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Abstract 

Background: Mathematics teachers must possess a thorough understanding of the 

mathematics content they teach. Content knowledge is particularly essential for teachers 

responsible for teaching fractions, a principal foundation of algebraic reasoning and 

structure. Research shows that students who do not grasp the conceptual understanding of 

fractions in elementary school continue to struggle with these concepts in middle and 

high school. Therefore, successful instruction of high-leverage concepts that are cardinal 

in developing advanced mathematics is required for overall student success. Teachers 

who participate in professional development (PD) opportunities grounded in Specialized-

Content Knowledge (SCK) can increase their understanding of subject matter knowledge 

and build the conceptual fluency necessary for mathematics teaching. However, teaching 

methods must mirror best practices for learning fractions, such as using manipulatives 

rather than relying on procedural or memory-based approaches. By including PD 

opportunities that utilize research-based design principles for adult learners, teachers in 

this study received instruction on vertical alignment and conceptual fluency to effectively 

teach fraction concepts. Purpose: This study was prompted by the need to develop a 

relevant online professional development series for elementary and middle school 

teachers that supported their understanding and instruction of fractions through virtual 

manipulatives. The study describes the impact of an SCK professional development 

series on a group of mathematics teachers. Methods: This small-scale study included 

eight participants, all mathematics instructors at a private Prek-8th school in southeast 

Texas. The participants completed six sessions of professional development, each lasting 

one hour in duration. The synchronous virtual sessions followed a sequence designed to 
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build both conceptual and procedural fraction understanding in comparison, equivalency, 

addition, subtraction, multiplication, and division through the use of virtual 

manipulatives. The evaluation study utilized quantitative methods that included a pre-test 

and post-test design and analysis to determine participants' change in mathematics 

knowledge of fractions expected for mastery in the elementary and middle school years. 

The pre-tests and post-tests were evaluated for participants' use of conceptual 

representations as justification for their responses. Additionally, descriptive analysis of 

participants' responses in the form of exit tickets captured participants' ability to apply 

their learning accurately and navigate the virtual manipulatives employed during the PD 

sessions. Results: The results from the pre-tests (M=61.2250, SD=19.99605) and post-

tests (M=92.8750, SD=4.86819) covering fractional knowledge indicated that there was 

statistical significance in the findings of participants' increased scores upon completion of 

the PD series, t(7)=-4.668, p = .002. Furthermore, the evaluation of specific content 

categories confirmed that all eight participants improved their fractional knowledge. The 

most significant improvement was seen in the fraction division category, with a 47.95% 

increase in correct responses. Additionally, the combined exit tickets and evaluation of 

the use of representations on the pre-tests and post-tests confirmed that participants 

utilized virtual manipulatives to show their thinking, with an overall increase of 73.75% 

in the use of representations. Conclusion: The pre-test and post-test data showed an 

increase in fractional knowledge among the participants at the conclusion of the PD. The 

exit tickets and evaluation of representations used on the pre-test and post-test suggests 

that participants could apply the virtual manipulatives to create models that showed 

participants' conceptual understanding of fractions. Overall, subject-specific professional 
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development increased the participants' understanding of fractional knowledge. Further 

study will serve to clarify whether the gains are sustainable and impact student learning 

of fractions. 
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Chapter I 

Introduction 

In a time of increasingly rigorous state standards and a call for students to show 

proficient gains in mathematics, there is an expectation that teachers must be capable of 

delivering quality instruction that leads to a deeper understanding of concepts. Studies 

from national and international data continue to reflect a need for improvement in U.S 

students' mathematics achievement. According to the National Center for Educational 

Statistics (2015), 60% of grade 4 students and 77% of grade 8 students scored below 

proficiency on the National Assessment of Educational Progress. This deficit holds 

steady, as the 2017 and 2019 results reveal that there has been no significant change in 

the national average of mathematics scores. The cross-national test, Programme for 

International Student Assessment (PISA), places the U.S 38th out of 71 countries in 

mathematics achievement (Desilver, 2017). These alarming numbers have led to severe 

inquiries concerning the quality of mathematics instruction students receive in the 

classroom. The attention centers on the teacher's role in the classroom regarding the 

effect that their subject matter knowledge can have on student outcomes (Darling-

Hammond et al., 2019; Hill & Ball, 2004). 

         The benefit of quality teaching on student achievement has been well 

documented (Boonen et al., 2014; Hanusheck 2014; Harris & Sass 2011; Jackson et al., 

2014; National Science Board, 2016; Stronge et al., 2011) and recognized as the most 

important school-based factor for student outcomes (Hightower et al., 2011; McCaffrey 

et al., 2004; Opper, 2019; Rowan et al., 2002; Tucker & Stronge, 2005). Teacher quality 

can affect student success rates two to three times more than any other school-based 
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factor (Opper, 2019). Furthermore, students placed with highly effective teachers for 

three consecutive years outscore their counterparts placed with low-performing teachers 

by over 50 percentile points (Sanders et al., 1977). Studies have reinforced the 

importance of teacher effects by identifying them as many and perpetual for up to four 

years (Kupermintz, 2003). These findings have led many educational researchers to agree 

that the aggregated consequence of ineffective teaching is detrimental to student learning 

(Jong et al., 2010). 

Many classrooms across the U.S are not staffed with mathematically 

knowledgeable teachers (Hill & Chin, 2018). In turn, this leads to a lack of quality 

teaching, which is a significant disruption to students' ability to learn (Garcia & Weiss. 

2019). Recent studies have found that students achieve higher mathematics success levels 

with instructors who have a more robust understanding of mathematics content (Blazer & 

Kraft, 2016; Hill et al., 2008). This finding is contrary to teachers who lack experience 

and confidence in their abilities, which may contribute to anxiety, having adverse effects 

on their teaching practices (Manning & Payne, 1993). Furthermore, by interacting with 

content-based materials, models, and curriculum, teachers' can improve their content 

knowledge and classroom practices (Ebby, 2000; Sherin, 2002; Newton et al., 2012).  

Participation in impactful professional development (PD) can offer teachers the 

opportunity to provide a curriculum grounded in higher-order thinking skills. The PD 

sessions should focus on the alignment of teaching methods, multiple representations, 

and students' thought processes (Darling-Hammond et al., 2019). These findings, coupled 

with increased attention on teachers' general mathematics content knowledge, have 

solidified the need for active content-based PD in the area of mathematics (Baumert et 
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al., 2010; Darling-Hammond & McLaughlin, 1995; Phelps et al., 2016). As a result, 

stakeholders are taking notice and placing their resources in PD opportunities that 

increase teachers' mathematics knowledge and skills.  

Successful mathematics teachers perform operations and construct learning 

opportunities that lead students to develop the conceptual and procedural fluency 

required for mathematical understanding. By goal-setting, analyzing, formulating, and 

differentiating curriculum, effective teachers, use their knowledge to demonstrate and 

teach complex mathematics concepts (Manning & Payne, 1993). Their awareness of 

research-based best practices fosters an understanding of mathematical knowledge for 

teaching (MKT), characterized by the skills, habits, and ability to analyze student 

thinking and use that information to drive instruction (Hill et al., 2008). Introduced by 

Deborah Ball (2008) and her colleagues, as a practice-based theory that not only 

identifies the mathematics content that teachers hold, the model is also concerned with 

linking that knowledge to the practice of teaching mathematics "through perspectives, 

habits of mind, and sensibilities." MKT is characterized by interactive mathematics 

teaching activities within the classroom that include planning, evaluating, explaining, 

scaffolding, and assessing (Ball et al., 2005). MKT is a critical component for acquiring 

the insight and understanding needed to identify useful and efficient content delivery 

models. Therefore, PD that is grounded in the improvement of MKT could lead to 

increased teacher knowledge. 

MKT attempts to extend the framework set forth by Shulman (1986) by 

categorizing and defining the knowledge that is required for teaching into two general 

knowledge facets, subject matter knowledge, and pedagogical knowledge. These two 
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categories are further divided into six domains; Common Content Knowledge (CCK), 

Horizon Content Knowledge (HCK), Specialized Content Knowledge (SCK), Knowledge 

of Content and Students (KCS), Knowledge of Content and Teaching (KCT), and 

Knowledge of Content and Curriculum (KCC) (Ball et al., 2008). These domains reflect 

the knowledge and skills that teachers should maintain to teach mathematics content 

successfully. The domains represent mathematical reasoning and "demands of teaching" 

that are typically pertinent only within the classroom. One essential component of this 

useful teaching model is Specialized Content Knowledge (SCK), mathematical 

knowledge of the skills exclusive to teaching. This type of knowledge pertains to 

"unpacking" the methods and solution plans that help teachers decipher and analyze 

students' mathematical thinking (Ball et al., 2008; Selling et al., 2016). The knowledge 

includes understanding the tasks required for teaching, such as making sense of students' 

work, comparing various delivery methods, looking for validity in students' reasoning, 

and scaffolding mathematics topics (Selling et al., 2016). Unlike its related sub-domains, 

CCK, and HCK, SCK offers exposure to the knowledge indirectly used for student 

learning, yet it is not part of the student curriculum (Markworth et al., 2016). 

Research has established MKT as a leading conjecture of student success (Hill et 

al., 2008; Rayner et al., 2009). Additionally, The National Council of Teachers of 

Mathematics, NCTM, (2000) promotes student support through teaching methods that 

encourage and challenge students, often differentiating the modes of delivery and 

employing innovative strategies that are opposite of the traditional approaches to 

mathematics instruction (Turner & Rowland, 2010). One of the founding principles of 

NCTM (2000) that is stated in the publication, The Principles and Standards in School 
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Mathematics confirms that quality teaching requires an understanding of the types of 

content knowledge students hold, what they need to master, and a vast knowledge base of 

the ways to challenge and support them in their journey to mathematical proficiency. 

Teachers who become versed in these core understandings will be more capable of 

applying lessons grounded in MKT. Furthermore, participating in PD that provides 

development of the specific domains may give teachers the experience and tools 

necessary to address unpredictable classroom circumstances (Rayner et al., 2009). 

The repeated subpar achievement of U.S students, coupled with the absence of 

qualified teachers, shows a pattern of inadequacy that may stem from teachers' 

educational experiences and lack of adequate PD opportunities. These weak experiences 

contribute to the fragmented understanding of valuable mathematics content. The 

scattered learning, coupled with previous years of insufficient training, has led to over 

half of U.S teacher candidates failing to qualify on content exams for mathematics on 

their first attempt (Shuls, 2017). This deficit in training leaves districts tasked with 

rethinking how teachers obtain the knowledge and understanding necessary for effective 

teaching while simultaneously delivering content in the classroom (Greenberg et al., 

2013). Analyzing PD experiences that intend to increase teachers' understanding of 

content by improving their subject-specific knowledge, familiarity with alignment, and 

awareness of current best practices may prove to be the assistance that teachers need to 

grasp central ideas in mathematics. 

Statement of Purpose 

A mathematical concept that has proven to be significant and incredibly difficult 

for teaching and learning is fractions (Behr et al., 1983; Charalambous & Pitta-Pantazi, 
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2006; Hansen et al., 2015; Lewis & Perry, 2017; Moss & Case, 1999). Labeled in several 

studies as the most challenging topic in mathematics for elementary school students, 

failure to master these values can have adverse effects on student learning and future 

academic success (Behr & Post, 1992; Lamon, 2007; Siegler and Pyke, 2013). Fractions 

are amid the most compounded mathematical concepts introduced in elementary school 

(Newstead & Murray, 1998). Similarly, they are also known as the "most intricate" 

numbers introduced in the early grades (Bulgar, 2003). Furthermore, research shows that 

a deficit of fractional learning early on extends throughout schooling, with Algebra 1 

teachers reporting that students are continually entering the classroom with inadequate 

knowledge of fraction concepts (Hoffer et al., 2007).  

