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Abstract

Seismic processing methods exist that view the actual velocity configuration of the

subsurface as being composed of a reference model plus a perturbation of the ref-

erence velocity. Seismic migration (or imaging) requires a velocity model to locate

structure at depth. Recent progress in seismic inversion provides an estimated per-

turbation corresponding to a given background/reference model before imaging. This

motivates the study of Born modeling, which requires as input, both a background

velocity model and a perturbation in the velocity.

In this thesis, I examine the background model used in Born modeling. Different

models are tested in numerical experiments in order to find the optimal choice for the

background. In this study, when a Born modeling result has a minimum difference

with a finite-difference (FD) modeling result, the background model used in Born

modeling is called the optimal model. All the background models in my numerical

experiments are generated by the Gaussian smoothing of actual models. Please note

that the actual models are assumed to be known in all tests, since I am focused on

forward modeling in this part of this study.

In the second section, I apply Born modeling data for reverse-time migration (RTM),

the later being a processing or inversion step. Industry standard RTM is a linear and

model-dependent migration method. RTM typically works with a smoothed back-

ground model to locate the imaging points using only primaries. RTM has its own

technical disadvantages of producing low illumination beneath high velocity struc-

tures, such as salt bodies. To improve the illumination beneath salt, I introduce

scattering by Born modeling into wave-propagations in an RTM scheme.

v



An improved RTM results from adding scattering into both source and receiver wave-

field. I illustrate the effects of improved RTM with tests using a synthetic sub-salt

model. The improved imaging result helps with delineating part of the salt boundary

and salt-sediment connections. Finally, the merits and shortcomings of both original

and improved RTM are analyzed.
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Chapter 1

Introduction

1.1 Background for this thesis

In seismic studies, the concept of a reference or background medium originates from

scattering theory, in which the actual earth can be expressed as a combination of a

reference model and a perturbation of this reference, where the perturbation is de-

fined as the difference between the actual world and the selected reference medium.

Inversion works by considering the background model as the starting model, and

later updating the model. The choice of a convenient background/reference model

is key to the convergence of the inversion process. The Born inversion method is an

example of a general inversion method, which can invert a linear perturbation. The

issues in this method have been studied by Clayton and Stolt (1981), Weglein and

Gray (1983), and Cohen et al. (1986). However, in this thesis I will discuss the back-

ground problems from the perspective of forward modeling. The forward modeling
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method is specified as Born modeling in this thesis. The Born modeling method also

calls for a background/reference velocity model and a perturbation of the reference

velocity. Unlike the general modeling procedure, Born modeling assumes that the

perturbation and the aperture are both small. The data resulting from Born mod-

eling cannot be the same as the actual data, even though the true perturbation is

applied in the scheme (equation (2.18)). Nevertheless, Born modeling is useful when

the research interest lies in linear scattering.

Researchers have found three main approaches to generate a background model.

One approach is based on velocity analysis and tomography, in which the back-

ground model is built by the smoothing of the actual model, using a low-pass filter.

The Gaussian smoothing models used in this thesis project belong to this category.

The other two approaches are based on automatic updating procedures, which are

known as first-arrival travel-time tomography (FATT) (Dessa et al., 2004) and re-

flection stereotomography (Billette and Lambaré, 1998). In FATT, the first-arrival

travel-times are computed with an eikonal solver using an initial smoothed actual

model. Unlike FATT, the stereotomography method consists of fitting all observed

data (positions, slopes and travel-times) to a dataset calculated by ray-tracing. The

last two methods are designed for a faster convergence in iterative inversion. If the

study is interested in applications and advantages of those two background model

building methods, please refer to Prieux et al. (2009).

In order to prevent reflections from a sharp boundary, the reverse-time migration

(RTM) method takes advantage of smoothing the actual model. The original RTM

concept is a velocity model-dependent method, which can migrate two-way waves in

2



depth using the reverse-time backward propagated wave-field (Baysal et al., 1983;

McMechan, 1983; Whitmore, 1983). The smoothed background model is inserted

into the RTM algorithm/method as the velocity model for migration. In the original

RTM, the waves propagating in a background without reflection are imaged using the

primaries in the data. For this reason, considerable effort has been made to remove

ghosts (Weglein et al., 2002; Mayhan and Weglein, 2013), internal multiples (Araújo

et al., 1994) and free-surface multiples (Dragoset et al., 2010; Zhang and Weglein,

2005) in order to obtain a primaries only dataset. In recent years, researchers noticed

the illumination problem under salt structures (O’Brien and Gray, 1996; Rosenberg,

2000) and then turned their attention to the imaging of multiples, which cannot be

handled by the current linear migration schemes, e.g., original RTM and Kirchhoff

migration.

In recent years, in order to solve the sub-salt problem, Fleury and Vasconcelos (2010)

proposed a non-linear imaging condition. Breaking the convention of using non-

reflection wave-fields which are propagated in a smoothed velocity model, they per-

turbed the source and receiver wave-fields using an estimated perturbation by ISS.

This initial algorithm works in the frequency domain. In Fleury and Snieder (2011),

the time domain version of this work is presented, where the new contribution to

the imaging is the autocorrelation of the perturbed scattered field, denoted is. This

non-linear image is is added to the original linear image in a numerical synthetic

example of a 2-D sub-salt model. Extending these works, in this thesis I apply Born

modeling into a RTM scheme to get perturbed wave-fields for imaging multiples.

3



1.2 Motivation for this thesis

The criterion of selecting the smoothed background model has been rarely tested

or discussed. Researchers in industry apply low-pass filters, such as the Gaussian

filter and the average filter, to the actual model to generate a background/reference

model, which is the required input for Born modeling or imaging. In this case, two

questions arise when studying Born modeling. 1) Does the Born modeling have the

ability to reconstruct the primaries in the data? In principle, Born modeling only

takes care of the first-order scattering as a linear truncated Born series. This means

that Born modeling has no chance of perfectly reconstructing any single event in the

dataset even if the true perturbation is used. 2) Which kind of background gives

Born modeling the best chance of recovering desired result? To answer this question,

1.5-D Born modeling tests will be shown in this thesis to illustrate the importance

of selecting an optimal background model for Born modeling.

Another challenge comes from migration (or imaging) work. As mentioned in section

1.1, RTM faces the challenges of low illumination under a salt-body or high-velocity

layer. The goal of lightening the area of interest, like the salt-sediment connections,

attracts many people in industry (Fei et al., 2010). Interpreters are especially in-

terested in salt flank and connections, where potential reservoirs can exist. Toward

this goal, geophysical researchers have started to think about how to include more

non-linear events into the RTM scheme, as in Fleury and Snieder (2011). It is an

intuitive and natural way to introduce linear scattering by Born modeling in a RTM

scheme, which is an attempt for using multiply scattered waves to perform imaging.

4



To summarize, there are two major interests in this thesis. One is extracting the op-

timal background/reference model for Born modeling through numerical tests. The

other is combining Born modeling and RTM as a means of illuminating the sub-salt

for imaging.

5



1.3 Overview of this thesis

The organization in this thesis is as follows: starting with chapter 2, I will revisit

the basic concepts and methods which are relevant to this project. For example,

I will introduce fundamental knowledge for this thesis, like scattering theory, the

Born approximation, RTM, etc. Also, basic numerical methods will be introduced

to prepare for the implementations, including details of discrete forward modeling

and Gaussian smoothing filtering.

In chapter 3, I will start with the process of extracting the optimal background model

generated by Gaussian smoothing for different models. The examples in this chapter

assume knowledge of the actual models to avoid the need for perturbation inversion.

