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Abstract
Face recognition is a technology in which a computing device either classifies a human

identity based on a facial image or verifies whether two images belong to the same sub-

ject. The recent advances have achieved remarkable performance when comparing images

that are both frontal and non-occluded. However, significant challenges remain in the

presence of variations in pose, expression, and occlusions. The goal of this dissertation

is to achieve statistically significant improvement in the performance of face recognition

systems using 2D images that depict individuals with facial expressions and accessories.

Four contributions made in this dissertation can be summarized as follows: (i) a 3D-aided

2D face recognition system with additional evaluation package that is modular, easy to

use, and easy to install was designed, implemented, and evaluated. This proposed system

can work with the facial images that have variations in head pose as large as 90◦ and im-

proved the face recognition performance by 9% on average when compared with FaceNet

on UHDB31 dataset. (ii) two landmark detectors were developed and evaluated on 2D

images that are fast and accurate; (iii) feature aggregation learning was proposed for face

reconstruction from a single image, which achieved 16% and 10% improvement when

compared with the current state-of-the-art on the BU-3DFE and JNU-3D datasets, respec-

tively. and (iv) an occlusion-aware face recognition approach was proposed that improved

the generalizability of the facial embedding generator and a graph neural network was

designed in an unsupervised manner to adapt the knowledge learned in the image-based

scenario to mixed-media set scenario.
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Chapter 1

Introduction

1.1 Motivation

Face recognition is a technology in which the computing device either classifies a human

identity according to the face (face identification) or verifies whether two images belong

to the same subject (face verification). A common face recognition system consists of two

stages: enrollment and matching. In the enrollment stage, features are computed from a

single facial image or a set of facial images to generate a template for each subject. In

the matching stage, these templates are compared to obtain a distance or similarity for

the identification or verification problem. Recent advances in face recognition led by the

deployment of deep learning can be categorized in the following aspects:

(i) Large-scale image collections: in recent years, several large-scale training and eval-

uation datasets have been made publicly available for training deep neural networks.
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In order to provide a large amount of data on which models can be learned discrimi-

natively, large datasets such as MS1M [28], UMDFace [5], and VGG-Face2 [9] were

proposed to cover the large distribution of pose and illuminations of facial images.

Since the frontal face verification is almost a solved problem, several challenging

datasets have been published to push the frontiers of unconstrained face recogni-

tion such as MegaFace [44] and IJB [46, 95] benchmarks. In addition, to evaluate

the face recognition algorithm across the pose and illumination, some datasets were

recently proposed [83, 48].

(ii) Advanced network architectures: Some advanced network architectures have been

deployed to learn the feature extractor for the image classification problem such as

VGG [60], ResNet [30], and DenseNet [34]. In particular, ResNet has shown the

necessity for identity mapping when training a very deep model, which has been

widely deployed in many applications [76, 29].

(iii) Discriminative learning approaches: DeepFace, proposed by Taigman et al. [78], in-

troduced 3D alignment and proved that the face recognition performance using 3D

alignment achieved superior performance compared to using 2D alignment on LFW

dataset by 3%. They also reported on LFW that the deep learning model achieved

similar performance with human efforts (97.25% and 97.5%, respectively). FaceNet,

proposed by Schroff et al. [70], introduced a new loss function named triplet loss,

which combines the metric learning concept to guide the training process of deep

neural network (DNN). The FaceNet, trained on 200 million private labeled faces

with triplet loss, achieved a performance of 99.63% verification accuracy on LFW
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dataset. Various loss functions have also been explored to learn discriminative fea-

tures for face recognition. Center loss [94] was proposed to learn instance centers

with softmax cross-entropy loss. Based on computing the additive angular distance

in sphere space with normalized weights, ArcFace [18] was developed and achieved

99.83% on the LFW and 98% identification accuracy on MegaFace benchmark.

1.2 Unsolved Challenges

Face recognition is still not a solved problem in real-world conditions. In unconstrained

scenarios, especially using surveillance cameras, there is a plethora of images with large

variations in head pose, expression, and occlusions, which limit the performance of face

recognition systems:

(i) Pose variations: VGG-Face [60] was performed on UHDB31 dataset [48]. The

frontal face was enrolled as the gallery and the other faces in different 20 poses

were enrolled as the probes. The cosine distance was computed to evaluate the face

identity rank-1 accuracy rate. As depicted in Figure 1.1, the face identification rate

significantly drops when the face pose goes to 90◦. This evaluation demonstrated

the effect of pose variance to the current face feature extractor.

(ii) Expression variations: Facial expression influences the performance of face recog-

nition systems [22, 14], especially in cases where only a single sample per person is

available for enrollment.
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8% 2% 91% 95% 96% 52% 9%

(b)

Figure 1.1: (a) Depiction of 21 different poses in UHDB31 [48] dataset; (b) Face iden-

tification rank-1 accuracy using VGG-Face when the frontal face (pose 11) was used as

gallery set and the faces in different poses (pose 1-10, 11-21) were used as probe sets.

(iii) Occlusion existence: Current face recognition systems tend to suffer from occlu-

sions caused by facial accessories such as scarves and sun-glasses [59, 21]. This

increases the risk because identity-related information might be excluded when the

face is occluded. These occlusions by facial accessories lead to large variations in

the final feature representations.
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1.3 Limitations of Previous Work

Current facial recognition systems expect those variances of pose, expression, and occlu-

sions can be learned from the existing large amount of data. Existing methods address

some of the challenges mentioned in Section 1.2. However, most of them are limited in at

least one of the following aspects.

(i) Imbalance problem: Current face recognition research focuses on learning general

feature representations from a training set, which prevents such algorithms from

learning the characteristics of facial images which might rarely occur in the dataset

but actually be common in practice.

(ii) Generalization problem: Some methods use synthetic data to train and evaluate the

model, which is not practical in real-life applications. The performance of a model

trained from the synthetic data will decrease when applied to the in-the-wild images.

(iii) Scenario variance: Most datasets are designed for image-based face recognition and

most face recognition systems require that the input is only a single image. However,

in some scenarios, there are sets of images collected from the different sources that

describe a single identity, which is not suitable for image-based face recognition

systems.
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1.4 Goal and Objectives

The goal of this dissertation is to achieve a statistically significant improvement to the

performance of face recognition systems using 2D images that depict individuals with

open mouth and facial accessories. To realize this goal, the following four objectives are

proposed in this dissertation summarized as such:

(i) Design, implement, and evaluate an architecture of a 3D-aided face recognition sys-

tem that is modular, in which the components are easy to use and easy to install.

(ii) Design, implement, and evaluate an algorithm for landmark detection on 2D images.

(iii) Design, implement, and evaluate an algorithm for 3D face reconstruction from a

single image that depicts individuals with variations in pose and expression.

(iv) Design, implement, and evaluate an algorithm for 2D face recognition from a single

image or set of images that depict individuals with variations in pose, expression,

and occlusions.

1.5 Contributions

1.5.1 Objective 1

A 3D-aided pose-invariant 2D face recognition system named UR2D-E was designed and

implemented, which has been demonstrated to be robust to pose variations as large as

90◦. This system fills a gap by providing a 3D-aided 2D face recognition system that

6



has compatible results with 2D face recognition systems using deep learning techniques.

UR2D-E consists of several independent modules: face detection, landmark detection, 3D

model reconstruction, pose estimation, lifting texture, feature representation, and match-

ing. It provides sufficient tools and interfaces to use different sub-modules designed in the

system.

In addition, to efficiently evaluate the performance of the face recognition system, a

light-weight, maintainable, scalable, generalizable, and extendable face recognition eval-

uation toolbox named FaRE was designed, implemented, and evaluated. FaRE supports

both online and offline evaluation to provide feedback to algorithm development and ac-

celerate biometrics-related research. It consists of a set of evaluation metric functions and

provides various APIs for commonly used face recognition datasets including LFW, CFP,

UHDB31, and IJB datasets, which can be easily extended to include other customized

datasets.

1.5.2 Objective 2

An ensemble of random ferns (ERF) was proposed to detect landmarks on 2D facial im-

ages. As the first step, a classification method was used to obtain a facial shape as initial-

ization for face alignment. Then, an ensemble of local random ferns was learned based on

the correlation between the projected regression targets and a local pixel-difference matrix

for each landmark, which was used to generate local binary features. Finally, the global

projection matrix was learned based on concatenated binary features using ridge regres-

sion. Because the learning algorithm and test program were implemented using parallel
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programming, the performance of the method was not only accurate but also efficient.

A joint learning framework was proposed that explores both global and local features

for learning to estimate head pose and localize landmarks. First, a global network was used

to detect the face region to obtain a rough estimate of pose and localize the primary seven

landmarks. The most similar shape was selected for initialization from a reference shape

pool constructed from the training samples according to the estimated head pose. Starting

from the initial pose and shape, a local network was used to learn local CNN features and

predict the shape and pose residuals. This framework was designed in a coarse-to-fine

manner during which the global network estimates the rough shape and pose but the local

network refines the shape in the cascade way.

1.5.3 Objective 3

The feature aggregation network (FR-FAN) was proposed to generate a 3D point cloud

from a single image. Features from different layers were aggregated to predict shape and

expression parameters of 3D face morphable model. The proposed method resulted in an

increased reconstruction precision compared to the baseline with only half the number of

the weights. The contributions are two-fold: (i) A feature aggregated network was de-

signed with the principle of memory efficiency and fast speed in mind. (ii) The efficiency

and robustness of the designed network were demonstrated with extensive experiments

by observing that it improved the state-of-the-art method by 16% on BU-3DFE [108] and

10% on the JNU-3D dataset [47] in terms of reconstruction error.
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1.5.4 Objective 4

An occlusion-aware face recognition approach (OREO) was proposed that improved the

generalization ability of the facial embedding generator. An attention module was intro-

duced that disentangles the features into global and local parts, resulting in more discrimi-

native representations. In this way, the proposed approach successfully handles occlusions

in face recognition without requiring additional supervision (e.g., pose or occlusion labels)

and achieves a relative improvement of 1.6% in terms of accuracy on the CFP dataset. An

occlusion-balanced sampling strategy, along with a new loss function, was proposed to

alleviate the large class imbalance that is prevalent due to non-occluded images. Our ex-

perimental results on the Celeb-A dataset [54] indicated that OREO achieved statistically

significant improvements of more than 10% in terms of average degradation percentage.

An unsupervised graph-based template adaptation training framework was proposed

that adapts the knowledge of the network learned from a still image to a mixed-media

set without requiring any ground-truth label in the set domain. This is based on a paired

teacher-student learning containing two identical networks. To improve the performance

of set-based face recognition, a curriculum was designed for teacher and student networks

in two steps: First, a graph-based template adapter was inserted and learned to generate

a single feature/template that represented a set considering relationships of all features

belonging to the same set. To effectively generate a template from a set, each set was

formulated as a subgraph and all sets in the dataset constructed a large graph. Second,

the teacher and student networks were updated in an unsupervised manner considering

similarities in the set domain. To optimize the unsupervised framework end-to-end, the

9



teacher network was optimized using the supervision signals while the weights in the stu-

dent network were updated using the supervision from the source domain and the teacher

network’s supervision for the target domain. There are two advantages of the proposed

method in real-life applications: (i) it aggregated information from all samples within a

subgraph to generate the more discriminative, robust, and compact templates by enlarging

the similarities of the matched samples and decreasing the similarities of the non-matched

samples; (ii) it did not require any modification of the backbone network since the graph-

based template adapter is a plug-and-play module. This means that not only it preserved

the performance for single image-based face recognition, but also achieved better perfor-

mance for the mixed set-based face recognition.

1.6 Dissertation outline

The rest of the dissertation is organized as follows: the background and related previous

work on face detection, landmark detection, face reconstruction, and face recognition are

presented in Chapter 2. The proposed methods for each of the objectives are described,

discussed, and evaluated in Chapter 3 to Chapter 6. Finally, Chapter 7 concludes all the

works and provides directions for future research.
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Chapter 2

Related Work

2.1 Face Detection

Face detection is the first step in the face recognition domain. Zefeiriou et al. [112] pre-

sented a comprehensive survey on this topic in which they divided the approaches into two

categories: rigid template-based methods and deformable-parts-models-based methods. In

addition to the methods summarized in [112], the approaches of object detection under the

regions with a convolutional neural network framework (R-CNN) [26] have been well de-

veloped. Some techniques can be directly integrated to face detection [38]. Li et al. [51]

used a 3D mean face model and divided the face into ten parts. The approach proposed

by Hu and Ramanan [33] explored context and resolution of images to fine-tune the resid-

ual network [30]. Despite the two-stage detectors mentioned above, single-stage detectors

[52, 65] have also been developed. Shi et al. [73] proposed a simple face detector to local-

ize multi-scale faces [75] using a single feature map [74]. A context anchor and low-level
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feature pyramid network were developed in PyramidBox [79] to detect tiny faces.