The lack of fractional understanding that U.S students hold has diminished their 

ability to apply classroom learning to novel situations, even after the arduous task of 

studying the concept for years. This issue is further exacerbated by the limited number of 

U.S students who possess the mathematics knowledge essential to continue their studies 

in fields that require a strong knowledge of mathematics (National Science Board, 2016). 

These realities have placed policymakers in a position to evaluate, develop, and deliver 

PD programming to close the gap.  

Fractional learning can be viewed as a "house of cards," with mastery relying 

heavily on the understanding and fluency of several interrelated concepts taught in 

previous grade levels (Eichhorn, 2018; Rouselle & Noel, 2008). Successful mathematics 

students possess a strong number sense, understand value and quantity, and connect those 

relationships with other values. These principal understandings of interconnectivity are 

the essential building blocks for subsequent computation and application (Yang, 2007; 
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Witzel & Little, 2016; Tanenbaum et al., 2017). For this understanding to develop, 

students first need a solid foundation of prerequisite skills (Doabler et al., 2015; Lock & 

Gurganus, 2004). Therefore, a guiding principle is that teachers need to understand the 

subject-matter content and the concept of vertical alignment as it pertains to fractions to 

apply sophisticated strategies in the classroom (Ball et al., 2005; Kaminski et al., 2008). 

Maintaining an extensive body of knowledge that leads to a deep understanding of the 

concepts and skills required to deliver learning opportunities beyond surface-level 

acquisition will promote a successful alignment of standards. Understanding the complete 

picture of required curriculum objectives is beneficial for promoting mathematics 

achievement through the consistency of instructional strategies across grade levels 

(Tanenbaum et al., 2017).  

Classified as complex to learn, many students experience tremendous difficulty 

with fractions (Seigler & Pyke, 2013). However, fractions are also promoted as essential 

building blocks for students' future success in mathematics (Gabriel et al., 2013; Lamon, 

2007; Witzel & Little, 2016). These foundational pieces of the larger puzzle must be in 

place for learning to extend into the following years of study. Lester (1994) suggested 

that students' discomfort with these values may stem from their teacher's lack of 

understanding of the subject. Moreover, pre-service and in-service teachers traditionally 

struggle with the same issues as their students regarding knowledge and understanding of 

fractions (Park et al., 2012). Additionally, research shows that teachers with weak math 

competencies often emphasize procedural steps, resulting in monotonous, detached, and 

often rote instruction methods (Stigler & Hiebert 1997; Ball et al., 2008). Therefore, the 

need for teacher PD opportunities that cover an array of standards expected for mastery in 
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the elementary and middle school years of instruction is essential for improving school 

mathematics.  

PD that is linked to classroom activities, established in research-based best 

practices, sustained in duration, systematically designed, and organized to follow a 

format that engages adult learners, has proven to be valuable for the improvement of 

teacher knowledge (Darling-Hammond, 2000; Loucks-Horsley et al., 2010). Targeted PD 

that strengthens teachers' SCK can encourage instructional best practices, leading to 

appropriate concrete and pictorial representations when communicating mathematical 

ideas (Ball, 1993). This improvement in PD can contribute to increased exposure to 

effective strategies, leading teachers to form a solid foundation of the fundamental 

principles that support the specific areas required for positive change in the classroom. 

By identifying possible areas of weakness, policymakers can place themselves in a 

position to reform future PD opportunities. 

Research Question 

In what ways does online professional development on specialized content 

knowledge of mathematics increase teacher knowledge? 

Personal Relationship 

As I begin my 20th year as a professional educator, one apparent reality stands 

out: the view on the discipline of mathematics as unfavorable. This problem manifests in 

the aversion and insecurity of mathematics understanding among teachers, specifically 

those in elementary and middle schools. This view is troubling since these individuals 

play a significant role in students' initial mathematics instructional experiences. Despite 

their mathematics discomfort, these teachers set the stage for how students will view and 
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relate to mathematics for years to come. I have heard more teachers than not making 

comments about "not being a math person" or talking about how they do not need to 

understand the reasoning behind specific rules and procedures. This pessimistic view that 

surrounds the subject leaves little room for students to view mathematics positively, 

indirectly denying students access to the benefits of a strong mathematics foundation. 

Mathematics plays a significant role in science, technology, and engineering, all of which 

are specializations that carry a stigma of difficulty. Students need teachers to guide their 

development and understanding through practical, real-world problems, with varying 

representations and authentic discourse. In turn, this calls for teachers to be well-versed 

in subject matter, best practices, and multiple learning theories that can bring a new 

balance of breadth and depth to the classroom. 

Definitions 

Algorithm 

 A process or set of rules to be followed in calculations or other problem-solving 

operations. In mathematics, an algorithm is a finite sequence of instructions. 

Fractions 

A fraction is a number that represents a part of a whole. 

Conceptual Understanding. "Learning mathematics with understanding, actively building 

new knowledge from experience and prior knowledge" (NCTM, 2000). Procedural 

Fluency 

 "The ability to apply procedures accurately, efficiently, and flexibly; to transfer 

procedures to different problems and contexts; to build or modify procedure from other 
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procedures, and to recognize when one strategy or procedure is more appropriate to apply 

than another" (NCTM, 2000).  

Vertical Alignment  

The alignment of lessons and courses prepares learners for the next step in 

acquiring the knowledge needed to master concepts. 

Pre-service teacher  

A teacher that participates in a guided teaching program that is supervised by 

mentor teachers and college professors. 

Specialized Content Knowledge (SCK)  

Specialized content knowledge is the knowledge and information that students are 

expected to learn in a content area. It pertains to the ideas, facts, concepts, and theories 

behind a given subject. 

Pedagogical knowledge  

Pedagogical knowledge is the type of knowledge that is unique to teaching. It is 

the working knowledge of how to teach Pre-service teachers. Mentor teachers and college 

professors supervise a teacher that participates in a guided teaching period. 

Methodology 

This study seeks to evaluate a SCK professional development program's 

effectiveness, which focuses on the vertical alignment of fractional concepts found in 

grades 3-8th as determined by the Texas Essential Knowledge and Skills (Texas 

Education Agency, 1997). The one-group pre-test and post-test is part of a program 

evaluation that examines a group of elementary and middle school teachers' professional 

development efficacy. The Statistical Package for the Social Sciences (SPSS) allowed the 



11 
 

 
 

researcher to employ a dependent t-test to determine if participants experienced an 

increase in mathematics knowledge upon completing the PD series. Additionally, the pre-

tests and post-tests determined if participants were successful in employing 

representations to answer questions. The researcher analyzed the exit tickets that 

participants submitted at the end of each session to determine their fluency with the 

virtual models employed during the PD. The mathematics content explored during the 

series consisted of foundational material required for scaffolding fractions in subsequent 

schooling years. Included were partitioning lengths, equivalency, comparing and 

reasoning, translating between multiple fractional representations, and employing the 

four mathematical operations of fractions (addition, subtraction, multiplication, and 

division). The eight participants from a private school in southeast Texas completed six 

professional development sessions, each lasting one hour in duration. The program 

evaluation attempted to determine if teacher participation in the sessions increased their 

knowledge of factional concepts. As teachers who possess elevated experience and 

knowledge of skills and methods are better equipped to practice those strategies, 

therefore improving student-learning opportunities (Creswell & Clark, 2007; Goe 2007; 

Wiswall, 2013). 

Limitations of the Study 

As with any study conducted, limitations must be identified. The limitations of the 

study were the lack of qualitative data collected to address teacher learning trends. The 

researcher examined the pre-test and post-test scores but could not verify emerging 

themes from qualitative data that links teachers' areas of struggle during the PD sessions 

and the post-tests' results. This study was also limited in its generalizability by the 
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absence of data regarding the PD sessions' direct effect on student outcomes. 

Furthermore, not all of the participants included in the study hold certification or degrees 

in mathematics. Most of their knowledge is extrapolated from their own experiences as 

students in basic mathematics classes and their previous teaching experiences. Over half 

of the participants, 57%, have taught primarily in private schools where there is a higher 

chance of leniency on hiring certification requirements. Finally, the subjects were not 

required to obtain any subject-specific PD hours before this experience. 

Summary 

The ongoing studies that show U.S students are unable to meet the standards 

required for mathematics proficiency have led to a call for examining current teaching 

practices. The chronic difficulty that students are experiencing with mathematics, namely 

fractions, has become commonplace in elementary and middle school classrooms (Hecht 

& Vagi, 2010; Tsai & Li, 2016). To ensure that this cycle does not continue, schools must 

offer quality PD opportunities that consider the content taught and the skills and methods 

required for teachers to succeed in the classroom. PD opportunities that aim to improve 

MKT through experience and familiarity with SCK activities can give teachers a much-

needed understanding of student thinking and research-based best practices. The methods 

used for an inquiry were the dependent t-test, comparison of the use of representations 

from the pre-tests and post-tests, coupled with the results of the assessed exit tickets. The 

difference between the tests' mean scores determined if the participants experienced a 

change in their mathematical content knowledge.  
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Chapter II 

Literature Review 

This study aims to explore if a subject-specific professional development series 

based on relevant fractional learning can improve teachers’ specialized content 

knowledge.  This chapter will review preliminary background research concerning 

fractions and effective professional development strategies. Included are the following 

sections: (1) importance of fractions; (2) U.S teacher and student proficiency with 

fractions; (3) teacher preparation; (4) effective professional development models; (5) 

virtual manipulatives; (6) mathematical content knowledge for teaching; and (7) social-

constructivism learning theory. 

Importance of Fractions 

Fractions are often the target of cynical math humor. As the joke goes, "three out 

of two people understand fractions." (Gabriel et al., 2013). Consistently proven to be an 

area of difficulty for both teachers and students, the concept of fractions has long evoked 

feelings of angst and anxiety within the education community (Tirosh, 2000; Moss & 

Case, 1999). Fractions are viewed as among the most challenging and abundant concepts 

within school mathematics, yet necessary for overall student success (Ball, 1993; Harvey 

& Averill, 2012; Lamon, 2007, 2012; Ma, 1999; Newstead & Murray, 1998). Fractions 

are included in the curriculum as early as 2nd grade in most state standards and are 

compulsory for success throughout middle school (Siegler et al., 2011; Van de Walle et 

al., 2016). Understanding foundational skills, such as fractions, are crucial for students' 

ability to build connections and scaffold learning during the elementary and middle 

school years (Booth & Newton, 2012). 
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Fractions are embedded in multiple strands of mathematics, including probability, 

proportional thinking, and algebraic reasoning. The value of understanding rational 

numbers is beneficial not only within mathematics, but also in biology, engineering, 

sociology, and psychology (Lortie-Forgues et al., 2015). Fractional understanding is 

included in various study fields, prioritizing mastery and fluency as the concept reaches 

far beyond the mathematics classroom. Further confirming this idea is the prevailing 

view of Algebra I as a gatekeeper to advanced learning opportunities in mathematics and 

science (Laughbaum, 2017; Rech & Harrington, 2000). Success in Algebra 1 is 

recognized as a requirement for acceptance to classes such as Pre-calculus, Calculus, and 

Chemistry. As a determining factor in college acceptance, a lack of strength with 

fractions places restrictions on possible career options post-graduation (Booth & Newton, 

2012). 

