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ABSTRACT

Evolution is an incredibly complex process that has been the subject of
scientific study for well over a century. The complexity of evolution has
made discovery by empirical studies alone challenging, as they often offer
only a glimpse into much larger patterns. This has increased the importance
of theoretical models to research in the field, which allow predictions to be
made for empirical studies and enable these studies to be analyzed in a
broader theoretical context. One set of models that have been especially
important are those of fitness landscapes. These models describe the
relationship between each genotype in a set and its fitness value and have
been useful in understanding the mechanisms of divergence and speciation.
Computationally, fitness landscapes can be produced to better represent the
multidimensional nature of true biological systems. One insight of
multidimensional landscapes is that they contain networks of genotypes of
the same fitness, through which evolution and speciation could occur by
neutral mutations alone. With the Nk model, the ruggedness, size and
dimensionality of created networks can be adjusted. By imposing a fitness

threshold on a quantitative trait specified by the Nk model, I am able to
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investigate how epistasis in the quantitative trait impacts the development
and characteristics of these neutral networks of genotypes. In this thesis, I
explore the properties of this novel fitness landscape model and examine
how landscape features influence the structure and composition of neutral
networks. I show that the neutral networks that exist in landscapes of
varying levels of epistasic interaction respond very differently to increasing

fitness thresholds.
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INTRODUCTION

1.1 Mathematical Models and the Study of Evolution

Evolution is the process through which all species, past and present,
have come into existence. The theory of evolution provides a basis for
understanding how life developed from the simplest of organisms into the
incredible biodiversity seen on Earth today. Since Darwin’s famed On the
Origin of Species in 1859, scientists and laymen alike have been captivated
both by evolution and by the mechanisms that drive and guide it. Despite
this fact, the field of evolutionary biology remains relevant and multitudes of
researchers strive constantly to better elucidate the complexities of
evolutionary change. For this reason, I have decided to conduct my senior
honors thesis research in this field and contribute to the greater
understanding of the forces responsible for life as we know it.

Historically, both the sheer complexity of the evolutionary process
and the time scale on which evolution occurs have introduced challenges to
experimental studies of the subject. In light of this, the use of mathematical

models to represent biological phenomena and complement empirical work



by serving as a proof of concept is of incredible importance to the field
(Servedio et al. 2014). Specifically, the study of speciation is a component of
evolutionary biology that has benefitted immensely from mathematical
modeling. For the first time in the 1960°s and 1970’s, different mathematical
models were used to study speciation to varying extents (Maynard Smith
1962, Bazykin 1969, and Dickinson and Antonovics 1973). One concept,
which has been the basis for many such mathematical models, is a fitness

landscape.

1.2 Wright’s Fitness Landscape

The 1dea of a fitness landscape was first proposed by Sewall Wright in
1932. Fitness landscapes imagine the relationship between genotypes and
fitness as a three-dimensional surface where height represents fitness, and
any given point on the surface represents a different genotype. Points closer
together represent genotypes more similar in composition. Wright depicted
this in his 1932 paper with a topographic map (Figure 1). In this metaphor,
the surface represents genotype space, the set of every possible genotype.

Genotype space is characterized by its dimensionality or, the number of
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Figure 1. Wright’s Two-Dimensional Fitness Landscape Diagram. Here,
+ signs represent areas of higher fitness and — signs represent areas of lower
fitness. If the areas of high fitness are imagines as peaks, and the areas of
low fitness as valleys, it is easy to see the ruggedness that Wright suggested
defined this fitness landscape. Positions on the x-y plane in this diagram that
are closer together represent genotypes more similar in composition.
different genotypes that can be produced from a given genotype by changing
just one gene. To a certain extent, this dimensionality can and has been
visualized on paper through lines connecting each genotype to every other
genotype within one gene of difference from it (Figure 2) (Wright 1932). In

Wright’s fitness landscape, the more similar the composition of two

genotypes, the closer they are in proximity, so the dimensionality can also be



Figure 2. Wright’s Multidimensional Networks. Sets of genotype spaces,
increasing in dimensionality from 2 to 5, produced in the same paper in
which Wright proposed his famous three dimensional fitness landscape.
Every genotype is represented by a unique combination of letters and is
connected to each of its one step neighbors by a line. As dimensionality
increases, it becomes increasingly difficult to depict the relationship between
position and genotype similarity in a two-dimensional drawing, meaning that
genotypes similar in composition are not always closer to each other than to
less similar genotypes.

described as the number of neighbors each genotype has. Naturally, these
landscapes consist of peaks, where every surrounding genotype is of lower
fitness, and valleys, where every surrounding genotype is of higher fitness.

Fitness landscapes allow for the visualization of evolutionary change. As

populations accumulate mutations or other genetic differences, their ability
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to survive and reproduce changes and they can be imagined as moving
across the landscape

Wright thought of fitness landscapes as being rugged, or having many
different local peaks and valleys. In his metaphor, isolated peaks could
represent distinct species, peaks clustered together could represent closely
related species, and groups of peaks separated by expansive valleys might
represent different higher level taxonomic groups. In this case, for evolution
to occur on one such landscape, populations would need to cross the low
fitness valleys between two peaks. In light of this, it might seem natural to
conclude that stochastic changes in genotype frequencies could take
populations into these valleys and then natural selection could drive
populations up different peaks. However, this is where Wright’s metaphor
falls short.

In his 2004 book, Fitness Landscapes and the Origin of Species,
Sergey Gavrilets explains why the assumption made in Wright’s rugged
fitness landscape that populations cross fitness valleys during evolutionary
divergence is flawed. Possibly the most straightforward way for populations
to move into valleys of lower fitness would be through genetic drift. In this
scenario, deleterious mutations could accumulate and fix in a population,

driving it away from its current peak towards another. Despite this, Gavrilets
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claims that it is very unlikely that stochastic changes would ever be enough
to move a population through the bottom of any fitness valley. In his book,
he considers multiple models in which this might occur; a one locus, two
allele model of underdominant selection (heterozygous disadvantage), a two
peak model of disruptive selection on an additive quantitative trait, and a
two locus haploid model of compensatory mutations in asexual populations
or sexual populations with tight linkage (no recombination). In the end, he
concludes that in all of these models, only under very stringent conditions
(low population size and shallow valleys between peaks) can a stochastic
shift from one peak to another actually occur. Further, for speciation to
occur, there must be adequate reproductive isolation, a condition that is in
contrast with shallow valleys between peaks. This proves then that under the
conditions of Wright’s rugged fitness landscape, it is implausible for
stochastic changes to be the mechanism by which species diverge in natural
populations.

The hypothesis that Gavrilets puts forward is that this seemingly
irreconcilable problem does not lie in the mechanism by which populations
diverge, but rather in the rugged landscape metaphor that Wright described.
Wright’s rugged fitness landscape is imagined as a three dimensional

geographic terrain, something that made it an accessible concept, easily
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understood and used to conceptualize evolution. However, evolution is a
much more complex, multidimensional process. In a three dimensional
landscape, thin ridges or very narrow, shallow valleys of high or low fitness
relative to their surroundings seem unlikely to exist. In a genotype space
with many more dimensions though, these ridges connecting high fitness
genotypes are very common. In consideration of this, the strength of
Wright’s metaphor is also its weakness. The simplicity of his fitness
landscape model is both what made it so broadly understood and what
disguises a key structural component of biological landscapes. For this
reason, Wright’s rugged fitness landscape is not a good model on which to
explore or imagine the properties of evolutionary change. Since the proposal
of his model, there have been a number of attempts to analyze fitness
landscapes produced empirically which are reviewed in Weinreich et al,
2013. These have met varying levels of success for a number of different
organisms including Escherichia coli and Drosophila melanogaster, but are

generally limited in terms of size and complexity (Weinreich et al, 2013).



