at ¥ = 0 that is 1, th the incident intensity. Such a result
would not ordinarily be distinguishable from black (zero
intensity) by the human eye. The surface with negative cur-
vature focuses the light into a bright ring. Thus a Rankine
vortex with a small central core would have an intensity
distribution quite similar to that of a hyperbolic surface with
the important exception that the central disk is gray not
black.

Figure 4 shows the measured intensity as a function of 7
for a vortex image. It was obtained by digitizing a radial
distance of an image of the vortex from a single frame of
videotape. In order to compensate for the light scattered
from the foreground, data from an image of an opaque disk
of similar size, sitting on the surface of the water, was sub-
tracted. The qualitative features of this figure are relevant,
showing the monotonic decrease in intensity with increasing
radius, characteristic of a parabolic core. Also shown is the
bright ring at larger #’ and the background incident intensity
at still larger . Currently experiments are underway to
evaluate the quantitative aspects of this technique.

This analysis has shown that the images of vortices can
be qualitatively explained by the application of Snell’s law to
surfaces of negative curvature. The dark disks are due to the
shape of the surface at small r, paraboloids of small diameter.
The intensity of the dark disk is a measure of that curvature.
The diameter of the dark disk is determined by the bright
ring that is determined by the shape of the surface of negative
curvature.
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The equation of bubble dynamics in a compressible liquid
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An equation accounting to lowest order for the effects of liquid compressibility on the radial
motion of a spherical bubble is deduced from the statement of energy conservation for the

liquid.

The Rayleigh—Plesset equation describing the dynamics
of a spherical bubble in an incompressible liquid is

RR+3R*=(py —p.)/p (N

where R is the bubble radius, p the (constant) liquid density,
pg () = p(r = R(2),t) the pressure exerted by the liquid on
the (“wet” side of the) bubble interface, and p_ the pressure
at infinity. A number of papers (a list of which can be found
in Ref. 1) have been devoted to obtaining generalizations of
(1) approximately applicable to a compressible liquid and
several different equations have been proposed. In two re-
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cent studies'? the same objective has been pursued on the
basis of a rigorous singular perturbation expansion that has
demonstrated the essential nonuniqueness, in a sense to be
specified later, of the approximate compressible equation. It
is the purpose of this Brief Communication to present a deri-
vation of this equation based on the principle of conservation
of energy. This alternative approach will shed a different
light on the more abstract derivations given in Refs. 1 and 2
and may be useful for other problems involving the motion
of a body in a slightly compressible fluid.

The one-parameter family of equations derived in Refs.
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1 and 2, called the general Keller-Herring equation, is
[14+ A+ 1DR/)IRR+3[1-1 (34 + (R /c)]R?

=%(1+(1—1>5+51)(p3 )

+0(c™?), (2)

where c is the speed of sound, approximated by its value in
the undisturbed liquid, and A is an arbitrary parameter
which does not seem to have any physical meaning. The
error term included in this equation indicates its degree of
approximation with respect to an “exact” theory. The form
of Eq. (2) given in Refs. 1 and 2 is in terms of the enthalpy
rather than the pressure, but to O(¢~2) Eq. (2) represents
an equivalent statement.' By taking A = 0, Eq. (2) becomes
identical to the equation proposed by Keller,? while the val-
ueA = 1bringsitinto the form suggested by Herring.* It will
be noted that, by dropping terms in ¢~ ', Eq. (2) reduces to
Eq. (1), which is therefore seen to have an error of orderc .

The indeterminacy present in Eq. (2) can be removed,
at a price, by applying the operator ¢~ '[(1 — 1)R +R d/
dt] to Eq. (1) and subtracting from (2). Since (1) is
O(c™ '), the quantity subtracted from (2) according to this
procedure is O(c~?2) as Eq. (2) itself. The result is therefore
consistent and is
RR+3R%*— (1/¢)(R?R + 6RRR + 2R %)

= (ps =P, )/p+0(c™?). (3)
The striking appearance of a third-order time derivative of
the radius in this equation can be explained by noting that a
precise theory would involve the retarded time z — R /c. A
Taylor series expansion of a quantity such as R(¢ — R /c)
would then lead to R. As shown in Ref. 1, this quantity can
be eliminated in more than one way by using the lower-order
result (1), which leads to the indeterminacy present in (2).
A similar situation arises, for analogous reasons, in the deri-
vation of the equation of motion for a classical charged parti-
cle, as pioneered by Lorentz.>® In that case, however, con-
trary to the procedure adopted here, the form with the
third-order derivative was retained, which gave rise to con-
siderable confusion’ before the root of the problem was un-
derstood and the issue clarified.®

Because of the presence of the third time derivative of
the radius, the form (3) of the radial equation is hardly more
attractive than (2), if for nothing else than for the need to
prescribe an initial condition for R.° However, in view of its
uniqueness, it is perhaps proper to consider Eq. (3) the fun-
damental form of the O(¢ ") radial equation. It is this equa-
tion that will be derived in the following.