2.2 Face Alignment

Face alignment refers to aligning the face image to a canonical position. Jin and Tan [39]

summarized the categories of popular approaches for this task. Cascaded regression meth-

ods learn a mapping function from the feature domain to the target output (e.g., shape

residuals in this problem). The features in the cascaded regression are usually shape-

indexed [10, 66, 107] and are learned based on the predicted landmarks. In addition, some

algorithms chose different regressors for the fitting process (e.g., random ferns [10], ran-

dom forest [43, 50], linear regressor [99, 66, 104], and neural networks [113, 87]). Specif-

ically, Xiong et al. [99] developed a method called Supervised Descent Method (SDM)

by investigating linear regression with strong hand-crafted features such as Scale-invariant

Feature Transform (SIFT) [55]. An incremental face alignment method [4] incremen-

tally updated the linear regressors in parallel by addressing the re-training problem of se-

quence learning when the new samples arrive. Ren et al. [66] proposed learning local bi-

nary features by using random forests and demonstrated that performance of 3,000 frames

per second can be achieved. In addition, an ensemble of regression trees was used by

Kazemi et al. [43] to localize the face landmarks. Zhu et al. [122] combined the exemplar

searching and regression method together, searching for similar shapes from a shape pool

using a probabilistic function. Xu et al. [104] proposed an initialization method based on

part detection and used random ferns to learn features. Zhu et al. [123] trained random

forest to choose a homogeneous domain of optimization, each of which was handled by
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a regressor. Xu and Kakadiaris [100] proposed to jointly learn head pose estimation and

face alignment tasks in a single framework using global and local CNN features.

2.3 Face Reconstruction

Zhu et al. [124] used a fitting algorithm to generate ground-truth parameters for 2D im-

ages and learned cascaded networks to generate 3DMM parameters for face alignment

[104, 100]. Jourabloo et al. [40] used multiple neural networks in a cascaded manner to

jointly regress camera rotation matrix, shape, and expression parameters of 3DMM. To re-

construct the 3D model in a collection of 2D images, a quality measurement was proposed

by Piotraschke et al. [63] to select and combine reconstructed face meshes of different

facial regions into a single 3D face. A 3DMM fitting algorithm was applied on an image

collection by Roth et al. [67] to generate personalized template while the fitting results

were used to estimate albedo, lighting conditions, and surface normals. Dou et al. [20]

modified VGG-16 [60] architecture to learn a direct mapping from facial image to the

shape and expression parameters of 3DMM. Similarly, Tran et al. [84] applied ResNet-

101 [30] to predict the shape and texture parameters with the purpose of face recognition.

A recurrent neural network was applied by Dou et al. [19] to estimate the unique shape

and expression parameters from a set of images. By encoding the fitting process in the

DNN learning process with a differentiable render layer, Tewari et al. [82] proposed an

unsupervised learning method to estimate 3DMM parameters on near-frontal facial im-

ages. The encoder and decoder networks were presented by Tran et al. [85] to generate

a bump map and recover the detailed face meshes from occluded facial regions. Similar
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to [84], a ResNet-101 network was used by Chang et al. [11] to estimate expression pa-

rameters from a single 2D image. A trainable generative model along with differentiable

image formation model was applied by Tewari et al. [81] to update the principal com-

ponents and expand the variations in 3DMM for in-the-wild images. Following the idea

of image-to-image translation, the UV position map was generated by encoding 3D point

cloud information in an image [24] and was used as the ground-truth to learn a DNN model

for face reconstruction and alignment tasks. Xu et al. [103] designed a feature aggrega-

tion learning method that improved the face reconstruction performance significantly on

several datasets.

2.4 Face Template Generation

An emerging topic in face recognition research is generating a discriminative representa-

tion for a human subject. Parkhi et al. [60] proposed the VGG-Face template generator.

Triplet loss was proposed by Schroff et al. [70] to train a deep neural network using 200

million labeled faces from Google. Face recognition techniques that generate 2D frontal

images or facial embeddings from a single image have been proposed that: (i) use a 3D

model [56, 102], (ii) generative adversarial networks [6, 17, 36, 86, 110, 116, 117], and

(iii) various transformations [8, 119, 121]. Additionally, multiple loss functions [18, 53,

91, 93, 94, 118] have been developed to guide the network to learn more discriminative

face representations but these usually ignore facial occlusions. Kang et al. [42] used a

RoI pooling layer to obtain local patches from the image and jointly learned the global

and local features. Early methods approached face recognition in occluded scenarios by
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using variations of sparse coding [25, 90, 111]. However, such techniques work well only

with a limited number of identities, and with frontal facial images in a lab-controlled en-

vironment. The works of He et al. [32] and Wang et al. [92] addressed this limitation

by matching face patches under the assumption that the occlusion masks were known be-

forehand and that the occluded faces from the gallery/probe were also known, which is

not realistic. Egger et al. [21] combined segmentation with an occlusion-aware 3D mor-

phable model adaptation, which requires an additional segmentation network to generate

the occlusion mask. De-occlusion methods [13, 115] have also been introduced but a ma-

jor limitation is that they assume the input images exhibit same simulated occlusion as the

training set. Cheng et al. [13] simulated the occlusion with a black rectangle and used an

auto-encoder to reconstruct the image whereas Egger et al. [21] combined segmentation

with an occlusion-aware 3D morphable model adaptation. Zhao et al. [115] proposed an

LSTM-based auto-encoder to reconstruct the simulated images to original images. They

rendered nine types of occlusion objects on gray-scaled images in their training set.

2.5 Face Recognition Systems

OpenCV and OpenBR are some well known open-source computer vision and pattern

recognition libraries. However, the eigenface algorithm in OpenCV is out-of-date. OpenBR

has not been updated since 9/29/2015. Both libraries only support nearly frontal face

recognition, since the face detector can only detect the frontal face. OpenFace is an open-

source implementation of FaceNet [70] by Amos et al. [1] using Python and Torch, which

provides four demos for use. OpenFace applied Dlib face detector and landmark detector
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to do the pre-processing, which is an improvement over OpenBR. There is another official

Tensorflow implementation of FaceNet in which the authors used MTCNN [114] to detect

and align the face, which boosted the performance speed and detection accuracy.
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Chapter 3

Objective 1: 3D-aided 2D Pose-invariant

Face Recognition System

In this chapter, the objective is to design, implement, and evaluate a 3D-aided face recog-

nition system that is modular, in which the components are easy to use and easy to install.

To achieve this goal, a 3D-aided 2D face recognition system (UR2D-E), along with an

evaluation package (FaRE), was implemented: (i) UR2D-E is a 3D-aided 2D face recog-

nition system designed for pose-invariant face recognition. Specifically, UR2D-E includes

face detection and landmark detection for the localization of faces as well as their atten-

dant landmarks. A 3D model was reconstructed from a 2D image or several 2D images.

By estimating the 3D-2D projection matrix, the correspondence between the 3D model

and the 2D image was computed and used to render the frontalized images. The differ-

ent feature extractors were used to generate the template that represented the face. In the

matching stage, the computation of the similarity between templates utilized the cosine
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similarity metric. In the end, the similarity score matrix was generated from the system

by comparing the similarity between the gallery and the probe set. (ii) To evaluate the

performance of the implemented system, a light-weight, maintainable, scalable, gener-

alizable, and extendable face recognition evaluation package named FaRE was designed

and implemented. Commonly used face recognition datasets were selected and their met-

rics were analyzed to generalize an evaluation pipeline and evaluate the performance of

face recognition algorithms. To support offline evaluation, a file management module was

implemented to organize and match the generated template file with meta-data for each

dataset. To support online evaluation, data loaders were implemented to feed the data to

the neural network and generate a template from a facial image or an image set. The sim-

ilarity matrix was obtained by computing the similarity of the templates from probe and

gallery set based on the evaluating dataset protocol. Based on the similarity matrix and

the ground-truth label provided in datasets, different quantitative measurement functions

were used according to the protocols provided in the datasets. To visualize the quantitative

results, comparison figures were plotted using FaRE. With our evaluation package, the

new datasets and protocols were easily extended and evaluated. In addition, new fusion

functions were easily added for set-based face recognition.
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3.1 3D-aided 2D Face Recognition System

3.1.1 System Design

UR2D-E is a 3D-aided 2D face recognition system designed for pose-invariant face recog-

nition. The algorithm modules were constructed as high-level APIs. The users can directly

call these applications and obtain the results. The advantages of this architecture are that

it is simple and well-structured. With the full development of libraries, the system easily

used CPUs/GPU and other features.

Data Structures: In UR2D-E, the basic element is a File on the disk. All operations or

algorithms are based on the files. The basic data structure is Data, which is a hash table

with pairs of keys and values. Both keys and values are stored as a string datatype.

Configuration: The configuration file points to the datasets, input files, output directories,

involved modules and their model locations, and evaluations. Attribute dataset con-

tains the information for the input dataset including the name and path. Attribute input

contains the list of galleries and probes. Attribute output defines the output directories.

Attribute pipelines defines the modules used in the pipeline. The pip command line

application only accepts the argument of the configuration file, which will parse the con-

figuration file, load the models, and run defined modules. The advantages of this approach

are simplicity and flexibility. These operations do not require a detailed understanding of

the options or require the input of long arguments in the command line. The users only

need to change some values in the attributes dataset and input (e.g., set dataset di-

rectory and file to enroll), and program pip will generate the output they defined in this
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configuration file.

Command Line Interface: To make full use of SDK of UR2D-E, some corresponding

applications were created to run each module. All applications accept the file list (text or

CSV file by default, which includes a tag at the top line), a folder, or a single image. The

IO system will load the data into memory and process the data according to the data list.

The arguments specify the location of the input file/directory and where the output should

be saved. When UR2D-E’s enrollment is executed, it generates signatures to the output

directory. The path of the signature is recorded in the Data. By calling the API from IO

system, the list of Data will be written to the file (default is in .csv format).

3.1.2 Enrollment

UR2D-E contains face detection, face alignment, 3D face reconstruction, pose estimation,

texture lifting, and signature generation.

Face Detection: To detect the face in multi-view poses, some modern detectors such

as Headhunter [57], DDFD [23], and Dlib-DNN [45] face detectors were supported in

our system. To support different face detectors for downstream modules, bounding box

regression was performed. The first advantage of this approach is that it does not need to

re-train or fine-tune the models for downstream modules after switching the face detector.

The second advantage is that this approach provides a more robust bounding box for the

landmark localization module.

Landmark Detection: To detect face landmarks, GoDP [96] was deployed in the system.

Features from shallow and deep layers were aggregated to predict the confidence map.
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Each confidence map indicates the possibility of a landmark appearing at a specific loca-

tion in the original image. Predictions were made by selecting the location that had the

maximum response in the confidence map. The landmarks of the corner of eyes, nose tip,

and corner of the mouth were selected as output from this module.

3D Shape Reconstruction: To reconstruct the 3D facial shape of the input 2D image,

the E2FAR algorithm and DRFAR proposed by Dou et al. [20, 19] were integrated into

the pipeline. The features were aggregated from two different convolutional layers in

VGG-16 [60] and were used to predict the 3D AFM parameter vector from a single 2D

image in E2FAR. A recurrent neural network was deployed in DRFAR [20] to support

multiple facial images as input. To improve the robustness to illumination variation, the

weights trained on real facial images were used for initialization and the model was fine-

tuned on the synthetic data. Compared with existing work, it was more efficient due to

its end-to-end architecture, which required a single feed-forward operation to predict the

model parameters. Both of them do not require landmark detection and predict the shape

parameter directly from the facial image.

Pose Estimation: With the assumption of perspective projection between 3D landmarks

obtained from a 3D model and corresponding 2D landmarks obtained from landmark de-

tection, the projection matrix can be estimated by solving a least-squares problem.

Texture Lifting: Texture lifting is a technique proposed by Kakadiaris et al. [41], which

lifts the pixel values from the original 2D images to a UV map. Given the 3D-2D pro-

jection matrix, the 3D AFM model, and the original image, it first generates the geometry

image, each pixel of which captures the information of an existing or interpolated vertex

on the 3D AFM surface. A set of 2D coordinates referring to the pixels on an original 2D
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facial image was computed. In this way, the facial appearance was lifted and represented

into a new texture image. A 3D model and the Z-Buffer technique [41] were used to esti-

mate the occlusion status for each pixel. This module has the following two advantages:

It generates the frontal normalized face images, which is convenient for feature extraction

and comparison. Second, it generates occlusion masks, which identify the parts of the

facial images that are occluded.

Signature Generation: To improve the performance of face recognition in matching non-

frontal facial images, unlike the previous method, deep learning was deployed on the local

patches from frontalized texture and self-occlusion mask. The texture was divided equally

into eight partially-overlapping regions. A ResNet-18 [30] was trained for each cropped

region.

3.1.3 Matching

In the template matching stage, local similarities were computed on non-occluded local

patches and the overall similarity was the average of local similarities. Assuming that the

template of image Ii is denoted by fi, the cosine similarity between two templates {fi, fj}

was computed as follows:

o(fi, fj) =
fi · fj

||fi|| · ||fj||
. (3.1)
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3.1.4 Experiments

In this section, a systematical and numerical analysis on three challenging datasets is pro-

vided in both constrained and in-the-wild scenarios.

