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Abstract 
 
    Space plasma is made of electrically charged gases or fluids in space that are made up 

of free electrons and ions. They are studied extensively not only to analyze the dynamic 

processes of stellar bodies but also to understand various phenomena including particle 

acceleration, wave-particle interaction, applied science of space weather, and its impact 

on human technology. The identification of primary particles of plasma is of utmost 

importance for these kinds of research.  There is considerable amount of data available; 

however, deriving a formula or methods for manual plasma regime identification is 

extremely time consuming, and can be highly unreliable and lack robustness. An 

automatic process of classifying these primary particles is of high demand. Currently, 

existing techniques that use machine learning algorithms have difficulty in distinguishing 

perceptible boundaries and regions as good as the human eye. In contrast, we propose a 

classification method to identify plasma particles automatically given a highly 

diversified time series data, based on energy and pitch angle. We came up with this 

algorithm after exploiting various learning techniques on the entire available 

data. Experiments are reported on datasets obtained from the Fast Auroral SnapshoT 

(FAST) explorer, which is the second mission in NASA’s Small Explorer Satellite 

Program (SMEX). 
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Chapter 1 INTRODUCTION 

1.1 Background 

1.1.1 Machine Learning 

    Machine Learning, a branch of Artificial Intelligence, aims to build computer systems 

that can adapt and learn from experience. A machine learning system is normally trained 

on datasets to learn “relevant knowledge”, and then such knowledge is used to complete 

new tasks by testing on new datasets.  These train and testing steps are indispensable to 

formulate machine learning systems. 

    There are several reasons that allow machine learning to become important in helping 

people solve problems. Sometimes, the input/output pairs do not indicate a concise 

relationship that can be discovered via an implicit suitable relationship with efficient and 

effective algorithms running on the datasets. The important relationship and correlations 

are probably hidden in large amount of data and they can be extracted effectively by 

machine learning methods. Some tasks only works well in specific environments. Certain 

characteristics of the working environment, however, are unknown to the designer at the 

beginning.  Machine learning methods can adjust and improve current designs as new 

information arrives. Moreover, machines capture more knowledge as needed than human 

can. In fact, although we can hardly enumerate all the possible reasons here, machine 

learning shines by its incomparable advantages. 

1.1.2 Space Plasma Regimes 

    In Space Science, space plasma is an electrically charged gas or fluid made up of free 

electrons and ions. It is often dubbed “the fourth state of matter”, and may be the most 
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common state of matter in the universe that carries an incredible wealth of information in 

different areas. One key area of space plasma physics is the study of space weather 

([01]), defined as the study of natural process in space that can affect Earth, the near-

Earth environment, satellites, and space travel. One example of such processes is 

geomagnetic storms caused by solar coronal events.  

    Experimental plasma physics relies on the simultaneous measurement of multiple 

parameters inside plasma. Example parameters include plasma density and temperature, 

electromagnetic field power, particle velocities, and more. For a review of space plasma 

measurement approaches see ([02][03][04]). 

    The Fast Auroral SnapshoT (FAST) was launched in 1996 into a near-polar, highly 

elliptical orbit (350 km * 4,200 km) to study physical processes in Earth’s auroral zones. 

Its explorer passed through the nightside auroral oval in the 22 to 24 MLT rang on orbits 

1740-1779. We analyze the data collected from these orbits for our statistical survey.  

Figure 1-1 shows a pass of the FAST through the northern auroral zone of Earth’s 

ionosphere, there is a comprehensive set of particles detected the space explorer. Three 

primary particles were classified from a coarse, by-hand work demonstrated as 

Downward currents (green bar), Upward currents (purple bar), and Alfvénic currents (red 

bar) in the figure.  The key physics and characteristics of the three auroral regions are 

displayed in Figure 1-2.  
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Figure 1-1: FAST satellite pass through all three primary auroral regions of downward 
(green), upward (blue) and Alfvénic currents (red). The FAST orbit is plotted into a 

global UV auroral image taken from POLAR (bottom). From [05]. 
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Figure 1-2: Summary diagram that describes the key physics and characteristics of the 
three auroral regions, ordering auroral observations according to electric current. This 

diagram contains both particle and waves/fields phenomena. From [06]. 
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1.2 Objective 

    The main goal of this project is to develop a machine learning system for the automatic 

detection of particles in space science using a set of pattern recognition tools, including 

machine learning, data mining, and image processing. The system can focus on 

measurements in variable datasets, which are relevant to space weather research (e.g., 

such as predicting geomagnetic storm caused particle precipitation and ion outflow 

events), and on fundamental plasma physics. 
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Chapter 2 Related Work 

    There is only a few of studies on the automated classification and identification of 

space plasma data.  Ball [07] displayed an example of a modern survey for which the 

methods of astroinformatics are ideally suited. Strangeway, et al. [08] found the evidence 

of very low plasma density by observing VLF waves in the auroral zone. And Newell, et 

al. [09] proposed a methodology to map the ionosphere to the magnetosphere.   

    Several standard computational approaches were involved. The main focus points are 

statistical studies of events to extract average behavior to understand the individual 

response of the system. In either case, event selection is mostly done by hand (visual 

inspection). 

2.1 Statistical Analysis 

    The author in [10] investigated the behavior of 10 different characterizations of the 

magnetosphere and analyzed the magnetospheric state variables from different technical 

perspectives and introduced the ensemble learning approach to work on the datasets. 

   In order to find the comparisons of electrons and ions, the author in [11] developed a 

statistical model of auroral ion precipitation. By using this model, the auroral 

precipitating ions can be displayed in a well-ordered pattern in magnetic local time and 

geomagnetic latitude. 

