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ABSTRACT 

Modeling dynamic and static responses of an elastic medium often employs different numerical 

schemes. The elastic properties obtained from the dynamic propagation method are usually 

frequency dependent. To get the static solution, I introduced a damping parameter to the dynamic 

modeling process. By introducing damping into the system, I showed how the widely used time-

marching staggered finite difference (FD) approach in solving the elastodynamic wave equation 

can be used to model time-independent elastostatic problems. I verified the damped FD approach 

by comparing results against the analytical solutions for several models. I also validated my 

approach numerically for an inclusion model by comparing the results computed by the finite 

element (FE) method. The damped FD showed excellent agreement with both the analytical 

results and the FE results.  

I then applied the geomechanical modeling to a deep earthquake problem. Recent work 

using earthquake radiation patterns showed that the subducting slabs hosting deep earthquakes are 

strongly anisotropic.  Such anisotropy may be caused by aligned fluid or melt inclusions of 

carbonates. If it is the case, I showed that the shear modulus of the inclusion must be less than 

one-tenth of the matrix shear modulus in order to achieve the strong anisotropy observed. It infers 

that the inclusion is highly possible to be carbonatite melt or other aqueous fluids. These 

discoveries constrain the amount of subducted carbon into the Earth carried by slabs.  

My second line of research is on seismic imaging. Steeply dipping faults, salt flanks, and 

subsalt sediments are important geological structures in energy exploration. Conventional seismic 

imaging in such areas is known to have challenges, due to poor illumination because of the use of 
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singly scattered waves/primary reflections. I proposed to use multiply scattered waves, especially 

the secondary scattered waves, in the reverse time migration (RTM), to enhance the seismic 

illumination for imaging the steep faults and subsalt areas. I applied the method on two synthetic 

models, a trapezoidal model and the Sigsbee2B model. These two synthetic examples show that 

the new method achieves better imaging of steep faults and subsalt areas than the traditional 

RTM.   



vii 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ........................................................................................................................................... II 

ABSTRACT .................................................................................................................................................................. V 

TABLE OF CONTENTS ......................................................................................................................................... VII 

LIST OF FIGURES ..................................................................................................................................................... X 

CHAPTER 1 INTRODUCTION ................................................................................................................................. 1 

1.1 GEOMECHANICAL MODELING USING A DAMPED FINITE DIFFERENCE METHOD ....................................................... 1 

1.2 SEISMIC IMAGING USING SECONDARY SCATTERED WAVES .................................................................................... 4 

1.3 LAYOUT OF THE DISSERTATION CHAPTERS ............................................................................................................ 6 

CHAPTER 2 ONE-DIMENSIONAL EXAMPLE OF A SPRING-MASS SYSTEM ............................................. 7 

2.1 OBJECTIVE ............................................................................................................................................................ 7 

2.2 PROBLEM STATEMENT ........................................................................................................................................... 7 

2.3 STATIC SOLUTION ................................................................................................................................................. 7 

2.4 STATIC SOLUTION IN A VISCOUS FLUID .................................................................................................................. 8 

2.5 DYNAMIC SOLUTION IN A VISCOUS FLUID .............................................................................................................. 9 

2.6 NUMERICAL EXAMPLES ....................................................................................................................................... 12 

2.7 CRITICAL DAMPING ............................................................................................................................................. 14 

2.8 CONCLUSIONS AND GENERALIZATIONS ............................................................................................................... 16 

CHAPTER 3 METHODOLOGY .............................................................................................................................. 18 

3.1 STATIC, DYNAMICAL, AND DAMPED DYNAMICAL EQUATIONS ............................................................................. 19 

3.2 FINITE DIFFERENCE MODELING FOR REGULAR ELASTODYNAMIC WAVE EQUATIONS ........................................... 20 



viii 

 

3.3 FINITE DIFFERENCE MODELING OF DAMPED ELASTODYNAMIC WAVE EQUATIONS ............................................... 22 

3.3.1 Damped elastic equation in component form ............................................................................................. 22 

3.3.2 Damped elastic equation in discretized form ............................................................................................. 23 

3.4 CHOICE OF THE OPTIMAL DAMPING PARAMETER ................................................................................................. 26 

3.4.1 Natural frequency and standing waves ...................................................................................................... 32 

3.4.2 Damping factor of an inhomogeneous model ............................................................................................. 33 

3.5 DAMPING BASED ON THE VISCOELASTIC ATTENUATION THEORY ........................................................................ 35 

CHAPTER 4 VERIFICATION WITH ANALYTICAL MODELS ....................................................................... 43 

4.1 HOMOGENEOUS AND ISOTROPIC MODELS ............................................................................................................ 43 

4.1.1 Surface average and volume average ......................................................................................................... 45 

4.1.2 Calculation of effective medium moduli for a 2D model ............................................................................ 48 

4.1.3 3D model effective medium moduli calculation .......................................................................................... 50 

4.2 CIRCULAR BOREHOLE MODEL ............................................................................................................................. 54 

4.3 A LAMINATED MODEL IN 3D SPACE ..................................................................................................................... 59 

4.3.1 The edge effect ............................................................................................................................................ 63 

4.4 HASHIN - SHTRIKMAN MODEL ............................................................................................................................. 72 

4.4.1 The “K-test” and the “𝜇-test” .................................................................................................................... 73 

4.4.2 Validation on non-porous rocks ................................................................................................................. 76 

4.4.3 Validation on porous rocks ........................................................................................................................ 82 

CHAPTER 5 COMPARISON WITH FINITE ELEMENT METHOD ................................................................. 89 

5.1 COMPARISON OF RESULTS FOR A 2D MODEL ....................................................................................................... 89 

5.2 COMPARISON OF RESULTS FOR A 3D MODEL ....................................................................................................... 94 

CHAPTER 6 AN APPLICATION: STRONG ANISOTROPY IN SUBDUCTED SLABS AND ITS 

IMPLICATION IN DEEP CARBON CYCLE ...................................................................................................... 105 



ix 

 

6.1 BACKGROUND ................................................................................................................................................... 106 

6.2 METHOD ........................................................................................................................................................... 109 

6.3 RESULTS ........................................................................................................................................................... 117 

6.3.1 Modeling results for solid magnesite as inclusion ................................................................................... 117 

6.3.2 Modeling results for carbonatite melt as inclusion .................................................................................. 119 

6.3.3 Modeling results for varying shear modulus of inclusion ........................................................................ 120 

6.4 DISCUSSIONS ..................................................................................................................................................... 121 

6.4.1 What inclusion properties can give strong anisotropy? ........................................................................... 121 

6.4.2 Can the carbonatite melt cause the anisotropy? ...................................................................................... 124 

6.5 CONCLUSIONS ................................................................................................................................................... 125 

CHAPTER 7 IMPROVING SUBSALT SEDIMENT IMAGING AND HIGH ANGLE FAULTS USING 

SECONDARY SCATTERED SEISMIC WAVES ................................................................................................. 126 

7.1 METHODOLOGY ................................................................................................................................................ 126 

7.2 RESULTS ........................................................................................................................................................... 131 

7.2.1 Trapezoidal model .................................................................................................................................... 131 

7.2.2 Sigsbee2B model ....................................................................................................................................... 135 

7.3 CONCLUSIONS ................................................................................................................................................... 142 

BIBLIOGRAPHY ..................................................................................................................................................... 143 

 

 

 

  



x 

 

LIST OF FIGURES 

Figure 1. A free spring with no force applied and with a mass attached to the lower end. ............. 8 

Figure 2. Spring with a ball and the step function showing the time history of the applied force. . 9 

Figure 3. The initial states of the springs. ...................................................................................... 12 

Figure 4. The final status of the springs. ........................................................................................ 13 

Figure 5. Spring displacements for different viscous damping parameters. .................................. 15 

Figure 6. The 2D staggered-grid finite difference scheme. ........................................................... 22 

Figure 7. The finite difference staggered-grid stencil for 3D medium. ......................................... 25 

Figure 8. Illustration of the 2D model domain and the three picked nodes. .................................. 27 

Figure 9. Particle displacements in the 𝑥 direction and the corresponding amplitude spectra. ..... 28 

Figure 10. Strain and kinetic energy for the entire model versus the number of time steps in the 

finite difference modeling. ..................................................................................................... 30 

Figure 11. The number of time steps required for the system to reach equilibrium for different 

damping parameters. .............................................................................................................. 31 

Figure 12. The numerical model of the 2D porous sandstone and its nine picked nodes. ............. 34 

Figure 13. Displacements and the corresponding amplitude spectra at the chosen nodes. ............ 35 

Figure 14. Strain and kinetic energy for the entire model versus the number of time steps for 

𝑓𝑝𝑒𝑎𝑘 12𝐻𝑧. ..................................................................................................................... 40 

Figure 15. Strain and kinetic energy for the entire model versus the number of time steps for 

𝑄𝑝𝑒𝑎𝑘=1.185. ........................................................................................................................ 41 

Figure 16. Two scenarios of boundary conditions applied to the 2D model. ................................ 44 



xi 

 

Figure 17. Displacement fields for the 2D homogeneous model when normal stresses were 

applied. ................................................................................................................................... 48 

Figure 18. Displacement fields for the 2D homogeneous model when shear stresses were applied.

 ................................................................................................................................................ 50 

Figure 19. Illustrations showing the two cases of applied stresses for the measurements of 𝐸 and 

𝐾. ............................................................................................................................................ 51 

Figure 20. The displacement fields from applying the boundary condition of  𝜎 1 𝑀𝑃𝑎. ..... 52 

Figure 21. The displacement fields from applying the boundary condition of𝜎 𝜎 𝜎

1 𝑀𝑃𝑎 . .................................................................................................................................. 53 

Figure 22. Circular borehole stresses in polar coordinates (Adapted from (Liu et al., 2018) Fig.2).

 ................................................................................................................................................ 55 

Figure 23. Comparison of the radial normal stress fields obtained by the analytical and the finite 

difference method................................................................................................................... 57 

Figure 24. Comparison of the tangential normal stress fields obtained by the analytical and the 

finite difference method. ........................................................................................................ 58 

Figure 25. Comparison of the shear stress fields obtained by the analytical and the finite 

difference method. ................................................................................................................. 58 

Figure 26. A laminate model for a thin-layered sequence of 50% dolomite and 50% shale. ........ 60 

Figure 27. Normal stress fields for the laminated model. .............................................................. 65 

Figure 28. Shear stress fields for the laminated model. ................................................................. 66 

Figure 29. Normal strain fields for the laminated model. .............................................................. 67 



xii 

 

Figure 30. Displacement gradients used in the calculation of shear strains................................... 68 

Figure 31. A model with cubic grains of two isotropic constituents, randomly distributed. ......... 77 

Figure 32. Displacement, strain, and stress fields from the modeling of bulk modulus for the 

nonporous model displayed in Figure 31. .............................................................................. 78 

Figure 33. Displacement, strain and stress fields from the modeling of shear modulus for the 

nonporous model displayed in Figure 31. .............................................................................. 81 

Figure 34. The heterogeneous model penetrated with straight channels of water. ........................ 83 

Figure 35. The displacement fields, strain fields, and stress fields from the modeling of bulk 

modulus for the water channel model in Figure 31, but with homogeneous solid. ............... 85 

Figure 36. The displacement fields, strain fields, and stress fields from the modeling of bulk 

modulus for the water channel model in Figure 31, with inhomogeneous solid. .................. 87 

Figure 37. Illustration of the 2D model of shale with the inclusion of dolomite. .......................... 90 

Figure 38. Comparison of the strain fields modeled from the damped finite difference method and 

the finite element method. ...................................................................................................... 91 

Figure 39. Comparison of the stress field modeled from the damped finite difference method and 

the finite element method. ...................................................................................................... 92 

Figure 40. Comparison of the displacement field modeled from the damped finite difference and 

the finite element method. ...................................................................................................... 93 

Figure 41. The displacement fields calculated from the damped finite difference and the finite 

element methods, for the model shown in Figure 31 with the first grid configuration of grid 

sampling step of 2 𝑚 in all dimensions. ................................................................................ 96 



xiii 

 

Figure 42. The strain fields calculated from the damped finite difference and the finite element 

methods, for the model shown in Figure 31 with the first grid configuration of grid sampling 

step of 2 𝑚 in all dimensions. ................................................................................................ 97 

Figure 43. The stress fields calculated from the damped finite difference and the finite element 

methods, for the model shown in Figure 31 with the first grid configuration of grid sampling 

step of 2 𝑚 in all dimensions. ................................................................................................ 98 

Figure 44. The displacement fields calculated from the damped finite difference and the finite 

element methods, for the model shown in Figure 31 with the second grid configuration of 

grid sampling step of 0.5 𝑚 in all dimensions. .................................................................... 102 

Figure 45. The strain fields calculated from the damped finite difference and the finite element 

methods, for the model shown in Figure 31 with the second grid configuration of grid 

sampling step of 0.5 𝑚 in all dimensions. ............................................................................ 103 

Figure 46. The stress fields calculated from the damped finite difference and the finite element 

methods, for the model shown in Figure 31 with the second grid configuration of grid 

sampling step of 0.5 𝑚 in all dimensions. ............................................................................ 104 

Figure 47. The shear anisotropy strength 𝛾 in the 6 studied deep earthquake regions. ............... 107 

Figure 48. Rock model with thin penny-shaped inclusions embedded. ....................................... 110 

Figure 49. Plots of magnesite compared to the Preliminary Reference Earth Model (PREM). .. 114 

Figure 50. The crack density as a function of different volume fractions and aspect ratios of 

inclusions. ............................................................................................................................ 115 

Figure 51. Modeling results for magnesite as inclusions and carbonatite melt as inclusions. ..... 118 



xiv 

 

Figure 52. Relationship between effective 𝛾 of the model and crack density. ............................ 120 

Figure 53. Plots of the 𝛾 values for different crack densities in normal (linear) and log scales. . 122 

Figure 54. 𝛾 values as a function of inclusion volume fractions and aspect ratios. ..................... 123 

Figure 55. Raypaths of primary scattered waves and secondary scattered waves. ...................... 127 

Figure 56. The trapezoidal velocity model and the conventional RTM image. ........................... 132 

Figure 57. The migration velocity model with a single density point scatterer and its images. .. 134 

Figure 58. The migration velocity model with multiple density point scatterers and its images. 135 

Figure 59. Sigsbee2B velocity model. ......................................................................................... 137 

Figure 60. The conventional RTM image from the Sigsbee2B model. ....................................... 138 

Figure 61. The first set of scatterers and the corresponding secondary scattering image. ........... 139 

Figure 62. The second set of scatterers and the corresponding secondary scattering image. ...... 140 

Figure 63. The stacked image from Figure 61(b) and Figure 62(b) and the overlay with the 

reflectivity model. ................................................................................................................ 141 



1 

 

CHAPTER 1  INTRODUCTION 

This dissertation consists of two lines of research. The first one is on geomechanical modeling 

using a damped finite difference scheme with applications in understanding subducting slab 

anisotropy (Chapter 2 to Chapter 6). The second one is on how to improve subsalt imaging in 

particular for high angle faults using secondary scattered seismic waves (Chapter 7). In the 

following, I will present the background and motivation of each research topic.  

1.1 Geomechanical modeling using a damped finite difference method 

Geomechanical modeling plays a very important role in exploration geophysics for the lifecycle 

of oil and gas fields (Oristaglio, 2016), geothermal fluids, ground subsidence, as well as the 

wellbore stability in drilling. However, it is computationally challenging to compute stress and 

strain fields in complex geology for a large-scale field.  The most widely used numerical method 

is the finite element method. One needs to mesh the model and invert for a matrix if using the 

finite element method. Both tasks are quite challenging. The goal of my research is to develop an 

efficient damped finite difference method to solve for large scale geomechanical problems. The 

damped finite difference method not only can lead to correct static solutions but also captures 

both fast (e.g., seismic wave propagation) and slow (viscoelastic deformation) dynamics. This can 

have a huge practical impact because finite difference model gridding is much easier than the 

finite element meshing and it is also straightforward to implement the parallel computing for 

finite difference.  
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 Geomechanics studies the mechanical behavior of rocks in response to forces (Jaeger et 

al., 2009). A rock’s response to applied stresses usually has three stages: linear elastic 

deformation, plastic deformation, and brittle failure. In this study, I will focus on the elastic 

regime and effective properties of a heterogeneous rock.  

In many cases, we need to understand the effective properties of an elastic medium, which 

can be a heterogeneous or composite medium with several different constituent materials. For 

example, when the heterogeneity scale in a rock sample is much smaller than the wavelength, the 

sample can be viewed as an effectively homogeneous medium. To estimate the effective elastic 

moduli, we need to know the bulk static strain/deformation given the applied stresses. In this 

situation, the numerical modeling of the stresses and strains of the rock model is helpful. 

  Previously, many researchers have proposed to compute the effective moduli with the 

finite element method (e.g., Garboczi, 1998; Saxena and Mavko, 2016), which is a commonly 

used numerical modeling method in engineering problems for static stress-strain analyses owing 

to its geometrical flexibility and numerical accuracy. It can also solve dynamic problems such as 

fault rupture (Meng, 2017; Meng and Wang, 2018). The finite element method partitions a model 

into small meshing elements with nodes. Interpolation functions across nodes are used to convert 

the partial differential equations into a matrix equation system (e.g., Reddy, 2004). However, for 

static problems with a large degree of freedom, meshing the model into elements and solving the 

resulting matrix equation can be computationally challenging. 
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Time-marching finite difference methods are widely used in modeling dynamic seismic 

wave propagation and scattering (Kelly et al., 1976; Levander, 1988; Schuster, 2017; Virieux, 

1984, 1986a).  Some authors also used the finite difference method for modeling stresses and 

strains. Saenger et al., (2000) calculated the effective elastic moduli by propagating a dynamic 

pulse through a heterogeneous medium using a finite difference method and used the traveltimes 

of the P and S waves to obtain the effective elastic moduli. Since the group velocity of the elastic 

wave is a function of the dominant wavelength and the scale of heterogeneity, the effective elastic 

moduli estimated by this method is therefore frequency dependent. In other words, the results 

obtained using this method are not strictly static solutions. 