The National Mathematics Advisory Panel asserts that proficiency with fractions 

is a central objective for K-8 mathematics education (U.S Department of Education, 

2008). The cyclical nature of the concept leads to repeated appearances in state and 

national standards, therefore rendering them an invaluable component for student success 

in mathematics (Association of Mathematics Teacher Educators, 2017; National 

Governors Association Center for Best Practices, 2010). Additionally, findings show that 

students' experience with fractions directly affects their overall academic achievement 

patterns (Hill & Ball, 2004; Swanbrow, 2012). Thus, mathematics educators worldwide 

continue to acknowledge the importance of rational number concepts, specifically 

fractions, as one of the key learning objectives for measurable success (Behr et al., 1983; 

Litwiller & Bright, 2002; Mack, 1990). 
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A vital part of understanding fractions lies within the idea of fraction magnitude 

(Fuchs et al., 2016; Schneider & Siegler, 2010). Fraction magnitude refers to the amount 

of the given unit that a fraction represents. Studies indicate that understanding fraction 

magnitude, shown by correctly ordering fractions using linear representations and 

estimation, is heavily correlated to overall mathematics success (Fazio et al., 2016). The 

focus on linear coherence with fractions is essential to mastering grade-level fraction 

concepts and students' subsequent mathematics fluency. Moreover, students' 

understanding of number line tasks in first-grade acts as a precursor to mathematics 

achievement through the fifth grade (Geary, 2004). Evidence links numerical knowledge 

at age four as a predictor of mathematics achievement at age fifteen (Siegler et al., 2012; 

Watts et al. 2014). Consistent with the importance of mastering fraction magnitude, a 

study that included students from eighth grade and community colleges found that when 

asked to identify the larger of two fractions, their accuracy was measured at 70% 

(Schneider & Siegler, 2010; Siegler & Pyke, 2013). 

Individuals with a strong understanding of fraction magnitude are more capable of 

succeeding in working with fraction arithmetic (Brynes & Wasik, 1991; Jordan et al., 

2010; Siegler et al., 2011). These results indicate that a student's mastery of fraction 

magnitude at a young age may be a mirror of mathematical comprehension in middle 

school and beyond. Early understanding of fraction magnitude offers students an 

underlying framework for acquiring various mathematics concepts presented in grades 

6th-8th, such as fraction arithmetic and algebra (Bailey et al., 2012; Siegler & Pyke, 

2013). Therefore, mastery of fraction magnitude is necessary for students' continued 

progress within numerical development (Siegler et al., 2011). 
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The introduction of fractions into the mathematics curriculum has proved 

incredibly difficult for elementary school students (DeWolf & Vosniadou, 2015; Siegler 

et al., 2011; Torbeyns et al., 2015). One of the first signs of confusion can be found in the 

misconception of executing the same rules and properties of whole numbers onto 

fractions (Torbeyns et al., 2015). One such example is the misconception that the 

operation of multiplication always increases the value of the product, which is not the 

case with fractions (DeWolf & Vosniadou, 2015). Furthermore, The Theory of Numerical 

Development suggests that children who have not solidified fractional concepts view 

them as whole numbers (Siegler et al., 2011). Studies have referred to this concept as 

whole number bias (Mack, 1995; Ni & Zhou, 2005; Siebert & Gaskin, 2006). 

Additionally, students continue to view fractions as two whole numbers with a 

line separating the values, counteracting students' ability to view fractions as values. 

Similarly, students frequently think of fractions as countable and discrete, the way they 

do with whole numbers (Vamvakoussi and Vosniadou, 2010). This way of thinking does 

not work within fractions since they can carry several forms to express a single 

magnitude (DeWolf & Vosniadou, 2011). 

There are many common misconceptions concerning fractional learning's correct 

trajectory and concepts introduced throughout the specific grade-levels. The Real 

Number System's learning progression shows the expected movement from natural 

numbers to real numbers, originating in the early grades and culminating in H.S (Neagoy, 

2017). This progression lays an essential framework for all teachers to understand and 

include in curriculum planning, regardless of their current grade level assignment. As 
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seen in Figure 1, the progression is essential when attempting to reinforce foundational 

skills that act as a scaffold to subsequent learning. 

Figure 1 

Grade-by-Grade Progression from Natural to Real Numbers 

 

Note. Recreated from “Unpacking fractions: Classroom-tested strategies to build 

students’ mathematical understanding”, by M. Neagoy, 2017.  

The abstract nature of fractions often results in students' confusion with the 

subject. (Behr et al., 1983: Charalambous & Pitra-Pantazi, 2006; Goldstone & Son, 2005; 

Moss & Case, 1999; Newstead & Murray, 1998). When learners do not understand the 

structure of fractions and what value they represent in relation to previously learned 

mathematics concepts, such as whole numbers, the result is often a weak connection of 

material and increased mathematical errors (Askoy & Yazlik, 2017; Aksu, 1997). With 

fractions expressed by the quotient, a/b of integers, where the denominator, b, is non-

zero, understanding these values becomes less intuitive. Fractions represent two types of 

values, local and global; meanwhile, whole numbers hold only a global value (Gabriel et 

al., 2013). When considering fraction comparison, the brain has to deal with at least two 

local values and the global value; this is opposed to working with whole numbers that 
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require only one value to process (Gabriel et al., 2013). Evidence of this thought process 

is apparent when students explore cardinality principles or aim to identify the quantity of 

many objects. Cardinality refers to counting objects, with the last number being the total 

number of objects present (Starkey & Cooper, 1995; Van de Walle et al., 2014). While a 

fraction does not represent a specific whole number amount; instead, it is a portion of 

another amount. This transition calls for students to switch their thinking from an additive 

perspective of combining the absolute values to multiplicative thinking, where they are 

not provided with the exact value of the whole (Clark & Kamii, 1996; Sieman et al., 

2006). Furthermore, the absolute number is different from the relative number, since it is 

dependent on other values. Fractions have a multifaceted nature that requires learners to 

be cognizant of how fractions are applied to many situations (Charalambous & Pitta-

Pantazi, 2006; Brousseau et al., 2004; Kieren, 1993). 

Fractions, first organized into four interrelated categories by Kieren (1976), act as 

a ratio, operator, quotient, and measure. These categories have been subject to various 

revisions and extensions throughout the years. Kieren interpreted fractions as a ratio in 

terms of a comparison between two quantities. For example, when there are two cats for 

every four dogs, cats' ratio to dogs is 2:4. The resulting fractions would then be cats 

representing 2/6 of the group and dogs 4/6 of the group. As an operator, a fraction can 

increase or decrease the quantity, as in multiplication or division of fractions. The 

quotient category applies to the result of the fraction division. The final category, 

measure, is associated with two connected ideas: fractions as numbers related to specific 

amounts and the length of intervals (Gabriel et al., 2013; Kieren, 1976). Behr et al. (1983) 

revised Kieren's model to include the critical part-whole model as a fifth category. The 
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part-whole model refers to the continuous partitioning of a quantity into equal-sized 

parts, having the same effect on a set of discrete objects. Once mastered, these categories 

become the basis for all other interactions of fractional computation. Furthermore, a 

limited understanding of fractions' various meanings affects students' ability to generalize 

fraction concepts, make connections, and build fluency within the categories 

(Hackenberg & Lee, 2015) 

U.S Teacher and Student Proficiency with Fractions 

The 1983 report A Nation at Risk highlighted the necessity of U.S students' 

educational success, linking aptitude with "safety and prosperity" (National Commission 

on Excellence in Education, 1983; Siegler et al., 2010). More than 35 years later, U.S 

students' mathematical progress is still lagging behind many other industrialized 

countries, including East Asia and Europe (Organisation for Economic Co-operation and 

Development, 2019). The insufficient progress has made it difficult for U.S students to 

compete globally within mathematics (Hossain & Robinson, 2012; National Center for 

Science Education, 2007). 

The overall mathematics deficit in the U.S can be attributed to a lack of 

knowledge in foundational skills. Fractions, being a cornerstone of mathematics, are an 

essential scaffold to future academic success. (Hecht et al., 2003; Van Steenbrugge et al., 

2014; Van Steenbrugge et al., 2010). Unfortunately, the proficiency levels of U.S 

students' fractional knowledge has continued to fall short. With an increased percentage 

of students lacking the conceptual understanding necessary for mathematical competence, 

the learning gap is widening, creating crippling effects for students as they move through 

their academic careers. Poor knowledge of rational numbers, specifically operations 
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involving fractions, have been recognized by 1,000 algebra teachers as a leading barrier 

in students' ability to master algebra content (Fazio et al., 2016; Hoffer et al., 2007). As 

reported in a national poll, students enter with inadequate preparation of rational numbers 

and operations that require basic knowledge of fractions and decimals (Hoffer et al., 

2007). Even with the early introduction of fractions within state standards and the number 

of grade-level content strands that incorporate fractional concepts, students face 

challenges with fractional understanding (Asku, 1997; Behr et al., 1992). 

The substandard mathematics education in the U.S is apparent, especially when 

considering achievement rates in fractions. Many studies have found that U.S students are 

either falling behind or stagnating in their understanding of fractional concepts. The 2013 

NAEP found that 40% of fourth-grade students could not establish that the fractional unit 

of thirds was greater than the fractional units of fourths, fifths, and sixths (Fuchs et al., 

2016). Correspondingly, in a nationally representative sample of 20,000 eighth-grade 

students, only 24% successfully estimated a fractional sum. Furthermore, when the same 

questions were given 40 years later, the average percent of correct answers was only 

raised by a dismal 3%, moving competence from 24% to 27% (Siegler et al., 2017). The 

National Center for Education Statistics (2009) revealed that U.S students experienced 

difficulty ordering fractions from least to greatest (2/7, 1/12, 5/9), with only 49% of 

eighth-grade students answering correctly. This deficit is also seen with the concept of 

division of fractions, with only 55% of eighth-grade students able to solve division word 

problems. The lack of mastery in the early years of instruction continues to impede 

learning acquisition throughout high school, with less than 30% of eleventh-grade 

students displaying the ability to convert decimals into fractions (Kloosterman, 2010). 
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These staggering statistics show that difficulties with fractions have a long-term stability 

pattern, which includes severe consequences for those unable to successfully master at an 

early age (Hecht & Vagi, 2010; Mazzocco & Devlin, 2008; Siegler & Pyke, 2013). 

Therefore, U.S students' weak understanding of fractions consistently shows the need for 

reform in the way fractions are taught throughout the elementary and middle school 

years. 

U.S. Lower and Middle School Teachers’ Knowledge of Fractions 

The repeated findings that point to U.S students lacking in foundational skills that 

are required for advancement in mathematics has been a troubling topic for decades 

(Behr & Post, 1992; Klein, 2003; Lamon, 2005; Siegler et al., 2001; Van de Walle & 

Lovin, 2006). Fractions are a content strand within the mathematics curriculum that 

educators at nearly all levels find to be more complicated than expected, often reporting 

that their students have an initial resistance to the concept (Van de Walle et al., 2016). 

