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ABSTRACT 

 

Evolution is an incredibly complex process that has been the subject of 

scientific study for well over a century. The complexity of evolution has 

made discovery by empirical studies alone challenging, as they often offer 

only a glimpse into much larger patterns. This has increased the importance 

of theoretical models to research in the field, which allow predictions to be 

made for empirical studies and enable these studies to be analyzed in a 

broader theoretical context. One set of models that have been especially 

important are those of fitness landscapes. These models describe the 

relationship between each genotype in a set and its fitness value and have 

been useful in understanding the mechanisms of divergence and speciation. 

Computationally, fitness landscapes can be produced to better represent the 

multidimensional nature of true biological systems. One insight of 

multidimensional landscapes is that they contain networks of genotypes of 

the same fitness, through which evolution and speciation could occur by 

neutral mutations alone. With the Nk model, the ruggedness, size and 

dimensionality of created networks can be adjusted. By imposing a fitness 

threshold on a quantitative trait specified by the Nk model, I am able to 



 viii 

investigate how epistasis in the quantitative trait impacts the development 

and characteristics of these neutral networks of genotypes. In this thesis, I 

explore the properties of this novel fitness landscape model and examine 

how landscape features influence the structure and composition of neutral 

networks. I show that the neutral networks that exist in landscapes of 

varying levels of epistasic interaction respond very differently to increasing 

fitness thresholds. 
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INTRODUCTION 

 

1.1 Mathematical Models and the Study of Evolution 

 

Evolution is the process through which all species, past and present, 

have come into existence. The theory of evolution provides a basis for 

understanding how life developed from the simplest of organisms into the 

incredible biodiversity seen on Earth today. Since Darwin’s famed On the 

Origin of Species in 1859, scientists and laymen alike have been captivated 

both by evolution and by the mechanisms that drive and guide it. Despite 

this fact, the field of evolutionary biology remains relevant and multitudes of 

researchers strive constantly to better elucidate the complexities of 

evolutionary change. For this reason, I have decided to conduct my senior 

honors thesis research in this field and contribute to the greater 

understanding of the forces responsible for life as we know it. 

Historically, both the sheer complexity of the evolutionary process 

and the time scale on which evolution occurs have introduced challenges to 

experimental studies of the subject. In light of this, the use of mathematical 

models to represent biological phenomena and complement empirical work 
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by serving as a proof of concept is of incredible importance to the field 

(Servedio et al. 2014). Specifically, the study of speciation is a component of 

evolutionary biology that has benefitted immensely from mathematical 

modeling. For the first time in the 1960’s and 1970’s, different mathematical 

models were used to study speciation to varying extents (Maynard Smith 

1962, Bazykin 1969, and Dickinson and Antonovics 1973). One concept, 

which has been the basis for many such mathematical models, is a fitness 

landscape. 

 

1.2 Wright’s Fitness Landscape 

 

The idea of a fitness landscape was first proposed by Sewall Wright in 

1932. Fitness landscapes imagine the relationship between genotypes and 

fitness as a three-dimensional surface where height represents fitness, and 

any given point on the surface represents a different genotype. Points closer 

together represent genotypes more similar in composition. Wright depicted 

this in his 1932 paper with a topographic map (Figure 1). In this metaphor, 

the surface represents genotype space, the set of every possible genotype. 

Genotype space is characterized by its dimensionality or, the number of 
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Figure 1. Wright’s Two-Dimensional Fitness Landscape Diagram. Here, 
+ signs represent areas of higher fitness and – signs represent areas of lower 
fitness. If the areas of high fitness are imagines as peaks, and the areas of 
low fitness as valleys, it is easy to see the ruggedness that Wright suggested 
defined this fitness landscape. Positions on the x-y plane in this diagram that 
are closer together represent genotypes more similar in composition. 
 

different genotypes that can be produced from a given genotype by changing 

just one gene. To a certain extent, this dimensionality can and has been 

visualized on paper through lines connecting each genotype to every other 

genotype within one gene of difference from it (Figure 2) (Wright 1932). In 

Wright’s fitness landscape, the more similar the composition of two 

genotypes, the closer they are in proximity, so the dimensionality can also be 
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Figure 2. Wright’s Multidimensional Networks. Sets of genotype spaces, 
increasing in dimensionality from 2 to 5, produced in the same paper in 
which Wright proposed his famous three dimensional fitness landscape. 
Every genotype is represented by a unique combination of letters and is 
connected to each of its one step neighbors by a line. As dimensionality 
increases, it becomes increasingly difficult to depict the relationship between 
position and genotype similarity in a two-dimensional drawing, meaning that 
genotypes similar in composition are not always closer to each other than to 
less similar genotypes. 
 

described as the number of neighbors each genotype has. Naturally, these 

landscapes consist of peaks, where every surrounding genotype is of lower 

fitness, and valleys, where every surrounding genotype is of higher fitness. 

Fitness landscapes allow for the visualization of evolutionary change. As 

populations accumulate mutations or other genetic differences, their ability 
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to survive and reproduce changes and they can be imagined as moving 

across the landscape  

Wright thought of fitness landscapes as being rugged, or having many 

different local peaks and valleys. In his metaphor, isolated peaks could 

represent distinct species, peaks clustered together could represent closely 

related species, and groups of peaks separated by expansive valleys might 

represent different higher level taxonomic groups. In this case, for evolution 

to occur on one such landscape, populations would need to cross the low 

fitness valleys between two peaks. In light of this, it might seem natural to 

conclude that stochastic changes in genotype frequencies could take 

populations into these valleys and then natural selection could drive 

populations up different peaks. However, this is where Wright’s metaphor 

falls short.  

