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ABSTRACT

We introduce an ensemble learning scheme and a new metric for community detection in complex

networks. The scheme uses a Machine Learning algorithmic paradigm we call Extremal Ensemble

Learning. It uses iterative extremal updating of an ensemble of network partitions, which can be

found by a conventional base algorithm, to find a node partition that maximizes a metric. At each

iteration, core groups of nodes that are in the same community in every ensemble partition are

identified and used to form a reduced network. Partitions of the reduced network are then found and

used to update the ensemble. The smaller size of the reduced network makes the scheme efficient.

We use the scheme to analyze the community structure in a set of commonly studied benchmark

networks and find that it outperforms all other known methods for finding the partition with

maximum modularity. The new metric that we call generalized modularity density Qg eliminates

the well-known resolution limit problem at any desired resolution and is easily extendable to study

weighted and hierarchical networks. We also propose a benchmark test to quantify the resolution

limit problem, examine various modularity-like metrics to show that the new metric Qg performs

best, and show that Qg can identify modular structure in real-world and artificial networks that is

otherwise hidden.
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1 Introduction

1.1 Fundamentals of Complex Networks

Many systems can be represented as networks or graphs [1]. A network consists of a set of nodes

and links connecting them in pairs. Nodes stand for entities in the system of interest, while links

reflect the relationship between them. In complex networks, we focus on those networks with non-

trivial topological features. Networks that are very uniform, like lattices or random networks, are

not our focus. Those networks with interesting non-trivial features are mainly real-world networks

such as computer networks, social networks, biological networks, and so on [2, 3].

Depending on different application scenarios, there can be different properties of links. For

instance, links can be weighted or unweighted, directed or undirected. Self-loops and multi-links

can be allowed or prohibited. Nodes are usually simple but can be assigned weights in case of need.

A famous example of a network is the Internet. A partial map of it is shown in Figure 1. The

nodes are different IP addresses, and the links indicate the delay between those two IP addresses.

This network is weighted and undirected. Another example that is popularly studied is a social

network first constructed by Wayne W. Zachary in the 1970s [4]. A visualization of the Karate

Club is shown in Figure 2. The nodes represent different members of the club. The link between

two nodes represents their friendship, as discussed by Zachary. This network is unweighted and

undirected.

A directed network can be like a hyperlink network, which describes the hyperlinks between

many different web pages, or a citation network, which shows how scholars cite each other. Networks

can also be static or dynamic. A dynamic network changes its topological structure by adding

or removing nodes or links as it evolves. Researchers can use dynamic networks to do social

simulations [5]. We can also consider the dynamics on networks, where something is evolving on

the fixed network structure, such as transportation among cities. Cities are nodes, and highways

are links. Cars are moving around the network and may form some patterns, depending on the

network structure. A famous result is the SIR model that is used for simulating the spread of
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global pandemics within an infectious population [6, 7]. In this thesis, we only consider the static

networks that keep their number of nodes and links and the connections all the time. Some more

examples of networks used later in this thesis can be found in Table 1.

Besides the number of nodes and the number of links, we also define some more properties

of networks to study them conveniently. For example, a node’s degree is the number of nodes

connected to it. A connected component (or simply component) of a network is a group of nodes

such that each pair can be connected by a path of links, and no more nodes in the rest of the

network can be added into the group. A clique is a group of nodes that all pairs are connected.

Link density (or simply density) is defined as the ratio of the number of links to the maximum

possible number of links for unweighted networks. Assuming a network has n nodes, m links, and

no self-loop or multi-loop, the definition is

Density =
m

n(n− 1)/2
. (1)

The diameter of a connected network is defined as the longest distance of all shortest paths in the

network. The distance on an unweighted network can be measured by the number of links on the

path between two nodes.

We can also define many connectivity measures, such as degree distribution, clustering coeffi-

cient, and assortativity. The degree distribution is a histogram of the degree of all nodes. Clustering

coefficient C is a measure of how neighbors of a node are connected. More precisely, the definition

of a node is

C =
e

k(k − 1)/2
, (2)

where e is the number of links between its neighbors and k is the number of neighbors, which is

also the degree of the node. The clustering coefficient of a network is defined as the average of the

clustering coefficients of all the nodes. Assortativity is a preference for the nodes to connect with

other nodes that are similar in some way. For example, in social networks, nodes tend to connect

with other nodes with a similar degree. On the contrary, high degree nodes tend to connect with
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Figure 1: Partial map of the Internet based on the January 15, 2005 data. Each line is
drawn between two nodes, representing two IP addresses. The length of a line indicates the delay
between those two nodes. Figure created by the Opte Project (www.opte.org).
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Figure 2: Visualization of Karate Club. Each node is a member of the club. Each link is the
friendship between two members. Groups of nodes in the same color here represent communities
found by some community detection algorithm.
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Table 1: Benchmark networks. A list of empirical and synthetic networks.
Network Node description Link description

Adjnoun [9] the most commonly occurring
adjectives and nouns in the
novel ”David Copperfield” by
Charles Dickens

pair of words that occur in ad-
jacent position in the text of
the book

Jazz [10] musician collaboration

Metabolic [11, 12, 13] metabolites (e.g., proteins) interaction between them
(in C. elegans)

Email [14] members email interchanges

Polblog [15] weblogs on US politics hyperlink

Netscience [9] scientists working on coauthorship
network theory and experi-
ment

Power [16] either a generator, power supply line
a transformator or a substa-
tion

PGPgc [17] users of the interaction
Pretty Good Privacy (PGP)
algorithm

Astro-ph [18] scientists coauthorship in
preprints on the Astrophysics
E-Print Archive between
Jan 1, 1995 and December 31,
1999.

Memplus [19] memory circuit elements connections

As-22july06 [20] autonomous systems data connection

Cond-mat-2005 [18] scientists coauthorship in
preprints on the Condensed
Matter E-Print Archive be-
tween
Jan 1, 1995 and March 31,
2005.

Smallworld [16] synthetic synthetic

CAIDARouterLevel [21] routers links
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low degree nodes in networks like the Internet [8]. This is called disassortativity.

Centrality is another important property that measures the importance of nodes. It helps us to

identify the most important nodes. Based on different application scenarios, there are many differ-

ent importance measurements, which are degree centrality, closeness centrality [22], betweenness

centrality [23], eigenvector centrality [24], Katz centrality [25], PageRank centrality [26], percolation

centrality [27], and cross-clique centrality [28].

Two important and well-known classes of complex networks are scale-free networks [29] and

small-world networks [30, 31]. A network is scale-free if its degree distribution follows a power

law. The power law implies that there is no special scale of degree distribution. A network is

considered a small-world network if the small-world phenomenon presents itself. The idea is that

the common distance between two nodes doesn’t grow much as the number of nodes increases. A

more mathematical definition is that the typical distance L between two randomly selected nodes

grows proportionally to the logarithm of the number of nodes N in the network as follows.

L ∝ logN (3)

Researchers have been using networks to explore the statistical properties of different systems for

many years. Some properties such as small-world effect, high clustering coefficient, assortativity or

disassortativity among nodes, and heavy-tailed degree distributions have been found to be common

in many real-world networks [32]. Here we focus on another common finding, the property of

community structure. Each community is a group of nodes that are tightly connected to each

other, and the connection between communities is relatively loose [32]. Most real-world examples

of complex networks are far from being random and have a community or modular structure within

them [33, 34, 35]. The community structure has been found to control much of their dynamical or

functional behavior [2, 36, 37, 38].
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1.2 Community Detection

Assigning each node to some community is considered as finding a partition of the network. There

are two kinds of partitioning. One is that each node only belongs to one community. This is to

find the non-overlapping community structure. The other one is the overlapping community, where

each node can belong to multiple communities. Overlapping community structure is found to be a

significant feature of many real-world networks [39, 40, 41]. But it’s more complicated to detect.

And, we can use an ensemble of non-overlapping partitions to mimic the overlapping partition. In

this thesis, we only focus on the non-overlapping community structure.

There are many approaches to detect the community structure. For example, the oldest algo-

rithm is the minimum cut method [42], where the network is divided into a customized number of

communities by minimizing the number of links between communities. Usually, the communities

are of the same size approximately.

Another popular method is hierarchical clustering [43]. Hierarchical clustering is a classic clus-

tering method in machine learning and data mining where each data point is described by a set

of features so that the distance between two nodes is easier to define. On the contrary, clustering

in networks is harder because the networks are usually sparse; thus, the distances of many pairs

are missing. To do hierarchical clustering in complex networks, we first need to define distance or

similarity for each pair of nodes or communities. Then, we iteratively join the nodes or communities

by picking the nearest pair until there is only one community left. During this process, we obtain

a hierarchical dendrogram of an ensemble of partitions.

The third method for community detection is the Girvan–Newman algorithm [32]. This method

first identifies links between communities and removes them, leaving the communities detected. The

identification step makes use of the betweenness centrality mentioned above.

Spectral clustering [44] is to detect the community structure by finding the eigenvalues and

eigenvectors of the graph laplacian [45, 46]. Considering the matrix formed by a set of eigenvectors

with the lowest eigenvalues as the new set of features for all nodes, we can then use methods like

K-means to detect the community structure. The number of eigenvectors used can be a choice of
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the user.

We can also detect communities using a stochastic block model of networks [47, 48]. The model

generates networks with a given partition. Generally, links are generated with higher probability

within communities and lower probability between communities. The community structure is de-

termined by finding the partition with the biggest probability of generating the given network. This

method is popular mainly because it has a simple mathematical definition and can be analyzed

and implemented quickly. But for many real-world networks, the model doesn’t reflect the actual

structure; thus, the result is not helpful.

The last method we want to introduce here is the Markov Clustering (MCL) algorithm [49].

It identifies the community structure by a steady-state distribution of simulated random flows in

the network. MCL is scalable and fast. However, it requires specification of external parameters

(inflation, expansion). A proper choice of these parameters is important for the algorithm to con-

verge. There is no definite way to select these parameters to ensure convergence. Other limitations

of MCL include unknown convergence time and its48unsuitability for application to networks with

large diameters [49].

The method that we focus on in this thesis is to detect the community structure by maximizing

a metric. The metric is designed or defined to quantify the extent to which a partition is modular.

Given a network G and a partition P , the metric can be considered as a function of (G,P ). For

example, Modularity Q is such a metric [32]. For an unweighted undirected network, Q can be

expressed as

Q =
1

2m

∑
c

(
2mc −

K2
c

2m

)
, (4)

where m is the number of total links of the network, mc is the number of links within a community

c, Kc is the sum of degrees of all nodes in community c. Q measures the difference between the

fraction of links within communities and the expected fraction if the links were randomly placed.

