon; I:integer);

VAR II,rl,k1.BrotherGot,t : Integer;
tf_rlght.stop : boolean;
9 : ptr;

BEGIN {insert newkey to the right of at.son[r]|
WITH at DO
BEGIN

{STEP1J
Stepl(a,Newkey.NewNode,InsL, I); {Slept|
IF ns<-nn-1 THEN h:«false
ELSE

IF oOroot then
BEGIN

{node at is full; find a nonfull brother to shift}
BinarySearch(fptr,son[1].key,11,rl,kt);
IF rt-e THEN t:-fptrt.p0t.ns

ELSE t:-fptrt.son[r1].pt.ns;
IF t-0 THEN
BEGIN

IF (rt-O) AND (fptrt.p0t.ns«0) THEN r1:«rt+1;
WHILE (fptrt.son[r1].pt.ns-0) AND (rtofptrt.ns) DO

rl :-rt+1;
IF (rt-fptrt.ns) AND (fptrt.son[r1).pt.ns-0) THEN
BEGIN

stop:-false;
WHILE (not stop) DO

IF fptrt.son[r1].pt.ns-0 THEN r1:-rt-1
ELSE stop:-true;

END;
END;

{STEP2}
FoundBrother(fptr,rt,nn,true,t f_rIght,BrotherGot);
IF BrotherGotX THEN
{nonfull brother found}
BEGIN

Moving(fptr,r1.BrotherGot,tf_right.true);
h:-folee;

END
{STEP3} ELSE {no nunfull brother exists}

IF fptrt.ns<nn-1 THEN SPLITOneL(o,NewKey,NewNode,InsL)
{STEP4}

IF rtofptrt.ns
THEN SPLIT(a.ns-t.NewKey)
ELSE SPLITOneL(a,NewKey,NewNode,InsL);

END

81

fSTEP2|

|STEP3j

jSTEPSl

END;

{node ot le full; find a nonfull brother to shift!
BinorySearch(fptr,son[1].key,11,rl,k1);

FindAdjBrother(a,r1,true,nn,BFound,tf right.BGot):
IF BFound THEN '
{nonfull brother found!
BEGIN

shiftno:—nn-((nn+Bgott.ns) div 2);
SHIFT(o,fptr,shiftno.rl,tf_right);
h:-false;

END
ELSE jno nunfull brother exists!

BEGIN
IF rl-fptrt.ns THEN
BEGIN

IF rl—1 THEN b:-fptrf.pe
ELSE b:«fptrt.son[r1-1].p;

SHIFT(a.fptr,nn-(2*nn-2) div 3.rl,false);
END
ELSE
BEGIN

b:»fptrt.son[r1+1].p;
SHIFT(a,fptr,nn-(2»nn-2) div S.rl.true);

END;
SPLIT(b.(2»nn-1) div 3. NewKey);
IF rl-fptrt.ns THEN r1:-r1-1 ELSE rt:-r1+1;
INSERT(fptr,NewKey,rl);

END;
END
ELSE

IF ns>(2»(2»nn-2) div 3)
THEN TopRoot(a.h,toph,v) ELSE h:-folse;

END
{Insert.Phaset|

BEGIN {search key x on node at; h-false!
IF o-nil THEN
BEGIN {item with key x is not in treej

IF root-nil THEN toph:-true ELSE toph:-false;
h:-true;
WITH v DO
BEGIN

key:-x;
P:-niI

END;
END
ELSE
WITH at DO
BEGIN

BinarySearch(a,x,I,r,k);
IF l-r>1 THEN
BEGIN {found!

found:—true;
h:-false

END
ELSE
BEGIN {iteis is not on this node!

IF r-0 THEN q:-p6
ELSE q:-son[r].p;
Search(x,q,h.toph,v);
IF h THEN Insert(a,v,r);

END
END

END {search!;

82

{---

BEGIN
roott^nlI;
InputPorometer;
error:«folse;
reod(x);
WHILE (xoe) DO
BEGIN

found:-folee;
seorch(x,root,h,toph,u);
IF toph THEN
BEGIN {Insert new bote nodej

q:*root;
new(root);
WITH roott DO
BEGIN

ns:«1;
IF qonil then nos:*ns*1;
pe:-q;
eon[1]:-u;
IF pBOni I then
begin

pet.fptr:-root;
son[1J.pt.fptr :-root;

end;
END

END;
Pr inttree(root,1.error);
reod(x);

END:
PrintToble;

END.