1.3 Multidimensional Models of Fitness Landscapes

There are a multitude of different multidimensional fitness landscape
models that have been proposed. The first of these that I will discuss is the
multidimensional House of Cards model (Szendro et al. 2013). To
understand this model, imagine genotypes with a large number of loci, N,
each capable of taking on one of two allelic identities. This defines a
genotype space in which each genotype has N possible one step neighbors,
genotypes that differ at only one locus. Then, each locus offers a different
random fitness contribution for every genotypes, producing genotypes of
equally random fitness. The landscape produced by this model is therefore
very rough and uncorrelated, meaning that the distance between genotypes
in genotype space is completely unrelated to each genotype’s individual
fitness value.

The second multidimensional fitness landscape model to be
considered is the multiplicative fitness model. The largest difference
between this model and the House of Cards model is that the multiplicative
fitness model is of a correlated fitness landscape. Genotypes closer together
in genotype space have more similar fitness values. In this model, each

genotype again consists of N loci, each which can take on two values. Of
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these values, one is considered advantageous and the other deleterious. The
fitness of each genotype as a whole is determined by the multiplication of
the fitness contributions of each of its individual loci. This model is
characterized by a single fitness peak and a spread of lower fitness
genotypes that surround it. Other models of this nature, in which genotype
space is correlated, exist as well. One example of this is the additive fitness
model, where the overall fitness is determined by the addition of the fitness

values of each locus rather than their multiplication.

1.4 The Nk Model

The two models discussed in the previous section can be viewed as
existing on two opposite extremes of the same spectrum. In the House of
Cards model, the fitness landscape is extremely rugged and fitness values of
genotypes are entirely uncorrelated with those genotypes’ positions in
genotype space. On the other end of the spectrum is the multiplicative fitness
model, in which genotypes of similar composition share very similar fitness
values and the landscape is therefore very smooth.

In 1989, Stuart Kauffman and Edward Weinberger bridged the gap

between these two extremes by creating what i1s known as the Nk model
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(Kauffman and Weinberger 1989). In this model, which Kauffman and
Weinberger described as “tunably rugged,”, the extent to which similar
genotypes share similar fitness values is dependent on a variable, k, while
the number of loci that each genotype is comprised of is defined by N. In the
Nk model, k is a measure of the order of epistasis or, the level of interaction
between genes in a genotype. The fitness contribution of each locus in any
given genotype is determined by the fitness values of k other loci in that
genotype. These other loci can be selected randomly, or in some more
specified manner. Each genotype’s fitness is then determined by the average
fitness contribution of each of its loci.

The value of k can range from 0 to N — 1. When k is equal to 0, there
1s no epistasis so each locus has a fitness value uninfluenced by any other
locus in the genotype. In this case, the associated fitness landscape is
identical to that of the additive fitness model and the similarity of two
genotypes’ locti is highly correlated with the similarity of those genotypes’
fitness values. Conversely, when k i1s equal to N — 1, the fitness contribution
of each locus is dependent on every other locus in the genotype. The fitness
landscape associated with these parameters is very rugged and completely
uncorrelated. Under these parameters, the Nk model is the same as the

House of Cards model. With k equal to N — 1, the fitness of each genotype is
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effectively stochastic. Until recently, many of the properties of Nk model
fitness landscapes had been difficult to analyze because they are much more
complex than the models at either of the extreme ends of the correlation

spectrum.

1.5 Holey Fitness Landscapes

Under certain restrictions, a fitness landscape can be considered
holey. In a holey fitness landscape, some fitness threshold is determined for
a given network and all genotypes that exist below this threshold are
considered to be dead, while all genotypes that exist above it are considered
to be alive. One of the more extreme examples of this is the Russian roulette
model.

In the Russian roulette model, each genotype is assigned a fitness
value of either 0, reflecting an inviable organism, or 1, reflecting a viable
one. The probability, P, of any given genotype to be viable can be varied.
Consequently, at a P of 1, all of the genotypes in genotype space are viable,
and at a P of 0, none of them are. As the name suggests, the model can be
thought of in terms of playing a game of Russian roulette with each

genotype with a probability of 1 — P that there is a bullet in the gun’s
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chamber when fired. The Russian roulette model is effectively a House of
Cards model landscape with a fitness threshold imposed. In a House of
Cards landscape each fitness value is random, so imposing a threshold at
some level would be the equivalent of selecting a certain probability that any
given genotype would be viable. Higher fitness thresholds would be
equivalent to lower probabilities of viability and lower fitness thresholds
would be equivalent to higher probabilities of viability. Like the House of
Cards model landscape, the landscape produced by the Russian roulette
model is very uncorrelated, meaning that the closeness of genotypes in
genotype space is unrelated to the fitness values of those genotypes.

In the Russian roulette model, a viable genotype and any other viable
genotypes that can be arrived at by undergoing changes at singular loci are
considered connected. These connections can be thought of as pathways on
which evolutionary change can occur. Seeing as this model has only two
fitness values, 0 or 1 (alive or dead), movement through the network of
connected genotypes is equivalent to a series of neutral mutations. As the
value of P increases from 0 to 1, the network of genotypes becomes more
connected overall until most viable genotypes are part of a single network
spread throughout genotype space. The value of P at which the network

transforms from a series of disconnected genotype clusters into one large
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connected component is referred to as the percolation threshold (Gavrilets
2004). For this model, the percolation threshold is inversely related to N, the
number of loci per genotype. This is simply because as N increases, there is
a greater probability that for any given genotype, at least one neighbor will
have survived the game of Russian roulette. When thresholds are imposed
on correlated landscapes like the ones produced by the multiplicative fitness
model, the relationship between N and the percolation threshold is not so
easily defined.

Thus far I have described fitness landscapes in a mainly theoretical
context, imagining loci as alleles with only two potential values. However,
the next point is best illustrated by taking into account the incredible size
and variability of even the simplest organisms’ genomes. In this case, the
number of loci, if representative of the number of genes in an organism
(each with many more than two alleles) would be, by a conservative
estimate, in the order of thousands and would define a genotype space with
similarly high dimensionality. Taken a step further, if each site is
representative of one of four base pairs in the DNA sequences that make up
an organism’s genome, the dimensionality would be in the order of millions.
Fitness values, on the other hand, have a range that can be condensed to

values between 0, where organisms have no chance of survival or
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reproduction and 1, where organisms are best equipped to so do. As a result,
in a biological context, there likely exists a multitude of genotypes for each
possible value of fitness. Therefore, each fitness increment in genotype
space is expected to contain many different neutral genotypes connected
across the network. A specific biological example of this can be seen in
RNA-based fitness landscapes (Lee et al. 1997).

In RNA fitness landscapes, the composition and structure of RNA
molecules is used to represent fitness and genotype (Gavrilets 2004). The
primary structure of RNA, the sequence of nucleotides in each molecule, is
interpreted as the genotype. The secondary structure of the molecule is
defined as the pattern of base pairing which can either be the classic G-C
and A-U base pairs, or the weaker G-U pairs. Secondary structure is used to
determine a fitness value for each RNA molecule and therefore, molecules
with similar structures are imagined to have similar fitness values. With four
potential bases, the possible number of genotypes in RNA landscapes is 4",
where N 1s the number of bases that make up each sequence. In comparison,
the maximum number of different secondary sequence structures is
estimated close to 1.4848 x N x 1.8488N, which is much smaller than 4~
(Schuster et al. 1994). This suggests again that there are many different

genotypes that exist at each fitness value and together form neutral
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networks. In simplified holey fitness landscapes, fitness values are reduced
to a binary of either being alive or dead so that all genotypes above the
fitness threshold are neutral, with no difference in fitness between them.
Networks of neutral genotypes that exist at high fitness levels
demonstrate a potential solution to the problems associated with Wright’s
three dimensional rugged fitness landscape. Even if the genotypes associated
with a small range of high fitness values are considered, populations would
be able to move easily across these nearly neutral networks through
stochastic changes alone. Speciation could occur as populations shifted from
one high fitness genotype to another without ever having to cross any
significant fitness valley. While holey fitness landscapes are a simplification
of traditional fitness landscape models, they serve as useful models for the
study of certain specific evolutionary concepts. An example of one such

concept, is Dobzhansky-Muller incompatibilities (Gravner et al. 2007).

