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ABSTRACT

The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–inhibitory

balance is a plausible mechanism that generates such irregular activity, but it remains unclear how

balance is achieved and maintained in plastic neural networks. In particular, it is not fully under-

stood how plasticity induced changes in the network affect balance, and in turn, how correlated,

balanced activity impacts the structure of the network, and, ultimately, learning. How do the dy-

namics of balanced networks change under different plasticity rules? How does correlated spiking

activity in recurrent networks change the evolution of weights, their eventual magnitude, and weight

structure across the network? To address these questions, we develop a theory of spike–timing de-

pendent plasticity in balanced networks. We show that balance can be attained and maintained

under plasticity–induced weight changes. We find that correlations in the input mildly affect the

evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations

between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable

manifold in weight space with their final configuration dependent on the initial state of the network.

Lastly, we show that our framework can describe the dynamics of plastic, balanced networks when

subsets of neurons receive targeted optogenetic input.
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4.1.1 Functional connectivity progressively decreases during repeated optoge-
netic stimulation trials. A: Repeated optogenetic stimulation of excitatory neu-
rons (green circles) could lead to increases or decreases in functional connectivity
between cells, via associative potentiation (red connections), or compensatory pro-
cesses (blue connections), respectively. B: Monkeys performed a contrast detection
task, maintaining fixation throughout the trial and reported the presence/absence of
a visual stimulus to receive a juice reward. Optogenetic stimulation (35 Hz, 10 pulses
at 10 ms width) were randomly interleaved on 50% of trials. Spike count correlations
were computed sliding a window of size 20 trials and 200 ms over trials (every trial)
and time (every 50 ms), as described in Section 4.1.1. C: Population firing rates
on laser (right) and control (left) trials across early to late trial blocks. (n = 310
units). D: Changes in firing rate were not significantly different between early and
late trial blocks (first, last 20 trials, respectively). E: Firing rate difference between
laser and mean control across all blocks of trials for all pairs of laser-responsive neu-
rons. Blocks consist of 20 trial windows, sliding every trial. F: Population mean
correlation difference (laser minus mean control trials) across all trial blocks. Red
arrow shows trial block when correlations reverse from positive to negative. G: Cor-
relations on laser (blue) and control (gray) trials across early to late trial blocks,
150 ms after laser onset. Traces and envelope show mean ± s.e.m. H: Difference in
correlations (laser minus control trials) for example sessions from each monkey, for
the time bin 150 ms after laser onset. Line shows mean, envelope shows s.e.m. I:
Example session showing baseline (200 ms pre–laser) subtracted correlations differ-
ences on control (left panel) and laser trials (trials). Same session as panel H, left. J:
Histogram showing temporal trends of shuffled pairs within each trial block for each
session on laser (blue) and control (gray) conditions. Arrowheads show median of
distributions (both are significantly different from zero, P < 0.001 Wilcoxon signed
rank test). K: Left: A potentiation index (PI) was calculated for all pairs of broad
(green) and narrow (purple) single unit pairs on control trials. Right: Example raw
cross–correlogram for one narrow-broad waveform pair on early (upper) and late
(lower) trials. L: Distribution of all PIs for all broad waveform pairs. Arrowhead
shows mean. M: Same as L, but for all broad-narrow waveform pairs. This figure
has been adapted from Andrei et al. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . 75
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4.1.2 Stimulation cycles, not frequency, leads to temporally decreasing cor-
relations. A: Follow up experiments using different stimulation frequencies. On
individual recording days (upper right, columns) monkeys performed multiple iter-
ations of the contrast detection task, with laser stimulation delivered at different
frequencies (upper right, rows; left panels). B: Distributions of frequencies included
in Block 1 (left, n = 11 sessions) and Block 2 (right, n = 11 sessions). C: All laser
stimulation frequencies lead to significantly increases in firing rates of neural popula-
tions consistently across early to late trial blocks (20 trials per block). D: Correlated
variability of neuron pairs during the first 20 trials of the first trial block of each
recording day on laser (blue) and control (black) trials. E: Same conventions as D,
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Chapter 1

Introduction

Mammalian brains are comprised of complex large–scale networks of neurons that work jointly

to process sensory information and guide behavior. They are also home to our conscious and

subconscious thoughts, feelings, and emotions. The brain is a high dimensional, complex system,

and even though we have some understanding of the function of certain brain areas and regions, we

are a long way from fully understanding how it works. Although a desire to better understand the

brain is often fueled by curiosity, there are immense potential benefits to humankind that would

follow from such understanding. The most important benefits lie in the field of medicine: studying

the brain eventually may lead to more effective treatments or even cures for incapacitating or deadly

brain diseases such as epilepsy, Alzheimer’s disease, dementia, depression, and others. Another

field fueled by developments in Neuroscience, which spans an enormous number of applications, is

Artificial Intelligence (AI) where models are frequently inspired by experimental observations from

Neuroscience.

In this dissertation, we focus on the study of the dynamics of neural networks, which could

eventually lead to better models of the brain that can be applied in other areas of Neuroscience.

In mathematics, the dynamics of a system refers to a description of its evolution in time. The

dynamics of a neural network can typically be described in terms of the activity of neurons, firing

patterns, spike train correlations (measure of synchrony), and changes in synaptic weights (when
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these are plastic).

1.1 The Dynamical Regime of the Cortex

The activity of neurons in the nervous system can be described in terms of spike patterns or firing

rates. Spiking network models, which are the focus of this dissertation, simulate dynamics at a

great level of detail since individual spikes take place over 1–3 ms. Firing rate models simulate

average activity of individual neurons or of populations of neurons. In this case, rates represent

the average number of spikes elicited in a time window.

The firing of neurons in a neuronal network may be regular or irregular [3]. Roughly, regular

spiking is predictable and characterized by a very narrow distributions of inter–spike intervals (ISIs).

The coefficient of variation of the ISIs, CVISI , is hence close to zero. Irregular spiking is harder to

predict, and ISIs have a broader distribution. For instance, a spike train with the statistics of a

Poisson process (CVISI ≈ 1) would be irregular. Neurons in the mammalian cortex typically fire in

an irregular fashion [26,50,121,127], although spiking in some areas of the neocortex and elsewhere

may be more regular [89].

A natural question that arose in the 1990’s was: What is the mechanism behind irregular firing of

cortical neurons? It was first proposed theoretically [137,138], and later supported by experimental

evidence, that irregular spiking was a consequence of balanced excitatory and inhibitory inputs [8,

12,29,41,56,61,103,104,147,151]. This question, and the proposed solutions, have been debated for

many years, but it seems safe to assume, based on experimental evidence, that cortical networks

operate in a balanced regime. However, this may not be the case for subcortical networks or cortical

networks in pathological states.

Cortical dynamics can be characterized by the distribution of firing rates across neurons, and

their tendency to synchronize. The firing rates of neurons in cortical networks range from less

than one spike per second to nearly 100 spikes per second [53, 77]. More recent experiments have

shown that firing rate distributions over neurons in several cortical areas are typically unimodal
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and heavy–tailed [68,101,117,122].

Activity of populations of neurons may be asynchronous or synchronous [3]. Neural synchrony

can be measured by spike count correlations, which are a normalized measure of co–variability in

the activity of pair of neurons. More precisely, spike count are obtained by partitioning spike trains

into equal intervals of time of fixed size (time window) and counting spikes in each time window.

The Pearson correlation coefficient between these spike counts defines the spike count correlation

between the pair of neurons. In an asynchronous regime, mean spike count correlations are very

weak. While in synchronous regimes, neurons may be strongly correlated and often tend to fire

together. Real local cortical networks may spike asynchronously [25, 34, 35] or synchronously [103,

125,126,131], depending on several conditions (e.g., awake vs. asleep, brain area, etc.).

Distributions of firing rates provide a large scale picture of the spiking in a network. When

analyzing experimental or simulated data, frequently one reduces this distribution to its first mo-

ment: the mean firing rate. The behavior (or dynamics) of the mean rate has been the focus of

many theoretical studies. In the late 1980’s, it was proposed that the rates followed chaotic tra-

jectories [128]. Others proposed multi–attractor models for rates, where random fluctuations drive

firing rate from one basin of attraction to another [17,22,28,86,87]. Here we will assume that firing

rates are fixed and stable for fixed input, and change in response to changes in the synaptic weights.

This is a simplifying assumption that seems to hold approximately in sensory cortical areas [3,94].

1.2 Dynamics of Balanced Networks

In the 1990’s, it was proposed that experimentally observed irregular spiking activity is a conse-

quence of a balance between excitation and inhibition [120, 121, 137, 138]. This led to the devel-

opment of a class of models called balanced neuronal networks. Early theoretical work on such

networks focused on irregular, asynchronous dynamics, with large networks exhibiting vanishing

correlations [112, 137, 138]. However, more recent extensions have shown how correlated dynam-

ics can be generated both endogenously and exogenously, while preserving irregular single cell
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activity [10, 27, 69, 84, 93, 95, 116, 123, 145], showing the existence of both asynchronous and corre-

lated states in balanced networks. These model networks also share relevant features with cortical

networks including stable fixed firing rates for fixed input, and unimodal, long tailed firing rate

distributions.

Balanced network theory provides a mean–field description of the macroscopic dynamics (see

Chapter 2). However, we still lack a deeper understanding on how these networks behave under

spike–timing dependent plasticity (STDP): Will the network remain stable and balanced as synaptic

weights change? Can we extend the mean–field theory to describe networks as the network structure

evolves? We will revisit these questions at the end of this chapter, after we review experiments and

models of synaptic plasticity.

1.3 Brief Overview of Synaptic Plasticity

The term synaptic plasticity refers to the changes in the synaptic architecture of neural networks.

In experiments, this is often quantified by measuring changes in the amplitude of the post–synaptic

potential. In computational models, plasticity is most commonly measured by the change in synap-

tic weights (also known as synaptic strength, or coupling strength) which are determinant of the

amplitude of the post–synaptic potential.

In 1949, Donald Hebb postulated in his book “The Organization of Behavior” a mechanism for

the formation of memories and neural assemblies in the brain [60]:

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one or

both cells such that A’s efficiency, as one of the cells firing B, is increased.”

Hebb’s postulate is often summarized as “neurons that fire together wire together”, and it

has had massive influence in the field of synaptic plasticity and learning. This general idea that

co–activation of cells leads to plastic changes in synaptic weights is referred to as “Hebbian plas-

ticity”, and the resulting strongly connected groups of neurons are often called neural assemblies
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or “Hebbian assemblies” [91].

There has been increasing evidence in favor of Hebb’s postulate since it was originally proposed.

Kandel and Tauc performed a classical behavior conditioning experiment in the abdominal ganglion

of a sea slug Aplysia depilans, where they stimulated two different neural pathways [72, 73]. They

demonstrated that repeated, temporal pairing of ineffective stimuli with effective stimuli can lead

to long term potentiation (LTP) of the weaker neural pathway.

Complementary to Hebb’s postulate, in the late 1970’s, Lynch et al. reported evidence of long

term depression (LTD) in a rat’s hippocampus after repeated low frequency stimulation [32,88].

More recently, in the 1990’s, Markram et al. and later Bi and Poo showed in dual whole–cell

voltage recordings of pyramidal cells the spike–time dependence of changes in synaptic weights by

pairing different temporal patterns of pre– and post–synaptic spikes and analyzing the resulting

changes in excitatory post–synaptic potentials (EPSP’s) [14,92].

STDP is not the only form of synaptic plasticity. Plastic changes in synaptic weights can depend

on firing rates of pre– and post–synaptic cells, as well as on neuromodulators, or Calcium traces.

In this dissertation, we only focus on plasticity rules dependent on spike timing, even though such

rules can often be described in terms of firing rates.

1.4 Theory of Spike–Timing Dependent Plasticity

Experimental evidence outlined above suggests that the precise timing between pre-and-post synap-

tic spikes plays an important role in the process of synaptic plasticity [91]. Theories and models of

synaptic plasticity have been developed over many years in line with these experimental findings.

Before spike timing took the spotlight in synaptic plasticity, a number of rate–based models were

developed and were actually shown to be biologically relevant. For example, in 1982, Oja’s and

the Bienenstock, Cooper, and Munro (BCM) rules were introduced [15, 102]. Inspired by Hebb’s

postulate, Oja proposed a model in which synaptic weights would change proportional to both pre–

synaptic input and post–synaptic activity – so co–active pairs undergo LTP [102]. On the other
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hand, Bienenstock, Cooper, and Munro proposed a model where the Hebb–like product of pre– and

post–synaptic activities is controlled by a sliding threshold that controls the activity of the post–

synaptic cell [15]. The threshold is typically some function of the inputs and hence also changes

over time to induce LTD or LTP at different levels of activity, eventually leading to stabilization of

synaptic weights. The BCM rule has been shown to model well selectivity in the visual cortex and

hippocampus; and both BCM and Oja’s rule can be used to perform principal component analysis

(PCA) on a set of inputs.

In the 1990’s the basic STDP model was introduced where synaptic weights change according

to an STDP function that depends on the relative timing of pre– and post–synaptic spikes [42,74].

Analytical treatments of such STDP rules have been proposed for a number of cases, starting

with the description of mean synaptic dynamics on single post–synaptic neurons receiving Poisson

feed–forward input [55, 74]. Kempter et al. developed a self–consistent theory for the case of a

Poisson post–synaptic neuron that is the basis for the STDP theory that we will develop in this

dissertation [74]. Later Gütig et al. studied mean synaptic dynamics when the post–synaptic

neurons was integrate–and–fire [55].

The relationship between STDP and network dynamics is complex due to the large number

of connections and the effect of recurrence, and so a large number of theoretical studies have

constrained their analysis to numerical simulations only [9, 71,87,98].

However, eventually, analytical results were extended to the case of recurrent networks of Poisson

neurons under no external input by Burkitt and his colleagues [23]. Right after, Gilson and others

followed up with an analytical description of network dynamics and weight dynamics in recurrent

networks along with a number of theoretical results in a series of five papers [44–48].

Other work provided analytical treatments of specific plasticity rules, such as homeostatic in-

hibitory plasticity [130, 141]. Using linear response and motif resumming techniques [135], Ocker

et al. developed a theory describing the evolution of mean synaptic weights in recurrent neural

networks of noisy integrate–and–fire neurons under STDP [100]. This approach relies on the as-

sumption that the input to individual cells is dominated by white noise, local synaptic input is

6



weak, and integral of the STDP function is small.

Assuming that neurons fire as Poisson processes, Ravid Tannenbaum et al. showed that syn-

fire chains and self connected assemblies can emerge autonomously in recurrent networks [111].

Montangie et al. showed that a more realistic form of STDP based on spike triplets also leads to

autonomous emergence of assemblies [97].

1.5 Motivation of this Dissertation

Previous work presented in Sections 1.2 and 1.4 has a number of limitations that were briefly

mentioned and we review here to motivate this dissertation.

On one hand, balanced networks are biologically relevant and sound models that can generate

cortical–like activity. However, current extensions of the original theory still lack a description of

changes in synaptic weights, at least at a mean–field level. This leads to a major issue in studies of

numerical simulations: one cannot predict anything about the dynamics beforehand! For example,

it would not be known under which STDP rules the network will remain stable or balanced, how

dynamics can change as a consequence of weight changes, and how correlated activity can affect

the weights themselves. Therefore, there is a clear need for an extension of balanced network’s

mean–field theory that accounts for changes in mean synaptic weights.

On the other hand, almost the entirety of previous work on STDP in recurrent networks assumes

Poisson spiking. This presents as a limitation, because neurons may fire Poisson–like on average,

but every single neurons is not exactly Poissonian [50,89,121,127]. In addition, models of Poisson

neurons generate irregular activity via randomness in spike generation, however internal noise is

not the mechanism behind irregular firing in real neurons [143]. In fact, isolated neurons are spike

quite reliably, and it is likely that irregularity emerges from network input noise or synaptic failure.

Other more biologically–grounded neuron models such as the class of integrate–and–fire models,

can generate irregular activity via near cancellation of excitatory and inhibitory inputs as described

earlier in Sections 1.1 and 1.2. Previous theories of STDP that have used more realistic neuron
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models, e.g., see Ocker et al. [100]. However, their work has other limitations and assumptions. For

example, they assume recurrent synaptic input is weak, and neurons are driven by strong Gaussian

white noise; even though cortical neurons are known to receive temporally and spatially correlated

inputs.

Here, we develop a complementary theory describing the evolution of synaptic weights and

associated mean rates in tightly balanced networks in both correlated and asynchronous states. We

combine the mean–field theory of firing rates and correlations in balanced networks [10, 83, 110,

115,116,137,138] with an averaging approach assuming a separation of timescales between changes

in spiking activity, and the evolution of synaptic weights [74]. We show how the weights and the

network dynamics co–evolve under different classical rules, such as Hebbian plasticity, Kohonen’s

rule, and a form of inhibitory plasticity [14,60,78,92,141]. In general, the predictions of our theory

agree well with empirical simulations. We also explain when the mean–field theory fails, leading

to disagreements with simulations, and we develop a semi–analytic extension of the theory that

explains these disagreements.

We find that spike train correlations, in general, have a mild effect on the synaptic weights and

firing rates, in agreement with previous work [52, 100]. We also show that for some STDP rules,

synaptic competition can introduce correlations between synaptic weights and firing rates, resulting

in the formation of a stable manifold of fixed points in weight space, and hence asymptotic weight

distributions that depend on the initial state. Finally, we apply this theory to show how inhibitory

STDP [141] can lead to a reestablishment of an asynchronous, balanced state that is broken by

optogenetic stimulation of a neuronal subpopulation [33]. We thus extend the classical theory of

balanced networks to understand how synaptic plasticity shapes their dynamics.

In addition to our theoretical results on plastic, balanced networks, we applied our framework to

model optogenetically–induced changes in functional connectivity in a local network of visual cortex

V1 of macaque monkeys reported by Andrei et al. [6]. In particular, we show that inhibitory STDP

in a balanced network can lead to a dynamic reversal of spike train correlations following repeated

optogenetic activation of a subset of excitatory cells, similar to that reported in experiments [6].
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Chapter 2

Mean Field Theory of Plastic

Balanced Networks

In mammals, local cortical networks can be comprised of thousands of cells, with each neuron

receiving thousands of inputs from cells within the local network, and other cortical layers, areas,

and thalamus [16]. Predominantly excitatory, long–range inputs would lead to high, regular firing

unless counteracted by local inhibition. To reproduce the sparse, irregular activity observed in

cortex, model networks often exhibit a balance between excitatory and inhibitory inputs [4, 10,30,

64, 112, 115, 137, 138]. This balance can be achieved robustly and without tuning, when synaptic

weights are scaled like O(1/
√
N), where N is the network size [137, 138]. In this balanced state

mean excitatory and inhibitory inputs cancel one another, and the activity is asynchronous [112].

Inhibitory inputs can also track excitation at the level of cell pairs, cancelling each other in time,

and produce a correlated state [10,103].

We first review the mean–field description of asynchronous and correlated states in balanced

networks, and provide expressions for firing rates and spike count covariances averaged over sub-

populations that accurately describe networks of more than a few thousand neurons [10,83,110,115,

116,137,138]: Let N be the total number of neurons in a recurrent network composed of Ne excita-

tory and Ni inhibitory neurons. Cells in this recurrent network also receive input from Nx external
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Poisson neurons firing at rate rx, and with pairwise correlation cx (see Fig. 3.1.4 A in Chapter 3).

We use subscripts e, i and x for the local excitatory, local inhibitory, and external populations,

respectively. The spike train of neuron j = 1, . . . , Na in population a = e, i, x is represented as a

sum of Dirac delta functions,

Saj (t) =
∑
n

δ(t− ta,jn ) (2.1)

where ta,jn is the nth spike time of the neuron. The synaptic input current to neuron j = 1, . . . , Na

in population a = e, i is given by

T aj (t) = Raj (t) +Xa
j (t) (2.2)

where Raj (t) = Eaj (t) + Iaj (t) is the recurrent input current and Xa
j (t) is the external input, and

Uaj (t) =

Nb∑
k=1

Jabjk
(
αb ∗ Sbk

)
(t) (2.3)

sums inputs from populations U = E, I,X, and b = e, i, x. Here, ∗ denotes the convolution

operation, and Jabjk is the synaptic weight from pre–synaptic neuron k in population b to post–

synaptic neuron j in population a, and αb(t) is a post–synaptic current (PSC) waveform, and is

defined by

αb(t) = τ−1
b e−t/τbH(t) (2.4)

where H(t) is the Heaviside step function, and τb is the synaptic timescale of neurons in population

b = e, i, x. In all simulations we take τx = 10 ms, τe = 8 ms, and τi = 4 ms [10]. Without loss of

generality, we assume that
∫
αb(t) = 1.