So the experiments are mainly about how to choose the background model used in

research work. In the conclusions, the regularity of selecting an optimal background

model and its understanding will be discussed.

Chapter 4 is devoted to the improved RTM method based on Born modeling and

numerical tests of both the original and the improved RTM. The original RTM

requires a migration model, but not every detail in the earth. In order to deal with

the issue of low illumination under sub-salt, I add more information by using the

perturbation term described in section 4.1. In practical work, the perturbation can

be inverted by linear ISS inversion. However, to simply test the migration algorithm,

I use the difference between the actual model and the background model as the

perturbation in the numerical tests. After the introduction of the improved RTM,

the imaging result will be used to illustrate the effects of the improved method in

section 4.2. From the results, the advantages and disadvantages of both migration

6



methods can be inferred. Furthermore, section 4.3 explores the reason behind the

higher illumination beneath a salt-body and new artifacts in deep depths.

Finally, chapter 5 provides a summary of all the results in chapter 3 and chapter 4,

including the descriptions and analysis of results. Also, topics for further research in

these directions will be discussed.

There are two appendices. In the first appendix, the fourth-order accuracy finite-

difference scheme in section 2.1.1 will be derived in detail. In the second appendix,

I deduce the Born modeling equation (2.18) in the time domain from the Born term

in the frequency domain.

7



Chapter 2

Basic concepts and methods

In this chapter, the main concepts for this thesis and their computational implemen-

tation will be discussed. In the first section, discrete numerical methods for forward

modeling will be introduced in detail, including the basic finite-difference scheme

(FD) and the boundary conditions. Section 2.2 will briefly review the concepts of

scattering theory and Born modeling. In section 2.3 I will revisit the concept of

continuous and discrete Gaussian filters, since these kind of low-pass filters will be

used for generating the background model. Finally, section 2.4 contains a retrospect

of the original RTM algorithm.

8



2.1 Discrete forward modeling

2.1.1 Finite-difference schemes

The conventional numerical method - finite-difference (FD) (Alford et al., 1974)-

provides a scheme for us to discretize a differential equation, like a wave-equation.

FD solutions applied in the wave-equation are pervasive in seismic forward modeling

(Kelly and Marfurt, 1990) and imaging (Bording and Lines, 1997). The definition of

a first derivative can be given as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (2.1)

According to this definition of derivative, the increment h is approached to zero, in

other words, it should be infinitesimally small. However, in a computer the derivative

f ′(x) is approximated using a small, but finite increment. The value of FD provides

an approximation for the local value of the derivative, which depends on the values at

neighboring points. These neighborhoods are located at a finite (but small) distance

from the point where the derivative is being calculated.

2.1.1.1 The second time derivative example

The acoustic wave equation can be written as

∇2P (r, t)− 1

c2(r)

∂2P (r, t)

∂t2
= −ρ(rs, t), (2.2)

where P is the pressure wave-field, ρ represents the source distribution, r is the

field vector, and rs is the known source position vector. Both approximate the

9



Laplace term and the second time derivative of pressure in equation (2.2), can be

approximated in FD.

The second time derivative in equation (2.2) is a particularly good example to show

how FD works on differential equations. In order to use the neighborhood points to

estimate the time differential term, researchers always use a Taylor series expansion

of P . This backward finite-difference requires the value of the wave-fields at previous

time samples. Let us define the ∆t of the time sample increment, P of a wave-field,

P ′ of a first time derivative of P , P ′′ of a second time derivative of P , etc. Two

Taylor expansions can be shown as,

P (t−∆t) = P (t)− P ′(t)∆t+ P ′′(t)
∆t2

2
− P ′′′(t)(∆t)3

6
+O(∆t4), (2.3)

P (t− 2∆t) = P (t)− P ′(t)2∆t+ P ′′(t)
(2∆t)2

2
− P ′′′(t)(2∆t)3

6
+O((2∆t)4). (2.4)

Upon multiplication of expansion 2.3 by two, followed by subtraction of expansion

2.4, we arrive at the following FD approximation for the second derivative in time of

the wave-field. which is

P ′′(t) =
P (t− 2∆t)− 2P (t−∆t) + P (t)

(∆t)2
+O(∆t). (2.5)

This procedure can also be used for estimating the derivatives in the Laplace term.

The term O((∆t)) of equation (2.5) indicates that the error is proportional to the

time sample interval, which determines the order of FD accuracy. This accuracy

analysis will be discussed in the next subsection.
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2.1.1.2 Accuracy of FD

The example of second derivative with respect to time illustrates the concept of

accuracy of FD. Using equation (2.3) and equation (2.4), the same algebraic steps in

subsection 2.1.1.1 can give

P (t− 2∆t)− 2P (t−∆t) + P (t)

(∆t)2
− P ′′(t) = −P ′′′(t)∆t+O(∆t2). (2.6)

The right-hand side of equation (2.6) is called the truncation error. By definition,

the order of a FD scheme is the lowest power of interval (∆t) in the truncation error.

So the first-order accuracy backward FD is selected in this thesis to estimate the

second time derivative term. Besides, the 8th order accuracy central FD is chosen

to discretize the Laplace term in the wave-equation. An example of a fourth order

accuracy FD scheme is discussed in appendix A.

However, a higher accuracy order FD cannot guarantee a better approximation due

to a large value of higher derivative (P ′′′(t)) in leading truncation terms or an instable

FD numerical system.

2.1.1.3 Analysis of stability

Stability of a FD scheme means that the truncation error caused by a small change

in the numerical solution is bounded. It is necessary to be aware of the stability

issue in numerical experiments, otherwise the computer fails to produce an accurate

solution. The stability analysis for FD of partial differential equation was originally

developed by John von Neumann. Recent research by Mufti (1990) and Wu et al.

(1996) provides the stability criteria for the FD solutions of the 3D wave-equation.
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The criterion will be briefly discussed in this section and directly applied in later

numerical tests without derivation. Please refer to Mufti (1990), Wu et al. (1996),

and Press et al. (1986), for a more detailed discussion of the criterion.

For the numerical solution of the wave-equation, the parameters can be set as a spa-

tial sampling interval with value h (∆x = ∆z = h), a temporal sampling interval ∆t,

and a velocity c. Then the stability condition for FD computation can be expressed

as

c∆t

h
≤

√
a1
a2
. (2.7)

In the condition (2.7), a1 is the summation of absolute value of weight for the FD

approximation of the second time derivative and a2 is the summation of absolute

value of weight for the FD solution of the Laplace term. For instance, the experiments

in this thesis use first-order backward FD for the time derivative and 8th order central

FD for the space derivative. The time derivative approximation use the weights

as (1,−2, 1) (equation (2.5)), so it is easy to give a1 = 4. The weights for a 8th

accuracy central FD of 2-D Laplace operator can provide the value of a2. The

stability condition used in FD implementation in this project is

c∆t

h
≤ 0.7843. (2.8)

In all later numerical experiments, the parameters of spatial or temporal intervals

and localized velocities are chosen to satisfy this criterion of stability.
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2.1.2 Boundary conditions

In a finite square modeling area, the four boundaries can reflect waves back to the

effective computational zone, acting as walls. This kind of boundary reflection can

bring an alias in later imaging work. In order to attenuate the boundary-related

reflections, the damping absorbing boundary condition and the Clayton absorbing

boundary conditions are both applied in my numerical tests. The conditions and pa-

rameters described in the following sections remain in forward modeling and imaging.