1.6 Dobzhansky-Muller Incompatibilities

In the early 1900°s William Bateson, Theodosius Dobzhansky, and
Herman Muller each contributed to the proposition of a model of the

evolution of genetic incompatibility (Dobzhansky 1936, Orr 1996). This
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model is best illustrated by two diverging populations which independently
accumulate mutations overtime. After some period of time, each of the two
populations has fixed unique advantageous or neutral genetic mutations. The
model is realized when the two populations hybridize and the independently
viable accumulated mutations combine to produce inviable offspring. The
sets of genetic differences that can exist alone, but produce drastic decreases
in fitness when observed together are known as Dobzhansky-Muller
incompatibilities. Since being defined theoretically, such incompatibilities
have been identified in real species pairs (reviewed in Presgraves 2010,
Maheshwari and Barbash 2011). An example of one of these pairs is D.
simulans and D. melanogaster. Crosses between the two species with
differences in the LAr locus, which encodes a protein associated with
heterochromatin, caused hybrid F1 male lethality (Maheshwari and Barbash
2011). One of the most important insights of this model is that it provides a
method for reproductive isolation that does not require populations to cross
low fitness valleys as suggested by Wright’s rugged fitness landscape.

In the metaphor of a holey fitness landscape, speciation can be
thought of as the point at which two populations of genotypes in a network
are separated by an area of inviability, or, more simply put, a hole. In the

context of Dobzhansky-Muller Incompatibilities, these holes represent areas
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where, when high fitness genotypes on either side are brought together, a
DM i is produced and the resulting offspring are inviable. For this reason, a
holey fitness landscape provides a useful tool for visualizing and exploring

the development of DMis in diverging populations.

1.7 Thesis Objectives

In this thesis, I propose a novel model for a holey fitness landscape
that confers varying orders of epistasis. In the following sections, I will
explore this new Nk-model and elucidate its properties. Specifically, I
investigate the shift from a disconnected network to one containing a single
large component across all different levels of epistasis and suggest how this

unique model may be of use in future studies.
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METHODS

2.1 The Model

Networks created for this thesis were defined by three main
parameters. The first two of these parameters are the ones classically used to
describe Nk model networks: N, the number of loci in each genotype, and k,
the number of other loci that influence the contribution of a given locus. The
third parameter added in this research is the fitness threshold, above which
genotypes were considered viable. Since, in this model, every genotype is
either viable or inviable, the value produced for each genotype can be
thought of as a measurement of some quantitative trait that exists on a range
from 0 to 1 rather than a measure of fitness directly. With a strict fitness
threshold, the model imposes truncation selection on this trait.

The networks produced had N values of 10. Due to the fact that each
locus could take a binary value of 0 or 1, this defined networks with a
maximum of 1024 genotypes (2'°). An N value of this size reflects the
computational limits associated with generating and analyzing these

networks. The k values analyzed ranged from 0 to 9, 9 being the maximum
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number of genes in a 10 loci genotype that can interact epistatically with
each locus (N—1). For each genotype, the trait value contribution of each
locus was determined by the next k loci in the genotype sequence. If the end
of the sequence was reached, the next locus considered would be selected
from the start of the genotype. To expedite network creation and analysis, a
lookup table of uniformly distributed random numbers between 0 and 1/N
was generated under some value of k and N which calculated the trait values
produced by each possible combination of loci. Trait values were calculated
additively; the contribution of each locus was summed to determine the trait
value produced by a given genotype, resulting in a value between 0 and 1.
Each genotype was then iterated through, looked up in the table, and, if the
trait value was above the fitness threshold, added to a network. Once all
viable genotypes were in the network, edges were added connecting
genotypes with only one locus that differed.

A range of fitness threshold values were considered from 0.2 to 0.95
in 0.05 increments. This range 1s justified by the fact that networks at both of
the model’s extremes, k = 0 and k =9, are relatively static in terms of size,
connectivity, and number of components outside of this range. With fitness
thresholds less than 0.2, almost every genotype is alive, and, because the

next fitness threshold increment above 0.95 is 1, every genotype above this
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value is, by definition, inviable. Because the primary interest of my thesis is
investigating how networks produced by this novel model change in size,
composition and organization across varying fitness threshold values, these
extremes of the fitness threshold range will be excluded from most future
figures. Additionally, in the interest of brevity, most following figures will
depict data from only the networks of k =0, k=3, k=6, and k = 9. This will
provide a sample of data from networks across the full range of k values
analyzed in this thesis. Tables with data for each variable measured in

networks of every k value are included in the appendix.

2.2 Programming Language, Packages, and Associated Applications

For this research, all coding was done in the Python programming
language version 2.7.13. Python is well known for the ease with which it can
be read and understood. Seeing as the work I did for this project was one of
my first formal coding experiences, this was an important consideration in
choosing this language for my thesis. Python’s versatility stems from its
simplicity and its usage of a large number of software libraries used for

different specific purposes. In my thesis project, I used a number of these
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libraries to create, store, analyze and represent data from the novel holey
fitness Nk model I present.

NumPy is a Python library that allows for the creation and
manipulation of large, multidimensional arrays. This was primarily used to
create the table on which the fitness values of each genotype in the
landscape can be determined. Another library used was igraph, which allows
for the creation and manipulation of complex networks. This library was
used to make model networks of viable genotypes and more easily measure
their properties. Subsequently, the pandas Python library was used to
structure, store, and analyze the data produced by the exploration of Nk
model landscapes. Using this library, all data was saved as .csv files. Finally,
the last library used throughout this thesis was Matplotlib. This Python
library offers tools to produce plots and figures. It was used to produce many
of the visual data representations pictured in this thesis.

Often, in order to better write, organize, and edit code, applications
that provide better user interfaces are utilized. For my thesis project, [ used
one such application, Jupyter Notebook. Jupyter Notebook produces
browser-based notebook documents in which I can both write and run code
and view outputs in the form of tables, figures, and graphs. This operation

was essential in preliminary analyses of different networks and in ensuring
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that functions were performing as expected. All programming was

conducted using Jupyter Notebook.
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RESULTS

3.1 Describing the Network

As shown in Figure 2, networks are best visualized as a number of
points connected to each other by lines. Therefore, the holey fitness Nk-
model networks produced in this study can be separated into two basic
components. The first of these components is the vertices or viable
genotypes, two terms that I use interchangeably throughout this thesis. The
second 1s the edges that connect viable genotypes that differ at only a single
locus, which I will refer to as connections. Together, the quantities of these
components give an idea of the size and connectedness of a landscape and
begin to describe its structure. For every value of k (0-9), 10 networks were
generated and analyzed across the fitness threshold range (0.2—0.9).

I first measured the average number of viable genotypes across this
range (Figure 3). As expected, at the lower end of the fitness threshold
range, the number of viable genotypes is close to 1024, the total number of
genotype combinations. As the fitness threshold increases, the number of

viable genotypes remains relatively constant until a threshold of
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Figure 3. Network Viable Genotypes. Number of living genotypes in a
sample of 10 networks as the fitness threshold increases in landscapes of k =
0, k=3, k=6 and k =9 are shown above.

approximately 0.4. At this point, the number of genotypes becoming inviable
at every new threshold increment accelerates until approximately 0.5, when
the rate of genotypes becoming inviable becomes more constant. The viable
genotypes continue to decrease at this near-constant rate until approximately
0.65, when the rate of decline slows as the total number of viable genotypes
remaining in the network approaches 0. By 0.85, almost every network has

no remaining viable genotypes. These trends are seen in every network,

regardless of the value of k.
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Secondly, [ measured the number of connections in the same networks
over the same range of fitness thresholds (Figure 4). At the low end of the
fitness threshold range, the number of connections remained constant,
around 5120. This number is the maximum number of connections that
exists in a network made up of genotypes with 10 diallelic loci (NXV ,4/2).
The connections begin to decrease at an accelerating rate from fitness
thresholds of 0.4 to 0.5 before decreasing at a relatively constant rate until
0.65. Then, the rate of decrease slows until there are no connections left in
the network, something that occurred in almost every network by a fitness
threshold value of 0.85. This is almost identical to the trend followed by the
number of viable genotypes shown previously. Again similar to what was
observed for measurements of viable genotypes, the trends that the number
of connections followed as the fitness threshold increased were the same
across all values of k.