    Badman, et al. [12] analyzed a sample of 22 Hubble Space Telescope images of 

Saturn’s southern auroral oval to statistically determine the average location and width of 

the aurora, and their variability. 
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2.2 Bayesian Methods 

    In [13] the author described the reconstruction algorithm based on Bayesian method 

and developed a concrete algorithm for the Generalized-Auroral Computed Tomography. 

    Lointier, et al. [14] proposed a Bayesian classifier for studying the Solar Wind-

Magnetosphere-Ionosphere system by identifying and tracking the projection of 

magnetospheric regions on the high-latitude ionosphere. 

2.3 Correlation Analysis 

    The author in [15][16] proved the correlation of solar wind with oxygen content of ion 

and plasmapause position separately; [17] discussed the importance of O+ ions across the 

polar cap as the event studies. 

    It is very difficult to develop techniques that can distinguish discernible boundaries 

(and regions) as well as, or better than human eye. Some approaches may produce 

satisfactory results on certain kinds of data; however, no general technique has been 

proposed. For instance, Newell, et al. [18] developed an algorithm using Defense 

Meteorological Satellite Program (DMSP) data, covering the period from 1984 to about 

1990, which is highly uniform with rare data gaps. This algorithm was made for specific 

and consistent identifications only. In contrast, our proposed work plans to develop tools 

that can automatically identify and classify plasma environments of diverse data types; 

machine learning techniques are fully exploited to establish an efficient collaborative 

framework.   
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Chapter 3 Methodology  

3.1 Feature Extraction     

    We plan to extract the relevant features from the spectrograms that can produce a 

function mapping our data sets as input to desired, labeled classes as output. Figure 3-1 

shows an example of two spectrograms taken from an auroral pass captured by the FAST 

satellite and POLAR spacecraft. Time is on X-axis, angle Y-axis, and energy value of the 

detected particle Z-axis (different color refers to different energy values). For instance, 

point (x, y, z) represents the particle detected by the sensor at the time x with an entering 

angle y and there are particles of number z detected. 

 

 
Figure 3-1: An example of electron spectrograms versus energy and pitch angle. 

Different colors refer to different frequencies. 
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3.1.1 Bin Packages 

    To reduce the size of features, we take advantage of bin packages.  For every instance 

of time, we have W angles in total with a corresponding energy value e on each. We 

divide W into L bins of equal size W/L. In each bin, we add up all the energy values 

corresponding to the angles belonging to that bin to get one value B. By doing this, our 

feature’s dimensionalities have been decreased by W/L times without losing much 

relevant information. Repeat the process along the entire time instance T. The equation 

(1) follows below: 

 

3.1.2 Discrete Wavelet Transform 

    Wavelet Transform (WT) as a technique particularly useful for analyzing signals, and 

was mainly used to attack the problem related to frequency and time resolution 

properties. Compared to Fourier Transform, WT contains additional special properties of 

the wavelets, which show up at the resolution in time at higher analysis frequencies of the 

basis function that we can extract relevant information in a more effective way. 

Considering that our dataset is discretely sampled, we take Discrete Wavelet Transform 

(DWT) as our analysis techniques.  

    DWT is computed by successive lowpass and highpass filtering of the discrete time-

domain signal, providing high time resolution and low frequency resolution for high 

frequencies and high frequency resolution and low time resolution for low frequencies. 

Thus, DWT is able to provide a compact representation of a signal in time and frequency 

with efficient computation [19]. There are different types of mother wavelets. Because 
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the Haar wavelet can give us the best resolution power over time/space domain, we chose 

it as our mother wavelet and performed decomposition at level 3 of signal. The DWT is 

defined by the following equation: 

 

where  (t) is a time function with finite energy and fast decay called the mother wavelet. 

Also, Figure 3-2 displays how the signal is decoded by the DWT, where signal is X[n], 

low pass filter is G0, and the high pass filter is denoted by H0. The high pass filter passes 

filter produces detail information, while the low pass filter associated with scaling 

function produces coarse approximations. 

 

Figure 3-2: Three-level wavelet decomposition tree. 
 

I. We take a window of size S time stamps, where S must be equal to 2n (n is a 

positive integer).  Put together all the jth bin of each time stamp covered by the 

window where time t is the center, we obtain the vector  (3).  After that, we 

calculate the DWT of  to get vector (4) introduced below, and achieve  

by merging all the  together (5).  Thus, , as DWT-time, is the feature vector 

that represents the instance of time t.  Move the window by one time stamp where 
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time (t+1) becomes the center of the window, and repeat the process as above till 

the end of time sequence. 

 

!!!!!!!!!!!!!!!!!!!!!!!! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

II. In addition, we also study the DWT on energy stamps. We calculate the DWT on 

all the bins at each time point.  Say there are L bins, where L must be equal to 2n 

(n is an integer).  At time point t, we get the features vector  of DWT-energy 

described as (6), (7).   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

III. For each instance, we get the final vector of features  by merging in (5) and 

 in (7) together stated in (8).  S is the size of time stamp window described in I. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

3.1.3 Features Ranking 

    After 3.1.2, for each instance, the size of final vector of features is (S * L + L). From 

the perspectives of Information Gain, Information Gain Ratio, Chi-squared, and Relief, 

we choose the top i features, which rank the highest on these four factors. 

I. Information Gain 

Information gain is the change of the entropy from a prior state to present one. 

The equation (9) is displayed as below: 
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!

"#$%$!&!'$()*$+!*#$!$(*%),-.!/$012+$!"$!"1(*!*)!34('!*#$!5)+*!%$6$71(*!3$1*2%$+8!

1('!*#2+!*#$!)($!"4*#!#49#!4(3)%51*4)(!914(!+#)26'!:$!,%$3$%%$'!*)!)*#$%+.!!

II. Information Gain Ratio 

;(3)%51*4)(!914(!%1*4)!01(!:$!2+$'!*)!45,%)7$!)(!1!6454*1*4)(!)3!4(3)%51*4)(!914(.!;*!