2.1.2.1 Damping absorbing boundary conditions

Damping zones are the artificial boundaries in modeling, which reduce the wave

strength over a grid region (figure 2.1). The wave-fields in the damping zones are

exponentially decayed by multiplying a traditional damping factor. The formula of

damping absorbing factor can be expressed as e−β·D/A, where D is the grid distance

from effective model boundary to the damping point, A is the entire length of one-side

damping zone and β is a damping coefficient (figure 2.1). A is an input parameter,

which defines the size of a damping zone separated from the effective computational

area. Furthermore, the damping coefficient controls the damping acceleration from

the effective edge to the damping zone edge. If the value of β is not proper for

the system, the boundary of the effective zone can play a role of a new wall, which

enhance the boundary reflections.

The exponential damping absorbing factor is simple but costly when it is applied in

a 3-D FD scheme. Another issue is the less effective attenuation of radiating waves,
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because D
A

in the damping factor is designed for the normal incidence.

Figure 2.1: Implementation of the exponential damping absorbing boundary in 2-D.
A is the total length of the damping zone and D is the distance from the edge of the
effective medium to the attenuation point. The damping effect on normal incidence
waves is better than the effect on oblique incidence waves.

2.1.2.2 Clayton absorbing boundary conditions

Another boundary condition is the traditional Clayton absorbing boundary condi-

tion, which was developed by Clayton and Engquist (1980). The reason for intro-

ducing this boundary condition into FD scheme is that the grid points on the edge
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of a model do not have enough neighboring points to obtain the approximate value.

Also, dealing with edge points is necessary to attenuate the boundary reflection. The

Clayton absorbing boundary condition B1 (Clayton and Engquist, 1980) is applied

on the three edges of the computational grid. Dealing with the edge of left and right

boundaries, B1 actually interpolates the values of edge points with first gradient

relation along x-dimension as

∂P (x, z, t)

∂x
− 1

c(x, z)

∂P (x, z, t)

∂t
= 0. (2.9)

Please note that the spatial derivative in equation (2.9) changes to a first derivative

of P with respect to z for dealing with the edges of top and bottom boundaries,as

∂P (x, z, t)

∂z
− 1

c(x, z)

∂P (x, z, t)

∂t
= 0. (2.10)

The application of Clayton absorbing boundary reduces the energy of the surface-

related reflections. In this case, I assume that the surface-related reflections do not

appear in synthetic data.

2.2 Born modeling

In this section, I will review the basic concepts of scattering theory and Born mod-

eling. In addition, since the first topic is on the extraction of the optimal back-

ground, the Gaussian filter will be discussed as a tool to generate smoothed back-

ground/reference models.
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2.2.1 Scattering theory

Scattering theory is a framework for studying the scattering wave and it separates the

actual medium into two contributions. One of them is called the defined background

medium or reference medium. The other contribution is characterized by a pertur-

bation operator, which corresponds to the difference between actual and background

medium. Assuming that the background/reference medium is defined as a velocity

model c0(x, z) in a 2-D case, I begin with introducing the definition of perturbation

α(x, z) as

1

c2(x, z)
=

1

c20(x, z)
(1− α(x, z)). (2.11)

P and P0 are defined as the wave-fields which are propagated in the actual and

reference medium, respectively. The wave equations that describe these two wave-

fields can be written as,

∇2P (x, z, t)− 1

c2(x, z)

∂2P (x, z, t)

∂t2
= −ρ(xs, zs, t), (2.12)

∇2p0(x, z, t)−
1

c20(x, z)

∂2p0(x, z, t)

∂t2
= −ρ(xs, zs, t), (2.13)

where c(x, z) is the velocity model of the actual medium, c0(x, z) is the velocity model

of the reference medium and ρ is the source. Scattering theory helps us separate the

actual earth into a reference medium and a corresponding perturbation. The refer-

ence wave-field P0 is the response to the source ρ in the reference medium. Combined

with the perturbation definition in equation (2.11), the difference between equation

(2.12) and equation (2.13) can cancel the contribution of source term (ρ(xs, zs, t)).
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The final equation can be obtained as

∇2(P (x, z, t)− p0(x, z, t))−
1

c20(x, z)

∂2(P (x, z, t)− p0(x, z, t))
∂t2

= − α(x, z)

c20(x, z)

∂2P (x, z, t)

∂t2
.

(2.14)

From the above equation, if the difference between P and p0 is defined as ps, this

wave-field ps is the response to the perturbation. In other word, scattering theory

separate not only the actual earth c(x, z), but also the wave-field P into reference

wave-field and scattered wave-field. ps is named after the scattered wave-field, which

satisfies

P (x, z, t) = p0(x, z, t) + ps(x, z, t). (2.15)

Please note that the reference medium can be chosen as any velocity model in scat-

tering theory, such as a constant velocity model. However, the Gaussian smoothed

models are considered as background/reference models in this thesis for the purpose

of RTM and Born modeling.

2.2.2 Born approximation

Born approximation is a linear scattering approximation in the condition that the

perturbation and the aperture of source-receiver are both small. Born modeling

utilizes the idea of this approximate method in forward modeling and simplifies

wave scattering as first-order linear scattering. If the perturbation is small enough

in seismic wave propagation, Born modeling can be applied. Therefore, some steps

are shown as following to derive the 2-D approximate modeling. Firstly, substituting
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α(x, z) in equation (2.11) and equation (2.15) into equation (2.12) gives,

[∇2 − (1− α(x, z))

c20(x, z)

∂2

∂t2
](p0(x, z, t) + ps(x, z, t)) = −ρ(xs, zs, t). (2.16)

A subtraction between equation (2.16) and equation (2.13) provides that

∇2ps(x, z, t)−
1

c20(x, z)
(1− α(x, z))

∂2ps(x, z, t)

∂t2
= − α(x, z)

c20(x, z)

∂2p0(x, z, t)

∂t2
. (2.17)

The small perturbation α(x, z) can be ignored on the left side and then the equation

is simplified as,

∇2ps(x, z, t)−
1

c20(x, z)

∂2ps(x, z, t)

∂t2
= − α(x, z)

c20(x, z)

∂2p0(x, z, t)

∂t2
. (2.18)

In this case, the term left on the right-hand side − α(x,z)

c20(x,z)
∂2p0
∂t2

acts as the source term.

Equation (2.18) implemented by FD is the foundation modeling scheme in this the-

sis.

Using scattering theory in the frequency domain, Born approximation points to the

first linear term in the Born series, which can be expressed as Ψs = G0VG0 (We-

glein et al., 2003). Ignoring the small perturbation, equation (2.18) is equal to the

Born approximation result in the frequency domain. This equivalence is proved in

appendix B.

2.3 Gaussian smoothing

The previous introduction of scattering theory clarifies the concepts of reference/background

model. However, RTM requires elimination of any reflections produced by the sharp-

background velocity model, and therefore a smoothing of this reference model be-

comes necessary. Plenty of smoothing filters have been developed in the field of
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digital image processing, like the mean average filter and the Gaussian filter. These

low-pass filters can smooth the actual velocity model, as a tool of generating migra-

tion models. The 2-D Gaussian filter is chosen as the way of smoothing in numerical

tests.