Another important metric mentioned previously that is used to
describe fitness landscapes is dimensionality or, the number of new

genotypes that can be arrived at by changing one locus of a target genotype.
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Figure 4. Network Connections. Number of connections between
genotypes in a sample of 10 networks as the fitness threshold increases in
landscapes of k =0, k = 3, k = 6 and k = 9 are shown above.

In terms of connections and viable genotypes, dimensionality is the number
of connections made to each viable genotype. The average dimensionality
can therefore be calculated simply by dividing the total number of
connections at any fitness threshold by the total number of viable genotypes
at that same threshold. Then, because each connection makes a link between
two separate genotypes, this number must be multiplied by two. Notably, as

this duplication occurred after the connections in each network were

enumerated, the values in the appendix represent half the true dimensionality
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Figure 5. Network Dimensionality. Average number of connections to
each genotype (dimensionality) in a sample of 10 networks as the fitness
threshold increases in landscapes of k = 0, k =3, k = 6 and k = 9 are shown
above.

of networks analyzed. Naturally, because the number of connections and the
number of viable genotypes respond similarly to incremental increases in the
fitness threshold, the dimensionality of the network follows a similar trend
(Figure 5). The dimensionality remains constant for fitness threshold
increments early in the range before entering an accelerating decline and

then decreasing at a relatively constant rate. Towards the high end of the

fitness threshold range, the rate at which dimensionality is decreasing levels
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out until there are no more viable genotypes or connections left in the
network. In networks of low k, the slope of dimensionality against fitness
threshold is more rounded and less steep. As k increases, the slope becomes
more steep (see Figure 5) and the plotted data more closely resembles that
of connections and viable genotypes across the fitness threshold range.

A final useful descriptor for these networks is the average pairwise
Hamming distance. The Hamming distance is the number of loci that differ
between any two given genotypes. Averaging this variable for every pair of
viable genotypes in a network produces a number that describes how spread
out or compact the network is. The smaller the Hamming distance, the more
concentrated the viable genotypes are and the larger the Hamming distance,
the more dispersed they are. Like the others, this variable was measured for
a set of 10 networks, generated for each value of k and analyzed across a
fitness threshold range of 0.2—0.95 (Figure 6). In networks of k = 0, the
Hamming distance remains constant until a threshold of 0.5, when it begins
to decline (Figure 6A). From this point until there are no more viable
genotypes remaining in the network, the overall rate of decrease of the
Hamming distance accelerates. For networks of k =3, the Hamming distance
follows a similar pattern, but first begins to decrease around a fitness

threshold of 0.6 before accelerating the rate at which it shrinks (Figure 6B).
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Figure 6. Network Hamming Distance. Average pairwise Hamming
distance in a sample of 10 networks as the fitness threshold increases in
landscapes of (A) k=0, (B) k=3, (C) k=6 and (D) k =9 are shown above.
In addition, the Hamming distance decreases overall by less than in the case
of k = 0. With each increasing value of k, the Hamming distance begins to

decrease at a higher fitness threshold and the overall decrease in Hamming

distance across the fitness threshold range shrinks. Finally, in networks of k
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=9, the Hamming distance marginally increases before decreasing at a

threshold on 0.8 (Figure 6D).

3.2 Ruggedness of the Landscape

One of the fundamental principles of the original Nk model was that, as k
increased, the correlation between genotype fitness and proximity in
genotype space decreased. It is because of this that landscapes produced by
this model are referred to as “tunably rugged.” To confirm that the model I
propose here follows similar trends, I measured the ruggedness in trait
values of landscapes produced with each value of k from 0 to 9. Specifically,
I counted the average number of peaks—genotypes surrounded by only
genotypes of lower fitness—in a set of 10 networks for each k value before
imposing any fitness threshold (Figure 7). As expected, networks of k = 0
only ever had one single peak. As k increased, the number of peaks observed
increased also, at a rate slightly faster than linear. Therefore, higher values

of k had many more peaks than low value troughs.
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Figure 7. Network Peaks. Average number of fitness peaks in a sample of
10 networks for each k value from 0 to 9. For these networks, the fitness
threshold was equal to 0 so that peaks at any trait value level would be
included.

—

3.3 Network Components

While the number of connections in a network give a very general
idea of the network’s overall connectivity, it is more revealing to measure
the properties of the network’s components. Here, a component refers to a
set of viable genotypes in a network that are connected to one another. In

this work, even a single viable genotype, disconnected from the rest of the
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Figure 8. Network Components. Average number of components in a
sample of 10 networks as the fitness threshold increases in landscapes of (A)
k=0,(B) k=3, (C)k=6and (D) k=9 are shown above.

network, is considered to be a component. I measured the average number of

components for each fitness threshold increment across 10 replicate

networks at every value of k (Figure 8).

For every value of k, the number of components at the lower end of

the fitness threshold range began at 1, reflective of the fact that every or



almost every genotype was viable and part of the same, large component.
For networks where k = 0, this large component endured until a fitness
threshold value of 0.65. At this point, many of the 10 networks produced
have no components and the average number of components quickly
decreases from 1 to 0 over the next few fitness threshold increments. In
networks where k = 3, instead of decreasing directly from one component to
none, the networks’ average number of components first increased to 4.3 and
then dropped abruptly to 0. Each following set of networks of a higher k
value produced a larger average number of components after the single large
component broke apart, but before the average number of components
dropped to 0. For networks where k = 6, the maximum average number of
components was 19.9 and for networks where k = 9, the maximum average
number of components was 50.6.

When there was only one component, it was made up of every viable
genotype and its size was clear. However, as soon as there exist multiple
components, their sizes were unknown. Therefore, after analyzing the
quantity of components that exist under different threshold values, I
investigated how large each of these components were in a few different
ways. The first of these was a measurement of the average biggest and

smallest component sizes in 10 networks produced for each value of k across
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Figure 9. Networks’ Biggest and Smallest Components. Average biggest
and smallest component size in a sample of 10 networks as the fitness
threshold increases in landscapes of (A) k=0, (B) k=3, (C) k=6 and (D) k
= 9 are shown above. The plot of biggest component size (blue) and smallest
component size (orange) overlap entirely for the k = 0 network as there is
only ever one component, which is therefore both the largest and smallest.

a range of fitness thresholds (0.2-0.9) (Figure 9). For k = 0, as there was
either only one or no components in each network, the biggest and smallest

component sizes were the same across all fitness threshold increments

(Figure 9A). Seeing as this one component was comprised of every viable
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genotype in the network, it followed the exact same trend as the number of
viable genotypes did. With this in mind, further discussion of the k = 0 case
for metrics of network connectivity that investigate the sizes of components
is unnecessary. Instead, in figures of these metrics, the lowest k value
depicted is k = 1. In the k = 3 case, the two plots begin to separate, with the
average smallest component size decreasing at a faster rate per fitness
threshold increment than the average biggest component size (Figure 9B).
For each increasing value of k that followed, this divide between average
biggest component size and average smallest component size widened.
Networks produced with k = 9 were characterized by a much steeper decline
in average smallest component size than average biggest component size
(Figure 9D). Naturally, once fitness thresholds reached high enough values
so that there were no components left in the network, the values for the
biggest component size and smallest component size aligned once again
(Figure 9B-D).