10



We consider a random, blockwise Erdős–Rényi connectivity structure with

Jabjk =
1√
N


jab with prob. pab

0 otherwise,

(2.5)

where connections are statistically independent and jab, pab ∼ O(1) for b = e, i, x and a = e, i. In

all simulations, we set pab = 0.1 for all b = e, i, x and a = e, i.

2.1 Mean Field Theory of Firing Rates in Balanced Networks

We denote by ra the mean firing rate of neurons in population a = e, i, x, and let the components

of the 2× 1 vector,

r =

 re

ri

 , (2.6)

describe the mean activity of both subpopulations. The mean–field synaptic inputs to neurons in

populations a = e, i are denoted by Ua = 〈Uaj (t)〉j for U = E, I,X,R, T . In vector form,

U =

 Ue

Ui

 . (2.7)

We also define the recurrent and feed–forward mean–field connectivity matrices,

W =

 wee wei

wie wii

 , and W x =

 wex

wix

 , (2.8)

where wab = pabjabqb ∼ O(1). Here, we have defined qb = Nb/N which are assumed to be O(1)

for b = e, i. Throughout all examples, we set qe = 0.8 and qi = 0.2. We assume that both the

probabilities, pab, and weights, jab are constant across pairs of subpopulations.

We review the mean–field analysis of firing rates in the balanced state [10,83,110,115,137,138].
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The mean external input to the E subpopulation is given by

Xe =
1

Ne

Ne∑
j=1

Nx∑
k=1

Jex
jk

(
αx ∗ Sx

k

)
(t) (2.9)

=
[
Nx

[
Jex
jk

(
αx ∗ Sx

k

)
(t)
]
k

]
j

(2.10)

= Nx

[[
Jex
jk

]
k

]
j

[[(
αx ∗ Sx

k

)
(t)
]
k

]
j

(2.11)

= Nxpex
jex√
N
rx
N

N
(2.12)

=
√
Npexjex

Nx

N
rx (2.13)

=
√
Npexjexqxrx (2.14)

=
√
Nwexrx. (2.15)

where we denoted averages over neurons by [·], we assumed correlations between synaptic weights

Jex
jk and activities

(
αx ∗Sx

k

)
are negligible, and multiplied by N

N . In an identical derivation replacing

e with i, we obtain the mean external input to the I population:

X i =
√
Nwixrx. (2.16)

In matrix form, the mean external input is

X =
√
NW xrx. (2.17)
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The mean recurrent input to the E subpopulation is

Re =
1

Ne

Ne∑
j=1

Ne∑
k=1

Jee
jk

(
αe ∗ Se

k

)
(t) +

1

Ne

Ne∑
j=1

Ni∑
m=1

Jei
jm

(
αi ∗ Si

m

)
(t) (2.18)

=
[
Ne

[
Jee
jk

(
αe ∗ Se

k

)
(t)
]
k

]
j

+
[
Ni

[
Jei
jm

(
αi ∗ Si

m

)
(t)
]
m

]
j

(2.19)

= Ne

[[
Jee
jk

]
k

]
j

[[(
αe ∗ Se

k

)
(t)
]
k

]
j

+Ni

[[
Jei
jm

]
m

]
j

[[(
αi ∗ Si

m

)
(t)
]
m

]
j

(2.20)

= Nepee
jee√
N
re
N

N
+Nipei

jei√
N
ri
N

N
(2.21)

=
√
N
(
weere + weiri

)
(2.22)

where we have separated the input into excitatory and inhibitory, and again ignored correlations

between synaptic weights and rates. In particular, we have assumed
[[
Jee
jk

(
αe ∗ Se

k

)
(t)
]
k

]
j
≈[[

Jee
jk

]
k

]
j

[[(
αe ∗ Se

k

)
(t)
]
k

]
j

and
[[
Jei
jm

(
αi ∗ Si

m

)
(t)
]
m

]
j
≈
[[
Jei
jm

]
m

]
j

[[(
αi ∗ Si

k

)
(t)
]
m

]
j
. This is

an assumption widely made across the non–plastic balanced network literature [10,11,83,110,115,

137, 138], however rarely presented explicitly [10]. We make use of this assumption when deriving

mean–field equations for spike train covariances in Section 2.4, and we show in Section 3.2 that this

assumption may be violated when synaptic weights become strongly correlated with firing rates

under certain plasticity rules. The mean recurrent input to the I subpopulation is obtained in the

exact same way, but replacing e post–synaptic cell with i

Ri =
√
N
(
wiere + wiiri

)
. (2.23)

In matrix form, the mean recurrent input is given by

R =
√
NWr. (2.24)

The mean total synaptic input is the sum of recurrent and external contributions

T =
√
N
[
Wr +W xrx

]
. (2.25)
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We next make the ansatz that in the balanced state the mean input and firing rates remain

finite as the network grows, i.e., T , r ∼ O(1) [10,83,110,115,137,138]. This can only be obtained by

a precise cancellation between external and recurrent synaptic inputs. Such cancellation requires

Wr +W xrx ∼ O(1/
√
N) so that

lim
N→∞

r = −W−1
W xrx (2.26)

in the balanced state, provided Xe/Xi > wei/wii > wee/wie [137,138] to ensure positive rates are

realized. The firing rates in Eq. (2.26) depend only on the recurrent structure and mean input, and

are hence independent of the correlation structure in the network.

2.2 Scaling of Synaptic Weights

A natural question that arises is why scale synaptic weights as 1/
√
N? Why is this scaling used

and why is preferred to other scaling such as 1/N? To answer these questions, we can use a rate

model that approximate rate dynamics of the spiking neural network:

dr

dt
= −r + f

(
JK[V r + Vxrx]

)
(2.27)

where f is the input–response curve (also known as f-I curve), JK = mean(|Jab|Kab), Kab is the

mean number of connections from population b to a, and the components of V and Vx are given by

vab = JabKab/JK for a = e, i and b = e, i, x.

Eq. (2.27) admits the following stable solution:

r = f
(
JK[V r + Vxrx]

)
. (2.28)

We rearrange Eq. (2.28) and arrive at

1

JK
f−1(r) = V r + Vxrx. (2.29)
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Scaling of JK as Nγ for 0 < γ ≤ 1 will lead to an expression for rates equivalent to Eq. (2.26):

lim
N→∞

r = −V −1Vxrx. (2.30)

In particular, using the scaling J ∼ O(1/
√
N), which implies JK grows as N1/2, we can arrive at

the balanced solution (Eqs. (2.26,2.30)). Other scalings, i.e., γ 6= 1/2, lead to either frozen solutions

(r = 0), or narrow rate distributions [138]. Other scalings may lead to non–trivial solutions under

different neuron models [118] (see Section 2.7 for more details.). Also, it follows that if JK scales as

Nγ , the computation of firing rates does not require knowledge of the transfer function (f-I curve),

which is an advantage of our theory compared to previous theories of STDP [44–48,97,100,111].

We next show why γ = 1/2 is a preferable scaling. For the sake of the argument, let’s assume

we have a network of neurons where all excitatory synaptic weights are defined as JE , and all

inhibitory weights are JI . Consider the total input to any cell:

Z(t) = JE

Ne∑
j=1

(αe ∗ Se
j (t)) + JI

Ni∑
k=1

(αi ∗ Si
k(t)). (2.31)

The mean input is then

〈Z(t)〉t = 〈JE
Ne∑
j=1

(αe ∗ Se
j (t)) + JI

Ni∑
k=1

(αi ∗ Si
k(t))〉t (2.32)

= JE

Ne∑
j=1

〈αe ∗ Se
j (t)〉t + JI

Ni∑
k=1

〈αi ∗ Si
k(t)〉t (2.33)

= JE

Ne∑
j=1

re
j + JI

Ni∑
k=1

ri
k (2.34)

= JENere + JINiri (2.35)

= JEqeNre + JIqiNri (2.36)

here 〈·〉t denotes time–average, and raj is the time–averaged firing rate of neuron j in population a.

The mean input, 〈Z(t)〉t, will be order 1, so long as JE ≈ −JI , for all values of N .
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The variance of the input is

Var[Z(t)]t = Var

[
JE

Ne∑
j=1

(αe ∗ Se
j (t)) + JI

Ni∑
k=1

(αi ∗ Si
k(t))

]
t

(2.37)

= J2
E

Ne∑
j=1

Var
[
αe ∗ Se

j (t)
]
t
+ J2

I

Ni∑
k=1

Var
[
αi ∗ Si

k(t)
]
t

(2.38)

= J2
E

Ne∑
j=1

1

Twin
re
j + J2

I

Ni∑
k=1

1

Twin
ri
k (2.39)

=
1

Twin
J2
EqeNre +

1

Twin
J2
I qiNri (2.40)

where we assumed neurons’ firing is approximately independent and made the ansatz that spiking

is Poissonian, so we can estimate the variance of rates using the mean rates over time (since the

Fano factor, which is the ratio of variance to mean, of a Poisson process is 1). Particularly, we used

Fano[rate] =
Var[rate]

Mean[rate]
=

Var[ spike count
Twin

]

Mean[ spike count
Twin

]
(2.41)

=

1
Twin2

Var[spike count]

1
Twin

Mean[spike count]
(2.42)

=
1

Twin
Fano[spike count] (2.43)

=
1

Twin
(2.44)

where Twin is the time window over which spikes are counted. In stationary dynamics, we can

partition the time domain into sub–intervals of size Twin and count spikes in each sub–interval. In

Eq. (2.41), the random variable ‘spike count’ refers to the number of spikes that is observed in each

sub–interval, and the random variable ‘rate’ is the number of spikes normalized by the size of the

sub–interval observed in each sub–interval.

Unlike the mean, the variance of the input (Eq. (2.37)) can now grow uncontrollably with N

because weights are squared and hence cannot be used to cancel out large terms. However, if

JE , JI ∼ O(1/
√
N), then the fluctuations in the input are order 1 and activity is irregular. In
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general, JE , JI can be scaled as N−γ for 0 < γ ≤ 1. However, if γ < 1/2, then fluctuations grow

very large with N and distributions of rates become narrow [138]. And, if γ > 1/2, then the

variance of the input is zero, i.e., there are no fluctuations in the input, and the network is in a

frozen state where all neurons are quiescent [138].

2.3 Generating Correlated Spike Trains

As mentioned in Section 1.2, correlations in a recurrent network can be generated in a number of

different ways [10, 27, 69, 84, 93, 95, 116, 123, 145]. In our framework, the source of correlations is

an external population of correlated Poisson neurons called X (see Fig. 3.1.4 A in Section 3.1.2).

Such external correlated input represents correlated synaptic input from other cortical networks or

subcortical areas. We now explain how we simulated an external collection of correlated Poisson

neurons.

In our simulations we generated spike trains, Sx
j , for the external population following [10, 81,

134]. Here, we review the Multiple Interaction Process (MIP) algorithm for generating correlated

Poisson processes. To generate Nx processes, all having firing rate rx and pairwise correlation

cx, we first generate a “mother” process with rate rm = rx/cx. Then, to generate each of the Nx

“daughter” processes, we first take all the spikes (events) in the mother process and then delete each

spike independently with probability 1 − cx. In other words, each event from the mother process

is included in each daughter process independently with probability cx. The rates of the daughter

processes are therefore rmcx = rx, as desired. Also, two daughter processes contain a proportion

cx of spike that occur at the same time (since the probability that a spike time in one process also

appears in the other process is cx). This algorithm produces spikes in several neurons that occur at

precisely the same time. To make the spike trains less synchronous, but still correlated, we “jitter”

all of the daughter spike times by adding i.i.d. random variables to each daughter spike times [135].

The cross spectral density (CSD) between two stationary processes X and Y is the Fourier
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transform of their cross–covariance function:

〈X,Y 〉(f) :=

∫ ∞
−∞

cXY (τ)e−2πifτdτ (2.45)

where

cXY (τ) := cov(X(t), Y (t+ τ)). (2.46)

We also define the mean–field spectra,

〈Sa, Sb〉 = meanj,k[〈Saj , Sbk〉] (2.47)

to be the average CSD between neurons in populations a, b = e, i, x in the network.

If the random variable (which is added to jitter spike times) has density G(t) then the CSD is

given by

〈Sx
j , S

x
k〉(f) =


crx|G̃(f)|2 j 6= k

rx j = k

(2.48)

where G̃(f) is the Fourier transform of G(t).

In our simulations, we use Gaussian–distributed jitters with standard deviation τjitter = 5 ms,

and we get

〈Sx
j , S

x
k〉(f) =


crxe

−4f2π2τ2jitter j 6= k

rx j = k

. (2.49)

2.4 Mean Field Theory of Covariances in Balanced Networks

In this section we closely follow the derivation from Baker et al. [10] for mean–field spike train

covariances in asynchronous and correlated balanced networks. Similar expressions have been

derived for similar models [54,62,112,116,132].
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We define a 2 × 2 matrix of average cross–spectral densities between spike trains of each sub-

population:

〈S,S〉 =

 〈Se, Se〉 〈Se, Si〉

〈Si, Se〉 〈Si, Si〉

 . (2.50)

Since we will derive spike train covariances using CSDs, we define frequency–dependent connectivity

matrices

W =

 wee wei

wie wii

 and Wx =

 wex

wix

 , (2.51)

where

wab(f) = pabjabqbα̃b(f) ∼ O(1) (2.52)

and

α̃b(f) =
1

1 + 2πifτb
(2.53)

is the Fourier transform of αb(t).

To better understand the relationship between CSD’s and spike count covariances, note that

for stationary processes, the covariance between integrals over large time windows is related to the

zero–frequency CSD according to

lim
Twin→∞

1

Twin
cov

(∫ Twin

0
X(t)dt,

∫ Twin

0
Y (t)dt

)
= 〈X,Y 〉(0). (2.54)

so that for large Twin,

cov

(∫ Twin

0
X(t)dt,

∫ Twin

0
Y (t)dt

)
≈ Twin〈X,Y 〉(0). (2.55)

Note that a spike count over a window of size Twin is just an integral of spike trains over [0, Twin].

We can write the zero–lag covariance between two stationary processes in terms of the CSD as

cov(X(t), Y (t)) =

∫ ∞
−∞
〈X,Y 〉(f)df. (2.56)
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This will be useful below in Section 2.6 when deriving an expression for the evolution of mean

synaptic weights. More generally, the cross–covariance function, c(τ) = cov(X(t), Y (t+ τ)), is the

inverse Fourier transform of 〈X,Y 〉(f).

Some other useful properties of the cross–spectral operator that we will use in derivations are:

〈aX + bZ, Y 〉 = a〈X,Y 〉+ b〈Z, Y 〉 (2.57)

for a, b ∈ C

〈X,Y 〉 = 〈Y,X〉∗ (2.58)

where z∗ is the complex conjugate of z,

〈K ∗X,Y 〉 = K̃〈X,Y 〉 (2.59)

where ∗ denotes convolution, K(t) is an L2 kernel, and K̃(f) is the Fourier transform. The power

spectral density of X is given by 〈X,X〉 ∈ R.

It is often useful to define the cross–spectral matrix between two multivariate processes. Specifi-

cally, suppose ~X(t) ∈ Rm and ~Y (t) ∈ Rn are multivariate, stationary processes then 〈 ~X, ~Y 〉 ∈ Rm×n

with

[〈 ~X, ~Y 〉]jk = 〈 ~Xj , ~Yk〉. (2.60)

This operator has essentially all the same properties elucidated above except that the complex

conjugate turns into a conjugate–transpose.

Our goal in this section is to derive an expression for the mean–field matrix of spike train CSDs,

〈S,S〉 =

〈Se, Se〉 〈Se, Si〉

〈Si, Se〉 〈Si, Si〉

 . (2.61)
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We start noting that by Eq. (2.57), we can write the total input CSDs as

〈T ,T 〉 = 〈X,X〉+ 〈X,R〉+ 〈R,X〉+ 〈R,R〉 (2.62)

where 〈X,R〉 = 〈R,X〉∗. We will derive expressions for each term on the right–hand side of

Eq. (2.62). We start with 〈X,X〉. Consider the mean external input CSD between neurons in

populations a, b = e, i

〈Xa, Xb〉 = meanj,k〈Xa
j , X

b
k〉 (2.63)

= meanj,k

〈
Nx∑
m=1

Jax
jm

(
αx ∗ Sx

m

)
,

Nx∑
n=1

Jbxkn
(
αx ∗ Sx

n

)〉
(2.64)

= meanj,k

{
Nx∑

m,n=1

Jax
jmJ

bx
knα̃xα̃

∗
x〈Sx

m, S
x
n〉

}
(2.65)

= meanj,k

{
|η̃x|2〈Sx, Sx〉

∑
m6=n

Jax
jmJ

bx
kn + |η̃x|2rx

Nx∑
m=1

Jax
jmJ

bx
kn

}
(2.66)

= |η̃x|2jaxpaxjbxpbxqx

[
(Nx − 1)〈Sx, Sx〉+ rx

]
(2.67)

where we used bilinearity of the CSD operator (Eq. (2.57)), 〈Sx
m, S

x
n〉 = 〈Sx, Sx〉 for m 6= n and

〈Sx
m, S

x
n〉 = rx if m = n (Eq. (2.49)), and Eq. (2.59). In matrix form, this yields

〈X,X〉 = NWx〈Sx, Sx〉W ∗x + q−1
x WxrxW

∗
x − q−1

x Wx〈Sx, Sx〉W ∗x . (2.68)

Note that 〈Sx, Sx〉 ∼ O(cx), so cx = 0 in the asynchronous state and cx ∼ O(1) in the correlated

state. Thus, from Eq. (2.68) it follows that

〈X,X〉 ∼ O(cxN) +O(1) (2.69)

In particular, we see that in the asynchronous state, 〈X,X〉 ∼ O(1). While in the correlated

state, 〈X,X〉 ∼ O(N).
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We continue with the 〈R,X〉 term. Recall that the recurrent input can be broken up into its

excitatory and inhibitory contributions, so 〈R,X〉 = 〈E,X〉 + 〈I,X〉 (by Eq. (2.57)). Consider

the external input CSD between excitatory and external inputs to neurons j and k in populations

a, b = e, i, respectively,

〈Eaj , Xb
k〉 =

〈
Ne∑
m=1

Jae
jm

(
αe ∗ Se

m

)
, Xb

k

〉
(2.70)

= α̃e

Ne∑
m=1

Jae
jm〈Se

m, X
b
k〉 (2.71)

(2.72)

We take averages separately for b = e, i to obtain

〈Ea, Xe〉 =
α̃ejaepae√

N
(Ne − 1)〈Se, Xe〉+ {Se, Xe} (2.73)

=
√
Nwae〈Se, Xe〉+

wae

qe

√
N

({Se, Xe} − 〈Se, Xe〉) (2.74)

and

〈Ea, Xi〉 =
α̃ejaepae√

N
Ne〈Se, Xi〉 =

√
Nwae〈Se, Xi〉 (2.75)

At this step we have assumed that synaptic weights Jae
jm and 〈Se

m, X
b
k〉 are uncorrelated. This

assumption is used widely in balanced network theory, but it is sometimes not explicitly stated. We

have made this assumption also in Section 2.1, Eqs. (2.9,2.16,2.18,2.23) and this eventually lead to

the balance equation for firing rates (Eq. (2.26)). In Section 3.2, we will show a case in which this

assumption does not hold.