Saenger et al., (2005; 2006) found during their finite difference viscoelastic wave 

modeling on digital rocks using Darcy’s law that the waves will be highly attenuated by setting 

high anelastic coefficients, such as an anelastic tensor component equals to 99% of the input P-

wave modulus. Since only the non-zero frequency waves will be attenuated, the modeling will 

end up with the static solution after a sufficient number of time steps (Saenger et al., 2006). 

 I am motivated to take advantage of the finite difference time-marching schemes in 

solving the damped elastodynamic equation and obtaining the static stress/strain field of the 

model without the effort of inverting the large matrix otherwise needed in an implicit finite 

element method for static problems. The damped finite difference method provides an additional 

tool for seismic wave modelers to solve geomechanical problems. In Chapter 2 , I will illustrate 

the concept of the damped elastodynamic equation and give a recipe on choosing the proper 
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damping parameter to damp out the kinetic energy in the elastic system and obtain the static 

solutions.  

1.2 Seismic imaging using secondary scattered waves 

My second line of research is in seismic imaging. Reflection seismic data contain all kinds of 

events, such as primary reflections, surface-related multiples, and interbed multiples. However, 

conventional seismic migration algorithms map the acquired seismic data to images as if all the 

events in the data were primary reflections (i.e., singly scattered). There are two consequences of 

doing so: 1) the multiples are mapped to the wrong locations as artifacts in images; 2) the 

primary-reflection geometry has limited illumination in the subsurface. Recently, significant 

progress has been made in multiple imaging and waveform inversion ((Liu et al., 2011; Liu et al., 

2016; Malcolm et al., 2011) and showed that multiples have useful information. In the 

dissertation, I showed that if taking into account high-order scattering physics, one could achieve 

better illumination of subsalt imaging and were able to image possibly important high-angle 

faults. The reverse time migration (RTM) (Baysal et al., 1983; Mcmechan, 1983; Whitmore, 

1984) is used as the imaging tool instead of the one-way methods used in previous times. 

The conventional RTM image is created by assuming all events in the data are primary 

reflections or singly scattered events. Due to the geometry of the surface seismic survey where 

sources and receivers are located near the earth's surface, the primary reflections may not be able 

to reach the “shadow zones” where illumination is poor. Typical “shadow zones” include high-

angle faults, steep salt flanks and subsalt sediments. An accurate image of these areas is very 
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important for identifying reservoirs and drilling prospects for oil and gas production. In the past, 

geophysicists showed that with secondary scattered waves (e.g., Dai and Schuster, 2013; Ding et 

al., 2019; He and Wu, 2009) and multiples (e.g., Liu et al., 2015; Lu et al., 2015; Malcolm et al., 

2011; Malcolm et al., 2009), one can increase the illumination of seismic images. These waves 

have unique wave paths, which can reach shadow areas that primary reflections are not able to 

(Liu et al., 2011). 

Using wave-generated secondary sources to increase illumination has been applied in 

different contexts by different authors. Most authors used high contrast reflecting boundaries as 

secondary “sources” (Dai and Schuster, 2013; Ding et al., 2019; Farmer et al., 2006; Jin et al., 

2006; Kryvohuz and Kuehl, 2019; Malcolm et al., 2011; Tan and Huang, 2014). He and Wu, 

(2009) used natural point scatterers such as pinch outs and sharp edge points on salt boundaries. 

Some authors explicitly put these strong reflecting boundaries in the smoothed velocity model 

(e.g., Farmer et al., 2006; Jin et al., 2006; Tan and Huang, 2014) and others considered them as 

Born scattering sources (Dai and Schuster, 2013; Kryvohuz and Kuehl, 2019). 

Different from the previous implementations, my proposed secondary scattering method 

in this dissertation uses point scatterers instead of continuous reflectors (or mirror source) as 

secondary sources and does not require the structure to have a true scatterer like a pinch out or a 

sharp edge point. Furthermore, the scatterers are created by density anomalies such that the 

traveltimes would not be affected.  



6 

 

1.3 Layout of the dissertation chapters 

The dissertation has 7 chapters: 

 In Chapter 1, I introduced about the ideas in the dissertation and their impacts.  

 

 In Chapter 2 , I showed how to obtain the static solution by solving a dynamic equation, using 

a 1D example.  

 In Chapter 3 , I described the methodology of the damped finite difference method for the 

measurements of static stress and strain fields with implementation details. 

 In Chapter 4 , I verified the damped finite difference method’s results with the analytical 

solutions for four models. 

 In Chapter 5 , I compared and benchmarked the damped finite difference method with the 

finite element method. 

 In Chapter 6 , I used the damped finite difference method to analyze the high anisotropy in the 

subducted slabs and its implication of deep carbon cycle. 

 In Chapter 7 , I showed the methodology, results and conclusions of my second line of work: 

seismic imaging using secondary scattered waves.   



7 

 

CHAPTER 2  ONE-DIMENSIONAL EXAMPLE OF A 
SPRING-MASS SYSTEM 
 

In Chapter 1 , I introduced the concept and advantages of solving for static stress/strain solutions 

using damped dynamic equations. In this chapter, I will use a 1D spring-mass system to illustrate 

and motivate the concept. I will show the validity of using viscous damping in a dynamic 

equation to solve for the static stress/strain solution. 

2.1 Objective 

The goal is to demonstrate how to obtain the static solution by solving a dynamic equation but 

with viscous damping using a 1D spring-mass system as an example.  

2.2 Problem statement 

Consider a massless spring of a natural length, 𝐿 , with one end fixed at the ceiling and the other 

end free (Figure 1(a)). If a force (in this case, the gravity of a ball with mass 𝑚) is attached to the 

lower end of the spring (i.e., equivalent stress boundary condition) (Figure 1(b)), what is the axial 

strain? 

2.3 Static solution  

One can get the elongation (i.e., deformation) of the spring L , using Hooke’s law:  

 𝑘∆𝐿 𝑚𝑔, (1) 

 where 𝑘 is the spring constant and 𝑔 is the gravitational acceleration. The axial strain 𝜖 is: 
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 𝜖
∆𝐿
𝐿

𝑚𝑔
𝑘𝐿

. (2) 

Next, we will convert this problem into a dynamic oscillatory problem whose long-term solution 

approaches to the static solution.  

  

 

Figure 1. A free spring with no force applied (a) and with a mass m attached to the lower end (b). 

 

2.4 Static solution in a viscous fluid 

If one puts the spring system with the ball attached (Figure 2(a)) in a viscous fluid (Figure 2(b)) 

and does not consider the fluid buoyance, the amount of spring elongation is the same as if when 

no viscous fluid is present. When the ball is force balanced in the viscous fluid, there are only two 

forces: gravity and the elastic force from the spring, as in the case of Equation (1). Therefore, we 

will get the same strain solution.  
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However, there will be a viscous force when the ball is in motion and has a relative 

velocity with respect to the fluid.  

 

Figure 2. (a) spring with a ball and (b) spring with a ball in a viscous fluid. (c) the step function 
H(t) showing the time history of the applied force, as in Equation (3). 

 

2.5 Dynamic solution in a viscous fluid 

At time zero, a ball with mass 𝑚 is suddenly hooked to the spring immersed in the viscous fluid 

with viscosity 𝜂 (Figure 2(b)). The force history on the spring is a step function (Figure 2(c)). 

Immediately, the ball will start to oscillate and it will approach the final equilibrium position. 

How soon the equilibrium state can be reached depends on the viscosity. If the viscosity is very 

large, the mass sinks slowly and it will take a very long time to reach the final equilibrium 

position. If there is zero viscosity, the mass will oscillate forever around the equilibrium position. 

These two extreme situations imply the existence of a special viscosity value corresponding to an 

optimal damping case which can get to the equilibrium state in the shortest time.  
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The dynamic equation governing the displacement of the ball in a viscous fluid is 

 
𝑚

𝑑𝑥 𝑡
𝑑𝑡

𝜂
𝑑𝑥 𝑡

𝑑𝑡
𝑘𝑥 𝑡 𝑚𝑔𝐻 𝑡 , (3) 

where 𝑥 𝑡  is the time (𝑡) dependent displacement, 𝑚 is the mass of the ball, 𝑘 is the spring 

constant, and 𝑔 is the gravitational acceleration. 𝐻 𝑡  is a step function showing the force time 

history: 

 𝐻 𝑡
0, 𝑡 0
1, 𝑡 0. (4) 

 

The solution of Equation (3) is (Udias and Buforn, 2017): 

 𝑥 𝑡 𝐴𝑒𝑥𝑝
𝜔
2𝑄

𝑡 𝑠𝑖𝑛 𝜔𝑡 𝜙
𝑚𝑔
𝑘

, 𝑡 0, (5) 

and 

 
𝜔 𝜔 1 , (6) 

 𝑄 , (7) 

 
𝜔 𝑘 𝑚, (8) 

where 𝐴 is the amplitude, 𝜙 is the initial phase and  𝜔  is the harmonic oscillation frequency 

corresponding to the zero viscosity (i.e., 𝜂 0) case. 

Equation (5) represents a damped oscillation. As time 𝑡 → ∞ , the mass will converge to 

the equilibrium displacement  𝑥 𝑡 → ∞ , which gives exactly the same axial strain as in 
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the static case (Equation (1)). This example shows that the time-dependent dynamic solution 

converges to the static solution.  
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2.6 Numerical examples  

In the following examples, I show the scenarios of dynamic solutions in two fluids of different 

viscosities.  

Two identical springs of a spring constant 𝑘 40 𝑁/𝑚 and a natural length 𝐿 0.08 𝑚 

are in two different viscous fluids (Figure 3). One fluid is of viscosity 2 𝑃𝑎 ∙ 𝑠, and the other is of 

viscosity 1.4 𝑃𝑎 ∙ 𝑠.  

 

Figure 3. The initial states of the springs. 

 
At time zero, two balls of the same mass 𝑚 0.2 𝑘𝑔 are hooked to the two springs, 

respectively. The gravity of the ball will act as a sudden external force on the spring, causing the 

spring to oscillate (See my movie at https://www.youtube.com/watch?v=_596xkYG7-c). 
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However, the viscous fluid will impose a resistant force on the balls to gradually slow down their 

oscillations. 

The two different fluid viscosities act as different damping parameters on the spring-mass 

system. The ball in the fluid of viscosity 2  𝑃𝑎 ∙ 𝑠 will stop earlier than the one in the fluid of 

viscosity 1.4  𝑃𝑎 ∙ 𝑠. However, the two balls both stop at the same displacement position 

equivalent to the static solution of Equation (1).  

With the values assigned to the parameters in Equation (1) , I get 

L .  . 0.049 𝑚 . 

The final position of the balls will be at 𝐿 L 0.129 𝑚 (Figure 4). 

Figure 4 

 

Figure 4. The final status of the springs. 
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2.7 Critical damping  

In the above two examples, although both balls stop at the same position, the times to reach the 

equilibrium are different, due to different viscosities of the fluids. In the following analysis, I will 

introduce the concept of the critical damping. If the viscosity of the fluid is equal to the critical 

damping, the spring-ball system will approach its equilibrium status in the shortest time. 

To study the damping factor, I consider a homogenous version (the right hand side of the equation 

is zero). In this case, the second order differential Equation (3) admits a solution in the form of: 

 𝑥 𝑡 𝑒 . (9) 

Here I rename the viscosity 𝜂 the damping parameter 𝑐. Substituting 𝑥 𝑡  in Equation (3) with 

Equation (9) results in a quadratic equation: 

 𝑚𝜆 𝑐𝜆 𝑘 0, (10)

and the roots of the equation are: 

 
𝜆

𝑐 √𝑐 4𝑚𝑘
2𝑚

. (11)

When the damping parameter 𝑐 2√𝑚𝑘, 𝜆 is always a negative real number and the 

system is called overdamped. When 𝑐 2√𝑚𝑘, 𝜆 is a complex number with a negative real part 

corresponding to an exponential decay but a non-zero imaginary part corresponding to oscillation 

and the system is called underdamped. The critical damping occurs when 𝑐 2√𝑚𝑘 and the ball 

will reach its equilibrium state in the shortest amount of time (Gregory, 2006). 
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Figure 5. Spring displacements for different viscous damping parameters. 

 

In Equation (11), when 𝑐 2√𝑚𝑘, the displacement 𝑥 𝑡  decays the fastest. This damping 

parameter makes the system stabilize with the least amount of time, and therefore is called the 

critical damping parameter. From Figure 5 we know that when 

𝑐 2√𝑘𝑚 2 √40 0.2 5.656, 

the system reaches an equilibrium of 𝑥 0.049 𝑚 with the least amount of time, taking about 

0.6 𝑠, while the other damping parameters all take a longer time than that. 
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When the damping parameter 𝑐 0, there is no damping applied (Figure 5), which 

implies a harmonic period 𝑇 of about 0.444 𝑠. In this case, the spring oscillates at its natural 

frequency. The critical damping parameter 𝑐  can be calculated using the following 

equation: 

 

𝑐 2√𝑘𝑚 2𝑚
𝑘
𝑚

2𝑚𝜔 , (12)

where 𝜔  represents the natural frequency, which in the above case is calculated as 𝜔

14.14 𝑟𝑎𝑑/𝑠. 

 

2.8 Conclusions and generalizations  

In this 1D example, I explained how a static solution can be obtained by solving a damped 

dynamic equation. At time zero, an external force is imposed on the system and is kept on ever 

since. It is a step function force. This sudden force will trigger the spring to oscillate. If viscous 

damping is applied, the kinetic energy will die out eventually and make the system stabilized at 

the same state as the original static problem. In 2D or 3D cases, similar ideas can be generalized. 

The applied forces will be acting on the elastic model boundaries in a step function manner. 

Before time zero, no forces are applied; at time zero, the forces are suddenly applied on the 

boundaries and cause oscillations of the particles in the model; after time zero, the forces are kept 

on and act as zero-frequency static forces. Since damping is applied in the system, the kinetic 

components will be damped out eventually and the system will stabilize at the static solution. The 
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driving function form does not matter as long as the forces become constants beyond a time point. 

In later chapters, I will solve the damped dynamic finite difference equations to obtain the static 

solutions.  

  



18 

 

CHAPTER 3  METHODOLOGY 

A damped dynamic finite difference approach for 
modeling static stress-strain fields 
 
In Chapter 2 , I demonstrated that we could obtain the elastostatic solution by solving a damped 

dynamic equation for the spring-mass system in a viscous fluid. Likewise, in a 2D or 3D case, we 

can view an elastic medium as a web of inter-connected mass points and springs. We can 

immerse this system in a viscous fluid and solve the dynamic problem. This viscous immersion 

can be realized by adding a damping term in a dynamic equation. This has an obvious advantage 

in numerical calculations since we can employ the time-marching finite difference method to 

solve for stress and strain. In 2D and 3D elastic cases where a large number of model grids are 

used, solving the elastodynamic equations in a time-marching fashion can be easier and more 

efficient than solving the static equations. 
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3.1 Static, dynamical, and damped dynamical equations 

The governing equation for modeling static loading is  

 𝛻 ∙ 𝝈 0, (13)

where 𝜎 𝑥, 𝑦, 𝑧  is the time-independent stress tensor in the interior of the computational domain. 

Since 𝜎 𝑥, 𝑦, 𝑧  represents a time-independent variable, Equation (13) could not be solved by the 

regular time-marching dynamic finite difference method directly. Instead, I solved the damped 

wave equation of the form (Morse and Feshbach, 1954, p.868): 

 
𝜌

𝜕�⃗�
𝜕𝑡

𝜌 �⃗� 𝑑 𝛻 ∙ 𝝈, (14)

where �⃗� 𝑥, 𝑦, 𝑧, 𝑡  is the particle motion velocity field and 𝜎 𝑥, 𝑦, 𝑧, 𝑡  is the stress tensor field. 

Both fields depend on time 𝑡 and spatial coordinates 𝑥, 𝑦, and 𝑧.  𝜌 𝑥, 𝑦, 𝑧  is density, and 𝑑 is a 

constant positive damping parameter. If 𝑑 0, Equation  (14) becomes the regular wave 

equation: 

 
𝜌

𝜕�⃗�
𝜕𝑡

𝛻 ∙ 𝝈. (15)

 

  Equation (14) is a time evolution equation for the particle velocity and stress fields. As 

time elapses, the kinetic energy in the system will be progressively reduced. When the kinetic 

energy damps out and particle velocities become zero, the left side of Equation (14) vanishes and 

the displacement field becomes the static field we want. The resultant stress field 𝝉 is the static 

field that satisfies both the elastostatic Equation (13) and the boundary conditions.  
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3.2 Finite difference modeling for regular elastodynamic wave equations 

Before introducing the damped finite difference method, I firstly review the regular staggered 

grid finite difference method, upon which the new damped finite difference method is based on.  

Assume the medium is elastic and isotropic, the elastodynamic wave equation for a two 

dimensional 𝑥, 𝑧   medium can be written as (e.g., Virieux, 1986a): 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝜕𝑣
𝜕𝑡

𝑏
𝜕𝜎
𝜕𝑥

𝜕𝜎
𝜕𝑧

𝜕𝑣
𝜕𝑡

𝑏
𝜕𝜎
𝜕𝑥

𝜕𝜎
𝜕𝑧

            

𝜕𝜎
𝜕𝑡

𝜆 2𝜇
𝜕𝑣
𝜕𝑥

𝜆
𝜕𝑣
𝜕𝑧

𝜕𝜎
𝜕𝑡

𝜆 2𝜇
𝜕𝑣
𝜕𝑧

𝜆
𝜕𝑣
𝜕𝑥

𝜕𝜎
𝜕𝑡

𝜇
𝜕𝑣
𝜕𝑧

𝜕𝑣
𝜕𝑥

 ,                               (16)

where 𝑏 𝑥, 𝑧  is the reciprocal of density, 𝜆 𝑥, 𝑧  and 𝜇 𝑥, 𝑧   are the Lamé constants, 𝑣 𝑥, 𝑧  

and 𝑣 𝑥, 𝑧  represent velocity fields of the 𝑥 and 𝑧 components, respectively, 𝜎 𝑥, 𝑧  and 

𝜎 𝑥, 𝑧  are the normal stresses and  𝜎 𝑥, 𝑧  is the shear stress. 