In his 2004 book, Fitness Landscapes and the Origin of Species, 

Sergey Gavrilets explains why the assumption made in Wright’s rugged 

fitness landscape that populations cross fitness valleys during evolutionary 

divergence is flawed. Possibly the most straightforward way for populations 

to move into valleys of lower fitness would be through genetic drift. In this 

scenario, deleterious mutations could accumulate and fix in a population, 

driving it away from its current peak towards another. Despite this, Gavrilets 
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claims that it is very unlikely that stochastic changes would ever be enough 

to move a population through the bottom of any fitness valley. In his book, 

he considers multiple models in which this might occur; a one locus, two 

allele model of underdominant selection (heterozygous disadvantage), a two 

peak model of disruptive selection on an additive quantitative trait, and a 

two locus haploid model of compensatory mutations in asexual populations 

or sexual populations with tight linkage (no recombination). In the end, he 

concludes that in all of these models, only under very stringent conditions 

(low population size and shallow valleys between peaks) can a stochastic 

shift from one peak to another actually occur. Further, for speciation to 

occur, there must be adequate reproductive isolation, a condition that is in 

contrast with shallow valleys between peaks. This proves then that under the 

conditions of Wright’s rugged fitness landscape, it is implausible for 

stochastic changes to be the mechanism by which species diverge in natural 

populations. 

The hypothesis that Gavrilets puts forward is that this seemingly 

irreconcilable problem does not lie in the mechanism by which populations 

diverge, but rather in the rugged landscape metaphor that Wright described. 

Wright’s rugged fitness landscape is imagined as a three dimensional 

geographic terrain, something that made it an accessible concept, easily 
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understood and used to conceptualize evolution. However, evolution is a 

much more complex, multidimensional process. In a three dimensional 

landscape, thin ridges or very narrow, shallow valleys of high or low fitness 

relative to their surroundings seem unlikely to exist. In a genotype space 

with many more dimensions though, these ridges connecting high fitness 

genotypes are very common. In consideration of this, the strength of 

Wright’s metaphor is also its weakness. The simplicity of his fitness 

landscape model is both what made it so broadly understood and what 

disguises a key structural component of biological landscapes. For this 

reason, Wright’s rugged fitness landscape is not a good model on which to 

explore or imagine the properties of evolutionary change. Since the proposal 

of his model, there have been a number of attempts to analyze fitness 

landscapes produced empirically which are reviewed in Weinreich et al, 

2013. These have met varying levels of success for a number of different 

organisms including Escherichia coli and Drosophila melanogaster, but are 

generally limited in terms of size and complexity (Weinreich et al, 2013). 
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1.3 Multidimensional Models of Fitness Landscapes 

 

There are a multitude of different multidimensional fitness landscape 

models that have been proposed. The first of these that I will discuss is the 

multidimensional House of Cards model (Szendro et al. 2013). To 

understand this model, imagine genotypes with a large number of loci, N, 

each capable of taking on one of two allelic identities. This defines a 

genotype space in which each genotype has N possible one step neighbors, 

genotypes that differ at only one locus. Then, each locus offers a different 

random fitness contribution for every genotypes, producing genotypes of 

equally random fitness. The landscape produced by this model is therefore 

very rough and uncorrelated, meaning that the distance between genotypes 

in genotype space is completely unrelated to each genotype’s individual 

fitness value. 

The second multidimensional fitness landscape model to be 

considered is the multiplicative fitness model. The largest difference 

between this model and the House of Cards model is that the multiplicative 

fitness model is of a correlated fitness landscape. Genotypes closer together 

in genotype space have more similar fitness values. In this model, each 

genotype again consists of N loci, each which can take on two values. Of 
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these values, one is considered advantageous and the other deleterious. The 

fitness of each genotype as a whole is determined by the multiplication of 

the fitness contributions of each of its individual loci. This model is 

characterized by a single fitness peak and a spread of lower fitness 

genotypes that surround it. Other models of this nature, in which genotype 

space is correlated, exist as well. One example of this is the additive fitness 

model, where the overall fitness is determined by the addition of the fitness 

values of each locus rather than their multiplication.  

 

1.4 The Nk Model 

 

The two models discussed in the previous section can be viewed as 

existing on two opposite extremes of the same spectrum. In the House of 

Cards model, the fitness landscape is extremely rugged and fitness values of 

genotypes are entirely uncorrelated with those genotypes’ positions in 

genotype space. On the other end of the spectrum is the multiplicative fitness 

model, in which genotypes of similar composition share very similar fitness 

values and the landscape is therefore very smooth.  

In 1989, Stuart Kauffman and Edward Weinberger bridged the gap 

between these two extremes by creating what is known as the Nk model 
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(Kauffman and Weinberger 1989). In this model, which Kauffman and 

Weinberger described as “tunably rugged,”, the extent to which similar 

genotypes share similar fitness values is dependent on a variable, k, while 

the number of loci that each genotype is comprised of is defined by N. In the 

Nk model, k is a measure of the order of epistasis or, the level of interaction 

between genes in a genotype. The fitness contribution of each locus in any 

given genotype is determined by the fitness values of k other loci in that 

genotype. These other loci can be selected randomly, or in some more 

specified manner. Each genotype’s fitness is then determined by the average 

fitness contribution of each of its loci. 

The value of k can range from 0 to N – 1. When k is equal to 0, there 

is no epistasis so each locus has a fitness value uninfluenced by any other 

locus in the genotype. In this case, the associated fitness landscape is 

identical to that of the additive fitness model and the similarity of two 

genotypes’ loci is highly correlated with the similarity of those genotypes’ 

fitness values. Conversely, when k is equal to N – 1, the fitness contribution 

of each locus is dependent on every other locus in the genotype. The fitness 

landscape associated with these parameters is very rugged and completely 

uncorrelated. Under these parameters, the Nk model is the same as the 

House of Cards model. With k equal to N – 1, the fitness of each genotype is 
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effectively stochastic. Until recently, many of the properties of Nk model 

fitness landscapes had been difficult to analyze because they are much more 

complex than the models at either of the extreme ends of the correlation 

spectrum. 