Studies have shown that students experience difficulty making sense of fractions and 

cannot navigate word problems that include embedded fractional concepts (Neagoy, 

2017). As fluency and knowledge of fractions are considered essential for success in 

mathematics, educational institutions are turning their attention to teachers' understanding 

of the concept and that way in which they deliver instruction (Hill & Ball, 2004; Lortie-

Fugues et al., 2015; Van Steenbrugge et al., 2013). 

It is well-documented that the school-based factor that holds the most influence 

over students' academic progress is the quality of the teacher in the classroom (Goe, 

2007; Sanders & Horn, 1998). Their teaching habits have an opportunity to produce 

cumulative and enduring effects on students' learning patterns (Boaler & Zoido, 2016; 
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Darling-Hammond, 2000; McCaffery et al., 2004; Rice, 2003; Rivkin et al., 2000; Tucker 

& Stronge, 2005). Therefore, the classroom teacher should hold an extensive 

understanding of concepts, be fluent with the scaffolding curriculum, and clearly 

understand student learning patterns. In addition to establishing this body of knowledge, 

teachers must also be skilled in the ways students think about mathematical processes, the 

common misconceptions they hold, and how to navigate their creative pathways when 

building content coherence (Darling-Hammond et al., 2020). This practical knowledge 

then lays the infrastructure for classroom interactions that promote deep conceptual 

learning while positively developing students' disposition toward mathematics. 

Therefore, powerful instruction begins with a knowledgeable teacher that can 

significantly influence student learning through effective teaching practices. 

A documented area of struggle for U. S teachers is found in their understanding of 

fractions' meaning and how efficiently they carry out the specific steps required in 

fractional computation (Ball, 1990; Lin et al., 2013). Correspondingly, research indicates 

that many elementary school teachers exhibit a limited understanding of concepts and 

procedures when dealing with fractions (Garet et al., 2010; Ma, 1999). The lack of 

knowledge may stem from the limited number of grade-level standards that U.S teachers 

are exposed to, as it is restrictive compared to the extensive training teachers receive in 

other countries. Additionally, U.S teachers frequently remain at the same grade level for 

extended periods, which results in familiarity in a single set of benchmark standards 

(Moseley et al., 2006). With training that does not include an overall vertical focus on the 

exposure of concepts, U.S teachers do not gain insight on how their limited teaching can 

negatively exacerbate future academic success. Therefore, teachers need to fully 
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understand the learning requirements found across grade-levels and the pedagogical best 

practices associated with applying those standards (National Council of Teachers of 

Mathematics, 2014). To teach advanced concepts such as fraction multiplication and 

division, teachers themselves must build a core understanding of how the processes work 

from a conceptual standpoint. 

The inability to recognize appropriate paths and scaffolds to advanced concepts 

shows a deficit of mathematics knowledge in U.S teachers (Ma, 1999). Correspondingly, 

the studies have revealed several instances of U.S students receiving inadequate 

mathematics instruction from the early elementary grade levels through the middle school 

years (Martin & Herrera, 2007). The deficiency of knowledge is often attributed to 

mathematics teachers that are lacking fluency and knowledge of the skills necessary to 

convey mathematics and demonstrate its "elegance and power" (Association of 

Mathematics Teacher Educators, 2017). 

A survey conducted by Ball (1990) found that U. S elementary and middle school 

teachers had difficulty explaining basic mathematical ideas, such as division of fractions, 

which is considered a 5th-grade benchmark in most U.S curricula. The report found that 

the minimal focus on covering the spectrum of essential understanding resulted in 

teachers weakened subject-matter knowledge. Consequently, teachers who do not 

understand mathematical concepts typically focus on algorithms and memorization tools 

rather than crucial underlying concepts and pictorial representations. In contrast, teachers 

who deeply understand mathematics concepts are more likely to teach conceptually, 

using multiple representations to help students understand concepts. When the teacher is 
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aware of the vertical alignment, they are more equipped to identify the critical strategies 

in organizing and tying together a solid mathematical base.  

Teachers that understand mathematical ideas are more apt to relate concepts 

found in student work to familiar contexts while linking the material to students' prior 

learning (Pasley, 2011). These teachers tend to be versed in collaboratively solving 

students' problems while uncovering the origins of student misconceptions. The process 

of understanding and addressing student difficulties is vital to students' mathematical 

growth, as teachers can clarify and connect the learning (Behr et al., 1983; Moss & Case, 

1999). Furthermore, when the same situation is presented to less knowledgeable 

mathematics teachers, they rely on correct answers in the teacher manual to respond to 

students' questions. Moreover, these teachers with limited understanding of the 

mathematics concepts have been found to stray from the provided instructional material, 

such as curriculum guides and textbooks, which can lead to misrepresenting or distorting 

the core learning that students are expected to master. Teachers' discomfort with the 

concepts affects their confidence in effectively teaching conceptual understanding 

(Hudson, 2017). Furthermore, studies have found that pre-service teachers' mathematical 

understanding is narrow and rule-bound, often limited to the procedural aspects of 

mathematics (Ball, 1990). 

Conceptual and Procedural Knowledge 

Success with delivering any mathematical domain includes both conceptual and 

procedural knowledge. Aptitude with the two is required for teachers to guide students in 

developing the understanding that will allow advancement to upper-level mathematics 

(Geary, 2004; Hiebert, 1986). Conceptual knowledge refers to understanding more than 
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just isolated facts and procedures; instead, it builds a framework composed of interwoven 

relationships, ideas, and patterns (National Research Council, 2001; Newton, 2008). 

Furthermore, Hiebert and Lefevie (1986) found that conceptual knowledge is 

characterized most clearly as a rich process in relationships. When knowledge is 

connected through a web of familiar interconnected work, connections and patterns start 

to play a significant role. These connections allow the learner to link ideas and build a 

schema that supports the application of information to novel situations and creates a path 

that establishes proficiency in mathematics (Hiebert, 1986; Schneider & Stern, 2010). 

Additionally, conceptual knowledge is concerned with the quality of the knowledge 

gained, paying particular attention to the abundance of the connections built (Star & 

Stylianides, 2013). 

In comparison, procedural knowledge refers to correctly and successfully 

applying procedures to mathematics problems while recognizing appropriate strategies 

(National Council of Teachers of mathematics, 2000). Procedural understanding is the 

ability to automatically solve problems while using few cognitive resources (Gabriel et 

al., 2013; Schneider & Stern, 2010). Hiebert and Carpenter (1992) referred to procedural 

learning as identifying the patterns and systems of mathematics composed of skills and 

step-by-step procedures. These steps are presented without explicit reference to 

mathematical ideas; therefore, the meaning of the process is lost, since the learner cannot 

relate a mathematical construct to the procedure. There is a greater chance of disconnect 

that can happen when procedural learning is the sole means of instruction (Carpenter et 

al., 1996). Deficits are seen in cases where students try to add with multi-digit numbers, 

starting with the ones place-value, working from right to left is the most conventional 
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algorithm in use and is seen as efficient. However, without the understanding that each 

place value only holds a single digit, with the additional values being re-grouped, 

students begin to merely follow a procedure with no knowledge of why it produces a 

correct answer. Similar to Skemp's (1978) sense of Instrumental Understanding, the 

student is regurgitating a memorized process without mathematical reasoning behind 

their actions. Moreover, the steps employed are characterized by constructs that bind the 

knowledge to one particular situation, such as a skill or strategy, making it difficult to 

transfer that learning to different situations (Byrnes & Wasik, 1991). 

Conceptual and procedural knowledge are mutually supportive, as studies have 

shown that competence in one leads to a more solid skill set in the other (Hecht & Vagi, 

2010, 2012; Rittle-Johnston & Siegler, 1998; Schneider et al., 2011). Students need to 

participate in activities geared toward understanding mathematical procedures before the 

procedures are introduced. Evidence suggests that reversing the order makes it more 

difficult for learners to circle back and relearn the concept (Mack, 1990; Wearne & 

Hiebert, 1988). Furthermore, studies have shown that instructional programs that initially 

highlight students' ability to understand conceptually can lead to mathematical learning 

without forgoing the understanding of procedures (Hiebert & Lefevre, 1986). Therefore, 

a teacher's understanding of both classroom elements is essential in building instructional 

plans and delivery methods for the appropriate progression of fractional development. 

Conceptual understanding, being a necessary component of building a sufficient 

mathematics experience for students, is crucial for teachers' mathematics understanding. 

However, concurring results show that many mathematics teachers are unable to 

communicate the required level of conceptual understanding when dealing with the 
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concept of fractions (Ball, 1990; Depaepe et al., 2015; Li & Kulm, 2008; Lortie-Forgues 

et al., 2015; Ma, 1999).  Furthermore, U.S pre-service teachers experience difficulty 

explaining the meaning of fraction division, with the average percentage of correct 

responses being 26% (Ball, 1990). Recent studies have pointed to U.S teachers' deficit of 

conceptual understanding compared with teachers from other nations, such as China (Li 

& Kulum, 2008). These studies confirm that U.S teachers tend to opt for the algorithm of 

invert and multiply when given fraction division problems instead of producing reasoning 

for how they arrived at a correct answer. Simultaneously, the Chinese teachers were able 

to give sufficient explanation with ease, justifying their work through solution plans 

rooted in conceptual based understanding (Li & Kulm, 2008; Lortie-Forgues et al., 2015 

Ma, 1999). 

Further confirming this idea of U.S teachers lacking knowledge is found within 

their deficit of reasoning behind solution plans, that lack conceptual understanding. U.S 

middle school teachers have difficulty extending coherent reasoning for why the invert 

and multiply algorithm works in division of fractions (Borko et al., 1992). Moreover, in a 

comparison of American and Japanese fourth-grade teachers, over their understanding of 

fractional operations, American teachers were only able to employ the part-whole 

construct, where fractions are viewed as a comparison of two values, the number of equal 

parts and the number of total parts (Moseley et al., 2006). The American teachers 

continued to display that same sub-construct, even when it was not appropriate. 

Simultaneously, the Japanese teachers proved their thinking through rational, referencing 

underlying sub-constructs far beyond what was seen with the American teachers' 

explanations. 
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There is a wide range of expectations set on teachers to understand their grade-

level curriculum and recognize the importance of mathematical reasoning and sequencing 

strategies that lend themselves to review and reinforcement in later years of instruction. 

Successful teachers must be versed in delivery modes, maintain awareness of practical 

procedures, and connect ideas far beyond the knowledge that most receive in their formal 

training (Ball, 1990; Hill & Ball, 2004; Ma, 1999). Studies indicate an increasing number 

of educators are entering the teaching field without the requisite mathematical knowledge 

base necessary for vertical familiarity or the deep conceptual understanding required to 

effectively convey mathematics subject-matter (Darling-Hammond et al., 2019; Garcia & 

Weiss, 2019). The mastering of underlying processes and operations is essential for 

learners to obtain a clear trajectory of the learning that is the basis for delivering quality 

instruction, leading to improved student learning (Fennema & Franke 1992; Fennema et 

al., 1996). These elements are especially relevant at the formative elementary level and 

middle school levels where teachers' understanding of fractions is not as stable as is 

required to deliver effective instruction (Ball, 1990; Cramer et al., 2002; Luo et al., 2011; 

Reeder & Utley, 2017; Tobias, 2012; Utley & Reeder, 2012). Mathematics is structured 

much like a ladder with concepts building from previous encounters; a students' 

understanding is subject to how well their ladder is constructed. Otherwise, seen as how 

precise their teachers are with scaffolding content and delivering information. 