4+!<2+*!*#$!%1*4)!:$*"$$(!*#$!4(3)%51*4)(!914(!1('!*#$!4(*%4(+40!7162$!=>?@.!!

!

III. Chi-squared 

It is one of the most widely used probability distribution in inferential statistics. If 

X1, …, Zk are independent, standard normal random variables, then the sum of 

their squares, , is distributed according to the chi-squared distribution 

with k degrees of freedom. It tells us that if the dataset follows certain kind of 

probability distribution.   

IV. Relief 

Relief is a feature selection method ([20]) based on attribute estimation. It assigns 

a grade of relevance to each feature, and those features with a higher value than a 

given threshold will be preferred. The general algorithm of relief is followed in 

(11) and (12): 
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Relief-F finds one nearest neighbor of E1 from every class. For these neighbors, 

Relief evaluates the relevance of every feature f  F accumulating it into W[f]. H 

represents the nearest neighbor from the same class, while M(C) of class C stands 

for from different class. Ultimately, W[f] is divided by m to get the average 

evaluation. Relief is able to capture feature interactions; this is important when 

the relevance of a feature is hidden in the interaction with other features. 

3.1.4 Principal Component Analysis 

    Principal component analysis (PCA) is a mathematical procedure that transforms a 

number of (possibly) correlated variables into a (smaller) number of uncorrected 

variables called principal components. The first principal component accounts for as 

much of the variability in the data as possible, and each succeeding component accounts 

for as much of the remaining variability as possible ([21]). PCA can help us reducing the 

number of dimensionalities of our feature set without loss much of information. We 

extract the features from the previous i features in 3.1.3 by taking the advantage of PCA. 

Taking the first j numbers (j < i), which occupies the most of the relevant information. 

Consequently, our new feature sets is the first j component. 

3.2 Classifier Selection 

3.2.1 Support Vector Machines 

    Support Vector Machines (SVM) preprocesses the data by representing all examples in 

a sufficient higher dimensional space where the classes can be separated by a hyperplane. 

We try to find the separating hyperplane with the “largest” margin, which is the distance 

between the hyperplane and the closet example to it. These examples are called support 

vectors. The equation bellows uses a discriminant function: 
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where {ai} is a set of real parameters, index i runs along the number of training 

examples, and K is a kernel of degree one in polynomial.  

3.2.2 Neural Networks 

    Neural networks simulate the workings of the brain. A network is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to 

solve specific problems. These elements are divided into layers with weighted directional 

connections. Inputs are passed from a base layers through the network one layer at a time. 

Each neuron produces an output based on the weighted inputs it receives and a processing 

function (a sigmoid function often). After having gone through all the layers, the weights 

are adjusted according to the comparison between the final output and the target output. 

Here is a simple equation:   

 

where x is the input parameter vector, f(.) is a nonlinear (i.e., sigmoid) function, and ai is 

a component of vector x. Index i runs along the components of vector x while index j 

goes with a number of intermediate functions. K refers to the kth output neuron. 

3.2.3 Naïve Bayes 

    The Naïve Bayes classifier, derived from Bayes Theorem, is a parametric technique. 

We use it to identify the maximum posterior probability of a class given the input vector 

x, P(Yi|x). This can be represented mathematically as:    
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3.2.4 Boosting – Decision Tree 

    The Decision Tree classifier is a non-parametric technique, approximating a target 

concept using a tree representation, where each internal node corresponds to an attribute, 

and every terminal node corresponds to a class. This technique recursively divides the 

feature space using boundaries orthogonal to the feature axes based on the value of a 

selected attribute. 

    Boosting is a popular ensemble classifier for reducing variance and bias components of 

error. It combines those “weaker” learners iteratively with respect to a distribution, and 

formulating a strong learner finally. Each learner tries to correct the mistakes made the 

previous learner, and the final prediction is decided by a weighted voting scheme. We 

plan to use Decision Tree classifier as the base algorithm with Boosting. 

3.2.5 Random Forest 

    Random Forest is an ensemble classifier using many decision tree models described in 

3.2.4. It can be used for classification or regression. Random Forest runtimes are fast, and 

they are able to deal with unbalanced and missing data. Random Forest weaknesses are 

that when used for regression they cannot predict beyond the range in the training data, 

and that they may overfitting data sets that is particularly noisy. 

3.3 Data Modeling 

3.3.1 Cross-validation 

    Cross-validation is a technique that helps a learning algorithm to validate its own 

trained model by choosing a part of its training set as validation set. In an n-fold cross-

validation, the learning algorithm first divides the training set into n subsets. It uses (n-1) 

subsets together as the training set, and the remaining one set as the validation set. Once 
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the model is trained on the training set, it uses the validation set to assess its accuracy. 

The learning algorithm repeats the same process n number of times, each time taking a 

different subset among the n subsets as the validation set and uses the rest as the training 

set. After it has completed n runs, the final accuracy estimation is obtained by averaging 

over all the models it created in each of its run. We have used a 10 fold cross-validation 

method where n=10. 

3.3.2 Weka 

    In order to achieve good training models, we test the datasets with multiple learning 

algorithms introduced in 3.2 using the tool Weka, which is a collection of machine 

learning algorithms for data mining tasks. From the model report produced by Weka, we 

normally take two factors into consideration including classification performance, root 

mean squared error to find the best-fit algorithm working with the updated features.  The 

algorithms ([22][23][24]) will then be used to generate a predictive model. Therefore, the 

best training model is the combination of the new features and the suitable efficient 

algorithms. 