Similar to Eq. (2.73), we obtain 〈Ia, Xb〉 for b = e, i
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〈Ia, Xe〉 =
√
Nwai〈Si, Xe〉 (2.76)

and

〈Ia, Xi〉 =
√
Nwai〈Si, Xi〉+

wai

qi

√
N

({Si, Xi} − 〈Si, Xi〉) (2.77)

Combining Eqs. (2.73–2.77) and writing in matrix form, we arrive at the following expression for

the mean CSD between recurrent and external inputs

〈R,X〉 = 〈E,X〉+ 〈I,X〉 (2.78)

=
√
NW 〈S,X〉+

1√
N
WQ−1{S,X}+O

(
〈S,X〉√

N

)
. (2.79)

where Q = diag(qe, qi). The exact same derivation for 〈R,X〉 (replacing X by S) gives an expression

for the mean–field CSD between spike trains and total external inputs

〈T ,S〉 =
√
NW 〈S,S〉+ 〈X,S〉+

1√
N
WQ−1{S,S}+O

(
〈S,S〉√

N

)
(2.80)

where

{S,S} = diag
(
{Se, Se}, {Si, Si}

)
(2.81)
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and

{Sa, Sa} = meanj〈Saj , Saj 〉. (2.82)

Recall that we would like to arrive at an expression for the mean spike train CSDs, 〈S,S〉. To

derive firing rates earlier in Section 2.1, we required T ∼ r, that is, O(1) transfer of mean input.

Similarly, we now require that transfer of mean–field covariances is O(1). In particular, we assume

lim
N→∞

1√
N

〈Ta, Ub〉
〈Sa, Ub〉

= 0 (2.83)

for U = X,S. Previous derivations of covariances throughout the literature require a linear transfer

of covariances, a much stronger assumption, since we do not even need to know the actual value of

〈Ta,Ub〉
〈Sa,Ub〉 . Using Eq. (2.78) and the fact that 〈T ,X〉 = 〈R,X〉+ 〈X,X〉, we have

〈T ,X〉 =
√
NW 〈S,X〉+

1√
N
WQ−1{S,X}+O

(
〈S,X〉√

N

)
+ 〈X,X〉. (2.84)

Assuming input and output CSD’s are of the same order of magnitude (Eq. (2.83)),

〈S,X〉 =
√
NW 〈S,X〉+

1√
N
WQ−1{S,X}+O

(
〈S,X〉√

N

)
+ 〈X,X〉. (2.85)

where we have divided both sides of Eq. (2.84) element–wise by
√
NW 〈S,X〉 and applied Eq. (2.83).

Note that Eq. (2.85) not only holds in the limit as N goes to infinity. In fact, for finite N , this

result holds as long as

∣∣∣∣∣ 〈T ,X〉W 〈S,X〉

∣∣∣∣∣� √N (2.86)
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The order of the term {S,X} with respect to N is not known. However, we use the Cauchy–

Schwartz inequality to obtain

|{S,X}| ≤
√
{S,S}{X,X} ∼ O(

√
{X,X}) (2.87)

since {S,S} ∼ O(1). We compute an expression for {X,X} by repeating the derivation that led

to Eq. (2.68), but setting j = k,

{X,X} = NWx〈Sx, Sx〉W ∗x + q−1
x P−1

x WxrxW
∗
x − q−1

x Wx〈Sx, Sx〉W ∗x (2.88)

where

Px = diag(pex, pix). (2.89)

It is now clear that by Eq. (2.68), we must have

{X,X} ∼ 〈X,X〉 (2.90)

be at least O(1). So by Eq. (2.87), {S,X} is at most O(〈X,X〉).

We then rewrite Eq. (2.85) as

〈S,X〉 ∼
√
NW 〈S,X〉+ 〈X,X〉+O

(
〈X,X〉+ 〈S,X〉√

N

)
. (2.91)

In order to realize a self consistent solution, we require the right–hand side to cancel in the limit

as N →∞, i.e., we need 〈S,X〉 ∼ 〈X,X〉/
√
N . Thus, in the limit as N →∞, we have

〈S,X〉 =
1√
N
W−1〈X,X〉+O

(
〈X,X〉
N

)
. (2.92)

We will use Eq. (2.92) later to arrive at our final expression for mean–field spike train CSDs, 〈S,S〉.
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Starting with Eq. (2.80), we divide both sides element–wise by
√
NW 〈S,S〉 and apply Eq. (2.83),

〈S,S〉 ∼
√
NW 〈S,S〉+ 〈X,S〉+

1√
N
WQ−1{S,S}+O

(
〈S,S〉√

N

)
. (2.93)

We take the conjugate transpose of Eq. (2.92) and obtain

〈X,S〉 = 〈S,X〉∗ =
1√
N
〈X,X〉W−∗ +O

(
〈X,X〉
N

)
. (2.94)

Substituting this expression into Eq. (2.93) gives

〈S,S〉 ∼
√
NW 〈S,S〉+

1√
N
〈X,X〉W−∗ +

1√
N
WQ−1{S,S} (2.95)

+O

(
〈S,S〉√

N

)
+O

(
〈X,X〉
N

)
. (2.96)

Once again, to realize a self–consistent solution, we require a cancellation of the terms on the right–

hand side in the limit as N → ∞, so we need 〈S,S〉 ∼ O(〈X,X〉/N + {S,S}/N). Hence, in the

limit as N →∞,

〈S,S〉 =
1

N
W−1〈X,X〉W−∗ − 1

N
Q−1{S,S}+O

(
〈X,X〉
N3/2

)
. (2.97)

The first term in Eq. (2.97) corresponds to externally generated covariability, and the second

term arises from externally and internally generated covariability. In all comparisons of theory

and simulations, we have ignored the second and third terms as they are negligible in the regimes

studied here and analytically intractable. We do note that the second term can be estimated from

numerical simulations and used in a semi–analytic approach to compute covariances, however this

term only matters in extreme cases when 〈X,X〉 = 0 [10].

Eq. (2.97) holds both in asynchronous and correlated states in the limit of large networks (limit

as N → ∞), however 〈X,X〉 has different expressions when the network is in the asynchronous

state (cx = 0) versus in the correlated state (0 < cx ≤ 1). We evaluate these next.
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2.4.1 Mean Field Theory of Covariances in the Asynchronous State

In the asynchronous state, the balanced network is driven by an external layer of uncorrelated

Poisson neurons, so cx = 0 and 〈Sx, Sx〉 = 0. Substituting this into Eq. (2.88), we obtain

〈X,X〉 = q−1
x WxrxW

∗
x ∼ O(1) (2.98)

so the mean–field spike train CSDs in the asynchronous state are given by

〈S,S〉 =
1

N
W−1q−1

x WxrxW
∗
xW

−∗ ∼ O(1/N) (2.99)

ignoring negligible terms (see discussion after Eq. (2.97) at the end of the previous subsection for

more details).

When comparing balanced network theory to empirical simulations, it is often convenient to

bring our variables back to the time domain. Recall that spike train covariances are proportional

to the zero–frequency CSD. Therefore we can define the mean–field spike count covariance matrix

as:

C =

 Cee Cei

Cie Cii

 (2.100)

where Cab is the mean spike count covariance between neurons in populations a = e, i and b = e, i

respectively, counted over time windows of size Twin. In all simulations and evaluating theoretical

predictions, we set Twin = 250 ms, however the theory is flexible, and we can use a range of window

sizes. Evaluating the CSDs at f = 0 and multiplying by the window size, Twin we arrive at the

final expression for mean spike count covariances in the asynchronous state,

C ≈ 1

N

rx

qx
TwinW

−1
W xW

T
xW

−T
. (2.101)

Note that C ∼ O(1/N). So as N grows, mean covariances become extremely weak in the asyn-

chronous state.
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2.4.2 Mean Field Theory of Covariances in the Correlated State

In the correlated state, the balanced neural network is driven by a layer of correlated Poisson inputs,

and 〈Sx, Sx〉 6= 0. From Eq. (2.68), we can then see that

〈X,X〉 = NWx〈Sx, Sx〉W ∗x + q−1
x WxrxW

∗
x − q−1

x Wx〈Sx, Sx〉W ∗x ∼ O(N). (2.102)

This is known as the “pooling” of covariances: If N random variables have O(1) covariances, then

their sum will have covariance order O(N). Substituting Eq. (2.102) into Eq. (2.97), and ignoring

terms of order 1/N or smaller, we obtain

〈S,S〉 = W−1Wx〈Sx, Sx〉W ∗xW−∗ ∼ O(1). (2.103)

Recall from Section 2.3 that spike trains in the external population are correlated Poisson

processes generated with Gaussian–distributed jittering, and hence

〈Sx, Sx〉 = cxrxe
−4f2π2τ2jitter . (2.104)

Finally, to transform the CSDs into spike train covariances, we evaluate the CSDs at f = 0 and

multiply the right–hand side of Eq. (2.103) by Twin. This yields the final expression for spike train

covariances in the correlated state:

C ≈ cxrxTwinW
−1
W xW

T
xW

−T
. (2.105)

Note that now, C ∼ O(1) and the network is in a correlated state.

2.5 Synaptic Plasticity Rules

To model activity–dependent changes in synaptic weights we used eligibility traces to define the

propensity of a synapse to change [43, 59, 67, 70, 76]. The eligibility trace, xaj (t), of neuron j in
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population a evolves according to

τSTDP

dxaj (t)

dt
= −xaj (t) + τSTDPS

a
j (t), (2.106)

for a = e, i, where Saj (t) =
∑

n δ(t − t
a,j
n ) is the sequence of spikes of neuron, j. The eligibility

trace, and the time constant, τSTDP define a period following a spike in the pre– or post–synaptic

cell during which a synapse can be modified by a spike in its counterpart.

Table 2.1: Examples of STDP rules. A number of different plasticity rules can be obtained as
special cases of the general form given in Eq. (2.107).

STDP Rule Coefficients Equation

Classical EE
Hebbian [14,60,92]

B(e,j),(e,k) = −1
B(e,k),(e,j) = 1

dJee
jk

dt = ηee

(
xe
kS

e
j − xe

jS
e
k

)
Classical EE
Anti–Hebbian [14,92] B(e,j),(e,k) = 1

B(e,k),(e,j) = −1

dJee
jk

dt = ηee

(
− xe

kS
e
j + xe

jS
e
k

)
Weight–dependent EE
Hebbian [14,60,92] B(e,j),(e,k) = −Jee

jk

B(e,k),(e,j) = Jmax

dJee
jk

dt = ηee

(
Jmaxx

e
kS

e
j − Jee

jkx
e
jS

e
k

)
Homeostatic Inhibitory
[141]

Ai,k = αe
Jei
jk

Jnorm

B(e,j),(i,k) = − Jei
jk

Jnorm

B(i,k),(e,j) = − Jei
jk

Jnorm

dJei
jk

dt = −ηei
Jei
jk

Jnorm

[
(xe
j − αe)S

i
k + xi

kS
e
j

]

Oja’s Rule [102] B(e,j),(e,j) = −Jee
jk

B(e,j),(e,k) = β
dJee

jk

dt = ηee

(
βxe

jS
e
k − Jee

jkx
e
jS

e
j

)
Kohonen’s Rule [78] Ae,j = −Jee

jk

B(e,j),(e,k) = β
dJee

jk

dt = ηee

(
βxe

jS
e
k − Jee

jkS
e
j

)

Our theory of synaptic plasticity allows any synaptic weight to be subject to constant drift,

changes due to pre– or post–synaptic activity only, and/or due to pairwise interactions in activity

between the pre– and post–synaptic cells (zero, first, and second order terms, respectively, in

Eq. (2.107)). The theory can be extended to account for other types of interactions. Each synaptic
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weight therefore evolves according to a generalized STDP rule:

dJabjk
dt

= ηab

(
A0 +

∑
α={a,j},{b,k}

AαSα +
∑

α,β={a,j},{b,k}

Bα,βxαSβ

)
(2.107)

where ηab is the learning rate that defines the timescale of synaptic weight changes, A0, Aα, Bαβ

are functions of the synaptic weight, Jabjk , and a, b = e, i. For instance, the term B(e,k),(i,j)x
e
kS

i
j

represents the contribution due to a spike in post–synaptic cell j in the inhibitory subpopulation,

at the value xe
k of the eligibility trace in the pre–synaptic cell k in the excitatory subpopulation.

Higher order interactions are at the heart of triplet rules [15,49,108], and other types of interactions

may also be important, e.g., for calcium–based update rules [51,124]. For simplicity we here focus

on pairwise interactions between spikes and eligibility traces, and leave extensions to more complex

rules for future work.

This general formulation captures a range of classical plasticity rules as special examples: Ta-

ble 2.1 shows that different choices of parameters yield Hebbian [14, 60, 92], anti–Hebbian, as well

as Oja’s [102], and other rules (see Fig. 2.5.1 for illustrations of the STDP function of each rule

in Table 2.1). We only considered interactions up to second order. Here, we will not consider the

BCM rule [15], and other rules [49,108] that depend on interactions beyond second order.

2.6 Dynamics of Mean Synaptic Weights in Correlated Balanced

Networks

2.6.1 Accounting for the Effects of Correlations in the General STDP Rule

We now provide a detailed derivation of the mean synaptic weights accounting for the effects of

firing rates and spike count covariances (Eqs. (2.26,2.105)).

We assumed that changes in synaptic weights occur on longer timescales than the dynamics of
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Figure 2.5.1: STDP windows of different plasticity rules. A: Change in synaptic weights as a
function of the relative timing of pre– and post–synaptic spikes in Classical Hebbian STDP (same
as weight–dependent Hebbian). B: Same as A, but for inhibitory STDP. C: Same as A, but for
Kohonen’s rule when weights are below parameter β. D: Same as C, but for the case when weights
are above β. E: Same as A, but for Oja’s rule when weights are below parameter β. F: Same as E,
but for the case when weights are above β. Figure adapted from Akil et al. [5].

the eligibility trace and the correlation timescale [44–48,74], i.e.,

1/ηab � Twin, τSTDP. (2.108)

This is a biologically sound assumption (see discussion in Chapter 5 for more details) [74]. Let ∆T

be a time larger than the timescale of eligibility traces, τSTDP, and Twin, but smaller than 1/ηab, so

that the time differential of the weights satisfies [74]:

∆Jabjk
∆T

=
ηab
∆T

∫ ∆T

0

[
A0 +

∑
α={a,j},{b,k}

AαSα +
∑

α,β={a,j},{b,k}

Bα,βxαSβ

]
dt. (2.109)

The difference in timescales allows us to assume that the firing rates and covariances are in quasi–

equilibrium. We used 1/ηab = 105 ms, and τSTDP = 200 ms, with correlation time window width

Twin = 250 ms. Our derivations require τSTDP � ∆T � 1/ηab, however an exact numerical value
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for ∆T is neither used nor needed. In Section 2.6.3, we address what happens when timescales are

not separated.

We expand the sums and split the integral over the terms in the sums, to obtain

∆Jabjk
∆T

=
ηab
∆T

(
∆TA0 +Aa,j

∫ ∆T

0
Saj dt+Ab,k

∫ ∆T

0
Sbkdt

+B{a,j},{a,j}

∫ ∆T

0
xajS

a
j dt+B{a,j},{b,k}

∫ ∆T

0
xajS

b
kdt

+B{b,k},{a,j}

∫ ∆T

0
xbkS

a
j dt+B{b,k},{b,k}

∫ ∆T

0
xbkS

b
kdt

)
.

(2.110)

Each integral that is multiplied by 1/∆T in the previous equation is the expectation of the inte-

grand. Thus we can write:

∆Jabjk
∆T

= ηab

(
A0 +Aa,jE[Saj ] +Ab,kE[Sbk] +B{a,j},{a,j}E[xajS

a
j ]

+B{a,j},{b,k}E[xajS
b
k] +B{b,k},{a,j}E[xbkS

a
j ] +B{b,k},{b,k}E[xbkS

b
k]

) (2.111)

where E[·] denotes expectation over time.

We provide a detailed derivation for the term B{a,j},{b,k}E[xajS
b
k]. The other terms are derived

in the same way. First note that

E[xajS
b
k] = E[(K ∗ Saj )(t)Sbk(t)] = cov(K ∗ Saj , Sbk) + E[K ∗ Saj ]E[Sbk] (2.112)

where K(t) = e−t/τSTDPH(t) and H(t) is the Heaviside function. The second term on the right

hand side can be written in terms of the rates,

E[K ∗ Saj ]E[Sbk] = τSTDPr
a
j r
b
k (2.113)

where raj is the rate of neuron j in population a and we used the fact that
∫∞
−∞K(t)dt = τSTDP.
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We showed earlier in Section 2.4, Eq. (2.56) that we obtain,

cov(K ∗ Saj , Sbk) =

∫ ∞
−∞
〈K ∗ Saj , Sbk〉(f)df. (2.114)

This can be simplified by recalling that convolutions interact nicely with CSD’s (Eq. (2.59)), and

〈K ∗ Saj , Sbk〉 = K̃〈Saj , Sbk〉 (2.115)

where K̃(f) is the Fourier transform of the exponential kernel K(t). This gives

cov(K ∗ Saj , Sbk) =

∫ ∞
−∞

K̃(f)〈Saj , Sbk〉(f)df. (2.116)

Therefore,

E[xajS
b
k] =

∫ ∞
−∞

K̃(f)〈Saj , Sbk〉(f)df + τSTDPr
a
j r
b
k. (2.117)

The first term on the right hand side of Eq. (2.117) depends on the spike count covariance between

spike trains of populations a and b, while the second term depends on firing rates of populations

a, b. Following the procedure demonstrated here and applying it to each term in Eq. (2.111), we

obtain the following equation describing the evolution of weights,

∆Jabjk
∆T

= ηab

(
A0 +Aa,jr

a
j +Ab,kr

b
k

+B{a,j},{a,j}

(∫ ∞
−∞

K̃(f)〈Saj , Saj 〉(f)df + τSTDPr
a
j r
a
j

)
+B{a,j},{b,k}

(∫ ∞
−∞

K̃(f)〈Saj , Sbk〉(f)df + τSTDPr
a
j r
b
k

)
+B{b,k},{a,j}

(∫ ∞
−∞

K̃(f)〈Sbk, Saj 〉(f)df + τSTDPr
b
kr
a
j

)
+B{b,k},{b,k}

(∫ ∞
−∞

K̃(f)〈Sbk, Sbk〉(f)df + τSTDPr
b
kr
b
k

))
.

(2.118)

Averaging both sides of the equation over all neurons j and k in populations a and b, respectively,

we obtained:
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∆Jab
∆T

= ηab

(
A0 +Aa,jra +Ab,krb

+B{a,j},{a,j}

(∫ ∞
−∞

K̃(f)〈Sa, Sa〉(f)df + τSTDPrara

)
+B{a,j},{b,k}

(∫ ∞
−∞

K̃(f)〈Sa, Sb〉(f)df + τSTDPrarb

)
+B{b,k},{a,j}

(∫ ∞
−∞

K̃(f)〈Sb, Sa〉(f)df + τSTDPrbra

)
+B{b,k},{b,k}

(∫ ∞
−∞

K̃(f)〈Sb, Sb〉(f)df + τSTDPrbrb

))
.

(2.119)

Lastly, we rearrange terms and arrive at a compressed expression dependent on rates and spike

count covariances:

dJab
dt

= ηab

(
A0 +

∑
α,β={a,b}

Rateα,β + Covα,β

)
, (2.120)

where

Rateα,β = Aαrα/2 +Bα,βτSTDPrαrβ

Covα,β = Bα,β

∫ ∞
−∞

K̃(f)〈Sα, Sβ〉(f)df,
(2.121)

where all the coefficients remained the same, but changed notation, e.g., B{a,j},{b,k} = Ba,b.