Developing a conceptual understanding of content is more complicated than 

memorizing route procedures. The process typically involves more of a focus on the 

experience of applying ideas (Loucks-Horsley at el., 2010). Those who understand the 

underlying conceptual understanding of a discipline can access critical facts and 



29 
 

 
 

principles that can be used to refine, justify, and extend additional questioning models. 

They are aware of the "language" of the discipline and are able to use that understanding 

as a scaffolding tool to create learning opportunities extending beyond the conventional 

processes taught in the classroom (Duschl & Osborne, 2002).  

Skemp Relational and Instrumental Learning 

Skemp (1989) categorized teachers' mathematical knowledge into two distinct 

categories: relational understanding and instrumental understanding. Instrumental 

understanding can be thought of as knowing the rules and procedures of a problem 

without understanding the reasoning behind why those methods generate the correct 

answer. This type of learning is similar to a rote style, where students mostly memorize 

facts and algorithms by way of repetition (Chubb, 2020). Moreover, the constant review 

of the same process is thought to help students recall information. Instrumental learning 

is concentrated on the student completing a specific task using formulas and plans 

without the forward-thinking of how the task fits into the larger picture of mathematics or 

how it is similar to other mathematical procedures (Wees, 2011). Furthermore, 

proficiency in instrumental understanding often results in high performance on 

calculations and a student's ability to apply the learned procedures in a similar context. 

However, learning does not transfer to other situations (Skemp, 1989).   

The second category of learning is relational understanding, linking the web of 

conceptual connections that sustain mathematical knowledge as a whole (Holmes, 2013; 

Skemp, 1978; Wees, 2012). This learning is focused on the cognitive relationships that 

exist between background knowledge and the new information acquired. Once that 

meaningful connection is built, problem-solving strategies can develop by exploring how 
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and why procedures work. Learners can participate in practices that emphasize reasoning 

and explaining processes through the use of multiple representations, uncovering how the 

content is related and embedded into other strands of mathematics (Leinwand & 

Fleischman, 2004). Furthermore, students that are initially taught instrumentally have a 

lower chance of choosing correct solution paths due to their inability to associate new 

information with prior knowledge (Mack, 1990; Wearne & Hiebert, 1988). 

Students often have difficulty transferring their learning of area and perimeter to 

subsequent practices when taught with instrumental methods (Pesek & Kirshner, 2000). 

Although, when initial leaning is done with relational methods, the students can show 

their understanding using conceptual and flexible methods to model their thoughts 

(Leinwand & Fleischman, 2004). Learning that highlights concept acquisition as a web of 

ideas creates an anchor for the new concepts, constructing meaning through a deeper 

connection with the material. Moreover, relational understanding can be viewed as 

meaningful because it builds relevant mathematical connections that are essential for 

future learning opportunities (Turmundi 2012). 
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Figure 2 

Teachers’ Mathematical Knowledge 

Note: From “Ineffective professional development – The Reflective Educator” by D. 

Wees, (2011). The Reflective Educator.  

Fraction Instruction in the U.S. 

A comprehensive and conceptual based curriculum is imperative to student 

success. It is a core component that sets the foundation of mathematics learning, yet this 

has not historically been the case in U.S classrooms (Murata, 2008; Schmidt, 2012). 

Inquiry into K-12 mathematics instruction shows that the U.S mathematics curriculum 

prioritizes procedures and memorization of strategies, guiding students to view 

mathematics as a compilation of rules and facts that must be committed to memory 

(Darling-Hammond et al., 2020; Richland et al., 2012). U.S educators have a long-

established history of employing algorithms from the onset of formal instruction and 

continuing with that mode of delivery. The method leaves little room for students to 
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experience why those processes work (Huinker, 2002; Vanhille & Baroody, 2002). This 

tendency to elect rote based procedures has been observed in studies where students were 

asked what it meant to be good at mathematics. Only 13% replied with answers that 

would be considered conceptually-based (Rattan et al., 2012). This view was consistent 

as those same students proceeded to answer questions using algorithms, even when the 

researchers purposefully presented problems that did not require rote procedures. 

Fractions appear in the U.S mathematics curriculum as one of the initial 

encounters children have with values beyond whole number arithmetic (Siegler et al., 

2010). The quality of the introduction of fractions contributes significantly to students' 

progress or difficulty with the concept (Chan, et al., 2007; Cramer et al., 2002; Paik & 

Mix, 2003). Researchers Van de Walle and Lovin (2006) stress the importance of 

offering students’ abundant experiences to develop number sense related to fractions. 

Their belief is that the learner should first acquire a knowledge base built through 

multiple conceptually-based activities, leading to a full understanding of the concept. As 

accomplished learners first develop a conceptual understanding that can aid in their 

working knowledge of procedural structures. This transition offers students the ability to 

flexibly apply the knowledge and transfer that understanding to multiple situations 

(Bransford et al., 1999). In comparison, students who are taught procedures and rules of 

mathematics during the initial stages of discovery fail to understand connections and 

fluency with fraction magnitude (Fazio & Siegler, 2010). For many students, initial 

experiences with classroom instruction of fractions are a framework that places value on 

procedures. A strong focus has historically been placed on memorization and rote 

processes that generate an answer to specific situations or problems (Darling-Hammond 
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et al., 2019). With many students' misconceptions of fractions stemming from weak 

conceptual knowledge, there is a call for instruction that favors practices geared at 

improving student understanding and fluency with mathematics (Fazio & Siegler, 2010).  

Student exposure to fraction algorithms and procedures early in their development 

can be detrimental to numerical reasoning (Asku, 1997; Kamii & Clark, 1995). The focus 

on computation favors memorization over building a clear awareness of mathematical 

concepts and connections, leading students to perform algorithms without understanding 

the reasoning behind choices (Kerslake, 1986). This issue is present when students can 

execute the steps involved in fractional operations, yet cannot articulate the conceptual 

reasoning for those actions (Byrnes & Wasik, 1991). In this way, these learners do not 

employ efficient strategies, such as estimation, to justify their answer (Pantziara & 

Philippou, 2012). Moreover, the student's inability to link new fractional learning with 

prior knowledge of mathematics may lead to further misinterpretations, affecting the 

learner's opportunity to scaffold content (Amato, 2005). 

Students’ can employ their conceptual understanding of situations to make 

meaning of procedures and adapt them to new tasks (Halford, 1993; Gelman & William, 

1998). In presenting procedures first, students work with mathematical symbols and 

procedures without adequate familiarity with their meaning (Gabriel et al., 2013). 

Furthermore, children in the U. S are more likely than not to practice rote procedures 

repetitively, such as with worksheets or flashcards. These practices can amplify the 

misunderstanding of mathematical symbols (Byrnes & Wasik, 1991). Saenz-Ludlow 

(1995) found that in order for the process to hold meaning for students, it must be 

represented by mental operations and conventional notations. Therefore, students who 
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learn how to apply procedures before conceptually understanding, may struggle 

considerably when asked to apply them to abstract concepts (Duzenli-Goklap & Sharma, 

2010). Currently, the literature surrounding the idea of teaching with a heavy emphasis 

on algorithms has shifted. It is no longer sustainable to offer fraction instruction that 

favors procedures over conceptual understanding. The call for more in-depth learning of 

foundational skills requires mathematical arguments and rationales tied to procedures and 

conceptual understanding (Yackel & Cobb, 1996). 

Fractions in U.S. Textbooks 

The format and description of fractions within U.S textbooks support the lack of 

understanding that we see in the classroom, with many problems being procedurally 

based (Ozer & Sezer, 2014). In a study of 8th-grade textbooks from the U.S, it was found 

that 81% of the questions asked focused on procedural knowledge, with only 9% 

established in conceptual understanding. Furthermore, the textbooks seldom use models 

and manipulatives when introducing new curricula (Van de Walle et al., 2014) even 

though considerable evidence indicates the importance of visual models as powerful 

modes of delivery. Visual models aid in the formation of mental images that can lead to 

increased understanding of fractional concepts (Cramer et al., 2008; Siebert & Gaskin, 

2006; Skemp, 1989). 

U.S textbooks frequently employ a stereotypical area model that amplifies the 

part-whole relationship (Cady et al., 2015; Zhang et al., 2015). This model is often 

represented by edible items such as pizzas, cookies, pies, and brownies (Freeman & 

Jorgensen, 2015; Eichhorn, 2018). The dependence on area-related models favors the 

understanding directly linked to the context, proving challenging to transfer 
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understanding of fractions to other representations or contexts. Moreover, students 

answering fraction related questions through area models have difficulty applying that 

understanding to real-life contexts. Fifth-grade students in the U.S that had been 

exclusively instructed using the area-model were found to be unable to represent similar 

thinking through alternate models (Zhang et al., 2015). Therefore, the copious reliance on 

the area model proves difficult in transferring to visualizations of other models, impeding 

student capacity to form mathematical connections. 

In contrast to relying on one model set for the acquisition of fraction knowledge, a 

body of research is forming that promotes the use of multiples models when teaching 

fractions (Moss & Case, 1999; Siegler et al., 2010; Van de Walle et al., 2016; Zhang et 

al., 2015). Focus on instructing students through several visual models, including 

measurement activities, number lines, and manipulatives such as geoboards, pattern 

blocks, Cuisenaire Rods, and partitioning activities, can foster the deep understanding 

that is required for students to obtain mathematical success (Eichhorn, 2018; Moss & 

Case, 1999; Siegler et al., 2010; Fazio & Siegler, 2011). When presented with the limited 

option of experiencing fractions through the area-model, learners see that model as the 

only visual representation of fractional relationships (Clarke et al., 2008). To expand 

knowledge of fractions, students must become mathematically versed in the alternate 

models. Students who are given ample opportunities to explore fractions through multiple 

representations can become more fluent in the abstract structural similarities between 

them, promoting a deeper conceptual understanding (Zhang et al., 2015). 
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Concrete, Pictorial, and Abstract (CPA) and Manipulatives 

      The use of concrete objects to introduce and scaffold mathematics understanding is a 

topic that has been well documented (Browder et al., 2010; Jimenez & Stanger, 2017; 

McNeil & Jarvin, 2007; Siegler et al., 2010). Many leading educational researchers and 

organizations have identified manipulatives' use as a powerful representation in 

understanding mathematics concepts (Maccini & Hughes, 2000; Mercer & Miller, 1992). 

Furthermore, the NCTM standards continually emphasize the importance of employing 

various mathematical models, specifically with fraction learning, to connect mathematics 

learning to real-life situations (National Council of Mathematics Teachers, 2000). The 

addition of manipulatives to the classroom offers students an alternative representation of 

challenging mathematical concepts.  

The period of concrete operations is a time frame where students explore and 

demonstrate their understanding of concepts through relevant use of concrete objects and 

associated symbols (Piaget, 1954). Additionally, the use of concrete objects to model 

mathematical thinking spans decades, with Skemp (1989) stating that there is significance 

in utilizing physical objects to build foundational understanding that can lead to fluency 

with abstract ideas. Manipulatives are seen as dynamic learning tools that can guide 

students' conceptual understanding of mathematics topics and help retain material 

covered (Sowell, 1989). This idea is reflected by the American cognitive psychologist 

Jerome Bruner, who believed that laying the foundation of concrete learning is essential 

in progressing to an abstract understanding of concepts. Bruner (1966) proposed three 

binding modes of representations that students must pass through; enactive, iconic, and 

symbolic. Enactive is the action-based stage, where students interact physically with 
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concrete objects; the iconic stage is when images are stored as sensory models or pictorial 

representations. The symbolic stage encompasses the ability to order, classify, and work 

within symbolic representations. This sequence's trajectory allows students to build 

understanding, grasp connections, and understand mathematics concepts. This format 

ensures that students interact with the content and identify the relationships presented, 

instead of just producing an answer. 

