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ABSTRACT

Mental workload assessment is a critical aspect of human-computer interfaces. Mental

workload which is either underwhelming or overwhelming will result in a negative influ-

ence on one’s performance. Enhancing existing classification techniques of mental workload

holds great potential in improving our understanding of cognitive engagement. Accurate

detection of mental workload can have wide-ranging applications such as improving cog-

nitive engagement or cognitive workload during an online class, which in turn affects the

student’s performance and learning. In this research, we utilize functional near-infrared

spectroscopy (fNIRS) to obtain insights into the dynamic functional connectivity of the

brain as a function of the mental workload. Variations in the brain’s blood oxygenation

and deoxygenation reflect neuronal activation patterns and can be measured using fNIRS.

Interpreting connectivity in the brain using noisy fNIRS data with low signal to noise ratio

is challenging. To overcome the challenges with fNIRS data, we use a hierarchical latent

dictionary learning approach. This approach provides covariance matrices to obtain the

dynamic functional connectivity and neuronal activation patterns that change over time.

We use features from the dynamic functional connectivity of the brain reflected in fNIRS

data collected from the prefrontal cortex to investigate mental workload. An analysis of

two different datasets, which use memory task consisting of different levels of difficulty, is

presented. Covariance matrices are obtained for each difficulty level of the memory-based

task by modeling the underlying neural signals as Gaussian processes and applying a latent

factor model to the observed hemodynamic data, which in turn reflects the dynamic func-

tional connectivity of the brain. The obtained covariance matrices are inputted to three

machine learning algorithms, namely, Support Vector Machines, K-Nearest Neighbors, and

Linear Discriminant Analysis, in order to evaluate classification accuracies in discerning the

levels of difficulty. This hierarchical latent dictionary learning approach is implemented

on an open-access dataset as well as a novel memory-related mental workload experiment

conducted as part of this research. To elucidate the effects of music on mental workload, the

novel experiment included calming and vexing music sessions. Our classification accuracies
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verify the viability of hierarchical latent dictionary learning approach to obtain functional

connectivity and also expound the effects of music on mental workload.

vii



TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGMENTS iv

ABSTRACT vi

LIST OF TABLES x

LIST OF FIGURES xii

1 INTRODUCTION 1
1.1 Quantifying Mental Workload: Impact and General Assessment . . . . . . . 1

1.1.1 Significance of Mental Workload and its Assessment . . . . . . . . . 1
1.1.2 A Brief Summary of Existing Mental Workload Detection and Anal-

ysis Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 A Working Memory Neurophysiological Dataset Incorporating the In-
fluence of Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Experimental Validation of Mental Workload Assessment Using Hi-
erarchical Latent Dictionary Method . . . . . . . . . . . . . . . . . . 6

2 A WORKING MEMORY NEUROPHYSIOLOGICAL DATASET IN-
CORPORATING THE INFLUENCE OF MUSIC 7
2.1 A Synopsis of Mental Workload Experiments . . . . . . . . . . . . . . . . . 7
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 EXPERIMENTAL VALIDATION ON MENTAL WORKLOAD
ASSESSMENT USING HIERARCHICAL LATENT DICTIONARY
METHOD 23
3.1 Background of Mental Workload Analysis . . . . . . . . . . . . . . . . . . . 23
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 CONCLUSION AND FUTURE WORK 50
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



4.1.1 A Working Memory Neurophysiological Dataset Incorporating the In-
fluence of Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Experimental Validation of Mental Workload Assessment Using Hi-
erarchical Latent Dictionary Method . . . . . . . . . . . . . . . . . . 51

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

BIBLIOGRAPHY 53

ix



LIST OF TABLES

1 Dataset Information [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Classification accuracies for 1-back, 2-back, 3-back tasks using mean, variance

and third order moment of Σn
t . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Classification accuracies for Dataset 1, between 1-back, 2-back, 3-back, tasks
against RELAX task using mean, variance and third order moment of Σn(t) 43

4 Classification accuracies for Dataset 2 between different n-back tasks using
mean and variance and different machine learning algorithms. . . . . . . . 46

5 Classification accuracies for Dataset 2 between different n-back tasks and
RELAX trials using mean and variance and different machine learning algo-
rithms taking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



LIST OF FIGURES

1 Optode layout of the fNIRS sources (Red), detectors (Blue) and channels
(Green) used during the experiment. . . . . . . . . . . . . . . . . . . . . . . 9

2 Electrode placements of Electrocardiogram sensors and respiration belt on
the front torso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 A) Sensor placements on the hand for PPG, EDA, and Skin Temperature.
B) EMG sensors placed on the participant’s trapezius muscles to detect stress
states from muscle movements. . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Session representation of n-back tasks with multiple trials. Each trial will
consist of 22 stimuli presented to the participant. . . . . . . . . . . . . . . . 14

5 Portion of fNIRS oxygenated and deoxygenated hemoglobin concentration
data from channel 2 during the calming music session. . . . . . . . . . . . . 15

6 The sub-panels from top to bottom shows respiration signal, skin temper-
ature, and EDA signal for participant 6, respectively. Color coded back-
grounds represent the initial baseline period (blue), calming (green), and
vexing (red) music sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Example of collected raw EMG and ECG signals for participant 6, during the
initial baseline period displayed for a duration of 20 seconds for participant 6. 17

8 EDA data for the calming (green background), RELAX (white background),
and vexing (red background) music sessions. Blue lines are data from all
the participants, the black signal represents the mean EDA from all the
participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Skin temperature data for the calming (green background), RELAX (white
background), and vexing (red background) music sessions. Blue lines are
data from all the participants, the black signal represents the mean skin
temperature from all the participants. . . . . . . . . . . . . . . . . . . . . . 19

10 Clockwise from top; distributions of means of EDA, means of skin temper-
ature, variances in EDA, variances in skin temperature, variances in respi-
ration, and variances in EMG for the calming music, relaxation, and vexing
music sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

11 Each subplot from left to right shows the paired differences of means of
EDA, variances of EDA, means of skin temperature, and variances of the
skin temperature between the calming and the vexing music sessions within
each participant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

12 The 8× 8 plot of covariance matrix for Dataset 1 [1] representing the 1-back
task for all 10 participants, 10 seconds after the start of the task. . . . . . . 40

13 The 8× 8 plot of covariance matrix for Dataset 1 [1] representing the 2-back
task for all 10 participants, 10 seconds after the start of the task. . . . . . . 40

14 The 8× 8 plot of covariance matrix for Dataset 1 [1] representing the 3-back
task for all 10 participants, 10 seconds after the start of the task. . . . . . . 41

15 The 22 × 22 covariance matrix for the calming music session in Dataset 2
representing the 1-back task for all 8 participants, at 10 seconds after the
start of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



16 The 22 × 22 covariance matrix for the calming music session in Dataset 2
representing the 3-back task for all 8 participants, at 10 seconds after the
start of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

17 The 22 × 22 covariance matrix for the vexing music session in Dataset 2
representing the 1-back task for all 8 participants, at 10 seconds after the
start of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

18 The 22 × 22 covariance matrix for the vexing music session in Dataset 2
representing the 3-back task for all 8 participants, at 10 seconds after the
start of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

19 The 8× 8 plot of covariance matrix for Dataset 1 [1] comparing between the
1-back, 2-back, and 3-back tasks for participant 4, 10 seconds after the start
of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

20 The 22× 22 plot of covariance matrix for Dataset 2 comparing between the
calming music session 1-back, and 3-back tasks (top row) and the vexing
music session 1-back, and 3-back tasks (bottom row) for participant 1, 10
seconds after the start of the task. . . . . . . . . . . . . . . . . . . . . . . . 45

xii



1 Introduction

1.1 Quantifying Mental Workload: Impact and General Assessment

1.1.1 Significance of Mental Workload and its Assessment

Mental workload, or cognitive workload is an important aspect of ergonomics and com-

prehending human factors that influence performance [2]. Intuitively, it can be understood

as the amount of mental work required for a person to complete a task in a specified interval

of time. However, it is not an isolated property, rather it is a result of interaction required

while performing the task, skills, environment, behaviors and other influences [3]. Due to

the dependence on several factors, different people exhibit different ability to handle mental

workload while performing tasks. For instance, consider the interaction between a human

and a computer also known as Human Computer Interactions (HCI). This interaction can

be considered as a task, or a mental workload. The technological advancement of recent

years has led to the ubiquitous nature of HCI. Therefore, an important aspect of design-

ing a successful HCI that can execute its task efficiently, is to improve the performance

of the system and its human operator [4]. In recent years, the prevalence of HCI and the

advancements in neuroscience have led to an emerging new field of Brain Computer Inter-

faces (BCI) where computers are given input commands via neural signals [5]. Seamless

integration and interaction between the BCI system and operator leads to improvised per-

formance and efficiency, and one of the factors that heavily influences this performance is

the mental workload or the mental cost of operating the system [6]. Due to several elements

such as prior experience, aptitude, stress, and many external factors, an individual’s quality

of interaction with the computer may decrease, leading to negative performance metrics.

This is true for both underload and an overload of mental workload. An underload leads to

feelings of boredom, whereas an overload leads to increased frustration, thereby increasing

chances of committing errors [3]. Thus, obtaining accurate insights into the mental work-

load provides essential understanding of whether changes in workload lead to a reduced
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performance [7]. Such an understanding of the dynamics of mental workload and its influ-

ence on performance lead to improved working conditions, aimed at optimal performance

output.

There are several ways to assess the effects of mental workload on a task. Some of

the most well-studied effects are workload experienced by an individual while driving. In

the study conducted in [8], the authors have assessed mental workload while driving using

a driving simulator. Research in [9], is another assessment of mental workload on visual

search and decision making while driving, and it provides essential knowledge in the dete-

riorating effects of performing tasks while driving. Other studies such as [10] evaluate the

cognitive workload experienced by air-traffic controllers. Most recently, there have been

several studies conducted to understand the affect of mental workload on BCIs [11]. Roy

et al. [12] have explored the workload induced by a working memory experiment, called

n-back task, to be utilized in BCI. Due to its widespread use in BCIs, we analyze the n-back

task and the mental workload that it induces.

Apart from detecting and understanding workload, several studies have explored the

idea of introducing music to reduce the mental workload, thereby increasing performance.

Research conducted in [13] and [14] utilizes music tracks to influence driving performance,

and [15], [16] shows the positive influence of music on concentration and the viability of

using music to reduce stress. In this thesis, we are interested in mental workload and its

impact on HCIs, and more specifically, BCIs. There exists a gap in how music influences

working memory, therefore we detail an experiment conducted to analyze the effects of

different types of music on mental workload, and performance of users in n-back tasks.

