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ABSTRACT

This dissertation deals with the structure of intermediate C∗-sub-algebras B, either of the form

C∗λ(Γ) ⊆ B ⊆ AorΓ or of the type C(Y )orΓ ⊆ B ⊆ C(X)orΓ. We begin by investigating the ideal

structure of intermediate C∗-sub-algebras B of the form C∗λ(Γ) ⊆ B ⊆ AorΓ for commutative unital

Γ-simple Γ-C∗-algebras A. In particular, we show that if Γ is a C∗-simple group, then every such

intermediate C∗-sub-algebra B is simple. Continuing our perusal, we find examples of inclusions

C∗λ(Γ) ⊆ A or Γ for which every intermediate C∗-sub-algebra B of the form C∗λ(Γ) ⊆ B ⊆ A or Γ

is a crossed product. We show that for a large class of actions Γ y A of C∗-simple groups Γ on

unital C∗-algebras A, including any non-faithful action of a hyperbolic group with trivial amenable

radical, every intermediate C∗-sub-algebra B, C∗λ(Γ) ⊆ B ⊆ AorΓ, is a crossed product. On the von

Neumann algebraic side, we show that for every non-faithful action of a acylindrically hyperbolic

C∗-simple group Γ on a von Neumann algebra M with separable predual, every intermediate vNa

N , L(Γ) ⊆ N ⊆ M o Γ is a crossed product vNa. Finally, we inquire into the ideal structure of

intermediate C∗-sub-algebras B of the form C(Y )or Γ ⊆ B ⊆ C(X)or Γ for an inclusion of unital

Γ-simple Γ-C∗-algebras C(Y ) ⊂ C(X). We introduce a notion of generalized Powers averaging and

show that it is equivalent to the simplicity of the crossed product C(X)orΓ. As an application, we

show that every intermediate C∗-sub-algebras B, C(Y ) or Γ ⊆ B ⊆ C(X) or Γ is simple whenever

C(Y ) or Γ is simple.
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1 Chapter Zero

Who sees further a dwarf or a giant?

Surely a giant for his eyes are situated at a

higher level than those of the dwarf. But if

the dwarf is placed on the shoulders of the

giant who sees further? ... So too we are

dwarfs astride the shoulders of giants. We

master their wisdom and move beyond it.

Due to their wisdom we grow wise and are

able to say all that we say, but not

because we are greater than they.

A Wise Philosopher

In 1972, Furstenberg [16] introduced “boundary” to study certain properties of lattices of

semisimple lie groups (e.g., think of SLn(Z) inside SLn(R)). Around the same time, Powers [34]

showed that C∗λ(F2) is simple. He used a form of averaging (more famously known as Powers av-

eraging) to show that every non-zero closed ideal of C∗λ(F2) must contain an invertible element,

hence must be all of C∗λ(F2). Until 2014, research on C∗-simplicity was dominated by combinatorial

variations of Powers averaging property.

In 2014, Kalantar and Kennedy [22] gave a dynamical characterization of C∗-simplicity. In

particular, they showed that a group Γ is C∗-simple if and only if the action Γ y ∂FΓ on the

Furstenberg boundary ∂FΓ is (topologically) free. We use this characterization in the later chapters

for C∗-simple group actions.

For a unital Γ-C∗-algebra A, the reduced crossed product Aor Γ encodes the information of A

and the group Γ (much similar to the construction of GnH, a semi-direct product of two groups

G and H). Moreover, by construction, A or Γ contains C∗λ(Γ) as a C∗-subalgebra. Naturally,

people began to investigate if the properties of C∗λ(Γ) are reflected in the bigger C∗-algebra Aor Γ.

In particular, they began to study the ideal structure of the crossed product A or Γ, e.g., see
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[3, 10, 12, 13, 21, 24, 35, 38]. In this dissertation, we enquire into the structure of intermediate sub-

algebras of crossed products.

Building on the characterization provided in [22], Kalantar and Kennedy along with their co-

authors Breuillard and Ozawa solved many important problems in [7] which were open for several

years. In particular, they showed that A or Γ is simple when A is Γ-simple and C∗λ(Γ) is simple

(and in the process answered a question asked in [12] in the affirmative). In many ways, this was

a starting point for us.

Initially, we investigate the structure of intermediate C∗-sub-algebras B, C∗λ(Γ) ⊆ B ⊆ Aor Γ.

In the final chapter, we enquire into the ideal structure of intermediate C∗-subalgebra B of the

form C(Y ) or Γ ⊆ B ⊆ C(X) or Γ for an inclusion C(Y ) ⊂ C(X) of unital Γ-C∗-algebras.

This dissertation is divided into two parts. In the first part, we describe the objects of our

interest. Since we primarily deal with C∗-simple groups (except for the final chapter), we mention

some of the outstanding works done in understanding such structures (i.e., [7,9,19,20,22,26,27,30]).

Since “boundary actions” play a significant role for us, we illustrate two examples of such actions

where we can explicitly get hold of a “boundary”.

We prove the main results in the second part. In the second chapter, we take the first step

towards understanding the structure of intermediate C∗-subalgebras. In this chapter, we deal with

the ideal structure of intermediate C∗-subalgebras B of the form C∗λ(Γ) ⊆ B ⊆ C(X) or Γ for C∗-

simple groups Γ acting minimally on a compact Hausdorff space X. In particular, we show that if

Γ is C∗-simple and X is a minimal Γ-space (in which case C(X)or Γ is simple), every intermediate

C∗-subalgebra B of the form C∗λ(Γ) ⊆ B ⊆ C(X) or Γ is simple.

In the third chapter, we move further ahead and give examples of C∗-simple group actions

Γ y A for which every intermediate C∗-subalgebra B of the form C∗λ(Γ) ⊆ B ⊆ Aor Γ is a crossed

product. We prove a similar result in the context of von Neumann algebras as well. For this, we

introduce the notion of “plump subgroups” and show that the class of such subgroups is huge. We

also give various dynamical characterizations of such groups in the process.

Finally, in the fourth and last chapter, we generalize the well known “Powers averaging” to
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the level of commutative crossed products and show that such an averaging is equivalent to the

simplicity of the crossed product C(X) or Γ. As an application, we generalize the result of the

second chapter to the setting of commutative reduced crossed products.
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Part I

Introducing the tools.
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2 Introduction

Young man, in mathematics you don’t

understand things. You just get used to

them.

John von Neumann

In this chapter, we describe the construction of the objects we work with. In particular, we

describe the structure of reduced C∗-algebra, reduced crossed products and associated maps. More-

over, we also briefly recall the important works which have been done in understanding the structure

of these objects (mostly without proofs). The contents of the first section are mostly taken from

[8].

2.1 Group C∗-algebras

We begin by discussing an important class of C∗-algebras which is primary to our interest. Let Γ

be a discrete group. Let λ : Γ→ B(`2(Γ)) denote the left regular representation:

λs(δt) = δst, s, t ∈ Γ

Note that {δt : t ∈ Γ} is an orthonormal basis for `2(Γ). For f ∈ `∞(Γ) and s ∈ Γ, we define

s.f ∈ `∞(Γ) by s.f(t) = f(s−1t), s, t ∈ Γ. We view `∞(Γ) as multiplication operators on B(`2(Γ)),

i.e.,

Mf (δt) = f(t)δt, f ∈ `∞(Γ), t ∈ Γ

An easy calculation then shows that

λsMfλ
∗
s = s.f, ∀f ∈ `∞(Γ), s ∈ Γ

5



Definition 2.1. The reduced C∗-algebra of Γ, denoted by C∗λ(Γ), is defined as

C∗λ(Γ) = Span
‖.‖B`2(Γ) {λt : t ∈ Γ}

A state on ϕ a unital C∗-algebra A is a positive linear functional of norm 1. Moreover, a state

ϕ is called a trace if

ϕ(ab) = ϕ(ba), ∀a, b ∈ A.

The reduced C∗-algebra comes equipped with a canonical trace which will play an important role

for us later.

Proposition 2.2. [8, Proposition 2.5.3] The map τ0 : C∗λ(Γ)→ C defined by τ0(x) = 〈xδe, δe〉 is a

faithful trace.

We introduce the notion of amenable groups below and refer the reader to [8, Theorem 2.6.8]

for characterizations of such groups. We do not deal with them in the later chapters but they serve

as important non-examples for us.

Definition 2.3. A group Γ is called amenable if there exists a state µ on `∞(Γ) which is invariant

under the left translation action, i.e., for all s ∈ Γ and f ∈ `∞(Γ), µ(s.f) = µ(f).

There are plenty of amenable groups around, e.g., finite groups, abelian groups. In fact, all

solvable (hence, nilpotent) groups are amenable.

Example 2.4 (Non-abelian free groups). The free group F2 of rank two is not amenable. See

[8, Example 2.6.7] for a proof.

We shall see later that free groups belong to a class of groups called C∗-simple groups.

Definition 2.5. A group Γ is called C∗-simple if C∗λ(Γ) doesnot have any non-trivial closed ideals.

2.2 Reduced crossed products

Definition 2.6. Let Γ be a discrete group and A be a C∗-algebra. An action of Γ on A is a group

homomorphism α from Γ into the group of ∗-automorphisms on A. A C∗-algebra equipped with a
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Γ-action is called a Γ-C∗-algebra.

Suppose that A is a unital Γ-C∗-algebra. Let π : A → B(H) be a faithful ∗-representation. Let

`2(Γ,H) be the space of square summable H-valued functions on Γ, i.e.,

`2(Γ,H) =

{
ξ : Γ→ H such that

∑
t∈Γ

‖ξ(t)‖2H <∞.

}

There is an action Γ y `2(Γ, H) by left translation:

λsξ(t) := ξ(s−1t), ξ ∈ `2(Γ,H), s, t ∈ Γ

Let σ be a ∗-representation

σ : A → B(`2(Γ,H))

defined by

σ(a)(ξ)(t) := π(t−1a)ξ(t), a ∈ A

where ξ ∈ `2(Γ,H), t ∈ Γ. The reduced crossed product C∗-algebra A oα,r Γ is the closure in

B(`2(Γ,H)) of the subalgebra generated by the operators σ(a) and λs. Note that λsσ(a)λs−1 =

σ(s.a) for all s ∈ Γ and a ∈ A.

Remark 2.7. It is easy to see that Aor Γ contains C∗λ(Γ) as as a C∗-subalgebra.

The reduced crossed product comes equipped with a projection from C(X)orΓ onto C(X) denoted

by E. It is called a “conditional expectation”. Since it will play crucial role for us in the later

chapters, we take some time to develop the intuition. We do not go into the detailed proofs (for

which we refer the reader to [8]). Recall the definition of an operator system.

