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Abstract

First, a post-hurricane restoration model for power grid which considers the eco-

nomics of disaster is introduced. The physical and economic constraints of the system,

including unit commitment and restoration constraints, are incorporated in the proposed

model. The aim is to restore the hurricane-related damages to electric power system in-

frastructure in an economic and customer-centered manner, without violating the physics

of the system, in order to mitigate the aftermath of natural disasters.

Second, a proactive resource allocation model for repair and restoration of potential

damages to the power system infrastructure located on the path of an upcoming hurricane is

proposed. The objective is to develop an efficient framework for system operators to restore

potential damages to power system components in a cost-effective manner. The problem is

modeled as a two-stage stochastic integer program with recourse. This model can improve

proactive preparedness of the decision makers to cope with emergencies, especially those

of nature origins, in order to minimize the restoration cost, and enhance the resilience of

the power system.

Third, a model is proposed to incorporate the impact of potential damage due to

hurricane in the maintenance scheduling of the power infrastructure components located

in hurricane prone areas. The power infrastructure deterioration process, as well as two

competing and independent failure modes, i.e., failure due to loss of reliability and failure

due to hurricane damages are integrated into the model. Moreover, the interrelationship

between the component, the grid, and the associated downtime cost dynamics are analyzed.

The problem is modeled as a Markov decision process with perfect state information.

Fourth, the impact of El Niño/La Niña phenomenon which has shown to induce sea-

sonal effects on hurricane arrivals in long-term climatological horizon is considered in asset

management strategies of the electric power systems. An integrated infrastructure hard-

ening and condition-based maintenance scheduling model for critical components of the
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power systems is developed. The partially observable Markov decision processes are used

to formulate the problem. The survival function against hurricane is derived as a dynamic

stress-strength model, and is incorporated in the proposed framework.
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Chapter 1

Introduction

The extreme weather conditions and natural disasters can have a devastating impact

on lifeline infrastructure systems. In this dissertation, a set of related problems are ad-

dressed, and asset analytics for smart grid infrastructure in order to enhance the resilience

of the system is proposed. This chapter presents an overview, motivation and importance

of research, problem statement, objective of the research, contributions, N-gram analysis

of the title, and organization of this dissertation.

1.1 Overview

Natural disasters, particularly the storms are still the Achilles heel of the electric-

ity infrastructure as one of the most critical lifeline systems and of utmost importance to

our daily lives. After over half a century from publication of one of the earliest studies

on efficient response to hurricanes, motivated by Hurricane Carla that slammed into the

Gulf Coast and moved onward into the United States and Canada [1], the issue of efficient

response to hurricanes and other natural disasters seems to remain in its immature stage.

Storms can result in significant economic, social, and physical disruptions, and cause con-

siderable inconvenience for residents living in disaster areas due to loss of electricity, water

and communication [2]. Even the notion of “after a storm comes a calm,” is not the case

for the electric power systems. The electric power grid transfers the electricity generated by

large-scale power plants to a variety of industrial, commercial, and residential customers

via transmission and distribution networks, and hence it can be disrupted over a vast ge-

ographical area when a hurricane strikes. For instance, following Hurricane Ike in 2008,

more than 2.8 million customers in the Greater Houston area experienced a power outage,

which lasted from a few days to several weeks. Figure 1.1 depicts the power outage map in
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Figure 1.1 Power outage map in the Greater Houston area after Hurricane Ike

the Greater Houston area after the Hurricane Ike [3]. The total damage from Hurricane Ike

in the U.S. coastal and inland areas was estimated at $24.9 billion [4]. Therefore, dealing

with the aftermath of such disasters is of great concern of utilities and governments.

The level of complexity and interdependency of systems, either in urban or rural

settings, increases with time. These complex and interdependent systems are extremely

vulnerable to disasters. Development of mitigation strategies which outflanks the process

of risk transference of mega-disasters is the key to successful management of disasters. In

this context, resistance refers to the capacity to withstand disaster without change, while

resilience refers to its capacity to “bounce back” to a pre-disaster condition [5]. Based on

definition from [6], “local resiliency with regard to disasters means that a locale is able

to withstand an extreme natural event without suffering devastating losses, damage, dimin-

ished productivity, or quality of life and without a large amount of assistance from outside

the community.” The term storm can alternatively be used for hurricane, typhoon, and cy-
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clone. According to the National Oceanic and Atmospheric Adminstration [7], hurricanes,

cyclones, and typhoons are the same phenomenon, but they can be classified depending

upon the location the storms originate. The term hurricane is used in the Atlantic and

Northeast Pacific; while it is called typhoon in the Northwest Pacific; and cyclone is used

for the same phenomenon in the South Pacific and Indian Ocean.

1.2 Motivation and Importance of Research

The increasing trend of natural disasters which is believed by scientific communities

to be due to the climate change has not received adequate attention by governments, policy

makers, and international community. Only in the United States, storm-related damages to

the power grid result in approximately $270 million in annual repair costs [8]. The disas-

trous effects of the storms and hurricanes on the reliability and economics of the electric

power grid infrastructure as one of the critical lifeline systems from one side, and the lack

of enough research work and practical decision making tools to keep pace with the increas-

ing trend of such disasters from other side are the main motives of dedicating the proposed

research to this area. Utilizing engineering solutions to improve the quality of life and well-

being of the society is a strong driver to enhance research in such a critical area of public

safety management. Of course, providing efficient strategies and decision making tools

which are currently lacking in practice in order to be used by utilities is another motive.

National disaster policy plays an important role to protect the safety of citizens, se-

curity of businesses and national economy, and also the national security of each country.

For instance, in the United States, the Disaster Mitigation Act (DMA) of 2000 provided the

legal requirements of Federal Emergency Management Agency (FEMA) for disaster miti-

gation planning and implementation efforts by State, local and Indian Tribal governments.

DMA 2000 amended the existing Disaster Relief and Emergency Assistance Act of 1988

by offsetting the disaster policies from postdisaster into a predisaster mitigation paradigm.
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Following devastating aftermath of hurricane Sandy, the Sandy Recovery Improvement Act

(SRIA) of 2013 and the accompanying Disaster Relief Appropriations Act of 2013 were

signed into law [9]. The passed legislations during the recent years have constantly shifted

the policies in favor of proactive and preventive actions toward disasters in order to improve

the resistance and resilience of the critical infrastructure. The importance of this research

is in its pragmatic approach to cope with the real world problem of disaster management

in power grid infrastructure by using scientific and engineering solutions in order to pro-

vide practical solutions which are inline with utility companies’ and public policy decision

makers’ paradigm of resiliency enhancement to tackle the problem.

1.3 Problem Statement

In this dissertation, we model a comprehensive set of asset management strategies to

address the decision making needs of next generation smart grid infrastructure in short-,

mid-, and long-term planning horizons. The aim is to push the frontiers of engineering

solutions to cope with the devastating impacts of natural disasters (particularly storms and

hurricanes) on electric power infrastructure.

A joint restoration and unit commitment model for recovery of damaged power sys-

tems due to hurricane is lacking in the literature. Intuitively, the physics of the system along

with the economics of disaster, i.e., the resource cost, the opportunity cost of load interrup-

tion, and the unit commitment problem, need to be considered in restoration model. Other-

wise, the obtained restoration schedule can be either sub-optimal or infeasible in practice.

Different combinations of restoration schedule and operational configuration of the system

need to be searched in solution space to find a cost-effective restoration plan.

Although variety of problems for power system planning in hurricane-prone areas

have been addressed in the literature, to the best of our knowledge a few of them provide

a comprehensive and generic approach for proactive resource allocation in preparedness

4



phase for hurricanes. An efficient decision making tool is required to be developed for

proactive restoration planning of power systems to minimize the expected customer load

interruption cost, restoration operation cost, and electricity generation cost.

The stochastic and independent effects of damage due to hurricane in maintenance

scheduling of a power system infrastructure is lacking in the literature. The survival proba-

bility of component against hurricane during each period as well as the dynamic downtime

cost of the component during each period need to be considered for a cost-effective pre-

ventive maintenance strategy of power system infrastructure.

A holistic view to the global and long-term climatological effects of phenomena such

as El Niño/La Niña are lacking in the power systems literature, and perhaps in practice. A

cost-effective asset management strategy for an integrated condition-based maintenance

and hardening of the power system infrastructure when the component is subject to opera-

tional degradation as well as failure due to hurricane needs to be developed to fill this gap

in the literature and practice.

1.4 Research Objectives

A model to minimize the customer load interruption cost, restoration operation cost,

and electricity generation cost needs to be developed. The output of the proposed model is

expected to provide the post-hurricane restoration schedule, generation unit commitment

states, power dispatch, and transmission configuration of the system in the post-disaster

phase. The proposed decision making model not only should determine the restoration

schedule, but also provides a practical and cost-effective operational configuration for ma-

jor components of the power system during the restoration time horizon.

A proactive resource allocation model to mobilize the maintenance crew for repair

and restoration of potential damages to the power system infrastructure located on the path

of an upcoming hurricane is another objective of this research. The aim is to develop an

5



efficient framework for system operators to minimize the expected subsequent costs of

potential damages to power system components in a systematic manner.

The next objective is to incorporate the hurricane effects in mid-term preventive

maintenance scheduling of the grid infrastructure in hurricane prone areas. The dynam-

ics of downtime cost of component across the planning horizon, and its interplay with

preventive maintenance schedule should be studied and incorporated in the model.

Finally, as last objective, an integrated infrastructure hardening and condition-based

maintenance model for the critical components of the electric power system needs to be

developed. The long-term climatological effects of El Niño/La Niña on hurricane arrivals

will be considered to analyze the reliability function of the infrastructure. The aim is to

construct a mathematical model which simultaneously considers the reliability of the in-

frastructure against hurricane arrivals under long-term climatological effects, its functional

state due to degradation, and the cost dynamics of the proposed asset management strategy

under various scenarios.

1.5 Contributions

Although variety of problems for electric power grid recovery in natural disasters

have been addressed in the literature, few provide a comprehensive and generic approach

for resource allocation which simultaneously considers the physics of the power grid along

with the economic aspects of the disaster. This dissertation investigates the issue from a

new and generic perspective by proposing following models:

• A generic post-hurricane restoration model which considers the physics and eco-

nomics of the system;

• A stochastic pre-hurricane restoration model which mobilizes the restoration re-

sources in a proactive manner.
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Variety of maintenance planning models for power infrastructure have been proposed, but

incorporating the effect of hurricanes in maintenance strategies is lacking in the literature.

This dissertation investigates the subject by proposing the following models:

• A mid-term maintenance scheduling model based on perfect state information from

infrastructure, considering the hurricane effects on reliability of the system, and the

fluctuating outage cost during planning horizon;

• A long-term integrated infrastructure hardening and condition-based maintenance

model based on imperfect state information from infrastructure, considering clima-

tological effects of global weather conditions.

1.6 N-gram Analysis of the Title

The title of this dissertation represents the keywords that describe the proposed re-

search work. The N-gram is a data mining tool which estimates the ratio of frequency of

using a word or a sequence of words over the rest of the words in textbooks during a given

period. This index can be used to analyze the emphasis on a particular subject over time.

Asset, Analytics, Infrastructure, Resiliency, and Enhancement were the 1-grams, and Smart

Grid was the 2-gram analyzed using N-gram Google from 1800 until present as shown in

Figure 1.2. The term Smart Grid was shown to be frequently used in the textbooks from

year 2000. The usage of this term has increased by 700% during a decade. It was also

shown that the term resiliency is more common in American English compared to British

English. The term Resilience which can alternatively be used is more common in British

English compared to American English.
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Figure 1.2 N-gram analysis of the dissertation title

1.7 Organization of the Dissertation

The proposed research work spans a wide spectrum of models for asset management

of electric power infrastructure incorporating the effects of hurricane. The related research

work in the literature including the problem domain and the solution domains are reviewed

in the next chapter. In Chapter 3, an economic model for restoration of damaged power

system in post-hurricane phase is introduced. In Chapter 4, a stochastic scheme will be

applied to develop a decision making tool for proactive allocation of resources to the in-

frastructure susceptible to damage due to hurricane. In Chapter 5, a dynamic maintenance

scheduling model considering the hurricane effects will be developed. In Chapter 6, an

integrated infrastructure hardening and condition-based maintenance model considering El

Niño/La Niña effects is presented. Finally, in Chapter 7, the concluding remarks are made,

a summary of findings will be presented, and directions for future research are provided.
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Chapter 2

Literature Review

In this chapter, first, the problem domain of the asset management of power systems

and related research work is presented. A brief history along with some bibliographical

references on methodological background and solution techniques used in this dissertation

are then provided.

2.1 Problem Domain Review

There is a vast literature on asset management and analytics of power systems. The

most relevant research work is divided to emergency planning, physical behavior, outage

prediction, resource allocation, maintenance planning, reliability analysis, and restoration

planning.

2.1.1 Emergency Planning

In this context, [10] reviewed and discussed the research problems and models for

substations and/or distribution feeders planning under normal and emergency conditions.

A case study on hurricane planning and rebuilding the electrical infrastructure along the

Gulf Coast, for hurricane Katrina was presented in [11]. A risk assessment method for in-

frastructure technology planning to improve the power supply resiliency to natural disasters

was proposed in [12]. Reduced cost as well as power supply availability were considered as

two fundamental decision factors in their hurricane planning approach. In [13], a stochastic

integer program was proposed to find the optimal schedule for inspection, damage evalu-

ation, and repair in post-earthquake restoration of an electric power system. The aim was

to minimize the mean time that each customer is without power. A comprehensive survey

of models and algorithms for emergency response logistics in electric distribution systems,
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including reliability planning with fault considerations and contingency planning models

were presented in [14, 15].

2.1.2 Physical Behavior

In context of physical behaviour analysis of power system infrastructure in hurri-

cane events, [16] analyzed the resilience of power systems based on the power distribution

infrastructure and its interaction with the biophysical environment, and the way the restora-

tion processes are prioritized. It was concluded that even though the infrastructure does not

have any significant effect on outage duration, the interaction between infrastructure and

the biophysical environment significantly affects outage duration. Reference [17] proposed

a comprehensive strategy for mitigation of hazards with the aim of creating resilient cities

which are able to withstand disasters. The hazard mitigation practices, the definition of the

resilient city, and discussion on importance of resilience, and the ways that these principles

can be applied to physical and social elements of cities were presented, as well. A data

mining approach to evaluate the impact of soil and topographic variables on accuracy of

the power outage prediction models in hurricane events was proposed in [18]. The results

indicate that certain land cover variables could be reasonable proxies for the power system

and could be incorporated in the model when detailed information about the power system

is not available. In [19], a method for characterization of the behavior of networked in-

frastructure, including power delivery systems in natural hazard events such as hurricanes

was presented. The model also included resilience and interdependency measures. The

proposed model could be utilized to develop design strategies for improved infrastructure

resiliency in natural disasters. Reference [20] proposed a probabilistic framework for vul-

nerability analysis of distribution poles subject to hurricane hazards considering the impact

of a changing climate. The results indicate that changing climate and the age of the poles

significantly increase the failure rate of distribution poles. The impact of tropical cyclones

on United States power systems, under climate change scenarios was analyzed in [21].
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2.1.3 Outage Prediction

Outage prediction is an important tool for ensuring an efficient response to hurri-

canes. In this context, [22] introduced a method for estimating the restoration time of

electric power systems after hurricanes and ice storms. Using large dataset of six hurri-

canes and eight ice storms, accelerated failure time models were developed to forecast the

duration of each probable outage. In [23], negative binomial regression models for predic-

tion of outages due to hurricane were developed. The number of transformers in the area,

maximum wind gust speed, the power company affected, and a hurricane effect turned out

to be the most explanatory variables. Diagnostic statistics such as pseudo R-squared values

were used for model selection purposes. Their adopted zip code-based model could be used

for prediction of the likely outage rates prior to the hurricane events. In another work, [24]

used regression analysis and data mining to develop models to estimate the number of util-

ity poles that will be damaged based on damage data from past storms. Results indicate that

hurricane-related damages to the poles can be predicted in an accurate manner, given the

past damage data are available and adequate. However, the availability of past data could

be a challenging issue which limits the efficiency of models in practice. Reference [25]

compared the regression methods and data mining techniques for predicting power out-

age durations after hurricane strikes. The accuracy of Bayesian additive regression trees

(BART) outperformed the other models in their study. In [26], an outage-forecasting model

which is able to accurately estimate the hurricane-induced outages using fewer number of

input variables was proposed. The power outage duration models and the key variables

along with their degree of influence on predicting hurricane-induced outage durations were

proposed in [27]. The development of a hurricane power outage prediction model for U.S.

coastlines using publicly available data was proposed by [28]. The application of the model

for Hurricane Sandy was demonstrated, and the impacts of some historic storms on U.S.

energy infrastructure were analyzed.
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2.1.4 Resource Allocation

In context of resource allocation for restoration of power systems, [29] presented

three mathematical goal programming models for locating the repair units and restoring

the transmission and distribution lines in an efficient manner. The first model finds the

optimal repair-unit dispatch tactical plan with a forecast of adverse weather conditions.

The second model derives the optimal repair-unit location for a short-term strategic plan

under normal weather conditions. The third model finds the optimal number of repair

units for a long-term strategic plan. In another work, a mixed-integer programming model

and a general column-generation approach for inventory decision making of power system

components throughout a populated area in order to maximize the amount of power served

after disaster restoration was proposed [30]. In [31], the service restoration considering the

restrictions on emergency-response logistics was studied with the objective of minimizing

the customers interruption cost. The reconfiguration and the resources dispatching issues

were considered in a systematic way in order to derive the optimal time sequence for every

step of the restoration plan. In [32], a decision-making model to manage the required

resources for economic power restoration operation was proposed. The optimal number

of depots, the optimal location of depots, and the optimal number of repair crews were

determined by their model in order to minimize the transportation cost associated with

restoration operation. In [33], a decision support tool for improvement of information used

by electric utilities for managing restoration of power distribution components damaged

due to large-scale storms was described. The circuit layout, the placement of protective

and switching devices, and the location of customers were taken into account to allocate

the crew resources to manage the storm outage in a cost-effective manner.
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2.1.5 Maintenance Planning

Preventive maintenance plays an important role to keep the grid infrastructure in good

condition and improve the reliability of the system. In context of maintenance scheduling

for power systems, [34] presented a decomposition approach for transmission line mainte-

nance scheduling in a restructured power system. The proposed model comprises a mas-

ter problem, and sub-problems, while the first one solves the maintenance problem, and

the latter ones solve the transmission and voltage problem. The results indicate that con-

straints on transmission and voltage have impacts on line maintenance schedule which lead

to increased maintenance cost. Reference [35] presented a game-theoretic framework for

the maintenance strategy analysis to be used by generation companies (GENCOs). The

problem is formulated as a multistage dynamic noncooperative game with complete infor-

mation, while the players are defined as the profit maximizing GENCOs, and the payoff

for each player would be the profit obtained from the energy auction market. The ob-

tained results demonstrated that the maintenance schedule could be one of the most im-

portant strategic behaviors of power system players. Reference [36] proposed an approach

for security-constrained coordination of generation and transmission maintenance outage

scheduling, which can be used by Independent System Operators (ISOs) and vertically

integrated utilities. The proposed approach enables the coordination of the optimal main-

tenance schedule of transmission lines and generation units, with security-constrained unit

commitment of generation units. In addition, the optimal allocation of fuel and emission

allowance are considered in their model. The results suggest that coordination of mainte-

nance schedule with unit commitment of components would improve the system security,

resulting in reduced probability of blackouts in power systems. Reference [37] presented

an efficient mixed-integer linear programming model for long-term maintenance schedul-

ing of overhead lines. The proposed model minimizes the total cost of the system, i.e., the

incurred costs due to maintenance tasks which have not been performed, and the costs asso-

ciated with performing maintenance tasks while maintaining the system reliability. In [38],
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a stochastic model for the optimal long-term maintenance scheduling of transmission lines

and generation units coordinated with short-term security-constrained unit commitment

was developed. Random contingencies of transmission lines and generation units, load

forecast errors, and fuel price fluctuations were simulated as scenario trees using the Monte

Carlo simulation. Lagrangian relaxation was used to decompose the problem into mainte-

nance and stochastic unit commitment subproblems. The results demonstrate the potential

savings in operation costs realized by using the proposed model. Reference [39] addressed

the tradeoff between transmission system adequacy, and the market operation alteration in

their bilevel model for transmission line maintenance scheduling.

In a two-part paper, [40] and [41] developed a two-stage maintenance optimization

model in short-term and mid-term for a transformer. The proposed model was formulated

as a mixed-integer linear program. The actual and expected condition of the transformer

as well as the constraints on N − 1 contingency of the system are considered in the model.

The results demonstrate the solution quality and computational efficiency of the proposed

model. In another two-part paper [42,43], a comprehensive reliability-centred maintenance

framework for power distribution systems was presented. The underlying concepts, algo-

rithm, and mathematical models were described in Part I, while, the application of the

proposed framework was presented in Part II.

As a maintenance strategy, frequent inspection of civil infrastructure including power

systems is neither practical nor cost-effective. Reference [44] proposed a partially observ-

able Markov decision process (POMDP) model for inspection, maintenance, and repair

of civil infrastructures. The proposed model minimizes discounted life-cycle costs of the

infrastructure. The decision variables determine when and how to inspect and repair the

infrastructure in question, i.e. a bridge. The formulated problem is solved by modifying

the original one-pass algorithm which provides exact solutions for problem. In another

work [45], the same authors presented the theory and algorithm of partially observable

Markov decision processes and its application in maintenance management of civil in-
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frastructure. An algorithm was established and related topics in structural maintenance

management were discussed.

Recent research demonstrates the advantage of applying the POMDPs in asset man-

agement of power systems. The most relevant research work are [46] and [47]. Refer-

ence [46] studied the optimal preventive maintenance strategies for wind turbines by con-

sidering their operations under stochastic weather conditions. The problem was modeled

as POMDP in an infinite horizon. The weather constraints, the lengthy lead time to deliver

the maintenance services, and generation loss due to downtime were incorporated in the

model. Furthermore, several structural properties, i.e., a set of closed-form expressions

for the optimal policy were derived in their study. In [47], a wind turbine system with

multi-level deterioration and multiple failure modes was studied. The season-dependent

condition-based maintenance was modeled using POMDP with heterogeneous parameters.

A backward dynamic programming algorithm was used to solve the model numerically.

The results indicate that the dynamic condition-based maintenance strategy achieves sig-

nificant improvements in costs and reliability compared to the static model and the current

industry practices.