For example, weight–dependent Hebbian EE plasticity in Table 2.1 leads to the following mean–

field equation,

dJee

dt
= ηee

(
Jmax − Jee

)(
τSTDPr

2
e +

∫ ∞
−∞

K̃(f)〈Se, Se〉(f)df

)
. (2.122)
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2.6.2 Solving for the Dynamics of a Plastic Balanced Network

Eqs. (2.123,2.124,2.125) thus self–consistently describe the macroscopic dynamics of the balanced

network.

lim
N→∞

r = −W−1
W xrx (2.123)

〈S,S〉 =
1

N
W−1〈X,X〉W−∗ − 1

N
Q−1{S,S}+O

(
〈X,X〉
N3/2

)
. (2.124)

dJab
dt

= ηab

(
A0 +

∑
α,β={a,b}

Rateα,β + Covα,β

)
, (2.125)

There are two approaches to analyzing this coupled system of ordinary differential equations: (1)

solve directly for the steady–states of the system; or (2) apply numerical integration to obtain

the evolution of the system in time. To obtain the equilibria, we first find the firing rates and

covariances (both in terms of plastic weight Jab) obtained using the mean–field description of the

balanced network, Eqs. (2.123,2.124). We next substitute the results into Eq. (2.125), set dJab
dt = 0,

and find the roots. We denote the solution by J∗ab. We then use the mean synaptic weight (root

of Eq. (2.125), J∗ab) to obtain the corresponding rates and covariances using Eqs. (2.123,2.124).

Alternatively, we can solve the system iteratively over time and obtain the time evolution of rates,

covariances, and weights. Starting at an arbitrary value of Jab(t), we proceed in the same way as

in the first approach, but instead of setting dJab
dt = 0, we use Jab(t) to compute the value of the

derivative at time t, dJabdt |t, and use it to update the mean weight at the next time step, Jab(t+∆t).

We then use Jab(t+ ∆t) to update rates and covariances. We repeat this process until convergence

(see Section 3.4 for sample trajectories under different rules, and for our criterion to determine

stationarity of synaptic weights).
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2.6.3 What Happens if Timescales Are Not Separated?

Our theory requires a separation of timescales between spiking dynamics and synaptic weight

changes (Eq. (2.108)). We next asked how dynamics of balanced networks are affected when

these timescales are not well separated. To address this question we considered three example

STDP rules: weight–dependent Hebbian, Kohonen, and inhibitory plasticity (see Table 2.1 and

Fig. 2.5.1). We simulated these networks with varying learning rate, and found that when synaptic

weights updates occur on a fast timescale (compared to spiking dynamics), large fluctuations in

weights and deviations from theory emerge (Fig. 2.6.1).
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Figure 2.6.1: Timescale of weight changes in plastic balanced networks. A: Evolution
of mean excitatory synaptic weight subject to weight–dependent Hebbian STDP in a balanced
network. Fast weight timescales induce large fluctuations and deviations from the fixed point.
Inset: When η = 1 weight updates are so large that the network becomes unstable. B: Same
as A:, but for excitatory weights evolving according to Kohonen’s rule. Convergence to the fixed
point is very slow when η < 0.01, and the approximation breaks down for η = 1. C: Same as
A:, but only inhibitory weights are plastic and follow inhibitory STDP updates. Deviations from
the theory appear when timescales are not well separated (η ≥ 1/1000). In all panels, dashed
lines represent theory (Eqs. (2.26,2.101,3.4)), and solid lines represent numerical results. Relevant
simulation parameters: N = 5000, cx = 0. Other parameters as in Table 3.1. Figure adapted from
Akil et al. [5].

2.7 Neuron Model

The novel mean–field theory of plastic balanced networks presented in Sections 2.1–2.6 does not

depend on a particular model for dynamics of individual neurons. Complex models of neuron

dynamics such as Hodgkin–Huxley [66] may be used, however they require the solution of four
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differential equations with a large number of parameters that can result in many different spike

trains patterns at a large computational cost. Such biological detail is not the focus of this work, so

we instead use a reduced one–dimensional model for neuron’s voltage dynamics called the current–

based exponential integrate–and–fire (EIF) model [37], which can also recreate realistic spiking,

with a much smaller number of parameters.

In the EIF model the membrane potential of neuron j = 1, . . . , Na in population a = e, i obeys

exponential integrate–and–fire dynamics [37],

Cm
dV a

j

dt
= −gL(V a

j − EL) + gL∆T e
(V a

j −VT )/∆T + Iaj (t). (2.126)

See Table 3.1 for a description and values of the parameters of the voltage dynamics. In our

simulations, this equation was integrated using a Forward Euler method with step size dt = 0.1 ms.

Integrate–and–fire models can either current or conductance–based. In all of our work, we used

the current–based formalism (Eq. (2.126)). However, in the latter, the membrane conductance is a

function of time and the resulting neuron dynamics may be quite different to that of current–based

models. In fact, there are separate mean–field theories for non–plastic networks of conductance–

based synapses, and recently it has been shown that such networks require scaling synapses as

1/log(N) [118], compared to the 1/
√
N scaling used here.

2.8 Perturbative Analysis

We next show how rates and spike count covariances are impacted by perturbations in synaptic

weights. At steady state the average firing rates in a balanced network with mean–field connectivity

matrix W 0 are given by

r0 = −W−1
0 W xrx (2.127)

We assume that the mean–field connectivity matrix is perturbed to W perturb = W 0 + ∆W . Using

Neumann’s approximation [75], (I + H)−1 ≈ (I −H), which holds for any square matrix H with
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‖H‖ < 1, and ignoring terms of power 2 and larger, we obtain,

W
−1
perturb = (W 0 + ∆W )−1 =

(
W 0(I +W

−1
0 ∆W )

)−1
(2.128)

≈
(
I −W−1

0 ∆W
)
W
−1
0 , (2.129)

where I is the identity matrix of appropriate size. We use this approximation of the perturbed

weights to estimate the rates and spike count covariances using Eqs. (2.26,2.105). The 2 × 2

mean–field connectivity matrix, W 0, must be non–singular for the balanced state to exist and

for Neumann’s approximation to hold [138]. While the non–singularity of W 0 is a non-restrictive

condition for two neural populations, W 0 can become singular in some models with several neural

sub-populations [33,83].

2.9 Comparison of Theory with Numerical Experiments

We define spike trains of individual neurons in the population as sums of Dirac delta functions,

Si(t) =
∑

j δ(t − tij), where the tij is the time of the jth spike of neuron i. Assuming the system

has reached equilibrium, we partition the interval over which activity has been measured into K

equal subintervals, and define the spike count covariance between two cells as,

cov(n1k, n2k) =
∑
k

(nk1 − n1)(nk2 − n2), (2.130)

where nik is the spike count of neuron i in subinterval, or time window, k, and ni = 1
K

∑
k nik is the

average spike count over all subintervals. In simulations we used subintervals of size Twin = 250 ms,

although the theory applies to sufficiently long subintervals, and can be extended to shorter intervals

as well. The spike count covariance thus captures shared fluctuations in firing rates between the

two neurons [31].
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2.10 Remarks on the General STDP Rule

We would like to know what the impact of rates and covariances is in the synaptic weights. We

estimated the magnitude of the rate and covariance terms in Eq. (2.120) in Figs. 2.11.1 and 3.1.6.

The remaining question is: Given the magnitude of each term, what is the qualitative effect that

increasing rates or covariances will have on synaptic weights? Here, we show that changes in rates

or covariances have two distinct effects. Such changes can shift the location of the fixed point, or

they can modulate the speed of convergence to that equilibrium. We prove this in Claims 1 and 2

next.

Claim 1. Consider a general STDP rule that satisfies Eq. (2.107) and involves synapses between

neurons of different populations (a 6= b). In this case, both the rates and covariances determine the

location of the fixed point of the synaptic weights. In particular, increasing firing rates or spike

count covariances can shift the location of the fixed point of the mean synaptic weight.

Proof. For simplicity, assume the STDP only involves second order terms (only these give rise to

covariance terms in the mean–field equation of the weights),

dJabjk
dt

= ηab

(
B{a,j},{a,j}x

a
jS

a
j +B{a,j},{b,k}x

a
jS

b
k +B{b,k},{a,j}x

b
kS

a
j +B{b,k},{b,k}x

b
kS

b
k

)
. (2.131)

As shown before, the mean synaptic weight evolves according to:

dJab
dt

= ηab

[
B{a,j},{a,j}

(∫ ∞
−∞

K̃(f)〈Sa, Sa〉(f)df + τSTDPrara

)
+B{a,j},{b,k}

(∫ ∞
−∞

K̃(f)〈Sa, Sb〉(f)df + τSTDPrarb

)
+B{b,k},{a,j}

(∫ ∞
−∞

K̃(f)〈Sb, Sa〉(f)df + τSTDPrbra

)
+B{b,k},{b,k}

(∫ ∞
−∞

K̃(f)〈Sb, Sb〉(f)df + τSTDPrbrb

)]
(2.132)
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By assumption, a 6= b, and re–grouping terms, we get:

dJab
dt

= ηab

(
B{a,j},{a,j}τSTDPrara + (B{a,j},{b,k} +B{b,k},{a,j})τSTDPrarb

+B{b,k},{b,k}τSTDPrbrb +B{a,j},{a,j}

∫ ∞
−∞

K̃(f)〈Sa, Sa〉(f)df

+ (B{a,j},{b,k} +B{b,k},{a,j})

∫ ∞
−∞

K̃(f)Re[〈Sa, Sb〉(f)]df

+B{b,k},{b,k}

∫ ∞
−∞

K̃(f)〈Sb, Sb〉(f)df

)
.

(2.133)

Grouping the first three terms and the last three terms we obtained:

dJab
dt

= ηab
(
Ratea,b + Cova,b

)
. (2.134)

Thus rates and spike count covariances have an additive effect in the equation for dJab/dt.

This implies that both rates and covariances determine the location of the fixed point of Jab.

Thus, increases in any of the two terms can lead to a shift in the location of the fixed point.

In our framework, rates and covariances can be controlled independently through the rx and cx,

respectively. Therefore, increasing cx can put the network in regimes where Ratea,b and Cova,b are

of the same magnitude and hence increasing covariances can moderately shift the location of the

fixed point Jab. (This is the case for Kohonen’s rule – see Fig. 3.1.6 in Section 3.1.)

Claim 2. Let us now consider a general STDP rule that satisfies Eq. (2.107) and changes the

weights of synapses between neurons of the same population (a = b), but these changes are only

due to order 2 interactions. In this case, the rates and covariances do not determine the fixed point

of the synaptic weights. However, rates and covariances can modulate the speed of convergence of

the synaptic weights to steady state.

Proof. By assumption, the STDP only involves second order terms. Then:

dJabjk
dt

= ηab

(
B{a,j},{a,j}x

a
jS

a
j +B{a,j},{b,k}x

a
jS

b
k +B{b,k},{a,j}x

b
kS

a
j +B{b,k},{b,k}x

b
kS

b
k

)
. (2.135)
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As shown before, the mean synaptic weight evolves according to Eq. (2.132). Since, a = b, and

re–grouping terms, we get:

dJaa
dt

= ηab

(
B{a,j},{a,j} +B{a,j},{b,k} +B{b,k},{a,j} +B{b,k},{b,k}

)
×(

τSTDPr
2
a +

∫ ∞
−∞

K̃(f)〈Sa, Sa〉(f)df

)
.

(2.136)

Note that

τSTDPr
2
a +

∫ ∞
−∞

K̃(f)〈Sa, Sa〉(f)df > 0 (2.137)

therefore, the only fixed point of Jaa is determined by the roots of

B{a,j},{a,j} +B{a,j},{b,k} +B{b,k},{a,j} +B{b,k},{b,k} = 0. (2.138)

Thus the location of the fixed point of Jab is independent of rates and spike count covariances.

However, since rates and covariances come in multiplicatively in the derivative of Jab (i.e., the

derivative is proportional to the sum of rate and covariance contributions), rates and covariances

can modulate the speed of convergence of the synaptic weights to the fixed point. This can happen

through changes in rx or cx. This is the case for weight–dependent Hebbian STDP – see Fig. 3.1.3

in Section 3.1 for more details.

2.11 Which Cause More Weight Changes: Rates or Covariances?

In Chapter 3, we use our theory to explore the interaction between weights, rates, and covariances

for networks with plastic synapses that followed Kohonen’s rule and weight–dependent EE Hebbian

STDP. We found that increasing correlations mildly impact the dynamics of the synaptic weights.

We now compare the magnitude of the covariance term to that of the rate term in Eq. (2.120) in

order to determine which term will, generally, drive larger changes in synaptic weights.

To do this, we estimate the covariance terms in our equation for the mean weights (Eq. (2.120))

and compare them to the rate terms in that same equation. We assume there are interactions of
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order 2 only, and that these have constant coefficients. In other words, we assume that the synaptic

weights evolve according to,

dJabjk
dt

= ηab
(
xajS

a
j + xajS

b
k + xbkS

a
j + xbkS

b
k

)
, (2.139)

where, without loss of generality, we set all nonzero coefficients to one. We do this in order to

give the same coefficient/weight to each term so that we can compare rates and covariance terms

without giving more weight to one or the other. We then obtain an equation for the mean synaptic

weights depending on the rates and covariances:

dJab
dt

= ηab
∑

α,β={a,b}

Rateα,β + Covα,β, (2.140)

where Rateα,β = τSTDP rαrβ, Covα,β =
∫∞
−∞ K̃(f)〈Sα, Sβ〉(f)df. The fact that all nonzero coeffi-

cients are set to be equal allows us to estimate the raw values of the covariances and rates for each

synapses (for a, b = e, i), and compare them.

We found that for a plasticity rule (Eq. (2.140)), which is an example of our general STDP rule

Eq. (2.107), acting on any synapse, the impact of correlations in the synaptic weights is at least

one order of magnitude smaller than the contribution of the rates to the dynamics of the weights

(Fig. 2.11.1 A,B,C). This implies that changes in the firing rates will usually have a stronger effect

on the weights than changes in spike count covariances. However, increasing spike count covariances

can still have a mild impact in synaptic weight dynamics when rates remain fixed. This last point

is illustrated in Chapter 3 in example networks undergoing excitatory plasticity (Kohonen and

weight–dependent Hebbian).
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Figure 2.11.1: General impact of correlations in synaptic weights. A: Plot of the time
derivative of the mean weight as a function of jee assuming interactions of order 2 only. B , C,
D: Same as A: but for EI, IE, and II synapses, respectively. The contribution of rates to the
evolution of synaptic weights is always larger than that of the covariances. Solid lines represent the
theory (Eqs. (2.26,2.105,2.140)). Figure adapted from Akil et al. [5].

2.12 Implementation of Inhibitory Plasticity in Numerical Simu-

lations

We next describe how we implemented the plasticity rules using the example of homeostatic

inhibitory–to–excitatory STDP as in [141], which is a special case of our general STDP rule (see

Eq. (2.107) and Table 2.1). Note that for the implementation of this rule, we will use the convention

that Jei
jk < 0 or inhibitory weights. After each presynaptic spike, tik,n, of inhibitory neuron k, we

make the update:

Jei
jk(t+ ∆t) = Jei

jk(t)− ηei

Jei
jk(t)

Jnorm
(xe
j(t)− αe) (2.141)

and after each postsynaptic spike, tej,m, of excitatory neuron j, we make the update:

Jei
jk(t+ ∆t) = Jei

jk(t)− ηei

Jei
jk(t)

Jnorm
xi
k(t) (2.142)

where Jnorm ∼ O(1/
√
N) is a normalization constant. Note that Jnorm < 0, in order to yield a

positive fraction in the previous two equations. Other STDP rules were implemented similarly.

We slightly modified the rule described in [141] to prevent I to E weights from becoming

positive. In particular, we multiplied the right hand side of the updates by
Jei
jk(t)

Jnorm
, in order to

create an unstable zero fixed point and ensure that weights remain negative. See Section 3.2 for an
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example where inhibitory weights change signs if the zero fixed point is not present.

This modification guarantees that EI weights will remain negative in continuous–time rate–

dynamics. However, EI weights could still change sign, since in network simulations, changes in

synaptic weights occur in spike–based discrete–time updates. We thus proceed to derive a condition

under which this modification ensures that synaptic weights will not change signs. Consider updates

due to post–synaptic spikes, since pre–synaptic spikes always strengthen the connection. We would

like for the weights to always be negative:

Jeijk = Jeijk −
Jeijk
Jnorm

ηei(x
e
j − αe) < 0. (2.143)

Dividing through by Jeijk and rearranging,

− 1

Jnorm
ηeix

e
j + αeηei

1

Jnorm
> −1. (2.144)

Since Jnorm < 0, it suffices to have:

αeηei
1

|Jnorm|
< 1 (2.145)

Therefore, as long as this condition, which depends on network and plasticity parameters, is satis-

fied, I to E weights will not turn positive.

44



Chapter 3

Numerical Simulations of Balanced

Networks

In the following sections, we use the theory described in the Chapter 2 to show how synaptic

weights and correlated activity co–evolve in tightly balanced networks. We review the issue of

unstable weights under Classical Hebbian STDP [14, 60, 92] (Table 2.1), and show how it can be

resolved in a biologically realistic way arriving at the weight–dependent Hebbian STDP rule. We

then apply our theory to a balanced network with plastic excitatory synapses that evolve according

to such weight–dependent Hebbian STDP, and investigate how correlations, rates, and synaptic

weights interact.

We next examine balanced networks under Kohonen’s STDP rule [78]. The theory predicts that

the network is in a stable, balanced state, and provides asymptotic values for rates, spike count

covariances, and synaptic weights. We also show that correlated activity can have a moderate

impact on the dynamics of synaptic weights.

We also show that the theory does not accurately predict weight dynamics for certain STDP

rules for which heterogeneity in rates can lead to competition between synaptic weights. The result-

ing correlations between rates and weights are inconsistent with classical balanced network theory.

We show how our framework can be extended to describe such networks. We then demonstrate
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that our theory can describe the robust response of iSTDP to targeted optogenetic input to subsets

of neurons.

Lastly, we show that the statistics and dynamics of plastic, balanced networks simulated here

tend to be similar to those in real cortical circuits. We also demonstrate that our theory can be

used to describe transient dynamics as long as timescales are well separated.

3.1 Balanced Networks under Excitatory Plasticity

3.1.1 Hebbian Plasticity

Excitatory plasticity plays a central role in theories of learning, but can lead to instabilities [9, 14,

92, 100]. Our theory can play a fundamental role in stabilizing network dynamics under Hebbian

STDP.

Stabilizing Excitatory Hebbian STDP. Consider a balanced network in an asynchronous state

as described in Chapter 2. Assume that the EE weights change according to:

dJee
jk

dt
= ηee

(
xe
kS

e
j − xe

jS
e
k

)
. (3.1)

We have shown that the mean EE synaptic weight then evolves as:

dJee

dt
= ηee

(
1− 1

)(
τSTDPr

2
e +

∫ ∞
−∞

K̃(f)〈Se, Se〉(f)df

)
= 0. (3.2)

Mean–field theory predicts stable dynamics when the system has a stable fixed point deter-

mined by dJee/dt = 0. However, simulations show that network dynamics are unstable due to

the divergence of individual weights to ±∞ (Fig. 3.1.1 A–D), so that the mean stays finite while

the variance across the population diverges. This is a well known fact in the literature [9, 100].

Therefore, it is possible that the mean–field theory predicts stable dynamics, despite instabilities

in higher moments that can cause individual weights to blow up. On the other hand, network

dynamics will be unstable if the mean-field theory predicts that the first moment diverges.
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Figure 3.1.1: Stabilization of Hebbian STDP. A: Excitatory synaptic weights subject to classi-
cal Hebbian STDP (see Table 2.1). The mean synaptic weight is shown in black. Individual weights
diverge to ±∞, destabilizing network dynamics. B: Distribution of synaptic weights right before
the simulation is terminated. C: The mean synaptic input diverges as individual weights diverge.
D: Positive feedback loops due to unconstrained Hebbian STDP lead to uncontrolled activity in
the network. The simulation is terminated when input and rates grow with no bounds. E: Same as
A–D, but for Classical Hebbian plasticity with hard constraints at 0 and 50. Mean synaptic weight
(in black) remains unchanged. Network remains balanced and stable throughout the simulation. F:
Same as A–D, but for weight dependent Hebbian STDP (see Table 2.1). The network maintains a
stable, balanced state. Relevant simulation parameters: N = 5000, cx = 0. Others as in Table 3.1.
Figure adapted from Akil et al. [5].
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In simulations, Hebbian STDP is frequently stabilized by imposing hard lower and upper bounds

on synaptic weights (Fig. 3.1.1 E,F). With appropriately chosen bounds, the network is stabilized

and balance is achieved (Fig. 3.1.1 G,H). We can use mean–field theory to find alternative ways to

modify learning rules in order to stabilize network dynamics: One such modification is to multiply

the LTP term in Eq. (3.1) by a constant (Jmax ∼ O(Jeejk)) and the LTD term by the current value

of the synaptic weight, Jeejk , in what we call the “Weight–dependent Hebbian STDP rule” (see

Table 2.1). This can be interpreted as a constraint on synaptic weights due to limitations on the

size and strength of a synapse. Excitatory synaptic weights then converge to a fixed point and the

network remains in the balanced regime (Fig. 3.1.1 I–L). This approach can be generalized to other

plasticity rules while maintaining the underlying dependence on spike timing.