Definition 2.8. An operator system E is a closed self-adjoint subspace of a unital C∗-algebra A

such that 1A ∈ E. The n× n matrices over E, Mn(E), inherit an order structure from Mn(A): an

element in Mn(E) is positive if and only if it is positive in Mn(A).
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Towards conditional expectation

A map ϕ : E → B from an operator system E into a C∗-algebra B is called completely positive if

ϕn : Mn(E)→Mn(B), defined by

ϕn ([ai,j ]) = [ϕ(ai,j)] ,

is positive (i.e., maps positive matrices to positive matrices) for every n. In addition, if ϕ (1E) = 1A,

we say that ϕ is a unital completely positive map. We write u.c.p for “unital completely positive”

maps. An important class of such maps are ∗-homomorphisms π between two unital C∗-algebras.

Proposition 2.9. [8, Proposition 1.5.7] Let A and B be C∗-algebras and ϕ : A → B be a u.c.p

map.

1. (Schwarz Inequality) The inequality ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) holds for every a ∈ A.

2. (Bimodule Property) Given a ∈ A, if ϕ(a)∗ϕ(a) = ϕ(a∗a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗, then

ϕ(ba) = ϕ(b)ϕ(a) and ϕ(ab) = ϕ(a)ϕ(b) for every b ∈ A.

3. The subspace Aϕ defined as

{a ∈ A : ϕ(a)∗ϕ(a) = ϕ(a∗a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗}

is a C∗-subalgebra of A.

Definition 2.10. Let ϕ : A → B be a u.c.p map. The C∗-subalgebra Aϕ in Proposition 2.9 is

called the multiplicative domain of ϕ.

We shall derive many important results by showing that a C∗-subalgebra falls in multiplicative

domain of states but that is for later. It turns out that conditional expectations are important

examples of u.c.p maps.

Definition 2.11. Let B ⊂ A be an inclusion of unital C∗-algebras. A projection from A onto B is

a linear map E : A → B such that E(b) = b for all b ∈ B. A conditional expectation from A onto

B is a u.c.p projection E from A onto B such that E(bxb′) = bE(x)b′ for every x ∈ A and b, b′ ∈ B.
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Theorem 2.12 (Tomiyama). [8, Theorem 1.5.10] Let B ⊂ A be an inclusion of unital C∗-algebras.

Let E be a projection from A onto B with 1A ∈ B. The following are equivalent:

1. E is a conditional expectation.

2. E is u.c.p.

3. E is contractive.

The reduced crossed product Aor Γ comes equipped with a canonical conditional expectation

E : Aor Γ→ A defined by

E (σ(as)λs) =

 0 if s 6= e

σ(ae) otherwise


It follows from [8, Proposition 4.1.9] that E extends to a faithful conditional expectation from

Aor Γ onto A. Observe that the map E is Γ-equivariant, i.e.,

E (λsxλs−1) = αs (E(x)) , x ∈ Aor Γ, s ∈ Γ

Sometimes, we will be seeing the reduced crossed product either inside B(`2(Γ)). We illustrate how

below.

Inside our favorite Hilbert space.

By a compact Γ-space, we mean a compact Hausdorff space X on which Γ acts by homeomorphisms,

i.e., there is a homomorphsim φ : Γ → Homeo(X) from the group Γ to Homeo(X), the group of

homeomorphisms on X. For an element s ∈ Γ, we denote the action s y X by s.x instead of

φ(s)x by a slight abuse of notation. The action Γ y X is said to be minimal if the only non-

empty Γ-invariant closed subset of X is X itself. For compact minimal Γ-spaces X (Γ y X by

homeomorphisms), we will view C(X)or Γ inside B(`2(Γ)). For a probability measure ν on X, we

denote by Pν the corresponding Poisson map, i.e., the corresponding unital positive Γ-equivariant
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map Pν : C(X)→ `∞(Γ) defined by

Pν(f)(s) =

∫
X
f(sx)dν(x), s ∈ Γ, f ∈ C(X).

Define a map T : `∞(Γ)→ B`2(Γ) by T (g) = Mg, where Mg(ξ) = gξ, ξ ∈ `2(Γ). Define π : C(X) −→

B`2(Γ) by π(f) = T ◦ Pν(f). In particular, for a point measure ν = δx0 , x0 ∈ X, the Poisson map

corresponding to δx0 turns out to be just the evaluation at x0, i.e., Pν(f)(s) = f(s.x0). Moreover,

in this case, π : C(X) → B`2(Γ) is an injective ∗-homomorphism. Note that {δt : t ∈ Γ} is an

orthonormal basis for `2(Γ). Moreover,

π(f)(δt) = T ◦ Pν(f)(δt) = MPν(f)(δt) = f(t.x0)δt.

Now,

C(X) or Γ = Span {π(f)λs : f ∈ C(X), s ∈ Γ}‖.‖B(`2(Γ))

We will use this representation when we deal with minimal Γ-spaces X in the later chapters.

2.3 Simplicity of group C∗-algebras and their relation to boundaries

Since Powers proof [34] in 1975 that the free group on two generators is both C∗-simple and has

the unique trace property, it had been a major open problem to characterize groups with either

of these properties, and in particular to determine whether they are equivalent (see, e.g., [18] for

this fact, and for a nice general survey of the subject matter). Recall that a discrete group Γ is

called C∗-simple if the reduced C∗-algebra C∗r (Γ) is simple. Using the characterization provided in

the pioneering work of Kalantar and Kennedy ([22]), the problem of characterizing groups with the

unique trace property was completely settled in [7]. Finally, le Boudec [28] exhibited an example

of a group with unique trace property but not C∗-simple, thereby establishing that the unique

trace property and C∗-simplicity are not equivalent properties. In all these significant works,

the key was the dynamical characterization of C∗-simplicity of Γ in terms of its action on the
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Furstenberg boundary ∂FΓ (see [22, Theorem 1.5]), developed by Furstenberg [16] (also see [15]).

We define boundary actions and provide two explicit examples of boundary actions before stating

the celebrated result of [22].

Definition 2.13 (Boundary Action). The action Γ y X is called a boundary action if

{δx : x ∈ X} ⊂ Γν
weak∗

for ν ∈ Prob(X).

Proposition 2.14. [15,16] The Furstenberg boundary of Γ, ∂FΓ is a Γ boundary which is universal

in the sense that every every other Γ-boundary Y is a Γ-equivariant continuous image of ∂FΓ.

Moreover, such a maximal Γ-boundary exists.

The existence of such a space is a consequence of a product argument involving representatives

of all boundaries (see, e.g., [16, P. 199]). Moreover, Furstenberg showed that it is unique upto Γ-

equivariant homeomorphism. The uniqueness is a consequence of the following important property.

Proposition 2.15. [16, Proposition 4.2] Every Γ-map from a compact Γ-space Y into P(X), where

X is a Γ-boundary, must contain X in its range. Moreover, if Y is minimal, then there is at most

one such map.

2.4 Examples

2.4.1 Boundaries of free groups

We give an explicit example of a boundary action for F2, the free group of two generators {a, b}.

Definition 2.16. ∂F2 is the set of all infinite reduced words made from {a, b, a−1, b−1}. F2 acts

on ∂F2 by adjoining the finite string on the left of the infinite word and then reducing it further.

It is not hard to see the following.

Proposition 2.17. The following statements are true:
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1. ∂F2 is compact.

2. Every group element of F2 defines a homeomorphism from ∂F2 to ∂F2.

The following proposition is straightforward from the definitions.

Proposition 2.18. The following hold true for F2 y ∂F2.

1. For any x ∈ ∂F2, the orbit of x denoted by Ox is dense in ∂F2. Hence, the action F2 y ∂F2

is minimal.

2. Let g ∈ F2. Then there are two fixed points for g in ∂F2, i.e., there exist x+
g and x−1

g in ∂F2

such that gx+
g = x+

g and gx−1
g = x−1

g . For x ∈ F2 \ {x−1
g }, {gnx}n

n→∞−−−→ x+
g .

3. Fix x0 ∈ ∂F2. Let ν ∈ Prob(∂F2).Then there exists gn ∈ F2 such that gn.ν → δx0 in weak∗-

topology. In particular, F2 y ∂F2 is a boundary action.

4. There is no invariant probability measure on ∂F2.

2.4.2 Linear group acting on the projective plane

Recall that the real projective plane RP1 is formed by taking the quotient of R2 \ {0} under the

equivalence relation x ∼ λx for all real numbers λ 6= 0. We now consider another example of a

boundary action, i.e.,

SL2(Z) y RP1.

Here, SL2 (Z) acts on RP1 by left multiplication, i.e., A · x = Ax, where A ∈ SL2 (Z) and x = [x1 :

x2] ∈ RP1. It is not difficult to verify the following facts.

Proposition 2.19. Suppose that SL2 (Z) acts on RP1 by left multiplication, i.e., A ·x = Ax, where

A ∈ SL2 (Z) and x = [x1 : x2] ∈ RP1. Then the following hold true.

1. For any upper triangular matrix A ∈ SL2 (Z), for any [x1 : x2] ∈ RP1, the sequence An[x1 :

x2]→ [1, 0] as n→∞.
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2. For each A ∈ SL2 (Z) with real eigenvalues, there exists xA ∈ RP1 such that AxA = xA and

Any → xA for all y ∈ RP1 except possibly one point.

3. Ox = {A · x : A ∈ SL2 (Z)} is dense for any x ∈ RP1. Hence, the action SL2(Z) y RP1 is

minimal.

4. Let ν be a probability measure on X = RP2. Let y = [y1, y2] ∈ RP2 be fixed. Then there

exists a net Ai ∈ SL2(Z) such that Ai.ν → δy in weak-∗ topology. In particular, the action

SL2(Z) y RP1 is a boundary action.

Using Hamana’s theory of Γ-injective envelopes, Kalantar-Kennedy [22] gave the following charac-

terization of C∗-simplicity, which paved the way for many important future works.

Theorem 2.20. Let Γ be a discrete group. The following are equivalent:

1. Γ is C∗-simple.

2. Γ acts freely on its Furstenberg boundary C(∂FΓ)

3. there exists a topologically free Γ-boundary.

However, the key insight in Power’s proof of the C∗-simplicity is that the left regular representation

of F2 satisfies a certain averaging property.

Definition 2.21. A discrete group Γ is said to have the Powers averaging property if the following

holds: for every element a in the reduced C∗-algebra C∗r (Γ) and every ε > 0 there are s1, . . . , sm ∈ Γ

such that ∥∥∥∥∥∥ 1

m

m∑
j=1

λsj (a− τ0(a))λs−1
j

∥∥∥∥∥∥ < ε,

where τ0 is the canonical trace on C∗r (Γ).

It is easy to see that any group satisfying the Powers averaging property is C∗-simple. In

fact, prior to the publication of [22] and [7], essentially the only method available to prove the

C∗-simplicity of discrete groups was to show that the group Γ satisfies some variant of the Powers

13



averaging property. It was shown in [19] and [26] independently that the C∗-simplicity of the group

Γ is equivalent to the group having the Powers averaging property.