Analysis of monotonicity and other structural properties of the optimal policy can be

utilized for heuristic use in the POMDP models, and coping with the “curse of dimension-

ality” of this class of problems. As one of the most relevant research work in this area, [48]

studied the structured maintenance policies on interior sample paths. The problem of adap-

tively scheduling maintenance actions for a multi-state deteriorating system with hidden

failure was modeled as POMDP. The structural properties of the optimal policy to mini-

mize the expected maintenance cost was extended in their study. In another study [49],

maintenance policies for systems with condition monitoring and obvious failures were in-

vestigated. The problem of adaptively scheduling perfect and imperfect observations and

preventive maintenance actions for a system with Markovian deterioration and obvious

failures was modeled. The POMDP was used to formulate the problem in order to mini-

15



mize the expected long-run average cost per unit time. The structural properties to devise

a closed-form heuristic for the case with perfect information were derived and adjusted to

be used for the case with imperfect information.

2.1.6 Reliability Analysis

The weather effects on reliability of the power systems is an undeniable issue that

have received the attention of utility companies and research communities in recent years.

Effective reliability assessment of electric power systems has a great impact on quality of

services, and significantly contributes in total operation costs of the utilities. In context

of topological aspects of power grid and its effects on hardening the system against hurri-

cane, [50] proposed two models to solve power systems blackout problems using mixed-

integer programming. The optimization problems relevant to the prevention of large-scale

blackouts in transmission grids subject to a set of stochastic damage scenarios were con-

sidered. The first model makes a decision on which transmission lines to be expanded in

capacity in order to guarantee that after damage to transmission lines in different scenarios

all power flows are within desired capacities. The second model considers the dynamics of

cascades in order to find an optimal reinforcement plan that can passively survive a poten-

tial cascade. In [2], hurricane damage predictions and topological assessment to character-

ize the impact of hurricanes on reliability of power systems were combined. Component

fragility models were applied to predict failure probability for individual transmission and

distribution power network elements, simultaneously. The damage model was calibrated

using power network component failure data for Hurricane Ike strike at the Greater Hous-

ton area in 2008. Their research demonstrates that topological features, such as network

meshedness, centrality, and clustering, as well as the compact irregular ring mesh topology

need to be considered in storm hardening activities.

In the context of cost-effectiveness of power infrastructure hardening, [51] proposed
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a probabilistic model for analyzing electric power infrastructure risk mitigation invest-

ments. A parametric model was proposed to evaluate the tradeoffs between wetland restora-

tion and infrastructure hardening for power grid. A hybrid economic input-output life-

cycle analysis was used to analyze the model. The result indicates that wetland restoration

and undergrounding of power infrastructure are not preferred over keeping them without

wetland protection. In another study, [52] proposed a system dynamics-based analysis

of cost-effectiveness of hurricane mitigation strategies for power distribution poles. They

illustrated the systemic and dynamic natures of long-term maintenance and replacement

strategies on both cost-effectiveness and performance of the systems under hurricane ef-

fects. Different aspects of adverse weather on reliability and asset management of power

infrastructure were considered in [53–56].

Despite the given attention to weather effects, a holistic view to the global and long-

term climatological effects of phenomena such as El Niño/La Niña are lacking in the

power systems literature, and perhaps in practice. According to National Oceanic and

Atmospheric Administration [7], “El Niño is characterized by unusually warm ocean tem-

peratures in the Equatorial Pacific, as opposed to La Niña, which characterized by un-

usually cold ocean temperatures in the Equatorial Pacific. El Niño is an oscillation of

the ocean-atmosphere system in the tropical Pacific having important consequences for

weather around the globe.” There are number of interesting research work in actuary sci-

ence and risk theory research community who have considered this issue in hurricane ar-

rival analysis. For instance, [57] considered the seasonal effects and El Niño/La Niña phe-

nomenon to model the hurricane arrival times. The Non-homogeneous Poisson processes

were used for modelling the fluctuations of hurricane arrivals due to seasonality in intensity

function as a result of El Niño/La Niña phenomenon.
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2.1.7 Restoration Planning

In context of restoration, [58] studied the budgeted and the minimum weighted la-

tency variants of recovery problem of large-scale power outage due to a major disaster.

The problems for general case, as well as, trees and bipartite networks as special case

were studied. In [59], a mixed-integer program to model the recovery of the transmis-

sion networks damaged due to disasters was formulated. The model considered the re-

pair crew constraints as well as the penalty cost of unserved loads to find the recovery

schedule which minimizes the cost of power outage. Reference [60] used a mixed-integer

programming framework for modeling the optimal supply restoration of the faulty power

distribution systems. A two-step decomposition method was developed to derive the op-

timal configuration as well as the optimal switching sequence of the power distribution

system. In another research work, [61] studied three approaches for joint damage assess-

ment and restoration of the power systems after natural disaster. The proposed approaches

include i) an online stochastic combinatorial optimization algorithm which dynamically

makes the restoration decisions once each potentially damaged site is visited, ii) a two-

stage method that first evaluates the extent of the damage and then restores the system,

and iii) a hybrid algorithm of both approaches which simultaneously performs the damage

evaluation and system restoration tasks. The results indicate that the first approach is able

to provide solutions with higher quality for the joint damage assessment and recovery prob-

lems. In [62], a general multi-objective linear-integer spatial optimization model for arcs

and nodes restoration of disrupted networked infrastructure after disaster was presented.

The proposed model addressed the tradeoff between maximization of the system flow and

minimization of system cost. Reference [63] proposed an integrated network design and

scheduling problem for restoration of the interdependent civil infrastructure. The problem

was formulated using integer programming, and analyzed on realistic dataset of power in-

frastructure of the Lower Manhattan in New York City and New Hanover County, North

Carolina. The results indicate that the proposed model can be used for real-time as well
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as long-term restoration planning. In another study, [64] considered “the last-mile restora-

tion” of power systems, i.e., how to schedule and allocate the routes to fleets of repair

crews to recover the damaged power system as quick as possible. The power restoration

and vehicle routing were decoupled to improve the computational efficiency of the model.

The proposed model outperformed the models which were practiced in the field in terms

of solution quality and scalability. This work was extended in [65] by applying random-

ized adaptive vehicle decomposition technique in order to improve the scalability of the

model for large-scale disaster restoration of the power networks with more than 24,000

components. In another work, [66] presented a scalable approach for restoration of the in-

terdependent gas and power infrastructure. Mixed-integer programming was used to obtain

minimum restoration set and optimal restoration ordering. Randomized adaptive decom-

position was applied in order to improve the solution quality and computational efficiency.

2.2 Solution Domain’s History

Various techniques have been used to model and solve the proposed problems in

this dissertation. The major techniques include the mixed-integer programming, the lin-

earization techniques, the two-stage stochastic programs with recourse, Benders decompo-

sition, the Latin hypercube sampling (LHS), the scenario reduction techniques, the dynamic

stress-strength models, the Markov decision processes (MDPs), and the partially observ-

able Markov processes (POMDPs). In this section, the history of each technique is briefly

reviewed, and relevant references for readers are provided.

2.2.1 Mixed-integer Programming

Linear programming (LP) and mixed-integer programming (MIP) are well-known

subjects in Operations Research and engineering community. It is perceived by many that

the modern LP and MIP started with the work of George Dantzig in 1947 at UC Berkley
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and U.S. Air Force. However, the fact of the matter is that many other scientists have also

made incredible contributions to the subject, and some science historians even claim that

the origins of the subject predate Dantzig’s contribution. However, the undeniable fact of

the matter is the Dantzig’s groundbreaking contribution to the LP and MIP [67]. From

the mid 1960s to the late 1990s, fundamental theoretical work in integer programming and

combinatorial optimization were proposed. Important parts of proposed theoretical and

computational developments were inspired by pioneering work of Dantzig [68]. Detailed

history of MIP can be found in [67].

The subject of MIP has continued its progress during the recent years by introduction

of state-of-the-art solvers, heuristics, and methodologies. However, further developments

of the field are yet to come. The recent progress of the subject can be found in [69].

2.2.2 Linearization Techniques

It is said that modelling of complex systems using MIPs is more of an art than an ex-

act science. In many MIP models, formulating a problem as a linear program can be prob-

lematic. That is the case for MIP models that are formulated in this dissertation. There are

plenty of tips and tweaks that can be applied for modeling integrality of quantities, if-then

statements, enforcing at least k out of p restrictions, and nonlinear product terms. Under

some circumstances, nonlinear terms can be converted into linear terms by the change of

variables and the use of linear constraints. An interesting tutorial on this subject can be

found in [70].

2.2.3 Two-stage Stochastic Program with Recourse

When parameters of a deterministic mathematical program are substituted with ran-

dom variables, a stochastic program comes in use. A common approach to model uncer-

tainty in mathematical programming problems is through a two-stage stochastic program
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in which a long-term (first stage) anticipatory decision needs to be made before the full

information about the outcome of the substituted random variables for parameters of the

problem and also short-term (second stage) decisions known as recourse actions become

available. The goal is to make a here-and-now (versus wait-and-see) decision to minimize

the total expected costs of making both the first and second stage decisions [71]. One

of the earliest studies in this area was proposed by Dantzig [72] when he was with Rand

Corporation. Stochastic integer programs are the same type of problems, except some deci-

sion variables are required to be integer. As mentioned in [73], the first solution technique

developed for stochastic integer program was a cutting plane algorithm by Wollmer [74].

References [73, 75, 76] are among major contributions of the stochastic integer programs

with recourse.

2.2.4 Benders Decomposition

Benders decomposition proposed by Jacques Benders [77] is one of the well-known

algorithms to solve large-scale mixed integer programs through exploiting the structure

of the problem. This algorithm decomposes a MIP problem into a master problem and a

subproblem to be solved in an iterative manner. The algorithm has been well received in

electric power community to solve problems such as unit commitment [78], optimal power

flow [79], network expansion planning [80], and transmission switching [81]. The general-

ized Benders decomposition was proposed in [82], the convergence properties of Benders

decomposition was studied in [83], and extension of the generalized Benders decomposi-

tion to be used for a larger class of problem was presented in [84].

2.2.5 Latin Hypercube Sampling

A conventional approach for assessment of uncertainty in models is to apply Monte

Carlo sampling. This technique yields reasonable estimates for the distribution of an under-
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lying random variable if the sample size is relatively large. However, since a large sample

size reduces the computational efficiency, other uncertainty estimation methods which can

provide more accurate estimates such as the Latin hypercube sampling (LHS) method were

developed [85]. The LHS was developed in [86] based on the idea of sample stratification

to use a constrained Monte Carlo sampling scheme. An analysis of applying LHS to a large

computer model was presented in [87]. A study on application of LHS method for sensitiv-

ity analysis was proposed in [88, 89]. A comparison of LHS method with other techniques

can be found in [90].

2.2.6 Scenario Reduction Techniques

Many solution techniques for stochastic programs are based on discrete approxima-

tions of the uncertainty in a form of scenario tree with associated probabilities. How-

ever, considering all possible scenarios to form the deterministic equivalent of the original

stochastic program results in inflation of the model which reduces the computational ef-

ficiency and in some cases makes the problem intractable to solve. This obstacle can be

handled by approximating the equivalent deterministic program by a model that has a much

smaller number of scenarios. This process is called scenario reduction [91]. The underlying

scenario reduction algorithms can be found in [91–93].

2.2.7 Stress-strength Analysis

Stress-strength analysis is an important area of applied statistics which its simplest

definition is to assess the reliability of a component or a system with the strength repre-

sented by a random variable Y , against the exposure to a stress represented by a random

variable X , i.e., P (X < Y ). According to [94], for the first time the idea was proposed

by Birnbaum in [95]. The idea was later developed in [96], and has reached to its method-

ological maturity in early 2000. According to the same authors, the term stress-strength
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appeared in [97] for the first time. Detailed explanation on evolution of the subject can be

found in [94].

2.2.8 Markov Decision Processes

According to the World Heritage Encyclopedia [98], Markov decision processes

(MDPs), named after Andrey Markov, is a mathematical framework to formulate sequen-

tial decision making problems under circumstances that part of system is random and part

of the system can be controlled by decision maker. MDPs have been known at least from

1950s by the work of Richard Bellman with Rand Corporation [99]. The next breakthrough

was published by Ronald Howard in [100]. More details on related algorithms and recent

advancements of the subject can be found in [101, 102].

2.2.9 Partially Observable Markov Decision Processes

A partially observable Markov decision processes (POMDPs) is a generalization of

the MDPs which allows uncertainty in the state of the system. This generalization of

MDPs to POMDPs results in computational burden to solve the model [103]. A survey

on POMDPs can be found in [103]. A study on Operations Research approaches to find

the optimal policies in POMDPs was proposed in [104]. A set of exact and approximate

algorithms for stationary POMDP models can be found in [105]. Approaches to exploit the

structure of large scale POMDP problems for efficient solutions can be found in [106].
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Chapter 3

Grid Restoration Considering the Economics of
Disaster

Even though variety of problems for power system restoration have been addressed in

the literature, but to the best of our knowledge none of them provides a comprehensive ap-

proach for grid restoration which simultaneously considers the physics of the system along

with the economics of disaster. In this chapter, an efficient post-hurricane restoration plan-

ning model is developed which in addition to the physics of the restoration, considers the

unit commitment problem and generation costs, the value of lost load, and the economics

of restoration resources. The flexibility of the proposed model enables its application in

any other post-disaster restoration problems. In following sections, first the notation is in-

troduced. Next, the proposed model is described, and the problem formulation is presented.

Afterward, the numerical results are illustrated on an IEEE 118-bus test system. Finally,

the concluding remarks are made.

3.1 Notation

The notation used for problem formulation is as follows.

Indices:
b Index for buses
i Index for generation units
l Index for transmission lines
t Index for time

Sets:
Nb Set of components connected to bus b

Parameters:
Cb Hourly crew cost per person for bus b repair
Cl Hourly crew cost per person for line l repair
Cg
it Generation cost of unit i at time t
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Csd
it Shutdown cost of unit i at time t

Csu
it Startup cost of unit i at time t

Dbt Load demand at bus b at time t
DRi Ramp-down rate limit of unit i
DTi Minimum downtime of generation unit i
M Large positive constant
Pmax
i Maximum power generation capacity of unit i
Pmin
i Minimum power generation capacity of unit i
Rmax
t Number of available repair crew at time t

Rmin
b Number of hourly required crew to repair bus b at time t

Rmin
l Number of hourly required crew to repair line l at time t

TTRb Mean time to repair for bus b
TTRi Mean time to repair for unit i
TTRl Mean time to repair for line l
UTi Minimum uptime of generation unit i
V OLLbt Value of lost load at bus b at time t
αib Element of unit i and bus b in generation-bus incidence matrix
βlb Element of line l and bus b in line-bus incidence matrix

Variables:
Iit Commitment state of generating unit i at time t; 1 if committed, otherwise 0
LIbt Load interruption at bus b at time t
Pit Real power generation of unit i at time t
PLlt Power flow of line l at time t
SDit Shutdown state of unit i at time t; 1 if shutdowns at time t, otherwise 0
SUit Startup state of unit i at time t; 1 if starts at time t, otherwise 0
ubt Repair state variable of bus b at time t; 1 if on repair, otherwise 0
URi Ramp-up rate limit of unit i
vlt Repair state variable of line l at time t; 1 if on repair, otherwise 0
wlt Outage state of line l at time t; 0 if damaged, otherwise 1
yit Outage state of unit i at time t; 0 if damaged, otherwise 1
zbt Outage state of bus b at time t; 0 if damaged, otherwise 1

3.2 Model Description

Due to the hurricane, the major infrastructure of power system including generating

units, transmission lines, and buses along with their downstream distribution lines are sub-

ject to damage. After the hurricane, the utility companies conduct a damage assessment by

an aerial survey of the power network in the affected areas as well as a ground check by

inspectors [3]. Damage assessment determines whether a component has damaged at all,
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and if damaged, estimates the required time to repair and restore the component in ques-

tion. Each bus along with its downstream distribution lines are aggregated and considered

as one component. Therefore, the time to repair for each bus and its downstream distribu-

tion lines are aggregated in our model as well. The information on the damage state and

the time to repair for the generating units are posted by generation companies (GENCOs)

to the Independent System Operator (ISO) to be shared by other participants of the mar-

ket. We consider two states for each component: damaged, if the component in question

is encountered major damage, thus it is offline and needs to be repaired to be restored;

and functional, if it has not been damaged at all, or minor damage has occurred and the

component in question is able to continue its functionality.

After determining the initial damaged or functional state of each component, the

restoration resources, i.e. the crew should be allocated to repair the damaged equipments

in an optimal fashion. The resource allocation, however, is subject to the criticality of the

load to be restored as well as costs associated with seizing the resources in each particular

time and location. In this regard, the objective of the problem is defined as to minimize the

customer interruption cost plus the restoration resource cost and power generation cost. The

interruption cost is the amount of the interrupted load times the value of lost load (VOLL).

From economic point of view, VOLL is considered as an opportunity cost which is defined

as the average amount of money that each type of customer (e.g., residential, commercial,

or industrial) is willing to pay for each MWh in order to avoid load interruption [107].

VOLL can also represent the criticality of loads to be supplied, in which more critical

loads, such as hospital and water treatment facilities, have a higher VOLL, and therefore,

must be restored and supplied with a higher priority. This value can be adjusted based on

load criticality in a way that key facilities such as hospitals, water treatment plants and

public service facilities are given a higher priority to be restored.

The post-hurricane restoration model is considered as a deterministic problem. As

shown in Figure 3.1, after assessment of the extent of damage to each component in the
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system, the time to repair for component in question is estimated and the criticality of the

loads are calculated. Afterward, the restoration resources are allocated and sequence of

activities and system configuration including the repair schedule, the power generation by

each generating unit, and power flow in each transmission line during each time period of

the restoration planning horizon are determined.

Minimize load interruption and crew cost

Subject to prevailing operational constraints

Aerial survey and ground inspection

Identify initial outage state and TTR

Calculate load interruption and determine 

criticality

Obtain generating unit recovery information

Damage Assessment

Check resource availability

Initial Data Preparation

Transmission Network Outage Management

Mobilize crew based on the obtained results

Figure 3.1 The schematic view of the proposed restoration framework
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3.3 Problem Formulation

In this section, the objective function and constraints for the model are formulated as

a mixed-integer linear program.

3.3.1 Objective Function

The objective is to minimize the customer load interruption cost, the restoration op-

eration cost, and the energy generation cost as

min
u,v,LI,P,I,SU,SD

∑
t

∑
b

CbtR
min
b ubt +

∑
t

∑
l

CltR
min
l vlt +

∑
t

∑
b

V OLLbtLIbt

+
∑
t

∑
i

(
Cg
itPitIit + SUit + SDit

)
, (3.1)

where the first term represents the cost of resources allocated to the buses (and their down-

stream distribution lines), the second term is the cost of resources allocated to transmission

lines, the third term represents the total cost of load interruption over the restoration plan-

ning horizon, and the fourth term indicates the generation cost of all the units feeding the

system, including the fuel costs, the startup costs of generating units committed to gener-

ate, and the shutdown costs of generating units decommitted from generation. As shown

in (3.1), the restoration cost of buses (and their aggregated downstream distribution lines)

is the summation of the product of the number of allocated resource(s) to each bus, and the

cost of each unit of resource seized by buses. In the same manner, the restoration cost of

transmission line is the summation of the product of the number of allocated resource(s)

to each transmission line, and the cost of each unit of resource allocated to transmission

lines. The binary decision variable ubt takes the value of 1, if the resource is allocated to

bus b at time t; otherwise it takes the value of 0. In the same way, vlt takes the value of 1,

if line l seizes the required resource(s) at time t; otherwise its value would be 0. Obviously

as shown in (3.1), the fourth term which calculates the generation cost is not a linear term.
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By defining a new variable Fit where, Fit = PitIit and plugging it into (3.1), and adding

constraints (3.2)-(3.5), the objective function is linearized as follows:

Fit ≤ Pmax
it Iit, ∀i, ∀t, (3.2)

Fit ≥ 0, ∀i, ∀t, (3.3)

Fit ≤ Pit, ∀i,∀t, and (3.4)

Fit ≥ Pmax
it (Iit − 1) + Pit, ∀i, ∀t. (3.5)

3.3.2 Damage State Modeling

Binary state variables yit, zbt, and wlt are defined to represent the damaged or func-

tional state of generation unit i at time t, bus b along with its downstream distribution lines

at time t, and transmission line l at time t, respectively. Binary state variable yit is defined

to be equal to 0, if due to hurricane, the generating unit i was damaged, and has not been

restored up to time t; otherwise it is equal to 1. The time that it takes from beginning

of planning horizon for a damaged generation unit to be repaired and brought back to the

system is represented by TTRi. If the component has not undergone any damage, the time

to repair TTRi is set to 0. In the case of vertically integrated utilities, it is assumed that

generation units are able to restore their facilities by their own means, as soon as hurricane

ends. In the case of restructured power market, it is considered that the Transmission &

Distribution (T&D) company has no control over the restoration of generating units, but

the generating units’ repair schedules are posted to ISO and is accessible for T&D com-

pany to incorporate it in the restoration scheduling of its own infrastructure in a coordinated

manner. Therefore, the damage state of generation units is modeled as

yit = 0 if t ≤ TTRi ; otherwise yit = 1, ∀i, ∀t. (3.6)
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However, since if-then constraint is not allowed in linear programming, constraint (3.6) is

decomposed and rewritten as

t−Myit ≤ TTRi, ∀i, ∀t and (3.7)

Myit ≤ TTRi, ∀i, ∀t = 0, 1, ..., TTRi. (3.8)

The damage state of transmission lines and buses are modeled as

0 ≤ wl(t+1) −
( t∑
k=1

vlk − TTRl + 0.5
)
/M ≤ 1 ∀l,∀t and (3.9)

0 ≤ zb(t+1) −
( t∑
k=1

ubk − TTRb + 0.5
)
/M ≤ 1 ∀b,∀t, (3.10)

where constraints (3.9) and (3.10) present the relationships among binary state variables

wlt and zbt with repair decision variables vlt and ubt, respectively. If the transmission line l

at time t is on damaged state, the binary variable wlt which represents the line damage state

would be equal to 0. Once it is repaired, the value of wlt becomes 1 and remains the same

up to the end of the restoration planning horizon. vlt is the decision variable for repair of

line l, in a sense that, when the line l is under repair at time t, the vlt takes the value of 1,

otherwise it is 0. In the same way, zbt is the binary state variable for bus b, which is equal to

0 when the bus b at time t is in damaged state; Once it is repaired, the value of zbt becomes

1 and remains the same up to the end of the restoration planning horizon. ubt is the decision

variable for repair of bus b, which takes the value of 1, when the bus in question is under

repair, otherwise it is equal to 0.