Asymptotic behavior in weight–dependent Hebbian STDP. Assume that EE synaptic

weights evolve according to a weight–dependent Hebbian STDP rule [14,60,92] (see Table 2.1),

dJee
jk

dt
= ηee

(
Jmaxx

e
kS

e
j − Jee

jkx
e
jS

e
k

)
(3.3)

This rule yields the classical behavior originally proposed by Hebb: a pre–synaptic spike followed

by a post–synaptic spike potentiates the synapse. This equation also enforces that a post–synaptic

spike followed by a pre–synaptic spike depresses the synapse.

On average, the EE synaptic weights evolve as:

dJee

dt
= ηee

(
Jmax − Jee

)(
τSTDPr

2
e +

∫ ∞
−∞

K̃(f)〈Se, Se〉(f)df

)
. (3.4)

The fixed point of Eq. (3.4) is simply J∗ee = Jmax because rate and covariances equations

(Eqs. (2.26,2.105)) show that the second factor on the right–hand side is strictly positive. We can

still solve for the firing rates and spike count covariances through their mean–field equations using

the fixed point J∗ee = Jmax.
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Our theoretical framework predicts that the network attains a stable balanced state, and gives

the location of the fixed point in terms of weights, rates, and covariances. We confirm our predictions

with numerical simulations of the network in a correlated state (Fig. 3.1.2).
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Figure 3.1.2: Weight–dependent Hebbian STDP yields a stable balanced state. A: Mean
excitatory synaptic weight, jee, evolving over time for increasing network sizes. B: Mean E and I
firing rates for increasing network sizes. C: Mean spike count covariance between E–E, E–I, and
I–I spike trains. Dashed lines represent the theory (Eqs. (2.26,2.105,3.4)). Solid lines and dots are
obtained from numerical simulations. Figure adapted from Akil et al. [5].

Our theory (Eqs. (2.26,2.105,3.4)) predicted that spike count covariances are of order 1, and

this is confirmed by numerical simulations (Fig. 3.1.2 C). As N grows, firing rates and synaptic

weights converge to the predicted values (Fig. 3.1.2 A,B).

We have thus shown, that for N large enough, the dynamics of a plastic balanced network

can be well approximated by our theoretical results for the introduced weight–dependent Hebbian

STDP rule, as long as the balance condition is satisfied (Eq. (2.26)).

Impact of correlations on weights under weight–dependent Hebbian STDP. In Sec-

tion 2.10, we showed mathematically that in STDP rules of only order 2 interactions between

neurons in the same subpopulation, correlations and rates modulate the speed of convergence of

synaptic weights to equilibrium. We now show this is the case for the weight–dependent Hebbian

STDP rule.

In particular, we used our theoretical framework to show that in a balanced network with EE

weights that change according to Eq. (3.3), increasing correlations does not affect the location of

the fixed point, but increases the speed of convergence to that equilibrium.

Simulations confirmed that the fixed point of synaptic weights does not change with increasing
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correlations (Eq. (3.4)) (Fig. 3.1.3 A). Since synaptic weights are not affected by these changes

in correlations, rates also remain unchanged (Fig. 3.1.3 B). This is also confirmed by empirical

simulations. To measure how the speed of convergence is increased by stronger correlations, we

compute t50 which is defined as the time it takes for the mean synaptic weight to reach 50%

convergence to the fixed point for increasing values of input correlations, and found that t50 is

dramatically reduced as correlations become larger, hence the mean weights converge faster to

their equilibrium value (Fig. 3.1.3 C).
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Figure 3.1.3: Increasing input correlations speeds up convergence to equilibrium un-
der Hebbian STDP. A: Mean excitatory synaptic weight, jee, obtained at different values of
input correlations. B: Mean E and I firing rates for increasing input correlations. C: Half time
between initial condition and equilibrium for networks with increasing input correlations. Dashed
lines represent the theory (Eq. (2.26,2.105,3.4)). Solid lines and dots are obtained from numerical
simulations. Figure adapted from Akil et al. [5].

We found that, as predicted in Section 2.10, the effect of correlations in the weight dynamics

is different to that seen with Kohonen’s rule (shown in Section 3.1.2). In this case, our theory

predicts that increasing covariances (through our parameter cx), increases the rate of convergence

to equilibrium, while maintaining the location of the fixed point unchanged.

3.1.2 Kohonen’s Plasticity Rule

We have illustrated the power of our theory through examples of Hebbian STDP. In particular, our

theory allows us to modify STDP rules in biologically plausible ways to achieve stability, to predict

the network and weight dynamics, and to better understand the role of spike train correlations in
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the evolution of synaptic weights.

For the remainder of Section 3.1.2, we consider a network in a correlated state with excitatory–

to–excitatory (EE ) weights that evolve according to Kohonen’s rule [78]. This rule was first in-

troduced in artificial neural networks [78, 79], and was later shown to lead to the formation of

self–organizing maps in model biological networks [80]. We used our theory to show that Koho-

nen’s rule leads to stable asynchronous or correlated balanced states, and verified these predictions

in simulations. We analyzed the particular dynamics of weights under Kohonen’s rule that can

result in a saddle–node bifurcation, and lastly showed that correlations have a small impact on

weight dynamics, mildly shifting the fixed point of the system.

Asymptotic behavior of balanced networks under Kohonen’s rule. Kohonen’s Rule can

be implemented by letting EE synaptic weights evolve according to [78] (see Table 2.1),

dJee
jk

dt
= ηee

(
βxe

jS
e
k − Jee

jkS
e
j

)
, (3.5)

where β > 0 is a parameter that can change the fixed point of the system (see Fig. 3.1.5). This

STDP rule is competitive as weight updates only occur when the pre–synaptic neuron is active, so

that the most active pre–synaptic neurons change their synapses more than less active pre–synaptic

cells.

The mean–field approximation describing the evolution of synaptic weights given in Eq. (2.120)

has the form:

dJee

dt
=ηee

(
βτSTDP r

2
e − Jeere + β

∫ ∞
−∞

K̃(f)〈Se, Se〉df
)
. (3.6)

The fixed point of Eq. (3.6) can be obtained using the expressions for the rates and covariances

obtained in the balanced state (Eqs. (2.26,2.105)). The rates and covariances at steady–state can

then be obtained from the resulting weights (see Section 2.6 for details on how to solve these

equations).

Our theory predicts that the network attains a stable balanced state, and the average rates,
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weights, and covariances at this equilibrium (Fig. 3.1.4) (see Section 3.4 for empirical distributions

under Kohonen’s and other rules). These predictions agree with numerical simulations in both

the asynchronous and correlated states (Fig. 3.1.4 B,C). As expected, predictions improve with

network size, N , and spike count covariances scale as 1/N in the asynchronous state (Fig. 3.1.4 D–

F). Similar agreement holds in the correlated state, including the impact of the correction introduced

in Eq. (3.6) (Fig. 3.1.4 G–I).
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layer, X, of correlated Poisson neurons. B: Raster plot of all neurons in a network of N = 5000
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E and I firing rates for different network sizes, N , in an asynchronous state. F: Mean EE, II and
EI spike count covariances in an asynchronous state. G–I: Same as (D–F) but for a network in
a correlated state. Solid lines represent simulations, and dashed lines are values obtained using
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state cx = 0, and in the correlated state cx = 0.1. Unless otherwise stated, colors carry the same
meaning in all figures. Figure adapted from Akil et al. [5].
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Saddle–node bifurcation of excitatory weights in Kohonen’s STDP rule. Recall from

Eq. (3.5) that β is a parameter that represents the amplitude of the LTP term. Therefore it is

natural to ask: How does the stability of the synaptic weights depend on β? Our mean-field theory

shows that the stable network state disappears in a saddle–node bifurcation (Fig. 3.1.5 A). For

the chosen set of parameters (see Table 3.1), the theory predicts a saddle–node bifurcation occurs

at β ≈ 8 (Fig. 3.1.5 A). We confirmed the presence of a saddle–node bifurcation in numerical

simulations (Fig. 3.1.5 B). However, the bifurcation occurs at a lower value of β due to divergence

of individual synapses (Fig. 3.1.5 C–F). This is not unexpected, as fluctuations can destabilize a

system close to a saddle–node bifurcation by pushing it across the unstable fixed point.
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Figure 3.1.5: Stability of weights in Kohonen’s rule. A: The derivative of the mean excitatory
weight for different values of excitatory weights subject to Kohonen’s STDP rule obtained from
Eq. (3.6). The excitatory weight dynamics undergo a saddle–node bifurcation near β ≈ 8. B:
Evolution of mean synaptic weights over a range of values of β. A bifurcation occurs in simulations
at β ≈ 3.6, as noise pushes the system past the critical point earlier than the mean–field theory
predicts. Dashed lines represent theoretical values, solid lines were obtained from simulations. C:
Evolution of individual synaptic weights for β = 1.2. Mean synaptic weight in black. D: Same as
C: for β = 2.4. E: Same as C: for β = 3.4. Variance of individual synaptic weight increases with β.
F: Same as C: for β = 3.6. The mean, and some individual excitatory weights diverge. In panels
C–F, solid lines were obtained from numerical simulations. (Eqs. (2.26,2.105,3.6)), and solid lines
represent numerical results. Relevant simulation parameters: N = 5000, cx = 0. Other parameters
are given in Table 3.1. Figure adapted from Akil et al. [5].

Dynamics of correlated balanced networks under Kohonen’s STDP. We next asked
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whether and how the equilibrium and its stability are affected by correlated inputs to a plas-

tic, balanced network. In particular, we used our theory to determine whether changes in synaptic

weights are driven predominantly by the firing rates of the pre– and post–synaptic cells, or cor-

relations in their activity. We also asked whether correlations in neural activity can change the

equilibrium, the speed of convergence to the equilibrium, or both? We have seen that for Hebbian

STDP increases in correlations can increase the rate of convergence to the fixed point. We now

address this question for networks under Kohonen STDP.

We first address the role of correlations. Our theory predicts that a plastic, balanced network

remains stable under Kohonen’s rule, and that an increase in the mean EE weights by 10 − 20%

as correlations in the input are increased (Eqs. (2.26,2.105,3.6)). Both predictions were confirmed

by simulations (Fig. 3.1.6 A,B). We also used the theory to predict that this increase in synaptic

weights results in negligible changes in firing rates, which simulations again confirmed (Fig. 3.1.6

C).

How large is the impact of correlations in plastic balanced networks more generally? To address

this question, we assumed that only pairwise interactions affect EE synapses, as first order inter-

actions depend only on rates after averaging. We thus set Bα,β ≡ 1, and all other coefficients to

zero in Eq. (2.107). While the network does not reach a stable state under this arbitrary plasticity

rule, it allows us to estimate the contribution of rates and covariances to the evolution of synaptic

weights. Here Bα,β can have any nonzero value, since it scales both the rate and covariance terms.

Under these conditions, our theory predicts that the rate term is at least an order of magnitude

larger than the correlation term (even when rates themselves are small, i.e., when jee is small),

and so correlations only have a low impact on the dynamics of synaptic weights (Fig. 3.1.6 D).

Therefore, our theory predicts that, in general, changes in synaptic weights will largely be driven

by changes in firing rate patterns, rather than modulations in pairwise correlations.

We next ask the opposite question: How do changes in synaptic weights impact firing rates,

and covariances? We predicted, using the full theory (see Eqs. (2.26,2.105), and Section 2.8), that

potentiation of EE weights leads to large increases in rates and spike count covariances. This
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Figure 3.1.6: Spike count covariances mildly impact the fixed point of synaptic weights
and firing rates. A: The rate of change of EE weights as function of the weight, jee, at different
levels of input correlations, cx. B: Mean steady–state EE synaptic weight for a range of input
correlations, cx. C: Mean E and I firing rates as a function of input correlations. D: Same as (A)
but for an EE STDP rule with all coefficients involving order 2 interactions set equal to 1, and all
other coefficients set equal to zero. E: Mean E and I firing rates as a function of mean EE synaptic
weights. F: Mean spike count covariances between E spike trains, I spike trains, and between E–I
spike trains as a function of EE synaptic weight, jee. Solid lines represent simulations (except in
A,D), dashed lines are values obtained from theory (Eqs. (2.26,2.105,3.6)), and dotted lines were
obtained from the perturbative analysis. Note that in all panels, ‘Exc weight’ refers to jee rather
than Jee, as the former does not depend on N . Figure adapted from Akil et al. [5].

prediction was again confirmed by numerical simulations (Fig. 3.1.6 E,F). This observation holds

generally, and STDP rules that results in large changes in synaptic weights will produce large

changes in rates and covariances.

Our theory thus shows that in general weight dynamics can be moderately affected by correla-

tions when these are large enough (see Fig. 3.1.3 for a similar analysis on Hebbian STDP). In turn,

changes in synaptic weights will generally change the structure of correlated activity in a balanced

network.

The predictions of the theory hold in all cases we tested (see Sections 3.1.1 and 3.2). Under-

standing when plasticity will support a stable balanced state allows one to implement Kohonen’s

rule and other rules in complex contexts and tasks, without the emergence of pathological states
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(such as those described in Section 3.1.1 in networks under classical Hebbian STDP).

3.2 Balanced Networks under Inhibitory Plasticity

Next, we show that in its basic form our theory can fail in networks subject to inhibitory STDP,

and how the theory can be extended to capture such dynamics. The failure is due to correlations

between weights and pre–synaptic rates which are typically ignored [10, 83, 110, 115, 137, 138] (we

used this assumption in our derivation of Eqs. (2.9,2.16,2.18,2.23,2.73, 2.75,2.76,2.77)), but can

cause the mean–field description of network dynamics to become inaccurate. This is similar to the

breakdown of balanced state theory in the presence of correlations between in– and out–degrees

discussed by Vegué and Roxin, 2019 [139].

To illustrate this, we consider a balanced network subject to homeostatic plasticity [141]. This

type of plasticity has been shown to stabilize the asynchronous balanced state and conjectured to

play a role in the maintenance of memories [63,87,141]. Following [141] we assume that EI weights

evolve according to:

dJei
jk

dt
= −ηei

Jei
jk

Jnorm

[
(xe
j − αe)S

i
k + xi

kS
e
j

]
(3.7)

where αe is a constant that determines the target firing rates of E cells and Jnorm ∼ O(1/
√
N) is

a normalization constant. Note that Jnorm < 0 so the fraction in Eq. (3.7) is positive assuming

Jei
jk < 0. In a departure from the rule originally proposed by Vogels et al. [141], we chose to multiply

the time derivative by the current weight value. This modification creates an unstable fixed point

at zero, prevents EI weights from changing signs, and keeps the analysis mathematically tractable

(see Section 2.12 for more details). An alternative way to prevent weights from changing sign would

be to place a hard bound at zero, but this would create a discontinuity in the vector field of Jei,

complicating the analysis.
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On average, the inhibitory weights change as,

dJei

dt
=− ηei

Jei

Jnorm

(
(2τSTDP re − αe)ri + 2

∫ ∞
−∞

K̃(f)Re[〈Se, Si〉]df
)
. (3.8)

It is easy to see that this modification imposes an unstable fixed point at Jei = 0.

Weights in original iSTDP rule may switch signs. We mentioned that the form of inhibitory

STDP in [141] was slightly modified to include a zero unstable fixed point in the synaptic weights.

This was done because under certain relevant conditions, the synaptic weights can change sign in

an effort to maintain E rates at the target.

One simple case in which this happens, is when all I neurons are stimulated (Fig. 3.2.1).

The network is put in a semi–balanced regime [11] where neurons receive excess inhibition on

average (Fig. 3.2.1 A inset). The inhibitory rates increase, which would effectively decrease E

rates. However, I to E synaptic weights decrease so that the E rates are maintained near the

target (Fig. 3.2.1 A and B). Since EI weights are not controlled to stay negative, excess inhibition

causes some synapses to switch signs in order to maintain E rates at the target (Fig. 3.2.1 C). This

violates Dale’s law, so in all other simulations of inhibitory STDP, the learning rule is modified to

incorporate a zero unstable fixed point, which prevents synaptic weights from switching signs (as

proven in Section 2.12).

Dynamics of correlated balanced networks under inhibitory STDP. Under the rule de-

scribed by Eq. (3.7) a lone pre–synaptic spike depresses the synapse, while near–coincident pre– and

post–synaptic spikes potentiate the synapse. Changes in EI weights steer the rates of individual

excitatory cells to the target value ρe := αe
2τSTDP

. Indeed, individual EI weights are potentiated

if post–synaptic firing rates are higher than ρe, and depressed if the rate is below ρe. Our theory

predicts that the network converges to a stable balanced state (Fig. 3.2.2 A). Correlations again

have only a mild impact on the evolution of synaptic weights (Fig. 3.2.2 A).

Although our theory predicts a single stable fixed point for the average EI weight, simulations
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Figure 3.2.1: Homeostatic nature of inhibitory STDP can break Dale’s Law. A: Excitatory
and inhibitory firing rates over time. External stimulation starting at time 0 sec increases the firing
rate of I cells. Inset: Average excitatory, inhibitory, and total inputs. Total input is negative when
I cells are stimulated. B: Mean EI synaptic weight over time. After stimulation onset, EI weights
decrease in magnitude. C: Distribution of EI synaptic weights. A number of inhibitory synapses
have turned positive. All plots obtained from a single simulation, where added external input to
all inhibitory neurons starts at time 0 sec. Figure adapted from Akil et al. [5].

show that weights converge to a different average depending on the initial EI weights (Fig. 3.2.2 B–

E solid lines). A manifold of stable fixed points emerges due to synaptic competition, which is a

consequence of heterogeneity in inhibitory firing rates in the network: Weights of highly active

pre–synaptic inhibitory cells are potentiated more strongly compared to those of lower firing cells

(Fig. 3.2.2 E). Thus, while inhibitory rates and EI weights are initially uncorrelated, correlations

emerge as the excitatory rates approach their target. Networks with different initial EI synaptic

weights, converge to different final distributions, and the emergent correlations between weights

and rates drive the system to different fixed points (Fig. 3.2.2 C,D).

We used a semi–analytical approach to confirm that correlations between weights and rates

explain the discrepancy between predictions of the mean field theory, and simulations. To do so we

introduced a correlation–dependent correction term into the expression for the rates:

lim
N→∞

~r = −W−1(
W xrx + cov(Jei, ri)

)
, (3.9)

where cov(Jei, ri) := [〈〈Jei
jkr

i
k〉k − 〈Jei

jk〉k〈ri
k〉k〉j , 0]T . Recall that in our derivation of mean firing

rates we ignored this term (see Eq. (2.18)). That was a valid assumption in non–plastic networks,
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Figure 3.2.2: Correlations between synaptic weights and inhibitory rates lead to the
formation of a manifold in weight space. A: The rate of change of EI weights as a function
of the weights themselves. The contributions of the covariance (blue) is considerably smaller than
the contribution of the rate (red), and the theory predicts a stable fixed point. B: Evolution of
inhibitory weights showing that different initial weights converge to different fixed points. Inset:
weights starting at different initial conditions converge to equilibrium at different times for fixed
1/ηei = 10−5). C: A manifold of fixed points in j∗ei − j0

ei space emerges due to correlations between
weights and rates. Solid line represents simulations, dashed line are values obtained from the
modified theory (Eqs. (3.9,2.105,3.8)). Inset: Final distribution of EI weights for a network with
initial weights j0

ei = 150 (yellow), and j0
ei = 50 (blue). Modified theory predicts the manifold of fixed

points. D: Same as A, but obtained from simulations. Lines represents trajectories from different
initial weights (red dots). Inset: Total recurrent input to E neurons, Re,total = 〈〈Jee

jkr
e
j〉j +〈Jei

klr
i
l〉l〉k

for a range of initial weights. Mean recurrent input to E cells, Re,mean = weere + weiri. The
mean input deviates from the total input due to emergent correlations between weights and rates,
Cov(Jei, ri) = Re,totalRe,mean. E: The weights of individual EI synapses corresponding to the same
post–synaptic E cell as a function of the equilibrium firing rates of pre-–synaptic I neurons. Each
color represents a different simulation of the network with different initial EI weight. Equilibrium
inhibitory weights and pre–synaptic rates are correlated (Blue: R2 = 0.952, Red: R2 = 0.9865,
Yellow: R2 = 0.979). F: Sample trajectories of the jei−jii system for a network of N = 104 neurons
in an asynchronous state. Simulations with different initial weights (dashed lines), converge to a
fixed point close to the one predicted by the theory (solid line). Figure adapted from Akil et al. [5].

however for this rule the presence of strong correlations between pre–synaptic rates and weights is

evident and needs to be accounted for (Fig. 3.2.2 E). The average covariances between weights and

rates obtained numerically explain the departure from the mean–field predictions (Fig. 3.2.2 C).