2.5 Simplicity of reduced crossed products

A unital C∗-algebra A is called simple if it doesn’t have any non-trivial two sided closed ideals. It

has long been recognized that the simplicity of the reduced crossed product C(X) or Γ is related

to the topological dynamics of the Γ-action on X (see, e.g., the work of Kawamura and Tomiyama

[25], and the work of Archbold and Spielberg [5]). While the literature has a lot of papers on

simplicity of C∗-algebras, a part of the motivation comes from a problem posed by de la Harpe and

Skandalis. The Powers averaging property for the reduced crossed product A or Γ of the action

of a Powers group Γ on a unital C∗-algebra A, was proved by de la Harpe and Skandalis in [12]

(Recently, Bryder and Kennedy [9] studied the ideal structure of (twisted) crossed products over

C∗-simple groups. In particular, they showed that the reduced crossed product over a C∗-simple

group has the Powers averaging property).

Definition 2.22. The reduced crossed product AorΓ is said to have the Powers averaging property

if for every element a in the reduced crossed product AorΓ and every ε > 0, there are s1, . . . , sm ∈ Γ

such that ∥∥∥∥∥∥ 1

m

m∑
j=1

λsj (a− E(a))λs−1
j

∥∥∥∥∥∥ < ε.

A unital Γ-C∗-algebra A is called Γ-simple if A does not have any non-trivial two sided closed

Γ-invariant ideals. They used the above definition to prove the simplicity of A or Γ for a Powers

group Γ and unital Γ-simple, Γ-C∗-algebra A. The idea is to use this averaging on a non-zero

element of an ideal to get it close enough to an invertible element of the reduced crossed product.

We employ a variant of this technique in later chapters and we elaborate on this idea then.

Theorem 2.23. [12] Suppose that A is a unital Γ-simple Γ-C∗-algebra. If Γ is a Powers group,

then Aor Γ is simple.
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Moreover, they asked if the above theorem holds true, when Powers group Γ is replaced by

C∗-simple groups? And the answer turned out to be yes, which was established in [7].

Theorem 2.24. [7] Suppose that A is a unital Γ-simple Γ-C∗-algebra. If Γ is C∗-simple, then

Aor Γ is simple.

The idea of the proof for the above theorem is somehow inspired by the techniques in [5]. For an

ideal I of Aor Γ, they show that the ideal J generated by I in (A⊗ C(∂FΓ)) or Γ is non-trivial.

And, then the authors show that J ∩ A is a non-trivial ideal of A which is impossible since A is

Γ-simple. Hence, Aor Γ must be simple. We do not elaborate on the details for it is not necessary

to do so for our purposes. The interested reader is advised to look in [7] for details.

After all this, one may ask the following:

Question 2.25. What can one say about the Γ-simplicity of the Γ-C∗-sub-algebras of the reduced

crossed product Aoα,r Γ, when A is Γ-simple and Γ is C∗-simple?

The answer to this question makes up the content of the next chapter. Before we go on to

the next chapter, we talk briefly about the works of Kawabe [23] which is a generalization of [22]

to the situation of reduced crossed product C(X) or Γ (see [27] for a generalization to the non-

commutative setup) and Naghavi [30]. Kawabe ([23]) and Naghavi ([30]) independently, introduced

the notion of generalized Furstenberg boundary for commutative C∗-algebras.

For every Γ-space X, we denote by X̃ the Gelfand spectrum of the Γ-injective envelope of C(X)

(see [22] or [30] for more on injective envelopes) i.e., C(X̃) = IΓ(C(X)). We refer the reader to

[23] for more details on these. Note that when X is a single point, we recover the Furstenberg

boundary ∂FΓ via this process. Kawabe showed that the simplicity of the reduced crossed product

C(X) or Γ is equivalent to the action Γ y X̃ being free. This is a generalization of Theorem 2.20.

We state the theorem for minimal Γ-spaces X for this is the situation we are most interested in.

Kawabe has shown that the theorem is true in a much more general framework.

Theorem 2.26. [23] Let X be a minimal Γ-space. The following are equivalent:
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1. C(X) or Γ is simple.

2. C(X̃) or Γ is simple.

3. Γ y X̃ is (topologically) free.

While the work of Kawabe [23] planted the seed for our work in [4] (of which we speak in Chapter

3), the proofs in [4] used the characterization given in [30]. Naghavi [30] gave a dynamical char-

acterization of the generalised Furstenberg boundary. In particular, she gave the definition of a

generalized boundary action and showed that the action Γ y ∂F (Γ, X) (which is X̃ in the notation

of Kawabe) is a generalized boundary action, where X is a minimal Γ-space.

Definition 2.27. [17, P. 163] Let X be a Γ-space and ϕ : Y → X be an extension of X.

1. (Y, ϕ) is called a minimal extension if Y is minimal.

2. (Y, ϕ) is called a strongly proximal extension if the following holds: Let ν ∈ Prob(Y ) be

such that supp(ν) ⊆ ϕ−1(x), for some x ∈ X. Then, there exists some y ∈ Y such that

δy ∈ Γν
weak∗

, i.e., there exists a net si ∈ Γ such that siν
weak∗−−−−→ δy for some y ∈ Y .

Recall that a measure ν ∈ Prob(X) is called contractible if {δx : x ∈ X} ⊂ Γν
weak∗

. We say that

(Y, ϕ) is an extension of X if ϕ : Y → X is a continuous surjective map along with the property

that ϕ(s.x) = s.ϕ(x) for all x ∈ X and for all s ∈ Γ. Moreover, such an extension induces an

injective ∗-homomorphism ϕ̃ : C(X)→ C(Y ) defined by ϕ̃(f) = f ◦ ϕ.

Theorem 2.28. [30, Theorem 3.2] For a countable discrete group Γ, let X be a minimal Γ-space

and (Y, ϕ) be an extension of X, inducing an extension (C(Y ), ϕ̃) of C(X). The following are

equivalent:

1. (C(Y ), ϕ̃) is a Γ-essential extension of C(X).

2. Y is minimal and, for every ν ∈ Prob(Y ), if the restriction of the Poisson map Pν : C(Y )→

`∞(Γ) to C(X) via ϕ̃ is isometric, then Pν is isometric on C(Y ).
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3. Y is minimal and for every ν ∈ Prob(Y ), if the push forward of ν on X via ϕ is contractible,

then ν is contractible.

4. (Y, ϕ) is a minimal strongly proximal extension of X.

Definition 2.29. [30, Definition 3.3] We say that (Y, ϕ) is a (Γ, X)-boundary, if (Y, ϕ) satisfies

any of the above equivalent conditions.

For a minimal Γ-space X, Naghavi shows that IΓ(C(X)) is the maximal Γ-essential extension

of C(X). It also follows from [30, Theorem 3.2] that the spectrum of IΓ(C(X)) is a (Γ, X)-

boundary. We denote this Γ-space, which is unique up to homeomorphism, by ∂F (Γ, X) and write

IΓ(C(X)) = C(∂F (Γ, X)). It is shown in [30] that ∂F (Γ, X) is the universal (Γ, X)-boundary.
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Part II

Our results
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3 Simplicity of intermediate C∗-subalgebras associated with C∗-

simple group actions

The man who moves a mountain begins by

carrying away small stones.

Confucius

In this chapter, we consider the simplicity problem for intermediate C∗-subalgebras of crossed

products of C∗-simple group actions, and more generally, the Γ-simplicity of their unital Γ-invariant

C∗-subalgebras. The contents of this chapter are from [3].

3.1 The Problem

The ideal structure of the reduced crossed product has been explored by many (see, e.g., [10, 12,

13,21,24,35,38] and the references there in). A part of our motivation comes from [12], where the

authors proved the following:

Theorem 3.1. [12, Proposition 10] Suppose that A is a unital Γ-simple Γ-C∗-algebra. If Γ is a

Powers group, then Aor Γ is simple.

Moreover, they left it as an open problem if the above theorem holds true, when the Powers

group Γ is replaced by C∗-simple groups. The answer turns out to be yes, which was established

in [7].

Theorem 3.2. [7, Theorem 1.8] Suppose that A is a unital Γ-simple Γ-C∗-algebra. If Γ is C∗-

simple, then Aor Γ is simple.

In this chapter, we seek an answer to the following question which is the first step towards

understanding the structure of intermediate C∗-sub-algebras.

Question 3.3. What can one say about the Γ-simplicity of the Γ-C∗-sub-algebras of the reduced

crossed product Aor Γ, when A is Γ-simple and Γ is C∗-simple?
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We begin by observing that such a result is very far from being true in general. For example,

let A be a non-trivial simple C∗-algebra and let Γ y A be the trivial action of a Powers group Γ.

Then Aor Γ = C∗r (Γ)⊗A is simple. However, if B is a non-simple unital C∗-subalgebra of A, then

C∗r (Γ) ⊂ Bor Γ ⊂ Aor Γ, and Bor Γ = C∗r (Γ)⊗B is not simple. The main reason that simplicity

for invariant subalgebras fail in these situations is that, in general, Γ-simplicity does not pass to

subalgebras.

However, for a unital commutative C∗-algebra A = C(X), it is well-known by Gelfand’s theory

that closed ideals in A are in bijection with closed subsets of X. So if A = C(X) is Γ-simple, then

it follows from the above mentioned bijection that Γ y X is minimal. Now, suppose that Γ is a

C∗-simple group and B ⊂ A is a Γ-invariant unital sub-algebra. Since B is of the form C(Y ) via

a Γ-equivariant factor of X (i.e., there exists a continuous surjective map π : X → Y ) and since

minimality passes to factors, it follows by [7, Theorem 7.1] that B or Γ is simple.

From the above discussion, we observe that if Γ is a C∗-simple group and Γ y X is minimal,

then any intermediate C∗-subalgebra B with C∗r (Γ) ⊂ B ⊂ C(X) or Γ is simple if B is a crossed

product itself. Hence, it is only natural to expect that Γ-simplicity should pass to every intermediate

C∗-sub-algebra. In particular, we prove that the following holds true.

Theorem 3.4. [3, Theorem 1.3] Let Γ be a countable discrete C∗-simple group, and let Γ y X

be a minimal action of Γ on a compact space X. Then, any unital Γ-invariant C∗-subalgebra of

C(X) or Γ is Γ-simple. In particular, any intermediate C∗-subalgebra C∗r (Γ) ⊆ B ⊆ C(X) or Γ is

simple.

3.2 Simplicity of Γ-invariant subalgebras of C(X) or Γ

This section is devoted to the proof of Theorem 3.4. We begin by proving an estimation that will

allow us to lift an averaging scheme from the reduced C∗-algebra to the reduced crossed product.

Let A be a unital Γ-C∗-algebra. For a ∈ A and a measure µ′ ∈ Prob(Γ), we denote µ′ ∗ a =∑
s∈Γ µ

′(s)s−1a for the convolution of a by µ′. Such convolution actions in the case of C∗-dynamical

systems have been introduced and studied in [20], where applications to several rigidity problems
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in ergodic theory and operator algebras were given. We refer the reader to [20] for more details on

these.

Fix a faithful ∗-representation π : A → B(H) of A into the space of bounded operators on

the Hilbert space H. Denote by `2(Γ, H) the space of square summable H-valued functions on Γ.