3.1.4.1 Datasets and Protocols

UHDB31 [48] was created in a controlled lab environment, which allows face-related

research on pose and illumination issues. In addition to 2D images, it also provides the

corresponding 3D model of subjects. An interesting fact of this dataset is that pose follows

a uniform distribution on two dimensions: pitch and yaw. The pitch range is [−30◦,+30◦]

and the yaw varies in [−90◦,+90◦]. For each subject, a total of 21 high-resolution 2D im-

ages from different views and 3D data were collected at the same time. Then, a 3D model

was registered from the 3D data from different poses to generate a unified 3D face mesh.

In addition to three illuminations, the resolutions were downsampled to 128, 256, and 512

from the original size. The face identification protocol in this dataset independently used

the frontal image (pose 11) as the gallery and the images from the other 20 different poses

(poses 1 - 10, 12 - 21) as probes. IJB-A [46] is another challenging dataset which con-

sists of images in the wild. This dataset merged images and frames together and provided

evaluations on the template level. A template contains one or several images/frames of a

subject. According to the IJB-A search protocol (face identification), galleries and probes

were split into 10 folders.
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Table 3.1: Comparison of rank-1 identification rate of different systems on UHDB31

dataset.

Pitch

Yaw
−90◦ −60◦ −30◦ 0◦ +30◦ +60◦ +90◦

+30◦
14/11/

58/82

69/32/

95/99

94/90/

100/100

99/100/

100/100

95/93/

99/99

79/38/

92/99

19/7/

60/75

0◦
22/9/

84/96

88/52/

99/100

100/99/

100/100
-

100/100/

100/100

94/73/

99/100

27/10/

91/96

−30◦
8/0/

44/74

2/19/

80/97

91/90/

99/100

96/99/

99/100

96/98/

97/100

52/15/

90/96

9/3/

35/78

3.1.4.2 Baselines

To perform a fair comparison with current state-of-the-art face recognition systems, VGG-

Face, FaceNet, and COTS v1.9 were chosen as baselines. (i) The VGG-Face descriptor

was developed by Parkhi et al. [60]. In our implementation, different combinations of

descriptor and matching methods were tried. It was observed that embedding features with

cosine similarity metrics worked the best for the VGG-Face. (ii) The FaceNet algorithm

was proposed by Schroff et al. [70]. They first used MTCNN [114] to align the face

and extracted 128 dimensions features. They provided pre-trained models that achieve

99.20% ± 0.30% accuracy on the LFW dataset. (iii) COTS is a commercial software

developed for scalable face recognition.
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3.1.4.3 UHDB31: Lab-controlled Pose-invariant Face Recognition

In this experiment, a configuration from the UHDB31 dataset named UHDB31.R0128.I03

was used. This subset was chosen to demonstrate that our system, UR2D-E, is robust to

different poses. Therefore, this configuration was used to exclude the other variations such

as illumination and expression, but only kept the pose variations.

Table 3.1 depicts the comparison of rank-1 identification rate on UHDB31 dataset. The

methods were ordered as VGG-Face, COTS v1.9, FaceNet, and UR2D-E-DPRFS. The

index of poses were ordered from the left to right and from the top to bottom (e.g., pose 3

is pitch −30◦ and yaw −90◦, pose 11 is pitch 0◦ and yaw 0◦). The frontal face was gallery

while the other poses were probes. The experimental results indicated that UR2D-E was

robust to the different poses compared with other systems. It was observed the VGG-Face

and COTS v1.9 algorithms cannot generalize to all pose distributions. However, in cases

such as pose 3 (−30◦,−90◦) and pose 21 (−30◦,−90◦) in Table 3.1, the performance of 2D

face recognition pipelines still had significant room for improvement. On the other hand,

with the help of the 3D model, our system showed consistent and symmetric performance

among different poses. Even in cases with yaw −90◦ or +90◦, our system tolerated the

pose variations, and achieved around 80% rank-1 identity accuracy with DPRFS features

on average.

3.1.4.4 IJB-A: In-the-Wild Face Recognition

A different protocol for face identification experiments was designed based on the original

ten splits. Unlike the original template-level comparison, ten closed-set image comparison
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Table 3.2: Comparison of rank-1 percentage of different systems on 10 splits of IJB-A.

Method Split-1 Split-2 Split-3 Split-4 Split-5 Split-6 Split-7 Split-8 Split-9 Split-10 Avg.

VGG-Face 76.18 74.37 24.33 47.67 52.07 47.11 58.31 54.31 47.98 49.06 53.16

COTS v1.9 75.68 76.57 73.66 76.73 76.31 77.21 76.27 74.50 72.52 77.88 75.73

UR2D-E-DPRFS 78.20 76.97 77.31 79.00 78.01 79.00 81.15 78.40 74.97 78.57 78.16

pairs were generated by removing the samples in the IJB-A splits. The face was cropped

according to the annotations. Table 3.2 depicts the rank-1 identification rate with different

methods on IJB-A dataset. UR2D-E with DPRFS reported better performance compared

with VGG-Face and COTS v1.9. In addition, UR2D-E results were consistent on 10 splits,

which indicated that our system was robust.

3.2 Open-source Face Recognition Performance Evalua-

tion Package

3.2.1 System Design

To help researchers obtain quick feedback from evaluation and accelerate research pro-

cess, a light-weight, extendable, generalizable, scalable, and maintainable face recogni-

tion evaluation package was designed and implemented, which was easily generalized to

evaluate other biometric applications.

Considering the generalization for commonly used face verification datasets such as

LFW [35] and CFP [72] and face identification datasets such as IJB-A [46], IJB-B [95],
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and IJB-C [58], two main protocols were defined in these datasets: a comparison protocol

for face verification and a search protocol for face identification. The protocols were ab-

stracted into three parts: comparison protocol, closed-set protocol, and open-set protocol.

Each protocol called its intrinsic metric functionality to measure face recognition perfor-

mance. The datasets consisted of the generated templates from online training or loaded

templates in offline mode and the corresponding labels. Therefore, a custom dataset was

easily extended by inheriting the existing dataset, which was mainly required to feed the

templates and labels into the system. In addition, to fit the set-based face recognition, a

template was defined and a custom template fusion function was easily added to generate

one template from a set of feature vectors. To organize the files and templates in datasets,

some classes were defined for managing the data or meta-data. On top of the system, the

users can easily call the dataset wrapper and perform the evaluation.

Metrics: As one of the basic functions defined in FaRE, metrics class defines and man-

ages several commonly used metrics including Receiver Operating Characteristic (ROC)

curve, Precision-Recall (PR) curve, Accuracy (ACC), and Equal Error Rate (EER) for face

verification comparison protocol, Cumulative Matching Characteristic (CMC) curve and

Detection Error Tradeoff (DET) for face identification search protocol.

Protocols: With pre-defined metric functions, in the comparison protocol, the system

considers the ground-truth labels and the similarity vectors as input. The search protocol

includes both the closed-set protocol and an open-set protocol. In the closed-set protocol,

the identities in the probe are assumed to be within the identities set in the gallery, forcing

the system to assign a label from the gallery to the testing probe according to similarity

ranking. In the open-set protocol, the identities in the probe might be out of the range of
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identities in the gallery, which allows the system the ability to reject some samples based

on their similarity scores and defined threshold.

Datasets: Some dataset APIs were implemented and provided for users to quickly evaluate

their algorithm on commonly used datasets with different purposes. Each dataset supports

both offline and online evaluation: In the offline mode, the dataset loads the features from

the disk and computes the similarities. To evaluate the training process of the deep neural

network, several data loaders were implemented to load the image data and forward them

to the trained network to obtain the templates.

Light-weight: Unlike other libraries such as Bob [2], our package was implemented in

Python and only requires a few basic dependencies such as numpy for array operation,

matplotlib for visualization, scikit-learn [61] for metric computing, and MXNet [12] for

deep learning. Therefore, FaRE is a light-weight package because it only requires a few

common dependencies, which makes FaRE extremely easy to install.

Extensibility: FaRE features four extensibility aspects: adding new template fusion func-

tions, new metrics, new protocols, and new datasets. In set-based face recognition, a

common way is to compute the mean feature vectors or assign different weights to com-

pute weighted average feature vectors as the template for a set, which was implemented

in FaRE. In addition, it supports adding new template fusion functions to fuse the features

from a set of images and new metrics functions to compute new quantitative measure-

ment. Extending current protocols or datasets is suggested to inherit the corresponding

super-class and adjust the protocol process based on customized requirements, which can

be quickly extended.
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Generalizability: The generalizability is defined that the system can incorporate different

datasets, running modes, and template generators. The package is abstracted to fit the

requirements of various datasets and template generators. FaRE supports both online and

offline performance evaluation. The online evaluation mode can be used in validating

the training process while the offline evaluation mode is designed for evaluating existing

algorithms.

Scalability: The system can process one image or a set of images at the same time. Several

data loaders were designed and implemented to process a batch of images at the same time

for online evaluation. The researchers have options to use multiple CPUs and GPUs for

evaluation in this package.

Maintenance: Due to the separation of different modules and implemented logger in

FaRE, the system can easily track errors and help the developer to quickly update this

package.

3.2.2 Experiments

Two baselines using ResNet-101 [30] and DenseNet-121 [34] were trained on VGG-Face2

dataset [9] to generate a facial template from a single image or a set of images. The average

of the feature representations generated from a set of images of a subject was computed

and treated as the template of that subject. These two baselines were evaluated on the

IJB-C [58] dataset for both face verification and identification tasks to present the advan-

tages in two aspects: generalizability and scalability. In the online evaluation mode, it

took around one hour to generate the templates and compute the similarity scores for the
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Figure 3.1: Depiction of (a) the ROC curves for the 1:1 face verification protocol, (b) the

CMC curves for the 1:N open-set face identification protocol on the IJB-C dataset (best

view in color).

mix identification task with a two-fold evaluation according to the IJB-C protocol. The

mean feature vectors were computed from the set of features as the final facial template.

The average ROC performance across gallery sets for 1:1 mixed verification protocol and

average CMC and IET performance across gallery sets for 1: N mixed identification pro-

tocol was computed by FaRE. In addition, the corresponding figures generated by FaRE

are depicted in Figure 3.1.

To demonstrate scalability, for simplicity, 10-fold evaluation was directly performed

using FaRE on LFW dataset in the online evaluation mode. The relation of a number of
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Figure 3.2: Depiction the scalability of FaRE.

images processed at the same time with the total processing time of generating the tem-

plates and computing the similarity scores is depicted in Figure 3.2. It took approximately

35 seconds to finish generating templates using DenseNet-121 and comparing all pairs in

LFW by processing 32 images at the same time, which provided quick feedback during

the development stage.
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Chapter 4

Objective 2: 2D Face Landmark

Detection

In this chapter, the objective is to develop and evaluate an algorithm for landmark detection

on 2D images. In particular, there are two methods developed to achieve this goal. In the

first approach, following the coarse-to-fine principle, an ensemble of random ferns (ERF)

was applied to progressively learn the shape increments. The shape-indexed features were

extracted and progressively adapted to learn the ensemble of ferns, which were simple and

computationally efficient. Features and thresholds were learned based on the correlations

between the randomly projected regression targets and a local pixel-difference matrix.

Then, the intensities were extracted from the training images according to an ensemble of

random ferns and compared with the corresponding thresholds to derive the local binary

features. The local binary features obtained from the surroundings of each landmark were

concatenated to form a global binary feature matrix. The global linear regression matrix
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was learned from these global binary features by minimizing the squared loss function

with L2 regularization at the last step. The main contributions of this work are: (i) A prob-

abilistic model was applied to select the initial shape for face alignment; (ii) An ensemble

of random ferns was proposed to learn local features. In the second approach, a joint

learning framework (JFA) was proposed by jointly learning the head pose estimation and

face alignment using the global and local CNN features. JFA first estimated the head pose

and primary points on the entire face image and initialized the shape according to the ex-

emplars from the shape pool constructed from the training set. Then, another network was

applied to learn the local features from the patches cropped from the current shape. With

the local and global deep features, the head pose’s residual and shape increments were

both learned from the coarse-to-fine regression, which aimed to map features to the shape

increment and pose residuals. JFA was designed in a hierarchical way, which analyzed the

face from global to local in a cascade manner. It used global CNN features to provide bet-

ter initialization, which reduced the variation from the realistic bounding box. The local

CNNs provided the discriminative features for the cascaded regression. The contributions

are summarized as follows: (i) The relationship between head pose and landmarks was

used to search for the best shape for initialization; (ii) This was the first work to explore

the deep global and local features together via CNNs on the joint head pose estimation and

face alignment in a cascaded way.
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4.1 Ensemble of Random Ferns

4.1.1 Method

Local Component-based Initialization: The facial patch was defined as a square region

around the facial components (eyebrows, eyes, nose, mouth). Given the set of training

data, to train several local detectors for each part, the image was scaled to 150 × 150.