1.1.2 A Brief Summary of Existing Mental Workload Detection and Analysis

Frameworks

In addition to the various experiments developed to assess mental workload, recent

studies have analyzed and developed methods to measure brain activity using a variety of
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neuroimaging technologies such as Magnetoencephalography (MEG), Electroencephalogra-

phy (EEG), functional Magnetic Resonance Imaging (fMRI) and functional Near Infrared

Spectroscopy (fNIRS) [17], [18], [19], [20]. Though [21] and [22] show that a variety of phys-

iological signals that can be used to determine mental workload, neuroimaging techniques

such as fNIRS, and the recent fNIRS-EEG hybrid systems remain popular tools to quantify

it [1], [23]. To accurately analyze how different regions in the brain process working memory

task having different mental workload, we need to utilize a neuroimaging technique that

has relatively higher spatial resolution. When compared with EEG, fNIRS has more spatial

resolution, and fNIRS-EEG hybrid systems are not as portable and easy to implement as

simple fNIRS headcaps. Furthermore, previous functional imaging studies of n-back task

using fMRI [24], show significant spatio-temporal changes for working memory tasks in the

prefrontal cortex using fNIRS. Later analysis such as work in [1] confirm that fNIRS is

uniquely suited to assess mental workload, especially in the prefrontal cortex region of the

brain. An fNIRS headcap is easy to wear and it measures the hemodynamic changes within

minutes, while guaranteeing high data quality. Thus, fNIRS-based measurements of mental

workload in memory tasks are ideal for a passive BCI used to monitor workload levels.

Mental workload classification is improved as a result of better algorithms and tool-

boxes developed to analyze neuroimaging data. One such toolbox which uses data from

fNIRS to construct a functional connectivity map of the brain is the Brain AnalyzIR [25].

Functional connectivity pertains to the covariances between different brain regions during

a mental workload task. The Brain AnalyzIR utilizes the generalized linear models (GLM)

technique to model the fNIRS data as a linear regression [25]. This regression model in

time can be used to extract the functional connectivity maps of the brain during the task.

However, the Brain AnalyzIR toolbox does not model the time evolving or dynamic func-

tional connectivity of the brain. Thus, there exists a gap in our knowledge of understanding

how the mental workload affects different regions in the brain as it processes information.

A model that can describe this dynamic functional connectivity, while incorporating the
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underlying neural signals can vastly improve our understanding of how the brain processes

cognitive stress, and it can lead to better classification level of workloads on the brain.

Furthermore, a model that builds these connectivity maps from an underlying neural signal

can inherently incorporate the similarities between two trials of the same task, and the

differences between two trials of two separate tasks. To capture time evolving functional

connectivity and to reduce the dimensionality, one could use dynamic latent factor Model.

However, such a model assumes Markov dynamics which lacks long range dependencies. In

Markov dynamics based models, the time-invariance nature of the state transition matrix

yields homoscedasticity (i.e. the covariance does not evolve in time). To consider the afore-

mentioned aspects of the brain recordings, Fysche et al. [17] proposed to use Hierarchical

Latent Dictionary Model (HLDM) in MEG data. Inspired by their approach, we propose

to model the fNIRS recordings with HLDM approach. The main features are extracting the

time evolving dynamic functional connectivity of the brain and including the influence of

the underlying neural signal specific to a task irrespective of the trials. Thus, using HLDM

we extract the time evolving dynamic functional connectivity maps of the brain which can

be used to better understand how the brain processes specific tasks.

1.2 Thesis Outline

This thesis presents an approach to obtain functional connectivity maps from fNIRS

data to improve our understanding of mental workload. The first part focusses on our novel

experiment that is conducted for recording neurophysiological data during memory tasks in

presence of music. The goal is to investigate the neurophysiological response corresponding

to different mental workload in presence of different types of music. The second part

details obtaining dynamic functional connectivity on both an open access dataset and those

obtained from our experiment. A comparison of the classification accuracies thus obtained

is also presented.

4



1.2.1 A Working Memory Neurophysiological Dataset Incorporating the In-

fluence of Music

An underload or an overload of mental workload can directly result in reduced per-

formance in everyday life. Several studies have explored the idea of introducing music

to improve performance of various tasks, driving performance, and concentration during

various cognitive engagement tasks [13], [14], [15], [16]. Music especially has been shown

to influence workload in a variety of HCIs. Studies such as [15], [16] use specific classical

tracks to discern mental stress in cognitive engagement tasks. However, similar music tracks

might not effect different individuals equally, since taste in music can be varied from person

to person. Experiments conducted in [13], [14] use pre-selected participant specific music

tracks to be played during a driving task. They show the positive influence of music on

concentration and the viability of using music to reduce stress. Influence of music has also

been explored in working memory tasks [26] by listening to specific classical tracks before

performing the task. Several people utilize music background as an effective means while

performing cognitive tasks (e.g. learning, driving). To understand how music influences

cognitive performance, we designed a novel experiment with working memory tasks similar

to [1] under two different background music influences, i.e. calming and vexing specific

to each participant. Though physiological data such as electrodermal activity and heart

rate have been used before in conjunction with neuroimaging data to operate BCI [22],

[21], a collection of all the physiological signals to form a more comprehensive understand-

ing of stress during a mental workload task has not been conducted. It has been shown

that various biological signals such as skin conductance, and neural spiking activity can be

used to assess the emotional and cognitive state of the brain [27], [28], [29], [30], [31], [32].

Therefore, to gain a more comprehensive understanding of mental workload we collect data

from a broad variety of physiological signals in addition to fNIRS. This chapter details the

methods of collecting the experiment, along with the protocols and setup followed.
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1.2.2 Experimental Validation of Mental Workload Assessment Using Hierar-

chical Latent Dictionary Method

Enhancing existing models and classification techniques of mental workload holds great

potential in improving our understanding of cognitive engagement and user performance.

In this chapter, we propose to model the fNIRS recordings with a latent factor model

in order to understand and model the neural signal aspects, where factors are modeled

as Gaussian processes, during a mental workload experiment. fNIRS is a method that

determines neuronal activation patterns by detecting the amount of oxygenated and deoxy-

genated hemoglobin levels in the brain. In this chapter, we propose to model fNIRS data

with HLDM for analysis so that we can capture the dynamic functional connectivity during

different mental workload tasks. We first obtain the functional connectivity maps on a

publicly available fNIRS dataset. Secondly, we analyze our experimental dataset that uses

fNIRS on n-back memory task to explore the influence of two different types of personalized

music, i.e. calming and vexing, on cognitive stress.

By modeling the underlying neural signal factors as Gaussian processes and applying

the latent factor model to the observed hemodynamic data, we obtain a covariance matrix

representing functional connectivity of a difficulty level of the n-back task, which in turn

reflects the dynamic functional connectivity of the brain. We then utilize the extracted

covariance matrices as inputs to machine learning algorithms namely, Support Vector Ma-

chines (SVM), K-Nearest Neighbors (KNN) and Linear Discriminant Analysis (LDA) to

evaluate classification accuracies in distinguishing different levels of difficulty and observe

the affects of music on the performance of these tasks. Our classification accuracies verify

the viability of the model. The functional connectivity in mental workloads can be applied

to better understand cognitive engagement and stress, and could result in improved HCI

design.
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2 A Working Memory Neurophysiological Dataset Incorpo-

rating the Influence of Music

2.1 A Synopsis of Mental Workload Experiments

Mental workload is the measure of cognitive stress during varied working environments.

Performing different mental workload tasks requires different levels of cognitive engage-

ment and memory resources in the brain [24]. Recently, several works have explored this

idea of quantifying mental workload by implementing different neuroimaging techniques on

participants performing cognitive engagement tasks [1], [23]. Popular neuroimaging tech-

niques to detect cognitive stress are functional Near Infrared Spectroscopy (fNIRS), which

detects blood oxygenation levels by distinguishing absorption spectrum of oxygenated and

deoxygenated blood, and Electroencephalography (EEG), which detects electrical signals

of neuronal activation in the brain. Herff et al. [1] performed a mental workload experi-

ment where they collected fNIRS dataset. On the other hand, Shin et al. [23] incorporated

EEG along with fNIRS in their experiment to retain both temporal and spatial resolution.

However, hybrid fNIRS-EEG systems have the added effect of inducing participant fatigue

due to the prolonged experimental duration. For these reasons, experiments conducted

with simple fNIRS headcaps are preferred. Research conducted in [22] and [21] use phys-

iological signal such as heart rate and skin conductance to assess mental workload. But,

a complete dataset which includes multiple physiological signals along with neuroimaging

methods that can be used to gain a more thorough understanding of the body’s response

to cognitive stress, is absent. In this research, we present a dataset obtained by conducting

an experiment that collects data from multiple physiological signals along with fNIRS to

further our understanding of the affects of mental workload.

Apart from assessing mental workload using different neuroimaging techniques, several

studies have explored different means of mitigating the effects of cognitive stress and im-

prove performance. One factor which has been researched extensively is the influence of
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music in working environments, as it has been shown to have quantifiable effect in stress

reduction [33]. Several studies have explored the idea of introducing music to improve

performance while doing various tasks such as driving, and concentration during various

cognitive engagement tasks [13], [14], [15], [16] [34]. The results in these studies show the

positive influence of music on concentration and its viability to reduce stress. While [15],

[16] used specific classical tracks to discern mental stress for all participants, studies in

[13], [14] have personalized tracks chosen from a playlist for each participant. Personalizing

music tracks for each participant ensures that the music does have the desired calming or

vexing effect on them. For this reason, we have included participant-specific tracks as the

background music. Though several studies have been conducted on the influence of mental

workload while performing tasks such as driving and arithmetic tasks, its influence on work-

ing memory has not been explored. Therefore, in the experiment performed, we include

the effects of two different sessions of music namely; calming and vexing music, and discern

their influence on cognitive stress. Similar to [13], [14], participants in this experiment chose

personal instrumental music tracks for both their calming and vexing music sessions.

The following sections detail the experimental protocol, and setup along with prelimi-

nary visualization and a discussion of data obtained.

2.2 Methods

2.2.1 Experimental Setup

The experimental setup used to record physiological data is described in this section.

Functional Near Infrared Spectroscopy: The NIRSport 2 noninvasive sensors are

placed according to the positions depicted in Figure 1 on a head cap worn by the participant.