 

1.5 Holey Fitness Landscapes 

 

Under certain restrictions, a fitness landscape can be considered 

holey. In a holey fitness landscape, some fitness threshold is determined for 

a given network and all genotypes that exist below this threshold are 

considered to be dead, while all genotypes that exist above it are considered 

to be alive. One of the more extreme examples of this is the Russian roulette 

model.  

In the Russian roulette model, each genotype is assigned a fitness 

value of either 0, reflecting an inviable organism, or 1, reflecting a viable 

one. The probability, P, of any given genotype to be viable can be varied. 

Consequently, at a P of 1, all of the genotypes in genotype space are viable, 

and at a P of 0, none of them are. As the name suggests, the model can be 

thought of in terms of playing a game of Russian roulette with each 

genotype with a probability of 1 – P that there is a bullet in the gun’s 
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chamber when fired. The Russian roulette model is effectively a House of 

Cards model landscape with a fitness threshold imposed. In a House of 

Cards landscape each fitness value is random, so imposing a threshold at 

some level would be the equivalent of selecting a certain probability that any 

given genotype would be viable. Higher fitness thresholds would be 

equivalent to lower probabilities of viability and lower fitness thresholds 

would be equivalent to higher probabilities of viability. Like the House of 

Cards model landscape, the landscape produced by the Russian roulette 

model is very uncorrelated, meaning that the closeness of genotypes in 

genotype space is unrelated to the fitness values of those genotypes. 

In the Russian roulette model, a viable genotype and any other viable 

genotypes that can be arrived at by undergoing changes at singular loci are 

considered connected. These connections can be thought of as pathways on 

which evolutionary change can occur. Seeing as this model has only two 

fitness values, 0 or 1 (alive or dead), movement through the network of 

connected genotypes is equivalent to a series of neutral mutations. As the 

value of P increases from 0 to 1, the network of genotypes becomes more 

connected overall until most viable genotypes are part of a single network 

spread throughout genotype space. The value of P at which the network 

transforms from a series of disconnected genotype clusters into one large 



 13 

connected component is referred to as the percolation threshold (Gavrilets 

2004). For this model, the percolation threshold is inversely related to N, the 

number of loci per genotype. This is simply because as N increases, there is 

a greater probability that for any given genotype, at least one neighbor will 

have survived the game of Russian roulette. When thresholds are imposed 

on correlated landscapes like the ones produced by the multiplicative fitness 

model, the relationship between N and the percolation threshold is not so 

easily defined. 

Thus far I have described fitness landscapes in a mainly theoretical 

context, imagining loci as alleles with only two potential values. However, 

the next point is best illustrated by taking into account the incredible size 

and variability of even the simplest organisms’ genomes. In this case, the 

number of loci, if representative of the number of genes in an organism 

(each with many more than two alleles) would be, by a conservative 

estimate, in the order of thousands and would define a genotype space with 

similarly high dimensionality. Taken a step further, if each site is 

representative of one of four base pairs in the DNA sequences that make up 

an organism’s genome, the dimensionality would be in the order of millions. 

Fitness values, on the other hand, have a range that can be condensed to 

values between 0, where organisms have no chance of survival or 
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reproduction and 1, where organisms are best equipped to so do. As a result, 

in a biological context, there likely exists a multitude of genotypes for each 

possible value of fitness. Therefore, each fitness increment in genotype 

space is expected to contain many different neutral genotypes connected 

across the network. A specific biological example of this can be seen in 

RNA-based fitness landscapes (Lee et al. 1997). 

In RNA fitness landscapes, the composition and structure of RNA 

molecules is used to represent fitness and genotype (Gavrilets 2004). The 

primary structure of RNA, the sequence of nucleotides in each molecule, is 

interpreted as the genotype. The secondary structure of the molecule is 

defined as the pattern of base pairing which can either be the classic G-C 

and A-U base pairs, or the weaker G-U pairs. Secondary structure is used to 

determine a fitness value for each RNA molecule and therefore, molecules 

with similar structures are imagined to have similar fitness values. With four 

potential bases, the possible number of genotypes in RNA landscapes is 4N, 

where N is the number of bases that make up each sequence. In comparison, 

the maximum number of different secondary sequence structures is 

estimated close to 1.4848 ´ N(-3/2) ´ 1.8488N, which is much smaller than 4N 

(Schuster et al. 1994). This suggests again that there are many different 

genotypes that exist at each fitness value and together form neutral 
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networks. In simplified holey fitness landscapes, fitness values are reduced 

to a binary of either being alive or dead so that all genotypes above the 

fitness threshold are neutral, with no difference in fitness between them. 

Networks of neutral genotypes that exist at high fitness levels 

demonstrate a potential solution to the problems associated with Wright’s 

three dimensional rugged fitness landscape. Even if the genotypes associated 

with a small range of high fitness values are considered, populations would 

be able to move easily across these nearly neutral networks through 

stochastic changes alone. Speciation could occur as populations shifted from 

one high fitness genotype to another without ever having to cross any 

significant fitness valley. While holey fitness landscapes are a simplification 

of traditional fitness landscape models, they serve as useful models for the 

study of certain specific evolutionary concepts. An example of one such 

concept, is Dobzhansky-Muller incompatibilities (Gravner et al. 2007). 