!
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Chapter 4 Experimental Results 

4.1 Datasets    

    There are two images Figure 4-1 and Figure 4-2 displayed as below, both of them 

taken by FAST and POLAR spacecraft at the same time interval. Figure 4-1 shows the 

EANG and EEV of the dataset, while Figure 4-2 shows the IANG and IEV dataset. We 

assigned the Blank Area as Background Class 0; both of them contain three classes, 

Downward currents (green bar) Class 1, Upward currents (purple bar) Class 2, and 

Alfvénic currents (red bar) Class 3.  Each sub-image contains 1326 time instances. 

 

Figure 4-1: The two spectrograms (EANG/EEV) of Figure 3-1 with a by-hand and coarse 
labeling work. It shows the dataset taken from approximately 16:44 to 16:50. 
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Figure 4-2: The two spectrograms (IANG/IEV) of Figure 3-1 with a by-hand and coarse 
labeling work. It shows the dataset taken from approximately 16:44 to 16:50. 

 
4.2 Experiments 

    We mainly use two factors to decide whether a model is good or not. Accuracy is used 

to display the proportion of correctly classified instances while root mean squared error 

(RMSE) demonstrates the stability of the model.  From all the classifiers we considered 

in 3.2, we decided to focus on Boosting Decision Tree (BDT) and Random Forest (RF), 

because these two classifiers gave us the best accuracy when compared to other 

algorithms working on our datasets. All the testing results are based on 10-fold cross-

validation. 
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4.2.1 Phase 1 

    As for the Bin Packages, we tried to make two different sizes of bin sets: 4, 8. The 

classification results are shown in Table 4-1, Table 4-2, Table 4-3, and Table 4-4. From 

the result tables below, we finally decide to formulate 8 bins for each instance. 

4 bins 8 bins File 1-EANG 
Accuracy RMSE Accuracy RMSE 

BDT 81.429% 0.2880 84.118% 0.2735 
RF 81.681% 0.2542 83.193% 0.2351 

Table 4-1: results of using 4 and 8 bins on File1-EANG. 
 

4 bins 8 bins File 1-EEV 
Accuracy RMSE Accuracy RMSE 

BDT 87.647% 0.2384 93.193% 0.1806 
RF 88.656% 0.2015 92.185% 0.1696 

Table 4-2: results of using 4 and 8 bins on File1-EEV. 
 

4 bins 8 bins File 1-IANG 
Accuracy RMSE Accuracy RMSE 

BDT 81.261% 0.2882 90.084% 0.2114 
RF 81.513% 0.2607 89.160% 0.1952 

Table 4-3: results of using 4 and 8 bins on File1-IANG. 
 

4 bins 8 bins File 1-IEV 
Accuracy RMSE Accuracy RMSE 

BDT 90.336% 0.2117 90.840% 0.2028 
RF 90.672% 0.1856 90.168% 0.1859 

Table 4-4: results of using 4 and 8 bins on File1-IEV. 
 
4.2.2 Phase 2   

    We use 8,16, and 32 respectively as the size of time stamps window for DWT and 

compared the performance under two classifiers shown in Table 4-5, Table 4-6, Table 

4-7, and Table 4-8. Since models with 32-time stamps window have better performance, 

we selected 32 as our window size for DWT on time stamps. 
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DWT-8onTime DWT-16onTime DWT-32onTime File 1-
EANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 92.984% 0.1798 95.234% 0.1458 97.066% 0.1173 
RF 88.081% 0.2144 90.894% 0.1905 93.615% 0.1672 
Table 4-5: results of using 8, 16, and 32 as window size of DWT on File1-EANG. 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 1-

EEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 96.365% 0.1287 97.787% 0.0954 98.792% 0.0719 
RF 90.279% 0.1934 93.872% 0.1678 96.031% 0.1504 
Table 4-6: results of using 8, 16, and 32 as window size of DWT on File1-EEV. 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 1-

IANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 95.013% 0.1500 97.362% 0.1132 98.188% 0.0920 
RF 91.631% 0.1870 95.234% 0.1657 96.290% 0.1442 

Table 4-7: results of using 8, 16, and 32 as window size of DWT on File1-IANG. 
 

DWT-8onTime DWT-16onTime DWT-32onTime File 1-
IEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 96.957% 0.1200 99.234% 0.0634 98.878% 0.0722 
RF 92.984% 0.1893 97.277% 0.1515 96.894% 0.1420 

Table 4-8: results of using 8, 16, and 32 as window size of DWT on File1-IEV. 
 
    We merge DWT on time stamps with window size 32 and DWT on energy with 

window size 8.  The results displayed in Table 4-9, Table 4-10, Table 4-11, and Table 

4-12. 

DWT-32onTime+8onEnergy File 1-EANG 
Accuracy RMSE 

BDT 97.066% 0.1137 
RF 92.752% 0.1699 

Table 4-9: results of merging DWT on time and on energy on File1-EANG. 
 

DWT-32onTime+8onEnergy File 1-EEV 
Accuracy RMSE 

BDT 98.878% 0.0737 
RF 95.772% 0.1455 

Table 4-10: results of merging DWT on time and on energy on File1-EEV. 
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DWT-32onTime+8onEnergy File 1-IANG 
Accuracy RMSE 

BDT 98.533% 0.0819 
RF 96.290% 0.1458 

Table 4-11: results of merging DWT on time and on energy on File1-IANG. 
 

DWT-32onTime+8onEnergy File 1-IEV 
Accuracy RMSE 

BDT 99.051% 0.0665 
RF 97.325% 0.1384 

Table 4-12: results of merging DWT on time and on energy on File1-IEV. 