Near infrared region of the electromagnetic spectrum (620-1000nm) is scattered by biological

tissue, but it is absorbed by hemoglobin [35]. Using the amount of absorbed near infrared

light and modified Beer Lambert Law [36], fNIRS estimates oxygenated and deoxygenated

hemoglobin (HbO and HbR, respectively). This hemodynamic response reflects neuronal
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activation patterns of the brain and fNIRS uses this phenomenon to estimate the levels

of HbO and HbR using modified Beer Lambert Law [36]. fNIRS demonstrates excellent

spatial resolution with the downside of having poor temporal resolution [37]. We use the

spatial resolution of fNIRS to obtain the functional connectivity of the different regions of

brain. Optodes of fNIRS can be placed according to the 10-5 international system [38] such

that measurements can be taken from the entire scalp. Spanning the pre-frontal cortex and

the occipital areas of the brain, the fNIRS channels placed during this experiment collected

hemodynamic data pertaining to working memory capacity. The sampling frequency is 7.81

Hz.

Figure 1: Optode layout of the fNIRS sources (Red), detectors (Blue) and channels (Green)
used during the experiment.

Electrocardiography (ECG): Sensors placed on the torso as shown in Figure 2 collect

the ECG data using the MP160 BioPac system with the BioNomadix wireless devices. The

EL 503 BioPac general purpose disposable electrodes are used on the torso region. ECG is

the process of obtaining an electrocardiogram, which is the electrical signal from the heart

muscle, used to detect heart problems. The sampling frequency is 2000Hz.

9



Figure 2: Electrode placements of Electrocardiogram sensors and respiration belt on the
front torso.

Respiration: Respiration belt sensor of the MP160 BioPac system is placed on the

abdomen of the participant in contact with the torso, as depicted in Figure 2. The extent

of inhaling and exhaling that the participant experiences during this experiment is captured

by the belt sensor. The sampling frequency is 2000Hz.

Skin Surface Temperature: As portrayed in Figure 2, the skin surface temperature

data is collected from the little finger of the non-dominant hand using the MP160 BioPac

system with the BioNomadix wearable device coupled with BN-TEMP-A-XDCR BioPac

sensor. The Empatica E4 wearable wristband worn by the participant also collected skin

temperature data. The sampling frequency for BioPac is 2000Hz, and for Empatica E4, is

4 Hz.

Electrodermal Activity (EDA): Sensors from both MP160 BioPac system and Em-

patica E4 wearable wristband are used to collect skin conductance recordings. The Empatica

E4 wearable wristband is worn on the wrist of the participant. The M160 BioPac system

sensors are placed over the ring and middle fingers of the participant as shown in Figure

2. The BioPac EL507 disposable electrodes are used as the leads for EDA. EDA signals
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Figure 3: A) Sensor placements on the hand for PPG, EDA, and Skin Temperature.
B) EMG sensors placed on the participant’s trapezius muscles to detect stress
states from muscle movements.

are the changes in skin’s conductance level in response to emotional arousal. The sampling

frequency for BioPac is 2000Hz, and for Empatica E4 is 4 Hz.

Photoplethysmography (PPG): Wearable physiological sensor, BN-PULSE-XDCR

coupled with BioNomadix unit, is placed on the index finger of the non dominant hand, as

described in Figure 3 to obtain photoplethysmography (PPG) data with the M160 BioPac

system. The Empatica E4 wearable wristband, worn on the wrist of the participant also

collects PPG data. PPG is the optical means to detect changes in blood volume in a tissue.

PPG is generally used to monitor cardiac health and heart rate. The sampling frequency

for the BioPac system is 2000Hz. Sampling frequency for the Empatica E4 wristband is 4

Hz.

Electromyogram (EMG): Sensors from the MP160 BioPac system for Electromyo-

gram (EMG) recordings are placed on the participant’s trapezius muscle, as depicted in

Figure 2. The EL503 general purpose electrodes are used on the trapezius muscle, which
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has been shown to detect mental stress [39]. EMG is used to detect the health of mus-

cles and the nerves that control them. In this experiment, placement of EMG electrodes

provides data about the tensing of a participant’s shoulders and back while performing a

cognitive stress task. The sampling frequency is 2000Hz.

Eye Gaze Tracking: Tobii Pro glasses 2 are used for eye gaze tracking. participant’s

wore the glasses similar to regular eye glasses. These glasses track the gaze of the participant,

along with changes to pupil diameter.

Facereader: Facereader software, which detects emotional arousal and valence along

with emotional state of the participant based on facial expressions was used to track emo-

tional changes.

Synchronization of Multi-modal Data Recording: The experiment’s design, tim-

ing and triggers for different equipment is executed using the Chronos input device and

E-Prime software. Thus, a recording of each participant’s performance, i.e. number of cor-

rect and incorrect responses to the stimuli presented, and response time data is collected.

This data can prove valuable to measure performance with different kinds of music playing

in the background.

Along with the aforementioned signals, the Empatica E4 also collects 3-axis accelerom-

eter data which is the indication of the movement in the right hand. These signals can be

used to negate motion artifacts from the data collected by Empatica E4. The sampling

frequency for this data is 32 Hz.

2.2.2 Experimental Protocol

The experiment conducted in this research is approved by the Institutional Review Board

at the University of Houston, Houston, Texas, USA. There are 11 participants (five male and

six female) in the experiment. All participants are between the ages of 22-25. With the aim

of observing the influence of music on cognitive engagement, two sessions of similar tasks

are conducted for each participant. Session 1 is conducted with the participants choice of
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calming music playing in the background and session 2 is with participant’s choice of vexing

music playing in the background. After each session, 2 minutes resting period is provided.

n-back Task: The n-back task performed by the participants in this experiment is a

working memory experiment which measures the mental workload that the participant

experiences during a simple memory recalling task. In an n-back task, the participant is

presented with a series of stimuli displayed one at a time, and the participant has to identify

if the currently displayed stimuli is the same as the nth previous one. As is evident, the

difficulty level increases with n, since the participant has to recall more of the stimuli with

larger values of n.

Each session included 8 trials each of the two n-back tasks. In this experiment, we use

letters as stimulus, similar to [1], [23]. While studies [1], [23] perform 10 trials for each

n-back task for working memory experiments, we have the participants performing 8 trials

of each n-back task. During the initial trials of our experiment, the participants displayed

signs of fatigue after 30 minutes of performing the experiments, and having 10 trials in

our experiment considerably exceeded the total time. Hence, to avoid participant fatigue,

we designed the experiment with 8 trials of each task. The two tasks in this experiment

are the 1-back, and the 3-back tasks. Since in 1-back task participant has to recall only

the previous stimuli, the expected cognitive stress of the participant is low for this task.

Whereas the stress while performing the 3-back task is high as the participant has to recall

3rd previous stimuli. We chose to perform multiple trials of these two n-back tasks in this

experiment to make sure that the participant does not experience fatigue over the course of

the experiment. Choosing these two tasks also has the added advantage of showing different

physiological reactions, as their corresponding stress levels are varied. At the beginning of

each trial, we show a 5 seconds instruction describing the task. This display described

the task (e.g. 1-back or 3-back task) that the participant would be performing. Every

trial consisted of 22 stimuli. For each stimuli, a letter is displayed for 0.5 seconds followed

by a resting cross for 1.5 seconds. Hence, each trial had a total duration of 49 seconds
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[instruction time 5 seconds + (stimulus display time 0.5 seconds + resting cross display 1.5

seconds)×22 trials = 49 seconds]. In each trial, 30% of the stimuli are a target. The trials

of each n-back task are randomized. At the end of each trial, a 10 second RELAX segment

is presented where a resting cross is displayed on the screen. After 8 trials (halfway mark

for each session), a 20 second RELAX section is presented where a resting cross is displayed

on a smart 65 inch TV screen connected via HDMI to a laptop. The data is collected on

a separate laptop connected to all the devices. The entire duration of each session is 964

seconds [each trial duration 49× number of trials 16+ inter trial rest period 10× number of

trials16+ RELAX period 20 = 964 seconds] which is approximately 16 minutes. After each

session, there is a 2 minute relaxation break where the participant is allowed to repose. A

relaxation cross is displayed on the screen during this time. Figure 4 describes the timing

of one session with 16 randomized trials.

Figure 4: Session representation of n-back tasks with multiple trials. Each trial will consist
of 22 stimuli presented to the participant.

The participants are seated comfortably wearing the required noninvasive sensors, and

a display screen placed approximately 1-2 meters in front of them. The only movement

required of the participant is to indicate whether the stimulus is a target or not, by pressing

two buttons on a Chronos Keypad, the target button and the non-target button. The

participants are required to press either one of the buttons for each displayed stimulus. The

correct and incorrect responses are also recorded.

In total the experiment took, a total of 2168 seconds [calming session duration 964+ inter
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session break 120+ vexing session duration 964+ after session resting period 120 = 2168

seconds], i.e. approximately half an hour.

2.3 Results

During the experiment, we successfully obtained all the physiological recordings with

fNIRS analysis. Figure 5 is a representation of the deoxygenated and oxygenated hemoglobin

concentration for participant 6, in the calming music session for channel 2. The red line

indicates in concentration of HbO and the blue line indicates concentration of HbR. Figure 6
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Figure 5: Portion of fNIRS oxygenated and deoxygenated hemoglobin concentration data
from channel 2 during the calming music session.

shows three physiological signals, namely respiration, skin temperature, and EDA collected

using Biopac MP160 from participant 6 as an example. The blue background indicates

the initial baseline period, The green background indicates the calming music session, and

the red background represents the vexing music session. The figure shows variations of the

signals during different periods of the experiments. Figure 7 shows 20 seconds of ECG and

EMG signal collected for participant 6 during the experiment. The signals displayed are

extracted from the initial baseline period before the starting of the experiment. We can

observe the ECG signals corrupting the collected EMG signals.

We consider and analyze physiological data from nine of the eleven participants, since

two participants did not complete the entire experiment. Figure 8 shows all the EDA
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Figure 6: The sub-panels from top to bottom shows respiration signal, skin temperature,
and EDA signal for participant 6, respectively. Color coded backgrounds represent
the initial baseline period (blue), calming (green), and vexing (red) music sessions.

signals from nine participants out of eleven during calming and vexing music sessions. We

obtain the mean EDA signal by taking the mean of these nine EDA signals. We discarded

EDA signals from participants 1 and participant 4 in this figure because of incomplete data

collection. Figure 8 also represents the mean EDA signal. Similarly, Figure 9 shows all the

skin temperature signals from nine participants out of eleven participants. We discard the

same two participants for similar reason. Figure 9 also shows the mean skin temperature

signal obtained from these nine participants.