Seeing as networks of higher k values had many separate components
at certain fitness threshold increments, measurements of only the largest and
smallest component were not effective descriptors of how a single large
component broke apart as the fitness threshold increased. Consequently, I

measured the average mean component sizes for 10 networks produced for
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Figure 10. Mean Network Component Size. Average mean component
size for each network in a sample of 10 as the fitness threshold increases in
landscapes of k = 1, k = 3, k = 6 and k = 9 are shown above.

each value of k. Again, I analyzed these averages across the same range of
fitness thresholds (Figure 10). For all networks, the initial mean component
size begins at its maximum value, 1024. It remains here until close to 0.35,
when it begins to decrease with every fitness threshold increment. For
networks of k = 1, the mean component size reaches a value less than 10 at a

fitness threshold of 0.9 (Figure 10A). For k = 3, k =6 and k =9, this point is

reached at fitness thresholds of 0.8, 0.75, and 0.7 respectively (Figure 10B—
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D). Therefore, as k increases, the mean component size is reduced to a value
close to zero by progressively lower fitness thresholds.

Further, to account for the varying component sizes in networks being
compared, [ measured the average coefficient of variation of component size
in networks of every value of k (Figure 11). Naturally, as the fitness
threshold increased, the variation in component size remained constant until
the network contained multiple components. At this point, the coefficient of
variation increased as the number of components increased, and declined as
the number of component declined (Figure 11A-D). In networks of higher
k, the coefficient of variation reached a higher maximum value than in
networks of lower k.

Lastly, I measured one final metric of network connectivity, the
inclusivity of the largest component or, the proportion of all a single
network’s viable genotypes that are in that network’s largest component.
Like the other metrics, the average of this variable was calculated from 10
networks generated for each value of k for each increment in the fitness
threshold range (Figure 12). Also like many of the of the other metrics, the
proportion of viable genotypes in the big component remains at a constant
value, in this case 1.00, for much of the lower fitness threshold range. After

a fitness threshold value of 0.65, the proportion of viable genotypes in the
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Figure 11. Network Coefficient of Variation. Average coefficient of
variation for each network in a sample of 10 as the fitness threshold
increases in landscapes of (A)k=1,(B) k=3, (C) k=6 and (D) k=9 are

shown above.

biggest component decreases abruptly across all networks. In networks of k

= 1 and k = 6, the proportion of viable genotypes in the biggest component

returns to 1.00 after decreasing before the end of the fitness threshold range

(Figure 12A and 12C). As the value of k increases, the abrupt decrease in
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Figure 12. Network Big Component Inclusion. Average proportion of a
sample of 10 networks’ viable genotypes that fall within the largest
component as the fitness threshold increases in landscapes of (A) k=1, (B)
k=3,(C)k=06and (D) k=9 are shown above.

the proportion of viable genotypes in the big component becomes more
drastic. For networks of k = 3, k = 6, and k =9, the proportion of viable

genotypes in the big component drops to 0.62, 0.20, and 0.11 respectively

(Figure 12B-D).
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3.4 Properties of Percolation

The last property of this novel fitness landscape that I investigated
was how each network quickly transformed from one large connected
component into multiple as the fitness threshold increased. The threshold at
which this occurs in any given network is known as the percolation
threshold. Here, I define the threshold as the point at which the largest
component in the network first contains less than 85% of the viable
genotypes in the network. I measured this threshold for a set of 10 networks
produced for each value of k (Figure 13). For k = 0, the viable genotypes in
the biggest component never dropped below 85% as the networks never
significantly divided into many different components before all genotypes
became inviable. After this point, increasing values of k correlated with a
lower percolation threshold.

At the percolation threshold, the number of components in each
network increased quickly before decreasing again abruptly as the fitness
threshold increased. While this pattern was similar among networks of k
values 1-9, the maximum number of components seen at this peak was
different. As k increased, the number of components the large components

broke into also increased and at an accelerating pace (Figure 14).
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Figure 13. Network Percolation Threshold. Fitness threshold at which, for
an average of 10 networks, the percentage of viable genotypes in the largest
component first dropped below 85%. For networks of k = 0, the percentage

of viable genotypes in the largest component never decreased below 85% so
it was not included.
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Networks of k = 0 were not considered as they only ever have one or no
components.
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DISCUSSION

4.1 The Fitness Behind the Landscape

Each of the results detailed above contributes to the analysis of the
networks produced for this work. By imposing a range of fitness thresholds
on these networks, we are able to elucidate how the pathways or ridges
connecting different viable genotypes shift and eventually disappear as the
fitness threshold is increased. This, in turn, provides a better understanding
of the shape and breadth of networks produced. Further, by using a fitness
landscape model in which epistasis is controlled, this research contributes to
our understanding of how changes in a landscape’s level of epistatic
interaction play into the formation of neutral networks on which evolution
by neutral mutations alone could occur.

My results highlighted the static nature of landscapes across all values
of k for fitness thresholds on both the low and high end of the range. This
characterized the number of viable genotypes, connections, and components,
the size of both the biggest and smallest components, the hamming distance,

and the dimensionality of networks analyzed. At first, it may seem
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counterintuitive that as the fitness threshold below which all genotypes are
inviable initially increases, no genotypes are rendered inviable. However,
this is explained by the fact that the trait values of all the possible genotypes
in each network form a normal distribution. Most genotypes in this model
have an attribute value that falls somewhere in the middle of the attribute
value range. At both the extreme high end and extreme low end of this
range, there are very few genotypes. Because of this, the first fitness
threshold increments exclude almost no genotypes, and by the final fitness
threshold increments, there are few genotypes left to be lost. This
concentration of attribute values in the middle of the attribute value range is

reflective of the fitness ranges under which many biological systems operate.

4.2 The Effects of a Fitness Threshold

As the fitness threshold was increased, networks lost viable genotypes
as more genotypes’ associated trait values fell below the threshold. The
grouping and dispersion of these lost genotypes in the landscape was
dependent on the value of k associated with each network. Figure 15 depicts

a three dimensional representation of a rugged fitness landscape with an
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Figure 15. Rugged Fitness Landscape with and Without a Threshold. A
three dimensional depiction of a fitness landscape is shown both (B) with
and (A) without a fitness threshold. Every genotype in genotype space above
the blue plane that indicates the level of this threshold is considered viable
and every genotype beneath it is considered inviable.

imposed fitness threshold shown as a plane transecting the landscape
(Figure 15B). In this depiction it is easy to see how, when the fitness
threshold 1s raised, many peaks that were once connected by areas of lower
trait value genotypes become isolated from each other. However, for low k,
networks look much different. They are characterized by having only a few,
large fitness peaks. At the extreme, k = 0, there is only one single peak, a
genotype which has the highest trait value option at each of its loci. In this
case, genotypes become inviable at the fringe of the network and, as the
fitness threshold is raised, this fringe grows closer to the central peak.

Networks with higher k values are more similar to the landscape shown in
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Figure 15, with many different local trait value maxima. The concept of a
set of fringe genotypes with trait values just above the fitness threshold
moving upwards from the base of a peak towards its maximum can again be
applied here. However, for networks with multiple peaks, this occurs for
each peak independently instead of for the network as a whole.

After understanding that networks with higher k values have more
peaks, the trend of seeing more components produced as k values increase is
explained. In these networks, each peak represents a group of genotypes that
becomes an independent component, separated from the rest of the network
as the threshold rises. With each fitness threshold increment after the
network ceases to be one connected component, new peaks are isolated.
Finally, once the threshold surpasses the highest trait value of each peak, the
component is lost entirely.

In all networks with multiple peaks analyzed in this study, the shift
from having a single component to having the maximum average number of
components occurred over a small fitness threshold range. This would
suggest that many of the peaks begin to separate themselves from the
surrounding low trait value genotypes at approximately the same level
across the network. The inverse shift, from having the maximum average

number of components to having none, occurs over a similarly short range of
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fitness thresholds. This subsequently suggests that many of the peaks have
their maximums at a similar trait value level as well. However, while many
of the peaks may begin and end at similar fitness thresholds, they are not
uniform in size. Investigation of the coefficient of variation showed that as
soon as multiple components existed, there was variation in component size
(Figure 11). In fact, as k was increased, the amount of variation between
component sizes increased as well, a reflection of the increased ruggedness

and disorder of the landscapes.