 Grounded in the findings of Jerome Brunner, the CPA (Concrete-Pictorial-

Abstract) model for mathematics instruction is a framework that allows teachers to guide 

and track students' conceptual development of mathematics (Chang et al., 2017). The 

CPA model is synonymous with the Singapore Math method. This learning progression 

utilizes an intentional sequencing of topics to reinforce critical connections required for a 

conceptual understanding of mathematics topics. The model utilizes existing knowledge 

to scaffold new learning through concrete manipulatives that intend to bridge 

mathematics learning within the pictorial and abstract stages (Hoe & Jeremy, 2014). The 

CPA sequence of teaching has proven to enhance mathematical connections, guiding 

students to increased mathematics achievement (Witzel & Little, 2016). 

Additionally, this type of instruction has shown to be effective with students who 

struggle with mathematics, specifically when displaying deficits in understanding basic 

computation strategies (Sousa, 2008). Therefore, a teacher's ability to provide students 

with meaningful representations within the curriculum can significantly influence their 

continued success in the classroom (Kang & Liu, 2016). The modeling acts as a 

foundation for students to develop a more robust understanding of the content strands and 

bridge the relationships between kinesthetic and visual experiences (Tran et al., 2017). 
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With findings that show the use of the CPA sequence as more effective than the 

traditional abstract-level instruction, it is essential that educators understand the model 

and plan lessons that reflect this type of valuable instruction (Butler et al., 2003; 

Maccinni & Ruhl, 2000).     

Teacher Preparation 

There is a considerable number of current U.S mathematics teachers that lack 

proficiency with foundational procedures concerning fractions. This deficit contributes to 

their inability to articulate the alignment necessary in demonstrating a conceptual 

understanding of how fractions function within mathematical operations (Osana & 

Royea, 2011; Ball et al., 2008; Thompson & Saldanha, 2003; Tirosh & Graeber, 1990). 

The Association of Mathematics Teacher Educators (2017) found that teaching is often 

viewed as an autonomous skill set that does not require training in specific content areas 

expected to be taught in the classroom. This perception overlooks the importance of 

subject-specific training regarding the knowledge, skills, and methods required for 

effective delivery. Teachers need to understand their grade-level content and be cognizant 

of the preceding and subsequent material that their students will encounter. Practical 

training should include access to mathematics opportunities that lead to a deeper 

understanding of the methods, skills, and relationships that are often excluded from basic 

standards alignment and curriculum planning (Hill et al., 2008) 

It is essential to understand how fractions have been taught as that history impacts 

how teachers present and explore fractions with their students. Studies confirm that 

fraction content mastery is not as prevalent as it should be in U. S teachers (Ball, 1990; 

Cramer et al., 2002; Luo et al., 2011). This lack of deep understanding leads to challenges 
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when explaining fractions to students (Chinnappan, 2000). Furthermore, the issue stems 

from the teachers' misunderstandings from their previous learning. The lack of formal 

instruction and time spent exploring the concepts with depth makes it difficult for 

teachers to convey the connections required in mastering fractional concepts (Reeder & 

Utley, 2017).  

Mounting evidence suggests that U.S mathematics teachers tend to favor rules and 

procedures when teaching the concept of fractions. The narrow instruction can be 

attributed to the absence of conceptual knowledge and reasoning skills presented in their 

formal training (Reid & Reid, 2017; Ma, 1999).  The inadequate preparation and lack of 

clear trajectory in understanding standards addressed in the classroom contribute to the 

shortfall of deeply conceptualized knowledge required to teach mathematics content 

effectively (Association of Mathematics Teacher Educators, 2017).  

The average U.S elementary school teacher must only complete approximately 

1.3 math courses during their undergraduate preparation (National Center for Education 

Statistics, 2018). The minimal measure of subject-specific training does not promote the 

necessary in-depth study required to master the critical mathematics elements needed to 

develop a solid understanding of mathematical relationships and patterns. A deficit of 

learning can be seen in recent studies that indicate a minuscule 20% of U.S elementary 

school teachers rate their knowledge of fractions as strong (Ward & Thomas, 2007). 

Furthermore, the U.S Department of Education found that roughly two-thirds of 

elementary school teachers state that they hold a less than adequate understanding of 

subjects they teach (Greenberg et al., 2014). With inapt teacher preparation, students' can 

become more susceptible to acquiring misconceptions resulting from teachers' weak 
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knowledge (Newton, 2008). Findings show that when teachers experience 

misunderstandings on foundational mathematics concepts, such as fractions, they tend to 

rely on algorithms and shortcuts without having the ability to make justifiable reasoning 

for their choices (Ball et al., 2009; Holm & Kajander, 2011; Tirosh & Graeber, 1989). 

Documented accounts of teachers' limited knowledge of fractional understanding 

chronicle how their limitations are passed onto students through the simplified definition 

of functions and novice examples that do not provide a solid foundation for the 

subsequent development of functions (Stein et al.,1990). Therefore, mathematics teachers 

may not possess a rich enough understanding of fraction content to encourage students to 

engage deeply with abstract concepts (Ma, 1999).   

Teachers are the essential factor in students' learning, as their influence and 

quality of teaching methods can heavily impact mathematical learning (Darling-

Hammond, 2000; Eichorn, 2018). Moreover, studies indicate that a teacher's coursework 

can contribute significantly to the quality of teaching that they display in the classroom 

(Baumert et al., 2010; Campbell et al., 2014; Goe, 2007; Seidel & Shavelson, 2007). 

Strong correlations have been found between teacher content knowledge and 

mathematics scores on standardized tests for first and third-grade students (Charalambous 

et al., 2019). Additionally, the type and amount of mathematics coursework that a teacher 

engages in often leads to a direct and consistent relationship to their students' success in 

mathematics (Rice, 2003). Unfortunately, patterns of lacking instruction and surface-level 

understanding ultimately pervade classroom instruction and, therefore, student learning. 

These findings may suggest that poor student performance results from inadequate 
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teacher preparation and professional development opportunities that U.S teachers 

experience (Ma, 1999). 

Teachers need to develop an in-depth understanding of the content required for 

guiding students through a rigorous curriculum. The evidence lies within studies that 

continually show the significance of teacher knowledge over student understanding 

(Seidel & Shavelson, 2007). This recurring idea of teacher knowledge has shifted 

educational stakeholders' attention to the quality of U.S teacher preparation programs and 

the professional development (PD) opportunities that are available once in the field (Hill 

et al., 2004; Shulman, 1986). U.S teachers are the result of a flawed system that does not 

require candidates to possess thorough mathematical knowledge before entering the 

classroom (Ball et al., 2005). With the vast structuring of teacher preparation programs, 

findings point to a limited experience in mathematics content training, especially 

when compared to other industrialized countries (Ma, 1999; Stigler & Hiebert, 1999). 

Currently, the limited exposure to methods courses does not include practice with the 

demanding curriculum needed for U.S. students to compete internationally (Schmidt, 

2012). When considering fractions, U.S teachers' understanding and application show a 

deficit compared to China, Japan, and Germany (Carnoy & Rothstein, 2013). The current 

system provides candidates with an inadequate number of mathematics methods courses 

and professional learning experiences, which has led to an urgent need for a more 

focused professional development model to address the absence of vital mathematics 

content knowledge (Association of Mathematics Teacher Educators, 2017).   

The restructuring of teacher certification programs redefines pre-service teachers' 

criteria, showing that these programs are evolving. This change can also be seen with PD 
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offerings that fluctuate in program design, framework, and principles (Darling-Hammond 

et al., 2009; Guskey & Yoon, 2009). With credentials varying from state to state and even 

district to district, there is a lack of uniformity that determines the content and 

benchmarks for teacher excellence. Currently, the number of in-field teachers, those who 

teach subjects matching their training or education, for mathematics is low. Studies have 

found that the percentage of elementary and middle school mathematics teachers holding 

subject-specific credentials was far less than in other disciplines (Rice, 2003; Darling-

Hammond, & Carver-Thomas, 2016). 

Additionally, only 5% of elementary school teachers have obtained sufficient 

mathematics endorsements. The shortage is further represented in the 2018 findings from 

the National Survey of Science and Math Education that show that 3% of elementary 

school teachers surveyed held a degree in mathematics. Meanwhile, 45% of middle 

school teachers and 79% of high school teachers completed a degree in mathematics 

education (Durrance, 2019). 

The exiguous percentage of teachers who can’t demonstrate the basic 

mathematics proficiency standards is a contributing factor in the continuous cycle of ill-

prepared mathematics students. Therefore, a shift is occurring within districts to analyze 

the current frameworks while searching for PD opportunities to close teacher learning 

gaps. Improving student learning will only come from improving teachers' education 

(Tatto & Senk, 2011). Those stakeholders involved in preparing mathematics teachers 

must establish learning opportunities that resolve to intensify the acquisition of 

understanding, proficiency, and dispositions necessary to provide all students with 

equitable mathematics practices (Association of Mathematics Teacher Educators, 2017).  
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The field of mathematics education has continued to encounter a decreasing 

number of qualified mathematics teachers exiting pre-service programs. Reports from 

The Education Commission of the States show that teacher shortages are habitually 

confined to specific subject areas such as math and science (Aragon, 2016). Furthermore, 

teachers who have not received remediation for lacking skills or subject-specific training 

resort to teaching in the same sequence and way they have been taught (Borg, 2004). 

Researchers refer to this as the "apprenticeship of observation," the idea that teachers, 

especially novice teachers, rely on the thousands of hours they spent in the classroom as 

students to model their current teaching practices (Kennedy, 1991). Often this is seen in 

classrooms that favor direct instruction over student-centered learning. In theory, these 

teachers know what differentiation is, how to create small groups, and are aware of 

appropriate times to engage students in discourse. However, they resort back to the rote 

algorithms, and teacher-centered strategies they believe are teaching hallmarks. 

Furthermore, the conversation circles back to teacher quality, in terms of the 

ability to deeply understand and teach the necessary components (Newton et al., 2012). 

Increasing overall student outcomes requires teacher preparation models to be 

reconfigured, raising the quality of mathematics in schools through districts reexamining 

and expanding their professional development offerings to mathematics teachers (Even, 

2014). Creating professional development that improves teachers' understanding of 

content may be the key element to improved classroom instruction. 

Professional Development  

With billions of dollars invested each year in PD programs that intend to improve 

teaching and learning within school districts across the country, stakeholders are looking 
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for the value that these programs bring to education (Darling-Hammond et al., 2017: 

Desimone & Garet, 2015; Garet et al., 2011). Many are disappointed to find out that there 

is little evidence to link professional development and positive student learning outcomes 

(Guskey & Yoon, 2009). In a study published by the American Institutes for Research, of 

over 1,300 professional development studies, only nine met the standards of credible 

evidence set by the What Works Clearinghouse, a sector of the U.S Department of 

Education responsible for providing scientific evidence for policymakers (Yoon et al., 

2007). With PD currently viewed as a general subject that can encompass various 

delivery modes, it is difficult for school leaders to pinpoint their institution's most 

pronounced choice (Desimone, 2009). The National Mathematics Advisory Panel's report 

(2008) found that most of the professional development offered is descriptive and lacks 

the methodological rigor needed to connect the opportunities to outcomes that can be 

seen as valid. This trend is even more pronounced for mathematics-focused PD aimed at 

elementary school teachers (Polly et al., 2013). Teacher preparation and continued PD at 

the elementary school level is often approached as an overview of topics and procedures. 