Figure 10 represents box-plots for means and variances obtained from different phys-

iological signals from the nine participants in three different sessions, i.e. calming music

session, vexing music session, and two minute relaxation period in between two music ses-

sions. In Figure 10, the first subplot represents the box-plot denoting the distribution of

the means of the EDA signals obtained from each of the nine participants. Similarly, the
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Figure 7: Example of collected raw EMG and ECG signals for participant 6, during the
initial baseline period displayed for a duration of 20 seconds for participant 6.

second subplot in Figure 10 represents the box-plot denoting the distribution of the means

of the skin temperature signals obtained from each of the nine participants during the three

sessions of interest. The third and fourth subplots in Figure 10 represent the distributions

of the variances of EDA and skin temperatures in different sessions. The first and third

box-plot in Figure 10 visualizes how EDA, i.e. sweat secretion activity is changing in order

to cool the body in response to varying metabolism during the three sessions, i.e. calming

music session, vexing music session and two minute relaxation period in between two music

sessions. On the other hand, the second and third box-plot in Figure 10 represent the body

temperature variations as a combined result of variations in the body’s metabolism as well

as the body’s cooling effect. The fifth subplot in Figure 10 corresponds to the distribution

of the respiration variances in all nine participants for all three sessions. This is a represen-

tation of how the variations in the amplitude of the respiration are distributed in different
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Figure 8: EDA data for the calming (green background), RELAX (white background), and
vexing (red background) music sessions. Blue lines are data from all the partici-
pants, the black signal represents the mean EDA from all the participants.

sessions. The last subplot in Figure 10 represents the variance in the EMG signal collected

from the back of the participants during the three different sessions.

Usually, there are some differences in the distribution plots in Figure 10. However,

exclusive visual interpretation from the box-plot might be misleading. Therefore, we per-

formed statistical analysis among all the distributions. We performed two sample t-tests

between calming music vs relaxation, calming music vs vexing music, and between vexing

music vs relaxation for each of the subplots. The t-test is performed considering the null

hypothesis that the two distributions come from independent random samples from normal

distributions with equal means and equal but unknown variances. None of the statistical

analyses could reject the null hypothesis except for the two distribution of the variances in

the skin temperature in calming music and relaxation. Our statistical analysis shows that

the two distribution of the variances in the skin temperature in calming music and that of

relaxation come from different distributions with a p-value of 0.0029. Figure 11 also shows

the paired differences of means of EDA, variances of EDA, means of skin temperature, and

18



Figure 9: Skin temperature data for the calming (green background), RELAX (white back-
ground), and vexing (red background) music sessions. Blue lines are data from
all the participants, the black signal represents the mean skin temperature from
all the participants.

variances of the skin temperature between the calming and the vexing music sessions for

each participant. We performed the Wilcoxon signed-rank t-test, and found a significant

difference between the means of EDA during calming music and the means of EDA during

vexing music with p-value of 0.0156 in the paired test.

2.4 Discussion

In this section, we discuss the preliminary analysis results on the neurophysiological

signals obtained from our experiment.

We note that Figure 5 shows the changes in concentration in the HbO and HbR during

a portion of the calming music session. There is also an oscillating change between the HbO

and HbR concentrations, indicating periodic hemodynamic changes. Higher HbO level at

the beginning might indicate more oxygenated blood than deoxygenated blood at that time.

While the lower concentration of HbO towards the end indicates lower oxygenated level. In

Figure 6, we observe the EDA signal being more tapered during the calming music session,
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Figure 10: Clockwise from top; distributions of means of EDA, means of skin temperature,
variances in EDA, variances in skin temperature, variances in respiration, and
variances in EMG for the calming music, relaxation, and vexing music sessions.

whereas it presents several spikes during the vexing music session for the specific participant

6. This is consistent with the expected results, as performing the n-back tasks with vexing

music playing in the background can increase the mental workload. However, this might

not be a general case for all the participants. In order to check the consistency of this

pattern, we plotted all the EDA signals from nine participants in Figure 8. While there is

a difference in the patterns of EDA in a different session, it is not consistent among all the

participants. For instance, for some participants, the EDA activity is higher in the vexing

music session, when compared to the calming music session. Though this consistency is

not immediately visible, this might be an indication of interpersonal variability in the EDA

response. We also derived the mean of the EDA signals. We can see that the mean signal

is smaller in the vexing music session than the calming music session. This might indicate

that the participants are less likely to concentrate on the task resulting in reduced cognitive

engagement and stress. Figure 10 shows the distribution of the mean and variances of EDA
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variances of EDA, means of skin temperature, and variances of the skin tempera-
ture between the calming and the vexing music sessions within each participant.

in three different sessions. We performed pooled t-test between the different distributions.

However, no significant difference is found. As pooled t-test might not reflect the changes

due to the interpersonal variability, we performed the paired t-test on the means of EDA

during calming and vexing music. We observe a significant difference in the means of EDA

during calming and vexing music. From the box-plot in Figure 11, we note that the mean

EDA in calming session is different than the mean in vexing music.

In Figure 6, we observe that the skin temperature signal is slightly higher during the

calming music session than that of the vexing music session. One might think this is counter-

intuitive as more temperature could be an indication of increased heat generation due to

metabolism corresponding to the stress that has been induced in the session. However, the

temperature is the combined result of increased metabolism and the cooling effect. As there

is less EDA activity during the calming session, the less cooling gave rise to higher body

temperature. Moreover, this pattern might not be consistent with different participants.

Therefore, we plot all the temperature signals in Figure 9 and derive the mean signal. It

shows the mean temperature during vexing music is slightly lower. We also observe the

distribution of the skin temperature during three sessions. In Figure 10, the second and

the fourth subplots correspond to the distributions of the temperature. From the pooled
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statistical analysis, we observe the two distributions of the variances in the skin temper-

ature during calming music and that of relaxation come from two different distributions.

Any statistical significance has not been observed in the paired analysis. This is an indi-

cation of maintaining the body’s homeostasis during different stress conditions. Although

the difference has not been observed between the calming and vexing music sessions, which

are more longer in duration, the difference has been observed with statistical significance

between calming music sessions and relaxation period. This indicates a sudden decrease

in temperature. One possible explanation is that the sudden decrease in the mental work-

load task leads to decreased metabolism. However, higher cooling rates caused by higher

skin moisture resulted during the calming music session lead to a sudden drop in the skin

temperature.

The respiration signal also shows a cursory difference between the two music sessions for

participant 6 in Figure 6. During a majority of the calming music session, the respiration

signal stays nearly constant, whereas in the vexing music session, we observe a marked

increase in the fluctuations. This indicates that the participant had even breaths during

the calming music session and more erratic breathing during the vexing music session.

We calculated the variances during calming music session, vexing music session, and the

relaxation to calculate this fluctuation. However, a significant difference has not been

observed between calming and vexing music sessions in both the pooled t-test and the

Wilcoxon signed-rank test. We also did not find any statistical difference in the EMG signal

in our preliminary statistical analysis. The future directions include a more systematic

analysis for respiration, EMG, and ECG data to obtain meaningful information from them.
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3 Experimental Validation of Mental Workload Assessment

Using Hierarchical Latent Dictionary Method1

3.1 Background of Mental Workload Analysis

Human-computer interfaces (HCI) have been extensively researched due to their myriad

applications [41, 42]. The idea of interacting with systems directly via neural signal factors

opens avenues of applications such as improving communication with the differently-abled,

detecting cognitive engagement in online learning [43]. An important aspect of any HCI is

to assess user’s mental workload [7]. Mental workload can have direct negative consequences

in reducing the performance of the HCI [44]. It is therefore important to understand and

classify the amount of mental workload during a cognitive task [7].

One of the most widely used methods to quantify mental workload is Functional Near

Infrared Spectroscopy (fNIRS), which obtains amounts of deoxygenated and oxygenated

blood data in brain regions in a non-invasive way. Biological tissues scatter light from the

near infrared region of the electromagnetic spectrum (620-1000nm), but it is absorbed by

hemoglobin [35]. Using the amount of absorbed near infrared light and modified Beer Lam-

bert Law [36], fNIRS estimates oxygenated and deoxygenated hemoglobin (HbO and HbR,

respectively). This measurement of hemodynamic responses indicates neurons in regions of

the brain that are consuming more oxygen because of neuronal activation. Therefore fNIRS

measurement can be considered as an indirect way of measuring neuronal activations in

different regions of the brain. fNIRS uses this phenomenon to estimate the levels of HbO

and HbR using modified Beer Lambert Law [36]. The non-invasive nature of fNIRS coupled

with the its portability make it one of the few easy and functional neuroimaging technique

to obtain mental workload datasets.

Established fNIRS analysis techniques such as generalized linear models do not model

1This chapter was presented in part at the proceedings of IEEE Biology and Health Infor-
matics Conference [40].
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the dynamic functional connectivity and implement other properties such as heteroscedas-

ticity and obtaining a functional connectivity map for one specific n-back task. In this

study, we apply the hierarchical latent dictionary method (HLDM) [17] to model the time

varying functional connectivity. Additionally, we incorporate several characterstics with

HLDM, such as reducing data from spatially localized redundant sensors, incorporate trial

to trial variability while also modeling the underlying neural signal factors for one specific

n-back task. We model fNIRS with HLDM to improve classifications of between different

mental workload tasks. We obtain hidden latent factors from the hemodynamic response

of fNIRS on two datasets. Firstly, it is applied on the open-access dataset from [1]. The

second dataset on which we applied HLDM, is data collected from a similar experiment that

we conducted, which includes two different types of music, namely relaxing and disturbing

music and to perceive their impact on the mental workload (see Chapter 2 for details). The

shared covariance matrix for each of the n-back tasks, for each participant is extracted to

obtain definite results of differences in the neuronal pathways when various n-back are per-

formed. Multiple machine learning algorithms namely; support vector machines, k-nearest

neighbours method and linear discriminant analysis are used to classify these tasks using

the features extracted from the functional connectivity maps derived by the application of

HLDM.

3.2 Methods

In this section, we first briefly discuss the datasets and our novel experiments. We outline

the mathematical formulation and introduce the algorithm to analyze the hemoglobin data

from two datasets.