4.3 Impact of Trait Value Ruggedness

Networks 1n this study were further described by results showing
mean component size (Figure 10). As k increased, the rate at which the
average component size decreased across the fitness threshold range was
higher. This results from the fact that in networks of higher k, with more
peaks, there were many different, smaller components shrinking
concurrently. In networks of lower k, the genotypes becoming inviable as
the threshold increased occupied the fringes of only a few, large
components, leading the average component size to decrease at a slower

pace. Additionally, the fitness threshold value at which the mean component
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size reached zero was lower in networks of lower k. This suggests that, in
addition to being larger, the few peaks present in landscapes of low k had
higher average maximum trait values as well.

As noted previously, in the k = 0 case, one large trait value maximum
existed in the middle of the network, with lower value genotypes spanning
out on all sides. If the many local maxima in a network at high k are
imagined as tall peaks, the singular maximum in networks of k = 0 can be
imagined as a large mountain. In this context, the trends seen for Hamming
distance are better understood. For networks of k = 0, the Hamming distance
decreased significantly as the fitness threshold increased. This is reflective
of low trait value genotypes on the edges of the network becoming inviable
and the remaining viable genotypes existing in an ever shrinking landscape.

For every increasing value of k, the Hamming distance decreased by a
smaller overall amount. This suggests that the multiple peaks observed in
landscapes above k = 0 were still somewhat centralized and that the general
shape of the fitness mountain seen in the k = 0 network was not yet erased.
Therefore, at higher fitness thresholds, the final peaks were more likely ones
that existed in this area of higher fitness at the center of the network,
explaining the continued decrease in Hamming distance. As the value of k

increased further, these peaks became less and less clustered together as this
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fitness mountain disappeared. In networks of k = 9, the Hamming distance
barely dropped below its initial value. In fact, at high fitness thresholds, it
increased marginally before decreasing at all. Because there were so many
peaks in networks where k = 9, it 1s reasonable to imagine that the few
genotypes making up the small, high trait value peaks left at high fitness
thresholds may have been more spread out on average than every genotype
was at the start. After this analysis, it is clear that networks with different
levels of epistasis respond drastically differently to the imposition of a

fitness threshold as well as to changes in that threshold’s value.
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CONCLUSION

5.1 Importance of the Model

The use of computational models to help understand evolution is
becoming increasingly common. Producing variations of these models that
allow for new examinations of evolutionary mechanisms is therefore crucial
to furthering research efforts in the field of evolutionary biology. The
research conducted in this thesis represents an investigation into a novel
model of holey fitness landscape. Specifically, it analyzes the interplay
between the level of epistasis and a range of fitness thresholds in a
multidimensional network model. Other studies have developed and
explored networks based on the Nk model and have even considered the
percolation of neutral networks specifically (Newman and Engelhardt 1998,
Gravner et al. 2007). However, none have used the imposition of a fitness
threshold as I did to create or analyze these neutral networks.

Neutral networks observed in multidimensional models may play an
essential role in determining evolutionary trajectories. In this study,

percolation thresholds express the highest fitness threshold at which these

50



neutral networks can exist and span genotype space. This study elucidates
and evaluates the properties of percolation thresholds in networks at every
level of epistatic interaction. As a result, this work contributes to our
understanding of how these neutral networks are organized and of the

variables that impact their size and connectivity.

5.2 Future Research Directions

As mentioned previously, the scale and complexity of computational
network models is nowhere near that of the real biological systems that they
represent. For this reason, future work should focus on more efficient
computational methods that allow for the creation and analysis of larger,
more complex landscapes. Specifically, further research should be
conducted on networks of genotypes where each locus has more than two
alleles and, if possible, where the number of genes is much greater than 10,
as used in this study.

Finally, while this research analyzed the properties of a novel network
model, it did not analyze how populations would evolve across this
landscape. Allowing genotypes to accumulate mutations and navigate

landscapes produced by the model proposed here would provide valuable
51



insights into the mechanisms of evolution and speciation. It would contribute
to a better comprehension of how different levels of ruggedness as well as
different fitness thresholds influence these mechanisms. Additionally,
research of this nature would complement the conclusions of this thesis and
lend itself to an even better understanding of the novel landscapes analyzed

in this study.
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APPENDICES

6.1 Average Network Data

k=0

" Big " Mean Median Small
incuusion " Component SR Dimensionality Edges piiTC?  Com Com Componert  Vertices
Threshold
0.20 1.0 1024.0 0.0 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.25 1.0 1024.0 0.0 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.30 1.0 1024.0 0.0 1.0 5.000000 5120.0  5.004888 1024.000000  1024.000000 1024.0  1024.0
0.35 1.0 1023.0 0.0 1.0 4.996450 5111.4 5.004861 1023.000000 1023.000000 1023.0 1023.0
0.40 1.0 1012.9 0.0 1.0 4.973384 5040.2 5.002817  1012.900000 1012.900000 1012.9 1012.9
0.45 1.0 984.0 0.0 1.0 4.919520 4866.2 4.985742 984.000000 984.000000 984.0 984.0
0.50 1.0 9159 0.0 1.0 4.765457 4455.2 4.927821 915.900000 915.900000 915.9 9159
0.55 1.0 780.4 0.0 1.0 4.431393 3654.8 4.769436 780.400000 780.400000 780.4 780.4
0.60 1.0 573.5 0.0 1.0 3.782708 2523.6 4.711758 573.500000 573.500000 573.5 573.5
0.65 1.0 348.5 0.0 0.9 3.481498 1431.4 4.117736 387.222222 387.222222 348.5 348.5
0.70 1.0 184.1 0.0 0.8 2675197 701.8 3.798962 230.125000 230.125000 184.1 184.1
0.75 1.0 81.1 0.0 0.6 2.499811 271.0 3.224399 135.166667 135.166667 81.1 81.1
0.80 1.0 24.0 0.0 0.4 1.611135 64.5 2.313441 60.000000 60.000000 24.0 240
0.85 1.0 3.8 0.0 0.2 1.772727 6.6 2.283117 19.000000 19.000000 3.8 3.8
0.90 1.0 0.2 0.0 0.1 0.500000 0.1 1.000000 2.000000 2.000000 0.2 0.2
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
k=1
IBnigI:si on z:::grenponen gize oV Components Dimensionality Edges giasr;::::;g f: ::n i‘l:;dlan E::Il ient  Vertices
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888  1024.000000 1024.000000 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.30 1.000000 1023.1 0.000000 1.0 4.996268 5111.7 5.004875 1023.100000 1023.100000 1023.1 1023.1
0.35 1.000000 1017.0 0.000000 1.0 4.975726 5060.8 5.004525 1017.000000 1017.000000 1017.0 1017.0
0.40 1.000000 993.4 0.000000 1.0 4.909118 4880.4 5.001596 993.400000 993.400000 993.4 993.4
0.45 1.000000 936.5 0.000000 1.0 4.769637 4486.5 4.987127 936.500000 936.500000 936.5 936.5
0.50 1.000000 832.2 0.000000 1.0 4527940 38155  4.946788  832.200000 832.200000 832.2 832.2
0.55 1.000000 672.8 0.000000 1.0 4.160749 2885.9 4.849998 672.800000 672.800000 672.8 672.8
0.60 1.000000 486.2 0.000000 1.0 3.688668 1901.4 4.681234 486.200000 486.200000 486.2 486.2
0.65 1.000000 293.3 0.000000 1.0 3.045409 1007.8 4.374846 293.300000 293.300000 293.3 293.3
0.70 0.950000 144.6 0.035355 12 2.268112  428.6 3.727025 144.333333 144.200000 144.2 145.4
0.75 0.944444 61.2 0.000000 1.0 1.728000 150.6 3.232176 68.000000 68.000000 61.2 61.3
0.80 0.904762 19.8 0.067686 1.0 1.376469 431 2.707319 28.035714 28.214286 19.2 21.2
0.85 0.812500 55 0.076547 1.0 1.041734 9.2 2.739194 13.535714 13.500000 5.4 6.1
0.90 1.000000 1.2 0.000000 0.2 1.125000 1.4 1.613095 6.000000 6.000000 1.2 1.2
0.95 0.500000 0.1 0.000000 0.2 0.000000 0.0 2.000000 1.000000 1.000000 0.1 0.2