2.3.1 Continuous Gaussian kernel

In a similar fashion to a mean averaging method, a Gaussian smoother establishes

a bell-shaped distribution to average neighborhood points (Figure 2.2). The mathe-

matical definition of 1-D and 2-D Gaussian kernels provide the distributions. In the

1-D case, the kernel is only related to one direction x and the deviation term σ as,

g(x) =
1√
2πσ

e−
x2

2σ2 . (2.19)

Besides, the Gaussian kernel is symmetric in the 2-D (x, z) domain in the following,

g(x, z) =
1

2πσ2
e−

x2+z2

2σ2 . (2.20)

The deviation factor σ determines the width of a continuous Gaussian kernel. In

other word, a larger σ means more spread and intensive smoothing.

The 2-D continuous Gaussian kernel is normalized distribution, which can be proved

by the integral of the kernel over x and z. The integrand can be written as∫∫
1

2πσ2
e−

x2+z2

2σ2 dxdz

=

∫
1

2πσ2

√
2πσe−

z2

2σ2 dz

=
1

2πσ2

√
2πσ2

√
2πσ2

= 1. (2.21)
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In order to make this property of Gaussian filter remain, the weights in discrete

Gaussian filter need to be normalized.

Figure 2.2: Standard Gaussian distribution with mean (0, 0) and σ = 1 in equation
(2.19) and equation (2.20), respectively.

2.3.2 Discrete Gaussian filter

Although in principle the Gaussian kernel gives a continuous and non-zero infinite

distribution, in the computer, the pixel of the Gaussian filter on grids are discrete

points, shown in Figure 2.3. Hence, the stepped distance between points take the
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place of continuous x, z and the filter has a finite window size.

The discrete Gaussian smoother length on grids is defined as l, which has the same

meaning but the different value of σ. Because the weight approaches to zero as the

point is far from the target smoothing point, the points whose exponential weight

is smaller than e−1 on the edge and smaller than e−2 at the corner are truncated.

This truncation gives the relation l = 2
√

2σ. In addition, the overall summation of

discrete weights remains one. Then the coefficient C (figure 2.3) of the Gaussian

kernel can be normalized as C = 1/(
∑l/2

m=−l/2
∑l/2

n=−l/2 e
− 4m2+4n2

l2 ).

The convolution of a discrete 2-D Gaussian kernel and a function f(x, z) gives a

smoothed version of f(x, z), which is denoted as h(x, z):

h(n,m) = C

+l/2∑
m′=−l/2

+l/2∑
n′=−l/2

f(n− n′,m−m′)g(n′,m′). (2.22)

The Gaussian smoothing kernel acts as a low-pass frequency filter which attenu-

ates high frequency components and removes details. This kind of behavior can be

detected by Fourier transformation of a Gaussian filter.

2.3.3 Advantages

The advantages of Gaussian smoothing mainly lie in two aspects: easy controlling

and computational efficiency.

The degree of Gaussian smoothing is conveniently controlled by the deviation factor

σ. It filters the matrix (vector) symmetrically in all directions.

The computational efficiency occurs in the implementation of high-dimensional filters

using 1-D filters. This property can be shown in brief math steps from equation
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(2.22),

h(n,m)

= C

+l/2∑
m′=−l/2

+l/2∑
n′=−l/2

f(n− n′,m−m′)g(n′,m′)

= C

+l/2∑
m′=−l/2

+l/2∑
n′=−l/2

f(n− n′,m−m′)e−
m

′2+n
′2

2σ2

= C

+l/2∑
m′=−l/2

e−
m

′2
2σ2 [

+l/2∑
n′=−l/2

f(n− n′,m−m′)e−
n
′2

2σ2 ]

= C

+l/2∑
m′=−l/2

e−
m

′2
2σ2 h′(n,m−m′). (2.23)

The result of smoothing along one dimension is defined as h′(n,m − m′), which

satisfies

h′(n,m−m′) =

+l/2∑
n′=−l/2

f(n− n′,m−m′)e−
n
′2

2σ2 , (2.24)

so that the 2-D Gaussian smoothing can be implemented with two 1-D Gaussian

filters, which is faster than 2-D smoothing implementation. For example, in a 2-

D Gaussian smoothing, firstly h′(t) can be obtained using a 1-D Gaussian filter

(equation (2.24)). And then transpose the h′(x, z) to h′(z, x) in order to smooth

the other dimension in the same way as the first time. Finally, transpose the 2-D

matrix back to get h(x, z). The computational cost of Gaussian smoothing in a

higher-dimension benefits from this property.
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Figure 2.3: Gaussian distribution on discrete grids; an averaged value defined by red
points replace the value of yellow target point. C is a coefficient after normalization.
The Gaussian smoother length (l) is related to the deviation term σ in formula.

2.4 Reverse-time migration basis

Reverse-time migration (RTM) is a velocity-model dependent method, which can

migrate two-way waves in depth using the reverse-time backward propagated data

(Baysal et al., 1983; McMechan, 1983; Whitmore, 1983). Some ray-based migration

theories are also proposed to deal with seismic data, like classical Kirchhoff migration.

However, when lateral velocity varies significantly, Kirchhoff migration suffers from
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difficulties in wrong imaging and severe artifacts. In this section, I will introduce the

cross-correlation relation for a better understanding of the imaging condition, and

then the basic RTM scheme will be revisited for the numerical tests in chapter 4.

2.4.1 Cross-correlation

Cross-correlation provides a measurement of similarity of two waveforms as a function

of time-lag. The basic strategy of cross-correlation is known as a sliding dot product.

If there are two continuous functions of time denoted as f1(t) and f2(t), then the

correlation of these two functions is

f1
⊗

f2(τ) =

∫
f ∗1 (t) · f2(t+ τ)dt. (2.25)

For a discrete function, the definite can be expressed as

f1
⊗

f2[τ ] =
∞∑

t=−∞

f ∗1 [t] · f2[t+ τ ]. (2.26)

In these two equations, f ∗1 is the complex conjugate of f1 and τ is defined as the

time-lag. In RTM scheme, the traditional imaging condition is a zero time-lag cross-

correlation, which is a special case of the general cross-correlation, namely, when

τ = 0. In this case, the image result can be considered as a similarity of two wave-

fields at zero time-lag. Figure 2.4 illustrates the concept of cross-correlation in 1-D.

2.4.2 The concept of original RTM

The idea of original pre-stack RTM is straightforward. First propagate the source

function in a reference medium and store the reference wave-fields (p0(x, z, t)) for all
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time samples. From the receiver side, the dataset is backward propagated and then

the scattered wave-field (ps(x, z, t)) is provided. In the habit of industry standard, p0

and ps are named as the source wave-field and the receiver wave-field, respectively.

Finally the image is obtained by applying a zero time-lag cross-correlation imaging

condition as

I(x, z) =
∑

sources

p0(x, z, t)
⊗

ps(x, z, t), (2.27)

which can be found in Claerbout (1971), Biondi and Shan (2002), Kaelin and Guitton

(2006), and Chattopadhyay and McMechan (2008). The symbol I(x, z) represents

the image at (x, z) and
⊗

is the cross-correlation. The understanding of cross-

correlation has been discussed in section 2.3.1. The zero time-lag assumption reduces

the relation to a sum of dot products of two wave-fields in every time sample. This

relation also indicates that if these two propagated waves arrive at the same point

simultaneously, the scatter can be delineated.

The source wave-field satisfies the equation

∇2p0(x, z, t)−
1

c20(x, z)

∂2p0(x, z, t)

∂t2
= −ρ(xs, zs, t). (2.28)

In equation (2.28), the source ρ(xs, zs, t), which is specified as a Ricker wavelet in

later numerical tests, is consistent with the one used to generate synthetic data. The

reference velocity c0(x, z) is always denoted as the migration velocity model in RTM.