For a given metric, this becomes just an optimization problem. Based on the well-known “No Free

Lunch theorem” for optimization problems [50], we know that no method has the advantage over
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any other across all possible community detection tasks theoretically [51, 52]. But in practice,

for some kinds of community detection tasks, there still exists some method that is better than

any other because the method successfully captures the underlying structure or organization of

interest. By comparing the fraction of links within communities and the expected fraction if the

links were randomly placed, Q successfully captures the community structure in many real-world

networks [32].

For the convenience of following discussion, we’ll elaborate the ideas by using Q, but it can be

replaced by any other metric. By finding a partition that corresponds to the maximum Qmax, we

consider the partition as the community structure of the network. Finding this partition, however,

is an NP-hard problem [53]. As we can estimate, supposing a network has N nodes and at most

N communities, the number of possible partitions will be of the order of NN . To find the true

maximal will take too long to make any practical sense. Thus, it is of considerable interest and

importance to develop an algorithm that robustly finds an accurate solution to this optimization

problem that completes in polynomial time. Besides the extremely large search space, there is

another difficulty of this optimization problem. A searching algorithm will likely be trapped in

a local maximal because the space formed by all possible partitions is very bumpy, given some

neighboring definition [54]. The accuracy of a solution can be measured by how close the value Q

of the partition found is to the value of Qmax. Since we may never know the true maximum, any

solution provides a lower bound estimate of the value of Qmax. Therefore, the higher a solution’s

value of Q is, the more accurate it and its estimate of Qmax is.

Many optimization algorithms can be used for maximizing the metric. For example, simulated

annealing is used in [55]. But the time it takes to converge can be very long if we want a decent

result. A number of polynomial time complexity algorithms for finding a network partition that

enables Qmax to be estimated have been proposed. Some are quite fast, such as random greedy

agglomeration [56, 57, 58] and the Louvain method [59]. These algorithms, however, don’t gener-

ally find very accurate solutions. Far more accurate solutions can generally be found with spectral

clustering algorithms [9, 60] that iteratively bisect the set of nodes. The most accurate algorithm of
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this type [61] combines bi-sectioning based on the eigenvector of the largest eigenvalue of the mod-

ularity matrix [9], tuning with generalized Kernighan–Lin refinements [62, 63] and agglomeration.

Until recently, this was the most accurate algorithm known. Virtually all algorithms for maximiz-

ing modularity are partially stochastic, as they make random choices at intermediate steps among

what are seemingly equivalent options at that point. These choices can affect the final partition,

and, thus, different runs can produce different partitions. Because of this, to find the partition that

provides the best estimate of the maximum modularity, algorithms are often run multiple times to

produce an ensemble of partitions, and the best of those partitions is chosen.

It has, however, recently been demonstrated that partitions with even more accurate estimates

of Qmax can be obtained with a scheme that uses information contained within an ensemble of

partitions generated with conventional algorithms. This idea is known as ensemble learning. Its

use distinguishes a new class of modularity maximizing algorithms [64, 65]. An ensemble learning

scheme known as Iterative Core Group Graph Clustering (CGGCi) [66] was the most accurate

algorithm for finding the network partition that maximizes modularity in the 10th DIMACS Im-

plementation Challenge [67]. The CGGCi scheme starts with an ensemble of partitions obtained

by using a conventional “base algorithm” and identifies “core groups” of nodes that are grouped

together in the same community in every partition in the ensemble. It then transforms the origi-

nal network into a weighted reduced network by collapsing each of these core groups into a single

“reduced” node and summing all link weights between original nodes to assign weights to the links

between the reduced nodes. A base algorithm is then used to find an ensemble of partitions of

the reduced network, and that ensemble is used to find a new reduced network. This procedure

is iterated until no further improvement in Q is found. The best partition of the final reduced

network is then mapped back onto the original network to identify the communities.

In this thesis, we introduce a different ensemble learning scheme for network community detec-

tion. It uses an algorithmic paradigm we call Extremal Ensemble Learning (EEL). Our scheme,

which we refer to as Reduced Network Extremal Ensemble Learning (RenEEL) [68], starts with an

ensemble of partitions obtained using a conventional base algorithm and then iteratively updates
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the partitions in the ensemble until a consensus about which partition is best is reached within the

ensemble. To find the partitions used to update the ensemble efficiently, core groups of nodes are

identified and used to form a reduced network that is partitioned using a base algorithm. RenEEL

then uses a partition of the reduced network to update the ensemble through extremal updating.

We will show that an algorithm using the RenEEL scheme improves the quality of community

structure discovered, especially for larger networks for which estimating the partition with Qmax

becomes challenging. Testing our scheme on a wide range of real-world and synthetic benchmark

networks, we show that it outperforms all other existing methods, consistently finding partitions

with the highest values of Q ever discovered.

1.3 Community Detection Metric

Let us move back to think of the choice of the metric. A metric conveys a specific understanding

of the modular structure, which is essential to community detection. Modularity, Q, though widely

used, has a fundamental problem in detecting community structure. Namely, communities smaller

than a certain size in a large network may not be detected. This Resolution Limit (RL) problem [69,

70] reduces the domain of applicability of Q and is often a significant issue when analyzing empirical

networks.

In recent years, alternate metrics have been proposed to mitigate the RL problem [71, 72, 73,

74, 75, 76, 77, 78, 79]. Some of these metrics [75, 76, 77, 78, 79] are known as modularity density

metrics. They have weights that are functions of the internal link density of communities in addition

to the definition of modularity, Q. This thesis proposes a new metric of this form, which we call

generalized modularity density Qg [80]. For an unweighted undirected network, we have

Qg =
1

2m

∑
c

(2mc −
K2
c

2m
)ρχc , (5)

where m is the number of total links of the network, mc is the number of links within a community

c, Kc is the sum of degrees of all nodes in community c, ρc is the link density of community c, the
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exponent χ is a control parameter. Here we assume that χ is a non-negative real number. Qg is an

extension of Q, as it reduces to Q when χ = 0. The main reasons for introducing this new metric

are as follows. First, it has an adjustable parameter χ that controls the resolution density of the

communities that are detected. Second, Qg can be extended to detect communities in weighted

networks in a way that has a clear interpretation and is independent of the scale of the link weights.

The RL problem can be seen in the simple example of cliques arranged in a ring connected to

one another in series by single links [69]. The expectation, in this case, is that the cliques should be

detected as separate communities. Unfortunately, with some metrics, pairs of cliques are merged

into the same community. Of course, if all possible cross-links between two cliques are present,

then it is sensible to merge them into one community as they simply form a clique of larger size.

However, when cliques are connected by an intermediate number of links or when the network

is weighted, it is unclear whether the cliques should be merged or separated [81]. Intuitively, it

makes sense to merge two cliques at a sufficiently high density of cross-links. Generally, methods of

community detection that use different metrics have a different critical value for this density. The

answer may also depend on the specific application being considered. Thus, it is useful to have some

flexibility in allowing the communities to be separated or merged. Qg achieves this goal by varying

a parameter χ. We will show that, for a properly chosen value of χ, the partition that maximizes Qg

separates two cliques at any desired strength of inter-connectivity. This tunability of our metric is

extremely useful for analyzing networks that exhibit hierarchical community structure [33], which

is found in many real-world networks. A common way to investigate these hierarchical structures is

to perform community detection within detected communities iteratively [82]. Using our approach,

one can simply vary χ.

Finally, we compare the performance of our metric against other modularity density metrics

by using them to find the structure in a more complex benchmark network than a simple ring of

cliques. Our analysis indicates that Qg performs better than all other metrics considered. We then

use Qg to find structure in a variety of empirical and artificial networks to demonstrate its ability

to detect hidden community structure. We find that it eliminates the resolution limit problem
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that we consider and that it is applicable to a wider range of problems than other metrics. Armed

with this new metric Qg, together with the RenEEL algorithm, we can now detect the community

structure of accuracy and flexibility.

1.4 Gene Networks

Despite the recent surge in the abundance of genome-wide biological data and computational ca-

pacity, functional annotation of genes still remains challenging [83, 84, 85]. Gene metabolic and

regulatory networks contain information about interactions among particular genes. Gene com-

munities (also referred to as ”clusters” or, when derived from very large diverse data, “regulons”)

are groups of co-expressed genes. A community of genes that displays similar expression patterns

across a very wide range of experimental condition is likely to contain co-regulated genes and

genes participating in the same biological process; thus, identifying gene communities is extremely

important to understand their functions [86, 87, 88, 89, 90, 91]. Network-based analyses of gene

expression have led to hypotheses on the roles of genes of completely unknown function, which were

later experimentally verified [92, 93].

The goal of working on gene networks is to show the advantage of our newly proposed clustering

method and metric (RenEEL and Qg) in detecting gene communities that represent specific biolog-

ical functions. As a case study, we apply network-based analysis to infer functional gene modules

(communities) in the model species Saccharomyces cerevisiae (yeast). We use RNA abundance

profiles generated from raw RNA-Seq data representing the expression of 6692 annotated genes

across 691 runs from 44 studies, including samples representing a wide range of developmental

conditions, strains, growth media, and times [94] to construct gene co-expression networks using

Pearson’s pairwise correlations and Context Likelihood of Relatedness (CLR) approaches. Then,

we use four community detection methods to find communities of interest within the Pearson’s

and CLR gene networks. Specifically, these are (i) Markov Clustering (MCL), (ii) Modularity,

(iii) Excess Modularity Density, and (iv) Generalized Modularity Density. The clusters found by

each of these methods are compared to the S. cerevisiae genes and Gene Ontology (GO) leaf term

13



(GO terms having no children) associations [95]. The statistical overrepresentation of genes in the

clusters is determined using the hypergeometric test. By comparing gene communities identified

by each method with the GO term assigned to each gene, we find that Qg communities perform

the best.
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2 Methods

2.1 Reduced Network Extremal Ensemble Learning

2.1.1 Community detection via modularity maximization

We will use Modularity Q as the metric to elaborate the use of Reduced network Extremal Ensemble

Learning (RenEEL). The first term in Equation 4 is the fraction of links inside communities, and

the second term is the expected fraction if all links of the network were randomly placed. For a

weighted network, mc, Kc and m are sums of link weights instead of numbers of links. Modularity

measures the deviation of the structure of a network partition from that expected in a random

null model. The community structure of a network corresponds to the partition P that maximizes

Q. The number of communities in P is free to vary. The challenge of detecting the community

structure of a network, therefore, is to find the partition with the maximum modularity Qmax.