The discretized form of Equation (16) using the centered finite difference leads to a 

staggered-grid scheme (Virieux, 1986a). The expressions for the discretized Equation (16) in 

terms of velocities  𝑣  and 𝑣   and stresses 𝜎 , 𝜎  and 𝜎  with second-order accuracy in both 

space and time are :   
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𝑈 ⁄ ,

⁄ 𝑈 ⁄ ,
⁄ 𝐵 ⁄ ,

Δ𝑡
Δ𝑥

Σ , Σ ,

𝐵 ⁄ ,
Δ𝑡
Δ𝑧

Ξ ⁄ , ⁄

Ξ ⁄ , ⁄ ,          

(17)

 
𝑉 , ⁄

⁄ 𝑉 , ⁄
⁄ 𝐵 , ⁄

Δ𝑡
Δ𝑥

Ξ ⁄ , ⁄ Ξ ⁄ , ⁄

𝐵 , ⁄
Δ𝑡
Δ𝑧

Τ , Τ , ,  

(18)

 
Σ , Σ , 𝐿 2𝑀 ,

Δ𝑡
Δ𝑥

𝑈 ⁄ ,
⁄ 𝑈 ⁄ ,

⁄

𝐿 ,
Δ𝑡
Δ𝑧

𝑉 , ⁄
⁄ 𝑉 , ⁄

⁄ ,             

(19)

 
T , T , 𝐿 2𝑀 ,

Δ𝑡
Δz

𝑉 , ⁄
⁄ 𝑉 , ⁄

⁄

𝐿 ,
Δ𝑡
Δ𝑥

𝑈 ⁄ ,
⁄ 𝑈 ⁄ ,

⁄ ,              

(20) 

 
Ξ ⁄ , ⁄ Ξ ⁄ , ⁄ 𝑀 ⁄ , ⁄

Δ𝑡
Δz

𝑈 ⁄ ,
⁄ 𝑈 ⁄ ,

⁄

𝑀 ⁄ , ⁄
Δ𝑡
Δ𝑥

𝑉 , ⁄
⁄ 𝑉 , ⁄

⁄ ,                        

(21) 

where Σ represents the normal stress 𝜎 , Ξ represents the shear stress 𝜎 , Τ represents the 

normal stress 𝜎 , U represents the velocity 𝑣 , and V represents the velocity 𝑣 .  𝐿 and 𝑀 

represent the Lamé constants.  𝛥𝑡 is the time grid step, 𝛥𝑥 and 𝛥𝑧 are grid steps in 𝑥-axis and 𝑧-

axis directions, respectively, and 𝐵 is the buoyancy of the model (Virieux, 1986a). The 

superscript means the time step, the subscripts are 𝑥 and 𝑧 grid numbers separated by a comma. 
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An illustration of the staggered-grid layout in a two dimensional medium is shown below (Figure 

6). 

 

Figure 6. The 2D staggered-grid finite difference scheme. 

 

3.3 Finite difference modeling of damped elastodynamic wave equations 

3.3.1 Damped elastic equation in component form 

I have done both 2D and 3D modeling. However, in the following theoretical analysis, for 

simplicity and comparison with the original elastodynamic wave equations, I only discuss two-

dimensional 𝑥, 𝑧  modeling as an example. The 3D cases will be shown in numerical examples.  

  



23 

 

Assume the model material is isotropic, Equation (14) can be expressed as the following 

first-order velocity-stress equations:  

 

⎩
⎪
⎪
⎪
⎪
⎨
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⎪
⎪
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 ,                               (22)

where 𝑏 is the reciprocal of density, 𝜆 and 𝜇 are the Lamé constants; 𝑣  and 𝑣  represent velocity 

fields of the 𝑥 and 𝑧 components, respectively, 𝜎  and 𝜎  are normal stresses and  𝜎  is the 

shear stress. The damping parameter 𝑑 is a constant that should be determined before formally 

running the modeling process. 

3.3.2 Damped elastic equation in discretized form  

Equation (22) can be solved using the staggered-grid finite difference method (e.g.,  Fang et al., 

2014; Virieux, 1986a). The finite difference formulas for stresses 𝜎 , 𝜎  and 𝜎  are the same as 

in the original elastodynamic wave equations case (Equation (19) to Equation (21)). 
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The finite difference formulas for velocities 𝑣  and 𝑣   with second-order accuracy in both 

space and time are expressed as:   

 
𝑈 ⁄ ,

⁄ 1

1 𝑑Δ𝑡
2

1
𝑑Δ𝑡

2
𝑈 ⁄ ,

⁄ 𝐵 ⁄ ,
Δ𝑡
Δ𝑥

Σ , Σ ,  

 𝐵 ⁄ ,
Δ𝑡
Δ𝑧

Ξ ⁄ , ⁄

Ξ ⁄ , ⁄ ,  

(23)

 
𝑉 , ⁄

⁄ 1

1 𝑑Δ𝑡
2

1
𝑑Δ𝑡

2
𝑉 , ⁄

⁄ 𝐵 , ⁄
Δ𝑡
Δ𝑥

Ξ ⁄ , ⁄ Ξ ⁄ , ⁄

𝐵 , ⁄
Δ𝑡
Δ𝑧

Τ , Τ , ,  

(24)

where Σ represents the normal stress 𝜎 , Ξ represents the shear stress 𝜎 , Τ represents the 

normal stress 𝜎 , 𝑈 represents velocity 𝑣  and 𝑉 represents velocity 𝑣 .  𝛥𝑡 is the time grid step, 

𝛥𝑥 and 𝛥𝑧 are grid steps in the 𝑥-axis and 𝑧-axis directions, respectively, and 𝐵 is the buoyancy 

of the model (Virieux, 1986a). The superscript means time step and the two subscripts are the 𝑥 

and 𝑧 grid numbers separated by a comma.  

The 3D form of the staggered-grid finite difference equations can be easily derived 

following the above 2D discretized equations, by adding another parameter in the y direction. An 

illustration of the 3D staggered-grid stencil is shown in Figure 7. 
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Figure 7. The finite difference staggered-grid stencil for 3D medium. 

 

The static stress or strain boundary conditions are imposed on the boundaries of the model 

at time zero. They produce elastic waves (deformations) that contain both static and dynamic 

components. The static and dynamic elastic energy can be respectively characterized by the 

model’s strain energy and kinetic energy (Aki and Richards, 1980) over time. To obtain the static 

response, we need to choose an appropriate value for the damping parameter, 𝑑, to damp out the 

kinetic energy efficiently. Once the system reaches an equilibrium, the 3D stress and strain fields 

can be used to derive the effective elastic moduli of the model.  
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3.4 Choice of the optimal damping parameter 

It is heuristic to study a 1D damped system firstly. For a damped harmonic oscillator as I have 

discussed for Equation (3), there exists a critical damping coefficient 𝑐  which will make the 

oscillation system reach equilibrium with minimal amount of time. Based on Equation (3), the 

critical damping coefficient 𝑐  can be solved as (see Chapter 1) 

 𝑐 2𝑚 𝑘/𝑚 2𝑚𝜔 ,  (25)

where 𝜔  is the natural frequency or resonance frequency of the oscillator corresponding to no 

damping. Since we can view the elastic medium as a web of inter-connected mass points and 

springs, each mass point can be seen as a damped harmonic oscillator. The relationship between 

the natural frequency of the system and critical damping coefficient should persist in the 2D 

model as described in Equation (22).  The following 2D example will show the relationship 

between the natural frequency and the critical damping parameter.   

Firstly, the natural frequency of a homogenous model was analyzed by numerical 

modeling using the finite difference method. I set the damping parameter 𝑑  in Equation (14) to 

be zero and observed the motion of the nodes in the model under prescribed stresses as boundary 

conditions. I used a 200 𝑚 by 200 𝑚 homogeneous 2D model with the P-wave velocity 𝑉

4382 𝑚/𝑠, the S-wave velocity 𝑉 2530 𝑚/𝑠, and the density 𝜌 3000 𝑘𝑔/𝑚 .  Spatial 

steps in 𝑥 and 𝑧 directions are  ∆𝑥 ∆𝑧 2 𝑚, and the time step is  ∆𝑡 0.15 𝑚𝑠. The ∆𝑥, ∆𝑧  

and ∆𝑡 are chosen to satisfy the numerical stability condition for the explicit scheme, 𝑉 ∆

∆ √
  

(Virieux, 1986a). The model is prescribed with normal stresses 𝜎 1 𝑀𝑃𝑎 and 𝜎 1 𝑀𝑃𝑎 
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on all four boundaries. I analyzed the 𝑥 direction particle displacement (Figure 9) of the three 

selected nodes at coordinates 4 𝑚, 4 𝑚 , 98 𝑚, 98 𝑚   and 180 𝑚, 180 𝑚  (Figure 8). 

 

Figure 8. Illustration of the 2D model domain and the three picked nodes. Their locations are at 
coordinates 4 𝑚, 4 𝑚 , 98 𝑚, 98 𝑚 , and 180 𝑚, 180 𝑚 . 
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Figure 9. Particle displacements in the 𝑥 direction and the corresponding amplitude spectra. It 
implies that a consistent harmonic oscillation frequency may be obtained for the estimate of the 
damping coefficient. The displacement along 𝑥 direction (𝑢 ) of nodes at three picked locations 
are plotted on the top panel. The other nodes in the model are not plotted here but their 
displacements obey the same pattern. The displacements along 𝑧 direction (𝑢 ) are not displayed 
but they behave the same as 𝑢 . 
 

I Fourier transformed the time-domain waveforms to the frequency domain. We can see in 

Figure 9, that the resonance frequency having the largest energy is 12.37 𝐻𝑧 for the 

homogeneous isotropic model. It will be used as the natural frequency of the model. I then plug 

this frequency into Equation (25) to calculate the critical damping coefficient. From Equation 

(25), the normalized damping parameter in Equation (14) takes the form of: 
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𝑑

𝐶
𝑚

2𝜔 2 2𝜋 𝑓 .  (26)

Since the damping parameter 𝑑 is used in the form of 𝑑Δ𝑡 in Equation (23) and Equation 

(24), it is convenient to denote  𝐷 𝑑Δ𝑡. The parameter 𝑑 has the unit of 𝑟𝑎𝑑/𝑠, but 𝐷 is 

unitless. In the following, I use 𝐷 𝑑Δ𝑡 instead of 𝑑. 

The time evolution of the total strain energy and kinetic energy in the system for different 

damping parameters are computed (Figure 10). The model is said to reach the static equilibrium 

when the strain energy converges to a stable value and the kinetic energy drops below a certain 

small threshold. With a damping parameter 𝐷 0.0233, the system reaches the equilibrium 

using the shortest amount of time. As expected, the strain energy converges to the same value 

regardless of the damping parameters as long as it is positive. The number of time steps needed 

under different damping parameters are also analyzed (Figure 11)and it shows the existence of an 

optimal damping value.  
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Figure 10. Strain and kinetic energy for the entire model versus the number of time steps in the 
finite difference modeling. The energy is displayed in the log scale. Here, I set the equilibrium 
threshold for the kinetic energy as 10-5 𝐽. Curves in different colors show the energy evolution 
with different damping parameters, 𝐷. The model reaches the equilibrium after 1400, 1780, and 
2100 time steps for damping parameters 𝐷 set to 0.0233, 0.015, and 0.028, respectively. The 
strain energy stabilizes at 2.552 10  𝐽 regardless of the choice of the damping parameter. 
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Figure 11. The number of time steps required for the system to reach equilibrium for different 
damping parameters. The optimal damping occurs when the damping parameter 𝐷 close to 0.023 
using nearly 1400 time steps. 

 

Additionally, if we use a bigger 𝛥𝑡, the number of time steps to reach the equilibrium will 

be surely reduced, as long as it satisfies the numerical stability condition for the explicit scheme 

that 𝑉 ∆

∆ √
. For example, under the same damping parameter 𝑑, when Δ𝑡 0.3 𝑚𝑠, the 

number of time steps to reach the equilibrium is half of that of the case Δ𝑡 0.15 𝑚𝑠.  

Furthermore, if I use bigger spatial steps ∆𝑥 and ∆𝑧, a bigger Δ𝑡 can be tolerated. 

One thing to notice is that the natural frequency is independent of ∆𝑥, ∆𝑧, and Δ𝑡. The 

natural frequency is related to the model geometry and material properties. 
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3.4.1 Natural frequency and standing waves 

The natural frequency of the model is related to the standing waves. The forces (with a time 

history of step function) applied on the model boundaries generate seismic waves that bounce 

back and forth within the model to produce reflections and resonance. Standing waves form 

because of interference of waves propagating in opposite directions. For the condition that the 

four boundaries of the 2D square model are fixed/rigid (zero displacement), the fundamental 

frequency of the resonance is 

 𝑓
𝑣

2𝐿
, (27)

where 𝑣 is the wave propagation velocity, 𝐿 is the edge length of the square model (Blackstock, 

2000). Since in this case only normal stresses are applied, the velocity 𝑣 is approximated by the 

P-wave velocity of the homogeneous and isotropic model. Therefore, the fundamental frequency 

is approximated as 𝑓 10.96 𝐻𝑧, which is close to the 12.37 𝐻𝑧 obtained from the 

numerical analysis (Figure 9). This approximation offers a more practical and much faster way to 

estimate the critical damping parameter without the effort to run the time-consuming numerical 

calculation.  

Although the fundamental natural frequency I derived from Equation (27) is not the exact 

one, the damping performance is still satisfactory. For this model, the damping parameter I got 

from the approximated fundamental frequency 10.96 𝐻𝑧 is 𝐷 0.0206, and the number of time 

steps it takes to reach the equilibrium is 1500 (Figure 11). This means there is flexibility in 

choosing the damping parameter. Using the optimal 𝐷 will allow the dynamic model to reach its 
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static equilibrium in the least amount of time. However, using a sub-optimal value 𝐷 will still 

allow us to obtain the same static equilibrium state in a satisfactory efficiency without doing the 

time-consuming spectral analysis.  

3.4.2 Damping factor of an inhomogeneous model 

When the model is inhomogeneous, the procedures to obtain the damping parameter are the same 

as the homogeneous case. We can estimate the resonance frequency of the inhomogeneous 

medium simply using Equation (27). However, the velocity should be the averaged P-wave 

velocity over the compositions of the inhomogeneous model. A 500 by 500 grid (in both 𝑥 and 𝑧 

direction spatial steps 2 𝑚) porous sandstone model with porosity 0.24 is used as an example. 

The rock matrix of this model is set to be quartz and the pores are saturated with water (Figure 

12). To estimate the average velocity of the model, we used an empirical porosity-velocity 

relation suggested by Raymer et al., (1980): 

 𝑉 1 ∅ 𝑉 ∅𝑉 , (28)

where 𝑉, 𝑉  and 𝑉  are the velocities of the rock, the mineral matrix and the pore fluid, 

respectively, and ∅ is the porosity of the model. In this model, ∅ 0.24, the P-wave velocity of 

quartz is 𝑉 6018.8 m/s,  and the P-wave velocity of water is 𝑉 1500 m/s. Substitute these 

parameters into Equation (28) I get 𝑉 3836.5 m/s. Using Equation (27), the approximate 

fundamental frequency is calculated as 1.92 𝐻𝑧. 

To verify the fundamental frequency calculated via Equation (27) and (28), I applied the 

normal stress of 𝜎 1 𝑀𝑃𝑎 and 𝜎 1 𝑀𝑃𝑎 on all four boundaries since time zero (i.e. step 
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function time history), as in the previous homogeneous example. I numerically modeled the 

displacement fields and analyzed the oscillation and amplitude spectra (Figure 13) for selected 

nodes (Figure 12).  From the analysis (Figure 13), the average resonance frequency of the model 

is approximately 2 𝐻𝑧 , which is close to the approximate 1.92 𝐻𝑧. 

 

Figure 12. The numerical model of the 2D porous sandstone and its nine picked nodes. The black 
color represents pores and the white color represents matrix. The picked nodes are the crosses 
marked by letter A to I at different locations. 
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Figure 13. Displacements and the corresponding amplitude spectra at the chosen nodes in Figure 
12. The top panel shows the displacement along 𝑥 direction, the bottom panel shows the 
amplitude spectra. 
 

3.5 Damping based on the viscoelastic attenuation theory 

In Sections 3.1 to 3.3, I discussed how to add a constant damping parameter to the particle 

velocity term in the wave equation. In the following, I will discuss how to use the viscoelastic Q 

model, instead of simply adding a damping constant to the velocity term. I hope I can convince 

readers that adding damping to the elastodynamic equations will result in the same static solution, 

no matter what form the damping is in.  
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Liu et al., (1976) published the “standard linear solid” viscoelastic theory based upon a 

modification to Hooke’s law to include the stress-rate and strain-rate terms: 

 𝜎 𝜏 𝜎 𝑀 𝜀 𝜏 𝜀 , (29)

where (𝜎, 𝜀) are stress and strain, and the dot (.) indicates the time derivative. 𝑀  is the relaxed 

low-frequency limit of the modulus, (𝜏 , 𝜏  ) are relaxation times for stress and strain, 

respectively. The Second Law of Thermodynamics implies 𝜏  < 𝜏  (Liner, 2012).  

Assuming that the material is isotropic, with Equation (22) and Equation (29), we can 

construct the 2D elastodynamic equations with viscous attenuation added: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑏                                                                     

𝑏                                                                       

𝑣                                                                                               

𝑣                                                                                              

𝜏 𝜆 2𝜇 𝜏 𝜆 𝜏 𝜎

𝜏 𝜆 2𝜇 𝜏 𝜆 𝜏 𝜎

𝜏 𝜇 𝜏 𝜏   𝜎                          
      

    ,                   (30)             

where b is the reciprocal of density, 𝜆 and 𝜇 are the low-frequency Lamé constants, 𝑣  and 𝑣  

represent the velocity fields in the 𝑥 and 𝑧 directions, respectively. 𝑢  and 𝑢  represent the 

displacement fields in the 𝑥 and 𝑧 directions, respectively.  𝜎  and 𝜎  are normal stresses and  

𝜎  is the shear stress.  
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Equation (30) has all the time derivatives on the left side of the equations. Applying a 

time-marching finite difference scheme, we can numerically solve for the velocity, displacement 

and stress fields, given a certain model with boundary conditions. From the displacement fields, 

we can then get the strain fields.  

Since we are targeting static stress-strain analysis, forces with a step function history will 

be prescribed on the model boundaries. They produce elastic deformations that contain both static 

and dynamic components. The static and dynamic elastic energy can be respectively characterized 

by the model’s strain energy and kinetic energy (Aki and Richards, 1980) that evolve over time. 