Positive and negative facial component patch sets were constructed with the assumption

that the facial component in the training dataset and testing dataset obeyed the same distri-

bution. The positive samples were extracted according to a Gaussian distribution centered

at the component center. Furthermore, the negative image patches were sampled using a

uniform distribution but the negative patches were kept at the distance of 20% of the inter-

pupil distance from the component center. For each patch, Histogram of oriented gradients

(HOG) features [16] were extracted and assigned a label to the component. After obtain-

ing features, the SVM classifiers [15] were applied on each face to obtain the response

maps.

Ensemble of Random Ferns: The overview of our regression approach is illustrated in

Figure 4.1. ERF comprised M × L ferns {F}M ,L
m=1,l=1. For each landmark, there were

M ferns as local learners. Each fern was composed of F features and thresholds. To

construct each fern, P pixels were uniformly sampled around each landmark. Then, the

correlation-based selection method was adopted to choose F pairs of pixels out of P 2

pixel-difference features with the aim of reducing the correlation between features but

retaining discriminative power. Finally, ridge regression was applied to learn the projection

matrix based on the concatenated binary features learned from the ensemble of ferns.
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Figure 4.1: Overview of the ensemble of ferns: (a) Pixels randomly sampled around each

landmark; (b) An ensemble of random ferns; (c) Features matrix and ridge regression.

Correlation-based Selection: In the training phase, the training set was divided into M

subsets randomly with replacement. Then, the intensities on the P pixels were extracted

for each image in the same subset.

To form a good fern (e.g., a fern in which features were highly correlated to the shape

increment while there was a low correlation between any feature pairs), F features were

selected based on the correlation value. First, all of the shape regression targets were di-

vided into L landmark regression targets {∆s}N ,L
i=1,l=1. Then, a random direction v was

dot multiplied with each regression target to produce a scalar. These scalars were concate-

nated to the vector u. Assuming that ρm and ρn are any pair of pixels from the set of the

P pixels, the correlation between the projected regression targets u and pixel-difference

features ρm − ρn was computed as:

C(u, ρm − ρn) =
V(u, ρm)− V(u, ρn)√

σ(u)σ(ρm − ρn)
, (4.1)

σ(ρm − ρn) = V(ρm, ρm) + V(ρn, ρn)− 2V(ρm, ρn), (4.2)

where C denotes the correlation and V denoted the covariance.
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Learning Local Features: To learn the local function, the fern learner used the pixel-

difference features. Assuming that two pixel locations {ρ1j , ρ2j }Fj=1 were selected (ρ1j , ρ
2
j to

represent the j th pair of pixel locations ρ1, ρ2), the value of each binary feature {fj}Fj=1

depended on the intensities of these pixels:

fj =


1 if I(ρ1j )− I(ρ2j ) > τj ,

0 otherwise,
(4.3)

where I(ρj ) represented the image intensity on ρj , and τj was the corresponding thresh-

old. Therefore, each fern generated F binary features, defined as γ = [f1, f2, . . . , fF ].

The binary features were concatenated to form the global binary shape features ψt =

[γ11 , γ
2
1 , . . . , γ

M
1 , . . . , γ

M
L ]. From the training set, a N×(M×L×F ) matrix Ψ = [ψi ; ], i =

1, . . . ,N was obtained.

Global Shape Regression: Ridge regression was used to avoid over-fitting, which is ex-

pressed as:

Wt
∗ = arg min

Wt

N∑
i=1

‖∆sti −Ψt(Ii, ŝ
t−1
i )Wt‖22 + λ‖Wt‖22, (4.4)

where λ controls the regularization strength.

4.1.2 Implementation Details

Initialization: Achieving reasonable model training time required mirroring the data and

five initial shapes sampled using our local component-based initialization method. In the

testing phase, two different initializations were used. The mean shape was used as the

shape initialization in the first method “ERF-mean”. The component detectors were used

to sample five shapes in the second method “ERF-init”.
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Measurement: The error was measured using Mean Root Square Error (MRSE) defined

as follows:

MRSE =
1

N ∗ L

N∑
i=1

‖si − ŝi‖2
di

, (4.5)

where di was the inter-pupil distance.

4.1.3 Experiments

4.1.3.1 Datasets

LFPW [68] is a dataset that contains 811 training images and 224 testing images collected

from the Internet. Helen [49] comprises 2,330 high-resolution face images: 2,000 im-

ages for training and 330 images for testing. 300-W includes multiple datasets such as

AFW [125] and IBUG [68]. AFW dataset was built by collecting the images from Flickr.

The total number of images in the AFW is 205. All images in 300-W were annotated with

68 points.

4.1.3.2 Comparison with State-of-the-art Methods

For a full evaluation, the results of a protocol were reported using 51 inner landmarks and

68 full landmarks. The results were summarized in Table 4.1. The results of methods with

∗ were obtained directly from the corresponding paper. The other results were obtained by

testing the publically available code with the model the author provided. As depicted in

Table 4.1, it was observed that our method achieved the best performance on LFPW and

Helen datasets compared with the other algorithms. Compared with ESR, ERF reduced the
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Table 4.1: Comparison of different methods on LFPW, HELEN, and 300W datasets.

Method
LFPW HELEN 300-W

49 pts 66 pts 49 pts 66 pts Common Challenge Full set

ESR [10] 4.10 - 4.04 - - - -

RCPR [7] ∗ 5.48 6.56 4.64 5.93 6.18 17.26 8.35

DRMF [3] ∗ 4.40 5.80 4.60 5.80 - - -

SDM [99] ∗ 4.47 5.67 4.25 5.50 5.57 15.40 7.50

LBF [66] ∗ - - - - 4.95 11.98 6.32

GNDPM [89] ∗ 4.43 5.92 4.06 5.69 5.78 - -

IFA [4] 6.12 - 5.86 - - - -

POCR [88] 4.08 - 3.90 - - - -

CFSS [122] ∗ 3.78 4.87 3.47 4.63 4.73 9.98 5.76

ERF-mean 4.05 4.80 3.63 5.22 5.05 17.14 7.43

ERF-init 3.70 4.61 3.46 4.98 4.83 15.05 6.84

error from 4.10 % to 3.70 % on the LFPW dataset with smaller training and testing time.

In training, ESR augmented the data 20 times, which imposed a computational burden.

By comparison, our method only augmented the data five times. Moreover, ESR learned

500 cascade ferns on each iteration, while ERF only learned 15 independent ferns. There-

fore, the training time was greatly decreased. Moreover, our method exhibited excellent

results on high-resolution images by significantly decreasing the MSRE on Helen dataset
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(14.35%) compared with ESR. Our algorithm obtained similar results as CFSS [122], but

CFSS required to search similar shapes in a large shape database and use hand-designed

features. Our method selected the shape from our pre-detected key points and used the

pixel-differences as features, which were much more straightforward.

4.2 Joint Pose Estimation and Face Alignment

4.2.1 Method

Head pose and face alignment exhibit high positive correlation. The head pose distribu-

tions from the reference database were used and CNN features were learned to jointly

reduce errors on head pose estimation and face alignment tasks in the same framework

(JFA). JFA consists of two neural networks: GNet and LNet. GNet estimates the head

pose and facial landmarks using global CNN features. With the predicted head pose, the

probabilities of reference shapes were computed according to the pose. The initial shape

was generated by selecting the reference shape with the highest probability and aligning

to the predicted shape. The next step was a coarse-to-fine regression for the pose and land-

marks using LNet. The patches were extracted according to the current shape and were fed

into LNet to obtain the non-linear local CNN feature representations for pose and shape.

The local CNN features were used to learn the shape and pose residuals by a linear projec-

tion. The shape and pose residuals were added to the current shapes for the next iteration.

The system was designed in a hierarchical way based on coarse-to-fine principles, which

sequentially refined the shape and pose.

42



Initialization: GNet was designed to explore the global information from the whole face

image. To estimate the initial head pose and landmarks, a set of images {Ii} with ground-

truth poses and shapes {q̄i , L̄i} were used as the training data, where i = 1, . . . ,N . The

head was treated as a 3D object and its orientation was represented by three angles: pitch,

yaw, and roll. For the global prediction, the face area was extracted using the predicted

face bounding box to avoid the background.

Seven primary landmarks included the corners of the eyes, the nose tip, and the corners

of the mouth. GNet consisted of two CNN sequences which shared the first two convolu-

tional layers. The first sequence was used to predict the head pose while the second one

was used to localize the initial primary landmarks. An additional convolutional layer was

used to extract the features and predict the head pose. The second sequence contained

three additional convolutional layers to extract low-level features for localizing the initial

primary landmarks. The loss function used in training was defined as follows:

l1 =
1

Nb

Nb∑
i=1

||q − q̄ ||22 +
λ

Nb ∗ L

Nb∑
i=1

||L− L̄||22, (4.6)

where Nb was the number of mini-batch used in training, and λ denoted the weight to

balance the contributions of the two terms.

Feature extraction and Regression: Given an estimated pose q∗ and initial shape L∗, the

probabilities of shapes were computed in a reference shape pool and the one with the high-

est probability was chosen as the initialization. Based on the observation that CNN fea-

tures were more discriminative than conventional features, the LNet was designed to obtain

the local CNN features from local patches. LNet consisted of three convolutional layers,

two max-pooling layers, and two fully-connected layers. The feature maps generated by
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Table 4.2: Comparison of MRSE from different state-of-the-art approaches and corre-

sponding face detector on 300-W Common set, Challenge set, and Full set.

Method Face detector
51 landmarks 68 landmarks

LFPW HELEN Common Challenge Full LFPW HELEN Common Challenge Full

DRMF [3] MATLAB 4.95 6.11 5.64 14.82 7.44 5.80 7.26 6.67 16.66 8.63

Chehra [4] MATLAB 4.10 4.95 4.60 15.83 6.80 - - - - -

LBF [66] OpenCV 4.63 5.69 5.26 18.58 7.87 5.58 6.58 6.18 18.94 8.68

ERT [43] Dlib 3.81 4.04 3.94 12.17 5.55 4.59 4.96 4.81 13.66 6.55

3DDFA∗ [124] Dlib 66.64 13.03 34.71 28.60 33.51 - - - - -

JFA Dlib 4.65 5.26 5.01 8.98 5.79 5.08 5.48 5.32 9.11 6.06

the second and third convolutional layers were concatenated and fed to a fully-connected

layer The loss function in LNet was defined as follows to minimize the difference between

the predicted and ground-truth residuals:

l2 =
1

Nb

Nb∑
i=1

||∆q t −∆q̄ t||22 +
λ

Nb ∗ L

Nb∑
i=1

||∆Lt −∆L̄t||22, (4.7)

where ∆q t and ∆Lt denoted the predicted pose and shape residuals in t iteration. Two

linear regressions were used to predict the shape increment and pose increment. With

the predictions ∆q t and ∆Lt in t iteration, the pose and shape were updated by q t+1 =

q t + ∆q t and Lt+1 = Lt + ∆Lt.

4.2.2 Experiments

4.2.2.1 Landmark detection

JFA was compared against state-of-the-art methods in two types of experiments. To pro-

vide a fair and intuitive comparison, face alignment task was evaluated on the full testing
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Table 4.3: Comparison of AME for head pose estimation.

Method Pitch Yaw Roll

Yang et al. [106] 5.1 4.2 2.4

Random forest 4.7 5.5 4.8

SVR 4.8 7.8 5.3

GNet 3.5 3.3 2.6

JFA 3.0 2.5 2.6

set from 300-W including the common testing set and challenge testing set. The baselines

included ERT [43], LBF [66], Chehra [4], DRMF [3], and 3DDFA [124]. For a fair com-

parison, ERT was re-trained using the same bounding box. 3DDFA [124] was tested using

the Dlib bounding box. Moreover, the evaluation of inner face alignment was provided,

which excluded the outer contour of the face (17 landmarks). Different results were ob-

tained using 51 inner face landmarks and 68 full landmarks, due to the variations of the

predicted face contours. The full evaluation was summarized in Table 4.2. Although JFA

was not prominent on the common pose face images contained in LFPW and Helen, it

outperformed the conventional methods such as ERT by 33% on the face images with a

large pose.
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4.2.2.2 Head pose estimation

The work of Yang et al. [106] was selected as the baseline on head pose estimation.

The absolute mean error (AME) of three dimensions: pitch, yaw, and roll were computed

as AME = 1
N

∑N
i=1 ||q − q̄ ||1. Both methods were trained on the training set of 300-

W and tested on the full set. To obtain a fair comparison, their result was directly used

from the literature. Then, the learned features were compared with the traditional method.