Each damaged line or bus should receive the required time and resources to be re-

stored. In this model, it is assumed that once the restoration operation on a particular

component is started, it should be continued at least for duration of time to repair (TTR) of
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the component. Therefore,

t+TTRl−1∑
k=t

vlk ≥ TTRl(vlt − vl(t−1)), ∀l,∀t and (3.11)

t+TTRb−1∑
k=t

ubk ≥ TTRb(ubt − ub(t−1)), ∀b,∀t. (3.12)

Constraints (3.11) and (3.12) guarantee that sufficient time and resources are allocated to

each damaged component to be repaired. Moreover, these constraints eliminate partial

repair operation on each damaged component.

3.3.3 Resource Constraint

The objective function of the restoration model is also constrained by resource limi-

tation. This limitation is modeled as

∑
l

Rltvlt +
∑
b

Rbtubt ≤ Rmax
t , ∀t. (3.13)

Constraint (3.13) represents the maximum amount of resources that can be allocated to the

whole system in each time period.

3.3.4 Load Balance Constraint

The physics of the power system also imposes several constraints to the objective

function of the post-hurricane model. The load balance is given by

∑
i∈Nb

Pit +
∑
l∈Nb

PLlt + LIbt = Dbt, ∀b,∀t. (3.14)

The bus load balance equation (3.14) as a constraint ensures that the injected power to

a bus from connected transmission lines and generating units is supplying the whole bus
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load; however, if the injected power is not sufficient, the load supply would be interrupted

by the load interruption variable (LIbt). The load interruption variable is a nonnegative

variable. Therefore, the system has to generate and supply not more than demand at each

bus b during time period t.

3.3.5 Real Power Generation Constraints

The real power generation in each unit i is bounded with its damage state, commit-

ment state along with its minimum and maximum generation capacity as

Pmin
i yitIit ≤ Pit ≤ Pmax

i yitIit, ∀i, ∀t, (3.15)

where as shown, the real power generation turns out to be a nonlinear constraint which

needs to be linearized. To do so, by defining a new variable nit = yit.Iit, this constraint is

decomposed and linearized as follows:

Pmin
i nit ≤ Pit ≤ Pmax

i nit, ∀i, ∀t, (3.16)

nit − yit ≤ 0, ∀i, ∀t, (3.17)

nit − Iit ≤ 0, ∀i, ∀t, (3.18)

−nit + yit + Iit ≤ 1, ∀i,∀t, and (3.19)

nit ≥ 0, ∀i, ∀t. (3.20)

It is important to notice that if a generating unit is not in functional state, it cannot be

committed for generation. Therefore, the following coupling constraint of unit commitment

and damage state holds all the time, i.e.,

Iit ≤ yit, ∀i,∀t. (3.21)

32



The damage state of bus(es) connected to each generating unit also can impose another

constraint on real power generation. This constraint is modeled as

−M
∑
b

αibzbt ≤ Pit ≤M
∑
b

αibzbt, ∀i,∀t, (3.22)

where αib is the element of unit i and bus b in generation-bus incidence matrix. As shown

in (3.22), if a connected bus to a generation unit is damaged, the associated generating unit

becomes offline.

3.3.6 Power Flow Constraints

The damage state of each transmission line l at time t poses a constraint on power

flow within line l at time t in a sense that if the line is in functional state, the power flow at

line l at time t can be in either direction up to the maximum power flow capacity of the line.

The effects of outage state of associated components to a transmission line are modeled as

−PLmaxl wlt ≤ PLlt ≤ PLmaxl wlt, ∀l,∀t, (3.23)

−M
∑
b

βfromlb zbt ≤ PLlt ≤M
∑
b

βfromlb zbt, ∀l,∀t, and (3.24)

−M
∑
b

|βtolb |zbt ≤ PLlt ≤M
∑
b

|βtolb |zbt, ∀l,∀t, (3.25)

where βfromlb includes all the positive elements of the bus-line incidence matrix and βtolb

includes all the negative elements of the bus-line incidence matrix. If a transmission line

is damaged, the power flow within that line will be equal to 0 as modeled in (3.23). In

addition, if any of the buses connected to each transmission line is damaged, the power

flow in that particular line cannot exist in any direction and is set to be equal to 0, as shown

in (3.24) and (3.25).

33



An important constraint that must hold all the times to avoid violation of the physics

of the system is the transmission line power flow constraint which is defined based on bus

voltage angle as

−M(1− wlt)−M(1−
∑
b

|βlb|zbt) ≤ PLlt −
∑

b βlbδb
xl

≤M(1− wlt)−M(1−
∑
b

|βlb|zbt), ∀l,∀b,∀t. (3.26)

3.3.7 Startup and Shutdown Costs Constraints

The startup and shutdown costs have been defined in the objective function as positive

variables to avoid using additional extra binary state variables to improve the computational

efficiency of the program. Therefore, from [108] and [109], the startup and shutdown cost

variables are bounded to the following constraints:

SUit ≥ Csu
iτ

(
Iit −

τ∑
k=1

Ii(t−k)

)
, ∀i,∀t, ∀τ = 1, ..., NDi, (3.27)

SUit ≥ 0, ∀i,∀t, (3.28)

SDit ≥ Csd
it

(
Ii(t−1) − Iit

)
, ∀i,∀t, and (3.29)

SDit ≥ 0, ∀i, ∀t, (3.30)

where NDi is the number of time intervals of the startup cost function for generating unit

i.

3.3.8 Ramp-up and Ramp-down Constraints

The mechanical and thermal inertia that should be overtaken in order to decrease

(ramp-down) or increase (ramp-up) the real power generation of a thermal generating unit

34



from one time period to the next can also pose constraints other than the minimum and

maximum real power generation at each generating unit during each unit time [110]. A

computationally efficient mixed-integer linear formulation for the ramp-up rate, shutdown

ramp, ramp-down rate, minimum uptime, and minimum downtime were proposed in [109]

as shown in (3.31)-(3.39). The ramp-up rate, the shutdown ramp rate, and ramp-down rate

constraints are as follows:

Pit − Pi(t−1) ≤ URiIi(t−1) + URsu
i

(
Iit − Ii(t−1)

)
+ Pmax

i

(
1− Iit

)
, ∀i,∀t, (3.31)

Pit ≤ Pmax
i Ii(t+1) +DRsd

i

(
Iit − Ii(t−1)

)
, ∀i,∀t, and (3.32)

Pi(t−1) − Pit ≤ DRiIit +DRsd
i

(
Ii(t−1) − Iit

)
+ Pmax

i

(
1− Ii(t−1)

)
, ∀i, ∀t. (3.33)

3.3.9 Minimum Uptime and Downtime Constraints

In thermal generating units, the temperature change can only occur gradually. Thus,

when a generating unit is running, it should not be decommitted immediately (minimum

up time); and once the unit is offline, it requires some time before it can be committed

(minimum down time) [111]. From [109], the minimum uptime constraints are shown in

(3.34)-(3.36) as follows:

Gi∑
t=1

(
1− Iit

)
= 0, ∀i, (3.34)

t+UTi−1∑
k=t

Iik ≥ UTi

(
Iit − Ii(t−1)

)
, ∀i, ∀t = Gi + 1, ..., NT − UTi + 1, and (3.35)

NT∑
k=t

(
Iik − (Iit − Ii(t−1))

)
≥ 0, ∀i,∀t = NT − UTi + 2, ..., NT, (3.36)
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where Gi = Min{NT, (UTi − U0
i )I0

i } is the number of primary time periods that genera-

tion unit i is online, U0
i is the number of time periods up to the beginning of the planning

horizon before generating unit i becomes online, and I0
i is the primary commitment state

of generating unit i. From [109], the minimum downtime constraints are shown in (3.37)-

(3.39) as follows:

Li∑
t=1

Iit = 0, ∀i, (3.37)

t+DTi−1∑
k=t

(
1− Iik

)
≥ DTi

(
Ii(t−1) − Iit

)
,

∀i, ∀t = Li + 1, ..., NT −DTi + 1, and (3.38)

NT∑
k=t

(
1− Iik − (Ii(t−1) − Iit)

)
≥ 0, ∀i,∀t = NT −DTi + 2, ..., NT, (3.39)

where Li = Min{NT, (DTi − S0
i )(1 − I0

i )} is the number of primary time periods that

generating unit i is offline, and S0
i is number of periods up to the beginning of planning

horizon that generating unit i has been offline.

There is a possibility for circumstances that the interrupted load is fully recovered,

while some generating units, transmission lines and buses still have not been repaired.

The reason is that other redundant generation units, transmission lines, and buses may

compensate the outage of some of the components in question. Therefore, the restoration

time horizon might be terminated by partial restoration of the system, while later on due to

potential load increments, the system might not be able to supply all electricity demands.

To ensure that all damaged components are repaired by the end of planning horizon, the

following constraint should hold

∑
i

yi(NT ) +
∑
b

zb(NT ) +
∑
l

wl(NT ) = NG+NB +NL. (3.40)
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3.3.10 Decomposition Strategy

Benders decomposition for mixed-integer programming is an efficient strategy, when

the original problem is large-scale and difficult to solve, while the Benders subproblem

and the relaxed master problem are much more tractable to solve. In order to employ

the decomposition strategy for the proposed problem, we consider the continues vari-

able vector as X = [LITbt, P
T
it , PL

T
lt, SU

T
it , SD

T
it ]
T , the binary variable vector as Y =

[uTbt, v
T
lt , y

T
it , z

T
bt, w

T
lt , I

T
it ]
T , the cost coefficient matrix of the integer variables in the objective

function as CT composed of CbtRb and CltRl, and the cost coefficient matrix of the contin-

ues variables in the objective function as DT composed of V OLLbt and 1. We also consider

that A and B represent the coefficient matrix of X and Y in the constraints, respectively.

Finally, H is considered to represent the right hand side matrix of the constraints. Now we

can rewrite the proposed MIP model in the following abstract form

min
X,Y

CTX + DTY, (3.41)

s.t. AX + BY ≥ H, ∀Y ∈ {0, 1},∀X ≥ 0. (3.42)

For instance, in constraint (3.31), the coefficients of variables Pit and Pi(t−1) of vector

X = [LITbt, P
T
it , PL

T
lt, SU

T
it , SD

T
it ]
T , are −1 and 1, respectively; and the coefficients of the

rest of the continues variables are equal to 0. The coefficients of the integer variables

Iit and Ii(t−1) of vector Y = [uTbt, v
T
lt , y

T
it , z

T
bt, w

T
lt , I

T
it ]
T , are URi − URsu

i and URsu
i −

Pmax
i , respectively; while the coefficients of the rest of the integer variables are equal to

0. Also, the corresponding element of aforementioned constraint in matrix H takes the

value of −Pmax
i . The proposed MIP problem is decomposed into a master problem and a

subproblem. The master problem is set as an integer program, while the subproblem is set

as a dual linear program (without any integer variable). Considering U as the dual variable

vector for the subproblem, the Benders decomposition algorithm for the proposed model is

shown in Algorithm 3.1 [112].
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The master problem has lower number of constraints than original problem. In each

iteration, after solving the master problem, the subproblem evaluates the obtained solution

of the master problem to check the feasibility of the subproblem. As shown, in each itera-

tion of the algorithm, if the dual LP subproblem turns out to be unbounded, the feasibility

cuts are generated and will be added to the IP master problem; otherwise the optimality

cuts are generated to be added to the master problem (the constraints with θ represent the

optimality cuts). This iterative process will be continued until an acceptable relative gap

(ε) between upper bound and lower bound of the original problem is obtained. The value

of ε is considered to be 0.05 for this study.

Algorithm 3.1 Benders decomposition for mixed-integer program

{initialization}
Lower bound (LB):= −∞, Upper bound (UB):= +∞
while UB − LB > ε do
{solve dual LP subproblem}
maxU {

∑
t

∑
bCbtR

min
b ūbt +

∑
t

∑
l CltR

min
l v̄lt+(H −BȲ )

T
U | ATU ≤ C,U ≥ 0}

if Unbounded then
Get unbounded ray Ū
Add cut (H −BY )T Ū ≤ 0 to IP master problem
else
Get extreme point Ū
Add cut θ ≥

∑
t

∑
bCbtR

min
b ubt +

∑
t

∑
l CltR

min
l vlt+

(H −BY )T Ū to master problem
UB := min {UB,

∑
t

∑
bCbtR

min
b ūbt+

∑
t

∑
l CltR

min
l v̄lt + (H −BȲ )

T
Ū}

end if
{solve IP master problem}
LB := minY {θ | cuts}
end while

3.4 Numerical Results and Analysis

The IEEE 118-bus system is used to analyze the proposed post-hurricane restoration

model. The system has 118 buses, 54 generation units, 186 branches, and 91 load sides.
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Further details on IEEE 118-bus system can be found in Appendix A. The system setup

is shown in Tables 3.1–3.3. Among damaged buses, B1, B2, B3, B4, and B11 are load

buses, feeding their downstream distribution lines, while B5 is not a load bus. From [107],

the value of lost load is considered to be $3.706/kWh for industrial loads, $6.979/kWh

for commercial loads, and $0.110/kWh for residential areas. The value of lost load for

critical loads, e.g., medical centers and water treatment plants are misstated in micro and

macro economic approach. However, due to the crucial importance of these critical loads,

the value of lost load in an ad hoc manner is considered to be $10/kWh to impose higher

priority to these areas. In this analysis, as shown in Table 3.1, bus B1 is considered as

commercial load, bus B11 as industrial load, bus B4 as critical load, and the rest of the

load buses in the system are considered as residential loads. The time to repair in Tables

3.1 and 3.2 indicate the estimated duration of the repair for buses and transmission lines,

respectively; while the time to repair in Table 3.3 shows the time it takes from the beginning

of the restoration planning horizon to repair and restore each damaged generating unit.

Table 3.1 Damaged buses and time to repairs

Bus Number Time to Repair Load Type
(Hours)

B1 24 Commercial
B2 11 Residential
B3 18 Residential
B4 15 Critical
B5 5 N/A
B8 4 Residential
B11 22 Industrial
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Table 3.2 Damaged transmission lines and time to repairs

Line Number Time to Repair
(Hours)

L1 20
L2 18
L10 16
L14 10
L16 22

Table 3.3 Damaged generation units and time to repairs

Unit Number Time to Repair
(Hours)

G1 17
G2 12
G3 24
G5 8

The repair crew is considered to be the only limited resource that is allocated to

repair the damaged components. It is assumed that each damaged bus requires 12 repair

crews/hour, while for each damaged transmission line 18 repair crews/hour are required.

Although depending on skill levels different crew costs can be considered, we assume that

all repair crews have equal skill levels; hence, they are equally paid (we could think of it

as a bundle of resources which their average wage is used as an input into our model). The

hourly wages for repair crews varies based on the working shift and types of repair. For

repairing the buses and downstream distribution lines, the average wages are assumed to

be $60/hour at shift 1 (8:00 A.M.–4:00 P.M.), $70/hour at shift 2 (4:00 P.M.–12:00 A.M.),

and $80/hour at shift 3 (12:00 A.M.–8:00 A.M.); for repairing the transmission lines, the

average wages are assumed to be $65/h at shift 1, $75/hour at shift 2, and $85/hour at shift

3. Without loss of generality, it is assumed that all generation units are incurred identical

generation, startup, and shutdown costs. From [113], the generation cost is considered to be

$0.3509/kWh. The shutdown cost is assumed to be $250 per shutdown for each generation
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unit. The startup cost is assumed to be $150 within the first hour after last shutdown. For

each additional hour (up to eight hours), an incremental cost of $25 would be added to the

startup cost. Restoration planning horizon starts at 8:00 AM.

The following scenarios are considered to analyze the model and impacts of eco-

nomic considerations in post-hurricane restoration:

Scenario I: The problem is solved without considering the economics of disaster, i.e., only

load interruption is minimized.

Scenario II: The problem is solved with consideration of the VOLL and repair cost.

Scenario III: The problem is solved with full economic consideration, i.e., VOLL, repair

cost, and generation cost.

Scenario IV: The impact of maximum number of available resources (repair crews) on

restoration is analyzed for five different cases. The number of crews ranges from 50 in

Case 1, with an increment of 25 in other cases, up to 150 for Case 5.

The proposed model implemented on the IEEE 118-bus system setup is composed

of 162,481 decision variables, which 22,308 of them are integer variables. The model

also is constrained with 352,514 equations. The model is decomposed into an IP master

problem and a dual linear subproblem, and is solved using Benders decomposition method.

The optimal restoration schedule for buses and transmission lines for Scenarios I to III are

shown in Tables 3.4 and 3.5, respectively. The simulated costs of implementing Scenarios I

and II, as well as the optimal restoration cost of system with full consideration of economics

of disaster (Scenario III) are shown in Table 3.6. As shown, implementation of Scenario I

which merely minimizes the interruption regardless of economic issues in grid restoration

process results in 12.3% increase in opportunity cost of lost load as an index to measure

the social welfare. The overall restoration cost in this scenario increases by about 5%

compared to Scenario III. In Scenario II, even though the objective function minimizes both

lost load cost and repair crew cost, the induced impairment in the objective function results

in even higher opportunity cost of lost load and total restoration cost. Scenario III as a
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comprehensive economic restoration model, which was used as a benchmark for Scenarios

I and II, provides the most economic restoration scheme and establishes an equilibrium

between generation cost, lost load cost, and repair cost.

Table 3.4 Optimal repair schedule for buses in Scenarios I-III

Bus Scen. I Scen. II Scen. III
B1 1-24 1-24 1-24
B2 1-11 1-11 1-11
B3 1-18 1-18 1-18
B4 1-15 1-15 1-15
B5 1-5 3-7 1-5
B8 1-4 1-4 6-9
B11 1-22 1-22 1-22

Table 3.5 Optimal repair schedule for transmission lines in Scenarios I-III

Line Scen. I Scen. II Scen. III
L1 5-24 84-103 92-111
L2 7-24 1-18 1-18
L10 6-21 19-34 95-100
L14 5-14 74-83 71-80
L16 1-22 28-49 48-69

Table 3.6 Performance indices for Scenarios I-III (costs ×103)

Index Scen. I Scen. II Scen. III
Total Cost $30,188 $30,261 $28,764
Lost Load Cost $17,893 $18,000 $15,929
Generation Cost $12,099 $12,067 $12,640
Resource Cost $196.92 $194.76 $193.62
Lost Load (MWh) 2174.62 2,275 3,902

The optimal schedules for Cases 1 to 5 of Scenario IV’s buses and lines are shown

in Tables 3.7 and 3.8, respectively. As it was expected, the load on B4 which is classified

as critical load is restored as early as possible in all scenarios. The repair operations on
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commercial and industrial loads are initiated from early stage of the planning horizon to

restore these costly interruptions. On the other hand, the restoration of the transmission

lines in vast majority of the cases are postponed to the middle or late stage of the planning

horizon.

Table 3.7 Optimal repair schedule for buses in Scenario IV

Bus Rt=50 Rt=75 Rt=100 Rt=125 Rt=150
B1 27-50 1-24 1-24 1-24 1-24
B2 16-26 16-26 17-27 1-11 1-11
B3 28-45 25-42 1-18 1-18 1-18
B4 1-15 1-15 1-15 1-15 1-15
B5 1-5 1-5 1-5 1-5 4-8
B8 49-52 27-30 27-30 6-9 6-9
B11 6-27 1-22 1-22 1-22 1-22

Table 3.8 Optimal repair schedule for transmission lines in Scenario IV

Line Rt=50 Rt=75 Rt=100 Rt=125 Rt=150
L1 17-36 7-26 95-114 92-111 93-112
L2 59-76 47-64 6-23 1-18 1-18
L10 53-68 96-111 89-104 95-100 92-107
L14 1-10 25-34 71-80 71-80 71-80
L16 45-66 23-44 46-67 48-69 35-56

Table 3.9 summarizes the total restoration cost, opportunity cost of the lost load,

generation cost, resource cost, the amount of lost load, and the last time span that system

still experiences partial load interruption in Scenario IV. Due to the physics and economics

of the problem, the restoration operations will continue for a longer period than required

time to eliminate partial load interruption in the system for each case, as shown in Figure

3.2. The higher level of restoration resources results in shorter interruption time in the

system. Thus, the load interruption and operations duration diagram diverges by increas-

ing the resource level, as illustrated in Figure 3.2. On the other hand, the higher resource
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level will extend the restoration planning horizon to complete the remaining operations in

a cost-effective manner, i.e. by allocating less expensive resources, and configuring a more

economic generation unit commitment.

Table 3.9 Performance indices for different cases in Scenario IV (costs ×103)

Index Rt=50 Rt=75 Rt=100 Rt=125 Rt=150
Total Cost $37,713 $29,377 $28,798 $28,764 $28,762
Lost Load Cost $24,952 $16,562 $15,966 $15,929 $15,926
Generation Cost $12,547 $12,598 $12,629 $12,640 $12,641
Resource Cost $213.24 $216.00 $203.46 $193.62 $194.10
Lost Load (MWh) 6,544 5,098 4,232 3,902 3,875
Interruption Time 50 h 42 h 27 h 24 h 24 h

Figure 3.2 Interruption vs. operations duration for different scenarios.
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Figure 3.3 Optimal restoration cost breakdown for different scenarios (costs ×103).

As shown in Table 3.9, higher resource level results in lower amount of aggregated

lost load in the system. The higher level of restoration resources results in lower total

restoration cost. This cost dynamics is significantly due to impact of resource level on op-

portunity cost of load interruption, as illustrated in Figure 3.3. Interestingly, by securing

higher level of restoration resources, the trend of the total resource cost turns out to have a

descending pattern. However, the total restoration resource cost is much lower than other

cost components. In the first glance, the generation cost might be perceived to have low

sensitivity to the resource level. But, surprisingly, considering different restoration plan-

ning horizon length for different cases in Scenario IV, the average power generation of each

kWh for Cases 1 to 5 are $0.5663, $0.3848, $0.3721, $0.3847, and $0.3762, respectively.