The terms , 𝜏  and  𝜏  dictate how fast the kinetic energy dissipates. Furthermore, for a given 

model with certain boundary conditions, no matter what values are selected for 𝜏  and 𝜏 , the 

final static stress-strain fields should be the same when the system reaches equilibrium. 

To demonstrate how this method can give the static solutions of stresses and strains, I 

applied it to the same simple isotropic homogeneous 2D model used in Section 3.4. The model is 

a 200 𝑚 by 200 𝑚 homogeneous 2D model with P-wave velocity 𝑉 =4382 m/s, S-wave velocity 

𝑉 =2530 m/s, and density 𝜌 =3000 kg/m3.  Spatial steps in 𝑥 and 𝑧 directions are  ∆𝑥 ∆𝑧

2 𝑚, and the time step is  ∆𝑡 0.15 𝑚𝑠. The model is prescribed with normal stresses 𝜎

1 𝑀𝑃𝑎 and 𝜎 1 𝑀𝑃𝑎 on all of  its four boundaries at time zero. I used the staggered-grid 

finite difference method to do the numerical modeling of Equation (30). 

In selection for the 𝜏  and 𝜏  values, it is not obvious what the lower and upper relaxation 

times should be. Liu et al., (1976) provided expressions for 𝑓  and 𝑄 , which are related to 
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the characteristic times 𝜏  and 𝜏  (Equation (31) and Equation (32)). 𝑓  is the frequency with 

maximum attenuation, and 𝑄  is the Q value for maximum attenuation. The relationship 

between 𝜏 , 𝜏  and 𝑓 ,  𝑄  are : 

 
𝑓

1
2𝜋√𝜏 𝜏

, (31)

 
𝑄

2√𝜏 𝜏
𝜏 𝜏

. 
  

(32) 

 

If we set a group of 𝑓  and 𝑄 , we can derive the 𝜏  and 𝜏  from Equation (31) and 

Equation (32). The other reason that we should care about the 𝑄  value is that attenuation is 

stronger if the 𝑄 value is smaller. Therefore a smaller 𝑄  will make the system take less time 

to damp out the kinetic energy and reach equilibrium, which can speed up the modeling process.   

I tested several groups of 𝑓  and 𝑄  values to investigate their impacts on the 

number of times steps needed for the system to reach equilibrium. For the values assigned to 

𝑓  and 𝑄  , we do not investigate the physical meanings implied for the viscoelastic 

attenuation system. Instead, the values are just for numerical testing, making sense 

mathematically.  I first randomly set 𝑓  =12 𝐻𝑧, and tested 𝑄  values of 1.185, 2 and 3, 

respectively. A comparison of the evolution of the total strain energy and kinetic energy in the 

system for different parameters were computed (Figure 14). The model is said to reach a static 

equilibrium when the strain energy converges to a stable value and the kinetic energy drops below 
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a certain small threshold.  With 𝑓  fixed at 12 𝐻𝑧, when using 𝑄 =1.185, it damps out the 

kinetic energy with the least amount of time, with 2000 time steps. The other 𝑄  values 

(bigger than 1.185) both took longer for the system to reach equilibrium. As expected, the strain 

energy converges to the same final value 2.552 10  𝐽 regardless of 𝑄 . Also, the final strain 

energy is the same as the case when I used the constant damping method in Section 3.3 (Figure 

10). 
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Figure 14. Strain and kinetic energy for the entire model versus the number of time steps for 
𝑓  12𝐻𝑧. The energy is displayed in the log scale. Here I set the equilibrium threshold for 
the kinetic energy as 10-6 J. The strain energy stabilizes at 2.552 10  𝐽 regardless of the 𝑄  
parameter. 
 

Next, I set 𝑄 =1.185 and  tested different  𝑓  values. For the three 𝑓  values I 

tested (Figure 15), 𝑓 18 𝐻𝑧 took the least amount of time for the system to stabilize, with 

about 1400 time steps. While 𝑓 9 𝐻𝑧 took about 2800 time steps, 𝑓 21 𝐻𝑧 took 

about 1800 time steps, both slower than the case of 𝑓 18 𝐻𝑧. As expected, the strain energy 

converges to the same value 2.552 10  𝐽 regardless of what value the 𝑓  is, which is the 
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same final strain energy when I applied the constant damping method. One other thing to notice is 

that the least number of time steps achieved are both 1400 for this viscoelastic attenuation method 

and the constant damping method in Section 3.4 (see Figure 10).  

 

 
Figure 15. Strain and kinetic energy for the entire model versus the number of time steps for 
𝑄 =1.185. The energy is displayed in the log scale. Here I set the equilibrium threshold for the 
kinetic energy as 10-6 J. The strain energy stabilizes at 2.552 10  𝐽 regardless of the 𝑓  
parameter. 
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In summary, this viscoelastic attenuation finite difference method works equally 

effectively as the constant damping finite difference method. Both methods can get the same 

static stress-strain solutions from the elastodynamic equations effectively given proper 

damping/attenuation parameters are set. They both have their own advantages. The damping 

constant finite difference method has advantages such as its form is simpler than the viscoelastic 

finite difference method, with only one damping parameter. Also, the constant damping 

parameter is easier to set, with its physical relation to the standing waves.  However, the 

advantage of the viscoelastic finite difference method is that it is from a physical point of view, 

unlike the velocity damping method.  
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CHAPTER 4  VERIFICATION WITH ANALYTICAL 
MODELS  
 

In Chapter 3, I introduced two methods of modeling static stress-strain fields from elastodynamic 

equations: the constant velocity damping method and the viscoelastic model. From this chapter 

on, I will focus on the velocity damping method, for its simplicity and friendly parameter-setting. 

In later chapters (Chapter 4-7), the constant damping method will be referred to as the damped 

finite difference method.  

In this chapter, I will show that the damped finite difference method can get the same 

static stress-strain solutions as the analytical solutions. The examples I used include a 

homogeneous isotropic model, a circular borehole model, a laminated model, and the Hashin and 

Shtrikman model. For all of these models, the numerical modeling results showed excellent 

agreement with the analytical solutions. 

4.1 Homogeneous and isotropic models 

I began with an isotropic homogeneous 2D model (Figure 8) that was also discussed in Section 

3.3. The model size is 200 𝑚 by 200 𝑚 with a P-wave velocity 𝑉 4382 𝑚/𝑠, S-wave velocity 

𝑉 2530 𝑚/𝑠, and density 𝜌 3000 𝑘𝑔/𝑚 . Based on these parameters, one can get the shear 

modulus 𝜇 𝜌𝑉 19.2027 𝐺𝑃𝑎, and the first Lamé parameter 𝜆 𝜌𝑉 2𝜇

19.2004 𝐺𝑃𝑎,  The spatial step sizes in 𝑥 and 𝑧 directions are  ∆𝑥 ∆𝑧 2 𝑚, and the time step 
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is  ∆𝑡 0.15 𝑠. In the following modeling, the damping parameter 𝐷 0.0206 was used the 

same as in Section 3.4.1. 

Figure 16. Two scenarios of boundary conditions applied to the 2D model. 

 

 
To get the effective medium Lamé parameters (the first Lamé parameter 𝜆 and the shear 

modulus 𝜇), based on Hooke’s law: 

 𝜎
𝜎
𝜎

, (33)

one needs the static stress-strain relationships under two scenarios of boundary conditions: the 

model under only normal stresses (Figure 16(a)) and the model under only shear stresses (Figure 

16(b)). Take the first scenario as an example, I firstly prescribed the model with normal stresses 

𝜎 1 𝑀𝑃𝑎 on top and bottom boundaries and 𝜎 1 𝑀𝑃𝑎 on left and right boundaries 

(Figure 16(a)). Then I computed the stress fields and the particle velocity fields using the damped 

finite difference method. Finally, I time integrated the particle velocity fields to obtain the 
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displacement fields 𝒖, and the corresponding strain field was calculated using Equations (34) to 

(36): 

 
𝜀

𝜕𝑢
𝜕𝑥

, (34)

 
𝜀

𝜕𝑢
𝜕𝑧

, 
  
(35)

 
𝜀

1
2

𝜕𝑢
𝜕𝑧

𝜕𝑢
𝜕𝑥

, (36)

where 𝜀  and 𝜀  are normal strains, 𝜀  is the shear strain.In the above equations, 𝑢  is the 

displacement along the x direction, 𝑎𝑛𝑑 𝑢  is the displacement along the z direction.  

4.1.1 Surface average and volume average 

Since the model is treated as a whole for the effective medium moduli calculation, the stresses 

and strains need to be averaged in the model. We consider two types of averaging methods: 

volume average and surface average. In 3D cases, an arithmetic average over each node in the 

model is referred to as the volume average. For example, by averaging the strain 𝜀  of each node 

in the model we get the volume-averaged 𝜀 . On the other hand, treating the whole model as one 

voxel and taking into consideration of only values on the model surfaces is referred to as the 

surface average. For example, surface-averaged 𝜀  for the model is calculated as: 
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𝜀𝑧𝑧

𝑢𝑧
𝑏𝑜𝑡𝑡𝑜𝑚 𝑢𝑧

𝑡𝑜𝑝

𝐿
, (37)

where 𝑢  is the displacement 𝑢  on the lower boundary of 𝑧 direction, and 𝑢  is the 

displacement 𝑢  on the upper boundary of 𝑧 direction, 𝐿 is the distance from upper boundary to 

the lower boundary of 𝑧 (See Figure 17 (b) for a 2d illustration). 

  The concept of surface average comes from the physical test of real rocks.  In a physical 

test on a real rock, the stress is applied externally, and the deformation is measured also on the 

exterior surface. For example, in an effectively homogeneous model, the effective bulk modulus 

𝐾 can be measured from the surface average of  compressional stress/strain for a cubic sample 

with edge L as: 

1

= ,Surf
surf

normal displacement
K p

L



  
(38) 

where 𝑝 is the applied pressure, and 〈 〉  indicates a result obtained from surface average. 

Similarly, the shear modulus 𝜇 can be measured from the surface average of shear stress/strain 

as: 

1

,Surf shear
surf

shear displacement

L
 



  
(39) 

where 𝜏  is the applied shear stress.  

However, for the same model, the effective bulk modulus 𝐾 can also be calculated as: 
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= ,vol
Vol

vol

pressure
K

dilatation
  

(40) 

where 〈 〉  indicates an average over the volume. Similarly, the shear modulus may be 

calculated as: 

vol
Vol

vol

shear stress

shear strain
  , 

(41) 

These volume averages are different in principle from the surface averages. However, both of 

these two averages are theoretically correct. In the special case of homogeneous and isotropic 

models, the stresses and strains are independent of spatial coordinates, the value obtained from 

the volume average should be equal to that from the surface average.  If the volume-averaged 

stress or strain is different from the surface-averaged, it means the model is not homogeneous and 

isotropic. In the following 2D models, to keep consistency in terminology, I still use volume 

average although it should be area average, and surface average although it is actually edge 

average.   

One needs to take special handling of boundary values when staggered grids are used in 

the modeling. In the staggered grid finite difference shown in Figure 6 and Figure 7, the particle 

velocity fields are not aligned with the model boundaries. For example, the particle velocity field 

𝑣  is off the z-direction boundaries of the model by half a grid. Therefore in the 3D case, the 

bottom slice (for the 2D case, the bottom line) of the 𝑣  field is outside of the bottom boundary of 

the model and should be fixed to be zero in the damped finite difference modeling. Since 

displacement is the time integral of velocity, the bottom slice of the displacement field 𝑢  is also  
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zero. In summary, when one uses the volume average and surface average to calculate the 

effective medium moduli, the zero-valued boundaries need to be excluded. In the following 

figures, the zero-valued boundaries are removed. 

4.1.2 Calculation of effective medium moduli for a 2D model  

To obtain the displacement fields 𝑢  and 𝑢 , I did time integration for the particle velocity fields 

𝑣  and 𝑣 . The final displacement fields for the first set of boundary condition (Figure 16(a)) are 

shown in Figure 17.   

 
Figure 17. Displacement fields for the 2D homogeneous model when normal stresses were 
applied. Spatial distribution of horizontal displacement 𝑢  (a) and vertical displacement 𝑢  (b) 
when static equilibrium was reached. The model was applied with normal stresses on the four 
boundaries. 
 

Observing Figure 17, the displacement 𝑢  is linear along the 𝑥 direction, and the 

displacement 𝑢  is linear along the 𝑧 direction. Both displacements ranged from 0.001289 to 
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0.001289 𝑚. The effective model edge length was 99 grids or 198 𝑚. Based on Equation (34) 

and Equation (35), the surface-averaged normal strains for this 2D model were: 

𝜀 𝜀 . .
1.302e-5. 

Since the displacements were linear in space, the volume-averaged strains were identical to the 

surface-averaged strains. At the equilibrium state, each grid point had the same stress as the 

boundary points. The normal stresses 𝜎  and 𝜎  were 1 𝑀𝑃𝑎 and the shear stress was 0 𝑃𝑎. 

The first set of boundary conditions shown in Figure 16(a) calculated the normal strain 

under normal stress for deriving the effective bulk modulus. To obtain the shear modulus, I need 

the static shear strain under the second set of boundary conditions by applying constant shear 

stress 𝜎𝒙𝒛=1 𝑀𝑃𝑎 on all its four boundaries (Figure 16(b)). From the displacement fields for the 

shear case (Figure 18), I obtained 𝑢 and 𝑢  both ranging from 0.002552 to 0.002552 𝑚. The 

effective model edge length was 98 grids or 196 𝑚. According to Equation (36), The surface-

averaged shear strain for this 2D model was: 

𝜀 . . . . 2.604 10 . 

Since the displacements were linear in space, the volume-averaged strains were identical to the 

surface-averaged strains. 
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Figure 18. Displacement fields for the 2D homogeneous model when shear stresses were applied. 
Spatial distribution of horizontal displacement 𝑢  (a) and vertical displacement 𝑢  (b) when static 
equilibrium was reached. The model was applied with constant shear stresses on the four 
boundaries. 
 

Based on the isotropic Hooke’s law for the 2D case (Equation (33)), one can get shear 

modulus 𝜇 19.2012 𝐺𝑃𝑎, and the first Lamé parameter 𝜆 19.2012 𝐺𝑃𝑎. The differences 

between the calculated elastic moduli and the input moduli were within 0.08%. 

4.1.3 3D model effective medium moduli calculation 

To verify the damped finite difference method for 3D models, I extended the 2D model to a 

100 100 100 grid cube and kept all the other parameters (rock physics properties, spatial steps, 

time step, and damping parameter) unchanged. I then numerically computed the effective 

Young’s modulus 𝐸 along with the effective bulk modulus 𝐾, and compared them with the 

theoretical values.  
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Figure 19. Illustrations showing the two cases of applied stresses for the measurements of 𝐸 and 
𝐾. (a) The stress 𝜎 1 𝑀𝑃𝑎 was applied on each 𝑥 direction model boundary surface for 
measuring the Young’s modulus 𝐸; (b) The stresses 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎 were applied on 
the model boundaries for measuring the bulk modulus 𝐾. 

 

 To simulate the static measurement of Young’s modulus 𝐸 in the lab, I applied the 

normal stress 𝜎 1 𝑀𝑃𝑎 on the two boundary surfaces perpendicular to the 𝑥 axis while 

keeping the other boundary surfaces as free surfaces (Figure 19(a)). The displacement fields 𝑢 , 

𝑢  and 𝑢  calculated from the damped finite difference method are displayed in Figure 20. The 

volume-averaged strains I got from the damped finite difference method were 𝜀

2.0830656 10 ,  𝜀 𝜀 5.2073485 10 . Again, since the model was isotropic 

and homogeneous, the volume-averaged strains were equal to the surface-averaged strains. 

Young’s modulus is defined as the ratio of axial stress to axial strain in a uniaxial stress state. 

Therefore the Young’s modulus from my numerical modeling was 𝐸 𝜎 /𝜀  

48.0061684 𝐺𝑃𝑎. 
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Figure 20. The displacement fields from applying the boundary condition of  𝜎 1 𝑀𝑃𝑎. 

 

To simulate the static measurement of bulk modulus 𝐾 in the lab, I applied the boundary 

conditions with normal stresses  𝜎 𝜎 𝜎 1 𝑀𝑃𝑎, and shear stresses  𝜎 𝜎

𝜎 0 𝑀𝑃𝑎 on the corresponding six boundary surfaces (Figure 19(b)). The displacement fields 

𝑢 , 𝑢  and 𝑢  calculated from the damped finite difference method are displayed in Figure 21. 

The volume-averaged strains I got from the damped finite difference method were 𝜀 𝜀
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𝜀 1.041596 10 . The bulk modulus is defined as applied pressure divided by the relative 

deformation, therefore, according to Equation (42):  

𝐾 𝜎 𝜎 𝜎 / 𝜀 𝜀 𝜀 , (42) 

the bulk modulus from my numerical modeling was 32.0021715 𝐺𝑃𝑎. 

 

Figure 21. The displacement fields from applying the boundary condition of 𝜎 𝜎 𝜎
1 𝑀𝑃𝑎 . 
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Based on the P-wave and S-wave velocities and densities of the true model, I calculated 

that the P-wave modulus was 𝑀 𝜌𝑉 57.605772 𝐺𝑃𝑎, and the shear modulus was 𝐺

𝜌𝑉 19.2027 𝐺𝑃𝑎. With the relationship that  

 
𝐸

𝐺 3𝑀 4𝐺
𝑀 𝐺

, (43)

 
𝐾 𝑀 𝐺,

 

(44)

one could get the Young’s modulus 𝐸 48.006168 𝐺𝑃𝑎, and the bulk modulus  𝐾

32.002172 𝐺𝑃𝑎. The close match between the elastic moduli calculated from the numerical 

modeling and the analytical calculation again proves the validity of the damped finite difference 

method.  

4.2 Circular borehole model 

In this section, I compared the analytical stress fields on the cross-sectional plane of a circular 

borehole, with those modeled from the damped finite difference method. The stresses on the 

cross-sectional plane of a circular borehole (Figure 22) under the compression of far-field stresses 

and internal fluid pressure can be expressed as (Fjaer, 2008): 
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where 𝜎  and  𝜎  are radial and tangential normal stresses, respectively; 𝜏  is the shear stress; 𝜎  

and 𝜎  respectively represent the far-field maximum and minimum horizontal stresses; 𝑅  is the 

borehole radius; 𝑃  is the borehole fluid pressure; 𝑟 represents the distance measured from the 

borehole center; 𝜃 is the azimuth angle measured counter-clockwise from the 𝑥-axis.  