4.2.3 Phase 3 

    There are 264 features for each instance (256 features coming from DWT on time 

stamps and 8 features getting from DWT on energy).  We use feature ranking described 

in 3.1.3. by selecting the top 20 features from the perspectives of Information Gain, Gain 

Ratio, Chi-squared, and Relief. The features with high score in these four factors are 

definitely what we are looking for, because they contain relevant information.  In Figure 

4-3, we found the top 40 features from the total 264 features.  We selected Top 35 

features according to its occurrences in all tests.   In time-axis, feature 1 to 32 are all 

coming from the results of DWT on time stamps while 33 is the outcome of DWT on 

energy. In the grid, the number represents the times this specific feature appeared during 

the feature selections. Table 4-13, Table 4-14, Table 4-15, and Table 4-16 shows the 

results after feature ranking.  
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Figure 4-3: There are 264 features for each time instance displayed above.  

 
Top 35 

File 1-EANG 
Accuracy Root mean squared error 

BDT 98.620% 0.0795 
RF 98.792% 0.0884 

Table 4-13: results of using features ranking on File1-EANG. 
 

Top 35 File 1-EEV 
Accuracy Root mean squared error 

BDT 98.792% 0.0776 
RF 99.310% 0.0704 

Table 4-14: results of using features ranking on File1-EEV. 
Top 35 File 1-IANG 

Accuracy Root mean squared error 
BDT 98.620% 0.0813 
RF 99.137% 0.0749 

Table 4-15: results of using features ranking on File1-IANG. 
 

Top 35 File 1-IEV 
Accuracy Root mean squared error 

BDT 99.051% 0.0671 
RF 99.224% 0.0667 

Table 4-16: results of using features ranking on File1-IEV. 

4.2.4 Phase 4 

    We use Principal Component Analysis to continue with our goal of feature reduction.  

After following the steps stated in 3.1.4., we finally got 9 features out of 35.  The results 

have been displayed in Table 4-17, Table 4-18, Table 4-19, and Table 4-20. 
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PCA-9features File 1-EANG 
Accuracy Root mean squared error 

BDT 97.757% 0.1027 
RF 97.239% 0.1138 
Table 4-17: results of using PCA on File1-EANG. 

 
PCA-9features File 1-EEV 

Accuracy Root mean squared error 
BDT 97.498% 0.1058 
RF 96.549% 0.1170 
Table 4-18: results of using PCA on File1-EEV. 

 
PCA-9features File 1-IANG 

Accuracy Root mean squared error 
BDT 98.533% 0.0827 
RF 98.706% 0.0818 
Table 4-19: results of using PCA on File1-IANG. 

 
PCA-9features File 1-IEV 

Accuracy Root mean squared error 
BDT 98.447% 0.0856 
RF 98.965% 0.0811 
Table 4-20: results of using PCA on File1-IEV. 

4.3 Overall Description 
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4.4.1 Datasets II 

Figure 4-4 and Figure 4-5 displayed the dataset II as the same format as above, all the 
result sets were shown in Table 4-21, Table 4-22, Table 4-23, Table 4-24, and Table 
4-25. 
 
 

 
Figure 4-4: The two spectrograms (EANG/EEV) of Dataset II. It shows the dataset taken 

from approximately 22:24 to 22:32. 
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Figure 4-5: The two spectrograms (IANG/IEV) of Dataset II. It shows the dataset taken 

from approximately 22:24 to 22:32. 
 

4 bins 8 bins File 2-EANG 
Accuracy RMSE Accuracy RMSE 

BDT 83.179% 0.2737 90.040% 0.2122 
RF 84.433% 0.2398 89.314% 0.1967 

 
4 bins 8 bins File 2-EEV 

Accuracy RMSE Accuracy RMSE 
BDT 93.470% 0.1722 96.768% 0.1249 
RF 93.272% 0.1582 96.438% 0.1226 

 
4 bins 8 bins File 2-IANG 

Accuracy RMSE Accuracy RMSE 
BDT 91.887% 0.1977 93.008% 0.1834 
RF 91.557% 0.1776 92.216% 0.1673 

 
4 bins 8 bins File 2-IEV 

Accuracy RMSE Accuracy RMSE 
BDT 95.251% 0.1512 95.646% 0.1423 
RF 94.525% 0.1446 95.185% 0.1324 

Table 4-21: Bin Package result sets of Data II. 
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DWT-8onTime DWT-16onTime DWT-32onTime File 2-
EANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 93.572% 0.1705 96.402% 0.1275 96.902% 0.1181 
RF 91.518% 0.1956 93.138% 0.1843 94.680% 0.1745 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 2-

EEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 97.482% 0.1078 98.801% 0.0743 98.451% 0.0866 
RF 93.903% 0.1732 95.670% 0.1556 96.633% 0.1502 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 2-

IANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 97.018% 0.1190 97.468% 0.1067 96.431% 0.1332 
RF 94.632% 0.1448 95.936% 0.1383 97.845% 0.0999 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 2-

IEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 97.614% 0.1075 98.201% 0.0933 97.913% 0.0993 
RF 95.030% 0.1489 96.935% 0.1299 96.835% 0.1277 

Table 4-22: DWT on Time result sets of Data II. 
 

DWT-32onTime+8onEnergy File 2-EANG 
Accuracy RMSE 

BDT 96.835% 0.1176 
RF 94.950% 0.1675 

 
DWT-32onTime+8onEnergy File 2-EEV 

Accuracy RMSE 
BDT 98.721% 0.0786 
RF 96.700% 0.1410 

 
DWT-32onTime+8onEnergy File 2-IANG 

Accuracy RMSE 
BDT 97.913% 0.1021 
RF 96.768% 0.1303 

 
DWT-32onTime+8onEnergy File 2-IEV 

Accuracy RMSE 
BDT 98.115% 0.0905 
RF 97.374% 0.1230 

Table 4-23: DWT on Time and on Energy result sets of Data II. 
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Top 35 File 2-EANG 
Accuracy Root mean squared error 

BDT 98.317% 0.0887 
RF 98.182% 0.1029 

 
Top 35 File 2-EEV 

Accuracy Root mean squared error 
BDT 98.788% 0.0756 
RF 98.586% 0.0760 

 
Top 35 File 2-IANG 

Accuracy Root mean squared error 
BDT 98.317% 0.0909 
RF 98.451% 0.0769 

 
Top 35 File 2-IEV 

Accuracy Root mean squared error 
BDT 98.855% 0.0753 
RF 98.855% 0.0697 

Table 4-24: Features Ranking result sets of Data II. 
 