The receiver wave-field is a backward propagated wave-field in the migration velocity.

In this case, the term d(xg, zg, t), which is the data recorded by all the receivers,

acts as a time-dependent boundary condition. People usually consider the signals in

dataset as ”sources” (Baysal et al., 1983). The equation of a 2-D scattered wave-field
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is expressed as

∇2ps(x, z, t)−
1

c20(x, z)

∂2ps(x, z, t)

∂t2
= −d(xg, zg, t). (2.29)

Consequently, the scattered events in the data are propagated back to the previous

positions in reverse-time.

It is necessary to point out that the RTM imaging method is a model-dependent

method. The prior required information in RTM are the migration-velocity model,

the known source signature, and the dataset. Usually, the source signature and

dataset can be controlled, and measured. I want to point out that the migration

velocity model needs to be very close to the actual model to generate an encouraging

imaging result.
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Figure 2.4: One-dimensional cross-correlation example. Top figures plot f1(t) and
f2(t) varying with time. The f2(t) (red line) slide from the left to right to cross-
correlate f1(t) (blue line). The time difference caused by the position of f2(t) is
called time-lag. From (a) to (e), the cross-correlation result is assigned on different
time-lags. (Courtesy of Reza Arfa)
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Chapter 3

Optimal background model

extraction

In this chapter, the 1.5-D Born modeling results are shown. When a Born modeling

result has a minimum difference with a FD modeling result, which is generated

by wave-equation (equation (2.2)) using actual velocities, the background/reference

model used in Born modeling is defined as the ”optimal background model”. In these

experiments, the background models are generated by a Gaussian smoothing filter,

which considers the N×λ as smoothing length, where N is any rational number and λ

represents an average wavelength for a given model and a source signature. The error

variances of all tested models are plotted in figure 3.2 and also trace comparisons

(figure 3.3) are provided to illustrate the reason of the different error variances.
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3.1 Modeling methods

The definitions of the Born modeling result and normal FD result should be clarified

at first. Equation (2.18) can generate one shot gather using FD scheme, which is

defined as Born modeling result. With the same source location, the normal FD

result is generated by the wave-equation

∇2P (x, z, t)− 1

c2(x, z)

∂2P (x, z, t)

∂t2
= −ρ(xs, zs, t), (3.1)

using the actual velocities c(x, z).

The comparison of Born modeling results and normal FD results are investigated

from two perspectives.

One perspective is the curve diagram plotted by the error variances of results gener-

ated using two methods, as shown in Figure 3.2. There are seven sub-figures in this

group. Every sub-figure uses the multiple N as horizontal axis and variance error as

vertical axis. If there are two matrix as d1 and d2 whose size are both n×m, then

the variance error between them is

Error(%) =
n∑
i=0

m∑
j=0

(d1(i, j)− d2(i, j))2

n ·m
, (3.2)

where i and j are the indexes for obtaining the elements in the matrix. In these

experiments, d1 and d2 are specified as data generated by normal FD modeling and

Born modeling. In addition, the experiments are taken at several discrete points,

which are shown as ∗ in diagrams. In order to find a minimum variance, the sampling

sites are set more intensely in the likeliest range. The results indicate that in each sub-

figure, there is a minimum point of error variance which I describe as an ”optimal”
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point. Every optimal point corresponds to an optimal smoothing length (on the

horizontal axis). If Born modeling uses the background model smoothed by the

optimal smoothing length, the data generated by Born modeling is the closest to the

normal FD result, which is considered as the actual result. Even though the optimal

points for different model are not located at a fixed value, the regularity still can be

obtain.

The other approach is trace comparisons, which are plotted to find the origins of

different variance errors. The wiggle comparisons at 500m offset trace are shown in

of figure 3.3. In each plot, the vertical axis not only represents the amplitude but

also is denoted by the different smoothed length used for comparisons. In each trace

pair in the comparisons, the red and blue traces are generated by normal FD and

Born modeling, respectively.

3.2 Modeling parameters

Seven different models of the same size are tested (900× 600 grids, 10m/grid). Five

of them are two-layer acoustic mediums with only one reflector at 2500m depth.

The controlled contrasts of the models range from 2000m/s versus 2100m/s (weak

contrast) to 2000m/s versus 5000m/s (strong contrast) as shown in Figure 3.1(a).

In addition, a multiple layer model and a well-logging model are tested. The multiple

layer model (Figure 3.1(b)) is created by gradually increasing velocities from top to

bottom, which range from 1700m/s to 2500m/s. The last model is extracted from

a real sonic velocity well-log. The aim of this project is modeling scattered waves so
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that constant layers are extended to the top and bottom to easily clip reference waves

out, as shown in Figure 3.1(c). Monitoring time of wave-propagation is 5 seconds in

numerical tests and dominant frequency of the Ricker source is set as 15Hz. Since

the models are in 1-D variance and the source is a 2-D line source, the modeling is

performed in 1.5-D.

3.3 Tests of two-layer models

To unveil the regularity of selecting an optimal background, I generated the sim-

plest two-layer models using different velocity contrasts as 2100m/s versus 2100m/s,

2500m/s, 3000m/s, 4000m/s, and 5000m/s, respectively.

From the error curves of two-layer models (figure 3.2(a)-3.2(e)), the ”optimal” point

shifts from 0.5λ to 1.5λ point as the velocity contrast increases. I find that an in-

teresting phenomenon occurs around the error point given by Born modeling using

0.5λ as the smoothing length. The ”optimal” point is never located under this 0.5λ

smoothing length but tends toward it even if there is a large contrast in the model

(Figure 3.2(e)).

The trace comparisons in figures 3.3(a) to 3.3(c) demonstrate that the amplitude

of a wavelet is uncompensated when the background model is smoothed by a small

length, which cannot produce enough perturbation to reconstruct a reflection. How-

ever, the phase of a wavelet shifts when the background is severely smoothed, usually

over 1.5λ. Over-smoothing is associated with a large perturbation. In addition, the

reconstruction of Born modeling behaves much worse when the contrast is large
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enough (figure 3.3(c)) to violate the small contrast assumption of the Born approxi-

mation.

Let us take a look into the reasons of these phenomena. The trace comparisons

are only performed on scattered waves, which assumes that there is no reflection

in the reference wave-field, but the numerical smoothed models cannot guarantee

this assumption. When the reference model is generated by less than 0.5λ Gaussian

smoothing, the contrasts in reference still produces reflections. The summation of p0

and ps remains (equation (2.15)). Consequently, the residue of scattered waves in the

reference wave-field decreases the scattered energy in the Born modeling result. This

is why the amplitude cannot be recovered in Born modeling using slightly smoothed

reference. On the other hand, when the reference is smoothed severely by over 1.5λ,

the root-mean-square (RMS) velocity above the reflector is changed. The travel time

of reflected events only corresponds to the velocity above the reflector. This intuitive

way can explain the phase shift in the trace comparison.

More results of complicated models are presented in section 3.4 to verify the regular-

ity and examine the rough background model prediction from two-layer model tests.
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3.4 Tests of well-logging model and multiple layer

model

In this section, two complicated models are tested for a further understanding of

the optimal background velocity selectivity. The problem is explored using the same

approaches as described in section 3.2. Also, the rough estimates of optimal points

are made with the help of previous two-layer models tests.

A multiply layer model (Figure 3.1(b)) is tested for Born modeling, using 1700m/s,

1800m/s, 2000m/s, 2350m/s, and 2500m/s as velocities in each layer, respectively.