Using the corrected equation (Eq. (3.9)), we predicted mean equilibrium weights that agree well

59



with simulations (Fig. 3.2.2 C dashed line).

iSTDP on II synapses decorrelates weights and rates. We next asked whether the mean–

field theory provides a good description of network dynamics in the absence of correlations between

weights and rates. Such correlations disappear in a network with homogeneous inhibitory firing

rates. Finding an initial distribution of weights that result in a balanced state with uniform

inhibitory firing rates is non–trivial, and may not be possible outside of unstable regimes exhibiting

rate–chaos where mean–field theory ceases to be valid [105]. However, allowing II synapses to

evolve under the same plasticity rule we used for EI synapses can homogenize inhibitory firing

rates: If we let

dJ ii
jk

dt
= −ηii

J ii
jk

Jnorm

[
(xi
j − αi)S

i
k + xi

kS
i
j

]
, (3.10)

all inhibitory responses approach a target rate ρi = αi
2τSTDP

, effectively removing the variability in

I rates. The evolution of the mean II and EI synaptic weights is now given by

dJei

dt
=− ηei

Jei

Jnorm

(
(2τSTDP re − αe)ri + 2

∫ ∞
−∞

K̃(f)Re[〈Se, Si〉]df
)
,

dJii

dt
=− ηii

Jii

Jnorm

(
(2τSTDP ri − αi)ri + 2

∫ ∞
−∞

K̃(f)〈Si, Si〉df
)
.

(3.11)

We conjectured that if inhibitory rates converge to a common target, synaptic competition

would be eliminated, and no correlations between weights and rates would emerge. This, in turn,

would remove the main obstacle to the validity of a mean–field description. The fixed point of these

equations can again be obtained using Eqs. (2.26,2.105) which predict that the network remains

in a stable balanced state (asynchronous or correlated). We also require ηei ≥ ηii, since when ηei

is much slower than ηii, the network becomes unstable as homogeneous inhibitory weights and

rates are not able to stabilize the heterogeneous distribution of E activity (see below “Stability of

iSTDP in EI and II connections depends on weights timescales.” and Fig. 3.2.3). We chose the

same STDP timescale for both EI and II synapses, and our predictions agree with the results of
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simulations (Fig. 3.2.2 F). The stable manifold of fixed points is replaced by a single stable fixed

point, and the average weights and rates approach a state that is independent of the initial weight

distribution.
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Figure 3.2.3: Inhibitory STDP: different timescales on EI,II synapses lead to different
behavior. A: Individual EI (green) and II (dark magenta) synaptic weights. Average of each
type in black. B: Mean firing rates of E and I populations. C: Mean excitatory (blue), inhibitory
(red) and total (black) input. Network is in balanced state. In A–C, ηei = ηii = 10−4. D–F:
Same as A–C, but here ηei = 10−4 and ηii = 10−3. Weights and consequently the mean input grow
uncontrollably. Rates oscillate and undergo periods of quiescence of E neurons. G–I: Same as A–C,
but now ηei = 10−3 and ηii = 10−4. Activity in the network is now balanced and stable. Relevant
parameters: N = 5000, cx = 0. Other parameters as in Supporting Table 3.1. Figure adapted from
Akil et al. [5].

This model of inhibitory plasticity is likely a large oversimplification. Synapses of differ-

ent interneuron subtypes are likely subject to different plasticity rules operating on different

timescales [24, 146], and would therefore not lead to uniform inhibitory firing rates. The mean-

field theory we presented here can be extended to account for multiple inhibitory subtypes with
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different plasticity rules.

Stability of iSTDP in EI and II connections depends on weights timescales. Consider

again a network with inhibitory STDP in EI and II connections. As we showed above, the theory

predicts one stable fixed point for the weights. However, convergence to that stable fixed point

depends on individual timescales of synaptic weights. In particular, if ηei ≥ ηii, then the network

realizes a stable balanced state (Fig. 3.2.3 A–C,G–I). However, if EI weights change at least an

order of magnitude slower than II weights, then the network is destabilized in attempt to control

excitatory rates (Fig. 3.2.3 D–F): Early in the simulation, II weights change fast in order to push

I cells to the target rate (Fig. 3.2.3 D). As a consequence, inhibitory feedback increases and E

neurons are silenced (Fig. 3.2.3 E), since EI STDP works on a slower timescale and is not able to

catch up with II STDP to push E rates to the target. At this point, EI STDP makes relatively

large updates since the E rates are far from target, and it strongly overshoots which causes rates

to rise very fast past the target. This also increases I rates away from target, and so II weights

change very fast to pull I rates towards their target. As a result both E and I rates drop below

target (Fig. 3.2.3 E – first oscillation). The cycle then repeats. These oscillations cause weights

and inputs to grow unrealistically large, and push the network out of balance. (Fig. 3.2.3 F).

We next show that balanced networks subject to iSTDP are robust to perturbatory, opto-

genetic inputs. Our theory predicts, and simulations confirm, that this learning rule maintains

balance when non–plastic networks do not, and it can return the network to its original state after

stimulation.

3.3 Inhibitory Plasticity Adapts Network’s Response to Stimuli

Thus far, we analyzed the dynamics of plastic networks in isolation. However, cortical networks are

constantly driven by sensory input, as well as feedback from other cortical and subcortical areas.

We next ask whether and how balance is restored if a subset of pyramidal (excitatory) neurons are

stimulated [33].
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Optogenetic techniques are frequently used to target and perturb the activity of neural sub-

populations in order to better understand cortical dynamics and neural computation. In such

experiments, firing rates of targeted neurons increase when exposed to light due to the expression

of microbial rhodopsins such as channelrhodopsin 2 (ChR2).

However, not all target neurons express the ChR2 protein [1, 20, 107, 109]. Thus stimulation

separates the target, e.g., pyramidal cell population into stimulated and unstimulated subpopula-

tions. Although classical mean–field theory produced singular solutions, Ebsch, et al. showed that

the theory can be extended, and that a non–classical balanced state is realized as long as W xrx is

in the column space of W : Balance at the level of population averages (E and I) is maintained,

while balance at the level of the three subpopulations is broken [33]. Since local connectivity is

not tuned to account for the extra stimulation (optogenetics), local synaptic input cannot cancel

external input to the individual subpopulations. However, the input averaged over the stimulated

and unstimulated excitatory population is cancelled.

We show that inhibitory STDP, as described by Eq. (3.7), can restore balance in the inputs to the

stimulated and unstimulated subpopulations. Similarly, Vogels, et al. showed numerically that such

plasticity restores balance in memory networks (i.e., networks containing Hebbian assemblies) [141].

Here, we present an accompanying theory that describes the evolution of rates, covariances, and

weights before, during, and after stimulation, and confirm the prediction of the theory numerically.

We assume that a subpopulation of pyramidal neurons in a correlated balanced network receives

a transient excitatory input. This could be a longer transient input from another subnetwork, or an

experimentally applied stimulus. To model this drive, we assume that the network receives input

from two populations Poisson neurons, X1 and X2. The first population drives all neurons in the

recurrent network, and was denoted by X above. The second population, X2, provides an additional

input to a subset of excitatory cells in the network, for instance ChR2–expressing pyramidal neurons

(Eexpr in Fig. 3.3.1 A). The resulting connectivity matrix between the stimulated (e1), unstimulated

(e2) and inhibitory (i) subpopulations, and the feed–forward input weight matrix have the form:
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W =


we1e1 we1e2 we1i

we2e1 we2e2 we2i

wie1 wie2 wii

 , and W x =


we1x1 we1x2

we2x1 0

wix1 0

 , (3.12)

where wab = pabjabqb ∼ O(1), as before.

0.5 0 0.5
Spike count corr

C
o

u
n

t

before

during

after

before during after

0

4

S
p

ik
e

 c
o

u
n

t 
co

rr

1e-3

EexprEnonexpr

EexprEexpr IEexpr IEnonexpr

II

0 1000 2000
Time (s)

0

20

40

R
a
te

s
(H
z)

Eexpr
Enonexpr
I

0 1000
Time (s)

250

200

150

S
yn

. 
w

e
ig

h
t

jEexprI
jEnonexprI

ChR2-expressing

A

0 1000 2000
Time (s)

6

0

6

M
e

a
n

 in
p

u
t

E
X

I
T

B

D

C

FE

Light

Figure 3.3.1: Framework for STDP in balanced networks describes the dynamics of
networks receiving optogenetic input. A: A recurrent network of excitatory, E, and inhibitory,
I, neurons is driven by an external feedforward layer X1 of uncorrelated Poisson neurons. Neurons
that express ChR2 are driven by optogenetic input, which is modeled as an extra layer of Poisson
neurons denoted by X2. B: Evolution of mean synaptic weights over the course of the experiment.
C: Evolution of mean firing rates. Inhibitory STDP maintains E rates near the target, αe

2τSTDP
.

D: Evolution of mean excitatory, external, inhibitory, and total currents. Balance is transiently
disrupted at stimulus onset and offset, but it is quickly restored by iSTDP. E: Mean spike count
correlations before, during, and after stimulation remain very weak for all pairs. F: The distribution
of spike count correlations also remains nearly unchanged with weak mean correlations before,
during, and after stimulation. Solid lines represent simulations, dashed lines are values obtained
from theory (Eqs. (2.26,2.105,3.13,3.14)). Figure adapted from Akil et al. [5].

The mean–field equation relating firing rates to average weights and input (Eq. (2.26)) holds,

with the vector of rates r = [re1 , re2 , ri]
T , and input vector rx = [rx1 , rx2 ]T . Similarly, mean spike

count covariances are now represented by a 3× 3 matrix that satisfies Eq. (2.105). The mean E1I
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and E2I weights evolves according to

dJe1i

dt
=− ηe1i

Je1i

J0
e1i

(
(2τSTDPre1 − αe)ri + 2

∫ ∞
−∞

K̃(f)Re[〈Se1 , Si〉]df
)

(3.13)

dJe2i

dt
=− ηe2i

Je2i

J0
e2i

(
(2τSTDPre2 − αe)ri + 2

∫ ∞
−∞

K̃(f)Re[〈Se2 , Si〉]df
)
. (3.14)

We simulated a network of N = 104 neurons in an asynchronous state with cx1 = cx2 = 0.

A subpopulation of 4000 E cells receives transient input. Solving Eqs. (3.13,3.14) predicts that

inhibitory plasticity will alter EI synaptic weights so that the firing rates of both the Eexpr and the

Enon−expr approach the target firing rate before, during, and after stimulation. Once the network

reaches steady state the mean inputs to each subpopulation cancel. Thus changes in EI weights

restore balance at the level of individual subpopulations or “detailed balance,” consistent with

previous studies [63,141]. Simulations confirm these predictions (Fig. 3.3.1 B–D).

When the input is removed, the inhibitory weights onto cells in the Eexpr subpopulation con-

verge to their pre–stimulus values, returning Eexpr rates to the target value, and reestablishing

balance (Fig. 3.3.1 B–D). Correlations remain low (O ∼ 10−4) before, during, and after stimula-

tion (Fig. 3.3.1 E,F), suggesting that at equilibrium the network is in the asynchronous state. Our

theory thus describes how homeostatic inhibitory STDP increases the stability and robustness of

balanced networks to perturbations by balancing inputs at a level of individual cells, maintaining

balance in regimes in which non–plastic networks cannot maintain balance. We presented an ex-

ample in which only one subpopulation is stimulated. However, the theory can be extended to any

number of subpopulations in asynchronous or correlated balanced networks receiving a variety of

transient stimulus.

We have thus shown that our theory captures the dynamics of stimulated plastic balanced net-

works. Homeostatic inhibitory STDP increases the stability and robustness of balanced networks

to perturbations by balancing inputs at a level of individual cells, maintaining balance in regimes

in which non–plastic networks are unstable. We presented an example in which only one subpop-

ulation is stimulated. However, the theory can be extended to any number of subpopulations in
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asynchronous or correlated balanced networks receiving a variety of transient stimulus.

3.4 Statistics and Dynamics of Balanced Networks under Pairwise

STDP Rules

Our theoretical results describe the evolution of averages (see Chapter 2, Eqs. (2.26,2.105,2.120)).

However, it is also important to understand changes in higher order statistics of individual, and

collective activity under plasticity. Although we do not go beyond a mean–field theory, we provide

the results of corresponding numerical simulations in three example balanced networks where: (1)

excitatory weights were subject to weight–dependent Hebbian STDP; (2) EE weights changed

according to Kohonen’s rule; and (3) inhibitory weights changed according to an iSTDP rule (see

Table 2.1).

Under weight–dependent Hebbian STDP individual synaptic weights converge to a unimodal

distribution. This is in agreement with experimental results [129] (Fig. 3.4.1 A,B). Balance is

preserved throughout the simulation (Fig. 3.4.1 C). Distributions of rates are unimodal and skewed

to the right (Fig. 3.4.1 D and inset), also agreeing with experimental findings [129]. Spike count

covariances and correlations are distributed around zero in the asynchronous state (Fig. 3.4.1 E,F).

EE weights under Kohonen’s rule also converge to a unimodal distribution (Fig. 3.4.2 A,B).

Again, the network is stable and balance is preserved (Fig. 3.4.2 C). The distributions of rates is

again unimodal and skewed to the right (Fig. 3.4.2 D), and covariances and correlations are close

to zero (Fig. 3.4.2 E,F). Lastly, EI weights subject to an inhibitory plasticity rule also follow a

unimodal distribution (Fig. 3.4.3 A,B), distributions of I rates are unimodal and skewed to the

right, and covariances and correlations are centered at zero in the balanced, asynchronous state

(Fig. 3.4.3 C–F). However, the E rates are concentrated at the target rate (Fig. 3.4.3 D – inset),

in disagreement with experimental findings [129]. In short, all three STDP rules show realistic

distributions of weights, rates, and covariances, except for the distribution of E rates under iSTDP.

66



1 0 1
spike count corr

0

1200

1 0 1
spike count cov

0

1400

0 25 50
Exc rate (Hz)

0

1500

C
o

u
n

t

0 5000Time (s)
6

0

6

M
e

a
n

 in
p

u
t

0 150
Inh rate (Hz)

0

300

20 30 40
Exc weight

0

50

C
o

u
n

t

0 5000Time (s)

25

30

35

E
xc

 w
e

ig
h

t
B CA

D E F

Figure 3.4.1: Statistics of weights and activity under weight–dependent Hebbian STDP.
A: Evolution of individual synaptic weights and their mean (black). B: EE synaptic weights follow
a unimodal distribution at steady state. C: Evolution of synaptic currents showing that balance is
achieved and maintained. Color scheme as in Fig. 3.1.4: blue denotes mean excitatory input, and
red the mean inhibitory input. The total mean input is shown in black. D: Steady state distribution
of excitatory and inhibitory (inset) firing rates. In equilibrium most neurons fire at low rates, and
a few neurons fire at high rates. E: Distribution of spike count covariances. The mean is close
to zero indicating an asynchronous state. F: Same as E:, but for spike count correlations, again
showing a mean that is close to 0. Relevant simulation parameters: N = 5000, cx = 0. Others as
in Table 3.1. Figure adapted from Akil et al. [5].

3.4.1 Transient Dynamics of Synaptic Weights

In much of this work we focused on steady state behavior. However, the system of equations

(Eqs. 2.26,2.105,2.120) relating rates, covariances, and weights can also be solved iteratively over

time, provided the timescales are well separated. Here, we show three examples: weight–dependent

Hebbian STDP, Kohonen’s rule, and iSTDP. In all three cases, the observed trajectory of synaptic

weights closely follows the theoretical predictions (Figs. 3.4.4 A–C).

To determine if synaptic weights had reached steady state we sampled 1000 synaptic weights

from the whole population (of plastic weights) at times t = 4000 sec and t = 5000 sec (end of

simulation). We then compared the two distributions using the Kolmogorov–Smirnov 2–sample test.

We found that in the three networks simulated in Figs. 3.4.1, 3.4.2, and 3.4.3, the distributions were
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Figure 3.4.2: Statistics and dynamics of balanced networks undergoing Kohonen’s STDP
rule. A: Evolution of mean synaptic weight subject to Kohonen’s STDP rule with mean synaptic
weight in black. B: The distribution of EE synaptic weights at steady state is unimodal. C:
Evolution of synaptic currents in the network. Balance is achieved and maintained. D: Equilibrium
distribution of excitatory and inhibitory (inset) firing rates. Most neurons fire at low rates, and a
few neurons fire at high rates. E: Distribution of spike count covariances shows that the mean is
close to zero (asynchronous state). F: Same as E:, but for spike count correlations. The mean is
close to zero, suggesting that the network is in an asynchronous state. Color scheme and simulation
parameters as in Fig. 3.4.1. Figure adapted from Akil et al. [5].

not distinguishable, and hence had reached equilibrium by the end of the simulation (Fig. 3.4.5 A–

C).
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B: Distribution of EI synaptic weights at steady state. C: Evolution of synaptic currents in the
network. Balance is achieved and maintained. D: Distribution of excitatory (inset) and inhibitory
firing rates at equilibrium. Most inhibitory neurons fire at low rates, and a few neurons fire at high
rates. All excitatory neurons fire at rates close to the 10 Hz target rate. E: Distribution of spike
count covariances with mean near zero (asynchronous state). F: Same as E:, but for spike count
correlations. The mean is close to zero, suggesting that the network is in an asynchronous state.
Color scheme and simulation parameters as in Fig. 3.4.1. Figure adapted from Akil et al. [5].

0 5000
Time (s)

25

30

E
xc

 w
e

ig
h

t

0 400
Time (s)

250

200

150

100

In
h

 w
e

ig
h

t

0 1000
Time (s)

0

2

4

E
xc

 w
e

ig
h

t

A B CWeight-dependent Hebbian Kohonen iSTDP

Figure 3.4.4: Transient dynamics of synaptic weights. A: Mean synaptic weight in a network
subject to Weight–dependent Hebbian STDP. B: Same as A, but for Kohonen STDP. C: Same as A,
but for inhibitory STDP. In all panels, dashed lines represent the theory (Eqs. (2.26,2.105,2.120));
solid lines represent numerical simulations. Simulation parameters as in Figs. 3.4.1,3.4.2,3.4.3.
Figure adapted from Akil et al. [5].

69



0 5 10 15
Exc weight

0

200

C
o

u
n

t t=5000s
t=4000s

25 30 35
Exc weight

0

100

C
o

u
n

t

200 100 0
Inh weight

0

150

C
o

u
n

t

A B C

Figure 3.4.5: Distributions of synaptic weights are stationary. A: Distributions of EE
synaptic weights for a balanced network with excitatory weights evolving according to Kohonen’s
rule at times t = 4000 s and t = 5000 s. The two distributions are not different according to the
Kolmogorov–Smirnov 2–sample test (Dn = 0.029, p–value= 0.8). Hence, EE weights are at steady
state. B: Same as A, but for a network with weights that follow weight–dependent Hebbian STDP
showing excitatory weights are in equilibrium (Dn = 0.045, p–value= 0.26). C: Same as A, but for a
network where EI weights are subject to iSTDP. Inhibitory weights are in equilibrium (Dn = 0.024,
p–value= 0.94). All simulation parameters as in Figs. 3.4.1,3.4.2,3.4.3. Figure adapted from Akil
et al. [5].
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3.5 Technical Details of Simulations

Neural networks described in the Section 2 were simulated numerically using the set of parameters

shown in Table 3.1. Code is available at https://github.com/alanakil/PlasticBalancedNetsPackage.