This general structure does not allow for explicit teaching on the way students' think 

about numbers, the instructional approaches that support mathematical learning, or how 

the scaffolding curriculum strands connect to current content (Association of 

Mathematics Teacher Educators, 2017). Often the focus of these sessions concentrates on 

data analysis of student test scores, implementation of a new curriculum, and 

understanding the scripted textbook, leaving little time to deepen teachers' understanding 

of content (Hill & Ball, 2004; Hill & Grossman., 2013;). The focus on all-encompassing 

professional development sessions has led to a "mile-wide and inch-deep" preparation, 
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which supports a system that produces educators who cannot access the demanding 

curriculum essential in today's classrooms. 

Teachers often perceive PD opportunities as limited and ineffective. In a report 

from the Economic Policy Institute, Garcia and Weiss (2019) found ample room for 

improvement of PD offerings that aid in retaining quality teachers and help educators 

expand their repertoire of subject-matter knowledge. Moreover, numerous PD approaches 

are available that intend to increase teacher knowledge, but are not specific enough to 

transform instructional improvement (Fullan, 2007). These approaches are not designed 

around maximizing teacher learning. Instead, they are a quick fix created to satisfy a 

need, usually having a short duration and no formal evaluation to reference (Hill & 

Grossman., 2013). Findings have detailed how teachers can apply mathematical concepts 

such as fractions using rote procedures and algorithms. Although when asked about 

solution plans, teachers cannot communicate why the algorithm worked or how that same 

procedure is applicable in other instances (Borko at el., 1992). Yang (2007) drew similar 

findings when exploring number sense strategies employed by pre-service teachers in 

understanding fractions. The problems presented called for teachers to work with the four 

arithmetic operations for real numbers. The data collected showed that one-third of the 

participants were able to employ efficient number sense strategies. The remaining two-

thirds resorted to rule-based strategies that were highly dependent on standard written 

algorithms. Many participants struggled with basic mental math concepts such as 

estimation, choosing to provide an exact answer instead of following through with the 

directions. This lack of awareness with essential mathematical knowledge is disturbing 

when considering that fractions are identified as one of the central concepts that serve as 
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a precursor to mathematical success in subsequent years of schooling (Ball at el., 2005; 

Siegler at el., 2012). 

It is a long-standing belief that teachers must understand a subject thoroughly in 

order to deliver effective teaching. This idea is so prevalent that it has been included in 

federal mandates, such as Every Student Succeeds Act (ESSA) as a primary contributing 

requirement in being considered profession ready (U.S Department of Education, 2017). 

Mathematics teachers are expected to enter the classroom with specialized content 

knowledge (SCK), the knowledge strictly related to mathematical content, and essential 

for competent instruction (Ball et al., 2008). This knowledge is required to help teachers 

understand the framework that builds within the curriculum and is essential when 

mathematical issues arise in the classroom. Teachers who have a solid understanding of 

SCK are better equipped to understand the complexities of the content and map the 

interconnected strands for students. Teachers’ deep understanding of subject matter 

makes it possible to engage in more advanced discussions and evaluations of their 

students thinking processes. Furthermore, studies have found that teachers' knowledge of 

key mathematical concepts was enhanced through professional development programs, 

resulting in the addition of an increased number of open-ended questions and more 

targeted classroom discussions with students (Swafford et al., 1997). Experiences such as 

these give an insider's view of the content knowledge that ultimately influences the 

available teaching depth. It is no secret that good teaching provides a gateway to future 

success. Teachers are currently juggling a continually changing curriculum, classroom 

management issues, state and federal mandates, overcrowding, standardized testing, and 
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many other behind-the-scenes issues that make it increasingly difficult to focus on 

effectively teaching students. 

Furthermore, many teachers are placed in situations that have to lead to their 

professional development becoming stagnant or non-existent, which leads them to fall 

back on methods and strategies that are not conducive to the changing landscape of 

education. Targeted PD opportunities should include the skills necessary to promote 

student learning, affording the contingency to identify the commonalities and related 

strands that exist (Hill et al., 2008; Evens, 2014).  

Professional development in mathematics structured to reflect the discipline's 

nature has proven effective (Loucks-Horsley et al., 2010). Employing a model that offers 

teachers an opportunity to think and reason mathematically in a discovery-oriented 

atmosphere provides opportunities to discuss, model, and engage in reflective practices 

vital in constructing new meaning and formulating ideas (Darling-Hammond et al., 2009; 

Yoon et al., 2007). Empirical research on characteristics of learner-centered PD call for 

real-world tasks that require teachers to pose questions, work with multiple problem-

solving strategies, and cultivate useful models that display their learning (Bransford et al., 

1999; Polly & Hannafin, 2011). Securing effective PD includes building structured 

sessions to guide new teacher understanding, allowing for experience in applying newly 

learned skills (Stigler & Hiebert, 1997). 

The Learning Policy Institute's paper Effective Teacher Professional Development 

addresses the need for a sophisticated teaching model that is required to obtain a deep 

mastery of rigorous curriculum through problem-solving, communication, and critical-

thinking activities (Darling-Hammond et al., 2017). The paper provides evidence of a 
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positive and direct relationship between teacher PD and valuable classroom practices. 

The reviews of 35 studies covering PD show that there are seven commonly used features 

of effective PD: content-focused, sustained duration, active learning, collaborative 

environment, use of models, expert support, and ample time for feedback and reflection.  

 Delivering PD that will alter instructional practices requires a framework that 

provides ample time to translate changes into practice (Darling-Hammond et al., 2009; 

Loucks-Horsley, 2010). The often fragmented and sporadic PD opportunities in the form 

of one-shot workshops have dominated the field of mathematics education (Darling-

Hammond et al., 2017). These surface-level opportunities do not offer the time necessary 

for a multifaceted approach that intends to change teachers' skills and competencies 

(Darling-Hammond et al., 2009; Garet et al., 2001). Various studies have indicated that 

mathematics PD is most effective when sustained, allowing for experience in deepening 

teachers' knowledge while promoting transformative practice (Gore et al., 2017; Hill & 

Ball, 2004; Kennedy, 2016). 

Effective PD is commonly characterized by a heavy emphasis on collaboration 

(Dash et al., 2012). Collaborating is the act of purposefully building interpersonal 

relationships while working towards healthy interdependence, which occurs when 

teachers are comfortable giving and receiving assistance without forfeiting accountability 

(Bannister, 2018). A collaborative PD series begins with common goals and is 

continually changing. Sessions are improved upon by practice, developing a shared 

vision that establishes group norms and expectations while fostering a sense of school 

community. The shared process is enhanced by the strong social networks created within 

the experience. Engaging in a collaborative platform that facilitates discovery and best 
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practices provides educators with support and learning opportunities that can foster a 

student-centered culture (Friedlaender et al., 2014).  

Unfortunately, there are plenty of PD opportunities that fall into the traditional 

single conference or workshop model that does not sustain the essential components to 

extend and reflect on ideas learned. Many of the sessions tailored to educators do not 

encompass the connections required to scaffold; instead, they are unrelated snippets of 

information that leave educators uninspired.  

Criticism over the state of teachers' PD points to opportunities that are "shallow, 

fragmented, and unfocused" (Hawley & Valli, 1999). Inadequate offerings have 

consistently been prevalent in schools (Nieto, 2009), including minimal professional 

development activities offered as a snapshot of what is needed. Working from a top-down 

model, administrators are often the decision-maker on the chosen topic, with teachers 

acting as an audience rather than engaging in any critical learning that will impact their 

practice. Furthermore, The Center for Policy Research labeled nearly all PD as 

"pedagogically naive," referring to the lack of knowledge teachers obtain from their 

participation (Gigante & Firestone, 2008). 

Furthermore, teachers are looking for PD that provides understanding on how to 

use the acquired information post-session (Darling-Hammond & McLaughlin, 1995) 

Clear indicators in current research have called for teacher development in the area of 

subject-specific content knowledge. The content focused developmental pieces provide 

teachers with specialized knowledge, relevant practices, and opportunities for interaction 

with different instructional strategies. Professional development should allow for 

reflection opportunities, both individually and collectively, and time to connect learning 
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to what is relevant for classroom instruction (Van Driel & Berry, 2012). Providing 

authentic professional development that targets teachers' learning deficiencies by 

modeling effective techniques, coherent content scaffolding, and reflective space for 

professional collaboration can improve teacher fluency and understanding of concepts 

(Butler et al., 2003; Harris & Sass, 2011). 

Online Professional Development 

The vast array of online opportunities currently available to teachers has 

continued to improve and increase over the years, as their convenience and adaptability 

make them viable options for many (Bates et al., 2016; Fishman et al., 2013). In deciding 

on an online PD option, one can choose between asynchronous programs that offer 

learning on the participants’ schedule or synchronous, remote learning that requires 

participants to attend real-time sessions (Bates et al. 2016). Providing effective options in 

either of the formats mentioned above depends on the design and execution of 

maintaining a viable program that offers tenets similar to that of in-person experiences 

(Darling-Hammond & McLaughlin, 1995; Fetzner, 2013). Employing technology, online 

resources, and tools can offer new ways to support and enhance learning. Furthermore, 

participants have a first-hand view of the types of learning experiences they are expected 

to bring to their students (Desimone, 2009) 

 Online PD offers facilitators the option to customize and tailor learning to the 

individual needs of the participants. Through flexible and open pacing of offerings, 

participants have the option to learn at their own pace and revisit material when they 

deem necessary (Wynants & Dennis, 2018). The platform encourages collaboration 

through chat rooms, direct and whole group messaging strings, virtual manipulatives to 
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collaboratively solve mathematics problems in real-time, and the capability to share 

screens with other participants (Francis & Jacobsen, 2013). Furthermore, technology 

makes it possible to track participant input and participation, improving accountability, 

and future outcomes in the classroom. 

Virtual Manipulatives 

The use of virtual manipulatives is fast becoming a part of the mathematics 

landscape in K-12 education. These models have emerged as a promising tool for 

students to explore and develop a deeper understanding of mathematics content (Moyer-

Packenham & Westenskow, 2013; Sarama & Clements, 2009). A virtual manipulative, is 

defined as "an interactive, web-based visual representation of a dynamic object that 

presents opportunities for constructing mathematical knowledge" (Moyer et al., 2002, p. 

373). As a dynamic representation of traditional concrete manipulatives, the virtual 

manipulatives replace the typical classroom model and improves educators' and learners' 

experience.  