The variance error for the multiply layer model is plotted in figure 3.2(f). From this

figure, the error point located at 1.0λ can be acquired as the optimal point. Com-

pared with the results of two-layer model tests (figure 3.2(a)-3.2(e)), the optimal

smoothing length of the multiple layer model is an intermediate value between opti-

mal smoothing lengths of 2000m/s vs. 2100m/s model and 2000m/s vs. 2500m/s

model (Figure 3.2(a) 3.2(b)). The rough estimation depends on the maximum ve-

locity contrast in the model. Moreover, as the two-layer model tests show, when

smoothing before the optimal point, the distortion of amplitudes dominantly con-

tributes to the error variance, while phase shifting becomes the leading cause of

the large error variance when the model is smoothed over the optimal point (figure

3.3(d)).

Furthermore, the synthetic well-logging model is established by log velocities in

depths from 1400m to 4500m. The well-logging model is extended to the surface

and bottom with constant velocities (figure 3.1(c)). The error variance curve (figure
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3.2(g)) shows that 0.6λ is the optimal smoothing length to generate a well-logging

background model. If the rough Gaussian smoothing length of a well-logging model

is needed, it can be approximately estimated by figure 3.2(d), according to the max-

imum contrast exhibited in figure 3.4.

3.5 Conclusions

This chapter provides the parameters and the results of numerical tests for extracting

an optimal background/reference model used in Born modeling. If there is a criterion

of selecting the reference, the optimal background model used in Born modeling can

be roughly estimated for a given model. The 1.5-D Born modeling results provide a

criterion of selecting an optimal Gaussian smoothing length.

Please note that Born modeling cannot be expected to reconstruct an accurate phase

and amplitude of events because Born approximation considers linear scattering in

wave-propagation. This approximate modeling works only if there is a small contrast

in the model and a small aperture in the dataset, which is described in section 2.2.2.

The minimum error points shown in figure 3.2 indicates that the range of optimal

smoothing length is very limited, from 0.5λ to 1.5λ. Figure 3.3 illustrate that when

the reference model is smoothed by a length less than 0.5λ, the Born results fail to

recover the amplitude of wavelets. This is because reflections still exist in reference

wave-fields, which cut down the scattered energy in Born modeling results (equation

(2.15)). The criterion of selecting a reference model is that the effective Gaussian

smoothing length is from 0.5λ to 1.5λ for Born modeling.
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From the investigations of the reference model, the quality of a Born modeling result

can be controlled. But what is the importance of Born modeling and how does it

apply to other processing steps, like imaging? In the next chapter, an algorithm

based on Born modeling to improve imaging illumination is proposed and a sub-salt

model is tested for verifying the effects. As an upper limit in Born modeling, 1.5λ

Gaussian smoothing length will be used to generate a background/reference model

in imaging tests.
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(a) Two-layer model (b) Multi-layer model

(c) Well-logging model

Figure 3.1: Different acoustic models using in experiments
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(a) 2000m/s vs. 2100m/s model

(b) 2000m/s vs. 2500m/s model
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(c) 2000m/s vs. 3000m/s model

(d) 2000m/s vs. 4000m/s model
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(e) 2000m/s vs. 5000m/s model

(f) Multiple layer model
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(g) Well-logging model

Figure 3.2: Error variance between Born modeling and normal finite-difference data.
In each diagram, the star points (∗) represent the error variances calculated by
an unified FD result and various Born modeling results using different background
models and the red circle denotes the optimal smoothing point. The background
models are generated by the Gaussian smoothing of actual models using different
smoothing length (N × λ). The background/reference models smoothed by 0.2λ,
optimal length and 5.0λ are shown in each diagram.
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(a) 2000m/s vs. 2100m/s model Born result trace

(b) 2000m/s vs. 3000m/s model Born result trace
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(c) 2000m/s vs. 5000m/s model Born result trace

(d) Multiple layer model Born result trace
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(e) Well-logging model Born result trace

Figure 3.3: Trace comparison between Born modeling and normal finite-difference
data. The trace channel located at 500m offset. The background models are models
Gaussian smoothed by a multiple (N) of λ.
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Figure 3.4: Synthetic well-logging velocity model.
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Chapter 4

Improvement of reverse-time

migration (RTM) illumination

In this chapter, I will introduce an improved RTM method based on Born modeling.

As discussed in chapter 1, original RTM fails to image structures beneath a sub-salt

body with low illumination, which is called the ”sub-salt problem”. The origins of

this problem are briefly reviewed at the beginning in section 4.1. Such problems

generated significant interest in seismic studies. In section 4.2, extending the studies

in Fleury and Vasconcelos (2010), I present an improved RTM using perturbed wave-

fields and cross-correlation imaging condition. In section 4.3 I will examine both

original and improved RTM with a sub-salt model. These results help us understand

the values and defects of improved RTM compared to original RTM.
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4.1 Sub-salt problem

The sub-salt problem has been recognized from imaging work in the extensional

Gulf of Mexico in the last decades (O’Brien and Gray, 1996; Rosenberg, 2000). If

salt or other high-velocity layer exists in sediment layers, the seismic ray path can be

severely distorted because of the high acoustic impedance contrast. In this case, the

salt bodies can be considered as sonic lenses, which focus the rays. Besides, the high

impedance prevents most of the incidence energy associated with total reflections at

relative large incidence from penetrating, so that less wave energy can travel to the

area beneath the salt body. Both reasons can result in the low illumination under

a salt body, where the area is named ”shadow zone”. Here, let us explain details in

how the salt body blocks the waves as lenses by studying the literature.

To find out the paths of wave propagation, many researchers use ray-tracing modeling

to plot common reflection gathers (CRP) (Muerdter et al., 2001). In this kind of

result, the ray paths are shown from source to a same reflection point. Here, I

provide a schematic in figure 4.1 to illustrate ray-tracing and how wave paths are

distorted by a high impedance dipping layer. As mentioned above, the salt layer

acts as a focus lens to concentrate the signals to a small area. The primaries in

data can illuminate some of the structures, like the red point in figure 4.1. However,

because of the beam concentration, few primaries signals in data comes back from

the ”shadow zone”. This part of the structure faces the issue to be reconstructed

in depth imaging, such as RTM and Kirchhoff migration. If you are interested in

more knowledge of ray-tracing methods and relations between reflection angle, salt

thickness, and salt dipping angle, please refer to Muerdter et al. (1998), Muerdter
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Figure 4.1: Schematic for a ray-tracing result of a salt slab

et al. (2001).

The difficulties of detecting structure under salt and interpreting reservoir locations

promote the development of conventional migration methods. In the next section,

a revised algorithm will be presented, which is based on RTM and Born modeling.

Instead of utilizing primaries alone, this method attempt to use the information in

multiples to illuminate the ”shadow zone”.

4.2 Algorithm based on Born modeling

Original RTM imaging can provide encouraging imaging results when dealing with

complex geological structures. However, the low illumination is a problem when a

sub-salt body or other high velocity layer exists. As mentioned in section 4.1, the

high velocity structure blocks the structures beneath and generates a ”shadow zone”,
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because the original RTM assumes that pre-processed primaries, which means only

primaries touching zones can be imaged in principle. That is also why researchers are

dedicated to getting rid of noise, like de-ghosting and multiple removal (Araújo et al.,

1994; Weglein et al., 2002; Zhang and Weglein, 2005). In this section, motivated by

the sub-salt problem, I propose a Born modeling-based method to generate wave-

fields in RTM, enlightened by the researches of Fleury and Vasconcelos (2010) and

Fleury and Snieder (2011). In this work, I make an attempt of using the scattered

wave-field to image. This is an initial and elementary step towards the future work

on solving ”shadow zone” problem. Progress is going to be made, but the initial step

is always worthwhile.