2.1.2 Reduced networks

To find a reduced network G′ starting from a network G and an ensemble of partitions of it P,

we first identify the core groups in G. A core group is a set of nodes that are found together in

the same community in every partition in the ensemble. Any node that is not found in the same

community with some other node in every partition in P is itself a core group. G′ is then formed

by collapsing core groups of nodes into single nodes and combining their links to other nodes by

summing their weights. An example of this is shown in Figure 3. Each circle containing multiple

nodes of G that are colored the same in Figure 3(a) denotes a core group. Two nodes that do not

belong to any circle are shown in black and dark green. The core groups are collapsed to single

nodes of the same color in the reduced network G′ shown in Figure 3(b). The link weights in the

reduced network are the sum of link weights between core groups in the original network. The

weighted self-loops in G′ result from the total internal weights of the core groups in G.
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(a) (b)

Figure 3: Construction of a reduced network. (a) An example network showing seven core
groups of nodes. The nodes of the same color belong to the same core group. The nodes inside
each of the five circles are collapsed to single nodes in the reduced network, while the two isolated
nodes remain isolated. (b) The reduced network after collapsing the core groups into single nodes.
The nodes in the reduced network are colored according to the core group nodes in the original
network and thickness of each link is proportional to its weight.

2.1.3 RenEEL scheme

The RenEEL scheme is summarized in the flowchart1 shown in Figure 4 and Figure 5. It is also

described as follows. First, an ensemble P of at most kmax partitions P of the network G is

obtained from multiple runs of a base algorithm. The base algorithm can be, for example, any of

the conventional ones that have been developed to find the partition with Qmax. Alternatively, a

set of base algorithms can be used to find P. The partitions in P are then ordered according to

their modularity values, from the one with the largest value Pbest to the one with the smallest value

Pworst. Next, the core groups of nodes in the ensemble P are identified and used to construct the

reduced network G′. An ensemble P ′ consisting of k′ partitions P ′ of G′ is then obtained using a

base algorithm. The base algorithm used for this step can either be the same as or different from

the base algorithm used to find P. The steps in which a base algorithm is used to find the ensembles

P and P ′ are shown in red in Figure 4. The partition in P ′ with the largest modularity value P ′best

1The flowcharts adhere to the ISO 5807:1985 standard (Information processing – Documentation symbols and
conventions for data, program and system flowcharts, program network charts and system resources charts).
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Figure 4: The RenEEL scheme. The steps of an efficient ensemble learning scheme to find the
network partition that maximizes modularity Q are shown in this flow chart. In the two steps
shown in red a base algorithm is used to obtain an ensemble of partitions. The step shown in
purple collapses the core groups to find the reduced network. The ensemble P gets updated with
extremal criteria in the step shown in blue and is described in Figure 5.
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Figure 5: The procedure of the extremal updating of ensemble P. The updating steps
guarantee algorithmic termination in a finite network.
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is then identified and used to perform an extremal update of ensemble P. This step is shown in

blue in Figure 4 and detailed in Figure 5. If Q(P ′best) > Q(Pworst), then P ′best is expanded into a

partition of G and either used in place of Pworst in P (if k = kmax) or added to the ensemble P (if

k < kmax) as shown in Figure 5. In doing so P is enriched with a better quality partition. However,

it is possible that at any iteration either P ′best is already contained in P, or Q(P ′best) < Q(Pworst).

In both cases, in order to move toward consensus within P, its current size k is reduced by 1 by

deleting Pworst from it. This procedure is repeated until there is only one partition left in the

ensemble P. This consensus partition is the optimal partition that defines the communities of the

network.

2.1.4 Computational complexity, base algorithms and practical implementation

The most computationally complex and time consuming steps of the RenEEL scheme are those

that use a base algorithm to find an ensemble of partitions. These steps are colored in red in the

flowchart in Figure 4. Assuming that the size of the ensembles P and P ′ are fixed, the computational

complexity of executing these steps is simply a fixed multiple of the computational complexity of

the base algorithm used. Worst-case scaling of the computational complexity of base algorithms is

between O(n2) and O(n3), where n is the number of nodes in the network. All other steps of the

scheme have less complexity; the steps of network reduction, colored purple in Figure 4, and network

expansion both have a worst case computational complexity that is O(n2), and the rest all have a

computational complexity that is O(1). Thus, since each iteration of the scheme has only one step

that uses the base algorithm a fixed number of times, each iteration has a computational complexity

that scales the same as that of the base algorithm used. As the scheme progresses, however, the size

of the reduced network monotonically decreases, significantly increasing the speed of later iterations.

The number of iterations required for scheme to complete appears to grow approximately linearly

with kmax. Thus, the overall complexity of a RenEEL algorithm is expected to scale as the base

algorithm times k′ times kmax.
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The base algorithm used to obtain the results presented in this thesis is a randomized greedy ag-

glomerative hierarchical clustering algorithm [58]. It is commonly used to find the community struc-

ture in complex networks [66] and has an expected time complexity that scales as O(m lnn) [58],

where m is the number of links in the network. There can be, at most, O(n2) links. The overall

worst case complexity of the algorithm used here scales approximately as O(kmaxk
′n2 lnn). The

particular choice of parameters kmax and k′ is important for the quality of community structure as

well as the computational time. In general, higher k′ and kmax yield higher Qmax.

2.1.5 Co-clustering analysis

In order to visualize the evolution of the clustering results in the RenEEL scheme, co-clustering

matrices at various stages of the scheme are shown in Figure 6. In Figure 7 the results of the core

group co-clustering at the different stages are combined to show their evolution. A co-clustering

matrix S is a matrix whose elements sij are defined as the fraction of times node i and node j

are in the same community in an ensemble of partitions P. The order of the nodes in Figs. 6

and 7 was determined using simulated annealing to optimize the block-diagonal structure of the

matrices. Starting from a random ordering of the nodes, their order was rearranged to minimize a

cost function, or “Hamiltonian”, that is a function of minimum distance of matrix elements (i, j)

from the diagonal dij assuming periodic boundary conditions on the order:

H =
∑
i<j

sij d
α
ij , (6)

where α is an arbitrary factor that controls the non-linear dependence of H on dij . The results in

Figs. 6 and 7 were obtained using α = 3. Simulated annealing seeks to find the order of nodes that

minimizes H. For the Monte Carlo updates in our simulated annealing, Metropolis rates [96] with

Boltzmann factor e−(∆H)/T were used. Starting from a relative high temperature where the order

of the nodes is random, the temperature was systematically lowered each Monte Carlo step until

the node order stabilized.
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(a)

(b)

(c)

Figure 6: Ordered co-clustering matrix with core groups. Co-clustering matrix after the
nodes have been reordered by simulated annealing. (a) after the first iteration (b) at the intermedi-
ate stage (c) at completion. The intensity of white in each pixel is proportional to the co-clustering
frequency of the corresponding pair of nodes, except when the pair of nodes are always grouped
together and, thus, belong to the same core group. In that case the pixel is colored blue in (a), red
in (b), and yellow in (c).
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Figure 7: Growth of core groups. Colors blue, red, and yellow represent the core groups after
the first iteration, at an intermediate stage, and at the end when the core groups have reached a
stable state, respectively. The core groups can only grow. The process is agglomerative.
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To get the three co-clustering matrices shown in Figure 6, which respectively show results at

the initial, intermediate, and final stages of the RenEEL scheme, the following procedure was used

in the simulated annealing Monte Carlo. First, nodes were reordered by considering swaps of

random pairs of nodes so as to minimize H in the final stage co-clustering matrix. Then, swaps of

pairs of final stage core groups and swaps of pairs of nodes within the final stage core groups were

considered, to minimize H in the intermediate stage co-clustering matrix. Finally, swaps of pairs

of final stage core groups, swaps of pairs of intermediate stage core groups within finial stage core

groups, and swaps of pairs of nodes within the intermediate stage core groups were considered to

minimize H in the initial stage co-clustering matrix. The order of nodes that resulted is used in

all three co-clustering matrices in Figure 6 and in Figure 7.

2.1.6 Benchmark networks used for comparison

To test the effectiveness of our methods of community detection we studied a set of networks that

were used in the 10th DIMACS challenge [67]. The networks we studied are listed and described

in Table 1. These networks have been complied from various sources and cover a wide range of

sizes, functions and other characteristics. Hence they are often used as benchmarks for testing

community detection methods. The network data for Email, Jazz, PGPgc, Metabolic can be

downloaded from [97], Adjnoun, Polblog, Netscience, Power, Astro-ph, As-22july06, Cond-mat-

2005 can be downloaded from [20], Memplus can be downlaoded from [98], and Smallworld can be

downloaded from [99].

2.2 Generalized Modularity Density

2.2.1 Metric properties

We define the Generalized Modularity Density of a node partition of unweighted network as

Qg =
1

2m

∑
c

(2mc −
K2
c

2m
)ρχc (7)
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where m is the number of total links of the network, mc is the number of links within a community

c, Kc is the sum of degrees of all nodes in community c, ρc is the link density of community c, the

exponent χ is a control parameter. Here we assume that χ is a non-negative real number. The link

density of a community is the ratio of the number of links that exist in c to the number of possible

links that can exist

ρc =
2mc

nc(nc − 1)
, (8)

where nc is the number of nodes in c. Qg is an extension of modularity, i.e. at χ = 0, Qg = Q.

The metric Qg, like the Modularity metric Q (Equation 4), can be easily extended to weighted

networks. For Q this is done by simply replacing the number of links with the sum of link weights

in m, mc and Kc [100, 101]. Extending the definition of modularity density metrics to weighted

networks is complicated by the fact that they depend on link density, and link density can be

problematic to use with weighted networks. One way to deal with these problems is to simply

ignore the link weights and calculate the link density as if the network was unweighted [75, 78].