Recall the construction of Aor Γ from Section 2.2.

Lemma 3.5. Let Γ be a discrete group, let µ ∈ Prob(Γ), and let A be a Γ-C∗-algebra. Then for

any t ∈ Γ and a ∈ A we have

∥∥∥µ ∗ (σ(a)λ̃t)
∥∥∥
B(`2(Γ,H))

≤ ‖a‖A ‖µ ∗ λt‖B(`2(Γ)) . (1)

Proof. For ξ ∈ `2(Γ, H), observe that for each t′ ∈ Γ we have

(
[µ ∗ (σ(a)λ̃t)](ξ)

)
(t′)

=
∑
s∈Γ

µ(s)[λ̃sσ(a)λ̃tλ̃s−1(ξ)](t′)

=
∑
s∈Γ

µ(s)[σ(sa)λ̃sts−1ξ](t′)

=
∑
s∈Γ

µ(s)π(t′−1sa)[ξ(st−1s−1t′)].
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Define the function ξ1(t′) = ‖ξ(t′)‖H , t′ ∈ Γ. Then ξ1 ∈ `2(Γ), and ‖ξ1‖`2(Γ) = ‖ξ‖`2(Γ,H). We have

∥∥∥[µ ∗ (σ(a)λ̃t)](ξ)
∥∥∥2

`2(Γ,H)

=
∑
t′∈Γ

∥∥∥([µ ∗ (σ(a)λ̃t)](ξ)
)

(t′)
∥∥∥2

H

=
∑
t′∈Γ

∥∥∥∥∥∑
s∈Γ

µ(s)π(t′−1sa)[ξ(st−1s−1t′)]

∥∥∥∥∥
2

H

≤ ‖a‖2A
∑
t′∈Γ

(∑
s∈Γ

µ(s)
∥∥ξ(st−1s−1t′)

∥∥
H

)2

= ‖a‖2A

∥∥∥∥∥∑
s∈Γ

µ(s)λsts−1(ξ1)

∥∥∥∥∥
2

`2(Γ)

≤ ‖a‖2A

∥∥∥∥∥∑
s∈Γ

µ(s)λsts−1

∥∥∥∥∥
2

B(`2(Γ))

‖ξ1‖2`2(Γ) ,

and since ‖ξ1‖`2(Γ) = ‖ξ‖`2(Γ,H), the inequality (1) follows.

It follows, in particular, from Lemma 3.5 that if C∗r (Γ) has the Powers averaging property, then

so does the reduced crossed product Aor Γ for any action Γ y A. Now, recall the following easy

exercise from Functional Analysis.

Lemma 3.6. Let T ∈ B(H) be a linear operator. Suppose that ‖I−T‖ < 1. Then, T is invertible.

We also record the following easy observation about a non-negative function f ∈ C(X) and its

convolution µ ∗ f for a full support measure µ.

Lemma 3.7. Let X be a minimal Γ-space. Choose µ ∈ Prob(Γ) with full support. Let f ∈ C(X)

be a non-negative non-zero function. Then, there exists a δ > 0 such that µ ∗ f > δ.

Proof. Since X is compact, it is enough to show that (µ ∗ f)(x) > 0 for all x ∈ X. Suppose not.

Then, there exists x ∈ X such that µ ∗ f(x) = 0. Therefore,

µ ∗ f(x) =
∑
s∈Γ

µ(s)f(s−1x) = 0
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Since µ has full support, this implies that f(s−1x) = 0 for all s ∈ Γ. From the minimality of

Γ y X, it follows that f(y) = 0 for all y ∈ X. This is a contradiction. Hence, the claim holds.

Using the Powers averaging on C(X)or Γ, we show that every non-zero Γ-invariant closed ideal

of Γ-invariant C∗-subalgebra of C(X) or Γ must contain an invertible element.

Proof of Theorem 3.4. Let I be a non-zero Γ-invariant closed two sided ideal of a Γ-invariant C∗-

subalgebra of C(X) or Γ. Let a ∈ I and replacing a by a∗a and dividing by an appropriate scalar,

we may assume that a > 0 and ‖a‖ < 1. Since E is faithful, we see that E(a) ≥ 0. Choose

µ ∈ Prob(Γ) such that µ has full support. From Lemma 3.7, it follows that there exists a δ > 0

such that E(µ ∗ a) = µ ∗E(a) > δ. Since Γ is C∗-simple, it follows from Lemma 3.5 that C(X)or Γ

has the Powers averaging property. Hence, for 0 < ε < 1, we can find s1, s2, . . . , sm ∈ Γ such that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj (µ ∗ a− E(µ ∗ a))λs−1
j

∥∥∥∥∥∥ < δε

which further implies that

∥∥∥∥∥∥ 1

mδ

m∑
j=1

λsj (µ ∗ a− E(µ ∗ a))λs−1
j

∥∥∥∥∥∥ < ε

Letting F = 1
mδ

∑m
j=1 λsjE(µ ∗ a)λs−1

j
= 1

mδ

∑m
j=1 sj .E(µ ∗ a), we see that F (x) ≥ 1 for x ∈ X,

making it invertible. Therefore, F−1(x) ≤ 1 for all x ∈ X and hence, ‖F−1‖ < 1. Letting

ã = 1
mδ

∑m
j=1 λsj (µ ∗ a)λs−1

j
, we see that ‖ã − F‖ < ε < 1. Also, observe that ‖ã‖ ≤ ‖a‖ < 1.

Therefore, ∥∥ãF−1 − I
∥∥ =

∥∥(ã− F )F−1
∥∥ ≤ ‖ã− F‖‖F−1‖ < ε < 1

Moreover,
∥∥ãF−1

∥∥ < 1. Lemma 3.6 tells us that ãF−1 is invertible making ã an invertible element.

Since I is Γ-invariant, ã ∈ I. The claim follows.

We remark in passing that the proof of [3, Theorem 1.3] being inspired by the work in [20] uses

the notion of stationary states and is completely different from the above mentioned proof.
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4 Intermediate C∗-subalgebras as crossed products for C∗-simple

group actions

The only journey is the one within.

Rainer Maria Rilke

In this chapter, for a large class of C∗-simple group actions Γ y A, we give a complete descrip-

tion of intermediate C∗-subalgebras B of the form C∗λ(Γ) ⊆ B ⊆ A or Γ. We also give a complete

description of intermediate vNa’s N of the form L(Γ) ⊆ N ⊆ M o Γ for C∗-simple group actions

Γ y M. Namely, we show that if the kernel of the action contains a subgroup with respect to

which, Γ has the Powers averaging property, all the intermediate C∗-subalgebras or von Neumann

algebras are of the form of crossed products. The idea of the proof is very simple: we show that

for every intermediate C∗-algebra B, E(B) ⊂ B. For this, we use the Powers type averaging at the

crossed product level to show E(B) ⊂ B for every intermediate algebra B from which we conclude

the result. The averaging in general gets us close to a convex combination of E(a) by elements

from the reduced C∗-algebra but our assumption ensures that we can average over the kernel of

the action and hence we get as close to E(a) as we want to be. The whole point is that, the

elements which average at the reduced C∗-algebra level, also average at the crossed product level.

The contents of this chapter are from [2].

4.1 Conditional expectation and property AP

In order to give a complete description of intermediate C∗-sub-algebras, we need an extra continuity

assumption on the group Γ.

Definition 4.1. [Property AP] A discrete group Γ is said to have the approximation property

(AP) if there exists a net (φi)i∈I of finitely supported complex valued functions on Γ such that

mφi ⊗ idB converges to the identity map in the pointwise norm topology. Here, for a finitely

supported function φ on Γ, denote by mφ : C∗λ(Γ) → C∗λ(Γ) the completely bounded map denoted

by the formula mφ (
∑

s asλs) =
∑

s asφ(s)λs. We refer the reader to [8, Chapter 12] for more details
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on Property AP.

Lemma 4.2. [36, Proposition 3.4] Let Γ be a group with the AP. Let A be a Γ − C∗-algebra and

let X be a closed subspace of A. Assume that an element x ∈ Aoα,r Γ satisfies Eg(x) ∈ X for all

g ∈ Γ. Then x is contained in the closed subspace

X oα,r Γ := span{x(1⊗ λg) : x ∈ X, g ∈ Γ}

There is an abundance of groups with Property AP. Ozawa [33] shows that all weakly amenable

groups have Property AP and all hyperbolic groups are weakly amenable.

4.2 Notion of plump subgroups

Definition. A non-trivial Λ ≤ Γ is called a plump subgroup, if the following holds: For every ε > 0

and finite subset F ⊂ Γ \ {e}, there exist s1, s2, . . . , sm ∈ Λ such that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsjλtλs−1
j

∥∥∥∥∥∥ < ε, ∀t ∈ F.

Note that e is the identity element of the group Γ.

First, we give conditions under which a subgroup Λ is plump in Γ.

Lemma 4.3. Let Λ be a subgroup of Γ. Suppose that there is a free action of Γ on a compact

Hausdorff space X such that the action of Γ restricted to Λ is strongly proximal. Then Λ is plump

in Γ.

Proof. First, proceeding exactly as in the proof of [19, Theorem 4.5], one sees that τ0 ∈ {s.ϕ : s ∈ Λ}weak*

for each state ϕ on C∗λ(Γ). Again, by the same theorem, for any finite collection t1, t2, . . . , tn ∈

Γ− {e} and ε > 0, there exist s1, s2, . . . , sm ∈ Λ such that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsjλtiλs−1
j

∥∥∥∥∥∥ < ε, for each i = 1, 2, . . . , n .
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Proposition 4.4 ([7, Lemma 5.3]). Suppose that Λ is a normal C∗-simple subgroup of Γ with

trivial centralizer inside Γ. Then, Λ y ∂FΛ extends to a free action of Γ on ∂FΛ. In particular, Λ

is plump in Γ.

For a normal subgroup Λ ≤ Γ, it turns out that Λ is plump in Γ if and only if CΓ(Λ) = {e}.

Ursu in [41] shows the converse by proving the existence of a type of relative Furstenberg boundary

with respect to arbitrary (not necessarily normal) subgroups. We give a very short proof of this

via different techniques.

Proposition 4.5. [41, Theorem 1.3] Suppose that Λ is a normal C∗-simple subgroup of Γ. Then,

Λ is plump in Γ if and only if CΓ(Λ) = {e}.

Proof. If CΓ(Λ) = {e}, then it follows from Proposition 4.4 that Λ is plump in Γ. Now, suppose

that Λ is plump in Γ. If e 6= s ∈ CΓ(N), then for 0 < ε < 1, there are t1, t2, . . . , tm ∈ N such that

∥∥∥∥∥∥ 1

m

m∑
j=1

λtjst−1
j

∥∥∥∥∥∥ < ε < 1

But s ∈ CΓ(N) implies that tjs = stj for all j = 1, 2, . . . ,m. Hence, we obtain that

1 = ‖λs‖ < ε < 1

This is a contradiction. Therefore, CΓ(N) = {e}.