Therefore, the average generation cost depends on the number of available restoration re-

sources.
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3.5 Conclusions

An economic model was proposed to support the post-hurricane decision making

process for restoration of electric power infrastructure. The result demonstrates that the

proposed model is able to find the optimal restoration schedule of damaged components

of power system in a cost-effective manner. The opportunity cost of lost loads, the repair

cost, and the generation costs were considered as economic indices. It was demonstrated

that economy of disaster needs to be an important part of restoration plan. Moreover, the

numerical results show that the restoration resource level significantly impacts on the total

incurred cost of restoration of the system. The results suggest that investing on restoration

resources is paid off in a sense that by securing enough restoration resources, a consider-

able restoration cost saving can be realized. Moreover, the higher level of resources would

significantly shorten the partial restoration of the system. It was shown that the number of

available resources has a significant impact on the average cost of power generation. This

study suggests that incorporation of the unit commitment problem, value of lost load, and

repair crew cost into the restoration decision making model plays a crucial role to imple-

ment an economic restoration of the grid.

46



Chapter 4

Pre-hurricane Proactive Planning

When according to weather forecast, a hurricane is on its way and about to be strik-

ing in an area, efficient proactive restoration planning for power system could significantly

improve the resilience of the system. Consider a power system which all or some of its en-

tities including generation units, transmission lines, buses and the downstream distribution

lines of load buses are located on the path of an upcoming hurricane. The objective is to

proactively allocate and mobilize the on-hand resources in order to enable quick response

capability of utility companies to repair and restor potential damages to their facilities in a

way that minimizes the expected incurred costs to the system. In addition, estimation of re-

quired resources which need to be outsourced in order to efficiently cope with the aftermath

of the hurricane is another critical issue for improving the resilience of the system.

4.1 Notation

In this chapter, we borrow notation from Chapter 3. In addition, the following nota-

tion is used to describe the model, and formulate the problem.

Indices:
s Index for scenario

Parameters:
Alc Cross sectional area of line l
CDl Drag coefficient
F l
wind Wind force on line l
F l
brk Maximum perpendicular force that the line l is able to withstand
g Wind gust speed
HIl Hazard importance for line l
p(s) Probability of scenario s
q+
b Recourse penalty coefficient for bus b
q+
l Recourse penalty coefficient for line l
TCl Terrain correction
WSl Wire strain
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γb Probability of damage for bus b
γi Probability of damage for generation unit i
γl Probability of damage for line l
ϕ Air density

Variables:
Tb Random time to repair of bus b
Ti Random time to repair of generation unit i
Tl Random time to repair of transmission line l
X+
bt(ξ) Recourse activity for bus b at time t

X+
lt (ξ) Recourse activity for line l at time t

ϑi Random initial state of unit i after hurricane strikes; 0 if damaged, otherwise 1
ξ A multivariate random variable
φb Random initial state of bus b after hurricane strikes; 0 if damaged, otherwise 1
ψl Random initial state of line l after hurricane strikes; 0 if damaged, otherwise 1

4.2 Model Description

The damage state of components after hurricane strike are modeled as random vari-

ables ψl, ϑi, and φb for transmission line l, generation unit i, and bus b (and its downstream

distribution lines), respectively. These random variables are considered to have two states:

damaged and functional; thus, they can be modeled by Bernoulli random variables which

take the value of 1, when after the upcoming hurricane the component in question is still

functional, and value of 0, when the component in question is damaged. As parameters

of aforementioned Bernoulli random variables, γb, γi, and γl are probability of damage for

bus b (and its downstream distribution lines), generating unit i, and transmission line l,

respectively.

As earlier explained in Chapter 2, various models have been proposed to the litera-

ture for modeling weather-related failure rate and probability of damage of power system

components. However, without loss of generality, and because of their nice properties,

we choose models that have been used in [2]. The probability of damage for substations

and generating units in urban and suburban areas are represented by Lognormal fragility

curves. Thus, the probability of damage for a given wind gust speed (g) considering the
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local terrain and structural characteristics is obtained as

γk =

ˆ g

−∞

1√
2πσk

exp

(
−(ln(x)− µk)2

2σ2
k

)
dx, (4.1)

where k ∈ Set{b, i}, µk is the logarithmic mean, and σk is the logarithmic standard devia-

tion of the relevant fragility curve.

The wind force on transmission line l could be calculated with following standard

design equation of American Society of Civil Engineers (ASCE) considering the wind gust

speed, as

F l
wind = ϕ · TCl ·HIl ·WSl · CDl · Alc · g2, (4.2)

where g2 is the squared wind gust speed, and Alc is the cross sectional area of line l; param-

eters ϕ is the air density, TCl is the terrain correction,HIl is the hazard importance,WSl is

the wire strain, CDl is the drag coefficient, which all are defined in Practice Report 113 of

ASCE [114]. Assuming the transmission lines to be Zebra aluminum/steel conductor, the

damage probability of line l is calculated as the ratio of wind load F l
wind to the maximum

perpendicular force that the line is able to withstand, F l
brk, as

γl = min

(
η
F l
wind(g)

F l
brk

, 1.0

)
, (4.3)

where, η is a parameter which is used to match the line fragility estimates with historical

failure data [2].

Once the resources are allocated to each damaged component, the required repair

and restoration resources are seized by the component in question up to the time when

repair operation is completed. Therefore, the time to repair for each damaged component

has a direct impact on the dynamics of resource allocation. The time to repair of each

potentially damaged component is stochastic in its nature, which could be modeled by

a random variable and may take various probability distributions. Random variables Tb,
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Ti, and Tl correspond to time to repair for bus b (and its downstream distribution lines),

generating unit i, and transmission line l, respectively. The probability distributions most

often used to model the time to repair are the Exponential, Gamma, Normal, and Lognormal

[115]. In this research, without loss of generality, it is assumed that the time to repair

random variables to be defined by the Weibull density function as

fTk(t) =

{
ρk
λk

(
t
λk

)ρk−1

e−(t/λk)ρk if t ≥ 0,

0 otherwise,
(4.4)

where ρk is the shape parameter, λk is the scale parameter, and k ∈ {b, i, l}.

Considering the stochastic nature of the pre-hurricane problem, the resources should

be allocated in a way that minimizes the expected cost of decisions made before the hur-

ricane strikes and its stochastic outcomes be realized. Therefore, the problem turns out to

be a two-stage stochastic problem; thus the stochastic programming with recourse could be

utilized to model this problem. The aim is to allocate resources in a way that minimizes

the sum of our original first-stage resource allocation costs and the expected recourse costs.

For each possible stochastic circumstances, a recourse or second-stage activity can be per-

formed to compensate the violation of the constraints – if there is any [116].

Figure 4.1 shows the schematic view of the proposed pre-hurricane restoration plan-

ning framework. As shown, by incorporating the physical characteristics of each compo-

nent and forecasted information on maximum wind speed, the probability of damage is

calculated. The stochastic time to repair for each damaged component is obtained from

historical records. Considering the resource availability, and criticality of each probable

load lost, the resources are primarily allocated to components in different locations. The

lack of resources are obtained by recourse variables to have an efficient plan for respond-

ing to the hurricane. The optimal value of second-stage decision variables such as load

interruption, power generation, and power flow in each line are determined, but are not to

be performed necessarily. These values are the simulated optimal system configuration if

the hurricane strikes, which help the decision maker to make a sound proactive decision,
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i.e. the optimal resource allocation and the additional amount of resources that needs to be

outsourced from other utility companies.

First stage decision

Information on 

resource availability

Real time information on 

maximum wind speed

Physical characteristics 

of each component 

PDF of time to repair 

from historical records

Second stage recourse 

actions

Optimal 

allocation?

Start

Revise the first stage  

decision 

Report the optimal 

solution

End

No

Yes

Figure 4.1 The schematic view of the proposed pre-hurricane planning framework

4.3 Problem Formulation and Methodology

As earlier explained, the pre-hurricane model is formulated as a two-stage stochastic

linear program with recourse. The general formulation of a two-stage stochastic linear
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program with recourse is as

min
x

z = cx+ Q(x),

s.t. Ax = b, x ∈ X, (4.5)

where c is the cost vector in Rn1 , b is RHS vector in Rm1 , A is matrix of size m1 × n1, and

function Q(x) is the second stage value function (expected recourse cost function) defined

as

Q(x) = Eξ[Q(x, ξ(ω))], (4.6)

where

Q(x, ξ(ω)) = min
y
{q(ω)y|Wy = h(ω)− T (ω)x, y ∈ Y }, (4.7)

where y is the recourse variable, q(ω) is the recourse penalty coefficient, W is the recourse

matrix of size m2 × n2, and ξ is a random N -vector in (Ω, A, S) probability space [73].

4.3.1 Objective Function

The objective of the pre-hurricane model is to minimize the cost of decisions primar-

ily made on restoration resource allocation, the expected cost of customer load interrup-

tion, the expected cost of additional recourse actions to complete the restoration, and the

expected cost of energy generation during the restoration planning horizon, after the hur-

ricane strikes. Considering the stochastic program with recourse modeling structure, the

problem is formulated. The objective function of proposed pre-hurricane restoration model

is formulated as
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min
u,v

∑
t

∑
b

CbtR
min
b ubt +

∑
t

∑
l

CltR
min
l vlt

+ Eξ

[
min

LI,P,I,SU,SD

∑
t

∑
b

V OLLbtLIbt

+
∑
t

∑
i

(
Cg
itPitIit + SUit + SDit

)]
, (4.8)

where the first term represents the cost of resources primarily allocated to the buses (and

their downstream distribution lines), and the second term is the cost of resources primar-

ily allocated to transmission lines. The expected value operator represents the expected

second-stage (recourse) function, where the first term in the expected value operator is

the total cost of load interruption over the restoration planning horizon, and the second

term is the total generation cost including fuel costs, the startup costs and the shutdown

costs of generation units. The first term in the recourse function can be linearized in a

similar manner as post-hurricane objective function. Although all decision variables in

the pre-hurricane objective function are the same as the post-hurricane objective function

of Chapter 3, but due to uncertainty of the problem, the resource allocation decisions are

made in the first-stage, while the rest of decisions are made in the second stage as shown

in (4.8). This definition of the recourse function is based on costs that are imposed to the

system as a result of probable operations and configuration of the system, probable load

interruption of the system, probable commitment/decommitment states, and probable real

power generation of the units, after a potential hurricane strikes.

4.3.2 Common Constraints with Post-hurricane Model

The following constraints are in common with post-hurricane model described in

Chapter 3.

• Resource constraints
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• Load balance constraints

• Real power generation constraints

• Power flow constraints

• Startup and shutdown cost constraints

• Ramp-up and ramp-down constraints

• Minimum uptime and downtime constraints

4.3.3 Damage State of Generating Units

The initial damage state of each generating unit, yi0 is modeled with a random vari-

able ϑi ∼ Bernoulli(γi) as earlier explained. If the random variable ϑi is 0, it means the

generation unit i is damaged; hence it is offline and needs to be restored. The state of a

damaged generating unit does not change, unless the restoration operation is performed on

that. On the other hand, if the random variable ϑi takes the value of 1, it indicates that the

generation unit is functional and ready to be committed for generation from the beginning

of the restoration planning horizon. It is assumed that if a generating unit is in functional

initial state, its state will remain the same up to the end of restoration planning horizon, as

modeled in following constraints

yi0 = ϑi, ∀i and (4.9)

yit = 0 if t ≤ (1− yi0)Ti ; otherwise yit = 1, ∀i, ∀t, (4.10)

where Ti ∼ Exponential(λi). Since, if-then constraint is not allowed, we write it in the

following linear form

t−Myit ≤ (1− ϑi)Ti, ∀i,∀t and (4.11)

yit ≤ ϑi, ∀i, ∀t = 0, ..., Ti. (4.12)
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4.3.4 Damage State of Buses

The initial damage state of each bus zb0 is represented with random variable φb ∼

Bernoulli(γb). If the random variable takes the value of 1, it indicates that the initial state

of the bus in question is considered as functional. Again, it is assumed that if a bus is

initially in functional state (zb0 = 1), it will remain in the same state up to the end of the

planning horizon. On the other hand, if this random variable takes the value of 0, then it is

considered as damaged state. In this case, the bus will remain in the same state up to the

time that restoration operation is completely performed on that, as

zb0 = φb, ∀b, (4.13)

0 ≤ zb(t+1) −
( t∑
k=1

ubk − Tb + 0.5
)
/M ≤ 1, ∀b,∀t, and (4.14)

t+Tb−1∑
k=t

ubt ≥ Tb(ubt − ub(t−1)), ∀b,∀t, (4.15)

where Tb ∼ Exponential(λb), and ubt is the binary variable determined in the first stage

problem for primary resource allocation to bus b at time t. The combination of stochastic

variable for time to restoration, Tb, along with ubt could make circumstances that result in

infeasibility of the constraint (4.14) and (4.15). Therefore, set of recourse actions repre-

sented by binary variable X+
bt(ξ) are required to compensate lack of required resources for

each bus in each unit of time. Therefore, constraints (4.14) and (4.15) are modified and

rewritten as

0 ≤ zb(t+1) −

(
t∑

k=1

(
ubk +X+

bk(ξ)
)
− Tb + 0.5

)
/M ≤ 1 ∀b,∀t and (4.16)

t+Tb−1∑
k=t

(
ubk +X+

bk(ξ)
)
≥ Tb

(
ubt +X+

bt(ξ)− ub(t−1) −X+
b(t−1)(ξ)

)
, ∀b,∀t, (4.17)
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where,

ubt +X+
bt(ξ) ≤ 1, ∀b,∀t. (4.18)

4.3.5 Damage State of Transmission Lines

In the same way as the generating units and buses, the initial damage state of trans-

mission lines is modeled with a random variable ψl ∼ Bernoulli(γl). If a transmission line

is damaged due to the hurricane, the binary initial state variable (wl0) of that transmission

line becomes equal to 0, and remains the same up to the time that required resources are

allocated and the restoration operation is fully performed. On the other hand, if it does not

undergo any damage, the wl0 takes the value of 1. In this case, it is assumed that wlt keeps

the value of 1 up to the end of planning horizon. The pertaining constraints are as follows:

wl0 = ψl, ∀l, (4.19)

0 ≤ wl(t+1) −
( t∑
k=1

vlk − Tl + 0.5
)
/M ≤ 1, ∀l,∀t, and (4.20)

t+Tl−1∑
k=t

vlk ≥ Tl(vlt − vl(t−1)), ∀l,∀t, (4.21)

where Tl ∼ Exponential(λl) is the time to repair for transmission line l, and vlt is the

binary decision variable of the first stage problem indicating the resource allocation on

line l at time t. The combination of some outcomes of random variable Tl with first stage

decision variable vlt could lead to infeasibility of constraints (4.20) and (4.21). Using the

same logic as used for (4.14) and (4.15), the constraints (4.20) and (4.21) are modified as

0 ≤ wl(t+1) −

(
t∑

k=1

(
vlk +X+

lk(ξ)
)
− Tl + 0.5

)
/M ≤ 1 ∀l,∀t and (4.22)
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t+Tl−1∑
k=t

(
vlk +X+

lk(ξ)
)
≥ Tl

(
vlt +X+

lt (ξ)− vl(t−1) −X+
l(t−1)(ξ)

)
, ∀l,∀t, (4.23)

where X+
lt (ξ) is the recourse variable for line l at time t, and

vlt +X+
lt (ξ) ≤ 1, ∀l,∀t. (4.24)

4.3.6 Penalization of Recourse Activities

As earlier explained, the recourse activities in the second stage problem are per-

formed to compensate the lack of required resources that have not been allocated in the

first stage. Mathematically, the recourse variables X+
bt(ξ) and X+

lt (ξ) are also used to avoid

infeasibility in the problem due to lack of primary allocated resources in some stochastic

circumstances. However, the recourse actions should be penalized in the recourse func-

tion to minimize the total costs. Therefore, by including the recourse activities’ cost, the

recourse function is modified as

Q(u, v, ξ) = min
LI,F,SU,SD,X+

l ,X
+
b

∑
t

∑
b

V OLLbtLIbt(u, v, ξ)

+
∑
t

∑
i

(
Cg
itPitIit + SUit + SDit

)
+
∑
l

∑
t

q+
ltX

+
lt (ξ) +

∑
b

∑
t

q+
btX

+
bt(ξ). (4.25)

4.3.7 Scenario-based Modeling

The expected recourse cost function is obtained by

Q(u, v) = Eξ[Q(u, v, ξ)] =
∑
ξ1l

...
∑
ξNLl

∑
ξ1b

...
∑
ξNBb

∑
ξ1i

...
∑
ξNGi

ˆ
ξ1Tl

...

ˆ
ξNLTl

ˆ
ξ1Tb

...

ˆ
ξNBTb

ˆ
ξ1Ti

...

ˆ
ξNGTi

(∏
l

p(ξl)
∏
b

p(ξb)
∏
i

p(ξi)

)
Q(u, v, ξ)

d(F (T 1
l ))...d(F (TNLl )d(F (T 1

b ))...d(F (TNBb ))d(F (T 1
i ))...d(F (TNGi )). (4.26)

57



Obviously, calculating the above integration is not an easy task, if is possible; Moreover,

due to large number of scenarios, the computational efficiency of the optimization routine

will be significantly lowered. Since there is no closed-form solution for (4.26) available,

an alternative method is to solve the problem using a scenario-based approach. Therefore,

all variables for pre-hurricane model except ubt and vlt should be considered as scenario-

based variables, i.e., Iits, Pits, LIbts, PLlts, θbts, SUits, SDits, yits, zbts, wlts, X+
lts, and X+

bts;

where s is index for scenario. Therefore, the objective function is rewritten as follows:

min
u,v

∑
t

∑
b

Cbt.R
min
b ubt +

∑
t

∑
l

CltR
min
l vlt

+
∑
s

p(s)

[
min

LI,F,SU,SD,X+
l ,X

+
b

∑
t

∑
b

V OLLbtLIbts(u, v, ξ)

+
∑
t

∑
i

(
Cg
itPitsIits + SUits + SDits

)
+
∑
l

∑
t

q+
ltX

+
lts(ξ) +

∑
b

∑
t

q+
btX

+
bts(ξ)

]
,

(4.27)

where p(s) is the probability of scenario s.

4.3.8 Nonanticipativity

An important issue that should be considered in solving stochastic programs is that

the decisions should not depend on the outcome of ξ, denoted as nonanticipativity con-

cept [116]. One way to enforce nonanticipativity requirement is the Birge’s method [117].

Let Sts be the set of scenarios that are identical to scenario s at time t. The following

nonanticipativity constraints should hold∑
ś∈Sts

p(ś)

LIbts =
∑
ś∈Sts

p(s)LIbtś, ∀b,∀t,∀s, (4.28)

∑
ś∈Sts

p(ś)

Pits =
∑
ś∈Sts

p(s)Pitś, ∀i, ∀t,∀s, (4.29)
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∑
ś∈Sts

p(ś)

PLlts =
∑
ś∈Sts

p(s)PLltś, ∀l,∀t,∀s, (4.30)

∑
ś∈Sts

p(ś)

 Iits =
∑
ś∈Sts

p(s)Iitś, ∀i, ∀t,∀s, (4.31)

∑
ś∈Sts

p(ś)

SUits =
∑
ś∈Sts

p(s)SUitś, ∀i,∀t,∀s, (4.32)

∑
ś∈Sts

p(ś)

SDits =
∑
ś∈Sts

p(s)SDitś, ∀i,∀t, ∀s, (4.33)

∑
ś∈Sts

p(ś)

X+
lts(s) =

∑
ś∈Sts

p(s)X+
lts(ś), ∀l,∀t,∀s, and (4.34)

∑
ś∈Sts

p(ś)

X+
bts(s) =

∑
ś∈Sts

p(s)X+
bts(ś), ∀b,∀t,∀s. (4.35)

4.3.9 The Proposed Solution Scheme

In this section, first the scenario construction and reduction method is introduced.

Next, the decomposition strategy to solve the problem is explained.

4.3.9.1 Scenario construction and reduction

Due to presence of continues random variables, i.e., the Weibull distribution for time

to repair of each damaged component, the stochastic data process of the proposed models,

59



ξ has an infinite support. To make the problem tractable, the stochastic data process ξ

needs to be redistributed to provide a finite support with the reduced (optimal) number of

scenarios. While Monte Carlo sampling can yield reasonable estimates for the distribution

of an underlying random variable, but it requires relatively large sample size which reduces

computational efficiency. To cope with this issue, other uncertainty estimation techniques

such as the Latin hypercube sampling method which can provide more accurate estimates

with smaller sample size were developed [85]. We use the Latin hypercube sampling [118]

to replace ξ by a scenario tree approximation ξtr which has a finite, but large number of

scenarios. The Latin hypercube sampling guarantees that the whole range of values for

a random variable is sampled. For a sample size of N , the Latin hypercube sampling

technique selects N different values from each of random variables by dividing the range

of each random variable into N non-overlapping intervals. Then by shuffling and pairing

these values constructs N scenarios, each with probability of 1/N .

The next step is to reduce the number of scenarios into a computationally tractable

size. Various reduction techniques are available to be applied for different applications.

For the constructed probability measure of ξtr =
∑N

k=1
1
N
sk, it is required to determine an

index set K ′∗ ⊂ {1, ..., N} of given cardinality #K
′
∗ = N −N ′ and a probability measure

ξ̃∗ =
∑N

k′=1,k′ /∈K′∗
p∗
k′
sk′ such that

µ̂c(ξtr, ξ̃∗) = inf

{
µ̂c

(
ξtr,

N∑
k=1,k /∈K′∗

pk′sk′

)
: K

′

∗ ⊂ {1, ..., N},#K
′

∗ = N −N ′ ,

∑
k′ /∈K′∗

pk′ = 1, pk′ ≥ 0, k
′
/∈ K ′

}
, (4.36)

where Kantorovich functional µ̂c(ξtr, ξ̃∗) is an estimation of the probability distance ζc(ξtr, ξ̃∗).

Problem (4.36) can be solved through variety of techniques, but due to accuracy of back-

ward reduction algorithm, we solve it through this method. Readers are referred to [91] for

the detailed explanation of the backward scenario reduction algorithm.
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4.3.9.2 Decomposition strategy

By construction of the scenario three and reducing it to a tractable number of sce-

narios, the proposed two-stage stochastic program with recourse is converted to its de-

terministic mixed-integer program equivalence. Benders decomposition for mixed-integer

programming is an efficient strategy, when the original problem is large-scale and difficult

to solve, while the Benders subproblem and the relaxed master problem are much more

tractable to solve. In order to employ the decomposition strategy for the proposed problem,

we consider the continues variable vector as X = [LITbts, P
T
its, PL

T
lts, SU

T
its, SD

T
its]

T , the

binary variable vector as Y = [uTbt, v
T
lt , X

+
bts, X

+
lts, y

T
its, z

T
bts, w

T
lts, I

T
its]

T , and the cost coeffi-

cient matrix of the integer variables in the objective function as CT, and the cost coefficient

matrix of the continues variables in the objective function as DT. We also assume that A

and B represent the coefficient matrix of X and Y in the constraints, respectively. Finally,

H is assumed to represent the right hand side matrix of the constraints. The problem is

decomposed into a master problem and a subproblem. The master problem is set as an

integer program, while the subproblem is set as a dual linear program (without any integer

variable). Considering U as the dual variable vector for the subproblem, the Benders de-

composition algorithm for the proposed model is shown in Algorithm 4.1 [112].