Unfortunately, this loses the information contained in the link weights. The correct way is to use

a normalized definition of link density, where the sum of the weight of all internal links divided

by the maximum value that sum would have if the community were fully connected with links of

weight equal to the maximum weight of any link in the network,

ρc =
2mc

nc(nc − 1)wmax
(9)

where mc is the sum of the weights within community c, nc is the number of nodes in c, and

wmax is the maximum weight of any link in the network. This definition of ρc is consistent with

the definition for unweighted networks, but it can be problematic because it involves the global

variable wmax. The community structure found using some metrics, such as those proposed in

Refs. [75, 77, 79], can be very sensitive to the value of wmax. This makes their use potentially

troublesome, especially in empirical studies where the value of wmax can be difficult to accurately

measure. Additionally, if there is a wide distribution of link weights and wmax → ∞, then ρc → 0
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for all communities and the algorithms for finding the partition that maximizes the modularity

density metric become numerically unstable.

Generalized Modularity Density, unlike other modularity density metrics, does not have prob-

lems with wmax. Both 2mc and K2
c

2m in Equation 7 are weighted by the same function ρχc =

( 2mc
nc(nc−1)wmax

)χ, where wmax can be factored out and simply modifies the value of Qg for every

possible partition by the same constant factor. It is, thus, irrelevant for determining the partition

that maximizes Qg. So, instead of the absolute link density, Equation 9, a relative link density,

given by Equation 8 with mc being the sum of the weight of links in c, can be used in the metric Qg

without affecting results. The community partitions found with Generalized Modularity Density

are also independent of the scale of the link weights. As it is with Modularity, multiplying all link

weights by a common factor does not affect the results obtained with Qg. This important property

is needed for preserving the information in the link weights.

2.2.2 Resolution Density

The Resolution limit (RL) problem can be viewed as a problem with a metric, when using it yields a

partition that merges two “well separated” communities. A resolution-limit-free metric is expected

to resolve these communities. Conversely, a metric should also avoid splitting two groups of nodes

that are “well connected” to each other. The RL problem is clear at these two extremes. However,

more generally, the notion of well separated/connected communities is not well defined. It is unclear

whether two partially connected communities should be merged or not.

Consider the benchmark network shown in Figure 8. This network consists of three parts: two

cliques and an external arbitrary component to which the cliques are weakly connected. As the

cliques are fully connected, they have no internal community structure. Assume clique 1 has n1

nodes, clique 2 has n2 nodes, and both n1 and n2 ≥ 3. Without loss of generality, we assume

n2 ≥ n1. Let m12 be the sum of weights of links between the two cliques, and let m1a and m2a be

the sum of the weights of links that connect each clique with the arbitrary component. na and ma

are number of nodes and the sum of weights of links within the arbitrary component, respectively.
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m1a m2a
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clique 1
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arbitrary component

Figure 8: Benchmark network for studying the resolution limit problem. The network
consists of two cliques of sizes n1 and n2 and an arbitrary component with na nodes and ma links.
The two cliques share m1a and m2a links with the arbitrary component, respectively, and have m12

links between. The links of the network can be weighted, in which case, ma, m1a, m2a and m12 are
the sums of link weights.

Also, assume that m1a � n2
1wmax and m2a � n2

2wmax, so that the cliques are only weakly connected

to the arbitrary component. The RL question concerning this network is whether or not the two

cliques should be merged or split, and whether or not using a given metric will meet this expectation.

This choice of network gives greater flexibility to explore the RL problem than a simple ring of

cliques, since the external component can have an arbitrary structure and the strength of inter-

connectivity between the two cliques can be varied. Generally, there is a threshold, or critical,

value of m12 below which the cliques are separated and above which they are merged. We impose

an arbitrary expected critical value mexp such that the cliques should be merged if m12 ≥ mexp

and separated if m12 < mexp. Instead of using the values of m12 and mexp, it is convenient to use

normalized inter-clique link density

d =
m12

n1n2wmax
(10)

and normalized expected critical resolution link density

δexp =
mexp

n1n2wmax
. (11)
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For unweighted networks, wmax = 1.

Given a metric, we can examine the RL question in the benchmark network. For a given set of

network parameters, the two cliques are either merged or split. Accordingly, the parameter space

can be divided into Merged (M) and Split (S) phases. The value of the link density at the boundary

of the two phases is δ. At the same time, there is an expected result, corresponding to a specific

understanding of the problem, given by δexp. The metric can then be evaluated by comparing the

results obtained by using it with the expected results. Specifically, we define a resolution-limit-free

metric as one for which δ ≥ δexp for all parameters of the benchmark network. Then, the metric is

resolution-limit-free with respect to the expected resolution density.

3 Results

3.1 Reduced Network Extremal Ensemble Learning

3.1.1 Evolution of core groups

The essence of how the RenEEL scheme works and why it is efficient can be seen by the evolution

of the co-clustering of the nodes across the ensemble P. Figure 6 shows the co-clustering results

during a typical realization of the scheme on the Email network [14] (see Table 1) at the initial,

intermediate and final stages. In the three sub-figures, the intensity with which a pixel (i, j) is

colored white corresponds to the frequency that nodes i and j are in the same community in the

member partitions of P. The pixels colored blue, red and yellow indicate that the nodes are in the

same community in all member partitions. The nodes in the blue, red and yellow blocks on the

diagonal are the core groups that are used to form that reduced network. Nodes are listed in the

same order in each of the three sub-figures. Figure 7 shows the evolution of just the core groups in

the same realization.

The Email network has n = 1133 nodes. Initially, as shown in Figure 6(a), there are 446

core groups, most of which contain only one or two nodes. After 100 iterations of the scheme, as

shown in Figure 6(b), the number of core groups is reduced to 192. Finally, in the stable state,
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after about 300 iterations of the scheme, only 10 core groups remain, as shown in Figure 6(c).

This reduction, from the original network of 1133 nodes to a reduced network of 10 nodes, is a

tremendous simplification and greatly improves the overall speed of network clustering.

Within a network G it is generally “easy” to determine that certain groups of nodes should be

clustered together. All partitions group them together. These are the core groups of nodes. The

hard work in finding the optimal partition is to determine whether nodes that are grouped together

in only some of the partitions should indeed be in the same community, that is, to determine

whether or not core groups should combine. This is precisely what RenEEL focuses on. The

formation and evolution of core groups in RenEEL is an agglomerative process [102]. Once a core

group is formed, RenEEL never subsequently divides it. As the scheme progresses, core groups

grow and merge with each other and the number of core groups monotonically decreases.

3.1.2 Evolution of the ensemble P

A defining characteristic of RenEEL is that the ensemble of partitions P evolves as the scheme

progresses. The ensemble “learns” what the partition with Qmax is by using extremal updating to

incorporate new partitions, replace existing ones with higher quality ones, or remove low quality

partitions. The new partitions are partitions of the reduced network G′. They are used in RenEEL

to improve the quality of P at every iteration of the scheme until a consensus is reached about

what the optimal partition is.

A typical way that P evolves as the scheme progresses can be seen with the results shown in

Figure 9 from an example run of RenEEL that partitions the As-22july06 network [20]. (Also see

table 1.) In this example run, kmax = 100 and k′ = 20. Figure 9(a) and (b) show the modularity

value Q of Pbest the best partition in P (red dots), of Pworst the worst partition in P (black dots),

and of P ′best the new partition of G′ considered for the enrichment of P (blue dots) as a function

of the number of iterations. The main panel of Figure 9(a) shows the full results of the scheme,

from start to finish. An enlarged view of the results for the initial 150 iterations is shown in the

inset of Figure 9(a). The main panel of Figure 9(b) shows an enlarged view of the vertical Q axis
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near the final result of the entire scheme. An enlarged view of both axes at the end stages of the

scheme is shown in the inset of Figure 9(d). Figure 9(c) shows the size of the reduced network, or

equivalently the number of core groups, as a function of the number of iterations. The main panel

of Figure 9(c) shows the results on linear axis scales, and the inset shows the same results on log

scales. Figure 9(d) shows the ensemble size k as a function of the number of iterations.

In the example run, as can be seen from the inset of Figure 9(a), for the first 100 iterations the

modularity of the new partitions Q(P ′best) are all significantly better than that of the worst in the

ensemble Q(Pworst). In fact, all the first 100 new partitions generated by RenEEL are better than

every one the 100 original ones in P generated by the base algorithm. (The number of partitions in

P initially is kmax = 100.) So, for the first kmax iterations RenEEL systematically replaced each of

the original partitions. There is large increase in Q(Pworst) at iteration 100. Although it’s difficult

to see in the figure, there are other similar, significant increases in Q(Pworst) at iterations 200 and

300, indicating that RenEEL also replaces its first and second 100 new partitions with entirely new

sets in the second and third 100 iterations, respectively. After the first 300 iterations, the quality of

the new partitions starts to become comparable to the existing partitions. Throughout the process,

the Q(Pbest) intermittently raises when a new best partition is discovered.

Figure 9(c) shows that the size of the reduced network keeps decreasing as the scheme progresses.

It initially decreases exponentially, then there is what appears to be a power-law decay from iteration

100 to iteration 1000 (see inset of Figure 9(c)), followed by a sharp, perhaps exponential, decay

in the final iterations of the scheme. The original size of this network, n = 22963, is reduced to

38 core groups at the termination step. The size of the ensemble, shown in Figure 9(d), varies

when new partitions are discovered and added to P or when low quality partitions are deleted as

the scheme drives P toward consensus. The plot shows that, as the ensemble learns, its size grows

and shrinks multiple times before its size falls to unity and the scheme terminates. There are two

main periods in which the size of the ensemble grows, one beginning at about iteration 900 and the

other at about iteration 1200. During these periods the value of Q(Pbest) increases quickly, as can

be seen in thee main panel and inset of Figure 9(b). These are periods when the ensemble P has
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made a “breakthrough” by discovering a new set of high quality partitions. The example run ends

with a consensus choice that a partition with modularity Qmax = 0.678579 is the optimal one for

this network, a value higher than any previously reported results. (See Table 2.)

3.1.3 Distribution of results for Qmax

Since virtually all conventional algorithms are stochastic, ensemble learning schemes that use them

as base algorithms will also be stochastic. Thus, a range of results for Qmax are possible with

each realization of virtually all methods of modularity maximization. As an example, Figure 10

shows the distribution of Qmax that three different methods of community detection produce for

the Email network. For each method, results from 250 realizations are shown. Results from the

RenEEL, CGGCi ensemble learning schemes, and naive ensemble analyses are shown in red, green,

and blue, respectively. The results for all three of these schemes were obtained using a randomized

greedy algorithm as the base algorithm and an ensemble size of kmax = 100. Each of the blue data

points were obtained by running the algorithm 100 times and choosing the largest value of Qmax

from those runs. The distributions from the three different methods are all non-overlapping, with

the RenEEL results having the largest values, followed those of CGGCi and then those of the naive

ensemble analyses with the conventional algorithm. The distribution of Qmax for RenEEL is also

narrower than those of the other two schemes, which suggests that the results from RenEEL are

close to the true value of Qmax for the network.