The input for this improved algorithm should be clarified in advance. Velocity anal-

ysis and linear inversion work are assumed to be done before imaging, in order to

have a background/reference model and an estimated perturbation α(x, z). The lin-

ear and non-linear perturbation construction can be reviewed Weglein et al. (2003)

using inverse scattering series. This inversion work is important for imaging and

interpretation but will not be discussed here. Since the tests are performed on a

synthetic model, the perturbation can be obtained by relation in equation (2.11).

The formula introducing Born modeling into the propagation of wave-field can be

expressed as,

∇2p′0 −
1

c20(x, z)

∂2p′0
∂t2

= −α(x, z)
∂2p0
∂t2

, (4.1)

∇2p′s −
1

c20(x, z)

∂2p′s
∂t2

= −α(x, z)
∂2ps
∂t2

, (4.2)

where p0 and ps are the source wave-field and the receiver wave-field as described in

equations (2.28) and (2.29). Compared with the wave-propagation idea in original
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RTM, the new method adds linear scattering into the source- and receiver-field in-

stead of assuming non-reflection in the wave-field. The imaging condition for RTM

scheme remains and the new imaging result noted as I ′ in,

I ′(x, z) =
∑

sources

p′0(x, z, t)
⊗

p′s(x, z, t). (4.3)

The revised imaging result contains the quadratic scattering information. In original

RTM, the imaging points are the cross-correlation of two down-going waves at zero

time-lag (figure 4.2(a)), which means using primaries. Nevertheless, the improved

RTM tries to map a point using two up-going waves (figure 4.2(b)). The prior

information for the improved RTM are a source signature, a reference model and a(n)

(estimated) perturbation term (equations (4.1),(4.2)). A true perturbation defined

by equation (2.11) is assume to be known in later tests in order to simply test the

migration algorithm. In addition, the FD scheme is applied in numerical testing on

RTM scheme.
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(a) Original RTM (b) RTM based on Born modeling

Figure 4.2: Imaging principle diagram of original RTM and Born modeling based
RTM

4.3 Salt model tests

A sub-salt model, as shown in figure 4.3(a), is used in the final tests of both original

and improved RTM. The velocities vary from 2500m/s to 6500m/s. For migration

purposes, the background model is a Gaussian smoothed actual model by 1.5λ (figure

4.3(b)). FD scheme is used for implementation.

The original RTM result of the sub-salt model is shown in figure 4.4(b), compared

with the actual model. The implementation is based on equation (2.27), (2.28) and

(2.29). The result in figure 4.4(b) reaches its target of imaging the sedimentary

layers using the primaries information. But the salt flank on the right side in the

”shadow zone” and the connections between salt-body and sedimentary layers can

be barely seen. This low-illumination phenomena is aroused by ignoring multiply

scattered waves information, as well as the limited source aperture. From deep
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depths imaging, the pseudo-reflectors appear at the bottom of salt-body, which leads

to difficulty of interpreting. Most of the leg-like artifacts correspond to the limitation

of the acquisition aperture.

(a) Salt model (b) Smoothed salt model

Figure 4.3: Original salt model (courtesy of Allied Geophysical Laboratory) and
smoothed salt model

The improved RTM result in figure 4.5(b) is provided to investigate if it can delineate

the structure detail missing in the original RTM result. The implementation is based

on the proposed equations (4.1), (4.2), and (4.3). From RTM result in figure 4.5(b),

the two connections on right salt flank are reconstructed by migrating multiplies.

But the bottom structure errors grow worse. In principle, on the condition that both

51



(a) Salt model (b) Original RTM result

Figure 4.4: Original reverse-time migration result

the forward and backward wave-fields are linearly scattered by Born modeling, the

result can emphasize the structures which generate the downward reflections (figure

4.2(b)). However, it fails to image the structure in deep depths. That is because all

the events in the data get involved in backward propagation. The complex multiply

scattered events, like higher order multiples, cannot be recovered to its actual travel-

time or depth location in reverse-time by scattered only once. The signals of higher

order multiples arrive later (larger travel-time) in the recorded data, than first-order

multiples and primaries. If this issue happens, a higher-order multiple considers itself
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as a first-order multiple, which is generated by a false deeper depth reflector.

Finally, the RTM on basis of Born modeling indeed utilizes the multiples with the

evidence of rebuilding the salt-sediments connections and the salt flank boundary in

the ”shadow zone”. The combination of results in figure (4.4(b)) and figure (4.5(b))

can help later interpretation work.

(a) Salt model (b) RTM on basis of Born modeling

Figure 4.5: Reverse-time migration result on the basis of Born modeling
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4.4 Conclusions

Section 4.1 states ”sub-salt problem” in detail. In this section, I review Muerdter’s

work (Muerdter et al., 1998; Muerdter et al., 2001) on detecting the low-illumination

zone by ray-tracing method. The high-velocity property of salt generates a high

acoustic impedance between salt-body and sedimentary layers. This kind of high

impedance makes the salt-body play a role as concentration lens, which focus wave

beams. The areas that cannot be touched by primaries are called ”shadow zones”.

The following section 4.2 presents the key work in this thesis - an improved RTM

which introduces the perturbed wave-fields into RTM scheme. To examine the effects

of different algorithms, numerical tests of original and improved RTM on the same

sub-salt model are presented in section 4.3. I have to point out that the prerequi-

site of using the improved RTM, is obtaining an estimated perturbation in practical

work. In this thesis project, the difference between actual and background model

is treated as a perturbation, which is a true perturbation. This seems like a redun-

dancy between perfect inversion and improved imaging. However, to simply test the

migration algorithm, I use the true perturbation, avoiding the inversion procedure.

From the numerical result in figure 4.4(b), the original RTM indeed produces low

illumination imaging of the structures hidden by salt. For instance, the sub-salt flank

and connections between salt and sedimentary layers can be barely seen in this re-

sult. This issue promotes the development of migrating multiples. Another imaging

result (figure 4.5(b)) improved by Born modeling is expected to enhance the imaging

illumination under salt-body. The figure proves the capability of the improved RTM,

which can delineate the connection points and map salt boundary in shallow depth.
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However, linear perturbed wave-fields cannot recover the depth information of higher-

order multiples in migration, so that complex events are perturbed in wrong locations

and this situation causes pseudo-reflectors. That is also why there is a mess after

using perturbed wave-fields in deep depths imaging, where higher-order multiples

are wrongly located. In addition, both these migration methods suffer from serious

artifacts of aperture limitations.

Even though there are issues in the improved RTM results, this method still shows

its potential on migrating multiples, which maps the detailed structures on salt-flank

and provides valuable information for later geological interpretations.
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Chapter 5

Summary

Current Born modeling work requires prior information, such as a reference medium

and an estimated perturbation. Also, the widely used reverse-time migration is a

model-dependent method. However, studies of this reference model are rarely con-

ducted. Another issue stated in this thesis is that RTM can handle most of the imag-

ing of geologic structures unless sub-salt bodies or high-velocity layers exist in the

subsurface. Sub-salt structures focus the wave beams from the view of ray theory and

prevent the primaries from touching some areas, which leads to a failure in imaging

beneath the high-velocity structures low illumination. This thesis mainly discusses

the properties of Born modeling from extracting an optimal background/reference

model and the application of Born modeling for improving the RTM illumination.