Below, we give various conditions for which a subgroup Λ ≤ Γ is plump.

Corollary 4.6. Let Γ be a C∗-simple group and let Λ ≤ Γ be a non-trivial normal subgroup. If Λ

contains an element s with amenable centralizer CΓ(s) in Γ, then Λ is plump in Γ.

Proof. In light of Proposition 4.4, it is enough to show that CΓ(Λ) = {e}. Since Λ is normal,

so is CΓ(Λ). Moreover, CΓ(Λ) ⊂ CΓ(s) for a non-trivial s ∈ Λ is amenable by the assumption.
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Since Γ is C∗-simple, it does not contain any non-trivial normal amenable subgroups. Hence,

CΓ(Λ) = {e}.

It turns out that finite index subgroups of C∗-simple groups are always plump.

Corollary 4.7. Let Γ be a C∗-simple group and let Λ be a finite index subgroup of Γ. Then Λ is

plump in Γ.

Proof. Since Γ is C∗-simple, the action Γ y ∂FΓ is free [7, Theorem 1.1]. It follows from

[18, Chapter-II, Lemma 3.2] that this action restricted to Λ is strongly proximal. Hence, by

Proposition 4.4, Λ is plump in Γ.

The above results allow us to use certain free boundary actions to conclude plumpness of

subgroups. But, in practice, many natural examples of boundary actions (e.g., Fn y ∂Fn) are only

topologically free. Below, we prove some results which provide us ways to conclude plumpness of

subgroups from existence of certain topologically free boundary actions.

Recall that an action Γ y X is topologically free if X \Xs is dense in X for every non-trivial

element s ∈ Γ, where Xs = {x ∈ X : sx = x}.

Lemma 4.8. Let Γ be a countable discrete group, let Λ be a subgroup of Γ. Suppose that there exists

an action Γ y X, where X is a compact Hausdorff space, such that for each non-trivial element

s ∈ Γ, the set Xs of fixed points of s, is countable. Further suppose that the action restricted to Λ

is strongly proximal and that X does not contain any Λ-fixed point. Then, Λ is plump in Γ.

Proof. Let ϕ be a state on C∗λ(Γ). Extend ϕ to a state ϕ̃ on C(X) or Γ and let ϕ̃|C(X) = dν,

where ν ∈ Prob(Γ). Since the action restricted to Λ is strongly proximal, there are si ∈ Λ such

that siν → δx0 in weak∗-topology, for some x0 ∈ X. Now, we claim that Λx0 is an uncountable

set. Let Y be a minimal Λ-component of Λx0. If Λx0 were a countable set, then Y would be a

finite set. Since the action restricted to Λ is strongly proximal, we must have that Y is a singleton

and hence a Λ-fixed point. This shows that Λx0 is an uncountable set. Now, since ∪s 6=e,s∈ΓX
s is

countable, we can find y0 ∈ Λx0 ⊂ Λν with trivial stabilizer. Now, it follows from the proof of
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[19, Theorem 4.5] that τ0 ∈ {sϕ : s ∈ Λ}weak∗

. Then, by the same theorem, for any finite collection

t1, t2, . . . , tn ∈ Γ− {e} and ε > 0, there exist s1, s2, . . . , sm ∈ Λ such that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsjλtiλs−1
j

∥∥∥∥∥∥ < ε, for each i = 1, 2, . . . , n .

4.3 Examples of plump subgroups

Well, you may say “what good are conditions if they don’t give examples”? Our reply is an old adage

“Hold acylindrically hyperbolic groups”. We briefly recall the notion of acylindrically hyperbolic

groups and refer the reader to [31] for more details. An action Γ y (X, d) on a metrizable space

(X, d) is called acylindrical if for every ε > 0 there are δ,N > 0 such that for every x,y ∈ X with

d(x, y) ≥ δ, the elements g ∈ Γ satisfying d(x, gx) ≤ ε and d(y, gy) ≤ ε are atmost N in number,

i.e., for every x, y ∈ X satisfying d(x, y) ≥ δ,

|{g ∈ Γ : d(x, gx) ≤ ε and d(y, gy) ≤ ε}| ≤ N.

A group Γ is called acylindrically hyperbolic if admits a non-elementary acylindrical action on

a hyperbolic space. The examples of acylindrically hyperbolic groups include all non-(virtually)

cyclic groups hyperbolic relative to proper subgroups, Out(Fn) for n > 1, all but finitely many

mapping class groups, non-(virtually cyclic) groups acting properly on proper CAT(0)-spaces and

containing rank one elements and many others (see, e.g., [29] and the references therein). We also

give the definition of convergence action and classification of some elements there knowing that

they will come in handy later. An action Γ y X is called a convergence action (in this case, Γ is

called a convergence group), if for every infinite sequence of distinct elements γn ∈ Γ, there exist a

subsequence γnk and points a, b ∈ X such that γnk |X\{a} converge uniformly on compact subsets to

b. A non-torsion element s ∈ Γ is called loxodromic if s has exactly two fixed points and is called
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parabolic if s fixes exactly one point. A subgroup Λ ≤ Γ is elementary if it is finite, or preserves

setwise a nonempty subset of X with at most two elements, and called non-elementary otherwise.

We refer the reader to [6, 14,40] for more details on these.

It turns out that every normal subgroup of a C∗-simple acylindrically hyperbolic group is plump.

We thank Ionut Chifan for directing us to acylindrically hyperbolic groups. Recall that a subgroup

Λ ≤ Γ is called s-normal in Γ if for every t ∈ Γ one has

|Λ ∩ t−1Λt| =∞.

Proposition 4.9. Let N be a normal subgroup of a acylindrically hyperbolic group Γ which is

C∗-simple. Then, N is plump in Γ.

Proof. In the light of Proposition 4.4, it is enough to show that CΓ(N) = {e}. First, observe that

N is infinite. Moreover, it follows from [29, Theorem 3.7] that every infinite normal subgroup is

s-normal. Since Γ is acylindrically hyperbolic, it admits a non-elementary acylindrical action on a

hyperbolic space S. By [31, Lemma 7.1], we get that the action N y S is non-elementary. Again,

by [31, Theorem 1.2], we see that N contains at least one loxodromic element, say n. Hence,

by [31, Corollary 6.9], CΓ(n) is virtually cyclic, hence amenable. Therefore, CΓ(N) is a normal

amenable subgroup of Γ. Since Γ has trivial amenable radical, CΓ(N) = {e}. This concludes the

proof.

We show that there are many plump subgroups of Convergence groups.

Proposition 4.10. Let Γ be a non-elementary torsion-free convergence group. Then every non-

elementary subgroup Λ ≤ Γ is plump in Γ.

Proof. Let Γ y X be a convergence action. Since Γ is torsion-free, every element in Γ is either

parabolic or loxodromic ([40, Theorem 2B]). Thus, for each non-trivial element s ∈ Γ, |Xs| ≤ 2.

Since Λ is a non-elementary subgroup of Γ, one sees that the action restricted to Λ is strongly
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proximal (see, e.g., [32, Example 2]). Since Λ is non-elementary, it follows from [40, Theorem 2S]

that Λx is non-trivial for every x ∈ X, i.e., Λx is not a single point. The claim now follows from

Lemma 4.8.

4.4 Intermediate C∗-subalgebras as crossed products

With enough examples in hand, we proceed to give examples of inclusion C∗λ(Γ) ⊂ Aor Γ for which

every intermediate C∗-sub-algebra is a crossed product.

Theorem 4.11. Let Γ be a discrete group with the approximation property(AP), let A be a unital

Γ-C∗-algebra. Suppose that the kernel of the action Γ y A contains a plump subgroup of Γ. Then,

every intermediate C∗-subalgebra B, C∗λ(Γ) ⊆ B ⊆ Aor Γ, is of the form A1 or Γ, for some unital

Γ-C∗-subalgebra A1 of A.

Proof. Let A be a unital Γ-C∗-algebra and let B an intermediate C∗-subalgebra of the form C∗λ(Γ) ⊆

B ⊆ A or Γ. Suppose that Λ is a plump subgroup of Γ such that Λ is contained in the kernel of

the action Γ y A. Fix b ∈ B. Let ε > 0. Then, there are t1, t2, . . . , tn ∈ Γ \ {e} such that

∥∥∥∥∥b−
(

n∑
i=1

atiλti + E(b)

)∥∥∥∥∥ < ε.

Let M = max1≤i≤n ‖ati‖A. Since Λ is a plump subgroup of Γ, there exist s1, s2, . . . , sm ∈ Λ such

that ∥∥∥∥∥∥ 1

m

m∑
j=1

λsjλtλs−1
j

∥∥∥∥∥∥ < ε

nM
, ∀i = 1, 2, . . . , n.

By [3, Lemma 2.1], it follows that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj

(
n∑
i=1

atiλti

)
λs−1

j

∥∥∥∥∥∥
≤

n∑
i=1

‖ati‖A

∥∥∥∥∥∥ 1

m

m∑
j=1

λsjλtλs−1
j

∥∥∥∥∥∥ < ε.
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Now,

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj (b− E(b))λs−1
j

∥∥∥∥∥∥
B(l2(Γ,H))

≤

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj

(
b−

(
n∑
i=1

atiλti + E(b)

))
λs−1

j

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj

(
n∑
i=1

atiλti

)
λs−1

j

∥∥∥∥∥∥ < 2ε.

Since Λ acts trivially on A, we get that

∥∥∥∥∥∥ 1

m

m∑
j=1

λsjbλs−1
j
− E(b)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

m

m∑
j=1

λsj (b− E(b))λs−1
j

∥∥∥∥∥∥ < 2ε

Since ε > 0 is arbitrary, this shows that E(B) ⊂ B. By [36, Proposition 3.4], it follows that

B = E(B) or Γ.

Corollary 4.12. Let Γ be a C∗-simple group such that the centralizer CΓ(a) of any non-trivial

element a ∈ Γ is amenable. Then for any non-faithful action Γ y A, every intermediate C∗-

subalgebra B, C∗λ(Γ) ⊆ B ⊆ Aor Γ, is of the form E(B) or Γ.

Proof. Let Λ be the kernel of the action Γ y A. Note that Λ is non-trivial by the assumption. The

claim now follows from Corollary 4.6.

It turns out that every hyperbolic group with trivial amenable radical is an ideal candidate for

such examples.

Theorem 4.13. Let Γ be a hyperbolic group with trivial amenable radical. For any non-faithful

action Γ y A, every intermediate C∗-subalgebra B, C∗λ(Γ) ⊆ B ⊆ Aor Γ, is of the form A1 or Γ,

where A1 is a Γ-C∗-subalgebra of A.
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Proposition 4.10 together with Theorem 4.11 imply Theorem 4.13 for all torsion-free hyperbolic

groups. Recall that all non-elementary hyperbolic groups with trivial amenable radical are C∗-

simple (see, e.g., [11]). We give an alternative proof below which applies to all hyperbolic groups.