3.1.4 Application to benchmark networks

To test the accuracy of the RenEEL scheme, we applied it to the benchmark networks listed in

Table 1. In Table 2, the maximum modularity value Qmax found for these networks by RenEEL is

compared to the best previously published values. Many of these values were the best result in the

10th DIMACS challenge [103]. To be consistent, all realizations had kmax = 100 and k′ = 20 and

used the randomized greedy algorithm as a base network. 100 different realizations of RenEEL were

run on the smaller networks, up to and including the Netscience network, and 5 were run on the
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Figure 9: Evolution of the ensemble of partitions P for a typical run of RenEEL. (a)
Modularity Q of partitions Pbest, P

′
best and Pworst at each iteration of the scheme is shown in red,

blue and black, respectively. The inset is an enlargement of the results for the first 150 iterations.
(b) Same results as in (a), but showing only the upper portion of the plot. The inset shows an
enlargement of the upper-right corner of the plot. (c) Evolution of the size of the reduced network.
The inset shows the same plot on a logarithmic scale. (d) Evolution of the size of the ensemble P.
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Figure 10: Distribution of Qmax obtained by various methods. Frequency plot of Qmax for
the Email network obtained by multiple realizations of three different methods. Blue corresponds
to a naive ensemble analysis scheme, green corresponds to CGGCi scheme, and red corresponds to
RenEEL scheme. The y-axis has a logarithmic scale. In this particular example, there is no overlap
between the distributions from the different methods.
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Table 2: Comparison of results using RenEEL to the previous best results for bench-
mark networks. Maximum modularity Qmax obtained by the RenEEL scheme compared to the
previous best reported values.

Network Nodes Links RenEEL result Previous best

Adjnoun 112 425 0.313367 0.313367 [104]

Jazz 198 2742 0.445144 0.445144 [104]

Metabolic 453 2025 0.453248 0.453248 [104]

Email 1133 5451 0.582829 0.582829 [104]

Polblog 1490 16715 0.427105 0.427105 [104]

Netscience 1589 2742 0.959900 0.959900 [66]

Power 4941 6594 0.940938 0.940851 [104]

PGPgc 10680 24316 0.886853 0.886564 [103]

Astro-ph 16706 121251 0.745614 0.744621 [104]

Memplus 17758 54196 0.700591 0.700473 [103]

As-22july06 22963 48436 0.678579 0.678360 [66]

Cond-mat-2005 40421 175693 0.748187 0.746445 [66]

Smallworld 100000 499998 0.793175 0.793099 [66]

caidaRouterLevel 192244 609066 0.872086 0.872042 [103]

larger networks. For the smaller networks, the value of Qmax reported in Table 2 was consistently

obtained. For the larger networks, a range of results were obtained and the largest one is listed.

As the table shows, the partitions found by RenEEL have a value of Qmax that is higher than

or equivalent to the best previously reported value for every benchmark network. The difference

between Qmax found by RenEEL and the previous best values increases with network size. This is

due to the fact that for small networks it is generally easier to find the optimal partition, but the

task becomes more challenging for larger networks where the superiority of a method can make a

significant difference.
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3.2 Generalized Modularity Density

3.2.1 Benchmark test

We now analytically study the extent to which the RL exists in the benchmark network of Figure 8

when Qg is used as the metric. We also compare the results to that obtained when using other

metrics. Whether the use of the metric Qg will split the cliques or not is determined by the sign of

∆Qg = Qmergeg −Qsplitg , where Qmergedg and Qsplitg are the values of Qg if the cliques are merged or

split, respectively. Let us define the variables

p =
n1

n2
(12)

and

t =
ma

n1n2wmax
. (13)

p ∈ (0, 1] is the ratio size of the cliques. t ∈ [0,∞) measures the external influence on them. Then,

∆Qg ∼
(r + 2d

r + 2

)χ(
2d+ r − (r + 2d)2

r + 2d+ 2t

)
−
(
r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t

) (14)

where r = p + 1/p. If ∆Qg < 0, splitting is preferred, and if ∆Qg > 0, merging is preferred.

Equation 14 determines whether the use of the metric Qg, for a given value of χ, will lead to M or S

phase as a function of the variables (p, d, t). The value of d at which the phase boundary separating

the M and S phases occurs is δQg .

In the limit of large external influence parameter t, which is often the situation encountered in

empirical studies where RL problems are considered problematic, the value of δQg for a given value

of χ is

lim
t→∞

δQg =
r

2

[(
1 +

2

r

) χ
χ+1

− 1

]
. (15)

This limit increases from δQg = 0, when χ = 0, to δQg = 1, when χ → ∞, for all values of p.
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Figure 11: Phase diagram of clique splitting with generalized modularity density at
large external influence as χ is varied. The values of clique size ratio p and link density d
where the M phase occurs are shown in orange and where the S phase occurs are shown in blue.
Results are for different values of the control parameter χ: (a) χ = 0, (b) χ = 1, (c) χ = 3, (d)
χ = 10. The external influence parameter is t = 106
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Figure 12: Phase diagram of clique splitting with generalized modularity density at
fixed χ as the external influence is varied. The values of clique size ratio p and link density
d where the M phase occurs are shown in orange and where the S phase occurs are shown in blue.
Results are for χ = 1 and different choices of the external influence parameter t: (a) t = 0, (b)
t = 1, (c) t = 10, (d) t = 106.
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At intermediate values of χ, the result is only weakly dependent on p, being just slightly larger at

small p, as can be seen in Figure 11. The figure shows the phase diagram as a function of p and d

at various values χ for large t. For χ = 0, when Qg = Q, the cliques are merged at all values of p

and d as shown in Figure 11(a). For χ > 0 at smaller values of d the cliques separate and are, thus,

resolved. As χ increases, δQg also increases and approaches 1 in the limit of large χ, Figs. 11(b)-(d),

meaning that at large χ the cliques are always resolved.

The effect of varying t at fixed χ on the (p, d) phase diagram are shown in Figure 12. As shown

in Figure 12(a), at t = 0 when there is no influence by the external component on the two cliques,

the S phase occupies the entire space and δQg = 1 for all p. In this case, the cliques are always

separated unless they are fully connected to each other. For t > 0, when there is some influence

from an external component, the cliques are merged and, thus, not resolved for large values of d.

As t increases, shown in Figs. 12(b)-(d), the M phase occupies an increasing area and δQg decreases

until reaching the limiting value given by Equation 15.

These results show that, as the control exponent χ is varied, a wide range of δQg results. The

range increases with t and varies from 0 to 1, the complete possible range, in the limit of large t.

This freedom gives leeway in applications to choose χ so that δQg matches the expected critical

resolution link density δexp.

In general, as χ increases, the number of communities found also increases, but gives stable

results for a range of χ. (See the example discussed in Section 3.2.3.) Increasing χ thus tends to

result in smaller communities being detected. The appropriate, or best, choice of χ depends on the

problem. If there is some “ground truth” knowledge about the community structure in the network,

or in similar networks, that knowledge can be used to select a χ that results in communities that

match the ground truth. If there is no ground truth knowledge, then a default choice of χ = 1 may

be appropriate. That choice results in a critical resolution density of δQg = 1/2 in the limit of large

t and r (Equation 15). Thus, an advantage of Qg is that even for the extreme values of t and r,

the metric has a positive lower bound of δQg that can be controlled by χ.

In contrast to Q [32], Qds [75], Qx [79] and QAFG [72] (see Section 3.2.4), Qg has a finite non-zero
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Figure 13: Number of communities found using Qg with different χ. Communities in each
level (from the largest to the smallest) in the hierarchy are revealed as χ is varied.
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lower limit of δ, which implies that for d smaller than this value, the two cliques of the benchmark

network are guaranteed to be split for all possible values of (r, t). Thus, Qg can successfully avoid

resolution limit problem in these extreme cases (See last paragraph in Section 2.2.2). While the

metric Qw (see Section 3.2.4) also shows this lower limit (Table 3), the advantage of Qg is that the

lower limit of δQg can be adjusted by tuning the parameter χ for any desired resolution density.

Table 3 summarizes the kind of resolution problems with Q, Qds, Qx, Qw and QAFG that would

be encountered when tested on the benchmark network (See Section 3.2.6 for details).

In principle, a reasonable δexp is always in [0, 1] but a given metric can still have a δ that is

out of this range. Since δexp is strictly positive (no matter how small), if it is possible to construct

a network for which δ → 0 then that metric presents a resolution limit problem. Even worse, if

δ < 0, it would result in merging of disconnected communities. On the other hand δ → 1 does not

pose a resolution problem as long as δ ≤ 1 and δ ≥ δexp is satisfied. However, higher δexp imposes a

stricter criterion for merging. But if δ > 1, it will have the unwanted consequence of cliques being

subdivided. Thus, a metric is problematic if it can not avoid δ → 0, δ < 0 or δ > 1.

Table 3: Resolution limit problems of different metrics. Q,Qds, Qx, Qw and QAFG have
different resolution limits problems. ρ, which appears in Qx, is the global link density. s is used
in the metric QAFG as a weight to every node (equivalent to adding a self-loop to every node) and
thereby modifying the strength of a community. QAFG reduces to modularity at s = 0, and by
controlling s substructures (s > 0) or superstructures (s < 0) can be explored.

Metric Resolution limit problem

Q δ → 0 when t→∞
Qds δ < 0 when p is small

Qx δ < 0 when p and ρ are small

Qw δmin = 0.236 when t→∞ and p = 1

QAFG δ < 0 when s < 0 and p is small
δ > 1 when s > 0 and p is small

3.2.2 American college football network

We use the Qg metric to detect communities in the network of American college football games

between Division IA colleges during the regular season of Fall 2000 [32, 105]. A link between two
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modularity density.
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colleges is present if they played a game against each other. Colleges play games within the same

conference more frequently, thus, a community detection algorithm should be able to recover these

conferences from the network data. First, we show the result of using modularity (Q) that are

indicated by light blue blobs in Fig 14. It matches the conference memberships (distinguished by

node color) well except Independents, which are absorbed by three communities and that it groups

Big West and Mountain West in the same community. Using Qg(χ = 3) in this network we find

communities that are shown by gray blobs. There are some key differences between the Q and Qg

partitions. First, the Qg partition does not merge the Independents with other conferences. Instead,

it divides them into three disjoint communities. Second, it successfully identifies the Big West

and Mountain West as two different groups. But more interestingly, unlike modularity, it divides

each of the Mid-American, Southeastern, and Big Twelve conferences into two communities. This

apparent deviation from ground truth actually turns out to be a major advantage of using Qg. Each

of these three conferences have subdivisions within them that are in perfect agreement (considering

their membership as of year 2000) with the partition found by Qg. Mid-American conference has

East Division and West Division, Southeastern also has Eastern Division and Western Division,

whereas Big-Twelve conference has Northern Division and Southern Division. These subdivisions

are indicated by different node shapes (circles and squares) in Figure 14.