4.4 Numerical Analysis

The IEEE 118-bus system is considered to study the proposed model. The component

of the system located on the path of the upcoming hurricane along with the associated

probability of damage, as well as the scale parameter of the Weibully distributed time to

repair are given in the first three columns of Tables 4.1–4.3. The shape parameter of the

Weibull distribution for all components are assumed to be equal to 1.
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Algorithm 4.1 Benders decomposition for equivalent MIP problem

{initialization}
Y := initial feasible integer solution
Lower bound (LB):= −∞, Upper bound (UB):= +∞
while UB − LB > ε do
{solve dual LP subproblem}
maxU {

∑
t

∑
bCbtR

min
b ūbt +

∑
t

∑
l CltR

min
l v̄lt

+
∑

s

∑
l

∑
t p(s)q

+
lt X̄

+
lts +

∑
s

∑
b

∑
t p(s)q

+
btX̄

+
bts

+(H −BȲ )
T
U | ATU ≤ C,U ≥ 0}

if Unbounded then
Get unbounded ray Ū
Add cut (H −BY )T Ū ≤ 0 to IP master problem
else
Get extreme point Ū
Add cut θ ≥

∑
t

∑
bCbtR

min
b ubt +

∑
t

∑
l CltR

min
l vlt

+
∑

s

∑
l

∑
t p(s)q

+
ltX

+
lts +

∑
s

∑
b

∑
t p(s)q

+
btX

+
bts

+(H −BY )T Ū to master problem
UB := min {UB,

∑
t

∑
bCbtR

min
b ūbt

+
∑

s

∑
l

∑
t p(s)q

+
lt X̄

+
lts +

∑
s

∑
b

∑
t p(s)q

+
btX̄

+
bts

+
∑

t

∑
l CltR

min
l v̄lt + (H −BȲ )

T
Ū}

end if
{solve IP master problem}
LB := minY {θ | cuts}
end while

Table 4.1 Damage probabilities and TTR scale parameter for units

Unit Damage TTR Scale
Number Probability Parameter
G26 0.15 8
G38 0.35 8
G39 0.50 16
G40 0.45 16
G41 0.35 8
G42 0.20 8
G43 0.80 12
G44 0.25 12
G45 0.40 12
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Table 4.2 Damage probabilities, TTR scale parameters, and derived allocations for buses

Bus Damage TTR Scale Schedule Schedule Schedule
Number Probability Parameter (Case I) (Case II) (Case III)
B62 0.70 10 1-10 1-10 1-8
B85 0.20 10 1-9 1-9 1-3
B86 0.40 10 1-8 1-8 1-5
B87 0.15 7 25-28 N/A 9-10

46-65
B88 0.1 10 N/A N/A 3-4
B89 0.05 10 96-107 N/A 1-2
B90 0.60 10 1-18 1-18 1-7
B91 0.10 7 3-4 5-6 6-7
B92 0.30 10 1-4 1-4 1-4
B93 0.05 7 1-8 1-8 2-3
B94 0.40 10 1-30 1-30 1-5
B95 0.20 10 1-8 1-8 2-4
B96 0.25 10 1-11 1-11 1-4

Table 4.3 Damage probabilities, TTR scale parameters, and derived allocations for lines

Line Damage TTR Scale Schedule Schedule Schedule
Number Probability Parameter (Case I) (Case II) (Case III)
L91 0.20 10 1-3 N/A 3-5

67-90
L92 0.30 10 41-63 N/A 5-8
L100 0.10 10 1-2 N/A 1-2

25-38
L101 0.35 10 1-8 N/A 5-9
L131 0.70 10 46-87 N/A 2-9

1-4
L132 0.55 10 1-8 1-8 1-7

72-81
L133 0.30 15 1-3 2-4 1-6
L134 0.25 15 5-7 N/A 2-6
L135 0.35 10 1-13 1-13 3-7

95-107
L136 0.20 10 2-6 N/A 1-3
L137 0.20 15 44-74 N/A 1-4
L138 0.15 15 70-89 N/A 4-7
L139 0.15 15 24-38 N/A 4-7
L140 0.35 10 97-106 N/A 1-5
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The value of lost load is considered to be $3,706/MWh for industrial loads, $6,979/

MWh for commercial loads, and $110/MWh for residential areas [107]. The load on bus

B62 is industrial, while loads on buses B88, B92, and B93 are commercial. The rest of the

loads are considered as residential. The repair crew is considered to be the only limited

resource that is allocated to repair damaged components. It is assumed that each damaged

substation requires 10 repair crews/hour, while each damaged transmission line requires

15 repair crews/hour. The wages for repair crews of substations are assumed as follows:

$60/hour at shift 1 (8:00 A.M.–4:00 P.M.), $70/hour at shift 2 (4:00 P.M.–12:00 A.M.),

and $80/hour at shift 3 (12:00 A.M.–8:00 A.M.). An incremental rate of $5/hours is added

to the wage of transmission lines’ repair crew. The generation cost is considered to be

$35.09/MWh [113]. The shutdown cost for each generating unit is assumed to be $250.

The startup cost is assumed to be $150 within the first hour after last shutdown. For each

additional hour (up to eight hours), an incremental cost of $25 is added to the startup cost.

Three cases are considered for analysis as follows:

Case I (full restoration): The primary resources are considered as unconstrained. The

restoration of all components are enforced. The aim is to find the optimal value for the

maximum amount of resources required for full restoration.

Case II (partial restoration): The primary resources are constrained to obtained value in

Case I. The restoration is not enforced for all damaged components. The aim is to analyze

the economic dynamics of the restoration, regardless of system-level reliability.

Case III (expected value problem): The expected value problem of the proposed model

is solved. The aim is to find the value of stochastic solution (VSS) for the problem.

All three cases are analyzed in a 120-hour restoration planning horizon. As Latin

hypercube sampling method is used for scenario construction, in an ad hoc manner 3,000

independent scenarios (which is a sufficiently large sample size for this sampling scheme)

are generated for Cases I and II [85]. With the use of the backward reduction algorithm [91],

the number of scenarios are reduced to 10, with associated probabilities of 0.336, 0.011,
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0.017, 0.065, 0.029, 0.308, 0.115, 0.012, 0.057, and 0.05. All three cases are solved using

the Benders decomposition method. First, the proposed model is solved for Case I to find

Rmax(t), i.e., the maximum resource level required to restore the entire system. After

obtaining Rmax(t), this value is imposed as a constraint in Case II in order to study system

behavior, when the system-level reliability is not considered. The derived value forRmax(t)

in Case I is 210 crew/hour. The fourth and fifth columns of Table 4.2 respectively show

the optimal schedule of resources that need to be allocated to damaged substations in Case

I and II; while the fourth and fifth columns of Table 4.3 respectively represent allocation

of resources to transmission lines in Cases I and II. The adjacent allocation schedules to

each component are merged, while the overlapping allocations are removed from the results

(associated costs are also deducted in the latter case).

As shown in the results, there are components in the system which have multiple al-

locations, i.e., B87, L91, L100, L131, L132, and L135 in Case I. These multiple allocations

perform as an insurance for the system to different scenarios that can occur when the hurri-

cane strikes. On the other hand, there are components in the system without any allocated

resources. The reason is due to low expected cost of damage to these components. This

phenomenon also occurs in Case II due to partial restoration which ignores the system-level

reliability. Due to economic dynamics of the system, i.e., the cost sensitivity of system to

functional state of each component, Case II does not allocate resources to some compo-

nents of the system which do not have considerable expected economic risk. Furthermore,

presence of redundant components in the system that can compensate the offline state of

other components is another reason for observed behavior. However, from the system-level

reliability perspective, the restoration scheme of Case II is not always preferable.

For Case III, rather than deriving a scenario-based solution, the expected value of the

parameters are plugged into the proposed model. The last columns of Tables 4.2 and 4.3

show the optimal resource allocation in Case III for substations and lines, respectively. As

shown in Figure 4.2, the total expected cost of restoration in Case III is $15,581,870 which
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is higher than Cases I and II (i.e., $15,343,980 and $15,065,320, respectively). Therefore,

the value of stochastic solution which is the difference between the stochastic solution and

the expected value solution is $237,890 and $516,550, for Cases I and II, respectively. The

expected load interruptions for Cases I, II, and III are 1,469 MWh, 1,467 MWh, and 1,761

MWh, respectively. While the expected load interruption cost for Case III is significantly

higher than Cases I and II, the generation cost of Case I is slightly lower than two other

cases.

As shown in Figure 4.3, the optimal resource level for all three cases starts with a

high value, but is dramatically dropped by the end of the fist working shift. As results show,

Cases I and II have a similar pattern for optimal resource allocation from the beginning of

shift 2 until the end of shift 3. The total resource costs for Cases I, II, and III are $373,575,

$114,450, and $70,725, respectively. While Case I has the highest, and Case III has the

lowest resource allocation cost, Case II has the most cost-effective strategy to restore the

system. However, due to contingency of the system to unexpected failures and faults, the

partial restoration strategy of Case II does not provide the desired system-level reliability

in the normal operating condition. On the other hand, the full restoration strategy of Case

I provides higher system-level reliability in expense of a higher resource allocation cost.

Considering this trade-off, decision makers can choose the desirable strategy based on their

system operation preferences.
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Figure 4.2 Expected cost breakdown for three scenarios

Figure 4.3 Optimal resource level for for three scenarios

4.5 Conclusions

A stochastic model to support decision making process for power system restoration

in pre-hurricane phase was introduced. The model was formulated as a two-stage stochastic
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problem with recourse. After scenario reduction, the large scale equivalence of the universe

problem was solved using Benders decomposition. Two strategies, i.e. the full restoration,

and the partial restoration strategies were analyzed; and the value of stochastic solution was

calculated. The value of stochastic solution as an index, obviously justifies the advantage

of obtaining it over expected value solution. The numerical results demonstrates the merits

and disadvantages of each strategy. While the partial restoration strategy provides a more

cost-effective restoration plan, it may not provide the same system-level reliability that full

restoration strategy secures. However, decision makers can choose the best strategy based

on operations policy of the utility company.
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Chapter 5

Dynamic Maintenance Planning Incorporating
Hurricane Effects

An effective preventive maintenance program plays a critical role in improving the

reliability of electric power systems. In this chapter, the impact of potential damage due

to hurricane is incorporated in the power system maintenance scheduling problem. The

proposed model considers component deterioration, as well as two competing and indepen-

dent failure modes, i.e., failure due to deterioration and failure due to hurricane damages.

Furthermore, the interrelationship between the component, the grid, and the associated

downtime cost dynamics are incorporated in the problem. The downtime cost of the power

system due to component outage is formulated using mixed-integer programming. The

obtained downtime cost is used in a stochastic dynamic programming model to derive the

optimal maintenance policy for the component.

5.1 Notation

The notation used for problem formulation are shown as follows.

Indices:
b Index for buses
i Index for generation units
l Index for transmission lines
t Index for time

Sets:
A(j) Action space when system is in state j
Bb Set of components connected to bus b

Parameters:
C(a) Immediate cost of action a
Cit Generation cost of unit i in period t
dt(j) Probability of deterioration from state j to j + 1 in period t
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Dbt Electricity demand at bus b in period t
DTt Downtime cost in period t
ft(j) Probability of failure in period t, when it is in state j
g Maximum wind gust speed that component is able to withstand
ht Probability that component is not affected by hurricane in period t
M Large positive constant
Pmax
i Maximum generation capacity of unit i
Pmin
i Minimum power generation capacity of unit i
PLmaxl Maximum power flow capacity of line l in period t
V OLLbt Value of lost load at bus b in period t
λt Hurricane arrival rate in period t
αib Element of unit i and bus b in generation-bus incidence matrix
βlb Element of line l and bus b in line-bus incidence matrix

Variables:
Iit Commitment state of generating unit i at period t; 1 if committed, otherwise

0
Gm Random variable for wind gust speed of mth hurricane
LIbt Load interruption at bus b in period t
Pit Real power generation of unit i in period t
PLlt Power flow of line l in period t
st State of the system at decision epoch t
Vt(st) Expected minimum cost of the system from decision epoch t to the end of

planning horizon
wlt Outage state of line l in period t; 0 if offline, otherwise 1
yit Outage state of unit i in period t; 0 if offline, otherwise 1
zbt Outage state of bus b in period t; 0 if offline, otherwise 1
δbt Bus voltage angle

5.2 Model Description

Consider a power system located in a hurricane-prone area. A component of this

power system is under consideration for the preventive maintenance program. The compo-

nent is subject to failure due to two independent and competing random failure processes:

The failure due to aging and deterioration, and failure due to hurricane strike. In addition to

failure risk, the component is subject to degradation over time. As the component ages and

deteriorates, the probability of failure increases. Furthermore, the associated cost to bring

the component to as-good-as-new condition increases. On the other hand, as illustrated
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in Figure 5.1, regardless of the reliability condition of the component, when a hurricane

strikes, it can affect the functional state of the component. In addition, the risk of hur-

ricane strike varies from one season to another. Therefore, the overall risk of failure of

the component over the planning horizon, i.e., before, during and after hurricane season is

dynamically changing. Furthermore, the downtime cost of the component is changing due

to variation of demand for electricity and generation cost over the planning horizon. The

trade-off arises between the risk of failure and subsequent downtime cost of the compo-

nent from one side, and unutilized capital invested on asset management on the other side.

Therefore, this dynamic cost of failure needs to be addressed in preventive maintenance

programs of the components.

Figure 5.1 Reliability of a single component of the system subject to hurricane damage

Variety of probability density functions have been proposed in the literature to fit the

probability density function for time to failure for different components of the power sys-

tem, e.g. [40,41]. The probability distributions that are most often used to model the time to

repair are Exponential, Gamma, Normal, and Lognormal [115]. The Poisson distribution is

used to model the hurricane arrival rate to the system [57]. However, along with hurricane
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arrival rate, the maximum wind gust speed that the component is able to withstand needs

to be considered to evaluate the probability of failure.

We consider k + 2 different states for the component as

S =
{

1, ..., k, k + 1, k + 2
}
,

where states 1, ..., k represent the condition of the component while it is functional; the

larger the state of the component is, the more the component is deteriorated (therefore,

state 1 means as-good-as-new). State k + 1 represents component failure due to aging and

deterioration, and state k + 2 shows component failure due to hurricane damage. Figures

5.2 and 5.3 show the transition diagrams of the system.

Figure 5.2 State transition diagram related to degradation
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Figure 5.3 State transition diagram related to hurricane

When the component is in state j = 1, ..., k, there are two actions available in each

decision epoch: no action, denoted byNAj; and preventive maintenance, denoted by PMj .

It is assumed that by preventive maintenance, the reliability of the component is fully re-

stored and the component is brought back to state 1. However, the cost of preventive

maintenance increases by the condition of the component, i.e., C(PMk) > C(PMk−1) >

... > C(PM1). Zero cost is considered to be associated with NAj action. The action space

when the component is in state j is represented by A(j) = {NA,PMj}, j ∈ {1, ..., k}.

Once the component goes to failure state k+1, we can either take no action,NA (and

proceed to the next decision epoch) or we can immediately perform corrective maintenance,

CM , with the cost of C(CM). Therefore, the action space for component in state k + 1,

is A(k + 1) = {NA,CM}. Finally, when the component fails due to hurricane damage,

the action space is A(k + 2) = {NA,RS}; where action NA is the same as described for

previous cases, and action RS means to restore the component into functional state. The

cost associated with the restoration is C(RS), where C(RS) > C(CM) > C(PMk) >

C(PMk−1) > ... > C(PM1).
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If the component remains in failed condition during a period, say period t, the down-

time cost DTt is incurred. The downtime cost can be computed by solving two mixed-

integer programming problems in order to find the difference in minimum system cost

during each period when the component is in the functional state and when it is offline due

to failure.

5.3 Problem Formulation and Methodology

We formulate the problem as a finite horizon Markov Decision Process (MDP) with

decision epochs T = {1, 2, ..., N}. In particular, we consider N = 52 weeks for an annual

preventive maintenance program.

5.3.1 Transition Probabilities

The state transition probabilities need to be evaluated to model the problem. First, the

probability that the component is not affected by hurricane is considered. This probability

is composed of the probability that the hurricane does not occur at all, plus the probability

that hurricane strikes but damage does not occur, during each period t with length of τ .

The hurricane arrivals follow a Poisson process with τ = 1 week, and average arrival rate

λt in period t [57]. The survival of component against each wind gust speed Gi of each

strike of hurricane can be modeled by the Lognormal distribution [2]. The probability that
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the component is not affected by hurricane strikes during period t is modeled as

ht =
∞∑
m=0

P

{
G1 < g,G2 < g, ..., GN(τ) < g, |N(τ) = m

}
P
(
N(τ) = m

)

= P
(
N(τ) = 0

)
+
∞∑
m=1

[
P
(
G < g

)]m
P
(
N(τ) = m

)

=
exp

(
− λtτ

)[
− λtτ

]0

0!
+
∞∑
m=1

[
Φ

(
ln (g)− µG

σG

)]m exp
(
− λtτ

)[
λtτ
]m

m!

= exp
(
− λtτ

)( ∞∑
m=0

[
Φ
(

ln (g)−µG
σG

)
λtτ

]m
m!

)
, (5.1)

where g is the maximum wind gust speed that the component can withstand, N(τ) is the

number of hurricane strikes during each period, µG is the average wind gust speed, σG is the

standard deviation of the wind gust speed, and Φ(·) is the CDF of the Normal distribution.

Using

∞∑
k=0

zk

k!
= exp(z),

we obtain

ht = exp
(
− λtτt

)(
exp

[
Φ
( ln (g)− µG

σG

)
λtτ

])

= exp

[
λtτ

(
Φ
( ln (g)− µG

σG

)
− 1

)]
. (5.2)

The failure probability of the component increases in its state. If the component is

in state j ∈ {1, ..., k} at the beginning of period t, ft(j) denotes the probability that the

component fails due to aging and deterioration, and ft(j+1) > ft(j) for j ∈ {1, ..., k−1}.
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On the other hand, dt(j) represents the probability that the component will deteriorate

to state j+1 in period t for j ∈ {1, ..., k−1}, if the component is in state j at the beginning

of period t, and dt(j + 1) > dt(j) for j ∈ {1, ..., k − 1}. 1− dt(j) denotes the probability

that the state of the component remains the same in period t. That is, the component can

at most deteriorate by one level in each period. This transition probability is considered

only in the event that the failure due to aging and hurricane damage do not occur in that

particular period and state. However, if the failure occurs, the deterioration transition will

not occur; and thus this probability cannot be considered in that case.

5.3.2 Model Formulation

The optimality equation for the finite horizon MDP can be written as

Vt(st) = min
a∈A(st)

{
rt(st, a) +

∑
j∈S

pt(j|st, a)Vt+1(j)

}
, (5.3)

where Vt(st) is the minimum total expected cost, when the component is in state st in the

beginning of period t; rt(st, a) is the expected cost of taking action a in state st in period

t, and pt(j|st, a) is the transition probability of going to state j in the next decision epoch,

given the component is currently in state st and action a is taken. At each decision epoch,

when the component is in functional state, i.e., st = j where j ∈ {1, ..., k}, we can either

do nothing, or we can perform preventive maintenance. Therefore, the optimality equation

for this state is written as

Vt(j) = min

{
C(NA) + ht

(
ft(j)Vt+1(k + 1)

+
(

1− ft(j)
)(
dt(j)Vt+1(j + 1) +

(
1− dt(j)

)
Vt+1(j)

))

+
(

1− ht
)
Vt+1(k + 2), C(PMj) +Wt(1)

}
, (5.4)
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where

Wt(1) = ht

(
ft(1)Vt+1(k + 1)

+
(

1− ft(1)
)(
dt(1)Vt+1(2) +

(
1− dt(1)

)
Vt+1(1)

))

+
(

1− ht
)
Vt+1(k + 2), (5.5)

where the first expression in the curly braces represents the total expected cost of actionNA

(doing nothing), while the second expression represents the total expected cost of action

PMj (performing preventive maintenance in state j), given the component is in state j in

decision epoch t. The total expected cost of action NA is composed of following costs:

the first term represents the expected cost of action NA in period t (which is zero), the

second term is the total expected cost for periods t + 1, ..., N , if action NA is taken in

period t, if the hurricane occurs in period t but it does not result in damage or the hurricane

does not occur. The third term is the total expected cost for periods t + 1, ..., N , if action

NA is taken and the hurricane occurs and damages the component. The same order of the

expected cost breakdown holds for total expected cost of PMj in the second expression in

the curly braces.

When the component goes to failure state, i.e., st = k + 1 we can either take no

action, or we can perform corrective maintenance on component. By taking no action,

an expected downtime cost of DTt is incurred. In the next subsection, we explain how to

compute the associated downtime cost of a component in the power system. The optimality

equation for this state of the component is given as

Vt(k + 1) = min

{
C(NA) +DTt + ht

(
Vt+1(k + 1)

)

+
(

1− ht
)
Vt+1(k + 2), C(CM) +Wt(1)

}
, (5.6)
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where the first expression in the curly braces of equation (5.6) shows the total expected cost

of taking no action, and the second expression represents the total expected cost of doing

corrective maintenance on the component. The total expected cost of taking no action is

composed of following elements: the expected cost of taking no action (which is zero) in

period t, the expected downtime cost during period t, the total expected cost for periods

t + 1, ..., N , if the component is not affected by hurricane in period t, and the expected

cost from decision epoch t+ 1 to the end if the component fails due to hurricane. The total

expected cost of doing corrective maintenance is as follows: the expected cost of corrective

maintenance operation in period t, the total expected cost for periods t + 1, ..., N if the

hurricane does not occur or if it occurs but does not affect the component in period t, and

the total expected cost for periods t + 1, ..., N if the component fails due to hurricane in

period t.