Table 3.1: Summary of simulation parameters. List of simulation parameters used for initial
connectivity, neuron dynamics, and plasticity. Unless otherwise stated, these parameters were used
in all numerical simulations presented in this dissertation.

Connectivity

Parameter Value Description

pab 0.1 Probability of connection for all a, b = e, i

jee/Cm 25 mV Weight of E to E synapses

jei/Cm −100 mV Weight of E to I synapses

jie/Cm 112.5 mV Weight of I to E synapses

jii/Cm −250 mV Weight of I to I synapses

Neuron Model

Parameter Value Description

Cm 1 Membrane capacitance

gL Cm/15 Leak conductance

EL −72 mV Resting potential

Vth −50 mV Spiking threshold

Vre −75 mV Reset potential

∆T 1 mV ‘Sharpness’ parameter

VT −55 mV Threshold

Plasticity Model

Parameter Value Description

ηab 10−4 Learning rate of synaptic weights

τSTDP 200 ms Decay constant of eligibility traces

ρe 10 Hz Target rate of E cells

ρi 20 Hz Target rate of I cells
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Chapter 4

Modelling Spike–Timing Dependent

Plasticity in Real Cortical Networks

In Chapter 2, we have presented a computational model of a balanced neural networks, described

by a theory that predicts average firing rates, spike train covariances, and synaptic weights. In

Chapter 3, we have demonstrated how this theory can be used to extract general principles about the

evolution of synaptic weights in balanced networks, and applied the theory to specific, biologically

relevant forms of pairwise STDP.

In this chapter, we will apply our framework to neural data collected by Ariana Andrei [6]

working in Valentin Dragoi’s lab at the University of Texas Health Science Center. The Dragoi

lab focuses on information processing in the primary visual cortex and its influence on behavioral

performance. One powerful technique used in this lab is optogenetics, which was introduced about

10 years ago. As mentioned before, a great advantage of optogenetic techniques is that specific

neuron subtypes can be targeted to be excited or inhibited via the injection of a lentiviral vector

and light delivery to ChR2–expressing cells. Such activity modulation of targeted populations of

cortical neurons is a powerful way to uncover hidden mechanisms that help better understand the

operating dynamical regime of the cortex.

Here, we used our framework to model optogenetic perturbation of pyramidal cells of macaque
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V1 cortex, in a similar, but not identical context as in our numerical experiment of Section 3.3. We

first described the experimental findings from neural recordings obtained by Andrei et al. [6]. Next,

we showed how our framework can qualitatively model experimental findings using a correlated

balanced network undergoing iSTDP. We explained why other types of STDP cannot capture the

same effects, and provide an intuition as to why iSTDP can.

4.1 Rapid, State–dependent, Compensatory Plasticity Revealed

by Functional Connectivity Dynamics in Vivo

4.1.1 Materials and Methods

In the experiments performed by Andrei et al. [6] glutamatergic (excitatory) neurons in the primary

visual cortex V1 in three hemispheres of two macaque monkeys were targeted using a lentiviral

vector to express channelrhodopsin–2 (ChR2) under the control of an alpha–CaMKII promoter

(Fig. 4.1.1 A). Activity of cortical populations of neurons was recorded using multichannel laminar

electrodes coupled to a fiber–optic for light delivery (Fig. 4.1.1 A). After transfection, targeted

excitatory cells were excited (increased their firing rate) when exposed to light.

Andrei et al. [6] employed a stimulation protocol similar to previous studies [36, 90] (Fig. 4.1.1

B), where upon subject’s fixation at the center of a screen, light was delivered in 10 pulses of 10

ms at 35 Hz (total stimulation time was 300 ms). We refer to trials where light is delivered as

“laser trials”, and to trials where no light is shined as “control trials”. Laser and control trials were

randomly interleaved throughout the course of the experiment.

When neural activity is recorded over a number of trials, firing rates and spike train correlations

can be computed in several different ways. Here, firing rates and correlations were computed in a

dynamic way described next [18,125]. As mentioned in Section 2, spike trains of individual neurons

can be viewed as sums of Dirac delta functions, Si(t) =
∑

j δ(t − tij), where the tij is the time

of the jth spike of neuron i. The data over which neuronal activity is recorded was partitioned

into subintervals of Twin = 200 ms within a trial and into blocks of block-size = 20 trials, sliding
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every 50 ms over time and every trial. To obtain the correlations we fix a partition k, and compute

the spike count of each neuron i at each trial t, denoted by nti. We then estimate the spike count

correlations between neurons 1 and 2 as:

Corr(n1k, n2k) =

∑
t(n

t
1 − n1)(nt2 − n2)√∑

t(n
t
1 − n1)

√∑
t(n

t
2 − n2)

(4.1)
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Figure 4.1.1 (previous page): Functional connectivity progressively decreases during re-
peated optogenetic stimulation trials. A: Repeated optogenetic stimulation of excitatory
neurons (green circles) could lead to increases or decreases in functional connectivity between cells,
via associative potentiation (red connections), or compensatory processes (blue connections), re-
spectively. B: Monkeys performed a contrast detection task, maintaining fixation throughout the
trial and reported the presence/absence of a visual stimulus to receive a juice reward. Optogenetic
stimulation (35 Hz, 10 pulses at 10 ms width) were randomly interleaved on 50% of trials. Spike
count correlations were computed sliding a window of size 20 trials and 200 ms over trials (every
trial) and time (every 50 ms), as described in Section 4.1.1. C: Population firing rates on laser
(right) and control (left) trials across early to late trial blocks. (n = 310 units). D: Changes in
firing rate were not significantly different between early and late trial blocks (first, last 20 trials,
respectively). E: Firing rate difference between laser and mean control across all blocks of trials
for all pairs of laser-responsive neurons. Blocks consist of 20 trial windows, sliding every trial.
F: Population mean correlation difference (laser minus mean control trials) across all trial blocks.
Red arrow shows trial block when correlations reverse from positive to negative. G: Correlations
on laser (blue) and control (gray) trials across early to late trial blocks, 150 ms after laser onset.
Traces and envelope show mean ± s.e.m. H: Difference in correlations (laser minus control trials)
for example sessions from each monkey, for the time bin 150 ms after laser onset. Line shows
mean, envelope shows s.e.m. I: Example session showing baseline (200 ms pre–laser) subtracted
correlations differences on control (left panel) and laser trials (trials). Same session as panel H,
left. J: Histogram showing temporal trends of shuffled pairs within each trial block for each session
on laser (blue) and control (gray) conditions. Arrowheads show median of distributions (both are
significantly different from zero, P < 0.001 Wilcoxon signed rank test). K: Left: A potentiation
index (PI) was calculated for all pairs of broad (green) and narrow (purple) single unit pairs on
control trials. Right: Example raw cross–correlogram for one narrow-broad waveform pair on early
(upper) and late (lower) trials. L: Distribution of all PIs for all broad waveform pairs. Arrowhead
shows mean. M: Same as L, but for all broad-narrow waveform pairs. This figure has been adapted
from Andrei et al. [6].

where ni is the average spike count of neuron i over all trials in subinterval k. The firing rate of

each neuron was obtained by normalizing the spike count nti by the time window and the trial block

size: rateti =
nt
i

Twin×block-size (where block-size = 20). See Fig. 4.1.1 B for a graphical description.

In both neural experimental data and simulated data, firing rates and spike count correlations

were computed as described above and separately for control trials (spontaneous), and for laser

trials (evoked).

For each pair of individual units, the cross correlogram (CCG’s with lag=200 ms) was computed

using all the spikes from control (no laser), no visual stimulus trials. CCG’s were calculated for

early and late trials, taking the first 20 blocks and last 20 blocks, respectively. Only sessions with
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a minimum of 59 trials in this condition were considered, as in the noise correlation calculations.

The potentiation index (PI) for each pair was defined as the area under the CCG curve (over 150

ms in the positive lag and 150 ms in the negative lag) on early trials divided by the area under

the CCG curve on late trials. Hence, if PI = 1, then there was no difference in the number of

joint spikes between early and late trials. If PI > 1, then there were more coincident spikes in

later trials (putative potentiation); and lastly, if PI < 1, then there were less coincident spikes in

later trials (putative depression). All sessions had consistent waveform characteristics throughout

the recording, and contained mixtures of both depressed and potentiated pairs, indicating that

differences in early versus late CCG’s are not attributable to unstable recordings.

4.1.2 Results

Dynamic reversal of correlations. On one hand, optogenetic activation of ChR2–expressing

cells lead to a uniform increase in the activity that persisted over blocks of trials (Fig. 4.1.1 C,D,E),

with no difference between the amplitude of modulation between early and late trials.

On the other hand, spike count correlations initially increased compared to control trials, but

reversed on later blocks of trials (Fig. 4.1.1 F,G). The drop in correlations occured due to a change

in correlations over laser trials rather than in correlations over control trials (Fig. 4.1.1 G). This

dynamic reversal of correlations was also seen in individual sessions from each monkey (Fig. 4.1.1

H), though the transition point where correlations over laser trials dropped below control happened

at different times. Correlation modulation was also evident compared to baseline correlations before

laser onset within a trial (Fig. 4.1.1 I). Reversal of correlations with time was not due a decrease in

overall excitability, as evoked stimulus responses (visual stimulus > 5% contrast) on early versus

late trials were not different (P=0.197, Wilcoxon signed rank test control trials, n=42 units).

The decreasing temporal trend persisted even when spike count correlations from individual

pairs within each trial block were shuffled prior to calculating the Pearson temporal trend (Fig. 4.1.1

J).

In order to understand the mechanism behind changes in functional connectivity, Andrei et
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al. divided the experimental, single–unit data into broad (putative excitatory) and narrow (pu-

tative inhibitory) units based on waveform width [7, 133] (Fig. 4.1.1 K), and quantified the con-

nection strength of simultaneously recorded pairs of neurons by measuring the area under the

cross–correlogram on early versus late control trials (Potentiation index, “PI”, see Section 4.1.1).

Control trials were used to assess stable connectivity changes, without the synchronous activation

due to optogenetic stimulation. Putative EI cell pairs were significantly potentiated (PI mean

1.68±0.15 s.e.m.), while putative EE pairs were overall unchanged (PI mean 0.996±0.007 s.e.m.),

(Fig. 4.1.1 L,M, P = 2.94 × 10−4, Wilcoxon rank sum test, EI versus EE, n = 1476 pairs).

This strongly suggests that rapid compensatory processes are mediated by dynamic changes to

EI synapses [141, 150]. We will come back to this hypothesis and validate it using our modeling

framework in Section 4.2.

Repeated stimulation reverses correlations, independent of laser frequency. One natural

question that arises is: how do temporally decreasing correlations depend on laser stimulation

frequency? To answer this question, an additional set of experiments were performed with varying

laser frequency (10, 20, 35 Hz; Fig. 4.1.2 A,B). Each frequency block comprised at least 96 trials

(Fig. 4.1.2 A,B). Again, firing rates increased uniformly, with no temporal changes over blocks of

trials for all frequencies (Fig. 4.1.2 C). Similar to the original experiments (Fig. 4.1.1), a significant,

dynamic reversal of correlations was observed (Fig. 4.1.2 D,E,F); implying that temporal changes in

correlations do not depend on stimulation frequency, but are instead caused by stimulation cycles.

Rest experiments: no temporal trend in correlations. Synaptic plasticity and measures of

spike count correlations are highly sensitive to cortical states [34, 142]. Therefore, similar exper-

iments to those presented in Fig. 4.1.1 were carried out, but with the animal in a resting state,

in order to understand under which conditions a dynamic reversal of correlations may take place.

For this set of experiments, daily recording sessions were split based on the two conditions: (1) the

detection task, (Fig. 4.1.3 A, awake condition); and (2) a rest period (Fig. 4.1.3 E), during which

the lights were turned off and the animal was allowed to rest while laser and control trials took

place. Light was delivered under the same protocol as in Fig. 4.1.1 A,B.
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days (upper right, columns) monkeys performed multiple iterations of the contrast detection task,
with laser stimulation delivered at different frequencies (upper right, rows; left panels). B: Dis-
tributions of frequencies included in Block 1 (left, n = 11 sessions) and Block 2 (right, n = 11
sessions). C: All laser stimulation frequencies lead to significantly increases in firing rates of neu-
ral populations consistently across early to late trial blocks (20 trials per block). D: Correlated
variability of neuron pairs during the first 20 trials of the first trial block of each recording day on
laser (blue) and control (black) trials. E: Same conventions as D, but for the first 20 trials of the
second frequency block across all days. F: Correlations are significantly increased in the first block
of trials on laser versus control trials. On the second block of trials, laser stimulation induces a
significant decrease in correlations (∗ ∗ P = 2.010−12, Kruskal–Wallis test, d.f.=3, post hoc signed
rank test for within block comparisons, rank sum test for across block comparisons). This figure is
adapted from Andrei et al. [6].

During the rest period, there were no behavioral requirements and thus inter–trial intervals

were minimal. A common way of measuring a resting state is by analyzing the time series of the

local field potential (LFP, average membrane potential of neurons near an electrode). In particular,

measurements of the low–to–high frequency power ratio of the LFP [13] confirmed the subject was

in a resting state.

Recall that in the awake condition, firing rates do not change temporally over blocks (Fig. 4.1.1

C,D,E), but correlations dynamically reverse (Fig. 4.1.1 F,G,H,I). This was also true in this set of
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Figure 4.1.3: Dynamic correlation reversal depends on overall behavioral state. Follow
up experiments using 35 Hz optogenetic stimulation during recordings of neural populations during
two states; awake detection task A–D and rest E–H. A, E: Optical stimulation strongly increased
firing rates of neural populations during the contrast detection task component (A) and during the
rest (E) component. B, F: Correlation difference between laser and mean control trials during the
awake component (B, n = 269 pairs) and the rest component (F, n = 600 pairs). Red arrow shows
the transition from increased to decreased correlational states only during the awake condition. C,
G: Since there is no meaningful trial structure during the rest condition, we also present the change
in correlated variability during laser stimulation compared to baseline state (200 ms window, prior
to laser stimulation) across stimulation blocks during the awake (C) and rest (G) conditions. D,
H: Difference in correlations between laser and control trials across trial blocks (200 ms after laser
onset) during awake (D) and rest (H) components. Dashed line connects first and last trial blocks.
Insets show counts of pairs with decreasing (blue), increasing (red), or no change in temporal trends
(green). This figure has been taken and modified from Andrei et al. [6].

experiments in the awake state (Fig. 4.1.3 A,B,C,D). However, in the rest condition, correlations

in laser trials remained high compared to control in all blocks, with no temporal change over

blocks (Fig. 4.1.3 F,G,H). This effect persisted when comparing to baseline pre–laser correlations

(Fig. 4.1.3 G). The time interval between the end of the awake and start of the rest components

was 8 minutes 33 seconds ± 1 minute 29 seconds (median ± s.e.m.), hence there was enough time

for optogenetically–induced dynamic correlation changes. Sleep is known to be associated with a

net reduction in excitatory synaptic weights [142]. Hence any changes in excitatory synapses that
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may have occurred during the awake condition are likely undone in the resting state. Interestingly,

neurons seemed to be more excitable in the resting state, even though the electrode position was

not changed compared to awake sessions. Lastly, the inhibitory tone in the awake state is typically

higher than in resting states [21, 57]. This suggests that some form of optogenetically–evoked

inhibitory plasticity may lead to reported temporal changes in correlations.

4.2 Dynamic Reversal of Correlations in Correlated Balanced Net-

works under iSTDP

4.2.1 Materials and Methods

Network model. To try to understand the mechanism behind temporal changes in functional

connectivity observed in these experiments, we considered a balanced, recurrent computational

network model (Fig. 4.2.1 A) composed of excitatory (E ) and inhibitory (I ) neurons (N = 10, 000)

with plastic synapses, as defined in Section 2. Optogenetic stimulation was modeled as an increase

in firing rates in 50% of E neurons, and was patterned to mimic the experimental trial structure.

Experiment structure. Following the experimental protocol as closely as possible, in the numer-

ical experiment, each trial was 1.4 seconds long. Half of the excitatory neurons were stimulated

by providing input in pulses of width 10 ms, at 35 Hz, and 10 cycles. The laser onset was at 500

ms and lasted for 300 ms, only in half of the trials (laser trials). Each numerical experiment was

composed of 60 laser trials randomly interleaved with 60 control trials.

Comparison of experiments with simulations. Firing rates and spike count correlations were

computed in the same way described in Section 4.1.1.

Simulation of a resting state. Cortical networks experience a change in dynamics when a

subject falls asleep [142]. Even though balance is maintained, synapses undergo net potentiation in

wake and net depression during rest/sleep [142]. We modeled the dynamics of a cortical network

during periods in which the subject is resting using the same balanced network model, but with

weaker synaptic connectivity compared to that used to model the awake state [142]. Thus, to enter
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the resting state, all synapses were downscaled by a factor 0 < f ≤ 1:

Jrest = f · Jawake, (4.2)

where Jrest denotes the full connectivity matrix of the network in the resting state, and similarly

Jawake, the full connectivity in the awake state.
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Figure 4.2.1: See next page.
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Figure 4.2.1 (previous page): Dynamic reversal of functional connectivity modeled by in-
hibitory plasticity. A: A recurrent network of 8000 E and 2000 I cells is driven by an external
feedforward layer of Poisson neurons that connects with 10% of all recurrent neurons with rate
10 Hz, and pairwise correlations 0.1. Only inhibitory-to-excitatory synapses were plastic, and we
assumed that 4000 E neurons expressed ChR2 and were driven by laser stimulation during laser
trials. B: Change in mean firing rate (laser minus control) over time and trials. C: Change in mean
pairwise noise correlations (laser minus control) over trials. D: Change in mean pairwise noise cor-
relation during laser trials compared to the first time bin over the time course of a trial. E: Change
in mean pairwise noise correlations averaged over ChR2-expressing pairs and over realizations of
the connectivity matrix. Error bars indicate 95% confidence interval. Light blue indicates block
#1, blue is block 10, and dark blue represents block #40. F: Change in mean noise pairwise cor-
relations at the center time bin of the laser stimulation period (t = 250 ms) across trials averaged
over 9 realizations of the connectivity matrix. Error bars indicate 95% confidence interval. Golden
line corresponds to the network in the rest state (f=0.4). Magenta line corresponds to awake state
(f=1). Dynamic reversal of noise correlations is robust to randomness in the network’s connectivity.
G: Percent change of mean synaptic weight compared to baseline (first time bin) during laser trials.
H: Same as G, but for control trials. I: Evolution of mean EI synaptic weight over the course of
the entire experiment under the awake and rest conditions. Shaded area indicates standard error.
Inhibitory weights were potentiated due to repeated activation of E cells. Inhibitory weights in
the rest state are weaker than in the awake state due to synaptic downscaling. Panels B–I corre-
spond to the awake condition. J: Same as A, but during rest. All synapses were downscaled by
a factor of f = 0.4. K: Same as D, but during rest. Laser trials exhibited larger mean pairwise
noise correlations than control trials during the period of stimulation and across blocks of trials.
L: Same as E, but during rest. Dynamic changes in correlations in the rest state were robust to
random perturbations in network connectivity. All mean firing rates and mean noise correlations
were computed over cells that expressed ChR2. This has been apapted from Andrei et al. [6].

Forms of STDP tested. We tested two types of plasticity rules: “Weight–dependent” Heb-

bian STDP [14, 92] modulating the strength of excitatory synapses, and inhibitory STDP [141]

modulating the strength inhibitory synapses.