3.2.1 Experiments

Experiment 1 (Dataset 1 ): We use the publicly available fNIRS data collected from hu-

man participants while performing 3 n-back tasks [1]. There are 10 trials for each task with
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the main focus on the cognitive task. Each trial consisted of a 5-second instruction, followed

by 22 letters with 0.5 seconds for displaying the letter and 1.5 seconds for displaying the

resting cross and for the participant to respond to the given stimulus [1]. This resulted in a

total of 44 seconds of stimulus time and a 15 second relaxation break. Each trial had 3± 1

stimulus and after every 15 trials a break period of 150 seconds is incorporated. Hemody-

namic responses are measured using an Oxymon Mark III by Artinis Medical Systems and

two wavelengths of 765 nm and 856 nm are used to measure concentration changes in HbO

and HbR, respectively [1]. The experiment made use of four transmitter and four receiver

optodes placed on the prefrontal cortex region of the brain such that each detector measures

time multiplexed data from two sources thus resulting in a total of 8 channels of HbO and

HbR. The sampling frequency is 25 Hz. Here we refer to the data obtained in [1] as Dataset

1. The analysis conducted on this dataset is an extension of the study in [40].

Experiment 2 (Dataset 2 ): This dataset is from the experiment we conducted to collect

fNIRS and physiological signals while performing n-back tasks (see Chapter 2 for complete

details). To explore the effects of different kinds of music on the mental workload, back-

ground music of the calming and vexing type are played while the participants perform the

n-back tasks. Only 1-back and 3-back tasks are performed in this experiment in order to

further comprehend the difference between the lowest and highest difficulty levels. Two

sessions of n-back experiment are conducted on 11 participants with five male and six fe-

male participants. Though fNIRS data has been collected from 11 participants, only 8 are

available since two participants did not complete the experiment and the fNIRS data was

corrupted for the third participant. There are two sessions in our experiment, session 1 and

session 2, which are conducted similarly except for the different music playing in the back-

ground. Session 1 had calming music, and Session 2 had vexing music in the background.

Each session had a total of 16 trials; 8 of 1-back and 8 of 3-back. Further details of the

protocol, and setup of this experiment are described in Chapter 2. The dataset thus gener-

ated from this experiment is referred to as Dataset 2. We asked each participant to select
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calming music tracks and vexing music tracks for their experiment. Thus we are making

sure that the music tracks have the desired effect on the participants. We also collect other

physiological signal data apart from fNIRS, such as electrodermal activity, respiration, heart

rate, skin temperature, etc (see Chapter 2 for further details).

Table 1 presents the information of the two datasets in a compact manner. Each n-back

task has tr number of trials and in both datasets, for p number of channels, the observation

matrix ytr,n(t) is p × 1 and the task-specific covariance matrix has a dimension of p × p.

The mean dimensions are trial-specific and hence are of dimension tr × p, i.e. tr trials per

n-back task for p channels.

Table 1: Dataset Information [1].

Dataset participants Channels ytr,n(t) Functional
Dimension Connectivity Dimension

Dataset 1 10 8 8× 1 8× 8
Dataset 2 8 22 22× 1 22× 22

3.2.2 Modeling

Processing data from a large number of channels can be challenging. The computational

load and time increase as more channels are considered. Additionally, there are redundancies

in the information in large number of channels that can be reduced. HLDM decreases the

computational load by hypothesizing that the observed signals originate from hidden latent

variables that are of lower dimension as compared to the observation matrix. We also obtain

covariance matrices that evolve in time. This describes the dynamic functional connectivity

and ameliorates the time-varying connections between different regions in the brain for

different tasks. HLDM incorporates this time evolving dynamic nature of the covariance

matrices by considering that the latent factors also evolve in time. Another important

consideration is obtaining the underlying neural signal factors that do not vary from trial

to trial and specific to a particular mental workload task. HLDM obtains this by considering

them as Gaussian processes and linking them to the hidden latent factors hierarchically. The
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following subsections describe in detail how we model the aforementioned properties.

Gaussian Processes: Gaussian process is a probability distribution over a function f :

R→ R, belongs to a Gaussian process G(m, q) if

p(f(t1), f(t2), f(t3), · · · , f(tu)) ∼ N (µ,Q), (1)

where R represents real numbers and N is the normal distribution [45],

µ = [m(t1),m(t2), · · · ,m(tu)] and Q are the mean and kernel functions of the Gaussian

process. In HLDM, underlying neural signal factors are modelled as Gaussian processes.

For the Gaussian process f , B = [t1, t2, · · · , tu] are values where t1, t2, · · · , tu are arbitrary

points in R, and the vector [f(t1), f(t2), · · · , f(tu)] forms a multivariate normal distribution

of dimension u. If we consider the mean of the process to be 0, then

f(tw) ∼ N (0, Qw,e), (2)

Qw,e is the u × u Gram Matrix or covariance matrix between all possible pairs of (tw, te)

[45]. These covariance matrices reflect the extent of similarities between different points in

a signal.

Mean and Kernel Functions: Based on equation (2), by assuming zero-mean Gaussian

process, the Gaussian process will be entirely defined by its variance, which can be rep-

resented as a kernel function Q. The kernel function essentially gives us the covariance

between values at (tw, te). A Gaussian process can have a kernel function like squared

exponential kernel that results in a smooth, infinitely differentiable functions, or have a

non-differentiable function from a Brownian kernel [46]. The kernel function describes how

similar one data point is with another data point. Exponential kernel function is defined as

follows:

qh(tw, te) = dhexp(−κ ‖ (tw − te) ‖22), ∀ h ∈ {0, 1}, (3)
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where q0, q1 are kernel functions, d0, d1 are scale hyperparameter, and κ is bandwidth pa-

rameter.

Latent Factor Analysis: The latent factor model relates a set of observable variables

to a set of latent factors with a lower dimension [47]. Modelling the observed data to be

expressed as the functions of a number of latent or hidden factors helps in reducing the

high dimensionality of the fNIRS data. It also isolates the unobserved latent variables

which define as brain’s neural signal factors. The observed multi-channel fNIRS signals

are modeled as linear combinations of latent factors in addition to an error term. This

will result in finding the covariance matrices that reflect the relationships among many

variables in terms of a few underlying hidden random quantities. Designing the observation

matrix ytr,n(td) as a p× 1 matrix wherein each element represents data from one sensor at

a particular discrete point in time td,∀d ∈ {1, ..., τ} where τ is the final time for one trial

of a n-back experiment and the time points being represented by td. Assuming ytr,n(td) ∼

Np(0,Σ), the latent factor model can be written as

ytr,n(td) = Cn(td)x
tr,n(td) + ε(td), (4)

where xtr,n is the k dimensional latent factor with k << p, Cn is the factor loading matrix,

and ε is the Gaussian noise factor, ε ∈ Np(0,Σ0), Σ0 is a diagonal matrix with variance as

the diagonal elements. Σ(td) = Cn(td)× CTn (td) + Σ0(td) is the p× p covariance matrix of

ytr,n(t) that denotes the time evolving functional connectivity [48], [49], [50].

Derivation of Σ- From equation (4), covariance of ytr,n(td); Σ, will be

Σ = E[(Cn(td)x
tr,n(td) + ε(td))× (Cn(td)x

tr,n(td) + ε(td))
T ], (5)

where E stands for the expectation operation. Further solving the equation, we get,

(6)Σ = E[Cn(td)x
tr,n(td)x

tr,n(td)
TCn(td)

T + Cn(td)x
tr,n(td)ε(td) + ε(td)Cn(td)

Txtr,n(td)
T

+ ε(td)
T ε(td)].
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Since xtr,n(td) is independent and identically distributed, E[xtr,n(td)x
tr,n(td)

T ] is a k×k

identity matrix and E[xtr,n(td)ε(td)] is reduced to zero. Therefore, equation (6) reduces to,

Σ = Cn × CTn + Σ0, (7)

where Σ0 = E[ε(td)
T ε(td)].

Dynamic Latent Factor Model: A dynamic latent factor model assumes Markov evo-

lution for the latent factors xtr,n, with time-invariant parametrization [51], [52]. Hence, the

stationary process xtr,n(td) follows the equation:

xtr,n(td) = Atr,n(td)x
tr,n(td−1) + vtr,n(td), (8)

where Atr,n is the transition matrix, vtr,n(t) ∈ Nk(0, Ik) is the Gaussian noise factor, Ik is

a k dimensional identity matrix. Characterizing the observed signal with a dynamic latent

factor model provides us with the mathematical framework to derive the time-evolving

covariance matrices.

Hierarchical Latent Factor Model: Building upon the latent factor model, the hier-

archical latent factor model represents the factors so that they evolve non-parametrically,

thus capturing the long range dependencies between data points [17]. This will also result in

a time-evolving covariance matrix which represents the dynamic functional connectivity of

different brain regions when participants are performing memory-related tasks. The shared

covariance obtained for a single n-back experiment, irrespective of the number of trials,

reflects the functional connectivity map of the brain for that specific experiment. The p

dimensional observation matrix ytr,n(td) for trial number tr, task n, at discrete point time

td with trial specific mean µtr,n(td) and task specific covariance Σn(td) can be written as,

ytr,n(td) ∼ Np(µtr,n(td),Σ
n(td)). (9)
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Instead of equation (8) the latent factors xtr,n(td) are modelled as k latent dictionary

functions φtr,n(td) each of which is the summation of a trial specific random function [53],

[48], and a k dimensional noise component vtr,n(td) :

xtr,n(td) = φtr,n(td) + vtr,n(td). (10)

Knowledge sharing within this latent space is done by hierarchically coupling the trial

specific dictionary functions around the mean φtr,n0 (td):

φtr,n(t) = [φtr,n1 (t), · · · , φtr,nk (t)]. (11)

Here, we consider the squared exponential kernel function defined in (3). The following

equations describe the hierarchical coupling by equating the mean of the child processes to

the parent process φtr,n0 (t) [17]:

φtr,nj (t) ∼ GP (φtr,n0 (t), q1), (12)

φtr,n0 (t) ∼ GP (0, q0). (13)

where GP refers to a Gaussian process, q0, q1 are the corresponding kernel functions. This

hierarchical linking is used to obtain the underlying neural signal that is assumed to be

similar across trials. Thus, the obtained covariance matrices will reflect the underlying

neural signal that is hierarchically coupled with the latent dictionary functions. Latent

factors do not evolve at a constant rate throughout the duration of the task. This evolving

variability across time, also known as heteroscedasticity, is captured by making the factor

loading matrix Cn to be the time-evolving and weighted combination of smaller dimensional

latent dictionary functions:

Cn(t) = Θn(t)ζn(t), (14)
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where Θn ∈ Rp×L is distributed according to a conditionally Gaussian shrinkage prior and

ζn(t) is a Gaussian process with zero mean and kernel function q0.

The resulting trial specific mean µtr,n(td) and task specific covariance Σn(td) will be as,

µtr,n(td) = Θnζn(td)φ
tr,n(td), (15)

Σn(td) = Θnζn(td)ζ
nT (td)Θ

nT + Σn
0 , (16)

where Σn
0 is a diagonal matrix with diagonal elements being the covariances. As described

in [54] and [55], the estimation algorithm using Bayesian non-parametric modeling is further

explored for the fNIRS application.