 

1.6 Dobzhansky-Muller Incompatibilities 

 

In the early 1900’s William Bateson, Theodosius Dobzhansky, and 

Herman Muller each contributed to the proposition of a model of the 

evolution of genetic incompatibility (Dobzhansky 1936, Orr 1996). This 
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model is best illustrated by two diverging populations which independently 

accumulate mutations overtime. After some period of time, each of the two 

populations has fixed unique advantageous or neutral genetic mutations. The 

model is realized when the two populations hybridize and the independently 

viable accumulated mutations combine to produce inviable offspring. The 

sets of genetic differences that can exist alone, but produce drastic decreases 

in fitness when observed together are known as Dobzhansky-Muller 

incompatibilities. Since being defined theoretically, such incompatibilities 

have been identified in real species pairs (reviewed in Presgraves 2010, 

Maheshwari and Barbash 2011). An example of one of these pairs is D. 

simulans and D. melanogaster. Crosses between the two species with 

differences in the Lhr locus, which encodes a protein associated with 

heterochromatin, caused hybrid F1 male lethality (Maheshwari and Barbash 

2011). One of the most important insights of this model is that it provides a 

method for reproductive isolation that does not require populations to cross 

low fitness valleys as suggested by Wright’s rugged fitness landscape. 

In the metaphor of a holey fitness landscape, speciation can be 

thought of as the point at which two populations of genotypes in a network 

are separated by an area of inviability, or, more simply put, a hole. In the 

context of Dobzhansky-Muller Incompatibilities, these holes represent areas 
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where, when high fitness genotypes on either side are brought together, a 

DMi is produced and the resulting offspring are inviable. For this reason, a 

holey fitness landscape provides a useful tool for visualizing and exploring 

the development of DMis in diverging populations. 

 

1.7 Thesis Objectives 

 

In this thesis, I propose a novel model for a holey fitness landscape 

that confers varying orders of epistasis. In the following sections, I will 

explore this new Nk-model and elucidate its properties. Specifically, I 

investigate the shift from a disconnected network to one containing a single 

large component across all different levels of epistasis and suggest how this 

unique model may be of use in future studies. 
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METHODS 

 

2.1 The Model 

 

Networks created for this thesis were defined by three main 

parameters. The first two of these parameters are the ones classically used to 

describe Nk model networks: N, the number of loci in each genotype, and k, 

the number of other loci that influence the contribution of a given locus. The 

third parameter added in this research is the fitness threshold, above which 

genotypes were considered viable. Since, in this model, every genotype is 

either viable or inviable, the value produced for each genotype can be 

thought of as a measurement of some quantitative trait that exists on a range 

from 0 to 1 rather than a measure of fitness directly. With a strict fitness 

threshold, the model imposes truncation selection on this trait. 

The networks produced had N values of 10. Due to the fact that each 

locus could take a binary value of 0 or 1, this defined networks with a 

maximum of 1024 genotypes (210). An N value of this size reflects the 

computational limits associated with generating and analyzing these 

networks. The k values analyzed ranged from 0 to 9, 9 being the maximum 
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number of genes in a 10 loci genotype that can interact epistatically with 

each locus (N–1). For each genotype, the trait value contribution of each 

locus was determined by the next k loci in the genotype sequence. If the end 

of the sequence was reached, the next locus considered would be selected 

from the start of the genotype. To expedite network creation and analysis, a 

lookup table of uniformly distributed random numbers between 0 and 1/N 

was generated under some value of k and N which calculated the trait values 

produced by each possible combination of loci. Trait values were calculated 

additively; the contribution of each locus was summed to determine the trait 

value produced by a given genotype, resulting in a value between 0 and 1. 

Each genotype was then iterated through, looked up in the table, and, if the 

trait value was above the fitness threshold, added to a network. Once all 

viable genotypes were in the network, edges were added connecting 

genotypes with only one locus that differed. 

A range of fitness threshold values were considered from 0.2 to 0.95 

in 0.05 increments. This range is justified by the fact that networks at both of 

the model’s extremes, k = 0 and k = 9, are relatively static in terms of size, 

connectivity, and number of components outside of this range. With fitness 

thresholds less than 0.2, almost every genotype is alive, and, because the 

next fitness threshold increment above 0.95 is 1, every genotype above this 
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value is, by definition, inviable. Because the primary interest of my thesis is 

investigating how networks produced by this novel model change in size, 

composition and organization across varying fitness threshold values, these 

extremes of the fitness threshold range will be excluded from most future 

figures. Additionally, in the interest of brevity, most following figures will 

depict data from only the networks of k = 0, k = 3, k = 6, and k = 9. This will 

provide a sample of data from networks across the full range of k values 

analyzed in this thesis. Tables with data for each variable measured in 

networks of every k value are included in the appendix. 

 

2.2 Programming Language, Packages, and Associated Applications 

 

For this research, all coding was done in the Python programming 

language version 2.7.13. Python is well known for the ease with which it can 

be read and understood. Seeing as the work I did for this project was one of 

my first formal coding experiences, this was an important consideration in 

choosing this language for my thesis. Python’s versatility stems from its 

simplicity and its usage of a large number of software libraries used for 

different specific purposes. In my thesis project, I used a number of these 
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libraries to create, store, analyze and represent data from the novel holey 

fitness Nk model I present.  

NumPy is a Python library that allows for the creation and 

manipulation of large, multidimensional arrays. This was primarily used to 

create the table on which the fitness values of each genotype in the 

landscape can be determined. Another library used was igraph, which allows 

for the creation and manipulation of complex networks. This library was 

used to make model networks of viable genotypes and more easily measure 

their properties. Subsequently, the pandas Python library was used to 

structure, store, and analyze the data produced by the exploration of Nk 

model landscapes. Using this library, all data was saved as .csv files. Finally, 

the last library used throughout this thesis was Matplotlib. This Python 

library offers tools to produce plots and figures. It was used to produce many 

of the visual data representations pictured in this thesis. 