 

Figure 22. Circular borehole stresses in polar coordinates (Adapted from (Liu et al., 2018) Fig.2). 
 

To compare with the analytical solutions which are given in polar coordinates, the coordinate 

conversion is needed. The following equations were used to convert the results calculated from 

the damped finite difference method from Cartesian coordinates (x, y) to cylindrical polar 

coordinates stresses 𝜎  , 𝜎  and 𝜏 :  
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 𝜎 𝜎 𝜎 𝜎 𝜎 𝑐𝑜𝑠2𝜃 𝜏 𝑠𝑖𝑛2𝜃 , (48)

 𝜎 𝜎 𝜎 𝜎 𝜎 𝑐𝑜𝑠2𝜃 𝜏 𝑠𝑖𝑛2𝜃 , (49)

 
𝜏

1
2

𝜎 𝜎 𝑠𝑖𝑛2𝜃 𝜏 𝑐𝑜𝑠2𝜃.  
(50)

I used a 10 𝑚 by 10 𝑚 square model with a wellbore of radius 10 𝑐𝑚 in the center of the model. 

Then I set the maximum horizontal stress 𝜎  and minimal horizontal stress 𝜎  in the region 

40 𝑀𝑃𝑎 and 30 𝑀𝑃𝑎 respectively.The borehole fluid pressure 𝑃  is 20 𝑀𝑃𝑎. The normal and 

shear stress fields calculated by the analytical solution (Equation (45) to (50)) are displayed in 

panel (a) of Figure 23 to Figure 25. 

To apply the damped finite difference modeling, I firstly assigned the borehole fluid 

pressure to the area within the wellbore, making  𝜎 𝑃  and 𝜎 𝑃  in the wellbore area of the 

10 𝑚 by 10 𝑚 model. Then I assumed the model boundaries were at an infinite far distance and 

prescribed the four model boundaries with 𝜎 𝜎  and 𝜎 𝜎 . I ran the finite difference 

modeling with parameters ∆𝑥 ∆𝑧 0.4 𝑐𝑚, and ∆𝑡 6 10  𝑠. The P-wave velocity 𝑉

1500 𝑚/𝑠 , the S-wave velocity 𝑉 0 𝑚/𝑠 and the density 𝜌 1000 𝑘𝑔/𝑚  were assigned to 

the grid points inside the wellbore, and the P-wave velocity 𝑉 4382 𝑚/𝑠, the S-wave velocity 

𝑉 2530 𝑚/𝑠 and the density 𝜌 3000 𝑘𝑔/𝑚  were given to the grid points outside of the 

wellbore. Damping parameter 𝐷 0.0017 was obtained using Equation (27). The normal and 

shear stress fields calculated by the damped finite difference method are displayed in panel (b) of 

Figure 23 to Figure 25. 
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Panel (c) of Figure 23 to Figure 25 shows the relative difference between the analytical 

result and the damped finite difference result for different stress components. The difference was 

calculated as ∆𝑑 𝐴 𝐵 /𝐴, where A represents the analytical result and B represents the 

damped finite difference results.  It is observed that the damped finite difference modeling results 

on stress calculation match well with the analytical results with maximum relative difference ∆𝑑 

less than 1%, which might be regarded as the numerical error. 

 

 

 

Figure 23. Comparison of the radial normal stress fields obtained by the analytical and the finite 
difference method. (a) 𝜎  calculated from the analytical solution and (b) the finite difference 
method as well as (c) the corresponding relative difference. 
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Figure 24. Comparison of the tangential normal stress fields obtained by the analytical and the 
finite difference method. (a) 𝜎  calculated from the analytical solution and (b) the finite 
difference method as well as (c) the corresponding relative difference. 
 

 

Figure 25. Comparison of the shear stress fields obtained by the analytical and the finite 
difference method. (a) 𝜏  calculated from the analytical solution and (b) the finite difference 
method as well as (c) the corresponding relative difference. 
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4.3 A laminated model in 3D space 

A laminated model (Figure 26) that consists of a thin-layered sequence of dolomite and shale was 

used to verify the applicability of the proposed damped finite difference method for static stress-

strain modeling and effective moduli estimation. The properties of dolomite and shale are as 

follows (Mavko et al., 2020): 

Dolomite: 𝑉 5200 m/s, 𝑉 2700 m/s, 𝜌 2450 kg/m3; 

Shale: 𝑉 2900 m/s, 𝑉 1400 m/s, 𝜌 2340 kg/m3. 

I use the model of a 3D cube with an edge length of 100 grids in each dimension. Each thin bed 

of dolomite or shale took 1 grid thickness and occupies 50% of the total volume. The spatial steps 

in 𝑥, 𝑦 and 𝑧 directions were  ∆𝑥 ∆𝑦 ∆𝑧 1 𝑚, and the time step was  ∆𝑡 0.075 𝑚𝑠. The 

primary damping parameter chosen for this model was 𝐷 0.01, based on Equation (26) and 

Equation (27). 
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Figure 26. A laminate model for a thin-layered sequence of 50% dolomite and 50% shale. The 
blue color indicates dolomite and the yellow indicates shale. 
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The laminated structure results in transverse isotropy with the effective stiffness tensor 

given analytically as (Backus, 1962): 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝐴 𝐵 𝐹
𝐵 𝐴 𝐹
𝐹 𝐹 𝐶

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐸 0 0
0 𝐸 0
0 0 𝑀⎦

⎥
⎥
⎥
⎥
⎤

, (51)

with 

 
𝐴 〈4𝜌𝑉 1

𝑉
𝑉

〉 〈1 2
𝑉
𝑉

〉 〈 𝜌𝑉 〉 , 

𝐵 〈2𝜌𝑉 1
2𝑉
𝑉

〉 〈1 2
𝑉
𝑉

〉 〈 𝜌𝑉 〉 , 

𝐶 〈 𝜌𝑉 〉 , 

𝐸 〈 𝜌𝑉 〉 , 

𝐹 〈1 2
𝑉
𝑉

〉 〈 𝜌𝑉 〉 , 

𝑀 〈𝜌𝑉 〉, 

𝐵 𝐴 2𝑀, 

(52)

where the brackets 〈 〉 represent volume averaging of the properties weighted by their volume 

fractions, which are both 0.5 for dolomite and shale. The laminated model (Figure 26) used in the 

modeling contained 50 horizontal layers of dolomite-shale interbeds.   
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Using the damped finite difference method, I computed the stress (𝝈) and strain (𝜺) 

tensors at each grid in the model. Then I used Hooke’s law to find the elastic moduli A, M, C, E, 

and F: 

 

⎣
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⎢
⎢
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σ
σ
σ
σ
σ ⎦
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⎢
⎢
⎢
⎢
⎡
ε
ε
ε
ε
ε
ε ⎦

⎥
⎥
⎥
⎥
⎤

. (53)

When solving for the elastic moduli with the damped finite difference method, two modelings 

were taken using two sets of the different boundary conditions to solve Equation (53):  

(1) with the boundary conditions 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎, the volume-

averaged strains I obtained from the damped finite difference method were 𝜀 1.1603

10 , 𝜀 2.1510 10 , 𝜀 1.1603 10 , 𝜀 1.3702 10 , 𝜀 8.9524

10 , and 𝜀 1.3702 10 . The volume-averaged stresses were of the same value as the 

boundary conditions. 

(2) with the boundary conditions 𝜎 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎, 𝜎 3 𝑀𝑃𝑎, 𝜎 2 

𝑀𝑃𝑎, the volume-averaged strains I got from the damped finite difference method were 𝜀

2.2313 10 , 𝜀 9.9310 10 , 𝜀 2.2569 10 , 𝜀 1.37023 10 , 𝜀

8.9524 10 , and 𝜀 1.3703 10 . The volume-averaged stresses were of the same 

value as the boundary conditions. 

Using the stresses and strains modeled from the damped finite difference method, I solved 

for Equation (53) and obtained 𝐴 40.3200 𝐺𝑃𝑎, 𝑀 11.1640 𝐺𝑃𝑎, 𝐹 15.0320 𝐺𝑃𝑎, 𝐶
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30.1744 𝐺𝑃𝑎 and 𝐸 7.2985 𝐺𝑃𝑎. Comparing the numerical results with the Backus average 

(Backus, 1962) results: 𝐴  40.6300 𝐺𝑃𝑎, 𝑀 11.2235 𝐺𝑃𝑎, 𝐹 15.0917 𝐺𝑃𝑎, 𝐶

 30.3450 𝐺𝑃𝑎 and 𝐸 7.2986 𝐺𝑃𝑎, I found that the relative errors are between 0.001% to 

0.76%, which again proves the validity of the damped finite difference method. 

4.3.1 The edge effect 

The stiffness tensor I got from the modeling of the laminated model matches well with the 

analytical predictions. However, the relative error was larger than that of the homogeneous and 

isotropic model case.  This section investigated the origin of such an error. 
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To begin with, I plotted the stress and strain fields from the modeling case (1), with the 

boundary conditions 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎 applied.  Observing from 

Figure 27 to Figure 30, the edge effects on the stress, strain and displacement gradient fields were 

obvious. For example, the 𝜎  in Figure 27, the 𝜀  and 𝜀  in Figure 29, and the displacement 

gradients 𝜕𝑢 /𝜕x and 𝜕𝑢 /𝜕y in Figure 30 . The edge effects on the displacement gradients 

directly affect the accurate calculation of the strains according to Equation (54): 
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Figure 27. Normal stress fields for the laminated model. 
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Figure 28. Shear stress fields for the laminated model. 
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Figure 29. Normal strain fields for the laminated model. 
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Figure 30. Displacement gradients used in the calculation of shear strains. 
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Since Backus’ average implicitly assumes an infinite lateral extent, the edge effects might 

well explain the larger relative errors observed in the laminated modeling case. To mitigate the 

edge effects, I excluded the region close to the boundary surfaces and calculated the effective 

moduli using only the inner part of the stress and strain fields (used only the middle 40 40 40 

grid area). The calculated moduli were much closer to Backus’ average results and the experiment 

concluded my hypothesis of the edge effects. In this case, the volume-averaged stresses and 

strains were: 

In modeling (1), the innermost volume-averaged strains were 𝜀 1.1434 10 , 𝜀

2.1559 10 , 𝜀 1.1434 10 , 𝜀 1.3705 10 , 𝜀 8.9088 10 , 𝜀

1.3705 10 ; the innermost volume-averaged stresses were 𝜎 9.9778 10  𝑃𝑎, 𝜎

9.9920 10  𝑃𝑎, 𝜎 9.9778 10  𝑃𝑎, 𝜎 1.0005 10   𝑃𝑎, 𝜎 9.9951

10  𝑃𝑎, 𝜎 1.0005 10  𝑃𝑎.  

In modeling (2), the innermost volume-averaged strains were 𝜀 2.1963 10 , 𝜀

9.8675 10 , 𝜀 2.2361 10 , 𝜀 1.3705 10 , 𝜀 8.9090 10 , 𝜀

1.3705 10 ; the innermost volume-averaged stresses were 𝜎 1.0036 10  𝑃𝑎, 𝜎

3.0003 10  𝑃𝑎, 𝜎 1.9983 10  𝑃𝑎, 𝜎 1.0005 10   𝑃𝑎, 𝜎 9.9951

10  𝑃𝑎, 𝜎 1.0005 10  𝑃𝑎.  

Using these stresses and strains, I solved for Equation (53) and obtained 𝐴 40.6227 

𝐺𝑃𝑎, 𝑀 11.2196 𝐺𝑃𝑎, 𝐹 15.0921 𝐺𝑃𝑎, 𝐶 30.3446 𝐺𝑃𝑎 and 𝐸 7.3005 𝐺𝑃𝑎. The 

errors compared with the Backus’ average were much reduced than when I used the whole 
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model’s stresses and strains in the effective medium moduli calculation. Two tables showing the 

different results from these two approaches are displayed below (Table 1 and Table 2).  
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Stresses and 

Strains  

The first modeling The second modeling 

Using the whole 

volume 

Using the center 

volume 

Using the whole 

volume 

Using the center 

volume 

𝜎  1 10  𝑃𝑎 9.9978 10 𝑃𝑎 1 10 𝑃𝑎 1.0036 10 𝑃𝑎 

𝜎  1 10  𝑃𝑎 9.9920 10 𝑃𝑎 2 10 𝑃𝑎 3.0003 10 𝑃𝑎 

𝜎  1 10  𝑃𝑎 9.9978 10 𝑃𝑎 3 10 𝑃𝑎 1.9983 10 𝑃𝑎 

𝜎  1 10  𝑃𝑎 1.0005 10 𝑃𝑎 1 10 𝑃𝑎 1.0005 10 𝑃𝑎 

𝜎  1 10  𝑃𝑎 9.9951 10 𝑃𝑎 1 10 𝑃𝑎 9.9951 10 𝑃𝑎 

𝜎  1 10  𝑃𝑎 1.0005 10 𝑃𝑎 1 10 𝑃𝑎 1.0005 10 𝑃𝑎 

𝜀  1.1603 10  1.1434 10  2.2313 10  2.1963 10  

𝜀  2.1510 10  2.1559 10  9.9310 10  9.8675 10  

𝜀  1.1603 10  1.1434 10  2.2569 10  2.2361 10  

𝜀  1.3702 10  1.3705 10  1.37023 10  1.3705 10  

𝜀  8.9524 10  8.9088 10  8.9524 10  8.9090 10  

𝜀  1.3702 10  1.3705 10  1.3703 10  1.3705 10  

Table 1. Modeling results comparison from different approaches for the laminated model. 
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Elastic constants 

(unit: 𝐺𝑃𝑎) 

Calculated using 

the whole volume 

Calculated using 

the center volume 

Backus’s average 

prediction 

𝐴 40.3200 40.6227 40.6300 

M 11.1640 11.2196 11.2235 

F 15.0320 15.0921 15.0917 

C 30.1744 30.3446 30.3450 

E 7.2985 7.3005 7.2986 

Table 2. Elastic constants calculated from different approaches. 
 

Besides the solution of excluding the edges in the calculation of effective medium, 

another solution is to use periodic boundary conditions instead of the prescribed boundary 

conditions of constant stresses. To be specific, one can use periodic boundary conditions in the 𝑥 

and 𝑦 directions, to mimic an infinite extension of the model on lateral directions. The 

implementation of the periodic boundary conditions is out of the scope of this dissertation, 

therefore it is not discussed here. 

4.4 Hashin - Shtrikman model 

The overall elasticity of a realistic rock is, in general, not theoretically calculable because the 

microgeometry is so complicated. Instead, theoretical upper and lower bounds on the bulk elastic 

moduli have been proposed, such as the strict bounds on the overall elasticity derived by Hashin 

and Shtrikman (Hashin and Shtrikman, 1961). In the section, I developed two special cases, the 
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“K-test” and the “𝜇 -test” from the Hashin-Shtrikman bounds to verify the damped finite 

difference method. 

4.4.1 The “K-test” and the “-test” 

For solid composites of two isotropic constituents (with bulk moduli 𝐾  and shear moduli 𝜇   and 

volume fractions 𝑓  ), the lower (−) and upper (+) H–S (Hashin - Shtrikman) bounds for the bulk 

modulus K and the shear modulus  are 
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In Equation (56), the combination of moduli 
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(57) 

for each constituent appears in the bounds for the shear modulus. Here, it is assumed (following 

Equation (55)) that 𝐾 𝐾  and also that 𝜇  𝜇  ; this correlation is common. If it should 

happen that 𝐾 𝐾  while 𝜇 𝜇 , then the roles of 𝐾  and 𝐾 , defined in Equation (55), are 

reversed. If it should happen that 𝐾 𝐾  while 𝜇 𝜇 , then the roles of 𝜇   and 𝜇  , defined in 

Equation (56), are reversed. The bounds on the bulk modulus (Equation (55)) may be combined 

to show the difference: 
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(58)

where 𝛥𝐾 ≡ 𝐾 𝐾  and 𝛥𝜇 ≡ 𝜇  𝜇  . Hence, the bounds on K coincide exactly in the special 

case where the two minerals have identical shear modulus (𝛥𝜇 0), in which case the bulk 

modulus is given exactly by 
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  , 

(59)

where 𝜇 is the common shear modulus, of the two constituents and the aggregate for any random 

microgeometry of the two isotropic constituents.  

The generalization of Equation (55) for composites of more than two isotropic 

constituents was given by Hashin and Shtrikman (Hashin and Shtrikman, 1961). For such 

composites, the upper and lower bounds on K coincide, yielding a unique result, if the shear 

moduli are equal for all constituents. Of course, few if any physical aggregates have constituents 

with identical shear moduli. However, although Equation (59) is not a useful result for physical 

aggregates, it is a very useful result for numerical analyses, since it poses a necessary criterion for 

the validity of any digital rock physics numerical algorithm when equal isotropic shear moduli are 

assigned to the grains; this may be called the “K-test”. 

Similarly, the bounds on the shear modulus in Equation (56) may be combined to show 

the difference: 



75 

 

 
2

* * 1 2
2 1

1 1 2 2

( )

( )( )

f f
H H

H f H f

  
  


   

    . 

(60) 

Hence, the bounds on the shear moduli coincide exactly, in the special case when: 

2 2 1 1  H H  . 
(61) 

For composites of more than two isotropic constituents, the upper and lower bounds on 𝜇 

coincide, yielding a unique result, if the condition of Equation (61) holds for all constituents. 

The condition of Equation (61) serves as a calculation of any one of the four constituent moduli, 

when the other three are specified. For example, it implies that 
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(62) 

For composites of two constituents which confirm Equation (61), the shear modulus is given 

exactly by 
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(63) 

independent of the microgeometry of the two isotropic constituents. Of course, few if any 

physical aggregates have constituents which confirm Equation (61). However, although Equation 

(62) and Equation (63) are not a useful result for physical aggregates, they are a very useful result 

for numerical analyses, since they pose another necessary criterion for the validity of any digital 

rock physics numerical algorithm; this may be called the “𝜇 -test”. 
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4.4.2 Validation on non-porous rocks 

The Hashin–Shtrikman (H-S) tests were applied to the damped finite difference algorithm. To 

avoid problems caused by mismatches between the numerical grid and the model grid, the 

calculation was performed for the model shown in Figure 31, with cubic grains. The model was a 

50 50 50 cube, with a spatial step of 2 𝑚. In the model, the cells were randomly assigned to 

one or another of two isotropic constituents. The two grains were of 50%/50% mix. Although the 

model is inhomogeneous, it can be treated as an effectively homogeneous medium and apply the 

H-S test. 