53



k=2

IBnizg:I:si on (::::gr:ponen gize cv Components Dimensionality Edges gias’t’:s:‘::"eg ::::n it fs'!: :ﬂan z‘::" Vertices
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0  5.004888 1024.000000  1024.000000 1024.0  1024.0
0.30 1.000000 1024.0 0.000000 1.0 5.000000 5120.0  5.004888 1024.000000  1024.000000 1024.0  1024.0
0.35 1.000000 1022.2 0.000000 1.0 4.991865 5102.7  5.004874 1022.200000  1022.200000 10222 1022.2
0.40 1.000000 1010.7 0.000000 1.0 4.949641 5002.9  5.004463 1010.700000  1010.700000 1010.7  1010.7
0.45 1.000000 971.4 0.000000 1.0 4.825392 4689.2  5.001021 971.400000 971.400000 971.4 971.4
0.50 1.000000 868.3 0.000000 1.0 4.546091 3951.4 4.983422 868.300000 868.300000 868.3 868.3
0.55 1.000000 695.6 0.000000 1.0 4123206 2874.7 4.932035 695.600000 695.600000 695.6 695.6
0.60 1.000000 477.2 0.000000 1.0 3.552575 1707.3 4.825387 477.200000 477.200000 477.2 477.2
0.65 0.999184 258.2 0.139690 1.2 2.849960 751.0 4.609099 242.066667 234.000000 234.0 258.4
0.70 0.976956 111.5 0.153911 1.2 2172882  259.1 4.234776 106.800000 106.800000 102.1 112.8
0.75 0.892389 37.5 0.468928 1.8 1.510277 70.8 3.658659 29.416667 27.850000 229 40.7
0.80 0.808642 8.0 0.368359 1.7 0.920576 12.0 2.907473 7.018519 6.611111 5.0 9.1
0.85 1.000000 12 0.000000 0.4 0.250000 0.9 2111111 3.000000 3.000000 12 1.2
0.90 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
k=3
" Big " Mean Median Small
B Sompne Component ST % Dlsmee  Gomporent  Component Comparert . Vertces
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.000000 1024.0 1024.0
0.30 1.000000 1023.8 0.000000 1.0 4.999022 5118.0 5.004888 1023.800000 1023.800000 1023.8 1023.8
0.35 1.000000 1022.0 0.000000 1.0 4.990891 5100.7 5.004877 1022.000000 1022.000000 1022.0 1022.0
0.40 1.000000 1011.6 0.000000 1.0 4.949373 5007.0 5.004620 1011.600000 1011.600000 1011.6 1011.6
0.45 1.000000 975.2 0.000000 1.0 4.819976 4701.9 5.003130 975.200000 975.200000 975.2 975.2
0.50 1.000000 877.1 0.000000 1.0 4510620 3961.7  4.996213  877.100000 877.100000 8771 877.1
0.55 1.000000 701.3 0.000000 1.0 4.010354 2821.8  4.971781 701.300000 701.300000 701.3 701.3
0.60 1.000000 480.8 0.000000 1.0 3.376333 1634.5 4.911998 480.800000 480.800000 480.8 480.8
0.65 0.998555 259.6 0.297111 13 2.631810 695.6 4.777582 217.050000 217.050000 174.5 260.0
0.70 0.981409 1141 0.519302 19 1.924579 228.2 4.531615 91.016667 85.350000 75.9 115.5
0.75 0.769491 30.9 1.081936 4.3 1.155758 47.2 4.241830 14.285714 9.600000 6.5 37.7
0.80 0.704532 6.9 0.434034 3.2 0.585122 8.2 3.516937 4.360000 4.100000 2.7 10.4
0.85 0.616667 0.6 0.066667 0.7 0.366667 0.4 2.655556 1.833333 1.833333 0.5 1.1
0.90 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
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k=4

IBniquC:i::‘ponent tsz:t;g:\ponem (s:in;:\pct‘:,nenl Components Dimensionality Edges glas"t‘a':::neg ‘S'!: ::n rent ls'!: :t:lan E::" ient  Vertices
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.0000 1024.0 1024.0
0.25 1.000000 1023.9 0.000000 1.0 4.999511 5119.0 5.004888 1023.900000 1023.9000 1023.9 1023.9
0.30 1.000000 1023.9 0.000000 1.0 4.999511 5119.0 5.004888 1023.900000 1023.9000 1023.9 1023.9
0.35 1.000000 1021.2 0.000000 1.0 4.987124 5092.9 5.004874  1021.200000 1021.2000 1021.2 1021.2
0.40 1.000000 1008.9 0.000000 1.0 4.937406 4981.7 5.004670 1008.900000 1008.9000 1008.9 1008.9
0.45 1.000000 968.6 0.000000 1.0 4.782756 4634.5 5.003388 968.600000 968.6000 968.6 968.6
0.50 1.000000 8725 0.000000 1.0 4.456140 3894.9 4.997490 872.500000 872.5000 8725 872.5
0.55 1.000000 708.0 0.000000 1.0 3.942760 2805.1 4.981197 708.000000 708.0000 708.0 708.0
0.60 1.000000 498.3 0.000000 1.0 3.258393 1643.4 4.944823 498.300000 498.3000 498.3 498.3
0.65 0.995909 286.3 0.474270 1.6 2.473227 7289 4.875869 230.566667 214.8000 190.6 287.3
0.70 0.906448 122.9 1.475756 5.1 1.643809 230.3 4.766294 60.764206 42.2500 421 131.3
0.75 0.652097 342 1.429757 77 0.987814 49.8 4.576687 8.385284 1.4500 1.0 46.2
0.80 0.531396 49 0.569224 4.7 0.500333 6.4 4.105322 2.269444 1.6500 1.1 10.4
0.85 0.564583 1.1 0.129162 22 0.097917 0.3 4.050000 1.135417 1.0625 0.8 25
0.90 1.000000 0.1 0.000000 0.1 0.000000 0.0 NaN 1.000000 1.0000 0.1 0.1
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
k=5
IBnigh?st:::‘ponent §:t;gr:ponent (s:iol:gt‘:’nent Components Dimensionality Edges ::Ta'::‘eg Ps": ::n E ::Ian z::“ Vertices
Threshold

0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.30 1.000000 1023.8 0.000000 1.0 4.999022 5118.0 5.004887 1023.800000 1023.80 1023.8 1023.8
0.35 1.000000 1022.3 0.000000 1.0 4.991863 5103.2 5.004886 1022.300000 1022.30 1022.3 1022.3
0.40 1.000000 1011.2 0.000000 1.0 4.942440 4998.2 5.004796 1011.200000 1011.20 1011.2 1011.2
0.45 1.000000 974.7 0.000000 1.0 4.793694 4674.5 5.004163 974.700000 974.70 974.7 974.7
0.50 1.000000 886.7 0.000000 1.0 4.461927 3961.6 5.001817 886.700000 886.70 886.7 886.7
0.55 1.000000 726.2 0.000000 1.0 3.889895 2835.0 4.994017 726.200000 726.20 726.2 726.2
0.60 1.000000 512.2 0.000000 1.0 3.143691 1623.9 4.973576 512.200000 512.20 512.2 512.2
0.65 0.997330 296.1 0.508846 1.7 2.328939  704.1 4.927915 233.741667 218.50 193.2 296.8
0.70 0.964357 140.5 1.466082 4.3 15659374 231.1 4.861748 61.466389 42.75 34.8 145.2
0.75 0.492324 26.9 1.571014 11.6 0.887854 46.5 4.707079 4.734006 1.40 1.0 50.5
0.80 0.268275 3.7 0.532330 8.8 0.265566 4.4 4.623758 1.428698 1.00 1.0 13.0
0.85 0.635714 0.7 0.000000 1.6 0.000000 0.0 4.783333 1.000000 1.00 0.7 1.6
0.90 0.750000 0.2 0.000000 0.3 0.000000 0.0  2.000000 1.000000 1.00 0.2 0.3
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
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k=6