Often, in order to better write, organize, and edit code, applications 

that provide better user interfaces are utilized. For my thesis project, I used 

one such application, Jupyter Notebook. Jupyter Notebook produces 

browser-based notebook documents in which I can both write and run code 

and view outputs in the form of tables, figures, and graphs. This operation 

was essential in preliminary analyses of different networks and in ensuring 
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that functions were performing as expected. All programming was 

conducted using Jupyter Notebook.  
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RESULTS 

 

3.1 Describing the Network 

 

As shown in Figure 2, networks are best visualized as a number of 

points connected to each other by lines. Therefore, the holey fitness Nk-

model networks produced in this study can be separated into two basic 

components. The first of these components is the vertices or viable 

genotypes, two terms that I use interchangeably throughout this thesis. The 

second is the edges that connect viable genotypes that differ at only a single 

locus, which I will refer to as connections. Together, the quantities of these 

components give an idea of the size and connectedness of a landscape and 

begin to describe its structure. For every value of k (0–9), 10 networks were 

generated and analyzed across the fitness threshold range (0.2–0.9).  

I first measured the average number of viable genotypes across this 

range (Figure 3). As expected, at the lower end of the fitness threshold 

range, the number of viable genotypes is close to 1024, the total number of 

genotype combinations. As the fitness threshold increases, the number of 

viable genotypes remains relatively constant until a threshold of  
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Figure 3. Network Viable Genotypes. Number of living genotypes in a 
sample of 10 networks as the fitness threshold increases in landscapes of k = 
0, k = 3, k = 6 and k = 9 are shown above. 
 

approximately 0.4. At this point, the number of genotypes becoming inviable 

at every new threshold increment accelerates until approximately 0.5, when 

the rate of genotypes becoming inviable becomes more constant. The viable 

genotypes continue to decrease at this near-constant rate until approximately 

0.65, when the rate of decline slows as the total number of viable genotypes 

remaining in the network approaches 0. By 0.85, almost every network has 

no remaining viable genotypes. These trends are seen in every network, 

regardless of the value of k. 
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Secondly, I measured the number of connections in the same networks 

over the same range of fitness thresholds (Figure 4). At the low end of the 

fitness threshold range, the number of connections remained constant, 

around 5120. This number is the maximum number of connections that 

exists in a network made up of genotypes with 10 diallelic loci (N´Vmax/2). 

The connections begin to decrease at an accelerating rate from fitness 

thresholds of 0.4 to 0.5 before decreasing at a relatively constant rate until 

0.65. Then, the rate of decrease slows until there are no connections left in 

the network, something that occurred in almost every network by a fitness 

threshold value of 0.85. This is almost identical to the trend followed by the 

number of viable genotypes shown previously. Again similar to what was 

observed for measurements of viable genotypes, the trends that the number 

of connections followed as the fitness threshold increased were the same 

across all values of k. 

Another important metric mentioned previously that is used to 

describe fitness landscapes is dimensionality or, the number of new 

genotypes that can be arrived at by changing one locus of a target genotype. 



 26 

 
Figure 4. Network Connections. Number of connections between 
genotypes in a sample of 10 networks as the fitness threshold increases in 
landscapes of k = 0, k = 3, k = 6 and k = 9 are shown above. 

 

In terms of connections and viable genotypes, dimensionality is the number 

of connections made to each viable genotype. The average dimensionality 

can therefore be calculated simply by dividing the total number of 

connections at any fitness threshold by the total number of viable genotypes 

at that same threshold. Then, because each connection makes a link between 

two separate genotypes, this number must be multiplied by two. Notably, as 

this duplication occurred after the connections in each network were 

enumerated, the values in the appendix represent half the true dimensionality  
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Figure 5. Network Dimensionality. Average number of connections to 
each genotype (dimensionality) in a sample of 10 networks as the fitness 
threshold increases in landscapes of k = 0, k = 3, k = 6 and k = 9 are shown 
above. 
 

of networks analyzed. Naturally, because the number of connections and the 

number of viable genotypes respond similarly to incremental increases in the 

fitness threshold, the dimensionality of the network follows a similar trend 

(Figure 5). The dimensionality remains constant for fitness threshold 

increments early in the range before entering an accelerating decline and 

then decreasing at a relatively constant rate. Towards the high end of the 

fitness threshold range, the rate at which dimensionality is decreasing levels 
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out until there are no more viable genotypes or connections left in the 

network. In networks of low k, the slope of dimensionality against fitness 

threshold is more rounded and less steep. As k increases, the slope becomes 

more steep (see Figure 5) and the plotted data more closely resembles that 

of connections and viable genotypes across the fitness threshold range. 

A final useful descriptor for these networks is the average pairwise 

Hamming distance. The Hamming distance is the number of loci that differ 

between any two given genotypes. Averaging this variable for every pair of 

viable genotypes in a network produces a number that describes how spread 

out or compact the network is. The smaller the Hamming distance, the more 

concentrated the viable genotypes are and the larger the Hamming distance, 

the more dispersed they are. Like the others, this variable was measured for 

a set of 10 networks, generated for each value of k and analyzed across a 

fitness threshold range of 0.2–0.95 (Figure 6). In networks of k = 0, the 

Hamming distance remains constant until a threshold of 0.5, when it begins 

to decline (Figure 6A). From this point until there are no more viable 

genotypes remaining in the network, the overall rate of decrease of the 

Hamming distance accelerates. For networks of k =3, the Hamming distance 

follows a similar pattern, but first begins to decrease around a fitness 

threshold of 0.6 before accelerating the rate at which it shrinks (Figure 6B). 
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Figure 6. Network Hamming Distance. Average pairwise Hamming 
distance in a sample of 10 networks as the fitness threshold increases in 
landscapes of (A) k = 0, (B) k = 3, (C) k = 6 and (D) k = 9 are shown above. 
 

In addition, the Hamming distance decreases overall by less than in the case 

of k = 0. With each increasing value of k, the Hamming distance begins to 

decrease at a higher fitness threshold and the overall decrease in Hamming 

distance across the fitness threshold range shrinks. Finally, in networks of k 
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= 9, the Hamming distance marginally increases before decreasing at a 

threshold on 0.8 (Figure 6D). 