3.2.3 Artificial network with hierarchical community structure

To demonstrate the ability of Qg for detecting the community structure at different resolution

densities, we construct a hierarchical network. Similar constructions have been used as a model for

hierarchical network structure [72]. We consider a structure shown in Figure 15 that includes four

levels of hierarchy, although it can be extended to include any number of levels. The elementary

level (level 1) is a clique formed by fully connecting five nodes with links weighted α1. To construct

a level 2 network, we use the clique network from level 1 as a generalized node to form a clique of

size 5 with links weighted α2. Link between two generalized nodes is achieved by connecting all

the internal nodes from one generalized node to those in another generalized node. Similarly, level
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Figure 15: Example hierarchical network. Level 1: A clique of five nodes. Level 2: A clique of
five level 1 cliques. Level 3: A clique of five level 2 cliques. Level 4: A clique of five level 3 cliques.

k network is constructed by using level k− 1 network as a generalized node to form a clique of size

5 with links weighted αk. Here we keep α1 > α2 > ... > αk so that the hierarchy of structure is

preserved.

We use the metric Qg on a level 4 network with αk = 5−k and show that it successfully detects

the planted hierarchical communities at every level. The level 4 network consists of 125 level 1

cliques, and 625 nodes in total. The results obtained by maximizing Qg are shown in Figure 13.

We observe that the 5 level 3 cliques are detected when χ < 2.8, the 25 level 2 cliques are detected

when 2.9 < χ < 6.4, the 125 level 1 cliques are detected when χ > 6.5. There are 3 stages,

corresponding to 3 levels of construction. There should not be a single “best” choice of χ by the
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nature of the problem. The choice of χ or desired resolution density should be based on specific

requirement and the background information of the particular problem.

3.2.4 Other metrics

Besides the metric Q and Qg, we test the performance of the following metrics. Each variable has

the same meaning as Equation 7 unless otherwise noted.

Weighted Modularity [77]:

Qw =
1

2m

∑
c

(
2mc −

K2
c

2m

)
(ρc + 1) (16)

Excess Modularity Density [79]:

Qx =
1

2m

∑
c

[
2mc(ρc − ρ)− K2

c (ρc − ρ)2

2m

]
(17)

Here ρ = 2m/[n(n− 1)] is the global link density.

Modularity Density introduced in [75] has a term that corresponds to Split Penalty. But as dis-

cussed in [79], this term may be problematic. Therefore, here we analyze a modified version of

modularity density without the Split Penalty term:

Qds =
1

2m

∑
c

(
2mcρc −

K2
c ρ

2
c

2m

)
(18)

AFG method of modularity QAFG in [72] can have different resolution densities by assigning self-

loop weighted s to each node and tuning the value of s. It still finds the partition by maximizing

modularity after assigning the self-loops.

QAFG =
1

2m+ 2Ns

∑
c

[
(2mc + 2ncs)−

(Kc + 2ncs)
2

2m+ 2Ns

]
(19)

where N is total number of nodes, nc is the number of nodes of community c.
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3.2.5 Derivation of equation of phase for modularity

We assess the performance of modularity Q using the benchmark test described before. In the

form shown in Equation 4, modularity is the sum of the quantity within parenthesis over each

community. Thus, two partitions of splitting or merging the two cliques yield the following values

of modularity Q.

Qsplit = Q1 +Q2 +Qex (20)

Qmerge = Q(1+2) +Qex (21)

where Q1, Q2 are the two terms corresponding to clique 1 and 2 as separate communities, Q(1+2)

is the corresponding term when the two cliques are merged. Qex is the sum over the remaining

communities in the external component, which do not change in the two partitions. The difference

between the two modularity values is given by

∆Q = Qmerge −Qsplit = Q(1+2) −Q1 −Q2. (22)

Using Equation 4, we have:

∆Q =
1

2m

[
(2m(1+2) −

K2
(1+2)

2m
)− (2m1 −

K2
1

2m
+ 2m2 −

K2
2

2m
)

]
(23)

According to the construction of the example network, we can rewrite Equation 23 with (n1, n2,m12,ma, na,m1a,m2a).

To simplify the expression and capture the principle features, we take n1, n2 >> 1. Recall

the construction of separation of the two cliques from the external component, we also have

n2
1 >> m1a, n

2
2 >> m2a. Plugging all in ∆Q, we obtain:

∆Q =
1

2m

(
2m12 −

2(n2
1n

2
2 + (n2

1 + n2
2)m12 +m2

12)

n2
1 + n2

2 + 2ma + 2m12

)
(24)

Equation 24 can be rewritten more concisely by omitting the normalization factors and using

44



variables (d, r, t) defined in Section 3.2.1

∆Q ∼ 2d− 2(1 + rd+ d2)

r + 2d+ 2t
(25)

The space is reduced to three principal dimensions (d, r, t), where 0 ≤ d ≤ 1, r ≥ 2 and t ≥ 0.

Equation 25 is the equation of phase that is used to plot the phase diagram of Figure 16. We obtain

δQ, which determines the phase boundary as the value of d for which ∆Q = 0,

δQ =
√
t2 + 1− t (26)

3.2.6 Benchmark test for other metrics

By carrying out similar mathematical analyses as in the last section, we can obtain an equation of

phase for each metric and we can identify possible RL problems of each metric. Some advantages

of using this benchmark test include that it covers a wider range of cases, it can be used by working

on the formula without any guess or speculation of specific network, and it provides a clear view of

metric performance including all RL problems previously reported. The difference between values

of a metric between merge and split cases, for other metrics can be written as follows.

For weighted modularity Qw

∆Qw =
2r + 2d+ 2

r + 2
(2d+ r − (r + 2d)2

r + 2d+ 2t
)

−2(r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
).

(27)

For excess modularity density Qx

∆Qx = (2d+ r)(
2d+ r

r + 2
− ρ)− (r + 2d)2

r + 2d+ 2t
(
r + 2d

r + 2
− ρ)2

−
(
r(1− ρ)− r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
(1− ρ)2

)
.

(28)
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Figure 16: Phase diagram of clique splitting with modularity Q as the external influence
is varied. The values of clique size ratio p and link density d where the M phase occurs are shown
in orange and where the S phase occurs are shown in blue. Results are for different choices of the
external influence parameter t: (a) t=0 (b) t=1 (c) t=5 (d) t=15.

For modified (without the split penalty term) modularity density Qds

∆Qds =
(2d+ r)2

r + 2
− (2d+ r)4

(r + 2d+ 2t)(r + 2)2

−(r − r2 − 2 + 2d2 + 2dr

r + 2d+ 2t
)

(29)

For Qx (Equation 17), in addition to (d, r, t), the phase space consists of an extra principal

variable ρ, which is the global link density and its maximum value ρmax is obtained when na is

smallest as other variables (n1, n2,m12,ma) are fixed.

The phase diagrams of Q, Qds, Qw, Qx(ρ = ρmax), QAFG(na =
√

2ma) and Qg(χ = 1) are
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Figure 17: Phase diagram of clique splitting with modularity density Qds as the external
influence is varied. The values of clique size ratio p and link density d where the M phase occurs
are shown in orange and where the S phase occurs are shown in blue. Results are for different
choices of the external influence parameter t: (a) t=0 (b) t=1 (c) t=5 (d) t=15.
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Figure 18: Phase diagram of clique splitting with weighted modularity Qw as the ex-
ternal influence is varied. The values of clique size ratio p and link density d where the M
phase occurs are shown in orange and where the S phase occurs are shown in blue. Results are for
different choices of the external influence parameter t: (a) t=0 (b) t=1 (c) t=5 (d) t=15.
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Figure 19: Phase diagram of clique splitting with excess modularity density Qx as the
external influence is varied. The values of clique size ratio p and link density d where the M
phase occurs are shown in orange and where the S phase occurs are shown in blue. Results are for
ρ = ρmax and different choices of the external influence parameter t: (a) t=0 (b) t=1 (c) t=5 (d)
t=15.
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shown respectively in Figure 16, Figure 17, Figure 18, Figure 19, Figure 20 and Figure 12. As

shown in the figures, the behavior varies a lot across different metrics and the particular choice of

other variables. In the following, we will observe some general characteristics of all phase diagrams.

Then, we will examine each one in more detail and demonstrate that Qg performs better than other

metrics.

First, there are two phases (M (red) and S (blue) phase) in the phase diagram as expected and

M phase is above S phase, implying that nearly all metrics tend to merge the two cliques when d is

close to 1 and to split when d is close to 0. This meets the common expectation in extreme cases.

But different metrics disagree when d is in intermediate range. Other variables such as (t, ρ) also

dictate the performance in this range. Figure 16 shows the RL problem of modularity with a much

clear view. We know that δ =
√
t2 + 1− t, as t→∞, we have δ → 0. This trend is also shown in

Figure 16. Therefore, given any value d > 0, we can construct a network with large enough t so

that d > δ, which means the two cliques, as long as they are connected, will be merged into one

community if the external component has enough links. This is the RL problem of modularity.

However, if d = 0, there is no RL because for any t ≥ 0, δ > 0 is always true and modularity

maximization would not merge two disconnected cliques. More generally it can be shown that, if

two subgroups of the network are disconnected, they are guaranteed to be split.

As shown in Figure 17, Qds depends strongly on p. A different type of RL problem can be seen in

the figures. If p is small enough, δ = 0 can always be true whatever d is. It means that if the sizes

of two cliques are different enough, they will be merged even if d = 0 [79]. It clearly violates our

expectation. This problem gets alleviated as t→∞. But it always exists for arbitrary t.

For the phase diagram of Qw shown in Figure 18, the phase boundary moves down as t→∞.