PCA-9features File 2-EANG 
Accuracy Root mean squared error 

BDT 97.306% 0.1129 
RF 96.700% 0.1258 

 
PCA-9features File 2-EEV 

Accuracy Root mean squared error 
BDT 98.586% 0.0830 
RF 98.586% 0.0921 

 
PCA-9features File 2-IANG 

Accuracy Root mean squared error 
BDT 98.653% 0.0810 
RF 98.586% 0.0742 

 
PCA-9features File 2-IEV 

Accuracy Root mean squared error 
BDT 98.653% 0.0812 
RF 98.721% 0.0694 

Table 4-25: PCA result sets of Data II. 
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4.4.2 Datasets III 

Figure 4-6 and Figure 4-7 displayed the dataset III as the same format as above, all the 
result sets were shown in Table 4-26, Table 4-27, Table 4-28, Table 4-29, and Table 
4-30. 
 
 

 
Figure 4-6: The two spectrograms (EANG/EEV) of Dataset III. It shows the dataset taken 

from approximately 18:56 to 19:00. 
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Figure 4-7: The two spectrograms (IANG/IEV) of Dataset III. It shows the dataset taken 

from approximately 18:56 to 19:00. 
 

4 bins 8 bins File 3-EANG 
Accuracy RMSE Accuracy RMSE 

BDT 78.192% 0.3213 80.851% 0.2988 
RF 76.330% 0.2928 81.649% 0.2626 

 
4 bins 8 bins File 3-EEV 

Accuracy RMSE Accuracy RMSE 
BDT 90.692% 0.2103 89.362% 0.2213 
RF 89.628% 0.2006 89.096% 0.1965 

 
4 bins 8 bins File 3-IANG 

Accuracy RMSE Accuracy RMSE 
BDT 86.436% 0.2553 87.766% 0.2456 
RF 85.638% 0.2203 87.234% 0.2092 

 
4 bins 8 bins File 3-IEV 

Accuracy RMSE Accuracy RMSE 
BDT 85.638% 0.2637 88.564% 0.2329 
RF 85.106% 0.2284 90.692% 0.2022 

Table 4-26: Bin Package result sets of Data III. 
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DWT-8onTime DWT-16onTime DWT-32onTime File 3-
EANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 92.141% 0.1900 91.967% 0.1960 93.044% 0.1732 
RF 91.328% 0.1934 89.751% 0.1898 92.754% 0.1823 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 3-

EEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 96.206% 0.1380 94.737% 0.1630 95.942% 0.1435 
RF 92.954% 0.1708 91.690% 0.1755 93.913% 0.1610 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 3-

IANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 93.496% 0.1762 93.906% 0.1685 95.362% 0.1429 
RF 90.786% 0.1999 91.690% 0.1854 92.754% 0.1632 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 3-

IEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 95.122% 0.1492 93.075% 0.1823 95.073% 0.1488 
RF 92.141% 0.1850 92.798% 0.1766 95.073% 0.1646 

Table 4-27: DWT on Time result sets of Data III. 
 

DWT-32onTime+8onEnergy File 3-EANG 
Accuracy RMSE 

BDT 92.174% 0.1823 
RF 94.203% 0.1762 

 
DWT-32onTime+8onEnergy File 3-EEV 

Accuracy RMSE 
BDT 95.652% 0.1372 
RF 93.913% 0.1598 

 
DWT-32onTime+8onEnergy File 3-IANG 

Accuracy RMSE 
BDT 96.812% 0.1241 
RF 93.913% 0.1577 

 
DWT-32onTime+8onEnergy File 3-IEV 

Accuracy RMSE 
BDT 95.362% 0.1498 
RF 94.203% 0.1614 

Table 4-28: DWT on Time and on Energy result sets of Data III. 
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Top 35 File 3-EANG 
Accuracy Root mean squared error 

BDT 92.754% 0.1746 
RF 93.623% 0.1598 

 
Top 35 File 3-EEV 

Accuracy Root mean squared error 
BDT 95.362% 0.1495 
RF 96.232% 0.1230 

 
Top 35 File 3-IANG 

Accuracy Root mean squared error 
BDT 95.942% 0.1400 
RF 95.942% 0.1165 

 
Top 35 File 3-IEV 

Accuracy Root mean squared error 
BDT 95.652% 0.1484 
RF 95.073% 0.1274 

Table 4-29: Features Ranking result sets of Data III. 
 

PCA-9features File 3-EANG 
Accuracy Root mean squared error 

BDT 93.044% 0.1822 
RF 93.044% 0.1546 

 
PCA-9features File 3-EEV 

Accuracy Root mean squared error 
BDT 95.942% 0.1409 
RF 95.362% 0.1351 

 
PCA-9features File 3-IANG 

Accuracy Root mean squared error 
BDT 95.942% 0.1395 
RF 95.942% 0.1270 

 
PCA-9features File 3-IEV 

Accuracy Root mean squared error 
BDT 95.362% 0.1468 
RF 95.652% 0.1210 

Table 4-30: PCA result sets of Data III. 
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4.4.3 Datasets IV 

Figure 4-8!1('!Figure 4-9 displayed the dataset IV as the same format as above, all the 
result sets were shown in Table 4-31, Table 4-32Table 4-33, Table 4-34, and Table 
4-35. 
 