 

3.2 Ruggedness of the Landscape 

 

One of the fundamental principles of the original Nk model was that, as k 

increased, the correlation between genotype fitness and proximity in 

genotype space decreased. It is because of this that landscapes produced by 

this model are referred to as “tunably rugged.” To confirm that the model I 

propose here follows similar trends, I measured the ruggedness in trait 

values of landscapes produced with each value of k from 0 to 9. Specifically, 

I counted the average number of peaks—genotypes surrounded by only 

genotypes of lower fitness—in a set of 10 networks for each k value before 

imposing any fitness threshold (Figure 7). As expected, networks of k = 0 

only ever had one single peak. As k increased, the number of peaks observed 

increased also, at a rate slightly faster than linear. Therefore, higher values 

of k had many more peaks than low value troughs. 



 31 

 
Figure 7. Network Peaks. Average number of fitness peaks in a sample of 
10 networks for each k value from 0 to 9. For these networks, the fitness 
threshold was equal to 0 so that peaks at any trait value level would be 
included. 

 

 

3.3 Network Components 

 

While the number of connections in a network give a very general 

idea of the network’s overall connectivity, it is more revealing to measure 

the properties of the network’s components. Here, a component refers to a 

set of viable genotypes in a network that are connected to one another. In  

this work, even a single viable genotype, disconnected from the rest of the  
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Figure 8. Network Components. Average number of components in a 
sample of 10 networks as the fitness threshold increases in landscapes of (A) 
k = 0, (B) k = 3, (C) k = 6 and (D) k = 9 are shown above. 
 

network, is considered to be a component. I measured the average number of 

components for each fitness threshold increment across 10 replicate 

networks at every value of k (Figure 8). 

For every value of k, the number of components at the lower end of 

the fitness threshold range began at 1, reflective of the fact that every or 
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almost every genotype was viable and part of the same, large component. 

For networks where k = 0, this large component endured until a fitness  

threshold value of 0.65. At this point, many of the 10 networks produced 

have no components and the average number of components quickly 

decreases from 1 to 0 over the next few fitness threshold increments. In 

networks where k = 3, instead of decreasing directly from one component to 

none, the networks’ average number of components first increased to 4.3 and 

then dropped abruptly to 0. Each following set of networks of a higher k 

value produced a larger average number of components after the single large 

component broke apart, but before the average number of components 

dropped to 0. For networks where k = 6, the maximum average number of 

components was 19.9 and for networks where k = 9, the maximum average 

number of components was 50.6. 

When there was only one component, it was made up of every viable 

genotype and its size was clear. However, as soon as there exist multiple 

components, their sizes were unknown. Therefore, after analyzing the 

quantity of components that exist under different threshold values, I 

investigated how large each of these components were in a few different 

ways. The first of these was a measurement of the average biggest and 

smallest component sizes in 10 networks produced for each value of k across  
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Figure 9. Networks’ Biggest and Smallest Components. Average biggest 
and smallest component size in a sample of 10 networks as the fitness 
threshold increases in landscapes of (A) k = 0, (B) k = 3, (C) k = 6 and (D) k 
= 9 are shown above. The plot of biggest component size (blue) and smallest 
component size (orange) overlap entirely for the k = 0 network as there is 
only ever one component, which is therefore both the largest and smallest. 
 

a range of fitness thresholds (0.2–0.9) (Figure 9). For k = 0, as there was 

either only one or no components in each network, the biggest and smallest 

component sizes were the same across all fitness threshold increments 

(Figure 9A). Seeing as this one component was comprised of every viable 
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genotype in the network, it followed the exact same trend as the number of 

viable genotypes did. With this in mind, further discussion of the k = 0 case 

for metrics of network connectivity that investigate the sizes of components 

is unnecessary. Instead, in figures of these metrics, the lowest k value 

depicted is k = 1. In the k = 3 case, the two plots begin to separate, with the 

average smallest component size decreasing at a faster rate per fitness 

threshold increment than the average biggest component size (Figure 9B). 

For each increasing value of k that followed, this divide between average 

biggest component size and average smallest component size widened. 

Networks produced with k = 9 were characterized by a much steeper decline 

in average smallest component size than average biggest component size 

(Figure 9D). Naturally, once fitness thresholds reached high enough values 

so that there were no components left in the network, the values for the 

biggest component size and smallest component size aligned once again 

(Figure 9B–D). 

Seeing as networks of higher k values had many separate components 

at certain fitness threshold increments, measurements of only the largest and 

smallest component were not effective descriptors of how a single large 

component broke apart as the fitness threshold increased. Consequently, I 

measured the average mean component sizes for 10 networks produced for  
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Figure 10. Mean Network Component Size. Average mean component 
size for each network in a sample of 10 as the fitness threshold increases in 
landscapes of k = 1, k = 3, k = 6 and k = 9 are shown above. 
 

each value of k. Again, I analyzed these averages across the same range of 

fitness thresholds (Figure 10). For all networks, the initial mean component 

size begins at its maximum value, 1024. It remains here until close to 0.35, 

when it begins to decrease with every fitness threshold increment. For 

networks of k = 1, the mean component size reaches a value less than 10 at a 

fitness threshold of 0.9 (Figure 10A). For k = 3, k =6 and k =9, this point is 

reached at fitness thresholds of 0.8, 0.75, and 0.7 respectively (Figure 10B–
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D). Therefore, as k increases, the mean component size is reduced to a value 

close to zero by progressively lower fitness thresholds. 

Further, to account for the varying component sizes in networks being 

compared, I measured the average coefficient of variation of component size 

in networks of every value of k (Figure 11). Naturally, as the fitness 

threshold increased, the variation in component size remained constant until 

the network contained multiple components. At this point, the coefficient of 

variation increased as the number of components increased, and declined as 

the number of component declined (Figure 11A–D). In networks of higher 

k, the coefficient of variation reached a higher maximum value than in 

networks of lower k. 

Lastly, I measured one final metric of network connectivity, the 

inclusivity of the largest component or, the proportion of all a single 

network’s viable genotypes that are in that network’s largest component. 