 The spatial step in 𝑥, 𝑦 and 𝑧 directions were  ∆𝑥 ∆𝑦 ∆𝑧 2 𝑚, and the time step 

was  ∆𝑡 0.15 𝑚𝑠. For the H–S “K-test”, the elastic parameters were set as 𝐾  = 13.564 𝐺𝑃𝑎, 𝐾  

= 8.564 𝐺𝑃𝑎, 𝜇   = 𝜇  = 4.586 𝐺𝑃𝑎, 𝑓  = 𝑓  = 0.5. In terms of velocities and density, they were: 

Material 1: 𝑉 2900 m/s, 𝑉 1400 m/s, 𝜌 2340 kg/m3; 

Material 2: 𝑉 2750.7 m/s, 𝑉 1537.6 m/s, 𝜌 1940 kg/m3. 

The primary damping parameter I used for this model was 𝐷 0.026.  

Although this is not a realistic model, with this geometry, any inaccuracies in the 

calculation can be attributed to other features of the algorithm. To ensure uniform application of 

external stress, the model shown was surrounded by a uniform jacket (four cells thick) with the 

properties of water (for applied pressure) or of an average solid (for applied shear stress). 
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Figure 31. A model with cubic grains of two isotropic constituents, randomly distributed. The two 
grains were of 50%/50% mix. The boundaries of the grains were exactly aligned with the 
Cartesian numerical grid (50 × 50 × 50 cells) so that the contents within each cell were uniform. 
 

For this model, the theoretical H–S value from Equation (59) is KHS = 10.700 𝐺𝑃𝑎. The 

modeling of the effective bulk modulus was conducted through prescribing all the boundaries 

with 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎. The displacement fields, strain fields and the stress fields from 

the damped finite difference modeling are displayed below in Figure 32. 
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Figure 32. Displacement, strain, and stress fields from the modeling of bulk modulus for the 
nonporous model displayed in Figure 31. 
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The volume-averaged normal strains were 𝜀  𝜀  𝜀 3.1198 10 . The 

surface-averaged normal strains were 𝜀  𝜀  𝜀 3.1185 10 . Both the volume-

averaged and surface-averaged normal stresses were 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎. The surface-

average incompressibility (from Equation (38)) was SurfK  =10.689 𝐺𝑃𝑎 (an error of −0.1%); the 

volume-average incompressibility (from Equation (40)) was VolK  = 10.685 𝐺𝑃𝑎 (an error of 

−0.1%).  

The error between the numerical solution and the theoretical value may be a numerical 

error introduced by finite difference with insufficient spatial sampling. However, in this situation, 

an upsampling of grids did not further reduce the error. The model was interpolated to 200 × 200 

× 200 cells with a smaller spatial step of 0.5 𝑚. In this case, each cubical grain was represented 

by 64 cells, instead of by 1 cell. The volume-averaged normal strains were 𝜀  𝜀  𝜀

3.1182 10 . The surface-averaged normal strains were 𝜀  𝜀  𝜀 3.1179 10 . 

Both the volume-averaged and surface-averaged normal stresses were 𝜎 𝜎 𝜎 1 

𝑀𝑃𝑎. According to Equation (42), the surface-average incompressibility was SurfK  = 10.691 

GPa (an error of −0.1%), The volume-average incompressibility was VolK  = 10.690 GPa (an 

error of −0.1%). In this instance (with the numerical grid aligned with the model), the increased 

resolution made little difference in terms of accuracy. 

Then, with the same model geometry (200 × 200 × 200 cells), the cells were assigned, for 

the H–S “𝜇 -test”, the elastic parameters of 𝐾  =  8.564 GPa, 𝜇   = 3.236 GPa, 𝜇  = 3.886 GPa, 
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𝐾  = 4.012 GPa (from Equation(62)), 𝑓  = 𝑓  = 0.5. For this model, the theoretical H–S value 

from Equation (63) was HS = 3.546 GPa.  

In terms of velocities and density, they were: 

Material 1: 𝑉 2576.6 m/s, 𝑉 1291.6 m/s, 𝜌 1940 kg/m3; 

Material 2: 𝑉 2177 m/s, 𝑉 1415.4 m/s, 𝜌 1940 kg/m3. 

The model size was 200 × 200 × 200 cells, with ∆𝑥 ∆𝑦 ∆𝑧 0.5 𝑚. The time step was  

∆𝑡 0.0375 𝑚𝑠. The primary damping parameter I used for this model was 𝐷 0.003.  

The modeling of the effective shear modulus was conducted by prescribing all the 

boundaries with shear stresses 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎. The displacement fields, the strain 

fields and the stress fields from the damped finite difference modeling are displayed below in 

Figure 33.  

In this case, the volume-averaged normal strains were 𝜀  𝜀 2.7077

10  , 𝜀 2.7076 10 . The surface-averaged normal strains were 𝜀  𝜀 2.7215

10  , 𝜀 2.7216 10 . The volume-averaged shear stresses were 𝜎 𝜎

9.6007 10  𝑃𝑎, 𝜎 9.6004 10  𝑃𝑎. The surface-averaged shear stresses were 𝜎

𝜎 𝜎 9.645 10  𝑃𝑎 .The surface-average shear modulus (from Equation (39)) was 

𝜇 = 3.544 GPa (precise to three significant figures). The volume-average shear modulus 

(from Equation (41)) was 𝜇  = 3.546 GPa (precise to four significant figures). 
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Figure 33. Displacement, strain and stress fields from the modeling of shear modulus for the 
nonporous model displayed in Figure 31. 
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4.4.3 Validation on porous rocks 

Love (Love, 2013) proved that, for any shape of a homogeneous isotropic solid, its elastic 

response to a uniform increase of pore pressure (on all of its surfaces, internal and external) is 

independent of that shape, with each linear dimension decreasing proportionally, so that its shape 

is preserved. Hence the bulk modulus of the solid shape is the intrinsic bulk modulus of that solid. 

The proof is valid for any homogeneous isotropic shape if the pore space is fully connected 

hydraulically so that the fluid pressure is uniform. 

This theorem may be applied to a representative volume element of a porous rock in a 

(hydraulically open) “unjacketed compression” experiment, wherein the increase in external 

pressure on a rock is balanced by an equal increase in internal pore pressure. If the porosity is 

fully connected on the time scale of the compression, the pore pressure will be uniform 

throughout, regardless of the complexity of the geometry. In such a test, the solid is compressed 

on all sides with the same additional pressure, and Love’s theorem applies. 

A straightforward extension of Love’s proof to the case of a heterogeneous isotropic solid 

then concludes that, in an unjacketed test on such a rock with fully connected porosity, the solid 

modulus is approximately the intrinsic average modulus of the grains, as calculated above. 

To numerically test the procedures above, the damped finite difference method was applied to the 

model of Figure 34. The previous model (Figure 31) was penetrated by straight interconnected 

channels of water ( waterK = 2.25 GPa, 𝑉 1500 m/s, 𝑉 0 m/s, 𝜌 1000 kg/m3 ) as depicted; 

the porosity was about 35%. The figure shows the inhomogeneous case, with the solid matrix 



83 

 

composed 50/50 of the two minerals specified in the “K-test” above. Again, this model is not 

realistic, however, with this geometry, any inaccuracies in the calculation can be attributed to 

other features of the algorithm. Since a shell of water surrounded this model completely, and the 

pressure was applied to the exterior of this fluid shell, the solid grains were exposed on all sides 

to the same pressure. 

 

 

Figure 34. The heterogeneous model penetrated with straight channels of water. Without the 
channels, it is the same as the model in Figure 31. The channels were all aligned with the 
numerical grid (200 × 200 × 200 cells). 
 

For a model like that of Figure 34,  I tested Love’s theorem by immersing the model in 

water. In numerical modeling, that means I wrapped the model with a layer of water. The water 

layer I wrapped was of 10 grids on each surface. The water channels that penetrated the model 

were all connected with each other and were all connected with the water wrapper. When applied 
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the normal stresses on the water wrapper, according to the definition of bulk modulus (Equation 

(42)), one-third of the ratio of the normal stresses and the normal strains of the solid part should 

be equal to the solid’s effective bulk modulus.   

I first tested the solid part with homogeneous solid, the model was like that of Figure 34, 

but the properties of material 1 were identical to those of material 2, with solid incompressibility 

𝐾  = 𝐾  = 13.564 GPa. Normal stresses 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎 were applied on the model 

boundaries. The displacement fields, strain fields and the stress fields from the damped finite 

difference modeling are displayed below in Figure 32. 
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Figure 35. The displacement fields, strain fields, and stress fields from the modeling of bulk 
modulus for the water channel model in Figure 31, but with homogeneous solid. 
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For the solid part, the volume-averaged normal strains were 𝜀  𝜀  𝜀

2.4575 10 . The surface-averaged normal strains were 𝜀  𝜀  𝜀 2.4613 10 . 

Both the volume-averaged and surface-averaged normal stresses were 𝜎 𝜎 𝜎 1 

𝑀𝑃𝑎. According to Equation (42), the surface-average incompressibility (simulating an 

unjacketed experiment) was 𝐾 .  𝐺𝑃𝑎 (an error of −0.2%). The calculated solid-volume-

average incompressibility was 𝐾 13.564 𝐺𝑃𝑎 (precise to five significant figures). 

For the inhomogeneous model of Figure 34, with the inhomogeneous solid, the same 

procedures were repeated. The displacement fields, strain fields, and stress fields from the 

damped finite difference modeling are displayed below in Figure 36. 
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Figure 36. The displacement fields, strain fields, and stress fields from the modeling of bulk 
modulus for the water channel model in Figure 31, with inhomogeneous solid. 
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For the solid part, the volume-averaged normal strains were 𝜀  𝜀  𝜀

3.1299 10 . The surface-averaged normal strains were 𝜀  𝜀  𝜀 3.1322 10 . 

Both the volume-averaged and surface-averaged normal stresses were 𝜎 𝜎 𝜎 1 

𝑀𝑃𝑎. According to Equation (42), the surface-average incompressibility (simulating an 

unjacketed experiment) of the solid portion only was SurfK = 10.642 GPa, (an error of −0.5%). 

The volume-average incompressibility of the solid portion only was VolK = 10.650 GPa, (an error 

of −0.5%). These differences are a measure of the accuracy of the extension of Love’s theorem to 

the case of inhomogeneous solid, as well as the accuracy of the damped finite difference 

algorithm. 

There is no equivalent process for determining the average shear modulus 𝜇  of the grains 

of the porous rock. If the H–S “𝜇 -test” were applied to a composite with one constituent fluid 

(𝜇 = 0), the required 𝐾  from Equation (62) would be negative (hence un-physical), so the H–S 

“𝜇 -test” is not applicable. 

  



89 

 

CHAPTER 5  COMPARISON WITH FINITE ELEMENT 
METHOD  
 

In Chapter 4, I used various analytical models to verify the accuracy and validity of the damped 

finite difference method. In this Chapter, I will compare the damped finite difference method with 

the finite element method which has been widely used in static stress and strain modeling. I used 

an open source finite element code and focused on the comparison of accuracy and computational 

performance. From both the 2D and 3D examples, I found that the finite element code consumes 

more memory than the finite difference method, while their computation time is similar. 

Furthermore, in the demonstrated 3D example, I found that to achieve the same accuracy, the 

finite element method needs a finer grid than the finite difference method. 

5.1 Comparison of results for a 2D model 

I used an open-source finite element code which has been widely used in digital rock studies 

(Garboczi, 1998) to compare accuracy and computational efficiency with the damped finite 

difference method. The finite element code solves for static stress and strain fields using an 

iterative algorithm with conjugate gradient relaxation. 

 I tested a 2D 100 𝑐𝑚 by 100 𝑐𝑚 model of shale with a 20 𝑐𝑚 by 20 𝑐𝑚 cubic inclusion 

of dolomite in the middle of the model (Figure 37).  The elastic properties of dolomite and shale 

are: 

Dolomite: 𝑉 5200 m/s, 𝑉 2700 m/s, 𝜌 2450 kg/m3; 

Shale: 𝑉 2900 m/s, 𝑉 1400 m/s, 𝜌 2340 kg/m3. 
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Figure 37. Illustration of the 2D model of shale with the inclusion of dolomite. 

 

 The strain and stress fields were calculated using finite difference and finite element 

methods with the boundary conditions of 𝜎 𝜎 𝜎 1 𝑀𝑃𝑎. Both methods generated 

similar results (Figure 38, Figure 39, and Figure 40) with the max relative difference less than 1% 

(especially around the inclusion boundaries) which might be attributed to the different numerical 

schemes.  
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Figure 38. Comparison of the strain fields modeled from the damped finite difference method and 
the finite element method. Under the same stress boundary conditions, the strain fields calculated 
by the finite difference method (a, b and c) are similar to the ones calculated by the finite element 
method (d, e and f). The max relative difference is less than 1% which mainly focuses around the 
inclusion boundaries (g, h and i). 
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Figure 39. Comparison of the stress field modeled from the damped finite difference method and 
the finite element method. Under the same stress boundary conditions, the stress fields calculated 
by the finite difference method (a, b and c) are similar to the ones calculated by the finite element 
method (d, e and f). The max relative difference is less than 1% which mainly focuses around the 
inclusion boundaries (g, h and i). 
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Figure 40. Comparison of the displacement field modeled from the damped finite difference and 
the finite element method. Under the same stress boundary conditions, the displacement fields 
calculated by the finite difference method (a and d) are similar to the ones calculated by the finite 
element method (b and e). The maximum relative difference is less than 1% (c and f). 
  



94 

 

Following the numerical comparison, I compared the performance of the two methods 

running on the same workstation. To benchmark two methods, I used a 400 cells by 400 cells 

model with the spatial step ∆𝑥 ∆𝑧 0.25 𝑐𝑚. For the damped finite difference code, I used the 

time step ∆𝑡 3.47 10  𝑠 and damping parameter 𝐷 0.0064. It took 19.5 seconds CPU 

time and 14 MB memory.  The finite element code took 20.1 seconds and 20 MB. Since the finite 

element code is optimized with the conjugate gradient method, the computing time advantage of 

the damped finite difference method was not obvious on such a small model. However, the 

memory usage was 30% less for the damped finite difference method than the finite element 

method. Generally, the finite element methods use more memory than the finite difference 

methods for their needs for storing neighbor information specially needed for boundaries 

(Garboczi, 1998). Additionally, there is much room to optimize the finite difference method 

significantly in particular for computing large 3D models in a parallel computing architect.    

5.2 Comparison of results for a 3D model 

As Garboczi (1998) pointed out, if the resolution were infinite, then the results obtained from the 

finite difference and the finite element methods would be the same. However, in real situations, 

the resolution is not infinite, and the sampling rate, or grid size, is always an important factor to 

consider in numerical modeling for the limited computational resources and time. 

 Moczo et al., (2010) did a study on the accuracy of the finite difference and the finite 

element methods on seismic wave propagation modeling. They found that the errors from the 

finite element methods on both amplitude and angle depend heavily on the sampling rate, while 
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the finite difference method is not that sensitive to the sampling rate. In other words, to achieve 

the same accuracy, the finite element method needs a finer grid than the finite difference method.  

In the following, I used the Hashin-Shtrikman “K-test” described in Section 4.4 to 

investigate the accuracy of both methods under different grid configurations. 

The model shown in Figure 31 was used for the test with two different grid 

configurations: the first one with the spatial grid step of ∆𝑥 ∆𝑦 ∆𝑧 2 𝑚, and the second 

one with the spatial grid step of ∆𝑥 ∆𝑦 ∆𝑧 0.5 𝑚. The computed stress, strain, and 

displacement fields of the damped finite difference and the finite element method under the first 

grid configuration were computed, and the results are displayed in Figure 41 to Figure 43. 
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Figure 41. The displacement fields calculated from the damped finite difference (the left column) 
and the finite element methods (the middle column), for the model shown in Figure 31 with the 
first grid configuration of grid sampling step of 2 𝑚 in all dimensions. The relative difference is 
shown in the right column. The maximum difference is around 4%. 
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Figure 42. The strain fields calculated from the damped finite difference (the left column) and the 
finite element methods (the middle column), for the model shown in Figure 31 with the first grid 
configuration of grid sampling step of 2 𝑚 in all dimensions. The relative difference is shown in 
the right column. 
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Figure 43. The stress fields calculated from the damped finite difference (the left column) and the 
finite element methods (the middle column), for the model shown in Figure 31 with the first grid 
configuration of grid sampling step of 2 𝑚 in all dimensions. The relative difference is shown in 
the right column.  
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With the spatial grid step of 2 𝑚 in each dimension, the relative differences among the 

displacement fields (Figure 41) from both methods were much smaller compared to those of the 

stress (Figure 42) and the strain (Figure 43) fields. In other words, both methods generated similar 

results at the large scale (since the displacement field is the spatial integration of the 

corresponding strain field), while due to the different handling of the material boundaries, they 

generate quite different results at the small scale. 

To compare the accuracy of the two methods, the analytically calculated H-S value 

𝐾   10.700 𝐺𝑃𝑎  from Equation (59) was calculated numerically again using results from 

both methods respectively. The closer to the analytical solution 𝐾   10.700 𝐺𝑃𝑎, the more 

accurate the numerical method is. It turned out the damped finite difference method was more 

accurate than the finite element method for the first grid configuration. For the surface-average 

incompressibility, the damped finite difference method computed 𝐾 10.689 𝐺𝑃𝑎 was 

0.1% smaller than the theoretical 𝐾  while the finite element method comptuted  𝐾

10.822 𝐺𝑃𝑎 was 1.1% larger than the theoretical  𝐾 . Similarly, for the volume-average 

incompressibility, the damped finite difference method computed 𝐾 10.685 𝐺𝑃𝑎 was 0.1% 

smaller than the theoretical 𝐾  while the finite element method computed 𝐾 10.828 𝐺𝑃𝑎 

was 1.2% larger than the theoretical 𝐾 . 