3.2.3 Estimation

The following steps detail the formulation of the algorithm. We first assume a prior

distribution over Θn from equation (14). To achieve reduced computational complexity, we

impose a prior that can reduce a majority of the elements to zero. We then model and sample

the dictionary function and the noise parameter φtr,n and vtr,n(td) from equation (10). Then,

using these dictionary function we model and sample the underlying neural signal as the

child process φ0,n(t1:τ ) from equation (13). Then, we model the latent covariance dictionary

function ζn from equation (14). Now that we have all the parameters in equation (13), we

can find Σn
0 . The last step is to update the Θn values.

Step 1: Selecting Priors- Our first step is to model Θn, from equation (14) by imposing

a Gamma distribution prior [17] on Θn such that a larger number of elements of Θn will be

close to zero. This helps in reducing the computational complexity of the model. We then

chose L, i.e. the number of columns in Θn, to be greater than the number of latent factors

k. As suggested in [48], we use the shrinkage prior

Θn
i,l|χi,l, θl ∼ N (0, χ−1

i,l , θ
−1
l );χi,l ∼ Ga(3/2,3/2), (17)
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δ1 ∼ Ga(a1,1), δh ∼ Ga(a2,1), h > 2, θl =
l∏

h=1

δh, (18)

where Ga refers to the Gamma distribution. Thus, taking a2 > 1 leads to δh being greater

than 1 in general, which leads to θl tending to infinity with greater l[17], [48]. This process

shrinks the elements of Θi,l to zero for larger l.

We also specify an independent inverse Gamma prior on the diagonal elements of Σn
0

σ−2
i,n ∼ Ga(aσ, bσ); i ∈ {1, 2, 3, ..., p}. (19)

Step 2: Block Sampling φtr,n and vtr,n(td)- After modeling Θn we model and up-

date each dictionary function φtr,n from its posterior by marginalizing out vtr,n(td) and

cycling through each φtr,nm ,m ∈ {1, 2, 3, ..., k}. This step calculates the posterior compu-

tations to obtain the dictionary functions. For a single trial tr of total Jn trials of one

n-back task, we calculate each dictionary function φtr,nm from the conditional posterior given

ytr,n(t), φtr,n6=m(t1:τ ), φ0,n
m (t1:τ ),Θn, ζn,Σn

0 [where φtr,n6=m(t1:τ ) is the set of latent dictionary func-

tions φtr,ne such that e 6= m] as,

φtr,nm (t1:τ )|ytr,n(t), φtr,n6=m(t1:τ ), φ0,n
m (t1:τ ),Θn, ζn,Σn

0 ∼ Nn

(
B1

...

Bτ

 , Σ̂n
φ

)
, (20)

Σ̂−nφ = Q−1
1 + diag(D1, · · · , Dτ ), (21)

where

Bd = [C(td)]
′
.mΣ−n(td)ŷ

tr,n(td) + φ0,n(td); ∀d ∈ {1, · · · , τ}, (22)

ŷtr,n(t) = ytr,n(t)−
∑
r 6=l

[Cn(t)]′.rφ
tr,n
r , (23)
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and

Dd = [Cn(td)]
′
.mΣ−n(t)[Cn(td)].m; ∀d ∈ {1, · · · , τ}. (24)

Based on ytr,n(t), φtr,n(t),Θn, ζn, and Σn
0 we independently compute vtr,n(t) as,

vtr,n(t)|ytr,n(t), φtr,n(t),Θn, ζn, and Σn
0 ∼ Nk(Cn(t)Σ−n0 ytr,n(t), I + C

′
n(t)Σ−n0 Cn(t)), (25)

where

ŷtr,n(t) = ytr,n(t)− Cn(t)φtr,n(t). (26)

Step 3: Sampling φ0,n(t1:τ )- Now, the underlying neural signal factors that is common

for all trials (i.e. the mean of the child processes, φ0,n
m (t1:τ )) is calculated as,

φ0,n
m (t1:τ ) ∼ Nn(Ω−nψnm,Ω

n), (27)

Ωn = Q−1
0 + Jn ×Q−1

1 , (28)

ψnm = Q−1
1

Jn∑
tr=1

φtr,nm (t1:τ ). (29)

Step 4: Sampling ζn- Model the L × k latent covariance dictionary functions ζn from

equation (14) on the basis of ytr,n(t), φtr,n(t), vtr,n(t),Θn, ζn6=l,m,Σ
n
0 (ζn6=l,m being the set of

latent covariance dictionary elements ζne,g such that e, g 6= l,m),

ζnl,m(t1:τ )|ytr,n(t), φtr,n(t), vtr,n(t),Θn, ζn6=l,m,Σ
n
0 ∼ Nn

(
Σ̂ζ ×

Jn∑
tr=1



H1

.

.

Hd

.

.

Hτ



, Σ̂ζ

)
, (30)

33



where

Hd = xtr,nd,m

p∑
i=1

(Θn
i,l)σ

−2
i,n ŷ

tr,n
i (td); ∀d ∈ {1, · · · , τ}, (31)

Σ̂−1
ζ = Q−1

1 +

Jn∑
tr=1

diag

(
(xtr,nm (t1))2 ×O, · · · (xj,nm (tτ ))2 ×O

)
, (32)

O =

p∑
i=1

(Θn
i,l)

2σ−2
i,n , (33)

and

ŷtr,ni (td) = ytr,ni (td)−
∑

(r,s)6=(l,m)

Θn
i,rζ

n
r,s(td); i = 1 : p. (34)

Step 5: Sampling Σn
0 - Now, to find Σn

0 , consider

Θn
i. = [Θn

i,1, · · · ,Θn
i,L], (35)

and

xtr,n(t) = φtr,n(t) + v(t). (36)

Then, as the diagonal elements of Σn
0 have an inverse Gamma prior according to equation

(16), the standard conjugate posterior can be derived as,

σ−2
i,n ∼ Ga(aσ

n× tr
2

, F ), (37)

where

F = bσ +
1

2

Jn∑
tr=1

tτ∑
td=t1

(ytr,ni (t)−Θn
i.ζ

n(t)xtr,n(t))2. (38)

Derivation of Inverse Gamma Posteriors- We derive the conditional posteriors of

the diagonal elements of Σn
0 having an inverse Gamma prior [56]. For an independent and

identically distributed xi the conditional posterior can be derived as,

xi|µ, σ2 ∼ N (µ, σ2), (39)

34



where

µ|σ2 ∼ N (µ0, n0σ
2), (40)

and

σ2 ∼ Ga(α, β), (41)

where µ0 is the initial mean, and n0σ
2 is the initial variance.

As derived in [56], expressing the joint density P (σ2, µ|x) as,

P (σ2, µ|x) ∝ P (σ2)× P (µ|σ2)× P (x|σ2, µ). (42)

Equation (41) leads to a Gamma posterior for σ2 as,

σ2|x ∼ Ga
(
α+

n

2
, β +

1

2

∑
(xi − x̄)2 +

nn0

2(n+ n0)
(x̄− µ0)2

)
. (43)

For a complete derivation refer to Chapter 9 in [56]. Equation (37) and (38) can be derived

in a similar manner.

Derivation of Gibbs Sampler- We derive the posterior distributions for sampling

Gaussian Process dictionary elements as detailed in [55]. Combining equations (4) and (14)

we have,

ytr = Θ



ζ11(xi)ζ12(xi) · · · ζ1k(xi)

ζ21(xi)ζ22(xi) · · · ζ2k(xi)

...

ζL1(xi)ζL2(xi) · · · ζLk(xi)


xtr + εtr. (44)

Further expanding, we get the double summation

ytr =

L∑
l=1

k∑
m=1

θi,lxtr,mζlm + εtr,i. (45)
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Conditioning on one single value ζlm equation (44) transforms to,

ytr = xtr,m


Θ1,l

...

Θp,L

 ζlm + ε̃tr, (46)

where

ε̃tr ∼ N

(
µlm ,


∑

(r,s) 6=(l,m) Θ1rxtr,sζrs
...∑

(r,s)6=(l,m) Θprxtr,sζrs

 ,Σ0

)
. (47)

Let Θ.l = [Θ1l · · ·Θpl]
′. Then, substituting in equation (46) we get


y(t1)

...

y(tτ )

 =



xm(t1)Θ.l0 · · · 0

0xm(t2)Θ.l · · · 0
...

00 · · ·xm(tτ )Θ.l




ζlm(t1)

...

ζlm(tτ )

+


˜ε(t1)

...

˜ε(tτ )

 . (48)

We define Alm = diag(xm(t1)Θ.l, · · · , xm(tτ )Θ.l). Thus, the conditional posterior distri-

bution for ζlm based on ytr,n(t), x,Θn, ζn,Σn
0 will be,


ζlm(t1)

...

ζlm(tτ )

 |ytr,n(t), x,Θn, ζn,Σn
0 ∼ N

(
Σ̃A′lmdiag(Σ−1

0 · · ·Σ
−1
0 )


ỹlm(t1)

...

ỹlm(tτ )

 , Σ̃
)
, (49)

where ỹ = y − µlm(td) and if Q is the Gram matrix, then

Σ̃−1 = Q−1 +A′lmdiag(Σ−1
0 · · ·Σ

−1
0 )Alm. (50)

Equation (48) can be derived by the standard derivations of posterior mean and variance

in [56]. As derived in [56], conditional posterior for mean of a Gaussian distribution x ∼
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N (µ, σ2), assuming a gauusian prior for the mean as µ ∼ N (µ0, σ
2
0) will be,

µpost = µ0 +
σ2

σ2 + σ2
0

(x− µ0). (51)

Similarly, the posterior for variance (σ2
post) will be,

1

σ2
post

=
1

σ2
+

1

σ2
0

. (52)

The equations (48) and (49) can be derived in a similar manner to that of equations (50) and

(51). The derivations for the Latent dictionary function φtr,nm (t1:τ ) can also be obtained in a

similar manner to the above stated derivations of the latent covariance dictionary elements

ζlm(t1); equations(44) to (51).