Like the other metrics, the average of this variable was calculated from 10 

networks generated for each value of k for each increment in the fitness 

threshold range (Figure 12). Also like many of the of the other metrics, the 

proportion of viable genotypes in the big component remains at a constant 

value, in this case 1.00, for much of the lower fitness threshold range. After 

a fitness threshold value of 0.65, the proportion of viable genotypes in the  
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Figure 11. Network Coefficient of Variation. Average coefficient of 
variation for each network in a sample of 10 as the fitness threshold 
increases in landscapes of (A) k = 1, (B) k = 3, (C) k = 6 and (D) k = 9 are 
shown above. 

 

biggest component decreases abruptly across all networks. In networks of k 

= 1 and k = 6, the proportion of viable genotypes in the biggest component 

returns to 1.00 after decreasing before the end of the fitness threshold range 

(Figure 12A and 12C). As the value of k increases, the abrupt decrease in  
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Figure 12. Network Big Component Inclusion. Average proportion of a 
sample of 10 networks’ viable genotypes that fall within the largest 
component as the fitness threshold increases in landscapes of (A) k = 1, (B) 
k = 3, (C) k = 6 and (D) k = 9 are shown above.  
 

the proportion of viable genotypes in the big component becomes more 

drastic. For networks of k = 3, k = 6, and k = 9, the proportion of viable 

genotypes in the big component drops to 0.62, 0.20, and 0.11 respectively 

(Figure 12B–D). 
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3.4 Properties of Percolation 

 

The last property of this novel fitness landscape that I investigated 

was how each network quickly transformed from one large connected 

component into multiple as the fitness threshold increased. The threshold at 

which this occurs in any given network is known as the percolation 

threshold. Here, I define the threshold as the point at which the largest 

component in the network first contains less than 85% of the viable 

genotypes in the network. I measured this threshold for a set of 10 networks 

produced for each value of k (Figure 13). For k = 0, the viable genotypes in 

the biggest component never dropped below 85% as the networks never 

significantly divided into many different components before all genotypes 

became inviable. After this point, increasing values of k correlated with a 

lower percolation threshold. 

At the percolation threshold, the number of components in each 

network increased quickly before decreasing again abruptly as the fitness 

threshold increased. While this pattern was similar among networks of k 

values 1–9, the maximum number of components seen at this peak was 

different. As k increased, the number of components the large components 

broke into also increased and at an accelerating pace (Figure 14). 
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Figure 13. Network Percolation Threshold. Fitness threshold at which, for 
an average of 10 networks, the percentage of viable genotypes in the largest 
component first dropped below 85%. For networks of k = 0, the percentage 
of viable genotypes in the largest component never decreased below 85% so 
it was not included. 
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Figure 14. Network Maximum Components. Average maximum number 
of components to exist in a set of 10 networks for each value of k from 1–9. 
Networks of k = 0 were not considered as they only ever have one or no 
components. 
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DISCUSSION 

 

4.1 The Fitness Behind the Landscape 

 

Each of the results detailed above contributes to the analysis of the 

networks produced for this work. By imposing a range of fitness thresholds 

on these networks, we are able to elucidate how the pathways or ridges 

connecting different viable genotypes shift and eventually disappear as the 

fitness threshold is increased. This, in turn, provides a better understanding 

of the shape and breadth of networks produced. Further, by using a fitness 

landscape model in which epistasis is controlled, this research contributes to 

our understanding of how changes in a landscape’s level of epistatic 

interaction play into the formation of neutral networks on which evolution 

by neutral mutations alone could occur. 

My results highlighted the static nature of landscapes across all values 

of k for fitness thresholds on both the low and high end of the range. This 

characterized the number of viable genotypes, connections, and components, 

the size of both the biggest and smallest components, the hamming distance, 

and the dimensionality of networks analyzed. At first, it may seem 
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counterintuitive that as the fitness threshold below which all genotypes are 

inviable initially increases, no genotypes are rendered inviable. However, 

this is explained by the fact that the trait values of all the possible genotypes 

in each network form a normal distribution. Most genotypes in this model 

have an attribute value that falls somewhere in the middle of the attribute 

value range. At both the extreme high end and extreme low end of this 

range, there are very few genotypes. Because of this, the first fitness 

threshold increments exclude almost no genotypes, and by the final fitness 

threshold increments, there are few genotypes left to be lost. This 

concentration of attribute values in the middle of the attribute value range is 

reflective of the fitness ranges under which many biological systems operate. 

 

4.2 The Effects of a Fitness Threshold 

 

As the fitness threshold was increased, networks lost viable genotypes 

as more genotypes’ associated trait values fell below the threshold. The 

grouping and dispersion of these lost genotypes in the landscape was 

dependent on the value of k associated with each network. Figure 15 depicts 

a three dimensional representation of a rugged fitness landscape with an 
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Figure 15. Rugged Fitness Landscape with and Without a Threshold. A 
three dimensional depiction of a fitness landscape is shown both (B) with 
and (A) without a fitness threshold. Every genotype in genotype space above 
the blue plane that indicates the level of this threshold is considered viable 
and every genotype beneath it is considered inviable. 

 

imposed fitness threshold shown as a plane transecting the landscape 

(Figure 15B). In this depiction it is easy to see how, when the fitness 

threshold is raised, many peaks that were once connected by areas of lower 

trait value genotypes become isolated from each other. However, for low k, 

networks look much different. They are characterized by having only a few, 

large fitness peaks. At the extreme, k = 0, there is only one single peak, a 

genotype which has the highest trait value option at each of its loci. In this 

case, genotypes become inviable at the fringe of the network and, as the 

fitness threshold is raised, this fringe grows closer to the central peak. 

Networks with higher k values are more similar to the landscape shown in 
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Figure 15, with many different local trait value maxima. The concept of a 

set of fringe genotypes with trait values just above the fitness threshold 

moving upwards from the base of a peak towards its maximum can again be 

applied here. However, for networks with multiple peaks, this occurs for 

each peak independently instead of for the network as a whole. 