Using the same augmented training data with our method, the model was trained using the

random forest and super vector regression, respectively, using HoG features. The random

forest was set to contain 100 trees. The cell size of the HoG extractor was set to 8 × 8

with nine cells in the same block. The results are depicted in Table 4.3. Compared with

a conventional random forest approach such as random forest, our method boosted the

accuracy of 54% in total: 36% on the pitch, 55% on the yaw, and 46% on the roll.
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Chapter 5

Objective 3: 3D Face Reconstruction in

the presence of Pose and Expression

In this chapter, the objective is to design, implement, and evaluate an algorithm for 3D

face reconstruction from a single image that depicts individuals with variations in pose

and expression. In particular, the feature aggregation network (FR-FAN) was proposed

to join the multi-path information from shallow and deep layers to predict the morphable

model parameters. A synthetic dataset was produced with 1, 000 identities, which covered

a wide range of pose variations ([−90◦, +90◦]). This dataset was used to analyze existing

state-of-the-art algorithms such as E2FAR [20] and 3DMM-CNN [84]. From extensive

experiments and detailed analysis, some intuitive conclusions were drawn about the deep

neural network design. Two main contributions are summarized as follows: (i) The E2FAR

and a few of its variances were analyzed to obtain the principles for the network design.
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(ii) An efficient network was designed for 3D facial reconstruction that improved the per-

formance using existing common backbone networks.

5.1 On the Importance of Feature Aggregation for Face

Reconstruction

5.1.1 Method

An efficient network named FR-FAN was proposed based on ResNet-101 architecture.

FR-FAN merged the information from shallow, middle, and deep layers, which provided

an augmented featureset and improved prediction for the parameters of a morphable model

from a 2D facial image, when compared with the features only from the deep layer. Fig-

ure 5.1 depicts the feature aggregation network and different aggregated approaches from

the different pathways, which are explained in detail below.

Bottom-Up Pathway: The ResNet-101 served as the backbone network architecture in

FR-FAN, which consisted of four blocks. The size and connections of these four blockwise

feature maps were illustrated in Figure 5.1. Because there were four blocks in the network,

it was natural and easy to obtain features from each block for feature aggregation in current

deep learning frameworks. The outputs of each successive block were named as {B1, B2,

B3, B4}, respectively. The feature aggregation module aggregated the feature maps from

these blocks into a single feature vector.

Top-Down Pathway: Based on the observations that feature fusion was of benefit for both

48



Block1:
[56, 56]

Block2:
[28, 28]

Block3:
[14, 14]

Block4:
[7, 7]

Fuse3:
[7, 7]

Fuse2:
[7, 7]

ShapeExp.

Backbone Forwarding

Parameter Prediction

Feature Aggregation

(a)

(b)

(c)

Down-sample

Smooth+

Down-sample

SmoothC

Two Types of Fusion

F1

+
Two Levels Fusion

F2 F3

+

F F

Figure 5.1: Depiction of: (a) Three levels of FR-FAN network architecture; (b) Feature

fusion by adding and concatenation operations; and (c) Two level fusion for shape and

expression predictions.

shape and expression prediction, and that low-level features resulted in slightly improved

performance of expression parameters prediction, it was natural for us to abandon the

direct prediction from the last layer features. Instead, the features from the last two deep

blocks were used to predict shape parameters and the features from the two middle blocks

were used to predict expression parameters. Since the features from {B2, B3, B4} have

512, 1, 024, and 2, 048 channels, respectively, a 1 × 1 convolutional layer was used to

reduce the channel dimensions of the output feature maps. To fuse the feature maps, a

down-sample layer was designed to reduce the dimension of the feature map and reduce

the memory overhead. These down-sampled layers consisted of a single or multiple 5× 5

convolutional layers with a stride of two. In this manner, the feature maps were aggregated

in the same dimensions.

Feature Aggregation: Regarding the one-level fusion, the features from the upper layer
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and bottom layer were fused by element-wise addition or channel-wise concatenation (Fig-

ure 5.1 (b)). It was noticed that these two options achieved similar performance in practice.

However, the network with adding operation was easier to optimize and had fewer param-

eters. Therefore, the element-wise addition operation was used by default. The features

F3 from {B4, B3} were fused to predict shape parameters and the features from {F3, B2}

were fused to predict expression parameters. One-level fusion manner did not use the

feature from B1, so the second level of features fusion (Figure 5.1 (c)) was designed. As-

suming that the features fused using the first level fusion were named {F3, F2, F1}, then

a second fusion operation was applied on {F3, F2} and {F2, F1} to predict shape and ex-

pression parameters, respectively. Differently, in second level fusion, the kernel size in the

down-sample block was changed to three to reduce redundant parameters and reduce GPU

memory utilization when inferencing the model. While FR-FAN had a few more param-

eters than ResNet-101, our designed network was simpler and had far fewer parameters

than E2FAR (approximately 50% less). Therefore, the main advantage of our network de-

sign was that it aggregated the features from different pathways and significantly boosted

the performance of a pure ResNet.

Optimization: The performance to optimize the whole network was the same as E2FAR,

which used the projected mean square error in 3D point cloud space defined as follows:

ls = ||A ∗ α̂− A ∗ α||22,

le = ||B ∗ β̂ −B ∗ β||22,
(5.1)

where α̂ and β̂ were the shape and expression parameter predicted by the network.
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5.1.2 Experiments

5.1.2.1 Datasets, Baseline, and Metrics

Four public available datasets were evaluated for 3D face reconstruction from a single im-

age. UHDB31 [48] is a dataset obtained under controlled lab conditions that consists of

77 subjects with 21 pose variations. For the pose distribution, the yaw angle varies from

−90◦ to 90◦ with 30◦ interval and pitch angle varies from −30◦ to 30◦. FRGCv2 [62]

validation set is a dataset that consists of 466 subjects and 4, 007 images for evaluating

the illumination problem. BU-3DFE [108] is another dataset which consists of frontal

faces for evaluating the expression problem. JNU-3D [47] is a part of Surrey-JNU data for

3D face reconstruction evaluation challenge. These 2D images were collected in varying

conditions, which exhibit large pose, illumination variation, motion blur, and low resolu-

tion. Two state-of-the-art algorithms, 3DMM-CNN [84] and E2FAR [20], were selected

as our baseline. To compare the performance of different methods, we used the root mean

squared error (RMSE) between the reconstructed 3D face point cloud and the ground truth

mesh after rigid alignment and registration using the iterative closest point algorithm to

measure the accuracy of 3D face reconstruction. For our method and 3DMM-CNN, the

face region was trimmed according to the mean depth before evaluation. All three methods

provided a similar number of vertices in the evaluation.

5.1.2.2 Comparison with State-of-the-art

Pose Variation: In the first experiment for evaluating pose variation, the performance

of these three methods on the 21 view facial images in the UHD31.R0128 dataset were
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Table 5.1: Quantitative comparison on UHDB31.R0128, FRGCv2, BU-3DFE, and JNU-

3D datasets.

Method UHDB31.R0128 FRGCv2 BU-3DFE JNU-3D

3DMM-CNN [84] 3.74± 0.80 4.78± 4.31 4.08± 0.94 3.18± 0.94

E2FAR [20] 3.03± 0.75 4.51± 4.51 4.43± 1.04 3.46± 0.86

FR-FAN-L1 3.25± 0.78 4.40± 4.31 3.70± 0.91 3.14± 0.59

FR-FAN-L2 3.12± 0.76 4.52± 4.40 3.74± 0.87 3.13± 0.60

evaluated. The quantitative results of the mean and standard deviation of RMSE (mm)

are presented in the Table 5.1. From the results, E2FAR achieved the best performance in

this dataset, which might be because the distribution of the synthetic data that E2FAR was

trained on was close to the distribution of UHDB31.R0128.

Illumination Variation: The quantitative results of RMSE mean and standard deviation

are presented in Table 5.1. In this dataset, FR-FAN-L1 achieved the best results. FR-

FAN-L2 exhibited compatible performance to E2FAR, but with less variation. Figure 5.2

depicts the reconstruction results generated by our method and two baselines compared to

ground-truth.

Expression Variation: BU-3DFE was used to evaluate the algorithms with expression

variation. The quantitative results of RMSE mean and standard deviation are presented

in Table 5.1. Both our methods improved the performance approximately by 7% on this

dataset compared to the performance of E2FAR.

In-the-wild: JNU-3D was used to evaluate two parametric methods (3DMM-CNN and
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2D Images 3DMM-CNN E2FAR FR-FAN-L2 Ground-truth 2D Images 3DMM-CNN E2FAR FR-FAN-L2Ground-truth

Figure 5.2: Depiction of face reconstruction results on evaluation datasets: FRGC,

UHDB31 and BU-3DFE.

E2FAR), two non-parametric algorithms (VRN [37] and Pix2Vertex [71]), and FR-FAN

with “in-the-wild” images. The quantitative results of RMSE mean and standard deviation

are depicted in Table 5.1. Due to the dataset license constraints, only one individual’s face

reconstruction results of various methods are presented in Figure 5.3. It was observed that

our algorithm captured the expression well while 3DMM-CNN did not provide expression

parameters and E2FAR failed in some cases. Comparing the volumes generated by the

VRN of Jackson et al. [37] and mesh generated by Pix2Vertex [71], our method not only

reconstructed the shapes and expressions but also provided more reasonable, detailed, and

smooth meshes.
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2D Images 3DMM-CNN E2FAR VRN Pix2Vertex FR-FAN-L2 Ground-truth

Figure 5.3: Depiction of one sample of face reconstruction results in JNU-3D dataset

with the sequence of methods as following: 2D images, 3DMM-CNN [84], E2FAR [20],

VRN [37], Pix2Vertex [71], FR-FAN-L2, and the ground-truth 3D mesh. The 3D meshes

generated by our method and the ground-truth were rotated according to the pose of 2D

images to visualize the similarity between 2D images and 3D meshes.
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Chapter 6

Objective 4: Face Recognition in the

Presence of Variance in Pose,

Expression, and Occlusions

In this chapter, the objective is to design, implement, and evaluate an algorithm for 2D

face recognition from a single image or set of images that depict individuals with vari-

ations in pose, expression, and occlusions. Realization of this objective resulted in the

development of the following two algorithms. In the first method, an occlusion-aware face

recognition (OREO) was proposed to improve the generalization of face recognition in

the presence of occlusions. To address the challenge of identity signal degradation due to

occlusions, an attention mechanism was introduced which was learned directly from the

training data. Since the global feature representation captured information learned from

the whole facial image (regardless of whether occlusion occurs), the aim of the attention
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mechanism was to disentangle the identity information from the global representation and

extract local identity-related features from the non-occluded regions of the image. In this

way, global and local features were jointly learned from the facial images and were then

aggregated into a single feature embedding. Addressing the challenge of the occlusion

imbalance in the training set required the development of an occlusion balancing strategy

to train the model with batches drawn as samples from an equally balanced distribution

of non-occluded and occluded images. Based on this strategy, an additional learning ob-

jective was proposed that improved the discriminative ability of the embeddings learned

from our algorithm. The main contributions of this work are: (i) An attention module

was introduced that disentangles the features into global and local parts, resulting in more

discriminative representations. In this way, the proposed approach successfully handled

occlusions in face recognition without requiring additional supervision (e.g., pose or oc-

clusion labels) and achieved a relative improvement of 1.6% in terms of accuracy on the

CFP dataset. (ii) An occlusion-balanced sampling strategy, along with a new loss function,

was proposed to alleviate the large class imbalance that was prevalent. Our experimental

results on the Celeb-A dataset indicated that OREO achieved statistically significant im-

provements of more than 10% in terms of average degradation percentage. In the second

method, an unsupervised graph-based template adaptation (GTA) training framework was

proposed to adapt the knowledge of the network learned from a still image to a mixed-

media set without requiring any ground-truth label in the set domain. To improve the

performance of set-based face recognition, a curriculum was designed for the teacher and

student networks in two steps: First, a graph-based template adapter was inserted and
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learned to generate a single feature/template that represented a set considering relation-

ships of all features belonging to the same set. Second, the teacher and student networks

were updated in an unsupervised manner considering similarities in the set domain. End-

to-end optimization of the unsupervised framework required to update the teacher network

using supervising signals. Updating the weights in the student network used the supervi-

sion from the source domain and the teacher network’s inference in the target domain.

There are two advantages of the proposed method in real-life applications: (i) information

from all samples within a subgraph was aggregated to generate the more discriminative,

robust, and compact templates by enlarging the similarities of the matched samples and

decreasing the similarities of the non-matched samples; (ii) no modification was required

of the backbone network since the graph-based template adapter is a plug-and-play mod-

ule. This suggested that not only performance was preserved for single image-based face

recognition, but also improved performance was obtained for the mixed-media set-based

face recognition.

6.1 On improving the generalization of face recognition

in the presence of occlusions

6.1.1 Method

Aiming to quantitatively analyze the impact of occlusion, a series of experiments were

conducted on the Celeb-A dataset [54], which consists of 10, 177 face identities and 40

facial attributes. Attributes that describe the subject (e.g., Gender) were ignored and
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only those that might impact the face recognition performance were selected: Bangs,

Eyeglasses, Mustache, Sideburns, and Wearing Hat. For each attribute, the

images without this attribute were enrolled as the gallery and images with or without this

attribute were enrolled as the probes. In both the gallery and probe, each identity had only

a single image. Three face recognition systems were selected to evaluate five close-set

face identification experiments:

(i) VGG-Face [60]: a commonly used face template generator baseline in the research

community, which was trained on VGG-Face dataset.