The full thesis can be divided into four parts. Chapter 1 reviews the history of

using background models starting from inversion and states that the advantage of

a smoothed background model can be utilized in Born modeling and RTM scheme.
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The key concept of Born approximation and the numerical implementation in tests

are reviewed in detail in chapter 2. Selecting an optimal background/reference model

is found by testing different layered models in chapter 3. Chapter 4 shows the mi-

gration results using both original and the improved RTM schemes. The thought

behind the later imaging tests is to utilize the energy of multi-scattered waves, which

are ignored and assumed to be removed in industry standard original RTM.

In chapter 3, compared with the normal FD data, which is generated by FD modeling

wave-equation using actual velocity, the Born modeling can approximately forward

model the primaries in dataset. It fails to reconstruct the amplitudes of events when

the reference model is Gaussian smoothed by less 0.5λ, because the reflections still

exist in reference wave-field. λ here is an averaged wavelet for a given model and a

source signature. On the other hand, when the background model is far from the

actual model, the phase of the wavelets shifts due to the severe change of velocities

above the reflector. In this thesis, the criterion of generating a background model or

determining a perturbation is characterized by Gaussian smoother length. Through

the numerical tests of various models, the maximum value of error variance between

a normal FD result and a Born modeling result is around seven percent, as shown

in figure 3.2(g). The optimal smoothing length remains in a stable range from 0.5λ

to 1.5λ. This regularity can be applied in Born modeling or migration work which

requires the reference model as input.

In chapter 4, original reverse-time migration faces the imaging problems of unclear

salt boundary and salt-sediments under a high-velocity salt structure (figure 4.4(b)).

The area which primaries do not touch can be described as a ”shadow zone” with low
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illumination. The issue of sub-salt imaging promotes the development of migrating

multiply scattered waves.

Since an improved RTM is expected to enhance the imaging illumination under a

salt-body, I introduce the scattering into source and receiver wave-fields, which are

defined in original RTM, by applying Born modeling. The result indeed delineates

the connection points and salt boundary for considering the energy and informa-

tion in multiply scattered waves (figure 4.5(b)), so that the multi-scattered energy,

which is usually ignored, can be preserved. However, the deep structures failed to

be correctly mapped, because the complex events cannot be recovered in the history

of propagation by adding only a linear perturbation. Also, migration methods suf-

fer from serious artifacts due to aperture limitations and two-way wave-fields in the

space-and-time domain.

Other advanced work should be done. For example, the imaging condition can be

altered by other non-linear relations in the literature (Fleury and Vasconcelos, 2010).

Some more advanced technologies are free of the migration background model, like

ISS imaging using inverse scattering series, which is being comprehensively studied

and implemented (Shaw and Weglein, 2003; Liu et al., 2005).
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Appendix A

Fourth-order accuracy FD scheme

example

In this case, the Taylor expansions involving four nearby discrete points can be

expressed as,

P (x− 2∆x) =

P (x)−∆xP ′(x) +
(2∆x)2

2!
P ′′(x)− (2∆x)3

3!
P ′′′(x) +

(2∆x)4

4!
P ′′′′(x)−O(∆x5),

P (x+ 2∆x) =

P (x) + ∆xP ′(x) +
(2∆x)2

2!
P ′′(x) +

(2∆x)3

3!
P ′′′(x) +

(2∆x)4

4!
P ′′′′(x) +O(∆x5),

P (x−∆x) =

P (x)−∆xP ′(x) +
∆x2

2!
P ′′(x)− ∆x3

3!
P ′′′(x) +

∆x4

4!
P ′′′′(x)−O(∆x5),

P (x+ ∆x) =

P (x) + ∆xP ′(x) +
∆x2

2!
P ′′(x) +

∆x3

3!
P ′′′(x) +

∆x4

4!
P ′′′′(x) +O(∆x5). (A.1)
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Taking some algebraic steps on equation (A.1) to get rid of P ′(x), P ′′′(x) and P ′′′′(x).

The summation of P (x+ ∆x) and P (x−∆x) can cancel out the odd terms in series,

so does the summation of P (x + 2∆x) and P (x − 2∆x). The result of P ′′(x) turns

to be,

P ′′(x) =

− 1
12
P (x− 2∆x) + 4

3
P (x−∆x)− 5

2
P (x) + 4

3
P (x+ ∆x)− 1

12
P (x+ 2∆x)

(∆x)2
.(A.2)
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Appendix B

Born modeling in space-and-time

domain

Starting from the Born series, the Born modeling term can be explicitly expressed

in frequency domain using the Green’s function in reference medium and the per-

turbation term (Weglein et al., 2003). To describe a wave propagation in medium,

let

LG = −δ(r− rs), (B.1)

where L is the actual differential operator and G is the matrix elements of actual

Green’s operator. After using the scattering theory, the reference differential operator

(L0) and matrix elements of reference Green’s operator (G0) satisfy the equation,

L0G0 = −δ(r− rs). (B.2)
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Then define the perturbation operator Vand the scattered field operator Ψs as,

V = L− L0, (B.3)

Ψs = G−G0. (B.4)

The scattered field can be expanded in an infinite series with substituting G0 as an

approximate G,

Ψs = G−G0 = G0VG0 + G0VG0VG0 + . . . (B.5)

This infinite series is called Born series which is a basic formula for forward scat-

tering field modeling. Consequently, the forward Born approximation for Ψs can be

obtained by applying a linear truncation on the series. The result can be shown as,

Ψs
∼= G0VG0. (B.6)

If the waves propagate in acoustic medium, the operators can be expressed as,

L0 =
ω2

c20(r)
+∇2, (B.7)

L =
ω2

c2(r)
+∇2, (B.8)

V = L− L0 = − α(r)

c20(r)
ω2. (B.9)

The α(r) in the equation (B.9) is defined as perturbation term, which satisfies 1
c2(r)

=

1
c20(r)

[1−α(r)]. Also, the Green’s function operators satisfy L0G0 = −I and LG = I,

which I is the unit operator.

Left multiply L0 on Born approximation term B.6 to obtain L0Ψs = −VG0 and

plug V into it. The Born term turns out to be

(∇2 +
ω2

c20(r)
)Ψs(r, ω) =

α(r)

c20(r)
ω2G0(r, ω). (B.10)
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Notice that Green’s function here is in temporal frequency domain, so that the

wavelet A(ω) can be multiplied on both sides of equation (B.10), which equals to

convolve the wavelet in time domain. This step gives

(∇2 +
ω2

c20(r)
)Ψs(r, ω)A(ω) =

α(r)

c20(r)
ω2G0(r, ω)A(ω). (B.11)

Introduce p̂0(r, ω) = G0(r, ω)A(ω) and p̂s(r, ω) = Ψs(r, ω)A(ω), then substitute the

p0 and ps into equation and inverse Fourier transform over two sides. The expression

of equation (B.11) can be expressed in time domain as

(∇2 − 1

c20(r)

∂2

∂t2
)ps(r, t) = − α(r)

c20(r)

∂2

∂t2
p0(r, t). (B.12)

Finally, the equation (B.12) is obtained as the fundamental formula for time domain

Born modeling. It is easy to acquire 2-D Born modeling equation as

∇2ps(x, z, t)−
1

c20(x, z)

∂2ps(x, z, t)

∂t2
= − α(x, z)

c20(x, z)

∂2

∂t2
p0(x, z, t), (B.13)

which is same as the equation given by equation (2.18).
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