Proof of Theorem 4.13. Let Γ be a hyperbolic group with trivial amenable radical, let Γ y A be a

non-faithful action. Let Λ be the kernel of the action Γ y A. Since Λ is non-amenable, therefore

non-elementary, it contains a non-torsion element s. We will show that the centraliser CΓ(s), of s

in Γ is amenable, which will imply the theorem by Corollary 4.12. Let x+
s , x

−
s ∈ ∂Γ be the points of

attraction and repulsion of s, i.e., x+
s and x−s are fixed by s, and snx

n→∞−−−→ x+
s for all x ∈ ∂Γ\{x−s }.

We claim that CΓ(s) leaves the set {x+
s , x

−
s } invariant. To see this, observe that for any element

t ∈ CΓ(s), tx±s = tsnx±s = sntx±s . Letting n → ∞, we get that tx±s = x±s . Therefore, the kernel

of the homomorphism from CΓ(s) to Sym({x+
s , x

−
s }) has index ≤ 2. Let’s denote the kernel of this

homomorphism by K. Since Γ y ∂Γ is topologically amenable [1], the stabilizer Γx+
s

is amenable,

hence K ⊂ Γx+
s

is amenable. Therefore, CΓ(s) is amenable. This completes the proof.

While all the above examples deal with an arbitrary unital C∗-algebra A (for which a complete

classification of intermediate C∗-algebras problem seems very remote at this moment but I would

say we are on our way), it is possible to give a complete description of intermediate C∗-subalgebras

B of the form C∗λ(Γ) ⊆ B ⊆ C(X) or Γ, where X is a finite Γ-space.

Proposition 4.14. Suppose that Γ is a C∗-simple group acting on a finite space X. Assume that

Γ has property-AP. Then, intermediate C∗-subalgebras B with C∗λ(Γ) ⊆ B ⊆ C(X) or Γ is of the

form E(B) or Γ.

Proof. We show that the Ker(Γ y X) has finite index in Γ, hence plump in Γ by Theorem 4.11. For

a C∗-simple group Γ acting on a finite space X, first observe that Γ can’t be finite. Since the group

action leads to a homomorphism ϕ : Γ → S{|X|}, the homomorphism can’t be injective for that

would imply that Γ is finite. So, it has a non-trivial kernel which is not finite. Now, observe that

|G/N | <∞, where N=Ker(ϕ). Therefore, N has finite index in Γ, hence plump (Corollary 4.7).
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All these examples deal with non-faithful actions. And then, one begins to wonder if there are

examples of faithful actions for which we can completely classify the intermediate C∗-subalgebras.

In passing, we remark that there is a class of such examples. Together with Yongle Jiang, we were

able to find such a class. We mention it below and refer the reader to [2] for details of the proof

and definitions.

Proposition 4.15. Let Γ be a residually finite, C∗-simple group. If the action Γ y X is a free

exact Γ-odometer, then every intermediate C∗-algebra B, C∗λ(Γ) ⊆ B ⊆ C(X) or Γ, is of the form

A1 or Γ, where A1 is a Γ-C∗-subalgebra of A.

4.5 Intermediate von Neumann-subalgebras

It is possible to give examples of inclusions L(Γ) ⊂ M or Γ for a Γ-von Neumann algebra M

for which every intermediate von Neumann-subalgebra L(Γ) ⊂ N ⊂ M or Γ is a crossed product

von Neumann algebra. We thank Yongle Jiang for pointing out to us that the same proof as in

Theorem 4.11 works in this setting as well.

Theorem 4.16. Let Γ be a discrete group,M be a Γ-von Neumann-algebra with a separable predual.

Suppose that Λ is a plump subgroup of Γ such that Λ is contained in the kernel of the action Γ yM.

Then every intermediate von Neumann-subalgebra N , L(Γ) ⊆ N ⊆Mo Γ is of the form M1 o Γ,

where M1 is a Γ-von Neumann subalgebra of M.

Proof. Let ϕ be a faithful normal state on M and let ϕ̃(a) = ϕ(E(a)), a ∈ M o Γ, where E is

the canonical conditional expectation from M o Γ onto M. Then ϕ̃ is a faithful normal state on

Mo Γ. Consider the ‖.‖2-norm on Mo Γ associated to ϕ̃, defined by

‖a‖2 :=
√
ϕ̃(a∗a) for a ∈Mo Γ.
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Let b ∈ N and let ε > 0 be given. Then there are t1, t2, . . . , tn ∈ Γ \ e such that

∥∥∥∥∥b−
(

n∑
i=1

atiλti + ae

)∥∥∥∥∥
2

<
ε

2
.

Since ϕ̃ is E-invariant, E is continuous with respect to the ‖.‖2-norm and hence by the triangle

inequality, we see that ∥∥∥∥∥b−
(

n∑
i=1

atiλti + E(b)

)∥∥∥∥∥
2

< ε.

Since the ‖.‖2 is dominated by the operator norm, by proceeding exactly as in the proof of Theorem

4.11, we see that E(b) ∈ N . By [37, Corollary 3.4], the proof is complete.

Since we do not need the extra assumption of Property AP on the side of von Neumann algebras,

we are able to give a complete classification of intermediate von Neumann algebras for non-faithful

actions of C∗-simple acylindrically hyperbolic groups. Recall that every non-elementary subgroup

of a word-hyperbolic group is acylindrically hyperbolic. Similarly, every non-elementary relatively

hyperbolic group is acylindrically hyperbolic. The mapping class group MCG(Sg,p) of a connected

oriented surface of genus g ≥ 0 with p ≥ 0 punctures is acylindrically hyperbolic. For n ≥ 2 the

group Out(Fn) is acylindrically hyperbolic. So, it includes all the C∗-simple groups for which we

have shown that every normal subgroup is plump.

Theorem 4.17. Let Γ be a C∗-simple acylindrically hyperbolic group. Let M be a Γ-von Neu-

mann algebra with separable predual. For any non-faithful action Γ yM, every intermediate von

Neumann-subalgebra N , L(Γ) ⊆ N ⊆MoΓ, is of the formM1oΓ, whereM1 is a Γ-vN-subalgebra

of M.

Proof. Using Proposition 4.9, we see that Ker(Γ yM) is a plump subgroup of Γ. The claim now

follows from Theorem 4.16.
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5 Generalized Powers averaging for crossed products

There are others. There will be others.

Other heroes, other heroines. Other

prophecies to fulfill, other adversaries to

despise. There will be stories told and

forgotten, and reinvented anew until one

day, perhaps, the oldest are remembered,

and the beginning may end, and the

ending begin.

Banewreaker

The Powers averaging property for the reduced crossed product AorΓ of the action of a Powers

group Γ on a unital C∗-algebra A, was proved by de la Harpe and Skandalis in [12]. In [7], it was

established that reduced crossed product over a C∗-simple group is simple whenever the underlying

C∗-algebra has no Γ-invariant closed ideals. Bryder and Kennedy [9] studied the ideal structure

of (twisted) crossed products over C∗-simple groups. In particular, they showed that the reduced

crossed product over a C∗-simple group has the Powers averaging property (Definition 2.22).

A similar averaging was shown in [3] except the difference was that in [3], it was shown that

the elements which average at the level of C∗λ(Γ) lift upstairs to average at the level of Aor Γ.

5.1 Need for Powers averaging

It is natural to ask if the simplicity of the reduced crossed product C(X)or Γ is equivalent to some

form of the Powers averaging. It is not difficult to see that an averaging of the form definition

2.22 would imply that the group is C∗-simple, thereby restricting us to the purview of C∗-simple

groups. It is also futile to expect that we can average by elements from C(X) for non-free actions

as the following proposition demonstrates.
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Recall that we have a canonical conditional expectation Ex : C(X) or Γ→ C∗λ(Γx) defined by

Ex(fλs) = f(x)EΓx(λs)

Note that for any subgroup Λ ≤ Γ, EΛ : C∗λ(Γ) → C∗λ(Λ) is the canonical conditional expectation

defined by sending every element s ∈ Λ to itself and every other element to 0. Also recall that a

unit character τ on a group Γ is a map τ : Γ→ C which sends every group element s→ 1. While it

may not always extend to a continuous map from C∗λ(Γ)→ C, it does so if and only if Γ is amenable

(see, e.g., [8, Theorem 2.6.8]).

Proposition 5.1. Suppose that X is a Γ-space. The following are equivalent:

1. The action Γ y X is free.

2. For every a ∈ C(X) or Γ and ε > 0, we can find unitaries u1, u2, . . . , un of C(X) such that

∥∥∥∥∥ 1

n

n∑
i=1

uiau
∗
i − E(a)

∥∥∥∥∥ < ε.

3. Every C(X)-central state τ on C(X) or Γ is of the form τ ◦ E.

4. The inclusion C(X) ⊂ C(X)or Γ has pure extension property, i.e., every pure state on C(X)

extends uniquely to a state on C(X) or Γ.

Proof. ((1) =⇒ (2)): [39, Proposition 11.1.9].

((2) =⇒ (3)): Let τ be a C(X)-central state. Let a ∈ C(X)or Γ and ε > 0. We can find unitaries

u1, u2, . . . , un of C(X) such that equation in condition (2) holds. Applying τ we obtain that

∥∥∥∥∥τ
(

1

n

n∑
i=1

uiau
∗
i − E(a)

)∥∥∥∥∥ < ε

Since τ is C(X)-central, we see that

τ

(
1

n

n∑
i=1

uiau
∗
i

)
=

1

n

n∑
i=1

τ(uiau
∗
i ) =

1

n

n∑
i=1

τ(au∗iu) = τ(a).
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Therefore,

‖τ(a)− τ(E(a))‖ =

∥∥∥∥∥τ
(

1

n

n∑
i=1

uiau
∗
i − E(a)

)∥∥∥∥∥ < ε

Since ε > 0 is arbitrary, the claim follows.

((3) =⇒ (4)): Let ϕ be a state on C(X) or Γ such that ϕ|C(X) is a pure state. Since every pure

state on C(X) is of the form δx for some x ∈ X, C(X) falls in the multiplicative domain of ϕ.

Hence, ϕ is C(X)-central and therefore, is of the form ϕ ◦ E.

(4) =⇒ (1): Suppose that Γ y X is not free. Then, there exists x ∈ X such that Γx is non-trivial.

Let e 6= s ∈ Γx. Let Λ = 〈s〉. Let ϕ = τ0 ◦EΛ ◦Ex where τ0 is the unit character on C∗λ(Λ), which is

continuous since Λ is amenable. Observe that ϕ|C(X) = δx, hence, ϕ|C(X) is a pure state and C(X)

falls in the multiplicative domain of ϕ. Moreover, ϕ(λs) = 1. Hence, ϕ is not of the form ϕ ◦ E.

Therefore, ϕ|C(X) doesn’t extend uniquely to a state on C(X) or Γ.

In [4], we introduce a generalized version of the Powers averaging which does turn out to be

equivalent to simplicity in the end.