Step 6: Sampling Θn- Based on latent precision matrices χn, ytr,ni (t), φtr,n, vtr,n(t1:τ ), and ζn

according to the shrinkage prior stated in [48], Θn
i. is updated as,

Θn
i.|χn, y

tr,n
i (t), φtr,n, vtr,n(t1:τ ), and ζn ∼ NL(σ−2

i,n Σ̂−nΘ x̂n
′
y.,i, Σ̂

−n
Θ ), (53)

where

(Σ̂−1
Θ )n = σ−2

i,n x̂
n′
x̂n + diag(χni,1θ

n
1 , · · ·χni,LθnL), (54)

x̂tr
′

= [G1,1, · · · , Gn,1, · · · , G1,tr, · · · , Gn,tr], (55)

Gd,s = ζn(td)x
s,n
d ; ∀d ∈ {1, · · · , τ}. (56)

and

s ∈ {1, · · · , tr}, (57)

ytr,ni = [y1,n
i (t1:τ ), · · · ytr,ni (t1:τ )]′. (58)

The above steps are represented in the algorithm as follows,
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Algorithm 1 Sampling algorithm run for Jn trials, of each n-back experiment with p
channels, t1, t2, · · · , tτ discrete time points in each trial tr, and L and k as the dictionary
function dimensions. Let Qi denote the Gram matrix where each element represents qi(t, t

′)
for i ∈ {0, 1}.
1: for j = 1 : Jn do
2: for l = 1 : L do
3: Calculate φtr,n based on the equation (20) to equation (24)
4: end for
5: for t = t1 : tτ do
6: Calculating vtr,n(t) using equation (25)
7: end for
8: end for
9: for l = 1 : L do

10: Calculate φ0,n using equation (27)
11: end for
12: for l = 1 : L do
13: for m = 1 : k do
14: Calculate the L× k Latent covariance dictionary
15: function ζn using equation (30)
16: end for
17: end for
18: for i = 1 : p do
19: Using equation (35) to equation (38) find the diagonal
20: elements of Σn

0

21: end for
22: for i = 1 : p do
23: Sample Θn as in equation (53)
24: end for

3.2.4 Classification

In this section, we outline how binary classification is performed using the covariance

matrices. We obtain and analyze the covariance matrix for one participant for one task.

Recall that the covariance Σn(t) is task-specific whereas the mean µtr,n(t) is trial-specific.

The final result of a 1-back task with 10 trials for one participant will be a p × p × N

covariance matrix. This matrix represents changes in the dynamic functional connectivity

of different brain regions with respect to a given task. The obtained covariance matrix for

one task at one time point k is a p×p matrix with diagonal values as 1. For N time points,

we build a 3-dimensional covariance matrix. Since the covariance between channels 1 and 2
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is the same as the covariance between channels 2 and 1, the matrix is symmetric in nature,

i.e out of the p×p values obtained from the datasets [1] and [23], 1
2×(p2−p) are unique. We

take the mean, variance and third order central moment of these 1
2 × (p2 − p) values across

the N time points. Thus, we have a 3× 1
2 × (p2−p) features that are used for classification.

Each n-back task results in one covariance matrix.

To classify the obtained covariance matrices, we use three different supervised machine

learning algorithms namely; support vector machine (SVM), k-nearest neighbors (KNN)

and linear discriminant analysis (LDA) [45].

SVM: The SVM classifier represents the data as points in space such that separate cate-

gories are divided as clusters with wide gaps between them. For classification, we use the

quadratic SVM classifier with 5 fold cross validation.

KNN: The KNN classifier measures similarity of the data point with its “k” nearest neigh-

bors. For classification of the covariance matrices, we used a weighted KNN classifier with

the k value set to 10. For all the classifications, a 5 fold cross validation is applied.

LDA: LDA, which uses a linear combination of features to separate two labels. LDA as-

sumes both classes are distributed normally and that the covariances are identical for both

classes. This leads to a linear combination of observations for classification. A 5 fold cross

validation is used for LDA.

3.3 Results

We highlight the dimensions of covariance matrix elements denoting covariance between

channel pairs for memory related tasks like the n-back. Figures 12, 13, and 14 show a slice

of the 8×8 plot of covariance matrices for all participants in Dataset 1, 10 seconds after the

start of the trial for 1-back, 2-back, and 3-back, respectively. We see a marked difference in

the 1-back, 2-back, and 3-back, tasks. The covariances for the 1-back task indicate similar

functional connectivity across the majority of the channels. Comparing the 1-back task and
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2-back task, the changes in covariances between sensors indicate lesser covariance in the 1-

back task to the 2-back task indicating that the neuronal connectivity is no longer similar

and that different regions of the prefrontal cortex are functionally connected in processing

the 2-back task. The matrix for 3-back task shows a digression from the other two tasks,

indicating complex pathways that are dissimilar to each other.

Figure 12: The 8 × 8 plot of covariance matrix for Dataset 1 [1] representing the 1-back
task for all 10 participants, 10 seconds after the start of the task.

Figure 13: The 8 × 8 plot of covariance matrix for Dataset 1 [1] representing the 2-back
task for all 10 participants, 10 seconds after the start of the task.

Figures 15, and 16 represent the matrices from the calming music session of Dataset 2,

10 seconds after the start of the trial, for 1-back and 3-back, respectively. Moreover Figures

17, and 18 represent the matrices from the vexing music session of Dataset 2, 10 seconds

after the start of the trial, for 1-back and 3-back, respectively. We see a marked difference

between the 1-back and 3-back tasks for both music sessions, but especially for the calming
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Figure 14: The 8 × 8 plot of covariance matrix for Dataset 1 [1] representing the 3-back
task for all 10 participants, 10 seconds after the start of the task.

music session. The 3-back task map exhibits more similarities than the 1-back task. When

compared to calming music maps, vexing music has less channels with similar covariance.

Classification accuracies of the different n-back tasks in Dataset 1 between the tasks and

between each task and RELAX are summarized in Table 2 and Table 3, respectively.

Figure 15: The 22 × 22 covariance matrix for the calming music session in Dataset 2 rep-
resenting the 1-back task for all 8 participants, at 10 seconds after the start of
the task.

Figure 19 offers a clear comparison between the three n-back tasks for participant 4,

10 seconds after the beginning of the trial. Similarly, Figure 20 is a comparison between

the covariance maps obtained for the two n-back tasks for the calming and vexing music

sessions.

Table 2 refers to the classification accuracies obtained for all the 3 tasks in the dataset
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Figure 16: The 22 × 22 covariance matrix for the calming music session in Dataset 2 rep-
resenting the 3-back task for all 8 participants, at 10 seconds after the start of
the task.

Table 2: Classification accuracies for 1-back, 2-back, 3-back tasks using mean, variance and
third order moment of Σn

t .

Task Accuracy in [1] HLDM-SVM

1-back, 2-back 58.5% 65.6%
2-back, 3-back 61% 67.5%
1-back, 3-back 78.0% 75.0%

[1] and the accuracies obtained with our HLDL-SVM approach. Table 3 reports accuracies

for the three n-back tasks against the RELAX signal where the participant’s readings are

taken as baseline.

Table 4 describes the classification accuracies between the two n-back tasks in Dataset 2

with the backdrop of different music sessions. The KNN results outperformed other machine

learning algorithms’ results, hence we selected KNN for this classification. Table 5 depicts

accuracies for the two n-back tasks in the calming music session of Dataset 2 compared

with Relax trials. In this case, all three of the classification accuracies, i.e. SVM, KNN and

LDA have produced comparable results.

3.4 Discussion

Figure 12 depicts the covariance matrices of all 10 participants for the 1-back task, 10

seconds after the start of the trial. We note that though there are a few uneven arbitrary
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Figure 17: The 22× 22 covariance matrix for the vexing music session in Dataset 2 repre-
senting the 1-back task for all 8 participants, at 10 seconds after the start of the
task.

Table 3: Classification accuracies for Dataset 1, between 1-back, 2-back, 3-back, tasks
against RELAX task using mean, variance and third order moment of Σn(t)

Task Accuracy in [1] HLDM-SVM HLDM-LDA HLDM-KNN

1-back-RELAX 71.5% 75% 75% 65%
2-back-RELAX 80.3% 87.5% 95% 80%
3-back-RELAX 80.5% 87.5% 70% 75%

patterns of lower and higher covariances seen between the channels in participant 6, par-

ticipant 3, and participant 9, the overall covariance matrices are even with highly similar

values. In Figure 13, the covariance matrices of all 10 participants for the 2-back task,

taken 10 seconds after the beginning of the trial, are represented. Though the matrices

for participant 1, and participant 4 are even, similar to the 1-back task, we also see more

patterns of lower covariance and higher covariance regions. This difference in covariance is

starkly visible in the patterns formed for the covariance matrix of participant 6, participant

8, and participant 9. Figure 14 represents the covariance matrices for the 3-back task for all

10 participants, 10 seconds after the beginning of the trial. We note that, when compared

with Figure 12 and Figure 13, Figure 14 has more dissimilar values of covariance. We also

see the emergence of more uneven arbitrary patterns in the covariance maps, such as seen
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Figure 18: The 22× 22 covariance matrix for the vexing music session in Dataset 2 repre-
senting the 3-back task for all 8 participants, at 10 seconds after the start of the
task.

Figure 19: The 8 × 8 plot of covariance matrix for Dataset 1 [1] comparing between the
1-back, 2-back, and 3-back tasks for participant 4, 10 seconds after the start of
the task.

for participant 1, participant3, participant 4, participant 8, and participant 9. Thus, from

the aforementioned figures from Dataset 1, we see a steady increase in uneven arbitrary

pattern formation and differences in the covariance values between channels as the n-back

task’s difficulty level increases. The 3-back task has more patterns exhibited in the covari-

ance maps compared with the evenness of the 1-back task.

This increase in different covariance values between channels is also seen in the results

obtained from Dataset 2. Figure 15 represents the covariance maps obtained for the 1-back

task for all 8 participants, during the calming music session, 10 seconds after the start

of the trial. We note that the covariance values in 3-back task for calming music session
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Figure 20: The 22 × 22 plot of covariance matrix for Dataset 2 comparing between the
calming music session 1-back, and 3-back tasks (top row) and the vexing music
session 1-back, and 3-back tasks (bottom row) for participant 1, 10 seconds after
the start of the task.

represented in Figure 16, are uneven when compared with the 1-back task in calming music

session’s covariance maps represented in Figure 15. This can be seen in the covariance maps

of participant 3, participant 4, participant 5, participant 6, and participant 7. Figure 16,

which represents the covariance maps obtained for the 3-back task, during the calming music

session, 10 seconds after the beginning of the trial, exhibits more varied covariance maps

than in Figure 15. This could be due to the difference in the difficulty level of performing

1-back and the 3-back tasks.

Figure 17 represents the covariance maps of 1-back task for all 8 participants, 10 seconds

after the start of the trial. We note that, when compared with the calming music 1-back

covariances represented in Figure 15, the vexing music 1-back covariances represented in

Figure 17 have many more patterns in them. Figure 18 is the depiction of covariance
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Table 4: Classification accuracies for Dataset 2 between different n-back tasks using mean
and variance and different machine learning algorithms.