(ii) COTS: a commercial off-the-shelf face recognition software which claimed to be

the world’s most versatile face recognition technology in the industry. The version

of this software was v1.18.

(iii) ResNeXt-101: a ResNeXt-101 model [31] trained on the VGG-Face2 dataset [9].

The public state-of-the-art face recognition system, ArcFace [18], was not selected as one

of the baselines because the identities between the Celeb-A dataset and the MS-Celeb-1M

dataset [94] they used for training overlapped.

For each of the five attributes, the rank-1 accuracy is reported in Table 6.1 for each

algorithm in the scenario with and without each attribute, respectively. The occlusion-

related attributes were ranked according to the rank-1 identification rate degradation as

follows: Eyeglasses > Wearing Hat > Bangs > Sideburns ∼ Mustache.

These results demonstrated that occlusion originating from facial accessories (eyeglasses

and hat) as well as facial hair (mustache, bangs, and sideburns) was an serious challenge
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Table 6.1: Comparison of rank-1 identification rate (%) of different face recognition sys-

tems on the Celeb-A dataset w/ and w/o the specified attribute.

Method
Bangs Eyeglasses Mustache Sideburns Wearing Hat

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

VGGFace [60] 50.9 40.6 60.8 34.1 60.8 55.9 62.7 57.8 56.0 37.0

ResNeXt-101 [31] 73.8 66.8 81.4 63.1 83.3 80.9 81.5 79.0 77.7 65.6

COTS v1.18 78.5 75.4 83.0 70.2 84.3 84.0 85.3 84.4 81.8 74.4

that affected the performance of face recognition algorithms. Additionally, it was observed

that occlusion due to external accessories affected the performance more than occlusion

originating from facial hair.

6.1.1.1 Face Recognition in the Presence of Occlusion

The overall training architecture of OREO is depicted in Figure 6.1(a), which consists of

(i) an occlusion-balanced sampling (OBS) technique to address the occlusion imbalance;

(ii) an occlusion-aware attention network (OAN) to jointly learn the global and local fea-

tures; and (iii) the objective functions to guide the training process. Aiming to balance the

occluded and non-occluded images within the batch, random pairs of non-occluded and

occluded images were sampled and provided as input to the deep neural network. Then,

the proposed attention mechanism was plugged into the backbone architecture to generate

the attention mask and to construct a single representation via aggregation of the local
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Figure 6.1: Given a pair of non-occluded and occluded images (In, Io), the generator G

learned the facial embeddings (tn, to) and the attributes predictions an, ao using loss func-

tions for attribute classification, identity classification and the proposed similarity triplet

loss. On the right, the generator is presented in detail, which contains: (i) the output fea-

ture maps of the last two blocks (B2, B3) of the backbone architecture, (ii) the attention

mechanism GA consisting of masks (A2, A3) that learn the local features in two different

ways, and (iii) GF which aggregates the global and local features to the final embedding.

with the global features. The final aggregated embeddings were trained to learn occlusion-

robust representations guided by the softmax cross-entropy, sigmoid cross-entropy, and

similarity triplet loss (STL) functions.

Occlusion-Balanced Sampling: In a hypothetical scenario in which training data would

be accompanied by occlusion ground-truth labels, the training set could easily be split into

two groups of occluded and non-occluded images from which balanced batches could be

sampled and fed to the neural network. However, this is not the case with existing face

recognition training datasets since no such information is provided. Aiming to generate
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occlusion labels, facial attributes were selected that contained occlusion information. A

state-of-the-art face attribute predictor [69] was trained on the Celeb-A dataset and it was

then applied to the training set to generate pseudo-labels. Those attribute pseudo-labels

were utilized to facilitate occlusion-balanced sampling during training. By using this strat-

egy, the network G was feed-forwarded with pairs of randomly chosen non-occluded and

occluded images denoted by {{In, yn}, {Io, yo}}i, i ∈ RN , where y contained the identity

and attributes of the facial images and N was the total number of pairs. Since OBS ran-

domly generated pairs of occluded and non-occluded facial images in each epoch, their

distribution within the batch was ensured to be balanced.

Occlusion-aware Attention Network: The facial embedding generator G consists of

three components: (i) a backbone network GB, (ii) an attention mechanism GA, and (iii) a

feature aggregation module GF .

Features were generated from two pathways as depicted in Figure 6.1(b): a bottom-up

for the global representations and a top-down for the local features. In the bottom-up path-

way, the process of the network to generate global features was described by tg = GB(I).

In the top-down pathway, since the global features include information from the occluded

region of the face, an attention module GA was proposed that distilled the identity-related

features from the global feature maps to the local feature representations tl. Finally, a

feature aggregation module GF was employed that aggregated the global and local feature

representations into a single compact representation t. The goal of attention mechanisms

GA is to help the model identify which areas of the original image contain important in-

formation based on the identity and attribute labels. Assuming the feature maps extracted

from different blocks of the backbone network were denoted by {B1, B2, B3, B4}, then
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the two-step attention mechanism was designed as follows. In the first level (denoted by

A3 in Figure 6.1(b)), the feature map B3 was first broadcasted and then added with the

global representation tg to generate the attention mask A3. The goal of A3 is to find the

high-response region of the feature map by giving emphasis to the identity-related features

and construct the local representation tl3 . Mathematically, this process was described by

the following equation:

tl3 = A3 ∗B3 = h3(t
g, B3) ∗B3, (6.1)

where h3 was a sequence of operations to reduce the channels and generate a single-

channel convolutional attention map with spatial normalization and the “∗” operation cor-

responded to element-wise multiplication. The final global feature tg was preserved as

part of the final representation of the network so that tg learned identity-related informa-

tion. In this way, tg guided the network to learn local attention maps on features from the

previous block and distilled the identity information from the most discriminative region

to construct tl.

Improving the generalization ability of the model required an additional attention

mechanism on the feature map B2 to force the network to focus on other regions of the

face. In the second level (denoted by A2 in Figure 6.1 (b)), the attention map was guided

by the facial attribute predictions in a weakly-supervised manner. In the attributes predic-

tion branch, the visual attribute predictions were output and a channel-wise summation of

the spatial normalized feature maps was used to predict the attention mask A2. Thus, the

local representations at this level were computed by:

tl2 = (1− A2) ∗B2 = (1− h2(tg, B2)) ∗B2, (6.2)
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where h2 is an attention operation guided by both identity labels and attributes labels.

Since the attention map A2 was guided not only by the identity loss function, but also by

the attribute predictions, the network was capable of focusing on image regions related

to both the identity and the visual attributes. The global and local features {tg, tl2, tl3}

were concatenated into a single vector and then this vector was projected into a single

feature representation t, which enforced both global and local features to preserve semantic

identity information.

Loss Functions: The network training comprised three loss functions: (i) the softmax

cross-entropy loss LC for identity classification, (ii) the sigmoid binary cross-entropy loss

LA for attribute prediction, and (iii) a new loss LT designed for the occlusion-balanced

sampling. The identity classification loss was defined as:

LC = − 1

M

M∑
i=0

log
exp

(
Wyci

ti + byci
)∑n

j=1 exp (Wjti + bj)
, (6.3)

where ti, yci represented the features and the ground-truth identity labels of the ith sample

in the batch, W and b denoted the weights and bias in the classifier, and M and n cor-

responded to the batch size and the number of identities in the training set, respectively.

Following that, the sigmoid binary cross-entropy loss LA was defined as

LA = − 1

M

M∑
i=0

log σ(ai)y
a
i + log(1− σ(ai))(1− ai), (6.4)

where ya corresponded to the attribute labels and σ(·) was the sigmoid activation applied

on the attribute predictions a.

In the matching stage, the cosine distance was used to compute the similarity between

two feature embeddings. Since images with the same identity had a higher similarity score

63



than those with a different identity, a similarity triplet loss (STL) was used as regulariza-

tion to make the final facial embedding more discriminative. During training, each batch

comprised pairs of non-occluded and occluded images with each pair having the same

identity. Let tn and to be the final feature representations of non-occluded images In and

occluded images Io. The similarity matrix O ∈ RM×M within the batch was computed,

where M was the batch size. In the similarity matrix O, it should be identified: (i) hard

positives which were pairs of samples that originated from the same identity but had low

similarity score op(tn, to), and (ii) hard negatives which were pairs of samples with dif-

ferent identities but with high similarity score on(tn, to). Then, the objective function was

defined as follows:

LT =
M∑
i=1

[oni (tn, to)− opi (tn, to) +m]+. (6.5)

A margin m ∈ R+ was maintained to enforce that small angles (high similarity score)

belong to the same identity and large angles (low similarity score) belong to different

identities. Finally, the whole network was trained as follows:

L = LC + β · LA + γ · LT , (6.6)

where β and γ were the weighting parameters of the losses.

6.1.2 Experiments

Three face evaluation datasets were used to evaluate OREO under different scenarios.

(i) Celeb-A: This dataset contains images of different occlusion-related attributes for

closed-set image-based face identification. It was used to analyze face recognition
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performance in the presence of different types of occlusions;

(ii) CFP: This dataset [72] that contains images with pose variation. This dataset was

selected to demonstrate that the algorithm performance will not degrade for the dif-

ferent poses;

(iii) IJB-C: This is an image-set-based dataset [58] with an emphasis on images with

occlusion. It consists of 31,334 still images and 117,542 video clips from 3,531

subjects, which was used to generate 23,124 templates with 19,557 genuine matches

and 5,678,932 impostor matches.

The evaluation protocol of each dataset was strictly followed. For face verification experi-

ments, Identification Error Trade-off (IET) was reported with true acceptance rates (TAR)

at different false accept rates (FAR). For face identification experiments, CMC including

rank-1, rank-5, and rank-10 were reported.

6.1.2.1 Celeb-A: In-the-wild Face Identification

The algorithms were tested on the Celeb-A dataset [54] under various types of occlu-

sion. The Cumulative Match Character (CMC) curves are depicted in Figure 6.2. It was

observed that OREO outperformed ResNeXt-101 in all settings (w/ and w/o attributes),

which suggested that our algorithm learned robust discriminative feature representations

regardless of occlusions. Use of the McNemar’s test indicated a statistically significant im-

provement of all attributes. In addition, OREO demonstrated a lower average degradation

percentage than the baseline by 10.17% in terms of relative performance. This indicated
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Figure 6.2: Comparison of CMC curves of ResNeXt-101 and OREO with and without the

selected occlusion-related attribute: (a) Bangs, (b) Eyeglasses, (c) Mustache, (d)

Sideburns, and (e) Wearing Hat. The last figure (f) depicts the legend.

that our algorithm improved the generalization ability of the facial embedding generator

in the presence of occlusions.
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Table 6.2: Comparison of the face verification performance with state-of-the-art face

recognition techniques on the CFP dataset using CFP-FP protocol.

Method Acc. (%)
TAR (%) @ FAR=

10−3 10−2 10−1

DR-GAN [86] 93.4± 1.2 - - -

MTL-CNN [109] 94.4± 1.2 - - -

ArcFace [18] 93.9± 0.8 80.2± 5.9 86.0± 2.8 94.3± 1.5

ResNeXt-101 [31] 97.1± 0.8 81.9± 11.4 92.3± 4.1 98.9± 0.8

OREO 97.5± 0.5 85.5± 5.3 94.1± 2.5 99.2± 0.7

6.1.2.2 CFP: In-the-wild Face Verification

The CFP [72] was used to evaluate face verification performance on images in-the-wild,

which contained variations in pose, occlusion, and age. In this experiment, the CFP-FP

protocol was used to quantitatively evaluate the face verification performance and the ex-

perimental results are presented in Table 6.2. These results were presented by the average

± standard deviation over 10 folds. The following metrics were used to evaluate the per-

formance: (i) the verification accuracy, and (ii) the TAR at FAR equal to 10−3, 10−2, and

10−1. Compared to all baselines, OREO achieved state-of-the-art results on this dataset in

terms of accuracy and increases the TAR at low FARs. The moderately better accuracy re-

sults demonstrated that OREO also improved the performance of general face recognition.
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Table 6.3: Comparison of the face verification and identification performance of different

methods on the IJB-C dataset.

Method

1:1 Mixed Verification 1:N Mixed Identification

TAR (%) @ FAR= TPIR (%) @ FPIR= Retrieval Rate (%)

10−7 10−6 10−5 10−4 10−3 10−2 10−1 10−3 10−2 10−1 Rank-1 Rank-5 Rank-10

GOTS [58] 3.00 3.00 6.61 14.67 33.04 61.99 80.93 2.66 5.78 15.60 37.85 52.50 60.24

FaceNet [70] 15.00 20.95 33.30 48.69 66.45 81.76 92.45 20.58 32.40 50.98 69.22 79.00 81.36

VGGFace [60] 20.00 32.20 43.69 59.75 74.79 87.13 95.64 26.18 45.06 62.75 78.60 86.00 89.20

MN-vc [98] - - - 86.20 92.70 96.80 98.90 - - - - - -

ArcFace [18] 60.50 73.56 81.70 87.90 91.14 95.98 97.92 70.90 81.98 87.63 92.25 94.31 95.30

ResNeXt-101 [31] 28.72 58.09 71.19 81.76 90.70 95.75 98.86 53.66 71.50 82.47 91.88 95.51 97.29

OREO 51.97 62.36 75.86 85.19 92.81 97.11 99.37 65.47 77.11 85.92 93.76 96.68 97.74

6.1.2.3 IJB-C: Set-based Face Identification and Verification

The IJB-C dataset [58] is a mixed media set-based dataset with open-set protocols com-

prising images with different occlusion variations. Two experiments were performed on

this dataset following 1:1 mixed verification protocol and 1:N mixed identification proto-

col. To generate the facial embedding for the whole set, the corresponding images were

fed to the neural networks and the average of the embeddings from all images within a set

was computed. The evaluation metrics included the verification metric of ROC, the identi-

fication metric of retrieval rate, the true positive identification rate (TPIR) at different false

positive identification rates (FPIR). In Table 6.3, top two performance are marked in bold.