Excitatory synaptic weights, EE and IE, followed classical Hebbian STDP and hence evolved

according to,

dJaejk
dt

= ηae
(
Jmaxx

e
kS

a
j − JaejkxajSek

)
(4.3)

where ηae is the learning rate that defined the timescale of changes in excitatory synapses, Jmax,ae

is a soft upper bound for the excitatory synaptic weights that prevents divergence of weights to

infinity, and a = e, i. Pre–synaptic spikes followed by post–synaptic spikes potentiate the synapse;

and spikes occurring in the reverse order depress the synapse.
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Inhibitory synaptic strenghts, EI and II, evolved as [141]:

dJaijk
dt

= −ηai
Jaijk
Jai0

[
(xaj − αa)Sik + xikS

a
j

]
(4.4)

where αa determines a target firing rate for a neurons, and a = e, i. Note that, as in Chapters 2 and

3, we used a slightly modified version of the original inhibitory plasticity rule to prevent weights

from changing signs (see Section 2.12). As mentioned before, this rule acts as a homeostatic

mechanism since it controls excitation by pushing the activity of the cells in population a = e, i to

parameter–dependent firing rates, ρa = αa
2τSTDP

.

4.2.2 Computational Results

Dynamic reversal of correlations under iSTDP. We initially assumed that inhibitory–to–

excitatory synapses were potentiated in response to stimulation (Fig. 4.2.1 G,H,I) in order to

maintain E firing rates near a target rate (see inhibitory plasticity in Table 2.1). Optogenetic

stimulation lead to an increase in firing rates uniformly across trials (Fig. 4.2.1 B). Moreover, we

found a dynamic reversal of correlations following repeated activation across early to late trials

(Fig. 4.2.1 C,D,E,F – magenta line), consistent with experimental findings (Fig. 4.1.1 F,G,H,I).

Repeated stimulation increased the firing rates of targeted cells. As a consequence, inhibitory

neurons received more excitation and inhibitory–to–excitatory weights were potentiated (Fig. 4.2.1

G,I), leading to an increase in inhibitory feedback to ChR2–expressing cells (Fig. 4.2.2 F) which

decorrelated their responses over the timecourse of the experiment [58,119,125].
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Figure 4.2.2: Transition of network model from awake to rest condition. A: Drop in
mean correlations at center time bin of laser period for networks with varying synaptic weight
scaling factors. B: Peri–stimulus time histogram (PSTH) of stimulated cells in awake condition. C:
PSTH of stimulated cells in rest condition. The response is stronger than in the awake condition,
consistent with experimental findings. D: Change in synaptic weights compared to baseline (first
block) and computed over a window 200 ms in length, and over 20 trials. E: Evolution of the
difference in synaptic weights in laser vs control trials for different values of the scaling factor f .
F: Mean inhibitory input to ChR2–expressing neurons increased due to potentiation of inhibitory
weights. The inhibitory input was also computed over 200 ms window, and over 20 trials. G:
Change in mean spike count correlations in a sample simulation of the numerical experiment in the
awake condition. Correlations over the laser period drop below control due to changes in synaptic
weights. H–I: Same as G, but for spike count covariances and variances. Changes in correlations
are due to changes in covariability, not in variance. K–L: Same as G–I but for the rest condition
(f = 0.4). Correlations, covariance, and variance remain high throughout the laser period. This
figure has been taken and modified from Andrei et al. [6].

84



Correlations have no temporal trend under rest. To model experimental outcomes under the

rest condition, we downscaled all synapses in the recurrent network model by a factor of f = 0.4 [142]

(see Fig. 4.2.1 J and Section 4.2.1 for more details). After this change, potentiation of EI synapses

(Fig. 4.2.1 I – gold line) subtly decorrelated responses across trial blocks (Fig. 4.2.1 K,L, 4.2.1 F

– gold line), but correlations on laser trials remained greater than control trials throughout all

blocks. Both observations are consistent with experimental findings (Fig. 4.1.3 F,G,H), and are

due to decreased inhibitory feedback from weaker EI synapses during rest compared to the awake

state (Fig. 4.2.1 I – compare magenta and gold lines).

Transition from awake to rest and role of inhibitory feedback in decorrelation. We sim-

ulated a balanced network, as described above, undergoing the same protocol used in experiments,

and using scaling factors f = 0.4, 0.5, 1 (where f = 1 is the awake state). As f was decreased, the

drop in correlations becomes smaller. Keeping with experiments in the literature that suggest a

downscale of synaptic weights during sleep [142], we modeled the resting state using a scaling factor

of f = 0.4. Correlations then remained larger in laser trials compared to control trials (Fig. 4.2.2

A). This reversal was due to stimulation of ChR2–expressing cells that respond (Fig. 4.2.2 B,C)

and induce potentiation of EI synapses (Fig. 4.2.2 D,E), effectively amplifying inhibitory feedback

to stimulated cells (Fig. 4.2.2 F), decorrelating their response (Fig. 4.2.2 G). Both in the awake and

rest state, the changes in correlations were a consequence of changes in covariability rather than

variability (Fig. 4.2.2 G–L).

Correlation reversal is independent of stimulation frequency. We also simulated the

same balanced network with f = 1 in parallel, applying different frequencies of laser stimulation

(Fig. 4.2.3). We found that the dynamic reversal of correlations was present for laser frequencies

between 10–100 Hz (Fig. 4.2.3 A,B), even though cells responded more weakly to lower frequen-

cies (Fig. 4.2.3 C). The underlying mechanism remains the same: stimulation induces plasticity

(Fig. 4.2.3 D,E), and an increase in inhibitory feedback decorrelated the responses of excitatory

cells in the network (Fig. 4.2.3 F).

Other forms of STDP do not exhibit correlation reversal. Other forms of STDP in every
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Figure 4.2.3: Dynamic reversal of correlations is independent of laser stimulation fre-
quency in network model. A: Drop in mean correlations at center time bin of laser period for
networks with varying laser stimulation frequencies. B: Change in mean spike count correlations
in a sample simulation of the numerical experiment in the awake condition with laser frequency 10
Hz. Correlations over the laser period drop below control due to changes in synaptic weights. C:
Firing rates of ChR2–expressing neurons averaged over the laser period. Higher laser frequencies
evoke stronger responses. D: Change in synaptic weights compared to baseline (first block) and
computed over a window of 200 ms and 20 trials. E: Evolution of difference in synaptic weights in
laser vs control trials for different values of scaling factor f . F: Mean inhibitory input to ChR2–
expressing neurons increases due to potentiation of inhibitory weights. Inhibitory input, defined as
the inhibitory current scaled by the corresponding synaptic weight to ChR2–expressing neurons, is
also computed over a time window of 200 ms and 20 trials. This figure has been taken and modified
from Andrei et al. [6].

synapse were tested. We found that the dynamic reversal of correlations (as reported in our

experiments) only occurred when EI synapses were plastic (Fig. 4.2.4 A), even though all types of

plasticity modulated synaptic weights and correlations in different ways (Fig. 4.2.4 A,B,C).

Optogenetic techniques are powerful tools that can uncover hidden mechanisms not otherwise

evident in neural networks [58]. In this case, repeated optogenetic stimulation leads to changes

in functional connectivity seen via noise correlations in a local cortical network in the primary

visual cortex V1. We have shown that using a balanced network, which can generate cortical–like

activity in certain dynamical regimes, we can unveil the mechanism behind changes in functional
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figure has been taken and modified from Andrei et al. [6].

connectivity: homeostatic inhibitory plasticity. In particular, we show that inhibitory plasticity is a

plausible mechanism, that its effect is largest in networks in an awake state, and that the timescale

of such iSTDP is in line with that of RCP’s. Hence, our framework proves not only useful for

deeper theoretical understanding of dynamics in plastic, balanced networks (as seen in Chapters 2

and 3), but also for making sensible experimental predictions that were confirmed by real neural

recordings and help further understand the complex dynamics of the mammalian cortex.
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Chapter 5

Discussion

We developed an analytical framework to predict how a general class of second order STDP mech-

anisms affects the evolution of synaptic weights between neurons, and the dynamics of balanced

networks. We found that the balanced state is generally maintained under synaptic weight changes,

as long as the rates remain bounded. Additionally, we showed that correlations in spiking activity

can introduce a small shift in the steady state, and can change how quickly the fixed point is

reached.

One of the most important issues in understanding neural dynamics is establishing conditions

under which the network remains active, yet stable as synaptic weights change. The theory we

developed can help us address these questions, but it does have limitations. Since we used a mean–

field approach, we can only capture first moments. While mean weight stability may not imply

stable network dynamics (consider the case when weight variance diverges in Classical Hebbian

STDP in Section 3.1.1), instability in the mean weights does imply that the network is also unstable.

As mentioned above, our theory can be used to show that small modifications to weight updates

can stabilize different STDP rules. The question remains whether classical, unconstrained Hebbian

EE plasticity can be stabilized through an interaction with STDP rules at different synapses. For

instance, Litwin–Kumar and Doiron used a triplet voltage STDP rule that was stabilized by hard

constraints and weight normalization to produce neural assemblies [87]. This rule by itself lead to
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stable but pathological behavior, and they introduced iSTDP to restore a balanced, asynchronous

network state. While such voltage–based triplet rules are outside the scope of the present study,

we could use extensions of the mean–field theory to describe the impact of second and higher order

moments on the evolution of weights, and network dynamics [99]. Our theory suggests that classical

pairwise Hebbian STDP cannot be stabilized by other STDP rules such as iSTDP.

In the tight balance regime, large excitatory and inhibitory inputs cancel on average [56], result-

ing in a fluctuation–driven state exhibiting irregular spiking. This cancellation is achieved when

synaptic weights are scaled by 1/
√
N and external input is strong [112,136–138]. Our main assump-

tion was that synaptic weights change slowly compared to firing rates. As this assumption holds

generally, we believe that our approach can be extended to other dynamical regimes. For instance

supralinear stabilized networks (SSNs) operate in a loosely balanced regime where the net input is

comparable in size to the excitatory and inhibitory inputs, and firing rates depend nonlinearly on

inputs. Balanced networks and SSNs can behave differently, as they operate in different regimes.

However, as shown in [4], SSNs and balanced networks may be derived from the same model under

appropriate choices of parameters. In other words, the tight balanced solution can be realized in

an SSN, and SSN–like solutions can be attained in a balanced network. This suggests that an

extension of our theory of plasticity rules to SSNs should be possible.

We obtained a mean–field description of the balanced network by averaging over the entire in-

hibitory and excitatory subpopulation, and a single external population providing correlated inputs.

As shown in Section 3.3, the theory can naturally be extended to describe networks consisting of

multiple physiologically or functionally distinct subpopulations, as well as multiple input sources.

As just mentioned, the theoretical framework we presented is flexible, and can describe more

intricate dynamics in circuits containing multiple inhibitory subtypes, and multiple plasticity rules,

as well as networks in different dynamical regimes. Moreover, the theory can be extended to

plasticity rules that depend on third order interactions [49, 108], such as the BCM rule [15]. This

may produce richer dynamics, and change the impact of correlations.

The present theory relies on a separation of timescales between spiking dynamics and weight
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changes. Such timescale separation is supported by a number of experiments [14,40,74,92,150]. We

show in Section 2.6.3 that reducing this timescale separation, and hence increasing weight updates

leads to deviations from the theory, and can result in network instability.

In mammalian brains, timescales of weight changes may not always be separated from rate

and correlation timescales. The size and timescale of weight updates is likely to depend on many

factors that can modulate STDP, such as spiking patterns, synapses type, brain area, network

state, neuromodulation, and others. Separation of timescales may not be pronounced in certain

non–cortical areas, such as the hippocampus, which can be rapidly modified [150]. For example,

Petersen et al., 1998 and Froemke et al., 2006 found significant changes in putative synaptic weights

over short timescales in hippocampal CA1/CA3 slices [106] and in visual cortical slices subject to

multispike pre– and post–synaptic bursts [39], respectively. However, it is possible that the rate of

change of synaptic weights may be overestimated in vitro [150].

How is our separation of timescales assumption affected when rapid compensatory processes

are needed for homeostasis, given that experiments show that homeostasis is a process that is even

slower than the timescale of STDP? Experimental evidence suggests that homeostatic processes can

take hours or days [38,40,63,82,130,140,148–150]. On the other hand, theoretical models show that

synaptic plasticity can be unstable in the presence of such slow homeostasis, and needs to be coupled

with rapid compensatory processes such as inhibitory STDP [149,150]. The separation of timescales

in our theory still puts synaptic dynamics on the “fast” side of the spectrum, as it separates

network dynamics that occur over milliseconds from weight dynamics that take place over seconds

or minutes. Hence, the assumption of timescale separation is still valid in our implementation of

homeostatic inhibitory plasticity.

We showed in Section 3.2, that the mean–field description cannot capture the effect of some

second order STDP rules as synaptic competition can correlate synaptic weights and pre–synaptic

rates. We have shown that this can lead to different initial weight distributions converging to

different equilibria. This can be interpreted as the maintenance of a previous state of the network

over time.
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However, a natural question that arises is why do correlations between weights and pre–synaptic

rates only seem to play a role in iSTDP? In the examples of excitatory STDP we analyzed (Ko-

honen’s rule and weight–dependent Hebbian rule), weights at equilibrium are determined by other

parameters (Weight–dependent Hebbian rule) or rates (Kohonen’s rule). Therefore weights are up-

dated until those steady state values are achieved, yielding values independent of initial conditions.

On the other hand, in the case of the inhibitory plasticity rule, inhibitory weights at equilibrium

are determined by the firing rates alone. Since the firing rate vectors are lower–dimensional than

the weight matrices, the equilibrium solution does not fully determine the weight matrices. This

is shown in Fig. 3.2.2 C inset, where different distributions of weights can result in the same

equilibrium firing rate when weights and pre–synaptic rates become correlated.

Generally, in plastic networks, correlations between weights and other features such as in–

degrees, or out–degrees can emerge [139]. We have shown how the theory can capture the case

in which synaptic weights and pre–synaptic rates are correlated. While we were not able to find

analytical expressions for these correlations, we showed that a second–order correction is sufficient

to explain the observed dynamics. Eventually, the mean–field theory would need to be extended

to account for higher order network motifs and their potential correlations with synaptic weights

and firing rates. This might be possible by extending our approach, but we leave these extensions

for future work.

We have assumed that connection probabilities are homogeneous which translates to a nar-

row distribution of in–degrees. Cortical networks are heterogeneous, and a broad distributions of

in–degrees can break the classical balanced state [83,110]. Balance can be restored with the intro-

duction of homeostatic plasticity [83], or by including heterogeneous out–degrees correlated with

in–degrees [110]. As we mentioned previously, in such cases our theory would need to be extended

to account for possible emerging correlations between weights and in-degrees or out–degrees. We

relegate such extensions to future work.

We have shown that different plasticity rules can result in distinct firing rate distributions in

different subpopulations. As shown by Mongillo et al. this can result in an increase or decrease in
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sensitivity of activity patterns and memories to perturbation of different synapse classes [96].

A number of mathematical theories have been proposed to describe the coevolution of weights,

rates, and the structure of correlations under STDP in recurrent neural networks [23, 44–47, 97,

100, 111]. All of these approaches require knowledge of neurons’ transfer functions (f-I curves

and/or correlation susceptibility functions). Often neurons are assumed to be Poissonian, and their

responses to inputs (f-I curves) are prescribed [23, 44–47, 97, 111]. Other work [100] uses Fokker–

Planck techniques to compute transfer functions. These approaches rely on an assumption that

the input to each neuron is relatively weak or dominated by Gaussian white noise [85, 113] and

efficient, direct Fokker–Planck approaches are not available for two–dimensional integrate–and–fire

models such as those with adaptation currents, though one–dimensional approximations have been

derived [65, 114]. Some previous work [100] also assumes that STDP curves are approximately

anti–symmetric, i.e., there is a cancellation between the positive and negative parts of the curves

(as in Fig. 2.5.1 A).

Our approach uses balanced network theory to avoid the computation of neurons’ transfer func-

tions. As such, the resulting theory does not require an assumption of weak synaptic interactions

or dominant Gaussian white noise input, but can be applied to networks with highly non–Gaussian,

temporally correlated input (such as the networks in the correlated state considered here). More-

over, the balanced network theory we used is applicable to a variety of neuron models, including

those with adaptation currents [11, 33]. Our extended balanced network theory also applies for

non–anti–symmetric STDP curves (as in Fig. 2.5.1 B–F), which were not captured in previous

studies [100]. However, the balanced network theory used in our approach relies on large N asymp-

totics, which yielded accurate approximations for N ∼ 10, 000 in our case (Fig. 3.1.4), but become

less accurate for smaller networks. Moreover, our approach would not be accurate for modeling

neural circuits that do not exhibit excitatory–inhibitory balance, as observed in some disease states,

developmental stages, and sub–cortical neuronal networks. Finally, we used a mean–field approach

that only yields approximations to population–averaged firing rates, synaptic weights, and covari-

ances, while other approaches [23, 44–47, 97, 100, 111] give approximations to these quantities at
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the level of individual neurons. Despite these limitations, our analytical approach was sufficient for

answering the questions related to the interaction between excitatory–inhibitory balance, correlated

neuronal activity, and plasticity that we considered.

We found that even in the correlated state, when the network receives temporally correlated in-

put, changes in synaptic weights are dominated by firing rates, with correlations playing a secondary

role (see Fig. 3.1.6 A,B). These findings are in agreement with previous work on STDP already

mentioned before [52,100]. Results by Ocker et al. [100] were obtained in recurrent neural networks

in different dynamical regimes and under different assumptions (see above for more details), while

Graupner et al. [52] used networks of two neurons with varying natural firing patterns.

Partial stimulation of a population of E neurons has been shown to break balance due to the

inability of the network in cancelling inputs when weights are static [33]. Ebsch et al. showed how

classical balanced network theory can be modified to account for effects of input perturbations that

break the classical balanced state [33]. Vogels et al. [141] (in addition to subsequent studies [2, 19,

63, 87, 130, 144]) showed empirically using simulations that inhibitory iSTDP can restore balance.

We here provide a theoretical framework that describes the evolution of rates and weights before,

during, and after a perturbation that breaks balance.

In addition to our theoretical analysis of an optogenetic perturbation of a subset of excitatory

cells in Section 3.3, we used our framework to assess the origin of changes in functional connectivity

in a local cortical network. In particular, in Chapter 4, we showed that repeated optogenetic

stimulation can induce iSTDP, which in turn, causes changes in functional connectivity seen in

temporal changes of spike count correlations. We also showed that the effect of iSTDP is attenuated

during rest due to a massive reduction of synaptic weights, which is in agreement with experimental

findings. These results prove that the presented theoretical framework can serve as a powerful tool

to make theoretical, testable predictions about the dynamics of real cortical networks.

The results from Chapter 4 also brings us back to the discussion on RCP’s [149, 150]. Our

modeling results, combined with experimental findings from Andrei et al. [6], provide a novel

method to perturb networks and hence induce iSTDP in “fast” timescales similar to those in
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RCP’s that have not been reported before. Importantly, as mentioned earlier, the separation of

timescales assumption still held, in agreement with previous work [14,40,74,92,150].

To conclude, in Chapter 2, we have presented a theoretical framework for balanced neural

networks undergoing pairwise STDP. In Chapter 3, we have validated this theory with numerical

simulations for a number of STDP rules. Consistent with previous studies [52,100], we have shown

that weight updates are mainly driven by firing rates rather than spike count covariances. We have

shown that the theory does not capture the dynamics of networks under iSTDP, however we provide

a semi–analytical extension to account for such cases. Further extensions, e.g., correlated in–degrees

and out–degrees, may eventually be necessary and may be accounted for in similar ways. This

theory can also capture dynamics of plastic, balanced networks in the presence of external stimuli

(e.g., optogenetics). This allows for better guided experiments in real cortical networks, and this is

exactly what we show in Chapter 4. We showed that our framework qualitatively captures temporal

changes in functional connectivity due to repeated optogenetic input to a subset of pyramidal cells

in visual cortex V1 of macaques monkeys. Our model robustly replicated experimental results when

the network underwent iSTDP, hinting towards the existence of such RCP in real cortical networks.

Therefore, this framework allows us to make testable predictions about the intricate dynamics of

the cortex.
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