Task HLDM-KNN

Calm 1-back-Calm 3-back 81.3%
Vex1-back-Vex 3-back 62.5%

Table 5: Classification accuracies for Dataset 2 between different n-back tasks and RELAX
trials using mean and variance and different machine learning algorithms taking.

Task HLDM-SVM HLDM-LDA HLDM-KNN

Calm 1-back-RELAX 87.5% 87.5% 68.8%
Calm 3-back-RELAX 75% 65% 75%

matrices for the vexing music session for all 8 participants, 10 seconds after the beginning

of the trial. Similar to the differences observed between the calming music 1-back from

Figure 15 and the vexing music 1-back from Figure 17, the vexing music 3-back covariances

from Figure 18 shows more varied covariance maps than the calming music 3-back seen in

Figure 16. This increase in difference and patterns could be due to the influences of different

music backgrounds, i.e. the calming session 1-back and 3-back tasks shown in Figure 15 and

Figure 16, respectively are more even due to the calming music influence whereas Figure

17, and Figure 18 have more variations because of the influence of vexing music.

Similarly, we note the increased differences between the two different tasks’ covariance

maps in the vexing music session. Though it is harder to discern than in the calming music

session, we see the increased variations in participant 5, and participant 7 covariance maps

between Figure 17 and Figure 18. This increased variations could be due to the difference

in performing the n-back tasks. We see the comparisons more accurately in Figure 19, and

Figure 20. Figure 19 depicts the three n-back tasks for participant 4 in Dataset 1. We see

that the 1-back task is relatively even, whereas the 2-back task has some uneven patterns

and lower covariance values. The 3-back task has more arbitrary patterns. Likewise, from

Figure 20 we note that the calming music session’s n-back tasks are more uniform, whereas
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the vexing music session’s n-back tasks have more uneven patterns among the channel

covariances. This could indicate the disrupting effect of vexing music on the participant’s

brain functional connectivity. We observe the increase in unevenness between the 1-back

and 3-back task during the calming music session. However, the same cannot be observed

for 1-back and 3-back tasks in vexing music session, as the unevenness overwhelms the

difference. Uneven covariances could be the indications of the increase in difficulty level

between the tasks.

Table 2 depicts the classification accuracies between the three n-back tasks. The 1-back

task and the 3-back task have the highest accuracy, as is expected due to the differences

in their difficulty levels. The 2-back and 3-back tasks are more closer in difficulty levels,

hence the accuracy of 67.5% between them. The observed increase in unevenness of the

covariance matrices with increasing difficulty level of the n-back task, could result in these

classification accuracies. In Table 3, we classify the 3 n-back tasks against the RELAX

signal where the rest period is taken as baseline. In this case, we are able to achieve better

accuracy while distinguishing 1-back, 2-back, and 3-back, tasks against RELAX compared

with results reported in [1]. An explanation for this could be that the unevenness of the

covariance maps during the n-back tasks is more than that of the RELAX covariance maps.

Table 4 describes the classification accuracies obtained for Dataset 2 between the 1-back

and 3-back tasks for each session. As is evident from the difference in classification between

tasks during calming music session and vexing music session, there is a higher ability to

differentiate between tasks during the calming music and the vexing music session. This

could also be due to the increased unevenness in the vexing session’s covariance maps

disrupting the classification. The accuracies obtained by using KNN for the calming music

session are similar to the ones obtained from Dataset 1. In presence of vexing music, the

differences in the hemodynamic covariances between 1-back and 3-back tasks, as seen in

Figure 17 and Figure 18, are not as evident as they are during calming music session’s

1-back and 3-back task, as seen in Figure 15 and Figure 16. Therefore, the classification

47



accuracies for vexing music session are lower than that of calming music session. Influence

of calming music could be a possible reason for the increased accuracy between 1-back and

3-back tasks, comparing Table 4 with Table 2.

In Table 5, the results depict the difference between the n-back tasks and the RELAX

trials by using 3 different machine learning algorithms; namely SVM, KNN and LDA. While

the accuracies are higher between 1-back and RELAX than 3-back and RELAX during

the calming music, they are comparable to the task and RELAX classification values from

Dataset 1 in Table 3. This could also be the result of increasing unevenness in the covariance

matrices as the difficulty level n, increases. The classification accuracies obtained verify

the viability of our method for classifying mental workload. The HLDM method can be

applied to other mental workload and cognitive engagement tasks to distinguish cognitive

engagement in BCI. Though the results might be of varying strength depending on the

participant’s preference of music, an overall improvement of classification accuracy between

1-back and 3-back tasks while using calming music is evident. Although we discuss the

increase in unevenness with the increase in the difficulty level of the n-back task, and the

difference in evenness between the calming music session covariances and the vexing music

session covariances, this is an observation for limited participants, and might not represent

a general scenario. As is the case for participant 3, participant 6, and participant 9 in

the 1-back task for Dataset 1 in Figure 12, which have uneven covariance values between

channels. The same interpretation can be made for the even covariance maps of participant

1, participant 4 and participant 7 for the 2-back task in Figure 13. Figure 14 also has even

covariance maps seen in participant 3, and participant 7. These inconsistencies might be

because different people experience mental workload differently. Due to several factors such

as interpersonal variability, sensor placement variability, quality of signal acquisition, and

day to day variation of a person’s brain activity, the functional connectivity corresponding

to specific mental workload condition may vary. To overcome this, future studies should

include more accurate ways of quantifying mental workload on a case by case basis. A
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larger dataset with several participants will also lead to a better understanding of the

changes in covariance maps. This will provide a stronger understanding of the person to

person variations in mental workload experiences. Other drawbacks of this study are that

it is an offline approach. Real time fNIRS analysis will require modifications to the HLDM

method. In future this approach can be extended to a real time version such that it can be

applied to detect levels of cognitive engagement while learning in online classrooms, or to

quantify workload during a memory task being performed.
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4 Conclusion and Future Work

4.1 Conclusion

Variations in the brain’s blood oxygenation and deoxygenation reflect neuronal activa-

tion patterns and can be measured using fNIRS. In this thesis, we utilized fNIRS to obtain

insights into the dynamic functional connectivity of the brain as a function of the mental

workload. We performed a memory task-based experiment, which explores the influence of

different types of music such as calming and vexing, on different mental workloads defined

by the difficulty of the memory task. We also collect multiple physiological signals along

with fNIRS recordings in our experiment to gain a more comprehensive understanding of

the effects of mental workload. In order to obtain the evolving functional connectivity from

the experimental recordings, we model the fNIRS recordings with the hierarchical latent

dictionary model approach to extract the hemodynamic covariances in different regions of

the brain for different time instances throughout the experiment. We derived features from

the dynamic functional connectivity of the brain reflected in fNIRS data collected. Along

with our experimental data, we analyzed a publicly available dataset with fNIRS recordings

from the prefrontal cortex to investigate mental workload as. We also compared our study

with previous results.

4.1.1 A Working Memory Neurophysiological Dataset Incorporating the In-

fluence of Music

Quantifying mental workload can lead to a better understanding of the effects that un-

derwhelming or overwhelming stress has on cognitive engagement. It is therefore important

to detect, classify, and improve the mental workload of an individual. There exists the need

to develop a complete understanding of how human physiology responds while experiencing

cognitive stress. Therefore, in this study, we performed a mental workload experiment to

collect multi-modal physiological signals along with brain hemodynamic response signals
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from participants. Participants are asked to perform a working memory task with different

difficulty levels. The difficulty levels were included to ensure different levels of cognitive

engagement during the experiment. We used fNIRS to record the brain hemodynamic re-

sponse to retain a high spatial resolution. By incorporating multiple physiological signals

in the experimental data collection, we derive a rich neurophysiological dataset that can

offer a more complete comprehension of the body’s reaction to cognitive stress. Addition-

ally, there is a need to quantify the influence of music on cognitive tasks. Several studies

theorize the use of music as a positive influence that can reduce cognitive stress. In this

dataset, we incorporate the influence of music by conducting the cognitive engagement task

in two sessions-one with calming music, and the other with vexing music playing in the

background. We decided to use personalized music selected by the participants for calming

and vexing music. We performed preliminary statistical analysis on the physiological signals

as well in order to obtain an understanding of the physiological response. Our preliminary

analysis of the on the physiological signals shows a significant difference between different

conditions. We also conclude that the systematic analysis of different physiological signals

can lead to further insights into the physiological response.

4.1.2 Experimental Validation of Mental Workload Assessment Using Hierar-

chical Latent Dictionary Method

Analysis of the fNIRS signal in order to obtain insight into the brain is a challeng-

ing problem. One popular approach to obtain insight is to determine how the functional

connectivity of different regions of the brain change depending on the mental workload of

interest. In this research, we apply a novel method to model fNIRS signal with hidden low

dimensional neural factors of the brain, to investigate how the dynamic functional connec-

tivity evolves in the brain during a mental workload task. We utilize hidden latent factor

models with modeling underlying neural signal factors as Gaussian processes to obtain time-

varying covariance matrices of the memory-related tasks known as the n-back tasks. The
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covariance matrices obtained using hierarchical latent dictionary model on data collected

have demonstrated the effect of calming and vexing music on mental workload. We also

verify the variations in the different difficulty levels of the tasks reflected in the obtained

dynamic functional connectivity represented with covariance matrices, both in the publicly

available dataset and in our experimental dataset. We extracted features from the obtained

dynamic functional connectivity, i.e. time-evolving covariance matrix, to train the machine

learning model. We then use the features obtained from the covariance matrices in order to

classify different mental workloads with several machine learning algorithms, namely SVM,

KNN, and decision trees. We show our approach can successfully classify different difficulty

levels of the n-back memory tasks and discern the influence of music on these memory tasks.

Our results verify the applicability of the method and its usefulness in classifying mental

workload tasks.

4.2 Future Work

EDA, skin temperature, ECG, EMG, and respiration are the most widely used physio-

logical markers for estimating the emotional and cognitive stress of an individual. Future

avenues of work derived from this study include expanding the classification of mental work-

load by incorporating several physiological signals in addition to fNIRS. The experimental

dataset obtained and expounded in this thesis also includes mental workload tasks con-

ducted under the influence of two styles of music. Since the participants chose the tracks

that they find calming and vexing themselves, this dataset can be reliably used as a compre-

hensive physiological investigation of mental workload and its effects. Additionally, other

neuroimaging techniques such as EEG-fNIRS hybrid systems can also provide a rich dataset

to further extend our understanding of cognitive stress and its effect on performance. A

future potential direction is extending the current work by joint modeling of both EEG and

fNIRS recordings with hierarchical latent dictionary model so that both higher temporal

and spatial resolution can be obtained.
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