5.2 Arriving upon the right notion of the Powers averaging for crossed products

It is clear that the averaging we want must involve some combination of group elements and

functions from C(X) as an averaging involving just the group elements or just the functions from

C(X) won’t suffice. After some introspection, one realizes that if an averaging of the form

∥∥∥∥∥∥
m∑
j=1

gjλtj (a− E(a))λt−1
j
gj

∥∥∥∥∥∥ < ε.

could be proved for a given a ∈ C(X) or Γ and ε > 0, then we can show that such an averaging

implies simplicity of C(X) or Γ for a minimal Γ-space X. We first prove that C(X) or Γ satisfies

such an averaging if Γ y X is topologically free and minimal. We begin with the following Lemma.

Lemma 5.2. Let Y be a compact Hausdorff Γ-space. Suppose that Γ y Y is minimal and topo-

logically free. Let F ⊂ Γ \ {e} be a finite set. Then, for each y ∈ Y , there exists ty ∈ Γ such that
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styy 6= tyy for all s ∈ F .

Proof. Suppose not. Then, there exists y ∈ Y such that for all t ∈ Γ, there exists s ∈ F such that

sty = ty. In particular, we obtain that {ty : t ∈ Γ} ⊂ ∪s∈FXs. Since Xs is closed and Γ y Y is

minimal, taking closure on both sides, we obtain that

Y = {ty : t ∈ Γ} ⊂ ∪s∈FXs

From the Baire-category theorem, it follows that there must exist s ∈ F such that Xs has non-empty

interior, which is a contradiction since Γ y Y is topologically free. Hence, the claim holds.

Proposition 5.3. Suppose that X is a minimal Γ-space with the action Γ y X topologically free.

Then, given ε > 0 and a ∈ C(X) or Γ, we can find s1, s2, . . . , sm ∈ Γ and g1, g2, . . . , gm ∈ C(X)

such that ∥∥∥∥∥∥
m∑
j=1

gjλsj (a− E(a))λs−1
j
gj

∥∥∥∥∥∥ < ε, where

m∑
j=1

g2
j = 1.

Proof. Let a ∈ C(X)orΓ and ε > 0. Then, there are t1, t2, . . . , tn ∈ Γ\{e} and f1, f2, . . . , fn ∈ C(X)

such that ∥∥∥∥∥a−
(

n∑
i=1

fiλti + E(a)

)∥∥∥∥∥ < ε

Let F = {t1, t2, . . . , tn}. Then, for each x ∈ X, using Lemma 5.2, we can find tx ∈ Γ such

that titxx 6= txx for each i = 1, 2, . . . , n. Hence, we can find a neighborhood Ux 3 x such that

t−1
x titxUx∩Ux = ∅ for each i = 1, 2, . . . , n. Note that this is equivalent to saying that titxUx∩txUx =

∅ for all i = 1, 2, . . . , n. Now, using compactness of X, there are x1, x2, . . . , xm ∈ X such that

X ⊂ ∪mj=1Uxj and there are tx1 , tx2 , . . . , txm ∈ Γ such that titxjUxj ∩txjUxj = ∅ for all i = 1, 2, . . . , n

and each j = 1, 2, . . . ,m. Let {gj}mj=1 be a partition of unit subordinate to {Uj}mj=1, i.e., for each
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j = 1, 2, . . . ,m, gj ≥ 0, Supp(gj) ⊂ Uj and
∑m

j=1 g
2
j = 1. Now, for each fixed j, observe that

gjλ
−1
txj
fiλtiλtxj gj = gj

(
t−1
xj .fi

)
λt−1
xj
ti

(
txj .gj

)
λtxj

=
(
t−1
xj .fi

)
gjλt−1

xj
ti

(
txj .gj

)
λtxj

=
(
t−1
xj .fi

)
λt−1
xj
ti

(
t−1
i txj .gj

) (
txj .gj

)
λtxj

Now, note that gj(t
−1
xj x) 6= 0 and gj(t

−1
xj tix) 6= 0 iff t−1

xj x ∈ Uxj and t−1
xj tix ∈ Uxj iff x ∈ txjUxj ∩

t−1
i txjUxj = ∅, for all i = 1, 2, . . . , n. Hence, for each fixed j and for all i = 1, 2, . . . , n, gjλ

−1
txj
fiλtiλtxj gj =

0. Therefore,
m∑
j=1

gjλ
−1
txj

(
n∑
i=1

fiλti

)
λtxj gj =

m∑
j=1

n∑
i=1

gjλ
−1
txj
fiλtiλtxj gj = 0.

Moreover, it is easy to check that the map ϕ : C(X) or Γ → C(X) or Γ defined by ϕ(a) =∑m
j=1 gjλt−1

xj
aλtxj gj is a unital completely positive map. Hence,

∥∥∥∥∥∥
m∑
j=1

gjλt−1
xj

(a− E(a))λtxj gj

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
m∑
j=1

gjλt−1
xj

(
a−

(
n∑
i=1

fiλsi + E(a)

))
λtxj gj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
m∑
j=1

gjλ
−1
txj

(
n∑
i=1

fiλti

)
λtxj gj

∥∥∥∥∥∥
=

∥∥∥∥∥ϕ
(
a−

(
n∑
i=1

fiλsi + E(a)

))∥∥∥∥∥+

∥∥∥∥∥∥
m∑
j=1

gjλ
−1
txj

(
n∑
i=1

fiλti

)
λtxj gj

∥∥∥∥∥∥
≤

∥∥∥∥∥a−
(

n∑
i=1

fiλsi + E(a)

)∥∥∥∥∥+

∥∥∥∥∥∥
m∑
j=1

gjλ
−1
txj

(
n∑
i=1

fiλti

)
λtxj gj

∥∥∥∥∥∥
< ε.

Renaming t−1
xj as sj , we obtain the claim.
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5.3 Simplicity and generalized Powers averaging

In order to prove such an averaging for simple crossed products, we use the notion of generalized

Furstenberg boundary introduced by Naghavi [30] and Kawabe [23] independently and various

characterizations provided there. In this section, we introduce a generalized version of the Powers

averaging and show that it is equivalent to simplicity of the reduced crossed product. The contents

of this section and the one following it are taken from [4].

Definition 5.4 ([4]). A C∗-dynamical system (C(X),Γ) is said to have generalized Powers averag-

ing property if for every element a in the reduced crossed product C(X)orΓ and every ε > 0, there

are s1, . . . , sm ∈ Γ and f1, f2, . . . , fm ∈ C(X) with fj ≥ 0 for each j = 1, 2, . . . ,m,
∑m

j=1 f
2
j = 1

such that ∥∥∥∥∥∥
m∑
j=1

fjλsj (a− E(a))λs−1
j
fj

∥∥∥∥∥∥ < ε.

Moreover, it is said to have strong generalized Powers averaging property if for every element

a in the reduced crossed product C(X) or Γ and every ε > 0, there are s1, . . . , sm ∈ Γ and

f1, f2, . . . , fm ∈ C(X) with fj ≥ 0 for each j = 1, 2, . . . ,m,
∑m

j=1 f
2
j = 1 such that

∥∥∥∥∥∥
m∑
j=1

fjλsjaλs−1
j
fj − E(a)

∥∥∥∥∥∥ < ε.

Theorem 5.5 ([4]). Let Γ be a discrete group acting on a compact Hausdorff space X by homeo-

morphisms, and assume that the action is minimal. The following are equivalent:

1. C(X) or Γ is simple.

2. C(X) or Γ has the generalized Powers averaging property.

3. C(X) or Γ has the strong generalized Powers averaging property.

One possible way of proving this theorem is to follow in the footsteps of [26] and show that

there is a one-to-one correspondence between boundaries in {ν ◦ E : ν ∈ Prob(X)} and conditional

expectations E : C(X) or Γ → C(X). We do not do that!! Instead, we argue similarly as in
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[19]. The key to establishing our theorem is the following lemma which allows us to send arbitrary

measures to δ-measures.

For a state ϕ on C(X) or Γ, fj ∈ C(X) with fj ≥ 0,
∑m

j=1 f
2
j = 1 and sj ∈ Γ, we define a new

state on C(X) or Γ: For a ∈ C(X) or Γ,

ϕ

 m∑
j=1

fjλsj (·)λs−1
j
fj

 (a) = ϕ

 m∑
j=1

fjλsjaλs−1
j
fj

 .

Moreover, for fj ≥ 0 with
∑m

j=1 f
2
j = 1, let

K =

Φ : C(X) or Γ→ C(X) or Γ : Φ(a) =
m∑
j=1

fjλsjaλs−1
j
fj


Lemma 5.6. Suppose that X is a minimal Γ-space. Then, for every x ∈ X, there exists a net

Φi ∈ K such that Φi|C(X)
‖.‖−−→ δx. Moreover, for any state ϕ on C(X) or Γ, ϕ (Φi) |C(X)

w∗−−→ δx.

Proof. Let x0 ∈ X. Let V be a neighborhood around x0. Since Γ y X is minimal, for every x ∈ X

there exists tx ∈ Γ such that txx ∈ V . Then, there exists an open set Ux 3 x such that txUx ⊂ V

(we can choose Ux = t−1
x V ). Using the compactness of X, we can find x1, x2, . . . , xn ∈ X such that

X ⊂ ∪ni=1Uxi and tx1 , tx2 , . . . , txn ∈ Γ such that txiUxi ⊂ V . Let {fj}nj=1 be a partition of unity

subordinate to {Uxj}nj=1. Define a u.c.p map ΦV : C(X) or Γ→ C(X) or Γ by

ΦV (a) =
n∑
j=1

f
1
2
j λtjaλt−1

j
f

1
2
j , a ∈ C(X) or Γ

(Here, we rename txj as tj .) We claim that

{ΦV : V open, V 3 x0,ΦV ≤ ΦW ⇐⇒ W ⊂ V } ‖.‖−−→ δx0

Let f ∈ C(X). Let ε > 0. Since f is continuous at x0, there exists an open neighborhood U 3 x0

such that |f(y)− f(x0)| < ε for all Y ∈ U . By the above construction, there exists a u.c.p map ΦU
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on C(X) or Γ defined by

ΦU (a) =
m∑
j=1

g
1
2
j λt−1

j
aλtjg

1
2
j , a ∈ C(X) or Γ

such that tjUj ⊂ U and Supp(gj) ⊂ Uj with X = ∪mj=1Uj . Now, for x ∈ X observe that

∣∣∣∣∣∣
m∑
j=1

gj(x)t−1
j .f(x)− f(x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

gj(x)t−1
j .f(x)−

m∑
j=1

gj(x)f(x0)

∣∣∣∣∣∣
≤

m∑
j=1

gj(x)|f(tjx)− f(x0)|

< ε (for x ∈ Uj ,tjx ∈ U)

Moreover, for any state ϕ,

|ϕU (f)− f(x0)| =

∣∣∣∣∣∣ϕ
 m∑
j=1

gjt
−1
j .f − f(x0)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
m∑
j=1

gjt
−1
j .f − f(x0)

∥∥∥∥∥∥ < ε.

The claim follows.