Finally, when the component fails due to hurricane, i.e., st = k + 2, there are two

actions available: doing nothing (NA), and restoring the component to its functional state

(RS). The optimality equation for this state is

Vt(k + 2) = min

{
C(NA) +DTt + Vt+1(k + 2),C(RS) +Wt(1)

}
. (5.7)

By taking no action on restoration and postponing the action to the future, an expected

downtime cost DTt is incurred in period t. On the other hand, as shown in (5.7), if restora-

tion operation is performed, an expected restoration cost in period t is incurred. The ex-

pected future cost of performing restoration action in this state is the same as the expected

future cost of performing corrective maintenance, when the component is in the failure

state.
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Figure 5.4 IEEE 6-bus system

5.3.3 Downtime Cost

When the component goes through downtime, it can affect the whole configuration

of the electricity grid operation. For instance, as shown in Figure 5.4, if the transmission

line which connects bus 2 to bus 3 goes offline, generator 2 will not be able to supply

any portion of the load 1 in the system. Therefore, the generation unit commitment status

along with power dispatch configuration of the grid will be affected. It can result in higher

generation cost to supply the load. Furthermore, if the system is not able to supply the load,

the load will be interrupted which results in incurring opportunity cost of load interruption.

Therefore, the downtime cost, DTt in a particular period t is considered to be the difference

in the minimum system operation cost when the component is online and when it is offline.

The minimum operation cost is obtained through following objective function

min
LI,P,I

∑
t

∑
b

V OLLbtLIbt +
∑
t

∑
i

CitPitIit, (5.8)

where b is index for buses, Cit is the generation cost of unit i in period t, Iit is the com-

mitment state of generating unit i at period t (1 if committed, otherwise 0), l is the index

for transmission lines, LIbt is the load interruption at bus b in period t, Pit is the power
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generation of unit i in period t, and V OLLbt is the value of lost load at bus b in period t.

The first term represents the total opportunity cost of load interruption, and the second term

represents the generation cost of the system. This objective function is subject to following

physical constraints which we borrow from Chapter 3 as

∑
i∈Bb

Pit +
∑
l∈Bb

PLlt + LIbt = Dbt, ∀b, (5.9)

Pmin
i yitIit ≤ Pit ≤ Pmax

i yitIit, ∀i, (5.10)

−M
∑
b

αibzbt ≤ Pit ≤M
∑
b

αibzbt, ∀i, (5.11)

−PLmaxl wlt ≤ PLlt ≤ PLmaxl wlt, ∀l, (5.12)

−M
∑
b

βfromlb zbt ≤ PLlt ≤M
∑
b

βfromlb zbt, ∀l, (5.13)

−M
∑
b

|βtolb |zbt ≤ PLlt ≤M
∑
b

|βtolb |zbt, ∀l, and (5.14)

−M(1− wlt)−M(1−
∑
b

|βlb|zbt) ≤ PLlt −

∑
b βlbδbt
xl

≤M(1− wlt) +M(1−
∑
b

|βlb|zbt), ∀l,∀b, (5.15)

where Bb is set of components connected to bus b, Dbt is the electricity demand at bus b

in period t, i is the index for generation units, M is a large positive constant, Pmax
i is the

maximum generation capacity of unit i, Pmin
i is the minimum power generation capacity

of unit i, PLlt is the power flow of line l in period t, PLmaxl is the maximum power flow

capacity of line l in period t,wlt is the outage state of line l in period t (0 if offline, otherwise
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1), yit is the outage state of unit i in period t (0 if offline, otherwise 1), zbt is the outage

state of bus b in period t (0 if offline, otherwise 1), αib is the element of unit i and bus b in

generation-bus incidence matrix, βlb is the element of line l and bus b in line-bus incidence

matrix, and δbt is the bus voltage angle.

Equation (5.9) represents the load balance equation, (5.10) models the power gen-

eration capacity, (5.11) models the impacts of outage state of associated buses to each

generation unit’s functional state, (5.12) shows the transmission line flow limits, (5.13) and

(5.14) represent the impacts of outage state of connected buses to each transmission line’s

functional state, and (5.15) models the bus voltage angle constraint. Further details on these

constraints can be found in Chapter 3.

5.3.4 Solution Method

The optimality equations are solved using backward induction algorithm which is

described in Algorithm 5.1 [102]. The algorithm starts from last period and the optimal

policy for all periods are sequentially constructed. The algorithm goes one period back to

find the optimal policy when there is one period to go. Afterward, in the next iterations of

algorithm, it continues going back one more period in order to find the optimal sequence

of actions. This process is iterated until it reaches to the beginning of planning horizon. At

this point, given the initial state of the system, the optimal sequential policy for the whole

planning horizon is constructed.

5.4 Numerical Results and Analysis

The IEEE 6-bus system is considered to evaluate the effectiveness of the proposed

model as shown in Figure 5.4. The system is composed of three generating units, six

buses, and seven transmission lines. Line 1 which connects buses 1 and 2 is considered for
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Algorithm 5.1 The Backward Induction algorithm [102]

Step 1: Set n = T and VT (sT ) = rT (sT )

Step 2: Set n = n− 1 and compute Vt(st) for each st ∈ S

Vt(st) = mina∈Ast

{
rt(st, a) +

∑
j∈S pt(j|st, a)Vt+1(j)

}
Set A∗st,t = arg mina∈Ast

{
rt(st, a) +

∑
j∈S pt(j|st, a)V ∗t+1(j)

}
Step 3: If n = 1, stop. Otherwise, return to step 2.

preventive maintenance program. The value of lost load per MWh for bus 4 (commercial

load) is considered as $6,979, for bus 5 (industrial load) as $3,706, and for the rest of

the loads (residential loads) as $110. The generation cost for generators 1, 2, and 3 are

$35.09, $38.05, $46.02 per MWh, respectively. The rest of the system setups are the same

as the IEEE 6-bus system provided in [119]. The hourly load profile over the year has been

aggregated into weekly load profile as shown in Figure 5.5.

Figure 5.5 Aggregated load profile in a 52-week horizon for the IEEE 6-bus system
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The transmission line 1 is considered to function in three different functional states

(k=3). State 4 is considered as failure due to aging and deterioration, while state 5 is consid-

ered to be the failure due to hurricane damage. Based on hurricane data from 1800 through

2000 [57], the hurricane arrival rate λt for each week t from June through November are

calculated as 0.027, 0.042, 0.1, 0.062, 0.25, 0.01. Based on maximum wind gust speed

that the transmission line can withstand, the probability of survival from each hurricane is

assumed to be 0.65. The transition probabilities are assumed as follows: ft(1) =0.005,

ft(2) =0.01, ft(3) =0.015, dt(1) =0.01, dt(2) =0.02, and dt(3) =0.025. In addition,

the maintenance costs are assumed as follows: C(PM1) =$1,200, C(PM2) =$1,200,

C(PM3) =$2,500, C(CM) =$7,000, and C(RS) =$12,000.

The MIP problem is solved to obtain the downtime cost of the transmission line 1 per

week for 52 weeks. Once the transmission line goes offline, the load is not interrupted, but

the generation cost increases. The annual system operation cost over the year if the trans-

mission line 1 is operational is $46,623,900; while, when it is offline, the annual system

operation cost will increase to $47,970,980. However, the cost difference in each week,

i.e., the downtime cost varies based on load fluctuations over the planning horizon.

Incorporating the obtained downtime cost per week, the optimality equation is solved

using the backward induction algorithm. The result is shown in the optimal policy lookup

Table 5.1. As expected, when the component is in state 1, the optimal policy is always to

take no action. When the component is in state 2, the optimal policy is to take no action

from week 23 through week 40. However, the optimal policy for the remainder of the year

is to perform preventive maintenance in order to bring the component into as-good-as-

new condition. As intuitively expected, performing preventive maintenance actions during

hurricane season does not have any economic value. When the component is in state 3, the

optimal policy is always to perform preventive maintenance. In the case that the component

is failed due to aging and deterioration, the optimal policy is to perform the corrective

maintenance immediately. Similarly, when it is failed due to hurricane, the optimal policy
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Table 5.1 Optimal maintenance decision lookup table

System Weeks Weeks Weeks
State 1-22 23-40 41-52

1 NA NA NA
2 PM NA PM
3 PM PM PM
4 CM CM CM
5 RS RS RS

is to restore it without any delay. As expected, regardless of the cause of failure, when the

component is filed, it needs to be brought back to functional condition as soon as possible.

Table 5.2 presents the expected annual maintenance costs with and without preven-

tive maintenance programs. We observe that the expected cost saving due to implementing

the preventive maintenance program is the highest (39%), when the initial state of the com-

ponent is 3. The expected annual maintenance costs by implementing the derived optimal

schedule are as follows: $10,317, $11,517, $12,817, $17,317, and $22,317 if the state of

the component at the beginning of the year is 1, 2, 3, 4, and 5, respectively. If the preventive

maintenance program is not implemented, and fire fighting corrective maintenance strategy

in the case of failure is the only maintenance plan, the annual expected maintenance costs

are as follows: $10,317, $14,447, $17,881, $17,950, and $22,950, if the state of the com-

ponent at the beginning of the year is 1, 2, 3, 4, and 5, respectively. Therefore, the expected

cost saving due to implementing preventive maintenance program if the initial state of the

component is 1, 2, 3, 4, and 5 is 0%, 25%, 39%, 3%, and 4%, respectively.
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Table 5.2 Annual cost with and without preventive maintenance program

Initial Exp. Cost Exp. Cost Cost
State (No PM) (With PM) Saving

1 $10,317 $10,317 0%
2 $14,447 $11,517 25%
3 $17,881 $12,817 39%
4 $17,950 $17,317 3%
5 $22,950 $22,317 4%

5.5 Conclusions

A MDP model was developed to find the optimal maintenance policy of a component

of power grid. Using MIP, the downtime cost per period was obtained. The hurricane

effect probabilities were derived and incorporated in the model. The MDP problem was

solved using the backward induction algorithm. The results show that the cost saving due

to implementing the preventive maintenance program is significant. However, the amount

saved depends on the state of the component at the beginning of the planning horizon. The

proposed model can be used effectively for any major component of the power grid.
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Chapter 6

Infrastructure Hardening and Condition-Based
Maintenance Considering El Niño/La Niña
Effects

Global climatological phenomena such as El Niño/La Niña can induce seasonality on

hurricane arrival rates in long term. Effective asset management of electric power systems

has a great impact on quality of services, and significantly contributes to reducing the

total operation costs of the utilities. In this chapter, an integrated infrastructure hardening

and condition-based maintenance model, considering long-term climatological effects of

El Niño/La Niña on hurricane arrival is presented. The aim is to provide a comprehensive

asset management strategy for power grid infrastructure located in hurricane prone areas.

6.1 Notation

The notation used for problem formulation is shown as follows.

Indices:
t Index for time periods

Functions:
I(·) Indicator function
Nt(τ) Number of hurricane arrivals in period t
Vt(π, z) Minimum expected cost-to-go in state (π, z) at decision epoch t
Λ(t) Cumulative intensity function of non-homogenous Poisson process at time t
Φ(·) CDF of normal distribution

Parameters:
c El Niño cycle length
Ca Immediate cost of taking action a
DT at Downtime cost in period t due to action a
n Number of time periods for which the hardening action will be effective
T Length of planning horizon
β Discount factor
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λt Hurricane arrival rate in period t
µ Mean of a normal random variable
σ2 Variance of a normal random variable
τ Length of each period

Probabilities:
F (π) Probability of failure in next period, given it is functional in current period
H0
t Hurricane survival probability in period t, if system is not in hardened state

H1
t Hurricane survival probability in period t, if system is in hardened state

pij Transition probability from state i to state j
R(π) Probability of survival in next period, given it is functional in current period
πi Probability that the system is in state i

States:
ei Extreme state i
s Original deterioration state
S Original state space
S
′ Partially observable state space

z Infrastructure hardening state
π Information state
π̃(π) Information state in the next period, if it is currently in information state π

Variables:
CM Corrective maintenance
G Wind gust speed random variable
G
′ Random variable for strength of system, given it is not in hardened state

G
′′ Random variable for strength of system, given it is in hardened state

HH Hardening against hurricane
IN Inspection
NA No action
PM Preventive maintenance
RS Restoration

6.2 Model Description

Consider a critical component of power system infrastructure located in a hurricane-

prone area. From this point forward, this component of the infrastructure is alternatively

called the system. The system is subject to breakdown due to two independent and com-

peting random failure processes: failure as a result of maximum deterioration, and failure

as a result of hurricane strikes. In addition to the failure risks, the system is subject to
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progressive deterioration over time. As the system deteriorates over time, the probability

of failure increases. Furthermore, the associated cost to bring the system to as-good-as-

new condition increases. On the other hand, regardless of the deterioration condition of the

system, when a hurricane strikes, it can result in failure of the system. However, the risk of

a hurricane strike varies from one season to another, and from one year to another year due

to periodic nature of the phenomenon, and long-term climatological effects of El Niño/La

Niña on hurricane arrivals [57]. Therefore, the overall risk of failure of the system over the

planning horizon is dynamically changing. In addition, the downtime cost of the system

can be nonstationary due to variation of demand for electricity and generation cost over

the planning horizon. The trade-off arises between the risk of failure and the associated

expected downtime cost of the system, and the capital invested on asset management.

Using online data from the Supervisory Control and Data Acquisition (SCADA) sys-

tem, the failure condition of the power system infrastructure can be detected. It is assumed

that the failure due to hurricane strikes can be fully observed and distinguished from failure

due to maximum deterioration. On the other hand, the deterioration level of the system can

be partially observed from the probabilistic reliability function or condition monitoring

systems, given the system is still in functional state. In order to fully observe the deteri-

oration level of the system, inspections are required to be performed. However, frequent

inspections of the system is neither practical, nor cost-effective. Therefore, a mixture of full

and partial observations can be utilized for making maintenance and hardening decisions.

6.2.1 State Space

We consider a two-dimensional state (s, z) in order to describe the state of the system.

The first element (s) represents the deterioration level of the system, while the second

element (z) shows the hardening state of the system. When s ∈ {1, ..., k}, the system is

functional. As s increases from 1 to k, the system deteriorates. That is, s = 1 indicates that
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Figure 6.1 Original state transition diagram

the system is in the as-good-as-new condition, while s = k indicates the most deteriorated

functional state of the system. We also consider two failure modes (states) for the system:

failure due to maximum deterioration, denoted by s = k + 1, and failure due to damage

by hurricane, denoted as s = k + 2. Figure 6.1 shows the transition diagram for the first

element of the state space.

The second element of the state of the system, i.e., z, is a nonnegative integer which

represents the number of time periods that the system will be in the hardened state. z can

be interpreted as a countdown timer for hardening measures that are of temporary nature.

For instance, tree trimming as a hardening measure will be in effect for a few years and

needs to be repeated after a certain period of time depending on geographical and other

environmental factors. When the hardening measure is taken, immediately the hardening

state for the system is brought to its maximum value n, i.e., the length of time interval
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during which the hardening measure will be in effect. By passing each time period after

last hardening, the value of z is reduced by one unit. When the effect of last hardening

measure expires (which takes n time periods from last hardening), then we have z = 0.

Regardless of deterioration level of the system as well as the hardening measures which

are taken, the system can fail due to hurricane, if it cannot withstand the hurricane’s wind

forces.

Overall, the original state space of the system is defined as

S =
{

(s, z); s ∈ {1, ..., k + 2}; z ∈ {0, ..., n}
}
. (6.1)

Without a full observation, the exact deterioration state of a functional system cannot

be known. On the other hand, in many cases such as power infrastructure, frequent inspec-

tion of the system is not practical. One approach to overcome this barrier is to incorporate

the probability of being in a particular state at each decision epoch. To model this uncer-

tainty, a probability distribution can be used to define the state of the system as the decision

maker’s belief about the underlying state of the system. To this end, the state of the system

is defined as

(π, z) =
(

[π1, ..., πk, πk+1, πk+2], z
)
, (6.2)

where πi is defined as the probability that the system is in state i with i ∈ {1, ..., k + 2},

while π is known as information state in the literature [48]. The combination of the first

element (information state) and the second element (hardening state) represents the state of

the system. The state space under the POMDP, i.e., the partially observable state space is

defined as

S
′
=

{(
[π1, ..., πk, πk+1, πk+2], z

)
; 0 ≤ πi ≤ 1,∀i;

k+1∑
i=1

πi = 1⊕ πk+2 = 1; z ∈ {0, ..., n}, n ∈ N0;

}
, (6.3)
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where ⊕ is the logic operator for exclusive or, and N0 is the set of nonnegative integers.

If the state of the system is fully observable and known, i.e., an element of the infor-

mation state is equal to 1, then the remaining elements of information state take the value

of 0. This known state is called an extreme state, ei. For instance e1 indicates that the

system is known to be in the as-good-as-new condition; or ek+1 indicates that the system

is certainly in the state of failure due to deterioration.

When the system is functional, then
∑k

i=1 πi = 1. When the system is nonfunctional,

it is either in failure state due to deterioration (π = ek+1), or in the failure state due to

hurricanes (π = ek+2). Since both the failure states are fully observable, there are no

probabilities associated with them in the partially observable state space when the system

is functioning. Our policy is to immediately perform the corrective maintenance when the

system fails due to deterioration, and immediately perform restoration when it fails due

to hurricanes. Therefore, when the system is functional, we always have πk+1 = 0 and

πk+2 = 0.

6.2.2 Hurricane Survival Modeling

The strength of power structures and the stress of wind gusts in hurricane strikes can

be modeled by the lognormal distribution [2, 120]. Consider that the wind gust speed is a

random variable distributed as G ∼ LogNor(µG, σ
2
G). The maximum wind gust speed that

the system can withstand is a random variable distributed asG′ ∼ LogNor(µG′ , σ
2
G
′ ) when

the system is not in the hardened state (z = 0); and G′′ ∼ LogNor(µG′′ , σ
2
G′′

) when the

system is in hardened state (z > 0). The following definition and assumptions are needed

for continuing the discussion.

Definition 1: SupposeX and Y are normally distributed. IfX has a smaller variance,

or greater mean than Y , then random variable X second order stochastically dominates

(SSD) random variable Y , denoted as X �SSD Y [121].
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Assumption 1: When the system is in hardened state, then the mean of its strength

against wind stress is higher than when it is in non-hardened state (µG′′ > µG′ ).

Assumption 2: After hardening the system, the variance of strength does not in-

crease (σ2
G′′
≤ σ2

G′
).

Proposition 1: Random variable G′′ second order stochastically dominates (SSD)

random variable G′ , denoted as G′′ �SSD G
′ .

Proof: As both G′ and G′′ are lognormally distributed, considering Assumptions 1

and 2, the relationship between corresponding means and between corresponding variances

of normally distributed random variables ln(G
′
) and ln(G

′′
) still holds. Since, ln(G

′′
) �SSD

ln(G
′
), then G′′ �SSD G

′ . �

Assumption 3: Arrival of any two hurricane strikes and their associated wind gust

speeds are considered to be independent from each other.

Using a dynamic stress-strength model which both stress (i.e., the wind gust speed)

and strength (i.e., the maximum wind gust speed that the system can withstand) are random

variables, the probability that the system is not affected by hurricane strikes during period

t, i.e., from decision epoch t until decision epoch t+ 1 is modeled as

H0
t =

∞∑
m=0

P

{
G1 < G

′

1, G2 < G
′

2, ..., GNt(τ) < G
′

Nt(τ), |Nt(τ) = m

}
P
(
Nt(τ) = m

)

=
∞∑
m=0

[
P
(
G < G

′
)]m

P
(
Nt(τ) = m

)
, (6.4)

where H0
t is the probability of survival in non-hardened state, and Nt(τ) is the number of

hurricane strikes in period t. The annual seasonal pattern and long-term periodic behavior

of hurricane arrivals considering El Niño/La Niña effects need to be addressed using an

appropriate model. Therefore, the probability of hurricane arrivals from the beginning of

planning horizon until time t′ = τt can be modeled using a nonhomogeneous Poisson

(NHP) process as
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P
(
N(t

′
) = m

′
)

=
exp

(
− Λ(t

′
)
)(

Λ(t
′
)
)m′

m′ !
, (6.5)

where Λ(t
′
) is the cumulative intensity function for the NHP process. In [57], Λ(t

′
) was

derived for a double-beta periodic intensity model to describe the effects of El Niño/La

Niña on hurricane arrivals. By replacing Nt(τ) with N(t
′
) in (6.4) the reliability function

of the system against hurricane considering El Niño/La Niña is obtained. However, this ap-

proach is useful for risk analysis of a power system component, when memoryless property

is not desired. Another alternative approach is to directly use the average hurricane arrival

rate in each period t within the long-term El Niño/La Niña cycle c � t, i.e., λt and use a

homogenous Poisson process to model the hurricane arrival rate during each long-term El

Niño/La Niña cycle in a piecewise manner. In the latter approach, the survival probability

of system against hurricane is independent from previous periods; hence, the memoryless

property for transition probabilities to failure state due to hurricane holds.

We can write

P
(
G < G

′
)

= P
( G
G′

< 1
)

= P
(

ln(G)− ln(G
′
) < 0

)
, (6.6)

where ln(G) ∼ N(µG, σ
2
G) and ln(G

′
) ∼ N(µG′ , σ

2
G′

). By standardizing these random

variables, and plugging the Poisson probability mass function in the hurricane survival

function (6.4), we have

H0
t =

∞∑
m=0

[
Φ

(
µG′ − µG√
σG2 + σG′

2

)]m exp
(
− τλt

)(
λtτ
)m

m!
, (6.7)

where Φ(·) is the cumulative distribution function of the normal distribution. Using the

following geometric series

∞∑
q=0

rq

q!
= exp(r), (6.8)

we obtain
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H0
t = exp

[
τλt

(
Φ
( µG′ − µG√

σG2 + σG′
2

)
− 1

)]
. (6.9)

This function computes the probability of not being affected by hurricanes in period t given

the system is not in hardened state (z = 0). In the same manner, the probability of survival

of the system in period t when it is in hardened state (z > 0), denoted as H1
t is modeled by

replacing µG′ and σ2
G′

with µG′′ and σ2
G′′

, respectively. Therefore, the transition probability

of failure due to hurricanes in period t, depending on the hardening state of the system

which can be either z = 0, or z > 0 is obtained as 1−H0
t , or 1−H1

t , respectively.