 

 
Figure 4-8: The two spectrograms (EANG/EEV) of Dataset IV. It shows the dataset taken 

from approximately 20:15 to 20:21. 
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Figure 4-9: The two spectrograms (IANG/IEV) of Dataset IV. It shows the dataset taken 

from approximately 20:15 to 20:21. 
 

4 bins 8 bins File 4-EANG 
Accuracy RMSE Accuracy RMSE 

BDT 78.697% 0.2993 84.331% 0.2636 
RF 80.810% 0.2729 84.331% 0.2408 

 
4 bins 8 bins File 4-EEV 

Accuracy RMSE Accuracy RMSE 
BDT 88.028% 0.2368 91.725% 0.1992 
RF 88.380% 0.2087 91.725% 0.1823 

 
4 bins 8 bins File 4-IANG 

Accuracy RMSE Accuracy RMSE 
BDT 79.754% 0.2949 85.211% 0.2641 
RF 79.930% 0.2626 85.739% 0.2173 

 
4 bins 8 bins File 4-IEV 

Accuracy RMSE Accuracy RMSE 
BDT 89.085% 0.2272 93.310% 0.1803 
RF 88.732% 0.2053 93.134% 0.1670 

Table 4-31: Bin Package result sets of Data IV. 
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DWT-8onTime DWT-16onTime DWT-32onTime File 4-
EANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 90.909% 0.2075 92.586% 0.1886 94.972% 0.1567 
RF 83.601% 0.2406 88.788% 0.2178 91.434% 0.1987 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 4-

EEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 95.187% 0.1506 96.383% 0.1305 96.648% 0.1241 
RF 90.909% 0.2006 92.767% 0.1826 94.227% 0.1739 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 4-

IANG Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 96.078% 0.1391 96.022% 0.1405 96.834% 0.1209 
RF 93.939% 0.1802 93.671% 0.1720 95.531% 0.1621 

 
DWT-8onTime DWT-16onTime DWT-32onTime File 4-

IEV Accuracy RMSE Accuracy RMSE Accuracy RMSE 
BDT 95.187% 0.1544 95.479% 0.1404 96.462% 0.1304 
RF 91.979% 0.1882 94.213% 0.1762 93.296% 0.1839 

Table 4-32: DWT on Time result sets of Data IV. 
 

DWT-32onTime+8onEnergy File 4-EANG 
Accuracy RMSE 

BDT 92.924% 0.1829 
RF 90.130% 0.1952 

 
DWT-32onTime+8onEnergy File 4-EEV 

Accuracy RMSE 
BDT 96.648% 0.1229 
RF 90.875% 0.1955 

 
DWT-32onTime+8onEnergy File 4-IANG 

Accuracy RMSE 
BDT 96.276% 0.1317 
RF 95.531% 0.1668 

 
DWT-32onTime+8onEnergy File 4-IEV 

Accuracy RMSE 
BDT 96.834% 0.1237 
RF 94.600% 0.1800 

Table 4-33: DWT on Time and on Energy result sets of Data IV. 
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Top 35 File 4-EANG 
Accuracy Root mean squared error 

BDT 96.648% 0.1267 
RF 96.462% 0.1245 

 
Top 35 File 4-EEV 

Accuracy Root mean squared error 
BDT 97.765% 0.1024 
RF 97.021% 0.1173 

 
Top 35 File 4-IANG 

Accuracy Root mean squared error 
BDT 96.834% 0.1242 
RF 97.393% 0.1081 

 
Top 35 File 4-IEV 

Accuracy Root mean squared error 
BDT 97.952% 0.0999 
RF 97.021% 0.1117 

Table 4-34: Features Ranking result sets of Data IV. 
 

PCA-9features File 4-EANG 
Accuracy Root mean squared error 

BDT 96.276% 0.1342 
RF 96.648% 0.1160 

 
PCA-9features File 4-EEV 

Accuracy Root mean squared error 
BDT 96.648% 0.1277 
RF 95.531% 0.1306 

 
PCA-9features File 4-IANG 

Accuracy Root mean squared error 
BDT 96.648% 0.1279 
RF 96.462% 0.1266 

 
PCA-9features File 4-IEV 

Accuracy Root mean squared error 
BDT 95.903% 0.1378 
RF 96.089% 0.1235 

Table 4-35: PCA result sets of Data IV. 
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Chapter 5 Conclusions and Discussion 

5.1 Conclusions 
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Figure 5-1: Accuracy results in each phase on dataset I. 

5.2.2 Window Slides 

    We tried to use “window slide” to improve performance.  In Window Slide, we 

improve the classification performance by correcting the prediction work done by the 

model.  We find the predictions on test data and take a window of size K predictions (K 

must be an odd number) from the beginning.  Within this window, If previous  

predictions and following  predictions are all the same, say class a, then we change 

the centered prediction  to class a.  Otherwise, move the window by one prediction 

and repeat the same process till the end.  
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!!!!!!!! !

5.2.3 Data Analysis 

    In order to know the portability of our model, we took four different datasets taken at 

different time spans. All of them were EEV part: Figure 5-2 (File 1), Figure 5-3 (File 

2/Data II), Figure 5-4 (File 3/Data III), and Figure 5-5 (File 4/Data IV) displayed as 

below. We plot the top two features according to the algorithm discussed in 3.1.3 

altogether the four datasets. In Figure 5-7, most of the points were concentrated in a way 

that makes it hard to differentiate.  We took the logarithmic of our datasets and the new 

distribution of our classes was shown in Figure 5-7. We can understand the figure well 

according to Table 5-1: Explanation for Figure 5-7 

Class 0 Black File 1 . 
Class 1 Blue File 2 * 
Class 2 Green File 3 + 
Class 3 Red File 4 ^ 

Table 5-1: Explanation for Figure 5-7 

!

Figure 5-2: One spectrograms of EEV, the dataset taken from approximately 16:44 to 

16:50. 