Proof of Theorem 5.5. We give an outline of the proof and refer the reader to [4] for details. (3) =⇒

(1) is the easy direction and it really is a mere modification of Theorem 3.4. We leave it as an

exercise.

For (1) =⇒ (2), arguing similarly as in [9, Lemma 3.3], it is enough to show that given any state

ϕ ∈ S(C(X) oλ Γ), that

{ν ◦ E : ν ∈ Prob(X)} ⊆ {ϕ(µ), µ ∈ K}weak∗

.
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We begin by observing that K̃ = {ϕ(µ), µ ∈ K}weak∗

is a w∗-compact convex Γ-invariant subset of

S(C(X) or Γ). Let x ∈ X. Using Lemma 5.6, we can find a net {µi} ∈ K such that ϕ ◦ µi|C(X) =

ϕi|C(X)
w∗−−→ δx. Upon passing to a subnet, we may assume that ϕi

w∗−−→ ψ̃ ∈ K̃, where ψ̃ is a state on

C(X)or Γ. Extend ψ̃ to a state ϕ̃ on C(X̃)or Γ, where C(X̃) = IΓ(C(X)). Note that ϕ̃|C(X) = δx.

Using [30, Theorem 3.2], we can find a net sj ∈ Γ such that sj .ϕ̃|C(X̃)
w∗−−→ δy for some y ∈ X̃.

Upon passing to a subnet, we may assume that sjϕ̃
w∗−−→ ψ ∈ S(C(X̃) or Γ). Moreover, C(X̃) falls

in the multiplicative domain of ψ since ψ|C(X̃) = δy. Since C(X) or Γ is simple, it follows from

[23, Theorem 3.4] that C(X̃) or Γ is simple, hence by the same theorem again, the action Γ y X̃

is free. Arguing similarly as in [19, Lemma 3.1], we conclude that ψ = ψ ◦E. The claim follows by

observing that

ψ|C(X)orΓ = lim
j
sjϕ̃|C(X)orΓ = lim

j
sjψ̃ ∈ K̃.

For (2) =⇒ (3): Arguing similarly as above, given a ∈ C(X) or Γ, we can show that for each

x0 ∈ X, there exists a net µx0
i ∈ K such that µx0

i (a)
‖.‖−−→ E(a)(x0). Since E(a) is continuous,

for each x ∈ X, there exists a neighborhood Ux 3 x such that |E(a)(x) − E(a)(y)| < ε for all

y ∈ Ux. Using the compactness of X, we can find finitely many elements x1, x2, . . . , xn ∈ X such

that X ⊂ ∪ni=1Uxi . Let {fi} be a partition of unity corresponding to {Uxi}ni=1 with fi ≥ 0 and∑n
i=1 f

2
i = 1. For each i = 1, 2, . . . , n, it follows from our earlier argument that we can find u.c.p

maps µi ∈ K such that

‖µi(a)− E(a)(xi)‖ < ε, ∀i = 1, 2, . . . , n.

Let µ ∈ K be defined by µ(.) =
∑n

i=1 fiµi(.)fi. Then,

‖µ(a)− E(a)‖ =

∥∥∥∥∥
n∑
i=1

fiµi(a)fi −
n∑
i=1

fiE(a)fi

∥∥∥∥∥
≤

∥∥∥∥∥
n∑
i=1

fiµi(a)fi −
n∑
i=1

fiE(a)(xi)fi

∥∥∥∥∥
+

∥∥∥∥∥
n∑
i=1

fiE(a)(xi)fi −
n∑
i=1

fiE(a)fi

∥∥∥∥∥
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For each x ∈ Supp(fi) ⊂ Ui, |E(a)(xi)− E(a)(x)| < ε by construction. Hence,

∥∥∥∥∥
n∑
i=1

fiE(a)(xi)fi −
n∑
i=1

fiE(a)fi

∥∥∥∥∥
= sup

x∈X

∣∣∣∣∣
n∑
i=1

fi(x)E(a)(xi)fi(x)−
n∑
i=1

fi(x)E(a)(x)fi(x)

∣∣∣∣∣
≤ sup

x∈X

(
n∑
i=1

fi(x) |E(a)(xi)− E(a)(x)| fi(x)

)

≤ ε.

The claim follows.

5.4 Application of generalized Powers averaging

We give a generalization of Theorem 3.4 as an application of the generalized Powers averaging. The

motivation for this problem originated from the work of Kawabe [23], especially [23, Theorem 3.4]

and [23, Theorem 6.1]. The aim of this section is to prove the following proposition. We start by

saying how we arrived upon this proposition.

As mentioned before, Γ-simplicity doesn’t necessarily pass to sub-algebras and therefore, simplicity

for invariant sub-algebras of simple crossed products shouldn’t be expected to hold in general. Con-

sider, for example, any simple C∗-algebra A, any C∗-simple group Γ acting on A trivially, and any

abelian C∗-subalgebra B ⊆ A. However, given an inclusion of unital Γ-C∗-algebras C(Y ) ⊂ C(X)

(via a factor map π : X → Y ), every intermediate crossed product C(Z) or Γ sitting between

C(Y )or Γ and C(X)or Γ is simple whenever C(Y )or Γ is simple. For this, we use the character-

ization of simplicity of the reduced crossed product provided in [23, Theorem 6.1].

Towards that end, let z ∈ Z and Λ be an amenable subgroup of Γz. Let ρ : Z → Y be the factor

map coming from the inclusion of C(Y ) ⊂ C(Z). Observe that Γz ≤ Γρ(z) and therefore, Λ is an

amenable subgroup of Γρ(z). Hence, by [23, Theorem 6.1] we can find a net {gi} ∈ Γ such that
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giΛg
−1
i → {e} in the Chabauty topology. Again, by [23, Theorem 6.1] it follows that C(Z) or Γ

is simple. After this, it is only natural to expect that this should hold for every intermediate

C∗-subalgebra.

Proposition 5.7. Let π : X → Y be a continuous Γ-equivariant onto map, where X,Y are

compact Hausdorff Γ-spaces. Suppose that Γ y X is minimal and C(Y ) or Γ is simple. Then,

every intermediate C∗-algebra A with C(Y ) or Γ ⊆ A ⊆ C(X) or Γ, is simple.

The following lemma allows us to lift the averaging scheme to higher crossed products. The

spirit is similar to that of Lemma 3.5 and so is its proof. We denote the u.c.p map Φ (·) =∑n
i=1 fiλsi · λs−1

i
fi by µ(·) for convinience of notation (we can view it as a generalized probability

measure but it is not needed for the proof we propose below. The interested reader can look at our

recent preprint [4] for more on generalized measures).

Lemma 5.8. Let Γ be a discrete group, let µ be a u.c.p map of the form
∑n

i=1 fiλsi ·λs−1
i
fi, where

fi ≥ 0 and
∑n

i=1 f
2
i = 1. Let π : X → Y be a Γ-equivariant surjective continuous map with Γ y X

minimal. Then for any t ∈ Γ and f ∈ C(X) we have

‖µ ∗ (fλt)‖B(`2(Γ)) ≤ ‖f‖ ‖µ ∗ λt‖B(`2(Γ)) .

Proof. For ξ ∈ `2(Γ), observe that for each t′ ∈ Γ we have

([µ ∗ (fλt)](ξ)) (t′)

=
∑
s∈Γ

[gsλsfλtλs−1gs(ξ)](t
′)

=
∑
s∈Γ

[gss.fλsts−1gs(ξ)](t
′)

=
∑
s∈Γ

[gs(s.f)(sts−1.gs)λsts−1(ξ)](t′)

=
∑
s∈Γ

gs(t
′.x0)f(s−1t′.x0)gs(st

−1s−1t′.x0)ξ(st−1s−1t′).
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Define the function ξ1(t′) = |ξ(t′)|, t′ ∈ Γ. Then ξ1 ∈ `2(Γ), and ‖ξ1‖`2(Γ) = ‖ξ‖`2(Γ). We have

‖[µ ∗ (fλt)](ξ)‖2`2(Γ)

=
∑
t′∈Γ

∣∣([µ ∗ (fλt)](ξ)) (t′)
∣∣2

=
∑
t′∈Γ

∣∣∣∣∣∑
s∈Γ

gs(t
′.x0)f(s−1t′.x0)gs(st

−1s−1t′.x0)ξ(st−1s−1t′)

∣∣∣∣∣
2

≤ ‖f‖2
∑
t′∈Γ

(∑
s∈Γ

gs(t
′.x0)gs(st

−1s−1t′.x0)|ξ(st−1s−1t′)|

)2

= ‖f‖2
∥∥∥∥∥∑
s∈Γ

gsλsts−1gs(ξ1)

∥∥∥∥∥
2

`2(Γ)

≤ ‖f‖2
∥∥∥∥∥∑
s∈Γ

gsλsts−1gs

∥∥∥∥∥
2

B(`2(Γ))

‖ξ1‖2`2(Γ)

= ‖f‖2 ‖µ ∗ (λt)‖2B(`2(Γ)) ‖ξ1‖2`2(Γ) ,

and since ‖ξ1‖`2(Γ) = ‖ξ‖`2(Γ), the inequality follows.

We follow the strategy employed in the proof of Theorem 3.4.

Proof of Proposition 5.7. Let A be an intermediate C∗-sub-algebra of the form C(Y ) or Γ ⊆ A ⊆

C(X) or Γ. Let I be a non-zero ideal of A. Let a ∈ I. Replacing a by a∗a and dividing by

an appropriate scalar if required, we can assume that a ≥ 0 and ‖a‖ < 1. Let ν ∈ Prob(Γ) be

such that Supp(ν) = Γ. Then, it is a consequence of Lemma 3.7 that there exists δ > 0 such

that ν ∗ E(a)(x) > δ for all x ∈ X. Now, let 0 < ε < 1. Then, using Lemma 5.8, we can find

g1, g2, . . . , gm ∈ C(Y ) with 0 ≤ gj ≤ 1,
∑m

j=1 g
2
j = 1 and s1, s2, . . . , sm ∈ Γ such that

∥∥∥∥∥∥1

δ

m∑
j=1

gjλsj (ν ∗ a− E(ν ∗ a))λs−1
j
gj

∥∥∥∥∥∥ < ε.
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Now, for every x ∈ X,

1

δ

 m∑
j=1

gjλsjE(ν ∗ a)λs−1
j
gj

 (x)

=
1

δ

 m∑
j=1

g2
j (x)E(ν ∗ a)(s−1

j x)


=

1

δ

 m∑
j=1

g2
j (x) (ν ∗ E(a)) (s−1

j x)


≥ 1

δ

m∑
j=1

g2
j (x)(δ) = 1

Now, let S = 1
δ

∑m
j=1 gjλsj (ν∗a)λs−1

j
gj and T = 1

δ

∑m
j=1 gjλsjE(ν∗a)λs−1

j
gj . Observe that ‖S−T‖ <

1. Moreover, T is invertible, ‖T−1‖ < 1 and ‖S‖ < 1. Therefore, using Lemma 3.6 we see that S

is invertible. Since S ∈ I, I = A. This completes the proof.
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