From the obtained results in Table 6.3, it was observed that OREO outperformed four

out of six baselines in all metrics and came second to ArcFace only in some cases under

68



the mixed verification and identification protocols. ArcFace was trained on the MsCeleb-

1M [28] dataset which contains significantly more identities and data than the VGGFace2

dataset. Our method still outperformed ArcFace at high FARs in the verification protocol

as well as in the identification retrieval protocol. When compared against the baseline,

OREO significantly improved the performance in both verification and identification. For

example, when FAR was equal to 10−7 the TAR improved from 28.72% to 51.97%. These

results demonstrated that OREO successfully learned features that were robust to occlu-

sions.

6.2 Unsupervised Graph Template Adaptation

6.2.1 Method

In this section, an unsupervised domain adaptation framework named GTA (depicted in

Figure 6.3) is presented to transfer the knowledge learned from good visual quality still

image domain to an unknown set domain comprising both still image and video frames

without requiring the ground-truth labels in the set domain.

6.2.1.1 Problem Formulation and Notations

Given access to good visual-quality facial still images IS and corresponding labels yS as

the source domain DS , and the unknown mixed image-set IT as the target domain DT ,

the goal is to improve the performance of G(·) trained with the classifier C from domain

DS on the domain DT without knowing the target labels yT .
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Figure 6.3: Depiction of the overview of the training framework of GTA for unsuper-

vised domain adaptation from image-based to set-based face recognition, which consists

of multiple components: graph-based template adapter G with supervised and unsuper-

vised losses.

6.2.1.2 Curriculum of GTA

Successful adaptation of the image-based template generator to the set-based template

generator with minimum modification required the development of a curriculum using a

teacher-student learning framework [105] as per the following proposal:

Prerequisites: This self-learning framework required a prerequisite course: Both teacher

and student networks should have some prior information on the face recognition from the

still image domain. To obtain this prior knowledge, any still image dataset can be used

as the training dataset and any network can be trained with a supervision loss serving as
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Figure 6.4: Depiction of a template graph consisting of three subgraphs, each of which

represents an image-set. The node in the light color represents the features generated

from an image. The node in the middle of the subgraph contains the learned higher-level

template that represents the whole mixed-media set. The edge connecting each subgraphs

denotes the similarity between the template features.

the pre-trained model for both networks. To make the approach more general, the softmax

cross-entropy was used as this supervision loss defined below:

LC = − 1

M

M∑
i=1

log
C(fi)∑c
j=1C(fj)

, (6.7)

where M is the batch size, c is the number of classes, and f is the feature vector generated

from a single image. In theory, LC can be replaced or added with other supervision losses

such as ring loss [118] and cosine loss [91, 18] proposed recently and help the network to

obtain better performance. This network served as one of our baselines as it only learned

from the source domain.

Course 1: Build Knowledge Graph. To help the neural network learners to system-

atically acquire knowledge, a knowledge graph G was proposed to learn based on the
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prior knowledge from the image domain. This graph consists of multiple local subgraphs

G = {G1,G2, . . . ,GM}, where M is the number of the mixed-media sets. Two subgraphs

were connected with one edge if their similarity was above a threshold, depicted in Fig-

ure 6.4. Each subgraph Gi = {Vij, Eij}, i ∈ [1,M ], j ∈ [1,N ] represented an image-set

consisting of a set of nodes Vij containing the features generated by image-based template

generator G and a corresponding edges Eij , where N represented the images in the set.

To aggregate the features within a subgraph, a graph-based attention template aggregation

module was used to learn more higher-level discriminative, robust, and compact feature

representations by self-attention within the subgraph Gi (the graph index i is discarded in

the following for simplicity):

The input to the aggregation module was a set of nodes {Vj, Ej} containing the feature

embeddings {fj} ∈ RN×l, where l is the feature dimension. By applying a linear trans-

formation W ∈ R l×l′ on the feature representation matrix, the features of the node were

projected to lower-dimension l′ feature space to generate compact feature representation

but with more discriminative power. To interact with other learned feature representations

to obtain additional sufficient express power, the concatenation operation h(·) was applied

to the two learned representations {f ′j, f ′k} in the subgraph Gi. The feature attention mask

A1 ∈ R2l′ was multiplied to concatenated feature vectors to learn which feature was im-

portant in terms of classification. Another feature attention matrix A2 ∈ RN×N was used

to learn the importance of the neighborhood nodes Vk to the current node Vj . The im-

portance coefficient aj in the attention matrix A2 was normalized by comparing across

the nodes in the subgraph including the node itself and applying the softmax activation to

summation of attended features as follows:
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ajk =
exp(

∑2l′

u=1A1 · h(f ′j, f
′
k))∑N

k=1 exp(
∑2l′

u=1A1 · h(f ′j, f
′
k))

. (6.8)

After applying the attention from the neighborhood nodes, the new feature representa-

tion f̂ was computed by the weighted average of learned features as follows:

f̂j =
1

N

N∑
k

ajk · f ′k. (6.9)

To optimize this graph-based template aggregation module, a loss function was proposed

considering the current subgraph Gi and other subgraphs Gj by enlarging the similarity o

of samples within the same graph high enough (o >= m1) while decreasing the similarity

of samples in different graphs low enough (o < m2). Usually, the similarity score o was

computed as the cosine distance in the literature. Mathematically, in the mini-batch, there

areMp positive samples with the same identity andMn negative samples with the different

identity as the sample Ii, so the objective function can be written as follows:

LR =
1

M

M∑
i=1

Lp
Ri

+ Ln
Ri

+ Lr
Ri
, (6.10)

Lp
Ri

=
1

Mp

Mp∑
j=1,j 6=i

[m1 −
f̂i · f̂j

||f̂i|| · ||f̂j||
]+, (6.11)

Ln
Ri

=
1

Mn

Mn∑
j=1,j 6=i

[
f̂i · f̂j

||f̂i|| · ||f̂j||
−m2]+, (6.12)

Lr
Ri

=
1

Mp

Mp∑
j=1

||f̂i − f̂j||22, (6.13)

where [·]+ denotes a ReLU activation. The network was optimized to generate the similar-

ities between the samples within the same set that were larger than m1 by Equation (6.11)
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and to generate the similarity between different sets that were lower than m2 by Equa-

tion (6.12). Due to the fact that the final representation was based on the interactions

between the nodes in the set, the features in each node attempted to be discriminative

enough to represent that set. Therefore, the mean average of the learned features nodes

was simply used to compute the final template that represents the set. To make the graph-

based template aggregation module G work for the set-based face recognition, the weights

in the image-based template generator were frozen and the only weights in the G were

updated with the supervision signal in the still-image domain DS .

Course 2: Refresh with New Knowledge. Assuming there were two networks {Gt, Gs},

which consisted of the image-based template generator and the graph adapter initialized

by the weights learned from the source domain DS , a paired teacher-student learning was

proposed to help both two network learners to deepen what they had learned in the source

domain DS and explore the new knowledge from the target domain DT . The key idea in

this course was that the teacher network Gt provided the supervision for the student net-

work Gs when the student network Gs tried to explore the knowledge in the new domain.

Assuming that labeled image samples in the source domain and unlabeled images sam-

ple in the target domain were {IS, yS, IT}, the teacher network Gt was updated by the

supervision from the source domain {IS, yS} and the feedback from the student network

Gs. The student network Gs was updated by the supervision from the source domain DS

to keep and deepen the original knowledge and exploring the target domain with the su-

pervision from the teacher network Gt to refresh with new knowledge. Due to unknown

classes in the target domain DT , similarity learning was applied to update the weights in
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the Gs: Instead of predicting the labels in the target domain, the similarity matrix O be-

tween the unlabeled data IT was computed. Because of the fact that the samples within the

same set belong to the same identity, Equation (6.11) was applied to optimize the network

by the information from the matched samples. To obtain the non-matched samples, the

supervision from the teacher network trained in DS was used. When the similarity score

o of a pair of sets predicted from the teacher network Gt was lower than a threshold m3,

this pair was defined as pseudo-non-matched set while the samples within these set were

pseudo-non-matched samples. Similarly, when the similarity of a pair of sets predicted

from the teacher network Gt was higher than a threshold m4, this pair was defined as a

pseudo-matched set. When the similarity score o of a pair of sets predicted from Gt was in

the range of [m3,m4], this pair was simply discarded because the predictions from teacher

network Gt were not reliable. Therefore, the network Gs was updated with the objective

functions (6.10)-(6.13) when it was exploring the new domain. The feedback from the

student network Gs was used to compute the exponential moving average (EMA) [80] and

update the knowledge in the teacher networkGt. In this manner, the knowledge in both the

teacher network and the student network were refreshed by new knowledge in the target

domain.

Final Examination: Template Generator and Matcher. In the testing stage, the clas-

sification layer was discarded from the well-trained models. When a set of images (no

matter the size of the set) was feed-forwarded to the template generator, a unique feature

representation f̂ was generated as a template that represented this image-set. To compare

75



the similarity between two adapted templates f̂i and f̂j , the cosine similarity was used:

oij =
f̂i · f̂j

||f̂i|| · ||f̂j||
. (6.14)

This similarity score was used to generate the threshold and decide the identity of the

templates in the identification scenario or accept/reject the template in the verification

scenario.

6.2.2 Experiments

Two baselines selected are described as follows:

• RX50: a model trained on VGG-Face2 [9] using the ResNeXt-50 [30] architecture

with softmax loss without any adaptation;

• IF-R50: a state-of-the-art face template generator [18] trained on the MS1M [94]

dataset.

The IJB-A [46] and IJB-C [58] datasets were used to evaluate the set-based face recogni-

tion using the model trained with GTA and the baselines. The ROC curve in the mixed

verification scenario and IET curve along with the retrieval rate in the open-set mixed

identification scenario were reported to evaluate the set-based face recognition. In the

mixed verification scenario, the True Acceptance Rates (TARs) at different False Accep-

tance Rates (FARs) in the ROC curve was reported. In the open-set mixed identification

scenario, the True Positive Identification Rates (TPIRs) at different False Positive Identifi-

cation Rates (FPIRs) were reported. The evaluations were performed using an off-the-shelf

toolbox [101].
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Table 6.4: Comparison of the face verification and identification performance of different

methods on the IJB-A dataset.

Method Category
Template

Size

1:1 Mixed Verification 1:N Mixed Identification

TAR (%) @ FAR= TPIR (%) @ FPIR= Retrieval Rate (%)

10−4 10−3 10−2 10−1 10−2 10−1 Rank-1 Rank-5

MN-vc [98]

SU

2, 048 - 92.0 96.2 98.9 - - - -

GhostVLAD [120] 128 - 93.5 97.2 99.0 88.4 95.1 97.7 99.1

GA-GANv2 [117] 3, 072 94.6 97.3 98.9 99.5 93.9 98.2 99.0 99.5

IF-R50 [18] 512 78.1 91.0 94.0 97.0 86.5 91.1 93.4 96.1

Sohn et al. [77] US 320 - 64.9 86.4 97.0 - - 89.5 95.7

RX50 SU 2048 58.1 86.6 94.5 98.3 76.4 86.6 96.7 98.9

GTA US 512 80.0 92.1 96.8 99.0 86.3 94.3 97.2 98.9

6.2.2.1 IJB-A: Small-scale Set-based FR

Table 6.4 summarizes the state-of-the-art performance reported in the literature and the

performance of our baselines including both supervised and unsupervised methods. The

best results in both supervised (SU) and unsupervised (US) methods are marked in bold.

The supervised method [117] leveraged the supervision in the target domain with extreme

data augmentations and multiple networks. Compared to them, our method was light-

weight and did not require multiple feature extraction networks as well as access to labels

in the target domain. Compared with the baseline RX50, the proposed method reduced

the 2,048 dimensions of the features output from the baselines to 512-dimensions (75%

less) but significantly improved the performance in the set-based face recognition (37.7%
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Table 6.5: Comparison of the face verification and identification performance of different

methods on the IJB-B dataset.