6.2.3 Transition Probabilities

First, suppose that the system is currently functional with information state π. The

probability that the system will survive until the next decision epoch, given there is no

hurricane effect, is referred as the conditional reliability function, R(π). This function is

defined as

R(π) =
k∑
i=1

k∑
j=1

πipij, (6.10)

where pij is the transition probability from state i to state j in the original state space S,

and
∑k+1

j=1 pij = 1,∀i ∈ {1, ..., k + 1}. As shown by [49], based on the law of conditional

probability, the information state at the beginning of the next decision epoch, given the

system will be still functional, is

π̃j(π) =

{ ∑k
i=1 πipij
R(π)

, j = 1, ..., k,

0, otherwise.
(6.11)

Therefore, the system makes a transition to the next information state with probability

R(π) as

π̃(π) =

{[
π̃1(π), π̃2(π), ..., π̃k(π), 0, 0

]
; 0 ≤ π̃i(π) ≤ 1, ∀i = 1, ..., k

}
. (6.12)
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If the current information state is π, the probability that the system fails due to dete-

rioration (if there is no hurricane effect) is obtained by

F (π) =
k∑
i=1

πipi,k+1 = 1−R(π). (6.13)

Therefore, given the system is not affected by hurricane, with probability F (π) it makes a

transition to the extreme state ek+1.

Regardless of the deterioration state of the system, it can be damaged by hurricane

strikes. As derived in the previous subsection, in each period t, depending on the hardening

state of the system, i.e., either z = 0 or z > 0, the functional state of the system makes a

transition to the extreme state ek+2 with probabilities 1−H0
t or 1−H1

t , respectively.

Recall that the second element of the state of the system (the hardening state) is used

as a counter which shows the number of remaining time periods that the hardening action

will be in effect. Therefore, if z = u at decision epoch t, then regardless of the information

state, with probability one, z makes a transition to z′ = max(0, u−1) denoted by (u− 1)+

at decision epoch t+ 1.

6.2.4 Action Space

The following actions constitute the action space at each decision epoch:

• No action (NA);

• Inspection (IN);

• Preventive maintenance (PM);

• Corrective maintenance (CM);

• Restoration (RS);

• Hardening (HH).
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When the system is functional, two actions are always available at each decision

epoch: no action (NA) and inspection (IN ). When the inspection action is taken, the ex-

act functional state of the system is revealed. Subsequently, following each inspection, the

decision maker can choose to either take no action, or to perform a preventive maintenance

(PMi) based on the condition of the system (i.e., the revealed deterioration level i), denoted

by the extreme information state ei. By performing the preventive maintenance, the relia-

bility of the system is fully restored and the system is brought back to the as-good-as-new

condition. The immediate cost of preventive maintenance increases in deterioration state

of the system, i.e., CPMk
> CPMk−1

> ... > CPM1 . Obviously, zero cost is associated with

NA and CPM1 actions. Therefore, a sub-action space when it is revealed by inspection that

the system is in deterioration state i, is represented by {NA,PMi} where i ∈ {1, ..., k}.

Due to the high cost of outage and its consequences in system-level reliability of

the grid, once the system goes to failure state ek+1, we immediately perform corrective

maintenance, denoted by CM , at an immediate cost of CCM . Likewise, when the system

fails due to hurricane damage, we instantaneously restore the system by taking restoration

action, denoted by RS. The cost associated with the restoration is CRS , where CRS ≥

CCM > CPMk
. Furthermore, in order to quantify the changing downtime cost which is

associated with the breakdown of the system during different periods of the year, a separate

downtime cost which is a function of time can be considered for the system.

Finally, in each decision epoch there is another type of action available, i.e., harden-

ing action (HH), at a cost of CHH to strengthen the system against upcoming hurricanes.

This action does not fully eliminate the damage risk due to hurricane strikes, but signifi-

cantly reduces the risk of such damages. The hardening strategy and its subsequent effects

varies depending on infrastructure and its geographical location. These strategies include

but are not limited to vegetation management, undergrounding of distribution and trans-

mission lines, distributed generation, and modernization of the smart grid [122]. Two types

of effects, i.e., temporary and permanent effects can be perceived for the hardening strat-
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egy. For instance, vegetation trimming considering the growing nature of the trees from

one side, and environmental protection and regulatory issues from the other side will be

in effect for a certain period of time. Therefore, such a hardening action with temporary

effects has to be scheduled and repeated in specific time intervals [122]. On the other

hand, engineering solutions such as undergrounding of transmission lines, or installation of

spacer cables and Cutout-Mounted Reclosers [123] result in permanent effects during the

life-cycle of the infrastructure.

6.3 Problem Formulation and Methodology

6.3.1 Problem Formulation

The problem is formulated as a finite horizon POMDP. To construct the optimal-

ity equation, first the expected cost of each action needs to be specified. The optimality

equation for the proposed model is constructed as

Vt(π, z) =



CMt(ek+1, z), π = ek+1,

RSt(ek+2, z), π = ek+2,

min
{
NAt(π, z),

INt(π, z), HHt(π, z)
}
, otherwise,

(6.14)

where Vt(π, z) is the minimum total expected cost-to-go when the system is in information

state π and hardening state z at decision epoch t. As shown, when the system is in the

fully observable information states, i.e., the failure due to hurricane (ek+1), or failure due

to aging and degradation (ek+2), the corresponding actions are immediately taken to bring

the system back to the as-good-as-new condition. When the system is functional, the most

cost-effective action among NA, IN , and HH needs to be taken in that decision epoch.
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When no action is taken at decision epoch t, given the state of the system is (π, z)

the expected cost-to-go can be written as

NAt(π, z) = Wt(π, z), (6.15)

where

Wt(π, z) =

[
H1
t I(z > 0) +H0

t I(z = 0)

]

β

[
R(π)Vt+1

(
π̃(π), (z − 1)+

)
+ F (π)Vt+1

(
ek+1, (z − 1)+

)]

+

[
1−

(
H1
t I(z > 0) +H0

t I(z = 0)
)]
βVt+1

(
ek+2, (z − 1)+

)
, (6.16)

where (z − 1)+ is the positive part of (z − 1) defined as f(x)+ = max(f(x), 0), and I(·)

is the indicator function. The first term in (6.16) represents the total expected cost in period

t if the system is not affected by hurricanes. It considers two possible outcomes which

can result either in continuing the functionality of the system until period t + 1, or system

failure due to deterioration. The second term in (6.16) presents the expected cost in period

t if the system fails due to hurricane. We assume that the failure due to hurricane overrides

any other states of the system, and takes the information state into ek+2.

If the hardening measures are taken, they do not guarantee that the system will sur-

vive against hurricane, but significantly reduce the chance of failure if the hurricane strikes.

The expected cost-to-go by taking the hardening action is obtained by

HHt(π, z) = CHH +H1
t β

[
R(π)Vt+1

(
π̃(π), n− 1

)
+ F (π)Vt+1(ek+1, n− 1)

]

+ (1−H1
t )βVt+1(ek+2, n− 1), (6.17)

where n is the number of periods that hardening will be in effect. By taking the hardening

action, an immediate cost of CHH is incurred and the system continues to evolve. Since
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hardening is performed discrete from the system, we do not consider a downtime cost

associated with this action. As shown in the second and third terms of (6.17), by hardening

the system, the hurricane survival probability in period t immediately increases to H1
t , so

the risk of being affected by hurricane is reduced. By taking this action in decision epoch t,

the hardening state of the system instantaneously makes a transition to n with probability

1.

Once the system fails due to the hurricane, the restoration action must be taken im-

mediately. The expected cost-to-go associated with the restoration action is given by

RSt(ek+2, z) = CRS +DTRSt +Wt(e1, z). (6.18)

By restoration, the system is brought to the as-good-as-new condition. As shown in (6.18)

by taking the restoration action, the restoration cost as well as downtime cost are im-

mediately incurred to the system. In addition, Wt(e1, z) which represents the expected

cost-to-go based on the evolution of a renewed system at decision epoch t is incurred. In

our model, without loss of generality, we assume that renewing the system by taking the

restoration action does not have any impact on the hardening state of the system.

When the system fails due to deterioration, it needs to be repaired immediately. The

corrective maintenance action is taken to bring the system to the as-good-as-new condition.

The expected cost-to-go when the corrective maintenance action is taken is modeled as

CMt(ek+1, z) = CCM +DTCMt +Wt(e1, z), (6.19)

where the first term is the corrective maintenance cost, and the second term is the downtime

cost. Similar to (6.18), the third term in (6.19) represents the expected cost-to-go from

period t for a system in an as-good-as-new condition.

With transition probabilities, the deterioration level of a functional system can be

partially observable. The only way to reveal the exact deterioration state of a functional

system is to perform the inspection action. However, inspection of the system at each
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decision epoch is not cost-effective. Therefore, a sound decision about inspection of the

system is required to be made. After inspection, with respect to the condition of the system,

a proper decision regarding preventive maintenance action can be made. Therefore, the

expected cost-to-go associated with taking the inspection action is obtained as

INt(π, z) = CIN +
k∑
i=1

ACTt(ei, z)πi, (6.20)

where

ACTt(ei, z) = min
{
NAt(ei, z), PMt(ei, z)

}
, (6.21)

where CIN is the immediate inspection cost, and PMt(ei, z) is the expected cost-to-go of

the corresponding preventive maintenance action. As a result of preventive maintenance,

the system is returned to the as-good-as-new condition. The expected cost-to-go is given

by

PMt(ei, z) = CPMi
+DT PMi

t +Wt(e1, z). (6.22)

The proposed formulation is a generic model for systems in which the hardening

action has temporary effects. A special case of this generic formulation can describe the

systems in which the hardening action has permanent effects during the life-cycle of the

system. To do so, simply the value for n needs to be chosen sufficiently large, i.e., n ≥ T .

6.3.2 Solution Method

The optimality equations are solved using the backward induction algorithm [102].

The algorithm starts from the last period and the optimal policy for all periods are sequen-

tially constructed. In order to use backward induction to solve for optimal policy in the

proposed POMDP model, we approximate the sample path denoted by Ω as a priori. The

sample path is defined as a sequence of information states evolving over time by taking no
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action [49]. To this end, we need to construct a sample path from the initial belief state

π0. Furthermore, the sample path that starts from each functional extreme information

state needs to be constructed. Therefore, using (6.11), we construct k + 1 sample paths

denoted by Ωπ0 , Ωe1 , ..., Ωek . As explained earlier, due to a high cost of outage, our policy

is to immediately perform corrective maintenance once the systems goes to failure state

due to deterioration, and restore once it goes to failure state due to hurricanes. Therefore,

once the system goes into the extreme states ek+1 or ek+2, it will not evolve by taking no

action. However, since based on our policy the system is immediately brought back to the

as-good-as-new condition in such circumstances, the system evolves on the sample path

Ωe1 . Hence, there is no need to construct the sample paths Ωek+1
and Ωek+2

.

In order to construct a sample path from a starter information state, e.g., π, using

(6.11) we obtain the first element (i.e., an information state) of the sample path by π̃1 =

π̃(π), and the second element by π̃2 = π̃(π̃(π)), and so forth. A sample path Ωπ emanat-

ing from π is defined as {π̃1, π̃2, ..., π̃L}, where L ≡ min{l : ‖π̃l(π)− π̃l−1(π)‖ ≤ ε}.

The last information state in the sample path, i.e., π̃L is an absorbing state in which from

this point forward the deterioration of the system shows a stationary behavior [47, 49]. As

it is proven in [124], as long as the discrete time Markov chain is acyclic, there exists L

for any ε > 0. By constructing the described sample paths for Π = {π0, e1, ..., ek}, the

set Ψ(Π) =
⋃
π∈Π Ωπ includes all of the information states that the system can reach in

its evolution. Therefore, without compromising the accuracy, the solution space is signif-

icantly reduced which results in higher computational efficiency of the POMDP solution

algorithm.
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Algorithm 6.1 The POMDP solution algorithm

Step 1. Select an unchosen π′ ∈ Π = {π0, e1, ..., ek};
Set |Π| = |Π| − 1.

Step 2. Set π = π
′; and l = 1.

Step 3. Compute R(π) and F (π) using (6.10) and (6.13).

Step 4. Generate the new information state π̃l(π) using (6.11).

Step 5. Set π = π̃l(π); and l = l + 1.

Step 6. If ‖π̃l(π)− π̃l−1(π)‖ ≤ ε stop; Otherwise, return to step 3.

Step 7. Generate sample path Ωπ.

Step 8. If |Π| > 0, return to step 1.

Step 9. Set Ψ(Π) =
⋃
π∈Π Ωπ.

Step 10. Set t = T ;
Set VT (π, z) = 0,∀π ∈ Ψ(Π),∀z ∈ {0, ..., n}.

Step 11. Set t = t− 1;
Compute H0

t and H1
t using (6.9);

Using (6.14) compute Vt(π, z),∀π ∈ Ψ(Π),∀z ∈ {0, ..., n};
Set optimal policy A∗t (π, z) = arg minVt(π, z).

Step 12. If t = 1, stop; Otherwise, return to step 11.

Algorithm 6.1 shows the steps of the POMDP solution algorithm. As shown, the

initial belief state and the extreme states play a central role in constructing the reduced in-

formation state space of the system. Cardinality of set Π is denoted by |Π| in the algorithm.

Steps 1 to 8 construct the sample paths emanating from each information state member of

the set Π. These steps are iterated until the corresponding sample paths emanating from

every and each member of the set Π are obtained. Note that in step 6, the Euclidean norm

of the difference of two consecutive information states emanated from a information state
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π is computed and compared with the small value ε. When this norm becomes smaller than

ε, the associated sample path Ωπ reaches to its steady state behavior and no longer evolves.

In step 9, the reduced information state space of the system, i.e., Ψ(Π) is formed, where

Ψ(Π) ⊂ S
′ . Step 10 incorporates the terminal values of the system at the end of planning

horizon at decision epoch T . We assume that at the end of planning horizon the system is

overhauled regardless of its condition. Therefore, without loss of generality, the terminal

values for all states are assumed as rT (π, z) = 0.

Step 11 computes the minimum expected cost-to-go and finds the optimal policies in

a backward manner. This step is iterated until the optimal actions for all decision epochs in

the entire planning horizon are obtained. As explained, an MDP equivalent of the POMDP

problem with reduced state space is solved to find the optimal solution for the proposed

model. This approach enables one to solve a non-stationary problem for an exact solution.

This conversion of the POMDP to its MDP equivalent results in inflation of the problem

size. However, this inflation has already been minimized through steps 1 to 9 as earlier

explained. As shown, a considerable number of states and associated computations are

eliminated without significant compromise on the accuracy of the model.

6.4 Numerical Analysis

In this section, we analyze a standard oil-filled transformer in order to illustrate the

application and effectiveness of the proposed model. Dissolved Gas-in-Oil Analysis (DGA)

is widely used in power industry as a useful diagnostic tool for evaluating the health condi-

tion of transformers. Measurement of certain gases generated in an oil-filled transformer in

operation is a reliable indicator of an existing malfunction that may result in failure, if not

corrected. The failure mechanisms include severe overloading, pump motor failure, arc-

ing, partial discharge, and low-energy sparking, among others. These failure mechanisms
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which can occur singly or simultaneously, decompose the insulating materials and form

variety of combustible and noncombustible gases. Normal operation of a transformer can

also result in the formation of various gases [125]. As shown in Table 6.1, based on key gas

concentration limits, a four-level criterion was developed in [125] to identify the deteriora-

tion level of a transformer (TDCG in the Table 6.1 stands for Total Dissolved Combustible

Gas). Deterioration level 1 represents as-good-as-new, while deterioration level 4 repre-

sents failure or near failure condition. Deterioration levels 2 and 3 represent the system

with minor and major deteriorations, respectively.

For our analysis, we use data from [126]. In their study, the same deterioration levels

and key gas concentration limits as [125] are considered, while condition 4 is considered to

be a failure due to deterioration. By analyzing the historical data from condition monitoring

of multiple transformers of the same type and manufacturer, they estimated the weekly

transition probability matrix as

Pw =


0.9917 0.0083 0.0000 0.0000

0 0.9936 0.0064 0.0000
0 0 0.9891 0.0109
0 0 0 1

 . (6.23)

Since the length of each period in our model is τ = 1 month, we need to use a monthly

transition probability in our analysis. Without loss of generality, we assume each month to

be exactly four weeks. Therefore, the following 4-period (monthly) transition probability

matrix for the underlying discrete-time Markov chain is used in our analysis:

Pm =


0.9672 0.0325 0.0003 0.0000

0 0.9746 0.0249 0.0005
0 0 0.9571 0.0429
0 0 0 1

 , (6.24)

where Pm = P4
w.

104



Table 6.1 Dissolved key gas concentration limits (µL/L(ppm))

Key Gas Hydrogen Methane Acetylene Ethylene Ethane Carbon monoxide Carbon dioxide TDCG
(H2) (CH4) (C2H2) (C2H4) (C2H4) (CO) (CO2)

Deterioration level 1 <100 <120 <35 <50 <65 <350 <2500 <720
Deterioration level 2 101-700 121-400 36-50 51-100 66-100 351-570 2500-4000 721-1920
Deterioration level 3 701-1800 401-1000 51-80 101-200 101-150 571-1400 4001-10000 1921-4630
Deterioration level 4 >1800 >100 >80 >200 >150 >1400 >10000 >4630

105



In order to consider the long-term climatological effects of El Niño/La Niña, the

problem needs to be solved for at least one long-term El Niño/La Niña cycle. From [57],

we consider this cycle as c =5 years. From the same study, we use the mean number of

hurricane arrivals for each month t, denoted as λt during each El Niño/La Niña cycle for the

Atlantic hurricanes, estimated from a data set of 102 years. On the other hand, the planning

horizon needs to be long enough to study the economic impacts of capital expenditures on

engineering solutions for the hardening strategy with permanent effects. Based on these

considerations, we solve the problem for planning horizon of T =120 months, i.e., for two

consecutive El Niño/La Niña cycles. We also assume that the planning horizon starts at the

beginning of the first El Niño/La Niña cycle.

The discount factor is assumed as β =0.99, and the threshold value for the Euclidean

norm as ε =0.01. From [126], the inspection cost is considered as CIN =$100, the mi-

nor maintenance cost as CPM2 =$1,000, the major maintenance cost as CPM3 =$10,000,

and the corrective maintenance cost as CCM =$100,000. We set the restoration cost to

CRS =$100,000 (same as corrective maintenance cost). The minor maintenance is done

online, while the major maintenance is performed offline [126]. Therefore, the downtime

cost for minor maintenance is DT PM2
t =0. In [126], the downtime costs for major mainte-

nance and also corrective maintenance have been aggregated into the corresponding main-

tenance cost. From [120], the mean of the logarithm of wind gust speed and its standard

deviation are considered as µG =3.85 and σG =0.427, respectively. The parameters associ-

ated with hurricane hardening actions varies based on geographical location, and structural

characteristics of the infrastructure in question. Without loss of generality, we assume the

following parameters for our analysis: the cost of hurricane hardening action with tempo-

rary effects is assumed as $3,000, and the number of time periods that it will be in effect

is assumed to be n =24 months; the cost of hurricane hardening action with permanent

effects is assumed to be $20,000; the mean of the logarithm of structure’s strength and its

standard deviation without hardening are µG′ =4.7 and σG′ =0.1, respectively; the mean

106



Table 6.2 Parameter values for numerical analysis

Parameter Value Source

β 0.99 Assumption
ε 0.01 Assumption
CIN $100 [126]
CPM2 $1,000 [126]
CPM3 $10,000 [126]
CCM $100,000 [126]
CRS $100,000 Assumption
CHH (temporary) $3,000 Assumption
CHH (permanent) $20,000 Assumption
DT PM2

t 0 [126]
DT PM3

t Aggregated [126]
DTCMt Aggregated [126]
DTRSt Aggregated Assumption
µG 3.85 [120]
σG 0.427 [120]
µG′ 4.70 Assumption
σG′ 0.1 Assumption
µG′′ (temporary) 4.90 Assumption
σG′′ (temporary) 0.1 Assumption
µG′′ (permanent) 5.00 Assumption
σG′′ (permanent) 0.1 Assumption
λt (constant) 1.64 [57]
λt (variable) Varying [57]

of the logarithm of structure’s strength and its standard deviation with temporary hardening

effects are µG′′ =4.9 and σG′′ =0.1, respectively; and, the mean of the logarithm of struc-

ture’s strength and its standards deviation with permanent hardening effects are µG′′ =5

and σG′′ =0.1, respectively. Table 6.2 summarizes the parameter values used for numerical

analysis.

To illustrate the problem and the impacts of different asset management strategies,

we analyze six cases as follows:

Case 1: Hurricane effects are considered. Preventive maintenance, corrective main-

tenance and restoration are available for the system. In addition, tree trimming is used as a
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hardening strategy with temporary effects, i.e., n =24 months.

Case 2: Hurricane effects are considered. Preventive maintenance, corrective main-

tenance and restoration are available for the system. In addition, structural reinforcement

is used as a hardening strategy with permanent effects.

Case 3: Hurricane effects are considered. Preventive maintenance, corrective main-

tenance and restoration are available for the system. There is no hardening strategy.

Case 4: Hurricane effects are considered. Corrective maintenance, and restoration

are available for the system. However, preventive maintenance and hardening strategy are

eliminated from asset management.

Case 5: There is no hurricane affecting the system. Preventive maintenance, correc-

tive maintenance and restoration are available for the system.

Case 6: There is no hurricane affecting the system. Only corrective maintenance is

available for the system.

In order to analyze the implications of incorporating El Niño/La Niña, we analyze

two scenarios for Cases 1 to 4, as follows:

Scenario I: The El Niño/La Niña effects on hurricane arrivals are considered. There-

fore, nonhomogeneous hurricane arrival rates λt for Poisson processes are used to describe

the El Niño/La Niña effects on hurricane arrivals in the model.

Scenario II: The El Niño/La Niña effects are ignored. Instead, a homogeneous hur-

ricane arrival rate for Poisson process (i.e., λt =1.64 per month, ∀t ∈ {1, ..., 120}) is used

to model the hurricane arrivals.

We implemented Algorithm 6.1 in MATLAB and ran it for each case/scenario on

a workstation with Core 2 Quad 2.33 GHz CPU and 8 GB memory. In addition to solv-

ing the problem, we simulate the obtained results from Scenario II of Cases 1 to 4 to

evaluate the derived policies from scenario with homogenous hurricane arrivals in an envi-
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ronment which hurricanes follow a nonhomogeneous arrival rate due to El Niño/La Niña

phenomenon. The aim is to analyze the opportunity cost of ignoring the El Niño/La Niña

effects for deriving the optimal policies.

In continuation, the numerical results on optimal policy for the system in the entire

makespan of a long-term El Niño/La Niña cycle (i.e., c = 5 years) are described, and the

dynamics of optimal policies in the hurricane and off-hurricane seasons during different

years of the cycle are discussed.