Consider the liquid contained in the volume 2 com-
prised between the bubble surface S and a large, concentric
spherical surface.S_ . If u and p denote the local velocity and
pressure, conservation of energy demands that

d 1

——J- pu-udV:fmedV—
> Ve

2 puwn ds,

S5+ S,
(4)

where n is the outward normal and viscous effects have been
neglected. As first proposed by Keller,? and rigorously justi-
fied in Refs. 1 and 2, a mathematical model consistent to
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order ¢~ can be built upon the wave equation satisfied by
the velocity potential ¢:
1 3%
Vi — — =0, 5
¢ ¢ o’ )
and the incompressible form of the Bernoulli integral
dp 1 )
=p., — + —uu 6)
p=p P( E (

If we consider for s1mphclty the case of free motion under a
constant pressure at infinity, then the relevant solution of
(5) has the form

S=f(t—r/c)/r, (7)

where r is the distance from the bubble center.
By use of (5) and (6) the first term in the right-hand
side of the energy balance (4) may be written

f AR YV
»
- _ pf [( ¢ u-u)V2¢]dV +p. fv-u a7
- P 98 3% o f .
at or? +Pe Se+ S wn 45
2
£2Ju-uafd% (8)

The last term is at least of the second order in the Mach
number and can be dropped to the present order of approxi-
mation. As for the first one we note that, using the form (7)
2
l Jp 3°¢ 7 = 1

for ¢, it may be written
v
» 9t a2 22 ) ot

_ 27 wi(a_f)zd,
2 Jr Ot\ot

=_Ef°°i(§_ff)2d,, 9)
¢ Jr Or\ot

In the last step we have used the fact that, for a function of
t —r/c,d /dtequals — ¢ d /9r. With these manipulations we
find, for the first term in the right-hand side of (4),

f pV-udV:pwf wndsS
e Sp+ S

2
Y g
¢ \dt/, R(1)

To O(c™?) theintegrated term in this expression can be eval-
uated at 7 = O rather than at » = R(¢) and upon substitution
into the right-hand side of the energy equation (4) we find

fpV-u a7 —
A

pundS

Sp+ S,
=| (P, —pplundS— 2% [f(D]1*+0(c™?)
Sp

= —47R*R(p,, —p5)

— Qap/) [ f' ()] + O(c™?), (10)

" since
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ab .
—un =2 = 11
v or (b
at the bubble surface » = R(?).
The calculation of the kinetic energy .7 in the left-hand
side of (4) is similar although slightly more complicated.
We start from

1o 1 . )
Y-ZpJuudW sz[V(¢v¢) $V241dY

a
= —27pR$(ROR — 2c2f prad ¢ a, (12
where the fact that ¢ — 0 at infinity and the kinematic bound-
ary condition (11) at the bubble surface have been used.
Assuming now the form (7) for ¢ we find for the second

2
aﬂ -7 f f fdr
47 I
= —— dr
c farat
A T[22 -2
c Jr LOr\ ot ar ot

%) L G

For the subsequent developments the integral term could be
left as written, but it is more interesting to recast it in a form
that brings out very clearly its origin rooted in the finite
speed of propagation of pressure waves. Lets = ¢ — r/c and
note that, for a motion started at # = 0, f(s) vanishes for

s<0. Then
- t—R/c
L GTr=) (B
¢ Jr \O¢ c Jo ot
=if [£(s)]? ds + O(c™).
¢ Jo

Again from (7)

_f(@—=R/c)
#(R,1) =t
=—1—(f(t) “Rrwm 0(c‘2)) ,
R ¢
while
l(fa—f) =if(t)f’(t) +0(c™?).
c Ot /r=Rr» c

Upon substitution of these results into (12) we find the fol-
lowing expression for the kinetic energy:

T = Zﬁp(—RRf(t) +—i—f’(t)[R2R —f(0]

+if [f'(s)]zds). (13)
¢ Jo

To complete the derivation an expression for / (¢) must
be obtained. This task is readily accomplished by substitut-
ing the form (7) for the potential into the kinematic bound-
ary condition (11) and carrying out a Taylor series expan-
sion centered at ¢ to find
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f()= —R*OR(®) + (RS f" (1), (14)

in which the last term can again be dropped. By differentiat-
ing (13) with f given by this expression and equating to
(10), the form (3) of the radial equation is readily obtained.

In conclusion it may be of some interest to comment on
the criteria with which terms have been discarded and re-
tained in the above calculation, criteria that may at first sight
appear somewhat arbitrary especially for the intermediate
steps. Any ambiguity can be removed by adopting a proper
scaling as in Refs. 1 and 2, but the following considerations
may furnish an intuitive shortcut.

The precise meaning of the notation O(c™') is that,
with respect to those retained, the terms neglected are of the
order Ry/cT, where R, and T are typical scales for radius
and time. In this light, the second term in the wave equation
(5), c=29%p/3t?, cannot be discarded because it is of the
same order as the first term at distances L ~cT from the
bubble, as the explicit form (7) makes clear.'® It also follows
from this expression that, at such distances, ¢ itself has a
magnitude of the order of

$~ S R
T R, T
while, by the same argument, u ~O(c~2). With these esti-
mates we recognize that the region 7~ L contributes to the
first integral in (8) a term of magnitude O(c~?) X O(c?),
where the second factor accounts for the volume of integra-
tion. The region at distances 7~ R, gives, on the other hand,
a contribution independent of ¢. After division by ¢?, the
final magnitude of this term is then O(c™ "), as the explicit
result (9) demonstrates. In the last integral in (8), instead,
the region r~L gives a contribution of O(c™*) X 0(c™")
X 0(c*) = O(c~?) which, upon division by ¢, is quite negli-
gible. The whole integral can therefore be dropped. Similar
arguments may be invoked for the evaluation of 7.

=0(c™ "),
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