Method Category
Template

Size

1:1 Mixed Verification 1:N Mixed Identification

TAR (%) @ FAR= TPIR (%) @ FPIR= Retrieval Rate (%)

10−5 10−4 10−3 10−2 10−1 10−2 10−1 Rank-1 Rank-5

VGG-FACE [9]

SU

2, 048 34.2 53.5 71.1 85.0 - 42.9 63.5 75.2 84.3

VGG-FACE2 [9] 2, 048 64.7 78.4 87.8 93.8 97.5 70.1 82.4 88.6 93.6

MN-vc [98] 2, 048 70.8 83.1 90.9 95.8 98.5 - - - -

CN [97] 2, 048 - 84.1 93.0 97.2 99.5 - - - -

Ghost-VLAD [120] 256 74.1 85.3 92.5 96.3 - 76.4 88.5 92.1 95.5

IF-R50 [18] 512 75.4 84.9 90.1 93.7 96.8 78.2 85.8 88.6 92.1

RX50 SU 2, 048 53.7 73.5 88.0 95.9 99.1 62.4 80.1 88.1 94.5

GTA US 512 66.9 82.0 91.0 95.8 98.5 70.7 84.7 90.4 94.8

improved TAR at FAR is 10−4 using RX50 backbone).

6.2.2.2 IJB-B: Medium-scaled Set-based FR

Table 6.5 summarizes the state-of-the-art performance reported in the recent literature and

the performances of our baselines. The best results in both supervised (SU) and unsu-

pervised (US) methods are marked in bold. Because there are no unsupervised methods

reported in the IJB-B dataset, we only compared with supervised methods. Similar to

the results obtained in the previous experiment, it was observed that GTA improved the

performance of the baseline model RX50 in both 1:1 mixed verification and 1: N mixed

identification protocols. Specifically, in the 1:1 mixed verification scenario, GTA improved
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Table 6.6: Comparison of the face verification and identification performance of different

methods on the IJB-C dataset.

Method Category

1:1 Mixed Verification 1:N Mixed Identification

TAR (%) @ FAR= TPIR (%) @ FPIR= Retrieval Rate (%)

10−7 10−6 10−5 10−4 10−3 10−2 10−1 10−3 10−2 10−1 Rank-1 Rank-5

GOTS [58]

SU

3.0 3.0 6.6 14.7 33.0 62.0 80.9 2.7 5.8 15.6 37.9 52.5

FaceNet [70] 15.0 21.0 33.3 48.7 66.5 81.7 92.5 20.6 32.4 51.0 69.2 79.0

VGGFace [60] 20.0 32.2 43.7 59.8 74.8 87.1 95.6 26.2 45.1 62.8 78.6 86.0

MN-vc [98] - - - 86.2 92.7 96.8 98.9 - - - - -

CN [97] - - - 88.5 94.7 98.3 99.8 - - - - -

RX50 SU 20.2 42.0 59.2 75.7 89.0 96.4 99.2 42.5 57.9 76.6 87.9 93.9

GTA US 21.4 51.1 68.0 82.3 91.7 96.6 99.0 49.6 68.8 82.0 89.6 94.7

TAR of RX50 by 24.6% and 11.6% at FAR equal to 10−5 and 10−4, receptively. In the

1: N mixed identification scenario, GTA improved TPIR of RX50 by 13.0% and 9.3% at

FPIR are 10−2 and 10−1, receptively. In addition, it improved 2.3% in term of Rank-1

accuracy. These results indicated that GTA learned to generate higher-level discriminative

templates from a mixed-media set.

6.2.2.3 IJB-C: Large-scaled Set-based FR

Table 6.6 summarizes the state-of-the-art performance reported in recent literature and the

performance of our baselines. The best results in both supervised (SU) and unsupervised

(US) methods are marked in bold. In the 1:1 Mixed Verification scenario, GTA improved

TARs of the baseline RX50 by 21.7%, 14.9%, and 8.7% when FAR equals to 10−6, 10−5,
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and 10−4, respectively. In the 1: N Mixed Identification scenario, GTA improved TPIR by

16.7% and 18.8% when FPIR are 10−3 and 10−2, respectively. In addition, GTA improved

the Rank-1 accuracy of RX50 by 1.7%. Using the backbone network RX50, GTA achieved

the state-of-the-art Rank-1 accuracy reported on this dataset.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation focused on the pipeline of face recognition. The primary contributions

were achieved by developing different modules/algorithms to build a robust face recogni-

tion system in the presence of variances of pose, expression, and occlusion. Addressing

the existing challenges, a series of algorithms were proposed to improve the performance

of each objective.

A well-designed 3D-aided 2D face recognition system was developed that was robust

to pose variations as large as 90◦ using deep learning technology. Detailed experiments

were conducted on UHDB31 and IJB-A to demonstrate that the proposed system was ro-

bust to theses variations of pose, and it outperformed existing 2D face recognition systems

such as VGG face descriptor, FaceNet, and a commercial face recognition software. A
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light-weight, maintainable, scalable, generalizable, and extendable face recognition eval-

uation toolbox was designed and implemented in Python that supports both online and of-

fline evaluation to benefit the biometrics research community and to accelerate biometrics-

related research. FaRE was designed to evaluate general FR systems, which consisted of

commonly used evaluation metrics functions, closed-set, and open-set FR datasets.

ERF demonstrated its efficiency in detecting the landmarks on frontal images, while

JFA showed that the pose estimation and face alignment tasks were jointly learnable in the

same framework. An initialization method for face alignment and a learning procedure

using an ensemble of random ferns to learn local features were proposed. ERF was con-

structed in a cascade manner to extract the local features. By using the proposed methods,

improved performance was achieved compared with the state-of-the-art methods. A joint

hierarchical head pose estimation and face alignment learning system was proposed by

exploration of the global and local CNN features. Based on the coarse-to-fine manner, the

global CNN features were used to estimate face attributes such as head pose and facial

components while local CNN features were used to refine the shape in the cascade. The

experiments demonstrated that JFA outperformed conventional head pose estimation on

the challenging head pose estimation task.
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Comparative studies using E2FAR as the baseline were performed, which demon-

strated that feature aggregation from different layers was a key-point to train better neu-

ral networks for 3D face reconstruction. FR-FAN was proposed and a significant im-

provement was observed compared to ResNet-101 and E2FAR on our synthetic valida-

tion set. Extensive experiments demonstrated that our model exhibited improved perfor-

mance when compared to the existing state-of-the-art algorithms on BU-3DFE and JNU-

3D datasets and was robust to pose, illumination, and expression variations.

Improving the face recognition performance in the presence of variance of the pose,

expression, and occlusion required the proposal of OREO which contained an attention

mechanism, a balancing sampling strategy, and a similarity-based loss function. Exten-

sive experiments demonstrated that OREO achieved state-of-the-art results on datasets

with both image-based and set-based evaluation protocols. Through ablation studies and

qualitative results, we demonstrated the impact of individual components to the final per-

formance and provided an effective way to better understand the representations learned

by the proposed method. Regarding the mixed-media set-base face recognition, an unsu-

pervised graph-based template adaptation training framework named GTA was developed.

A graph-based template aggregation module is proposed as an add-on to the image-based

template generator, adapting the knowledge from the still image to the mixed-media set

domain. The proposed graph-based template aggregation module helped to generate com-

pact feature embedding considering the relationships within the subgraph. The proposed

unsupervised template adaptation helped to explore the new knowledge in the unknown

target domain. Extensive experiments indicated that our method achieved state-of-the-art

performance in both set-based face identification and verification scenarios.
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7.2 Future Work

As our circle of knowledge expands, so does the circumference of darkness

surrounding it.

— Albert Einstein

Objective 1: 3D-aided Face Recognition System. The developed system consists of

multiple modules including detection, alignment, reconstruction, and template generation.

The limitations along with the future work for this objective are the following:

(i) Computational Acceleration: There are more than ten networks used in the current

system to generate the final template, which limits the computational efficiency and

inference time. Ranjan et al. [64] demonstrated that a single neural network could

be designed for multiple tasks, which helps to fully use the neurons in the networks,

reduce the complexity, and speed up the processing time. In addition, if all opera-

tions were implemented using CUDA, the time copying data between the GPU and

CPU would be reduced resulting in a corresponding reduction in the inference time.

(ii) Automatic Module Registration: When adding a new module to the system, the

system requires that this module be imported in the main process. If an automatic

module registration was used, this step could be avoided as it would allow an ad-

ministrator to register all operations or modules implemented in the system. This

suggestion would help if there are many modules added to the system.

(iii) Module Updates: The multiple modules are developed by different researchers for

84



different purposes. Updating a single module might influence the downstream mod-

ules. One approach to improve the cooperation in the developing team is that the

members should learn to use the development tools such as Git and use the Contin-

uous Integration (CI) to integrate code into a shared repository and test it. It would

help to improve the code quality and to assess the current face recognition perfor-

mance in the test datasets.

Objective 2: 2D Landmark Detection. The algorithms designed in this dissertation

localize the landmarks on 2D facial images. The limitations along with the future work

for this objective are the following:

(i) 3D Supervision: The performance of the landmark detectors developed as part of

this thesis cannot match the current performance of heatmap-based landmark de-

tectors. However, in some cases, heatmap-based landmark detectors generate non-

reasonable results that lead to face recognition failures. To further improve the cur-

rent landmark detector, one might consider adding 3D facial shape constraints in

the network to ensure that the predictions of the network are not only based on the

response from 2D images but are also congruent with the 3D structure.

(ii) Joint Learning: Face detection and landmark detection tasks share the same feature

map. Currently, a trend exists to design anchor-free detectors. To obtain the high

response of the face and facial landmarks, global features are used to detect the face

and local features are used to detect the landmarks and further reduce the false posi-

tives of face detection. It is a trend to use points to predict the human and localize the

landmarks, which would further accelerate the face recognition processing speed.
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(iii) Network Acceleration: The model size of 2D heatmap-based landmark detector usu-

ally is more than 200 MB, which limits their deployment on edge devices. Binary

or ternary networks can be explored to address this issue. By making the weights

binary or ternary, a significant reduction in the computational burden in deployment

is possible, yet still maintain comparable performance with the original model.

Objective 3: 3D Face Reconstruction. While the developed algorithm introduced in this

thesis achieved state-of-the-art results in four publicly available datasets, there is still a

room for improvement in terms of precision and inference time. The limitations along

with the future work for this objective are the following:

(i) Non-linear Model: The linear assumption is a very strong constraint in the 3D mor-

phable model, which does not generalize well beyond the underlying model’s re-

stricted low-dimensional subspace. A non-linear model can be explored in the fu-

ture to generate a 3D facial point cloud. This non-linear mapping from 2D images

to 3D point cloud can be represented by the multiple networks such as auto-encoder,

encoder-decoder to explore the latent space of the face.

(ii) Network Acceleration: Similar to the landmark detection task, the backbone net-

works used in the 3D face reconstruction can be designed with a computational

speed consideration. By designing efficient convolutional neural networks, it would

be easier to make a real-time mobile and embedded vision applications.

Objective 4: 2D Face Recognition. The algorithms developed in this dissertation in-

tended to improve the still-image-based face recognition in the presence of occlusion, and
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also improve the mixed-media set-based face recognition in an unsupervised manner. The

limitations along with the future work for this objective are the following:

(i) Occlusion-aware Generative Adversarial Face Recognition: The attention mecha-

nism used in OREO pointed to the power of finding the occluded facial region on

in-the-wild images. Consequently, a follow-up work may focus on the image gener-

ation for producing an occluded face region using a generative adversarial network

with an attention mechanism. The generative network would learn the distribution

mapping from the occluded images to the non-occluded images. An additional iden-

tity classifier could be added to ensure that the generated images maintain the same

identity.

(ii) Graph Face Modeling: A graph can be used to explore the relationship within a face

region. A face can be described by a global feature vector generated from the whole

face and several local features from the local parts, which can be further represented

by a graph. The graph neural network can be deployed to generate the template for

a single facial image. In addition, the template matcher can be further improved by

graph-based matching, which requires not only to match the global representations

but also to measure the similarity between two local representations.

(iii) Semi-supervised Learning: The improvement offered by GTA can be further im-

proved by exploring the mass of unsupervised data with the graph-based clustering

method and using limited annotated data. There is a large unknown data space with-

out labels including still images and videos. One possible solution is to develop a

graph-based semi-supervised clustering algorithm to find novel classes and involve
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a human operator to provide limited annotations on these novel classes. Using the

supervision signal from the identity labels would help to update the parameters in

the template generator and improve the discriminative power.

(iv) Adversarial Attack: In the face verification scenario, occlusions by facial acces-

sories would easily fool the system to output false identity when the input pair of

images belong to the same identity [27]. In this scenario, OREO might achieve bet-

ter performance because the system will focus on the non-occluded face region. In

the face identification scenario, there is limited literature reporting on how to fool

the system to recognize someone with a different identity using occlusion. In a de-

ployment where the system would be designed following an open-set identification

setting, the result could be that the system might reject the adversarial sample with

accessories when compared with the gallery samples. The reason is that the occlu-

sion will significantly decrease the similarity compared with changing pixels on the

face. However, it is still a very interesting topic to improve face recognition system

security to be robust to adversarial attacks.
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