Then, for the second grid configuration with spatial grid step of 0.5 𝑚, the stress, strain, 

and displacement fields were computed using both methods (Figure 44 to Figure 46) and the 

corresponding surface-average and volume-average incompressibilities were calculated against 
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the theoretical 𝐾 . The results indicated a huge increment of accuracy for the finite element 

method while little effects on the damped finite difference method, as expected. For the surface-

average incompressibility, the damped finite difference method computed 𝐾 10.691 𝐺𝑃𝑎 

was 0.1% smaller than the theoretical 𝐾  while the finite element method comptuted  𝐾

10.704 𝐺𝑃𝑎 was 0.04% larger than the theoretical  𝐾 . Similarly, for the volume-average 

incompressibility, the damped finite difference method computed 𝐾 10.690 𝐺𝑃𝑎 was 0.1% 

smaller than the theoretical 𝐾  while the finite element method computed 𝐾 10.705 𝐺𝑃𝑎 

was 0.05% larger than the theoretical 𝐾 . 

Though the accuracy of the finite element method was a little higher than the damped 

finite difference method at the finer grid, to achieve such accuracy it took 64 times of the finite 

difference method’s computation cost, in both time and memory use. My findings are consistent 

with the conclusion from Moczo et al., (2010) that, to achieve the same accuracy, the finite 

element method needs a much finer grid than the finite difference method. Overall, it shows that 

the damped finite difference method is a well-balanced method in terms of accuracy and 

performance when computing the static stress-strain solutions. 

For the computational performance on this 3D model, it shows the same pattern as for the 

2D model: the computation time from the finite difference and finite element method is similar, 

while the finite difference method consumed less memory than the finite element method. For the 

case of 50 cells  50  cells  50 cells ),  the finite element program took 1.2 𝑚𝑖𝑛𝑠, with the 

memory usage of 12 𝑀𝐵 and the damped finite difference program took 1.3 𝑚𝑖𝑛𝑠, with the 
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memory usage of 9 𝑀𝐵. For the case of 200 cells  200  cells  200 cells,  the finite element 

program took 3.94 ℎ𝑟𝑠, with the memory usage of 765 𝑀𝐵 and the damped finite difference 

program took 4.12 ℎ𝑟𝑠, with the memory usage of 519 𝑀𝐵. For the damped finite difference 

program, I used the optimal damping parameter (based on Equation (26) and Equation (27)) of 

𝐷 0.026, and set the program to stop automatically when the model’s overall kinetic energy 

reached below 10-5 𝐽, as in Figure 10.  
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Figure 44. The displacement fields calculated from the damped finite difference (the left column) 
and the finite element methods (the middle column), for the model shown in Figure 31 with the 
second grid configuration of grid sampling step of 0.5 𝑚 in all dimensions. The relative 
difference is shown in the right column. The maximum difference is less than 4%. 
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Figure 45. The strain fields calculated from the damped finite difference (the left column) and the 
finite element methods (the middle column), for the model shown in Figure 31 with the second 
grid configuration of grid sampling step of 0.5 𝑚 in all dimensions. The relative difference is 
shown in the right column.  
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Figure 46. The stress fields calculated from the damped finite difference (the left column) and the 
finite element methods (the middle column), for the model shown in Figure 31 with the second 
grid configuration of grid sampling step of 0.5 𝑚 in all dimensions. The relative difference is 
shown in the right column.  
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CHAPTER 6  AN APPLICATION: STRONG 
ANISOTROPY IN SUBDUCTED SLABS AND ITS 
IMPLICATION IN DEEP CARBON CYCLE 
 

In this chapter, I will show how my damped finite difference method can be used to understand a 

recent discovery of strong anisotropy in the subducted slabs. The cause of the strong anisotropy is 

not well understood yet and the reasons can be many. Here, I explored one of the potential causes 

for the observed strong anisotropy using an inclusion model. The results in this chapter depend on 

the assumption of the inclusion model. I used the damped finite difference method to show that 

the shear modulus of the inclusion must be less than one-tenth of the matrix shear modulus to 

achieve such strong anisotropy. I also constrained the volume of the inclusions and their aspect 

ratios. Such inclusions may be aligned fluids or carbonatite melts. I then discussed their possible 

link to the subducted carbon. If the inclusions are carbonatite melts, the results in this chapter can 

put bounds on the amount of subducted carbon at subduction zones.  
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6.1 Background 

 
Deep-focus earthquakes, whose depths are greater than 300 𝑘𝑚 can happen ubiquitously in 

subducting slabs. Li et al., (2018) studied the deep earthquakes near the subducting slab interface 

in Tonga (TG), Molucca (MO), and Mariana–Japan–Kuriles (MJK) and inverted for the in situ 

anisotropy using the earthquake moment tensors (Ekström et al., 2012) to explain the none-

double-couple components of the deep earthquake radiation patterns.  

From their inversion results, the anisotropy is from a tilted transversely isotropic (TTI) 

medium with symmetry axes either perpendicular or parallel to the slab interface. They obtained a 

strong shear anisotropy, with the Thomsen’s shear anisotropy parameter 𝛾 (Thomsen, 1986) 

averaged around 0.3 for 300 –  670 𝑘𝑚 depths (Figure 47). 

Anisotropy can be from many origins. No consensus exists so far to explain the high 

anisotropy at this depth. However, Li et al., (2018) thought that the most likely cause for the 

highly anisotropic rock fabric that surrounds the hypocenters are aligned minerals or inclusions 

and their associated lithological layering. From the mineralogical point of view, olivine and 

pyroxene, two major minerals in the upper mantle, have strong anisotropy but their shear wave 

anisotropy values are not as high as the observed 0.3. For olivine, its maximum anisotropy of 

shear wave velocity is 0.18. For pyroxene, the orthopyroxene has a maximum shear wave 

anisotropy of 0.15 while the clinopyroxene has a maximum shear wave anisotropy of 0.24  

(Mainprice et al., 2000). It seems the lattice preferred orientation (Karato et al., 2008) of minerals 

due to mantle flow cannot explain the observed strong anisotropy by Li et al. (2018). 
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 It is widely believed that the polymorphic metastable olivine–wadsleyite phase 

transformation (At the 410 km depth, olivine transforms to wadsleyite under increasing pressure 

and temperature) is the cause for the deep-focus earthquakes (Green et al., 2010). However, in 

that case, the expected anisotropy for a rock containing spinel inclusions should be around 5% 

(Bina and Wood, 1987), not the 30% S-wave anisotropy observed.  

 

Figure 47. The shear anisotropy strength 𝛾 in the 6 studied deep earthquake regions. They are the 
Tonga earthquake groups 6-8 (TG6-TG8), Molucca earthquake group 2 (MO2), and Mariana–
Japan–Kuriles earthquake groups 6-7 (MJK6 - MJK 7). The earthquake groups are based on their 
spatial proximity. All the earthquakes are located around the slab interface (distance less than 55 
km). The horizontal lines represent the depth ranges of different earthquake groups. (Adapted 
from Li et al., 2018, Fig.3b). 
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Recent lab work showed that magnesite (MgCO3) has a high shear anisotropy around 0.45 

(Yang et al., 2014; Yao et al., 2018) and it is the major carbon host in subducting slabs (Dasgupta 

and Hirschmann, 2010). It can occur as veins in its host (Holyoke et al., 2014), which makes it 

qualified as laminated rock inclusion. Because of its weaker (orders of magnitude weaker) 

mechanical strength than the surrounding rocks, magnesite is considered to cause deep-focus 

earthquakes from ductile-brittle instabilities (Holyoke et al., 2014). All these properties make 

magnesite a potential rock fabric material to explain the strong anisotropy in the subducting slabs. 

Alternatively, as the carbonated oceanic crust approaches the solidus at the transition zone depths 

(Thomson et al., 2016), carbonatite melt can be present (Li et al., 2018). If the inclusion is the 

aligned carbonate solids or melts, studying deep earthquakes provides a means to constrain the 

amount of carbonate subducted.  

In my work, I take the “inclusion model” as a working hypothesis and explore what type 

of inclusions can give rise to the high anisotropy. I found that carbonate melt is a possible 

candidate. The result has huge implications for the carbon cycle in the Earth. Carbon is cycled at 

a planetary scale from the atmosphere to the deep mantle and directly impacts the climate and 

habitability of the Earth (Gerbode and Dasgupta, 2010; Hayes and Waldbauer, 2006). Since the 

onset of plate tectonics, carbon has been transported from the surface to the interior of the Earth 

primarily through subduction zones(Shirey and Richardson, 2011; Stern et al., 2016; Xu et al., 

2018). While many studies have focused on the chemical reactions and mass flux of the carbon 

cycle (e.g., Dasgupta and Hirschmann, 2010; Kelemen and Manning, 2015; Thomson et al., 

2016), how much carbon is expelled from the oceanic crust to the ambient mantle remains an 
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open question. Here I adopted rock physics modeling to explore the implications of the inclusion 

model and to tentatively quantify the amount of carbon. I constructed the slab as an effective VTI 

medium with penny-shaped inclusions, which mimic the laminated rock fabric. From the 

modeling results, I investigated the rock material and phases that could result in the shear 

anisotropy around 0.3.  

6.2 Method  

I used horizontally aligned penny-shaped inclusions to simulate the laminated rock fabric (Figure 

48). Although the lithological layering is also a possible rock physics model to simulate a VTI 

medium, I focus on the inclusions model to particularly explore the fluid-phase possibilities. The 

model is of size 200 cells  200  cells  200 cells, with grid spacing ∆𝑥 ∆𝑦 ∆𝑧 0.5 𝑚. By 

controlling the inclusion material, inclusion volume fraction and the aspect ratio of the penny-

shaped inclusion, one can build numerical rock models with varying degrees of anisotropy, 

measured volumetrically by the damped finite difference modeling method. 
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Figure 48. Rock model with thin penny-shaped inclusions embedded. The Black indicates 
inclusions and the white indicates the solid matrix. 
 

The penny-shaped inclusion model is commonly referred as penny-shaped crack model in 

the rock physics literature. In this dissertation, we use “inclusion” instead of  “crack” to avoid 

confusion of open cracks in the 500 km high-pressure depth. But we keep the terminology “crack 

density” to be consistent with the literature. Several theoretical expressions have been proposed 

for the elastic properties of aligned saturated cracks, including the Hudson model (Hudson, 1980), 

Eshelby-Cheng model (Cheng, 1993; Eshelby, 1957), and Thomsen’s model (Thomsen, 1995). 

For example, Thomsen (1995) introduced the expressions of anisotropy for aligned circular 

cracks in a porous background. If the cracks are in zero equant porosity background, the 

anisotropy parameter gamma is:  
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where η  is the crack density and 𝑣  is Poisson’s ratio of the matrix solid. The definition for the 

crack density is: 
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, (65)

where ∅ is the inclusion volume fraction, and 𝛼 is the inclusion aspect ratio, which equals to the 

short axis length divided by the long axis length.  

Though they all agreed that the crack density plays an important role in the overall 

anisotropy of the model, the mentioned theoretical expressions all have limitations of assuming 

low crack density (usually <0.1) and are unable to describe the geometric distribution of the 

cracks. Therefore, I used numerical modeling instead, attempting to generate more accurate 

results. 

Since the crack density is a function of inclusion volume fraction and inclusion aspect 

ratio (Equation (65)), I therefore ran modelings with both inclusion volume fraction and inclusion 

aspect ratio as varying parameters to generate a series of results. 

The numerical modeling outputs stress and strain fields for each model, which can then be 

used to calculate the effective elastic constants of the model based on Hooke’s law (Equation (66)

) to obtain the effective 𝛾 value from shear elastic constants (Equation (67)).  Since I only focus 

on the shear anisotropy, I apply the boundary conditions of shear stresses only, with 𝜎 𝜎

𝜎 1 𝑀𝑃𝑎.   
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 𝛾 . (67)

 

First, I assigned magnesite as the inclusion material for the shear anisotropy modeling. 

Yao et al., (2018) studied the properties of magnesite under different temperature and pressure 

conditions. They provided relationships of velocity, density, and elastic anisotropy of magnesite 

with depth along a normal mantle geotherm compared to the Preliminary Reference Earth Model 

(PREM) (Dziewonski and Anderson, 1981) (Figure 49). Since the average depth of the deep-

focus earthquakes under my study is around 500 𝑘𝑚, I assigned isotropic P-wave velocity 𝑉

9200 𝑚/𝑠, orthogonally polarized S-wave velocity 𝑉 4900 𝑚/𝑠 , 𝜌 3250 𝑘𝑔/𝑚  and 

𝐴 0.45 to the magnesite, according to Yao et al., (2018). 𝐴  is the polarization anisotropy 

factor for shear wave, which is defined as: 

 𝐴 𝑉 𝑉 /𝑉 , (68)

where 𝑉  and 𝑉  are two orthogonally polarized shear wave velocities, 𝑉  is the aggregate shear 

velocity, which was approximated as the average of 𝑉  and 𝑉 .  

Because magnesite is anisotropic, I can not use the elastodynamic equation for isotropic materials 

(Equation (22)) for numerical modeling. Instead, I used the following equations 
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 , (69)

where 𝑏 is the reciprocal of density, 𝑣  ,𝑣  and 𝑣  represent velocity fields of the 𝑥 ,𝑦 and 𝑧 

components, respectively, 𝜎  , 𝜎  and 𝜎  are normal stresses and  𝜎 , 𝜎  and 𝜎  are the 

shear stresses. 𝑑 is the damping parameter. 𝑪 is the stiffness tensor. 

For the stiffness tensor, I used the elastic moduli for magnesite from Table 4 of Yao’s 2018 paper 

(Yao et al., 2018). 
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Figure 49. Plots of magnesite compared to the Preliminary Reference Earth Model (PREM). (a) 
P-wave velocity, (b) S-wave velocity, (c) density, (d) shear elastic anisotropy 𝐴  of magnesite 
along a normal mantle geotherm were compared to Preliminary Reference Earth Model (PREM). 
(Adapted from Yao et al., 2018, Figure. 7). 
 

I assumed that the background matrix is isotropic. Since the subducting slab is colder than 

the mantle of the same depth, I applied a 5% increase to the P-wave and S-wave velocities (Li et 

al, 2018) and a 2.5% increase to density(Ganguly et al., 2009)  from the PREM model at 500 𝑘𝑚 

depth (Table 3).  
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I performed 750 models in total, and all models are of the size 200 200 200 cells 

with a spacial interval of 2 𝑚. The horizontally aligned penny-shaped inclusions are randomly 

distributed in the models with varying aspect ratios from 0.032 to 0.084, resulting in inclusion 

volume fraction ranging from 0.018 to 0.1 (Figure 50). Also, the magnesite inclusion of volume 

fraction 0.1 in this model corresponds to a 4.4 𝑤𝑡% 𝐶𝑂 , which is within the reasonable range of 

most carbon-melting experiments (Dasgupta et al., 2005; Dasgupta et al., 2004; Gerbode and 

Dasgupta, 2010; Hammouda, 2003; Kelley et al., 2003; Kiseeva et al., 2013; Thomson et al., 

2016).  

 

Figure 50. The crack density as a function of different volume fractions and aspect ratios of 
inclusions. 
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I then modeled carbonatite melt as the inclusion material in the shear anisotropy 

modeling. I assigned carbonatite melt with shear wave velocity 𝑉 0 m/s. For the P-wave 

velocity and density, based on some lab measurements of carbonatite and carbonate melts (Jones, 

2013; Andersson et al., 2013), I assumed carbonatite melts are of the P-wave velocity 𝑉 5500 

m/s and density 𝜌 2900 kg/m3 (Table 3).  

 Finally, without assuming any specific material, I varied the inclusion shear velocity to 

make its shear modulus a portion of 1%-81% of the matrix shear modulus while keeping the 

density and P-wave velocity the same with the matrix.  

 𝑉 (m/s) 𝑉 (m/s) 𝜌(kg/m3) 𝐴  

Matrix 10132.5 5481 3946.3 0 

Inclusion 

Magnesite  9200 4900 3250 0.45 

Carbonatite 

melt 

5500 0 2900 0 

Table 3. Properties for matrix and inclusions used in the modeling of effective 𝛾 for penny-
shaped inclusion models. 
  

Material 

Property 
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6.3 Results 

6.3.1 Modeling results for solid magnesite as inclusion 

Figure 51(a)(b) show that for the given properties of magnesite and matrix, the 𝛾 value correlates 

primarily with the inclusion volume fraction, while the inclusion aspect ratio has little influence 

on the 𝛾 values.  Even the inclusion volume fraction is as high as 0.1, the maximum 𝛾 value is 

only around 0.055 which is still far less than the strong anisotropy 𝛾 0.3 that was inverted from 

the deep earthquake moment tensors by Li et al., (2018). 

Since this model shows an almost linear relationship between the inclusion volume 

fraction and the 𝛾 value (Figure 51(a)), extrapolating the linear trend one can estimate that to 

achieve a 𝛾 value of 0.3, the volume fraction of magnesite should be around 47%, which is not 

likely to happen in reality. 
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Figure 51. Modeling results for magnesite as inclusions and carbonatite melt as inclusions. (a) 𝛾 
values for different inclusion volume fractions and inclusion aspect ratios for magnesite inclusion. 
(b) Scatter plot of 𝛾 and crack density for all 750 models for magnesite inclusion. (c) 𝛾 values for 
different inclusion volume fractions and inclusion aspect ratios for carbonatite melt inclusion. (d) 
Scatter plot of 𝛾 and crack density for all 750 models for carbonatite melt inclusion. 
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6.3.2 Modeling results for carbonatite melt as inclusion 

Figure 51(c)(d) show that high 𝛾 values are easily achievable with carbonatite melt as inclusion. 

A crack density as small as 0.2 can result in a 𝛾 value of 0.3. Also, the relationship between crack 

density and 𝛾 value is almost linear (Figure 51(d)), making Figure 51(c) resemble Figure 50. 
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6.3.3 Modeling results for variable inclusion shear moduli 

Figure 52 shows the relationship between effective 𝛾 of the model and crack density for different 

inclusion shear moduli, comparing with the cases when inclusion is magnesite and carbonatite 

melt, respectively.    