But it has a lower bound which means, when d is small enough, the two cliques of example network

will always be split whatever other variables are. Thus, it has no extreme cases of RL as Q and

Qds. Note that M phase is reduced to a straight line d = 1 here in Figure 18(a), which means the

extreme case of expectation is satisfied.

As for Qx, because there is one more variable ρ, the analysis is more complicated. As we can
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see from Equation 17 and Equation 18, Qx(ρ→ 0)→ Qds which means Qx will behave the same as

Qds when global link density ρ = 0. Because of the arbitrary external component, it can be easily

achieved. Also we should be aware of the fact that most real-world networks are sparse, thus ρ→ 0

is a common case where Qx will fail to solve RL as Qds. In Figure 19, we show the phase diagram

when ρ equals its maximum. The phase boundary, starting from d = 1, goes down first and then

rises up again. So, when t → ∞, the two cliques will always be split as long as d < 1. But this

requires both ρ, t are very large which is uncommon for most real-world networks.

We use the AFG method [72] on the benchmark network, which attempts to solve the RL

problem by assigning a self loop of weight s to each node. This method allows one to explore com-

munities at different resolution densities by controlling s. Using Qg, this is achieved by controlling

χ so the two methods are similar in spirit. However, irrespective of the choice of s, the metric

QAFG will behave like modularity Q and fail to resolve clusters if na in the benchmark network is

sufficiently large. To avoid that, we show the phase diagram (Figure 20) for na =
√

2ma, which is

the smallest possible na for a fixed ma (in the large ma limit) and perhaps the best case scenario

for QAFG. Moreover, if a specific resolution density is desired, then s must be selected according

to the network size, unlike Qg, which has the lower bound that is independent of the network size.

Even if s is chosen according to the network size, the phase diagram in Figure 20 (a), (c), (d) shows

that the metric QAFG will fail when the two cliques are somewhat different in size (small p). When

p is small and s 6= 0, it either merges two disconnected cliques (Figure 20 (a)), or splits a larger

clique formed by clique 1 and clique 2 (Figure 20 (c) and (d)). When s = 0 (Figure 20 (b)), the

metric QAFG is the same as modularity Q and it will have the same problems as outlined before.

The phase diagram also shows that, for a non-zero value of s, the resolution density varies a lot

as a function of p. This implies that merging or splitting the two cliques is heavily influenced by

their relative sizes. Thus, in a network with a wide range of community sizes, this method will be

biased either towards merging well separated communities or splitting well connected communities,

an observation also made in [81].
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Figure 20: Phase diagram of clique splitting with QAFG at fixed external influence t as
the parameter s is varied. The values of clique size ratio p and link density d where the M
phase occurs are shown in orange and where the S phase occurs are shown in blue. Results are for
na =

√
2ma, t = 10 and different choices of s: (a) s = − m

2N (b) s = 0 (c) s = m
2N (d) s = m

N .

52



4 Application: Gene Networks

Because of the control parameter in generalized modularity density Qg, we can detect communi-

ties at any desired resolution. Thus, the metric is particularly desirable for studying hierarchical

community structure in biological networks, and identifying functional gene communities that are

hidden in other modularity approaches because of their small size. Besides, RenEEL can help us

maximize the metric Qg efficiently and accurately. We apply the Qg and RenEEL to some gene

networks [106].

The first step is to generate networks from the gene co-expression data from S. cerevisiae,

which is a matrix based on some measure of the co-expression. We implemented three popular

methods, which are Pearson’s correlation method, mutual information method, context likelihood

of relatedness method.

Pearson’s Correlations distinguish positive and negative gene interactions, providing important

biological information. However it misses non-linear relationships among gene expression.

Information theoretic methods that use mutual information (MI) between gene pairs as similar-

ity measure have been used to capture these non-linear variations, which can help uncover strong

pairwise relationships between genes that are not detected by linear measures [107]. However,

negative relationships cannot be distinguished from positive associations.

Context Likelihood of Relatedness (CLR), an algorithm for unsupervised network inference [108,

109], uses the distribution of the MI of two genes combined with the value of the MI between these

two genes to compute a relatedness score [108]. The score of pair (i, j) is defined as
√
z2
i + z2

j ,

where zi and zj are the z-scores of MIi,j from the marginal distributions, and the score is the

joint likelihood measure [108]. The CLR algorithm performed better than several other inference

methods tested at inferring the regulatory interactions among genes in microarray expression data

from the prokaryote, E. coli [108].

Then, we used four community detection methods to detect community structure in each net-

work. These methods are MCL [49], and community detection by maximizing Q, Qx, and Qg.
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Each network generation method combined with a different community detection method results

in a different partition of genes into communities, i.e., four different community detection methods

and three different networks, yielding twelve sets of communities.

To determine which combination of network generation method and community detection

method is more relevant biologically, we compare our results to the Gene Ontology terms [110].

Specifically, we compare all twelve partitions to the structure of GO terms using the average

ARI [111] (Figure 21 (a)). First, we observe that all community detection methods show improved

performance when applied to relatedness network constructed by the CLR method. Other net-

work inference methods showed similar and relatively low performance. Second, we find that the

results from the relatedness network combined with generalized modularity density (denoted by

Qg(f)) shows a better match (higher average ARI) with the GO terms than other methods (al-

though closely followed by Qx(f)). We also show the overall distribution of ARI when using the

relatedness network in Fig 21(b) to show that Qg consistently outperforms Q,Qx and MCL.

Table 4 shows the top ten matches of the same enrichment analysis for the communities that

contain orphan genes. Orphan genes are genes encoding species-specific proteins without detectable

homologues in other lineages [112]. They are present across eukaryotics and prokaryotics, and are

thought to play an important role in speciation [113, 114, 115, 116, 117]. The functions of the vast

majority of orphan genes remain unknown. Of those that have been researched, many are implicated

in defense and offense/predation, either as secreted molecules, or as interactors of internal defense

responses [114, 117]. Identifying communities with orphan gene members and with highly significant

associations with GO-terms is particularly important in that it provides an avenue towards building

hypotheses about the functions of these orphan genes.
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Table 4: GO term enrichment of communities found using generalized modularity den-
sity containing orphan genes in them. Ten most significant associations for orphan containing
communities found by Qg and relatedness network with threshold = 3.0.
community GO term genes in genes in genes in p-value orphans

community GO term common

1 cytochrome-c oxidase activity 19 20 8 7.28E-15 9

1 heme binding 19 27 5 9.74E-08 9

1 Group I intron splicing 19 12 4 2.04E-07 9

1 mitochondrial electron transport, 19 14 3 2.68E-05 9
cytochrome c to oxygen

34 carnitine O-acetyltransferase activity 187 3 3 0.0010 5

1 proton-transporting ATP synthase 19 17 2 0.0027 9
activity, rotational mechanism

34 fructose 2,6-bisphosphate 187 4 3 0.0032 5
metabolic process

1 homing of group II introns 19 1 1 0.0062 9

1 movement of group I intron 19 1 1 0.0062 9

66 protein targeting to vacuole 15 22 3 0.0074 6
involved in ubiquitin-dependent
protein catabolic process via the

multivesicular body sorting pathway
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Figure 21: Comparison between GO term associations and gene communities found by
different network inference and community detection methods. (a) Average Adjusted
Rand Index (ARI) score for 1000 realizations comparing GO-terms and communities found by
modularityQ, excess modularity densityQx, Markov Clustering (MCL), and generalized modularity
density Qg on relatedness (f), Mutual Information (MI), and Pearson correlation (R) networks. A
higher ARI indicates a better match. The error bars show one standard deviation interval around
the mean. (b) The distribution of ARI scores between gene communities and GO terms over 1000
realizations using modularity Q (black), MCL (red), excess modularity density Qx (green), and
generalized modularity density Qg (blue) for relatedness (f) network.
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5 Conclusions

Recent advances in Machine Learning and Artificial Intelligence have enabled progress toward

solving a range of challenging computational problems [118]. This thesis has introduced a powerful

algorithmic paradigm for graph partitioning that we call Extremal Ensemble Learning (EEL). EEL

is a form of Machine Learning. An EEL scheme creates an ensemble of partitions and then uses

information within the ensemble to find new partitions used to update the ensemble using extremal

criteria. The ensemble learns how to form improved partitions through the updating procedure, as

it works toward a conclusion by achieving consensus among its member partitions about what the

optimal partition is.

The particular EEL scheme we have introduced, Reduced Network Extremal Ensemble Learn-

ing (RenEEL), uses information in the ensemble of partitions to create a reduced network that

can be efficiently analyzed to find a new partition with which we can update the ensemble. We

have used RenEEL to find the partition that maximizes the modularity of networks. This is a

difficult, NP-hard computational problem [53]. We have shown that an algorithm using the Re-

nEEL scheme outperforms all existing modularity maximizing algorithms when analyzing various

commonly studied benchmark networks. For those networks, it finds partitions with the largest

modularity ever discovered. For the larger benchmark networks, the partitions that we discovered

are novel.

Although we have only demonstrated the effectiveness of our algorithm for the well-known

problem of finding the network partition that maximizes modularity, the EEL paradigm and the

RenEEL scheme can be used to solve other network partitioning problems. For example, the

algorithm we used can be straightforwardly adapted to optimize other metrics such as modularity

density [78], excess modularity density [79] or the new metric, generalized modularity Qg, which

we introduce in this thesis.

There is potential to improve upon our results using the RenEEL scheme. As previously dis-

cussed, any conventional algorithm can be used as the base algorithm of the scheme. There is
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also the freedom to vary the size of the ensembles used in the scheme. Which base algorithm

and what ensemble sizes are best depends on the network to be analyzed. Using a high-quality

base algorithm, though, such as the Iterative Spectral Bisectioning, Tuning, and Agglomeration

algorithm [61], is likely to yield more accurate results for many of the networks studied. There

is also potential to improve the RenEEL scheme itself. For instance, a naive ensemble analysis of

partitions of the reduced network is currently used to find a new partition to update the ensemble.

Another method, such as a recursive use of the RenEEL scheme, may yield better results. Also,

once the original ensemble of partitions is created, no new information is ever added to the system

during the learning processes. It may be beneficial to occasionally use a new partition of the origi-

nal network instead of the reduced network to update the ensemble. Work is in progress to explore

if these ideas lead to improved results.