IBnigli?g:‘ponent g:tzr:ponent g;:‘pc%"em Components Dimensionality Edges gias':'a:"i:"eg :::n fg ::'f o 1ent z‘::“ Vertices
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.30 1.000000 1023.9 0.000000 1.0 4.999511 5119.0 5.004888 1023.900000 1023.90 1023.9 1023.9
0.35 1.000000 1022.0 0.000000 1.0 4.990597 5100.4 5.004883  1022.000000 1022.00 1022.0 1022.0
0.40 1.000000 1011.9 0.000000 1.0 4.943278 5002.2 5.004863 1011.900000 1011.90 1011.9 1011.9
0.45 1.000000 975.5 0.000000 1.0 4.781921 4665.1 5.004627 975.500000 975.50 975.5 975.5
0.50 1.000000 880.7 0.000000 1.0 4.391285 3869.8 5.003497 880.700000 880.70 880.7 880.7
0.55 1.000000 728.3 0.000000 1.0 3.807564 2776.8 4.999911 728.300000 728.30 728.3 728.3
0.60 1.000000 518.6 0.000000 1.0 2.986982 1553.7 4.992756 518.600000 518.60 518.6 518.6
0.65 0.996115 298.3 0.720632 21 2.079054 625.5 4.971085 203.225000 170.10 154.6 299.4
0.70 0.854746 124.5 2.402858 10.2 1.287879 185.5 4.944192 16.663232 1.35 1.0 141.6
0.75 0.245855 13.5 1.146009 19.9 0.633320 33.6 4.937618 2.658192 1.20 1.0 51.2
0.80 0.200497 2.4 0.341208 9.8 0.187095 26 4.940612 1.269625 1.00 1.0 12.4
0.85 0.537037 0.9 0.000000 1.8 0.000000 0.0 4.750000 1.000000 1.00 0.9 18
0.90 1.000000 0.2 0.000000 0.2 0.000000 0.0 NaN 1.000000 1.00 0.2 0.2
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
k=17
IBnigli?g:‘ponent EE:'lponent g;:‘g%"em Components Dimensionality Edges gias'::::‘i:"eg i": :n 'S'!: ::'f o 1ent z‘::“ Vertices
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.30 1.000000 1023.9 0.000000 1.0 4.999511 5119.0 5.004888 1023.900000 1023.90 1023.9 1023.9
0.35 1.000000 1021.6 0.000000 1.0 4.988346 5096.1 5.004886 1021.600000 1021.60 1021.6 1021.6
0.40 1.000000 1008.8 0.000000 1.0 4.928656 4972.1 5.004867 1008.800000 1008.80 1008.8 1008.8
0.45 1.000000 973.3 0.000000 1.0 4.764978 4638.2 5.004738 973.300000 973.30 973.3 973.3
0.50 1.000000 879.2 0.000000 1.0 4.358342 3832.3 5.003967 879.200000 879.20 879.2 879.2
0.55 1.000000 714.4 0.000000 1.0 3.672786 2625.4 5.001619 714.400000 714.40 714.4 714.4
0.60 1.000000 503.9 0.000000 1.0 2.788454 1407.0 4.997770 503.900000 503.90 503.9 503.9
0.65 0.990546 297.0 1.394607 3.7 1.870918 563.5 4.988186 128.483333 78.60 64.0 299.7
0.70 0.748401 108.3 2.909725 17.4 1.067333 153.2 4.979244 9.008877 1.05 1.0 142.0
0.75 0.186063 10.0 1.017701 26.2 0.527762 28.2 4.938981 2.044667 1.00 1.0 52.7
0.80 0.196936 2.7 0.416912 10.5 0.210609 3.1 4.918600 1.288822 1.00 1.0 13.6
0.85 0.452381 0.9 0.098127 22 0.059524 0.2 5.316667 1.076190 1.00 0.7 2.4
0.90 1.000000 0.2 0.000000 0.2 0.000000 0.0 NaN 1.000000 1.00 0.2 0.2
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
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- Big N Mean Median Small
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.30 1.000000 1023.5 0.000000 1.0 4.997555 5115.0 5.004888 1023.500000 1023.50 1023.5 1023.5
0.35 1.000000 1020.2 0.000000 1.0 4.981560 5082.2 5.004885 1020.200000 1020.20 1020.2 1020.2
0.40 1.000000 1010.0 0.000000 1.0 4.931622 4981.0 5.004878  1010.000000 1010.00 1010.0 1010.0
0.45 1.000000 971.8 0.000000 1.0 4.751340 4617.6 5.004786 971.800000 971.80 971.8 971.8
0.50 1.000000 881.0 0.000000 1.0 4.330824 38158  5.004654  881.000000 881.00 881.0 881.0
0.55 1.000000 708.9 0.000000 1.0 3.547780 2515.7 5.004324 708.900000 708.90 708.9 708.9
0.60 0.999413 508.1 0.298827 13 2.652482 1350.4 5.001079 431.650000 431.65 355.2 508.4
0.65 0.977140 290.7 2.353526 7.0 1.638517  488.6 4.998945 46.209048 1.05 1.0 297.4
0.70 0.526155 732 2.750383 30.4 0.861897 119.2 4.992534 4.775339 1.20 1.0 137.4
0.75 0.106946 5.6 0.700086 341 0.352798 18.7 4.973739 1.546778 1.00 1.0 52.6
0.80 0.139407 19 0.253326 12.6 0.102759 15  4.854442 1.123042 1.00 1.0 14.1
0.85 0.531481 0.9 0.000000 2.4 0.000000 0.0 4.966667 1.000000 1.00 0.9 2.4
0.90 0.666667 0.2 0.000000 0.4 0.000000 0.0 4.666667 1.000000 1.00 0.2 0.4
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
k=9
- Big " Mean Median Small
Threshold
0.20 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.25 1.000000 1024.0 0.000000 1.0 5.000000 5120.0 5.004888 1024.000000 1024.00 1024.0 1024.0
0.30 1.000000 1023.8 0.000000 1.0 4.999022 5118.0 5.004888  1023.800000 1023.80 1023.8 1023.8
0.35 1.000000 1021.4 0.000000 1.0 4.987263 5094.0 5.004889  1021.400000 1021.40 1021.4 1021.4
0.40 1.000000 1011.0 0.000000 1.0 4.937252 4991.6 5.004886 1011.000000 1011.00 1011.0 1011.0
0.45 1.000000 975.1 0.000000 1.0 4.762238 4643.8 5.004896 975.100000 975.10 975.1 975.1
0.50 1.000000 886.0 0.000000 1.0 4.323308 3831.0 5.004923 886.000000 886.00 886.0 886.0
0.55 1.000000 729.9 0.000000 1.0 3.557157 2597.0 5.005272 729.900000 729.90 729.9 729.9
0.60 0.998235 515.1 0.837844 19 2.526910 1304.7 5.004403 303.383333 286.55 108.5 516.0
0.65 0.960977 289.8 2.879520 103 1.465448 4427 5.005165 31.756663 1.00 1.0 301.4
0.70 0.270270 39.3 1.993003 50.6 0.669985  96.0  5.010376 2.914851 1.00 1.0 142.4
0.75 0.099769 55 0.651725 40.7 0.263186 145 5.023017 1.351790 1.00 1.0 54.9
0.80 0.117581 1.8 0.214417 14.5 0.074303 1.2 4.982533 1.083184 1.00 1.0 15.7
0.85 0.550000 0.8 0.000000 24 0.000000 0.0 4.653333 1.000000 1.00 0.8 2.4
0.90 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
0.95 NaN 0.0 NaN 0.0 NaN 0.0 NaN NaN NaN 0.0 0.0
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