 

Figure 52. Relationship between effective 𝛾 of the model and crack density. The color dots 
represent different shear modulus of inclusions (𝐺 ), including special cases when 
inclusion is magnesite and carbonatite melt, respectively. 
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6.4 Discussions 

6.4.1 What inclusion properties can give strong anisotropy?  

According to Equation (67), shear anisotropy is purely a function of shear modulus. For the 

penny-shaped inclusion effective medium model, I kept the matrix property and varied the 

inclusion shear modulus to test when a 𝛾 of 0.3 is achievable. The modeling results are displayed 

in Figure 53 and Figure 54.  

 
From the results, we can see that when the inclusion shear modulus is less than 9% of the 

matrix shear modulus, a 𝛾 of 0.3 is achievable. If we assume the inclusion is of the same density 

as the matrix, that means the shear wave velocity of the inclusion should be less than 30% of that 

of the matrix, i.e., the shear wave velocity of the inclusion should be less than 1644.3 𝑚/𝑠.  Even 

if we consider the 𝛾 as a combined anisotropy of magnesite and other inclusions, the shear wave 

velocity of the inclusion should be quite small.  The numerical modeling of the magnesite 

inclusion shows that it can only contribute up to 5.5% shear anisotropy with 10% volume 

fraction (Figure 51(a)). If the other inclusion material compensates for the rest 24.5%, it must 

have a shear modulus of less than around 12% of the matrix shear modulus (Figure 53 and Figure 

54(c)(d)). That means, if the inclusion has about the same density as the matrix material, its shear 

velocity should be less than 35% of that of the matrix, in the situation of 500 𝑘𝑚 depth, it will be 

less than 1918.3 𝑚/𝑠. In both cases, the inclusion is most likely a fluid/melt phase. 
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Figure 53. Plots of the 𝛾 values for different crack densities in normal (linear) and log scales. 
Different colors indicate different ratios of shear modulus of the inclusions (𝐺 ) to that of 
the matrix(𝐺 ). (a) is of normal scale; (b) is of logarithmic scale to display the very low 𝛾 
values. 
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Figure 54. 𝛾 values as a function of inclusion volume fractions and aspect ratios. The nine plots 
correspond to the inclusion shear modulus (𝐺 ) from 1%~81% of the matrix shear 
modulus (𝐺 ). 
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6.4.2 Can the carbonatite melt cause the anisotropy?  

Carbonatite melts are possible inclusions to explain the low shear modulus in the inclusions. 

Carbonatite melts, or partial melts, are of both lower density and shear wave velocity than its 

solid phase. Solopova et al., (2015) experimentally studied the melting and decomposition of 

magnesite, showing that magnesite melt congruently within the studied pressure range 12–84 GPa 

at temperatures of 2,100–2,650 K. There is no enough evidence showing if these temperature and 

pressure ranges are achievable at the depth of 300 670 𝑘𝑚 in the subduction zones of Tonga 

(TG), Molucca (MO) and Mariana–Japan–Kuriles (MJK) where the high shear anisotropy was 

observed. If these conditions are true for these study areas, it is possible that part of the magnesite 

is melted or partially melted as inclusions.  

          Thomson et al., (2016) provided a melting curve of carbonated subducting slabs. From their 

study, all subducting slabs, no matter cold or hot, enter the carbonatite melting zone at or near the 

transition zone depths. The carbonatite melt can be part of the inclusions to cause high shear 

anisotropy. That can explain why even an old and cold slab (Seton et al., 2012) as TG can have 

carbonatite melting on its surface and generate high shear anisotropy.  

From Li et al., (2018) , the laminated rock fabric that caused the high shear anisotropy is 

either parallel or perpendicular to the slab surface. It implies that the driving force for the melting 

migration should possibly be shear stress, not buoyancy. The melts may not be fully connected 

with each other to form melt migration flux. They might be isolated and trapped locally due to the 

low permeability of the matrix rock.   
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6.5 Conclusions  

From the numerical modeling,  I derived the relationship between inclusion volume fraction, 

aspect ratio, shear modulus and the slab shear anisotropy 𝛾, based on the penny-shaped inclusion 

model assumption. If the anisotropy is caused by the carbonatite melt, we can have some 

estimations about the carbon amount stored. To achieve the observed 𝛾 of 0.3, the inclusion shear 

modulus should be less than 10% of the matrix shear modulus (Figure 54 (a)(b)(c)). Roughly, the 

shear anisotropy   linearly depends on the crack density, or the  ratio  / (Figure 53). I can 

constrain the ratio but not the respective values of   and  . For example, for an inclusion with 

shear modulus equals to 1% of the matrix shear modulus, the crack density should be around 0.2 

(Figure 53). If the inclusion aspect ratio is 0.03,  the carbonatite melt volume fraction should be  

~2.5% (Figure 54(a)). If the aspect ratio is 0.01, we can extrapolate the trend to get a ~0.8% melt 

volume fraction. If the aspect ratio can be estimated through another independent method, based 

on the relationship I derived, one can put more constraints on the carbon amount stored in the 

subducting slab.  
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CHAPTER 7  IMPROVING SUBSALT SEDIMENT 
IMAGING AND HIGH ANGLE FAULTS USING 
SECONDARY SCATTERED SEISMIC WAVES 
 

Steeply dipping faults, salt flanks, and subsalt sediments are important geological structures in 

energy exploration. Conventional seismic imaging in such areas is known to have challenges in 

imaging those features, due to poor illumination because of the use of singly scattered 

waves/primary reflections. In this chapter, I used multiply scattered waves, especially the 

secondary scattered waves, in the reverse time migration (RTM), to enhance the seismic 

illumination for imaging the steep faults and subsalt areas. I applied the method on two synthetic 

models, a trapezoidal model and the Sigsbee2B model. These two synthetic examples 

demonstrate that the new method achieves better imaging of steep faults and subsalt areas than 

the traditional RTM. 

7.1 Methodology 

In the secondary scattering method, the scatterers will serve as new wave-radiating sources 

activated by the incident wave. They emit waves to reach the “shadow zones”, then the secondary 

scattered waves can be recorded by the surface receivers. One typical “shadow zone” is the high 

angle fault (Figure 55). The secondary scattered waves can illuminate the high angle fault where 

primary scattered waves are not able to reach (Figure 55).   
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Figure 55. Raypaths of primary scattered waves (blue) and secondary scattered waves (magenta). 
The secondary scattered waves illuminate the high angle fault where primary scattered waves are 
not able to reach. In the primary reflection case, the wave from the source hits the “primary 
scatterer” and then directly goes to the receiver. In the secondary scattering path, the wave hits 
the scatterer first, then reflected by the high angel fault, and then goes to the receiver. 
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In seismic data processing, the migration velocity is usually a smoothed model, built using 

seismic tomography and possibly with other geologic and wellbore a priori information. 

Conventional RTM using a smoothed migration model is able to image using primary reflections 

(or called singly-scattered waves) and turning waves. (Reflection is the constructive interference 

of scattering. Suppose the obstacle is a plate, only when the radius of the plate is far smaller than 

the first Fresnel zone, it could be considered as a scatterer. Otherwise, it is a reflector.)  The wave 

propagation in such a smoothed model usually cannot generate multiply scattered waves. 

Therefore, the conventional RTM image is an image produced by primary reflections. On the 

other hand, multiply scattered waves, especially secondary scattered waves usually interact with 

high-angle faults and subsalt structures and are indeed recorded by surface receivers. Because the 

multiples do not follow the primary-reflection paths, seismic migration using a smoothed model 

does not properly account for the kinematics of the multiples.  

Hence I proposed the following imaging procedures to use recorded multiply scattered 

waves for imaging high-angle faults and subsalt areas where primary reflections can hardly 

illuminate. In this dissertation, I only discussed the acoustic wave RTM. 

Firstly, I ran the conventional RTM. The conventional RTM of singly scattered waves 

with cross-correlation imaging condition could be expressed as 

 𝐼 𝒙 𝑆 𝒙𝒔, 𝐯, 𝛒; 𝒙, 𝑡 𝑅 𝒙𝒓, 𝐯, 𝛒; 𝒙, 𝑡 𝑑𝑡
𝒙𝒔

, (70)

where 𝒙 is the subsurface image point location; 𝒙𝒔 and 𝒙𝒓 are the source and receiver locations, 

respectively; 𝑡 is time; 𝑆 and 𝑅 represent the forward propagated source wavefield and backward 
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propagated receiver wavefield, respectively; 𝐼  is the image stacked from all shot gathers; 𝐯 and 𝛒 

are the velocity and density models used in wave propagation, respectively. For the wavefield 

propagation (S and R), I used the staggered grid finite difference scheme to solve the full-wave 

acoustic wave equation (Virieux, 1986b). 

Secondly, after I got the image, I identified the reflective features such as geological layer 

boundaries and discontinuities where potential point scatterers could be placed to illuminate the 

targeted structure. I put these artificial density scatterers to generate the forward propagated 

secondary scattered waves. These forward propagated scattered waves correlated with the 

receiver-side backward propagated waves at the high angle fault and salt flanks so that they could 

illuminate these areas (See Figure 55). In addition, the artificial density point scatterers would not 

change the traveltime of the primary wavefields and therefore would not reduce the spatial 

accuracy of the image. This procedure could be described by the following equation: 

 𝐼 𝒙 𝑆′ 𝒙𝒔, 𝐯, 𝛒′; 𝒙, 𝑡 𝑅 𝒙𝒓𝐯, 𝛒; 𝒙, 𝑡 𝑑𝑡
𝒙𝒔

, (71)

where 𝐼  is the image of primary reflections and multiply scattered waves; 𝑆′ is the forward 

propagated source wavefield based on the migration velocity 𝐯 and a new density model 𝛒′. The 

new density model 𝛒′ is built from the previous density model 𝛒 by adding artificial positive 

density perturbations as secondary scatterers.  

Thirdly, I extracted the image of multiply scattered waves 𝐼  by subtracting the 𝐼  from 

𝐼 :  
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 𝐼 𝒙 𝐼 𝒙 𝐼 𝒙 . (72)

The amplitude of 𝐼  would be much smaller than 𝐼 . One could enhance the amplitude of 

𝐼  using a scaling factor to match it with the amplitude of 𝐼  and generate a new image 𝐼 : 

 𝐼 𝒙 𝐼 𝒙 α𝐼 𝒙 , (73)

where 𝛼 is a scaling factor that can be estimated from the ratio of maximums in 𝐼  and 𝐼 .  

Consequently, the image 𝐼  contained both the traditional RTM image due to primary 

reflections and the image of steep faults and subsalt areas due to the secondary scattering.  

I summarized the workflow of my proposed method as:  

1) Get the smoothed migration velocity model 𝐯 and constant density model 𝛒 ; 

2) Perform the conventional RTM (Equation (70)) and obtain the image 𝐼 ; 

3) Based on image 𝐼 , identify possible locations for scatterers (e.g., layer interface, sharp 

topography, etc.) around the targeted structure; 

4) Build a new density model 𝝆′ by setting the artificial point scatterers as density 

perturbations; 

5) Perform the RTM with the new density model 𝝆′ for the source-side wavefield using 

Equation (71) and obtain 𝐼 ;  For computing the receiver-side wavefield, one could use the 

original density model; 

6) Extract the image 𝐼  of multiply scattered waves with Equation (72); 

7) Calculated the scaling factor and generate the final image 𝐼  with Equation (73).
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7.2 Results 

7.2.1 Trapezoidal model 

A trapezoidal model (Figure 56(a)) was built to demonstrate the limitation of the conventional 

RTM and the effectiveness of the secondary scattering RTM. The true model was a 2D two-

layered sedimentary model. Each layer was homogeneous and isotropic. A high velocity 

homogeneous and isotropic trapezoidal anomaly was embedded in the upper layer (Figure 56(a)). 

To measure the reflection seismic response of such model, 75 point sources with 6 𝐻𝑧 Ricker 

wavelet were evenly distributed at the surface from 0 –  7.4 𝑘𝑚 with 100 m interval. Receivers 

were deployed on the surface from 0 –  10 𝑘𝑚 with a 10 𝑚 interval. 

The conventional RTM with the smoothed velocity model uses mainly primary waves and 

is difficult to image the near-vertical salt flank. The 75 shot gathers were migrated using the 

smoothed migration velocity (Figure 56(b)) by the conventional RTM method. The migrated 

image (Figure 56(c)) shows the top and the left side low angle flank of the salt body, but the 

vertical salt flank to the right side was not imaged. 
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Figure 56. (a) The trapezoidal velocity model for the case study. (b) The smoothed migration 
velocity model without salt used in RTM. (c) Conventional RTM image. 

 

Based on the migration image from the conventional RTM (Figure 56(c)), a density point 

scatterer whose density was 10 times of the constant background density was placed to the right 

side of the salt body on the interface of the two sediment layers (Figure 57(a)), where the 

secondary scattering might illuminate the right flank of the salt. The secondary scattering image 

(Figure 57(b)) was obtained by subtraction of the conventional RTM image (Figure 56(c)) from 

the RTM migration image with that one scatterer added. The single scatterer effectively 

illuminated the right vertical flank of the trapezoidal model. The final image (Figure 57(c)) was 
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obtained by linearly combining the primary reflection image and the secondary scattering image 

based on Equation (73).  

The advantage of placing a small number of scatterers rather than a reflector surface is 

that scatterers emit waves in all directions, but a specular reflector reflects waves in certain 

directions.  In addition, the density point scatterers will not distort the migrated images. A natural 

problem to investigate is what happens if one places the point scatterers randomly, not on an 

imaged boundary or some scattering features. I placed point scatterers inside the first layer instead 

of on the interface of the two layers (Figure 58(a)).  Some minor image artifacts were introduced 

in the secondary scattering image (Figure 58(b)). However, the final image (Figure 58(c)) did not 

change much compared to the results obtained by placing the point scatterers on the layer 

boundary (Figure 57(c)). The vertical salt flank could still be interpreted (Figure 58(c)). If one put 

the scatterer to a wrong location, it will not generate a wrong image, because the source-side 

secondary scattering wavefield and the receiver-side wavefield will not coincide at the image 

location.  

Both the conventional (Figure 56(c)) and secondary scattering RTM (Figure 57(c) and 

Figure 58(c)) cannot image the salt bottom clearly because I used the smoothed migration 

velocity model without salt. Therefore, the traveltime from the source side and the receiver side 

did not coincide at the bottom of the salt. To better image the bottom boundary of the salt, a 

progressive imaging process with salt flooding strategy is further needed but is out of the scope of 

this paper. 
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Figure 57. (a) The migration velocity model with a single density point scatterer (indicated by the 
blue star) for secondary scattering image generation. (b) The image of secondary scattering only, 
𝐼  (Equation (72)). (c) Linear combination of primary and secondary scattering image with a 
scaling factor of α=200 (Equation (73)) on the secondary scattering image. 
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Figure 58. (a) Multiple density point scatterers (indicated by the blue stars) are placed in the 
smoothed migration velocity model. (b) The image of secondary scattering only, 𝐼  (Equation 
(72)).  (c) Linear combination of primary and secondary scattering image with a scaling factor of 
α=200 (Equation (73)) on the secondary scattering image. 

 

7.2.2 Sigsbee2B model 

I applied our proposed methodology on the Sigsbee2B model which is constructed to help 

understand the imaging issues observed subsalt (Paffenholz et al., 2002). The model (Figure 

59(a)) had a 25 𝑓𝑡 grid spacing in both the horizontal and depth directions. The seismic survey 

had 500 shots, from distance 925 𝑓𝑡 to 75775 𝑓𝑡, with a shot interval of 150 𝑓𝑡. The maximum 

number of receivers per shot was 348, with a receiver interval of 75 𝑓𝑡. Both the sources and 
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receivers were at 25 𝑓𝑡 depth. The recording length was 12 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 with a sampling rate of 

8 𝑚𝑖𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The Sigsbee2B model is known for its illumination problems below the salt. 

Using a smoothed velocity model (Figure 59(b)), I obtained a conventional RTM image (Figure 

60(a)) and its subsalt area (arrows in Figure 60(b)) could not be imaged clearly.  

Two configurations of point scatterers (Figure 61(a) and Figure 62(a)) with density ratio 

10:1 to the constant background density were placed around the subsalt sediments to improve the 

illumination of that area. The results (Figure 61(b) and Figure 62(b)) showed that the secondary 

scattering waves much better imaged the sediments right beneath the salt which were not imaged 

well on the conventional RTM image. I stacked the two images from the two sets of point 

scatterers to increase the signal to noise ratio (SNR) (Figure 63(a)). The sediment layers imaged 

by the secondary scattering correlated well with the reflectivity model of Sigsbee2B (Figure 

63(b)).  
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Figure 59. (a) Sigsbee2B velocity model. (b) The smoothed velocity model used in RTM. 
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Figure 60. (a) Conventional RTM image. (b) Zoomed in the area from the red rectangle in (a) 
with arrows indicating poor illuminations in the subsalt area. 
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Figure 61. (a) The first set of scatterers (indicated by red dots) are placed at the subsalt area. (b) 
Secondary scattering image produced by scatterers in (a). Some of the improvements are marked 
by the yellow arrows. 
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Figure 62. (a) The second set of scatterers (indicated by red dots) are placed at the subsalt area. 
(b) Secondary scattering image produced by scatterers in (a). Some of the improvements are 
marked by the yellow arrows. 
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Figure 63. (a) The stacked image from Figure 61(b) and Figure 62(b). (b) The overlay of 
Sigsbee2B reflectivity model and (a). The blue and red lines represent the reflectors. The 
reflectors correlate well with the sediments imaged from the secondary scattering. 
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7.3 Conclusions 

I modified the conventional RTM workflow to use secondary scattering waves to better image 

high angle faults, salt flanks, and subsalt sediments. The secondary scattering RTM workflow 

showed better imaging results at illumination shadow zones that cannot be reached by primary 

reflections. I verified the proposed methodology using a two-layered trapezoidal salt model with a 

vertical salt flank and the Sigsbee2B model. For the two-layered trapezoidal salt model, I showed 

that a single secondary source could illuminate/image the vertical flank.  On the other hand, 

randomly placing several scatterers in the model did not deteriorate the image quality. For the 

Sigsbee2B model, the imaging challenge is in the subsalt where primary reflections cannot reach. 

My methodology showed a great improvement on the subsalt image so that interpreters can 

properly identify the relationship between the salt intrusion and the sedimentary layers.  
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