After understanding that networks with higher k values have more 

peaks, the trend of seeing more components produced as k values increase is 

explained. In these networks, each peak represents a group of genotypes that 

becomes an independent component, separated from the rest of the network 

as the threshold rises. With each fitness threshold increment after the 

network ceases to be one connected component, new peaks are isolated. 

Finally, once the threshold surpasses the highest trait value of each peak, the 

component is lost entirely.  

In all networks with multiple peaks analyzed in this study, the shift 

from having a single component to having the maximum average number of 

components occurred over a small fitness threshold range. This would 

suggest that many of the peaks begin to separate themselves from the 

surrounding low trait value genotypes at approximately the same level 

across the network. The inverse shift, from having the maximum average 

number of components to having none, occurs over a similarly short range of 
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fitness thresholds. This subsequently suggests that many of the peaks have 

their maximums at a similar trait value level as well. However, while many 

of the peaks may begin and end at similar fitness thresholds, they are not 

uniform in size. Investigation of the coefficient of variation showed that as 

soon as multiple components existed, there was variation in component size 

(Figure 11). In fact, as k was increased, the amount of variation between 

component sizes increased as well, a reflection of the increased ruggedness 

and disorder of the landscapes. 

 

4.3 Impact of Trait Value Ruggedness 

 

Networks in this study were further described by results showing 

mean component size (Figure 10). As k increased, the rate at which the 

average component size decreased across the fitness threshold range was 

higher. This results from the fact that in networks of higher k, with more 

peaks, there were many different, smaller components shrinking 

concurrently. In networks of lower k, the genotypes becoming inviable as 

the threshold increased occupied the fringes of only a few, large 

components, leading the average component size to decrease at a slower 

pace. Additionally, the fitness threshold value at which the mean component 
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size reached zero was lower in networks of lower k. This suggests that, in 

addition to being larger, the few peaks present in landscapes of low k had 

higher average maximum trait values as well. 

As noted previously, in the k = 0 case, one large trait value maximum 

existed in the middle of the network, with lower value genotypes spanning 

out on all sides. If the many local maxima in a network at high k are 

imagined as tall peaks, the singular maximum in networks of k = 0 can be 

imagined as a large mountain. In this context, the trends seen for Hamming 

distance are better understood. For networks of k = 0, the Hamming distance 

decreased significantly as the fitness threshold increased. This is reflective 

of low trait value genotypes on the edges of the network becoming inviable 

and the remaining viable genotypes existing in an ever shrinking landscape. 

For every increasing value of k, the Hamming distance decreased by a 

smaller overall amount. This suggests that the multiple peaks observed in 

landscapes above k = 0 were still somewhat centralized and that the general 

shape of the fitness mountain seen in the k = 0 network was not yet erased. 

Therefore, at higher fitness thresholds, the final peaks were more likely ones 

that existed in this area of higher fitness at the center of the network, 

explaining the continued decrease in Hamming distance. As the value of k 

increased further, these peaks became less and less clustered together as this 
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fitness mountain disappeared. In networks of k = 9, the Hamming distance 

barely dropped below its initial value. In fact, at high fitness thresholds, it 

increased marginally before decreasing at all. Because there were so many 

peaks in networks where k = 9, it is reasonable to imagine that the few 

genotypes making up the small, high trait value peaks left at high fitness 

thresholds may have been more spread out on average than every genotype 

was at the start. After this analysis, it is clear that networks with different 

levels of epistasis respond drastically differently to the imposition of a 

fitness threshold as well as to changes in that threshold’s value. 
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CONCLUSION 

 

5.1 Importance of the Model 

 

The use of computational models to help understand evolution is 

becoming increasingly common. Producing variations of these models that 

allow for new examinations of evolutionary mechanisms is therefore crucial 

to furthering research efforts in the field of evolutionary biology. The 

research conducted in this thesis represents an investigation into a novel 

model of holey fitness landscape. Specifically, it analyzes the interplay 

between the level of epistasis and a range of fitness thresholds in a 

multidimensional network model. Other studies have developed and 

explored networks based on the Nk model and have even considered the 

percolation of neutral networks specifically (Newman and Engelhardt 1998, 

Gravner et al. 2007). However, none have used the imposition of a fitness 

threshold as I did to create or analyze these neutral networks. 

Neutral networks observed in multidimensional models may play an 

essential role in determining evolutionary trajectories. In this study, 

percolation thresholds express the highest fitness threshold at which these 
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neutral networks can exist and span genotype space. This study elucidates 

and evaluates the properties of percolation thresholds in networks at every 

level of epistatic interaction. As a result, this work contributes to our 

understanding of how these neutral networks are organized and of the 

variables that impact their size and connectivity. 

 

5.2 Future Research Directions 

 

As mentioned previously, the scale and complexity of computational 

network models is nowhere near that of the real biological systems that they 

represent. For this reason, future work should focus on more efficient 

computational methods that allow for the creation and analysis of larger, 

more complex landscapes. Specifically, further research should be 

conducted on networks of genotypes where each locus has more than two 

alleles and, if possible, where the number of genes is much greater than 10, 

as used in this study. 

Finally, while this research analyzed the properties of a novel network 

model, it did not analyze how populations would evolve across this 

landscape. Allowing genotypes to accumulate mutations and navigate 

landscapes produced by the model proposed here would provide valuable 
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insights into the mechanisms of evolution and speciation. It would contribute 

to a better comprehension of how different levels of ruggedness as well as 

different fitness thresholds influence these mechanisms. Additionally, 

research of this nature would complement the conclusions of this thesis and 

lend itself to an even better understanding of the novel landscapes analyzed 

in this study. 
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APPENDICES 

 

6.1 Average Network Data 

k = 0 

 

k = 1 
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