Finally, the principal reasons why the RenEEL scheme is both efficient and effective should be

noted. Its efficiency stems from its use of an ensemble of partitions to form reduced networks. The

smaller size of the reduced networks allows them to be partitioned much more quickly than the

original network. Also, because the scheme is so effective, highly accurate results can be obtained

even if a fast but low-quality base algorithm is used. This allows significantly larger networks to

be analyzed than what would otherwise be possible. The remarkable effectiveness of RenEEL,

even relative to other Ensemble Learning schemes, is mainly due to its extremal updating of the

ensemble of partitions. It is, of course, just one example of a scheme using the EEL paradigm.

Its success, though, suggests that EEL is an algorithmic paradigm that will be useful for solving a

variety of graph-theoretic problems.

Community detection by maximizing modularity sometimes yields unexpected community struc-

ture. Resolution limit, for example, is an unwanted but inevitable consequence of modularity max-

imization. Other such metrics, namely modularity density measures, which attempt to fix this

problem, also differ in the community structure they obtain and may violate our general expecta-

tion. While the cutoff of the number of cross-links between two strongly connected groups of nodes

that is enough to make the two be considered as a single community remains mostly subjective
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and vague, our metric Qg provides a quantifiable notion and solves the resolution limit problem.

In particular, with a free parameter χ, one can control this threshold of merging two cliques. It is

quite appealing to have a metric that can be adjusted to meet the specific requirement set by the

user because the idea of a community may vary from one application to another and be particular

to the network under consideration. At the same time, due to its ability to detect communities

at many resolution densities, it is also helpful in uncovering the hierarchical community structure,

an inherent characteristic observed in many complex networks. The existing benchmarks, e.g., the

ring of cliques, are too restrictive to evaluate and compare the performance of different metrics for

solving the specific resolution limit problem. In this thesis, we consider a more general yet simple

network structure, which can be used to examine the limits of metrics such as modularity quanti-

tatively. Using this general framework, we demonstrated that our metric Qg eliminates resolution

limit problems at any desired resolution density, shows better performance, and is straightforward

to extend for studying weighted and directed networks. Among other essential problems, finding

communities at high resolution is instrumental in inferring gene regulatory networks where the goal

of functional annotation of genes is to find particular gene functions [91].

We systematically evaluated twelve different combinations of clustering methods by network

inference methods using gene expression data. Our investigation empirically shows that the relat-

edness network obtained by the CLR method combined with community detection using general-

ized modularity density Qg metric outperforms other approaches. Previous studies using the CLR

method have demonstrated its effectiveness in inferring gene interactions [108]. Concerning the

improved accuracy of Qg, we surmise that it performs better than other metrics because it does not

suffer from the resolution limit problem [69, 80] and can detect smaller communities with higher

resolution.

Furthermore, we performed GO term enrichment analysis using the communities obtained by

generalized modularity density Qg on relatedness networks. Our focused analysis reveals statis-

tically highly significant associations between communities, many of which contain orphan genes

and GO terms. These novel modules can potentially enrich our understanding of the roles of these
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orphan genes and their relationship with other genes by providing possible directions for the ex-

periments to explore the function of the orphan genes. Then, we can use the feedback from those

experiments to improve our methods, such as tuning the value of the control parameter in Qg.
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[63] Y. Sun, B. Danila, K. Josić, and K. E. Bassler, Improved community structure detection using

a modified fine-tuning strategy. Europhysics Letters 86, 28004 (2009).

[64] R. Polikar, Ensemble based systems in decision making. IEEE Circuits and Systems Magazine

6, 21–45 (2006).

[65] O. Sagi, L. Rokach, Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery 8, e1249 (2018).

[66] M. Ovelgönne, A. Geyer-Schulz, An ensemble learning strategy for graph clustering. Graph

Partitioning and Graph Clustering 588, 187 (2012).

[67] 10th DIMACS Implementation Challenge. https://www.cc.gatech.edu/dimacs10/.

66



[68] J. Guo, P. Singh, and K. E. Bassler, Reduced network extremal ensemble learning (RenEEL)

scheme for community detection in complex networks. Scientific Reports 9: 14234 (2019).

[69] S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proceedings of the

National Academy of Sciences 104, 36–41 (2007).

[70] V. A. Traag, P. Van Dooren and Y. Nesterov, Narrow scope for resolution-limit-free community

detection. Physics Review E 84, 016114 (2011).

[71] P. Ronhovde, Z. Nussinov, Local resolution-limit-free Potts model for community detection.

Physics Review E 81, 046114 (2010).

[72] A. Arenas, A. Fernández, and S. Gomez, Analysis of the structure of complex networks at

different resolution levels. New Journal of Physics 10 (5): 053039 (2008).

[73] C. Granell, S. Gomez and A. Arenas, Hierarchical multiresolution method to overcome the

resolution limit in complex networks. International Journal of Bifurcation and Chaos 22 (07):

1250171 (2012).

[74] R. Aldecoa, I. Marin, Deciphering Network Community Structure by Surprise. PLOS ONE 6

(9): e24195 (2011).

[75] M. Chen, T. Nguyen, and B. K. Szymanski, A New Metric for Quality of Network Community

Structure. ASE Human Journal 2 (4): 226-240 (2013).

[76] F. Botta, C. I. Del Genio, Finding network communities using modularity density. Journal of

Statistical Mechanics 123402 (2016).

[77] N. F. Haq, M. Moradi, and Z. J. Wang, Community structure detection from networks with

weighted modularity. Pattern Recognition Letters 122: 14-22 (2019).

[78] M. Chen, K. Kuzmin, and B. K. Szymanski, Community detection via maximization of mod-

ularity and its variants. IEEE Transactions on Computational Social Systems 1, 46–65 (2014).

[79] T. Chen, P. Singh, and K. E. Bassler, Network community detection using modularity density

measures. Journal of Statistical Mechanics: Theory and Experiment, 053406 (2018).

67



[80] J. Guo, P. Singh, and K. E. Bassler, Resolution limit revisited: community detection using

generalized modularity density. In preparation (2020).

[81] A. Lancichinetti, S. Fortunato, Limits of modularity maximization in community detection.

Physics Review E 84 (6): 066122 (2011).

[82] J. Park, I. B. Wood, E. Jing, A. Nematzadeh, S. Ghosh, M. D. Conover, and Y. Y. Ahn,

Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial

clusters. Nature Communications 10 (1): 3449 (2019).

[83] T. Z. Berardini, S. Mundodi, L. Reiser et al., Functional annotation of the Arabidopsis genome

using controlled vocabularies. Plant Physiology 135 (2): 745–755 (2004).

[84] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch and N. Maltsev, The use of gene clusters

to infer functional coupling. Proceedings of the National Academy of Sciences 96 (6): 2896-2901

(1999).

[85] U. Singh, M. Hur, K. Dorman, and E. S. Wurtele, MetaOmGraph: a workbench for interactive

exploratory data analysis of large expression datasets. Nucleic Acids Research 48 (4): e23

(2020).

[86] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review. ACM Computing Surveys

31: 264-323 (1999).

[87] M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Cluster analysis and display of genome-

wide expression patterns. Proceedings of the National Academy of Sciences 95: 14863-14868

(1998).

[88] P. D’Haeseleer, How does gene expression clustering work? Nature Biotechnology 23: 1499-

1501 (2005).

[89] D. Chaussabel, N. Baldwin, Democratizing systems immunology with modular transcriptional

repertoire analyses. Nature Reviews Immunology 14: 271-280 (2014).

68



[90] S. Van Dam, U. Vosa U, A. Van der Graaf, L. Franke, J. P. de Magalhaes, Gene co-expression

analysis for functional classification and gene–disease predictions. Briefings in Bioinformatics

19 (4): 575-92 (2018).

[91] W. I. Mentzen, E. S. Wurtele, Regulon organization of Arabidopsis. BMC Plant Biology 8 (1):

99 (2008).

[92] L. Li, W. Zheng, Y. Zhu et al., QQS orphan gene regulates carbon and nitrogen partitioning

across species via NF-YC interactions. Proceedings of the National Academy of Sciences 112

(47): 14734-14739 (2015).

[93] M. Qi et al., QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens

and pests. Plant Biotechnology Journal 17 (1): 252–263 (2019).

[94] J. Li, U. Singh, Z. Arendsee, and E. S. Wurtele, Landscape of the Dark Transcriptome Revealed

through Re-mining Massive RNA-Seq Data bioRxiv 671263 (2020).

[95] S. S. Dwight, M. A. Harris, K. Dolinski et al., Saccharomyces Genome Database (SGD) pro-

vides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research 30

(1): 69-72 (2002).

[96] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing. Science

220, 671–680 (1983).

[97] Alex Arenas datasets. http://deim.urv.cat/ alexandre.arenas/data/welcome.htm.

[98] Hamm/memplus — SuiteSparse Matrix Collection. https://sparse.tamu.edu/Hamm/memplus.

[99] 10th DIMACS Implementation Challenge. https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml.

[100] M. E. J. Newman, Analysis of weighted networks. Physics Review E 70 (5): 056131 (2004).

[101] E. A. Leicht, M. E. J. Newman, Community Structure in Directed Networks. Physics Review

Letters 100 (11): 118703 (2008).

[102] L. Rokach, O. Maimon, Clustering Methods. Springer, 321–352 (2005).

69



[103] Index of /dimacs10/results. https://www.cc.gatech.edu/dimacs10/results/.

[104] D. Aloise, et al., Modularity maximization in networks by variable neighborhood search. In

Graph Partitioning and Graph Clustering (2012).

[105] T. S. Evans, Clique graphs and overlapping communities. Journal of Statistical Mechanics

P12037 (2010).

[106] P. Singh, J. Guo, J. Li, U. Singh, E. S. Wurtele, and K. E. Bassler, Assessing network inference

and clustering methods for geneco-expression networks.

[107] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska, Estimating mutual information using B-

spline functions–an improved similarity measure for analysing gene expression data. BMC

Bioinformatics 5 (1): 118 (2004).

[108] J. J. Faith et al., Large-scale mapping and validation of Escherichia coli transcriptional reg-

ulation from a compendium of expression profiles. PLOS Biology 5: e8 (2007).

[109] S. Treviño III, Y. Sun, T. F. Cooper and K. E. Bassler, Robust detection of hierarchical

communities from Escherichia coli gene expression data. PLOS Computational Biology 8 (2):

e1002391 (2012).

[110] Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic acids research vol-

ume 36. Database issue: D440-4 (2008).

[111] L. Hubert, P. Arabie, Comparing partitions. Journal of Classification 2 (1): 193-218 (1985).
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