!
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!

!

Figure 5-3: One spectrograms of EEV, the dataset taken from approximately 22:24 to 

22:31. 

!
!

!

Figure 5-4: One spectrograms of EEV, the dataset taken from approximately 18:56 to 

18:90. 

!
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Figure 5-5: One spectrograms of EEV, the dataset taken from approximately 20:15 to 

20:21. 

 
Figure 5-6: 4 files plotting together with different colors respectively, Data / (10^10) 
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Figure 5-7: 4 files plotting together with different colors respectively, Log (Data / 

(10^10)) 

I. Mixture of Gaussian 

We calculated the mixture of Gaussian for all four datasets.  The results were 

shown in Table 5-2, Table 5-3, Table 5-4, and Table 5-5. 

Components Mixing proportion Mean (X) Mean (Y)  
1 0.19566 1.0793 1.0736 * 1.0e+08 
2 0.128486 3.4093 3.1506 * 1.0e+08 
3 0.223071 7.3234 7.5107 * 1.0e+09 
4 0.11028 7.5314 7.5866 * 1.0e+06 
5 0.018895 2.3786 0.158 * 1.0e+09 
6 0.248296 2.0094 2.021 * 1.0e+08 
7 0.042827 4.0061 5.0114 * 1.0e+08 
8 0.032485 5.7744 4.9677 * 1.0e+08 

Table 5-2: Results of Mixture of Gaussian for File1-EEV. 
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Components Mixing proportion Mean (X) Mean (Y)   
1 0.080984 5.2321 2.7163 * 1.0e+09 
2 0.083659 1.5335 1.4951 * 1.0e+07 
3 0.125265 8.0829 7.6548 * 1.0e+08 
4 0.031501 1.1185 0.9596 * 1.0e+09 
5 0.406477 1.2342 1.2494 * 1.0e+08 
6 0.030361 5.4432 4.939 * 1.0e+08 
7 0.057933 2.8755 6.1286 * 1.0e+09 
8 0.040333 1.0385 1.1461 * 1.0e+09 
9 0.143486 1.5262 1.6452 * 1.0e+09 

Table 5-3: Results of Mixture of Gaussian for File2-EEV. 

Components Mixing proportion Mean (X) Mean (Y)   
1 0.281194 2.641 3.0802 * 1.0e+08 
2 0.101155 1.4965 2.0986 * 1.0e+09 
3 0.394765 6.5673 6.5746 * 1.0e+07 
4 0.162018 5.6487 6.0989 * 1.0e+08 
5 0.060868 3.6045 1.2566 * 1.0e+09 

Table 5-4: Results of Mixture of Gaussian for File3-EEV. 

Components Mixing proportion Mean (X) Mean (Y)   
1 0.093405 1.0831 3.3716 * 1.0e+09 
2 0.078207 4.7677 2.008 * 1.0e+09 
3 0.035256 6.6485 9.3194 * 1.0e+08 
4 0.066716 1.2004 0.6615 * 1.0e+09 
5 0.075635 2.9241 1.2115 * 1.0e+09 
6 0.185994 1.2015 1.2474 * 1.0e+08 
7 0.058208 0.4728 1.5449 * 1.0e+09 
8 0.07723 5.4632 4.9798 * 1.0e+09 
9 0.102708 3.705 5.0415 * 1.0e+09 
10 0.045525 1.7328 0.4274 * 1.0e+09 
11 0.181115 3.3996 3.3235 * 1.0e+08 

Table 5-5: Results of Mixture of Gaussian for File4-EEV. 

 
II. Parzen Windows 

We use the Parzen Windows techniques to check the possibilities of each instance 

in File3_EEV and File4_EEV belong to File1_EEV and File2_EEV.  Since our 

data’s range is huge, we only could get comparatively clear results by setting the 

Parzen window’s size h to a big number.   



 43 

5.2.4 Code 
 
    Our programming code implements the Discrete Wavelet Transform (3.1.2), Principal 

Component Analysis (3.1.4), Window Slides (5.2.2), Mixture of Gaussians, and Parzen 

Window (5.2.3). All of them are available upon request.  
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Chapter 6 Future Work 

6.1 Testing 

    All the experiments presented here demonstrate that our methodology succeeds in 

doing an automated approach to classification.  However, in order to obtain a reliable 

model, we need to test the model on other datasets also. All the techniques we displayed 

in 5.2 definitely will help us understanding the dataset well and lead to good research 

direction.  

    Moreover, the automated tools will be anticipated to work on tens of thousands of 

spectrograms with only a few of training datasets. 

 
6.2 Transfer Learning 

    Due to the nature of the domain data, we plan to use transfer learning to expedite the 

analysis of thousands of spectrograms covering broad regions of Earth’s upper 

atmosphere. Transfer Learning ([25][26][27][28][29][30][31]) will help to exploit 

knowledge gathered from previous experience, to expedite the model generation process. 

In that way, the target task can be different from the source task.   

    We plan to selectively add examples from previous tasks that both increase 

classification performance, and correspond to cases where two or more data models 

disagree with the class label. The two-mode approach acts as a strong filter in selecting 

only informative instances during model generation ([32][33][34]). 

6.3 Mixture of Experts 

    Also, we are going to use Mixture of Experts to attack the problems caused from 

having thousands of spectrograms with different inputs. In the mixture of expert model, 
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different learners cover the different input regions, and there is a “soft” switching 

between learners ([35][36]) that enhances the “good” experts and diminish the “bad” ones 

to work on different input region.    

    Mixture learning procedure consists of two tasks. The first one is to learn the 

parameters of individual expert networks; the second is to learn the parameters of the 

gating network, which is used to decide where to make a split. Based on the probability 

we partition the space, different experts will be assigned to different partitions to improve 

predictions. 
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