In Scenario I of Case 1, for the first year of the cycle, it is optimal to take no action as

long as the probability of being in state 1 (π1) is greater than 0.904 during hurricane season;

while it is optimal to take no action when the probability of being in state 1 is greater than

0.875 for the rest of the first year. Once the probability of being in state 1 goes below the

corresponding thresholds, it is optimal to inspect the system. Once inspection is performed,

with respect to the revealed deterioration level of the transformer, the required maintenance

needs to be delivered in order to bring the deterioration level of the transformer into state

1, i.e., as-good-as-new condition. The optimal period to perform infrastructure hardening

(i.e, tree trimming) is in period 6, i.e., at the beginning of the first hurricane season in the

El Niño/La Niña cycle. In the second year, it is optimal to perform inspection once the

probability of being in state 1 is less than 0.904 regardless of the time of the year. Since

the performed hardening in the middle of year 1 is still in effect, there is no hardening

action required for year 2. In the third and fourth years of the cycle, as long as the π1 is

greater than 0.875, it is optimal to take no action; otherwise, the inspection and subsequent

maintenance actions are required to be taken. The optimal time to perform the second

infrastructure hardening action is at the beginning of the hurricane season of the third year.

The third hurricane hardening action is taken at the beginning of the hurricane season of

the fifth year of the El Niño/La Niña cycle. The optimal inspection/no action decisions in

the fifth year are similar to the first year of the cycle.
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Table 6.3 The expected life-cycle costs for Case 1 to 4

Case Scenario Scenario Simulated Time
# I II Model (min)
1 $108,461 $109,023 $108,975 <10
2 $74,317 $74,785 $74,785 <250
3 $285,969 $296,406 $286,166 <3
4 $298,334 $308,580 $298,333 <3

In Scenario II of Case 1, it is always optimal to perform inspection, once the probabil-

ity of being in state 1 goes below 0.875; Otherwise, it is optimal to take no action. The first

hardening action is performed at the beginning of the planning horizon. The second and

third hardening actions are taken at the beginning of the third and fifth year, respectively.

In the first two years of El Niño/La Niña cycle in Scenario I of Case 2, it is optimal

to do inspection once π1 becomes less than 0.904 and 0.875 in hurricane and off-hurricane

seasons, respectively. In the remaining three years of the cycle, it is always optimal to

do inspection once π1 drops below 0.875. Otherwise, no action is the optimal strategy.

The optimal time to perform the hardening action with permanent effect (i.e, structural

reinforcement) is at the beginning of the hurricane season in the first year. In Scenario II of

this case, it is always optimal to take no action as long as the probability of being in state

1 is greater than 0.875; otherwise, inspection is the optimal action. In this scenario, the

hardening action is performed at the beginning of the planning horizon.

In the first, second, third, and fifth year of the cycle in Scenario I of Case 3, it is

optimal to perform the inspection, once π1 is less than 0.875 and 0.904 in hurricane and

off-hurricane seasons, respectively. However, in year 4, it is optimal to inspect once the

probability of being in state 1 becomes less than 0.875; In Scenario II of Case 3, it is

always optimal to do inspection, once π1 becomes less than 0.904; Otherwise, it is optimal

to take no action. As described, we have not taken any hardening measures in this case.

Table 6.3 shows the expected life-cycle cost of the transformer as well as the com-

110



Table 6.4 The expected life-cycle costs for Case 5 and 6

Case Expected Time
# Cost (min)
5 $5,744 <2
6 $37,830 <2

putation time in different cases and scenarios. As shown for Case 4, considering the El

Niño/La Niña effects, the expected life-cycle cost of transformer, when no preventive main-

tenance and infrastructure hardening measures are taken significantly increases by 175%,

301%, and 4.3% compared to Scenario I of Cases 1, 2, and 3, respectively. However, if the

El Niño/La Niña effects are not considered (Scenario II), the reactive asset management

strategy in Case 4 results in 183%, 312%, and 4.1% increase in expected life-cycle cost

compared to Cases 1, 2, and 3, respectively.

In Case 5 in which there is no hurricane effects (because of being located in a non-

hurricane prone area), the asset management strategy excludes hardening measures. The

results indicate that similar to Scenario II of Cases 1, 2, and 3 in which the risk factor

does not change over the planning horizon, the system needs to be inspected once the

probability of being in an as-good-as-new condition (state 1) drops to below a threshold of

0.875. Otherwise, no action is required to be taken. In Case 6, for the same environmental

circumstances as described for Case 5, we analyze the life-cycle cost of the system by not

maintaining it, unless it fails due to deterioration. As shown in Table 6.4, the life-cycle cost

of the system increases by 550% compared to Case 5.

Figure 6.2 illustrates the structure of optimal policy along the sample path for the

system marked with probability thresholds of 0.875 and 0.904. As shown, probabilistically,

it takes four months for a system in an as-good-as-new condition to reach the threshold of

0.904, while it takes five months to reach a probability threshold of 0.875. Therefore, in the

case that the transformer is not equipped with real-time condition monitoring devices, the

corresponding time intervals for reaching to these threshold values can be used for decision
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Figure 6.2 Structure of optimal policy on sample path

making on maintenance planning for the transformer. For instance, in Case 6, it is optimal

to inspect the transformer every five months, while in year 1 of Scenario I of Case 1, the

optimal inspection time interval from last inspection are four and five months in hurricane

and off-hurricane seasons, respectively.

We simulated the impacts of implementing the optimal policies from scenarios with

homogeneous hurricane arrival pattern, in an environment subject to El Niño/La Niña

effects. The expected life-cycle cost of implementation of such policies are $108,975,

$74,785, $286,166, and $298,333, for Cases 1, 2, 3, and 4, respectively. Therefore, the

expected loss/opportunity cost due to implementing such inaccurate policies for Cases 1, 2,

3, and 4 are 0.005, 0.006, 0.036, and 0.034. As illustrated in Figure 6.3, the expected life-

cycle of the transformer by implementing the derived policies from homogeneous hurricane

arrival models in asset management strategies which include full maintenance options and

hardening measures are not significant, while in the strategies with no hardening measures

are considerable.

The cost of damage to transformer due to hurricane and the subsequent cost of inter-
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Figure 6.3 Comparison of expected cost-to-go and simulated model

ruption due to long lead time of this critical asset is relatively high. Based on [126], from

1997 to 2001, the average property damage cost and the interruption cost of each damaged

transformer in the U.S. were about $1,736,586 and $1,312,657, respectively. Even though

in our study we assumed a relatively low restoration cost for hurricane related damages to

the transformer (i.e., $100,000), in all cases and scenarios the optimal policy is to harden

the system at every decision epoch which there is a chance of hurricane. This finding shows

the importance of hardening measures in the cost dynamics of the asset management of

critical power infrastructures located in hurricane prone areas.

Finally, as shown in Table 6.3, the computation time increases with the number of

periods that hardening action will be in effect. As explained in Section 6.3.2, the size of

information space has significantly been reduced in our model. For instance, the sample

path emanating from extreme state e1 reaches to its steady state after 39 iterations (versus

120 iterations). Hence, the reduction in the size of the information space that needs to be

evaluated is realized, which results in improved computational efficiency of the model.
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6.5 Conclusions

In this chapter, we proposed a new model for asset management of power infrastruc-

ture to integrate the long-term maintenance with hardening strategy and restoration activi-

ties. We used the POMDP with a mixed-state space, i.e., a stochastic partially observable

information state and a deterministic hardening state as a framework to formulate the prob-

lem. Utilizing the long-run steady state behavior of system deterioration, we significantly

reduced the size of information space which resulted in improved computational efficiency

of the backward induction algorithm without significantly compromising the accuracy of

the optimal solution. The results indicate that the optimal maintenance decisions are sensi-

tive to the hurricane seasons in El Niño/La Niña cycles. We simulated the derived optimal

policies from systems with homogeneous hurricane arrival rates (which statistically are in-

accurately distributed), in an environment with nonhomogeneous hurricane arrival pattern

(that is proven to be more accurately describing the reality) which considers El Niño/La

Niña effects. The simulation results indicate that the opportunity cost for the system when

the derived policies based on homogeneous hurricane arrival assumption are implemented,

cannot always be significant. The reason can be due to the long-term and cyclic nature of

the hardening strategies which remain in effect. However, the use of homogeneous hurri-

cane arrival models to find the optimal policies can result in significant overestimation of

the total life-cycle cost in the grid scale. This overestimation can lead to unrealistic budget

constraints which prohibit a cost-effective and productive asset management strategy in the

utility company level. The results also demonstrate the importance of hardening strategy

in asset management of the critical power infrastructure due to the considerable impacts

of the failure due to hurricanes and the subsequent interruptions on cost dynamics of the

system.
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Chapter 7

Summary, Conclusions, and Extensions

Transformation of the conventional power systems into the next generation smart

grids calls for rethinking of many common approaches which are currently in practice.

Despite significant advances in integration of information and communication technologies

into power systems, the issue of physical and cyber resiliency of the grid seems to remain

in its early stage. External physical disruptions such as natural disasters and in particular,

storms and hurricanes, can have devastating impact on the reliability and normal operation

of the grid. The recent examples of such disruption are the Hurricane Ike of 2008 in the

Gulf Coast, the Hurricane Sandy of 2012 which affected the East Cost of the U.S., and

Typhoon Haiyan of 2013 in the Southeast Asia. The increasing trend of these types of

disasters which is perceived by many to be due to climate change, and the vulnerability

of the smart grid infrastructure, as one of the most critical lifeline system of today’s urban

and rural settings, call for action on enhancing the resistance and resiliency of the grid via

employing efficient engineering solutions.

7.1 Summary and Conclusions

In Chapter 1, an overview of the proposed research was provided. The motivation and

importance of the proposed research, the problem statement, and the research objectives

were outlined and introduced. As the current paradigm of the real world practices are

shifting to prevention, proactiveness, and resiliency enhancement, the main approach in

this dissertation was to be inline with this paradigm.

In Chapter 2, the most relevant research work in the literature of asset management in

power system was reviewed. The literature was divided into emergency planning, physical

behavior, outage prediction, resource allocation, maintenance planning, reliability assess-
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ment, and restoration planning. Moreover, the history and bibliography of the solution

methods used in different parts of this dissertation were briefly reviewed. The reviewed

subjects included mixed-integer programming, linearization techniques, two-stage stochas-

tic program with recourse, Benders decomposition, Latin hypercube sampling, scenario

reduction techniques, stress-strength analysis, Markov decision processes, and partially

observable Markov decision processes.

In Chapter 3, a post-hurricane restoration planning model for electric power infras-

tructure considering the economics of disaster was proposed. Various economic issues

surrounding the restoration problem including value of lost load, resource cost, and unit

commitment problem were considered in the model. The problem was modeled as a MIP,

and was solved using Benders decomposition. The results indicate that the proposed model

is able to effectively find the optimal restoration schedule of damaged components of power

system in a cost-effective manner. It was revealed that the total incurred cost of restoration

of the system is sensitive to the available restoration resource level. The results suggest that

investing on restoration resources is paid off in a sense that by securing adequate restoration

resources, a considerable restoration cost saving can be realized. It was also demonstrated

that the available restoration resource level has a significant impact on the average cost of

power generation. The results show that incorporation of the unit commitment problem

into the restoration problem results in a more cost-effective solution. It is concluded that

restoration problem should not be solved without consideration of the economic aspects

of restoration, i.e., unit commitment problem, value of lost load, and direct restoration re-

source cost. The optimal restoration schedules show that in general, restoration of the buses

have higher priority compared to transmission lines, as the model in all scenarios intends

to restore buses in the very early stage of restoration process.

In Chapter 4, a stochastic model to support decision making process for power sys-

tem restoration in pre-hurricane phase was introduced. The model was formulated as a two-

stage stochastic program with recourse. In order to make the problem tractable to solve,
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it was transformed into an equivalent large-scale deterministic problem. To improve the

computational efficiency of the solution, the large-scale deterministic problem was scaled

down by using backward scenario reduction technique. The final problem was solved using

Benders decomposition. Two strategies, i.e., the full restoration, and the partial restoration

were analyzed; and the value of stochastic solution was calculated. The value of stochastic

solution justified the advantage of obtaining stochastic solution over expected value solu-

tion. The numerical results indicated that the partial restoration strategy provides a more

cost-effective restoration plan. However, the partial restoration may not provide the same

system-level reliability that full restoration strategy secures. Nonetheless, decision mak-

ers can choose the best strategy based on financial and operational priorities within the

utility. As solving stochastic problem is preferred over expected value problem, it is also

reasonable to invest on forecasting technologies to improve the accuracy of the proactive

restoration strategy. Furthermore, in general, the partial restoration strategy can be a more

efficient option for utilities to eliminate the load interruption before fully recovering the

system-level reliability of the grid.

In Chapter 5, a dynamic maintenance scheduling model which considers the stochas-

tic degradation of the infrastructure, along with the stochastic effects of hurricane in a

mid-term planning horizon was developed. MDP was employed to model the maintenance

problem. MIP was used to find the outage cost of the component in different periods to

be incorporated in the maintenance scheduling model. The hurricane survival probabili-

ties during different periods were derived by using dynamic stress-strength analysis, and

was incorporated in the model. The problem was solved using the backward induction

algorithm. The results show that the cost saving due to implementing the preventive main-

tenance program is significant. However, the amount saved depends on the initial state of

the component at the beginning of the planning horizon. In general, it is concluded that for

a component which has an acceptable operational condition, the preventive maintenance

during hurricane season should be eliminated. However, the preventive maintenance on a
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component of the grid which is operating below a certain reliability threshold needs to be

immediately performed, regardless of the time during the year.

In Chapter 6, POMDP was used to develop an integrated model for infrastructure

hardening and condition-based maintenance of the critical components of the electric power

systems. The long-term climatological effects of El Niño/La Niña phenomenon were con-

sidered in development of the proposed model. Utilizing the long-run steady state behavior

of system deterioration, we significantly reduced the size of information space which re-

sulted in improved computational efficiency without compromising the accuracy of the

model. The dissolved gas analysis (DGA) was used to model the transition states of an

oil-filled transformer. The problem was solved using backward induction algorithm, and

optimal policies were derived. The results indicate that, due to the long-term and cyclic

nature of the hardening strategies which remain in effect, the opportunity cost for deriving

policies without consideration of seasonal effects of El Niño/La Niña phenomenon can-

not always be significant. However, ignoring this phenomenon can result in significant

overestimation of the total life-cycle cost in the grid scale. This overestimation can lead

to unrealistic budget constraints which prohibit a cost-effective and productive asset man-

agement strategy in the utility company level. The hardening strategy was shown to play

a critical role in long-term asset management of the power infrastructure under hurricane

effects.

7.2 Extensions

Number of interesting issues in resiliency enhancement of the power systems are left

for the future research. The proposed restoration models in this dissertation are based on

DC estimation of the power system. Even though that DC estimation has shown to be

practical, but greater accuracy of the AC models can result in even higher efficiency of

the proposed post-hurricane restoration model. An efficient linearization scheme for AC
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system has been proposed in Appendix C. Integration of the proposed scheme into joint

unit commitment and restoration of power system can be an interesting area for the future

research. Consideration of different types of resources in proactive resource mobilization

can make the proposed model a more interesting problem. It was assumed that after hur-

ricane, all routes and vehicles to be available and not to be affected by hurricane strike.

Consideration of the probability of the damage on routes and vehicles, along with vehicle

routing optimization in the model can create a challenging problem for the future research.

The proposed dynamic maintenance planning under hurricane effects considers only

a single component of the grid. Consideration of multiple components and their outage cost

dynamics along with the budget constraints can be modeled in a game theoretic framework

to find the equilibrium of the asset management strategy in a hurricane prone area. Beside

the interesting methodological improvements which can be made, analyzing the practical

aspects of implementation of such model can be another area for future research. The

proposed POMDP framework for integrated infrastructure hardening and condition-based

maintenance scheduling considers two dimensions for the state of the system. However,

only one state of the system follows a random variable. The solution methodology for

solving the POMDPs with multiple dimensions as random variables for the state of the

system is another interesting area for methodological development.

The proposed models were analyzed for vertically integrated utilities. However,

deregulation of the power markets requires new engineering solutions for a cost-effective

recovery planning of the grid. Distributed optimization and game theoretic frameworks

can be used in future research to address these issues. Scarcity of operational and busi-

ness data, and conflict of interests among different entities and players in the deregulated

market call for development of innovative engineering techniques and efficient business so-

lutions. Finally, integration of smart grid technologies in asset management and resiliency

enhancement of the grid is another fertile area for future research.

119



References

[1] H. E. Moore, F. L. Bates, M. V. Layman, and V. J. Parenton, “Before the wind. a

study of the response to hurricane carla,” tech. rep., National Academy of Science,

Washington, DC, 1963.

[2] J. Winkler, L. Duenas-Osorio, R. Stein, and D. Subramanian, “Performance assess-

ment of topologically diverse power systems subjected to hurricane events,” Relia-

bility Engineering & System Safety, vol. 95, no. 4, pp. 323–336, 2010.

[3] Homepage, “http://www.centerpointenergy.com,” CenterPoint Energy, Hurricane

Ike, November 2013.

[4] R. Berg, Tropical Cyclone Report: Hurricane Ike, November 5-9, 2008. National

Hurricane Center, United States National Oceanic and Atmospheric Administra-

tion’s National Weather Service, 2009.

[5] D. Etkin, “Risk transference and related trends: driving forces towards more mega-

disasters,” Global Environmental Change Part B: Environmental Hazards, vol. 1,

no. 2, pp. 69–75, 1999.

[6] D. Mileti, Disasters by Design: A Reassessment of Natural Hazards in the United

States. National Academies Press, Washington, D.C., 1999.

[7] Homepage, “http://www.noaa.gov,” National Oceanic and Atmospheric Administra-

tion, August 2014.

[8] B. W. Johnson, After the disaster: Utility restoration cost recovery. Edison Electric

Institute, 2005.

[9] Homepage, “http://www.fema.gov,” Federal Emergency Management Agency, June

2013.

120



[10] S. K. Khator and L. C. Leung, “Power distribution planning: a review of models and

issues,” Power Systems, IEEE Transactions on, vol. 12, no. 3, pp. 1151–1159, 1997.

[11] B. Ball, “Rebuilding electrical infrastructure along the Gulf Coast: A case study,”

Bridge, vol. 36, no. 1, p. 21, 2006.

[12] A. Kwasinski, “Technology planning for electric power supply in critical events con-

sidering a bulk grid, backup power plants, and micro-grids,” Systems Journal, IEEE,

vol. 4, no. 2, pp. 167–178, 2010.

[13] N. Xu, S. D. Guikema, R. A. Davidson, L. K. Nozick, Z. Çağnan, and K. Vaziri,
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Appendices

Appendix A: IEEE 118-Bus Testing System

In this appendix, the related data on IEEE-118 bus system including its schematic

view, generation unit data, transmission line data, the data related to the buses associated

with lines, and load profiles are presented [119].
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System Description:
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54 thermal units

Figure A.1 Schematic view of IEEE 118 bus testing system
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Table A.1 Generation units data for IEEE 118-bus system
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Table A.2 Transmission lines data for IEEE 118-bus system
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Table A.2 Transmission lines data for IEEE 118-bus system (continued)
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Table A.2 Transmission lines data for IEEE 118-bus system (continued)
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Table A.2 Transmission lines data for IEEE 118-bus system (continued)
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Table A.3 Load profile data for IEEE 118-bus system
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Table A.3 Load profile data for IEEE 118-bus system (continued)
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Table A.4 Buses data for IEEE 118-bus system
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Table A.4 Buses data for IEEE 118-bus system (continued)
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Appendix B: IEEE 6-Bus Testing System

In this appendix, the data related to IEEE 6-bus system, including the schematic view,

generation unit data, transmission line data, the buses associated with lines, and load profile

are presented [119].

Figure B.1 Schematic view of IEEE 6-bus testing system

Table B.1 Generation units data for IEEE 6-bus testing system
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Table B.2 Transmission lines data for IEEE 6-bus testing system

Table B.3 Hourly aggregated load profile data for IEEE 6-bus testing system

Table B.4 Bus load percentage data for IEEE 6-bus testing system
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Appendix C: A Linearization Scheme for AC Networks

According to [127], [128], the following assumptions make it possible to use the

DC network for modeling/analyzing a problem: i) the susceptance is large relative to the

impedance, ii) the phase angle difference is small enough to approximate sin(δnt − δmt) ≈

δnt − δmt, and iii) the voltage magnitudes are close to 1.0 and do not change significantly;

However, due to considerable topological changes in the network, the above mild assump-

tions can be violated in restoration process. Therefore, it is important to develop AC based

framework for restoration planning of power systems. In this appendix, a linearization

scheme for AC approximation is proposed.

The Proposed Linearization Method

Since all the restoration constraints in AC model are either quadratic or can be rep-

resented as a quadratic function, they can be plotted as an ellipse. Therefore, we can

approximate them as a polygon or polyhedron by adding linear constraints. For instance,

consider the generator capability curve as

P 2
it +Q2

it ≤ S2
i , ∀i, ∀t,

which is a quadratic equation of a semi ellipse (in fact, the power capability curve is a circle

which is a special case of ellipse). As shown in Figure C.1, by dividing the semi ellipse

into k slices, each with angle γk, we can approximate the feasible region of the generator

capability curve as a semi polygon. Pmax and Qmax are considered as the length of semi

major and semi minor axes of the ellipse, respectively. The corresponding equation for

each side of the polygon (i.e., each line that cuts the semi ellipse) is obtained by

Pit − Pmax cos γk
Qit −Qmax sin γk

=
Pmax cos γk+1 − Pmax cos γk
Qmax sin γk+1 −Qmax sin γk

, ∀k.
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Therefore, we have,

Qit −

(
Qmax

(
sin γk+1 − sin γk

)
Pmax

(
cos γk+1 − cos γk

))Pit ≤

Qmax

(
sin γk −

cos γk

(
sin γk+1 − sin γk

)
cos γk+1 − cos γk

)
, ∀k,

Due to the symmetric shape of semi ellipse, the following constraints are imposed for the

inner linear approximation of its lower half as

Qit +

(
Qmax

(
sin γk+1 − sin γk

)
Pmax

(
cos γk+1 − cos γk

))Pit ≥

−Qmax

(
sin γk −

cos γk

(
sin γk+1 − sin γk

)
cos γk+1 − cos γk

)
, ∀k.

Figure C.1 Inner polyhedral linearization of the generation capability curve
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