Virtual manipulative use provides an interactive climate that fosters engagement 

through unique options and additional features exclusive to the nature of virtual 

opportunities (Sarama & Clements, 2009). The evolving digital platform allows for 

collaboration through the possibility of offering immediate feedback and extensions that 

enable learners to represent their thinking in ways that have previously not been possible 

with traditional concrete manipulatives (Steen et al., 2006). The expanding offerings of 

virtual manipulatives allow modifying the shape, color, amount, and size of the models 

selected. The dynamic representations are offered in both 2-D and 3-D options with the 

potential to slide, flip, turn, redirect, and rotate the models according to the learner's 



52 
 

 
 

needs. Furthermore, students can create side-by-side comparisons of models that enhance 

and bridge their awareness and understanding of the relationship between abstract values 

and visual models (Lee & Chen, 2005). Features of virtual manipulatives highlight the 

iconic and symbolic connection of mathematics learning by offering pictorial 

representations connected to numerical content (Reimer & Moyer-Packenham, 2005). 

The versatility can be seen in several offerings, such as the fraction application from The 

Math Learning Center. The fraction application gives learners an option to hide or 

publish numeric labels, color in sections of the fraction bars, and superimpose fractional 

pieces on each other, showing comparison and equivalency. Additionally, virtual 

manipulatives are offered in unlimited supply, making it cost-effective for school districts 

and less time consuming for teachers to prepare lessons (Moyer et al., 2002). The 

abundant options available for educators make it possible for students to not only access 

these scaffolding materials in the classroom but wherever there is internet access, making 

them invaluable for distance and hybrid learning.  

As virtual manipulatives are becoming more prevalent in classroom instruction, 

studies have begun to emerge that suggest there is success with teaching fractional 

concepts through the use of virtual manipulatives, especially compared to traditional 

paper-pencil instruction that tends to rely heavily on abstract models (Reimer & Moyer-

Packenham, 2005). One such study from Moyer-Pakenham and Suh (2005) examined 

fifth-grade students' understanding of fraction equivalency and addition. The researchers 

established that the virtual manipulatives supported the prevention of common 

mathematical errors, allowing students to engage in discovery learning through 

experimentation and identification of mathematical relationships. Furthermore, using 
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virtual manipulatives enhances fractional learning by providing the option to create 

fractional pieces that have not been readily available (i.e., 7ths or 11th). (Bouck & 

Flanagan, 2010). Currently, there is limited research on how virtual manipulatives can 

effectively be incorporated into teacher PD. However, research does indicate that the 

flexibility of virtual manipulatives makes them powerful resources for mathematics 

learning (Reimer & Moyer-Packenham, 2005). 

Virtual manipulatives promote learning acquisition that is often equal or more 

enhanced than traditional concrete manipulatives (Dorward & Heal, 1999). Students 

interact with the virtual manipulatives similarly to the concrete models, accurately 

utilizing technology to communicate their thinking (Burris, 2013). Furthermore, the 

landmark publication, Principals to Action (2014), NCTM, requires "successful 

mathematics teachers to engage students in activities that enhance mathematical 

knowledge through various modes of delivery." Therefore, offering students at all levels 

the assistance that visual models can provide. (National Council of Teachers of 

Mathematics, 2014). 

In order for students to experience the full benefit of virtual manipulatives, 

teachers must be versed in the various features of the platform and how they can include 

the mode of delivery into the classroom (Uttal et al., 1997). A teacher's understanding 

and fluency with manipulatives is a vital piece for successfully integrating them into the 

curriculum, as studies indicate a direct correlation with a teacher's experience with 

models and their ability to effectively bridge the idea of manipulative use with 

mathematics (Moyer 2001). Furthermore, employing a practice alone does not guarantee 

that learners will be able to extract conceptual understanding. Teachers must participate 
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in professional development to experience and understand how the models can contribute 

to mathematics learning objectives. 

Mathematical Content Knowledge for Teaching      

The practice-based theory of Mathematical Knowledge for Teaching (MKT) is 

defined as the mathematical knowledge, skills, and dispositions required for teaching 

(Ball et al., 2008). The theory identifies the teaching domains based on the Learning 

Mathematics for Teaching (LMT) project. The LMT project studied the mathematical 

knowledge required for teaching; specifically, the types of fluency that led to successful 

student instruction. The MKT model has been utilized extensively with educators, both in 

the US and abroad, as it acts as a framework to assess a teachers' quality of instruction 

(Santagata & Lee, 2019; Delaney et al., 2008). The model, which is grounded in 

Shulman's (1978) idea of the seven forms of knowledge as a basis for teaching, has been 

continually refined and extended by several educators and researchers. 

Additionally, the MKT model highlights the particular knowledge base required 

for teaching. It takes into consideration the interconnected relationship between knowing 

mathematics and teaching mathematics. Ball et al. (2008) referenced Shulman's 

categories, placing focus on subject matter knowledge and pedagogical content 

knowledge. Additionally, MKT addresses the tasks that teachers complete daily, such as 

explaining mathematical processes and procedures, assessing students' work, addressing 

curriculum alignment, and various other functions that are the underlying reasoning 

behind teachers' decision-making (Ball et al., 2008).  

MKT blends the mathematical understanding common to individuals working in 

diverse professions with the mathematical knowledge exclusively found in education 
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(Hill et al., 2019). This standard of mathematical learning places emphasis on classroom 

management concerning how activities are facilitated. Therefore, teachers must be versed 

in several domains that only a classroom teacher would need. Such as the specifications 

of time restrictions allotted for assignments, the structuring of assessments, types of 

praise offered, differentiation of questioning, lesson planning, monitoring classroom 

behavior, and ways to formulate explanations and clarifications in student-friendly 

contexts (Shulman, 1986).  

The MKT model comprises the two main types of knowledge required to 

successfully teach mathematical content for classroom purposes; subject matter 

knowledge and pedagogical content knowledge (Ball et al., 2008). Housed under the 

domain of subject matter knowledge is Common Content Knowledge (CCK), Horizon 

Content Knowledge (HCK), and Specialized Content Knowledge (SCK). CCK refers to 

the knowledge that is only used for teaching, specifically the knowledge of mathematics 

that other professions would not need to access (Hill et al., 2008). Horizon Content 

Knowledge is the awareness of the overarching ideas in mathematics education and how 

they are connected. Specialized Content Knowledge is a unique domain with relevance 

that lies within the comprehension of a robust conceptual understanding required for 

teachers to know more than merely how to "do" mathematics. SCK directly aids in 

developing a mathematical understanding that applies to teaching (Ball et al., 2008). 

Additionally, there is more than just skill that is required to teach mathematics 

effectively. Instead, there is a type of understanding that enables one to provide students 

with explanations to understand how to analyze student responses for accuracy and 

employ appropriate pictorial models when representing concepts (Ball at. el., 2008; 
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Rittle-Johnson et al. 2001).  The overall deficit in teachers' MKT can deter their ability to 

discern and evaluate students' understanding, which can hinder productive conversations 

and scaffolding opportunities (Goldsmith et al., 2013). Furthermore, gains in student 

achievement, specifically in the elementary grades, have been linked to a teacher's MKT 

(Hill et al., 2008; Selling et al., 2016). Therefore, effective teaching must include SCK to 

build students' understanding of concepts.  

SCK is essential in understanding how to transform a text into effective 

instruction that students can access. In drawing from the unique connections between 

content knowledge and pedagogical knowledge, teachers can better structure learning 

situations and articulate flexible responses.  Teachers must also know how to translate 

their thinking into relevant terms to students, as there are instances of experienced middle 

school teachers unable to present content effectively (Borko et al., 1992). Additionally, 

research shows that mathematics teachers experience difficulty when drawing 

representations to explain their algorithms, unable to select an appropriate operation to 

correctly answer problem-solving exercises (Izsak et al., 2012). Therefore, teachers need 

the depth and breadth of the content that reaches far beyond the skill set needed to mimic 

algorithms. Instead, they must be capable of connecting their current learning to 

overarching concepts that extend meaning (Ma, 1999). This concept of a need to expand 

ideas is also referred to as the Profound Understanding of Fundamental Mathematics 

(PUFM) (Ma, 1999). Teachers need this wide-spread knowledge to build fluency and 

conceptual understanding of content as evidence of their proficiency (Schoenfeld & 

Kilpatrick, 2013). 
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Figure 3 

Domains of Mathematical Knowledge for Teaching 

 

Note: From “Content Knowledge for Teaching: What Makes it Special?” by Ball et al., 

2008, Journal of Teacher Education, 59(5), p. 403 (https://doi.org/10.1177/ 

0022487108324554). 

The increasing standards alignment efforts in states and districts have influenced 

growing concern about teachers’ understanding of fractions and their ability to effectively 

teach students the conceptual and procedural knowledge required to succeed in 

mathematics. Many teachers hold a limited knowledge of scaffolding concepts necessary 

for students to move through the content. It is expected that current and prospective 

teachers have acquired these skills through pre-service and on-going PD sessions. 

However, this is not common practice in many programs offered. Studies have shown 

that teachers’ mathematical knowledge is often rooted in their own educational 

experience with mathematics. Additionally, teachers who have an inadequate 

understanding of fractions must experience a more rigorous and comprehensive 
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mathematics education if they are expected to be effective in the classroom (Park et al., 

2012). 

Social-Constructivism Learning Theory  

The Mathematical Knowledge for Teaching model stresses the importance of both 

subject-matter and pedagogical knowledge by addressing the connection between 

teachers’ mathematical knowledge and practice. A goal of any effective PD model 

includes the presentation of content in a way that values social interaction as a means to 

create a collaborative workspace (Hurst et al., 2013). As a model for teacher learning, 

social interaction encourages sharing strategies and emphasizes mathematics through 

collaborative problem solving (Darling-Hammond & McLaughlin, 1995). Furthermore, 

this type of model emphasizes the view of teaching as a social activity that requires 

learners to actively participate in creating an understanding of new content through 

meaningful dialogue and activities that mimic real-life situations (Dewey, 1963; 

Routman, 2005; Vacca et al., 2011).  

The social constructivist framework supports the idea of learning as a social 

activity that occurs within purposeful contexts while favoring interaction over abstract 

learning methods (Dewey, 1938). A central component is that the process of learning 

happens over time, with initial knowledge adjusting and reconfiguring into new pathways 

that confirm and challenge the prior knowledge attained (Brooks & Brooks, 1993). 

Moreover, Vygotsky (1978) highlights the fundamental role of social interaction in the 

development of cognition. His theory strongly suggests that community function is 

imperative when learners are constructing meaning. The act of obtaining knowledge is a 

collaborative process of assembling understanding as the learner interacts with culture 
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and society. Vygotsky (1978) believed that everything learned could be categorized into 

two levels; the social and individual level. The latter is heavily reliant on the students 

being taught at their zone of proximal development. This zone lies within the space of 

exploration, a place where the student is mentally capable of working with the concepts 

but requires assistance through social interaction to develop the meaning and further 

categorize it within their previously learned knowledge (Briner, 1999). The Zone of 

Proximal development is based on the notion that individuals learn best when interacting 

with what would be considered a more skilled person, be it a teacher or peer, to facilitate 

learning through support (Shabani et al., 2010; Vygotsky, 1978). Quality learning should 

occur through interactions that promote discourse, debate, and rigorous problem-solving 

(Polly et al., 2017). A collaborative environment that encourages learners to think 

critically through authentic discourse and apply the newly taught knowledge is central to 

sociocultural learning theory. Classrooms that promote this learning model are required 

to staff teachers that have mastered the depth of the concepts presented as well as an 

understanding of the practices that are beneficial to the learning development patterns of 

their students.   
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Chapter III 

Methodology 

Purpose of the Study 
 

The study intended to determine if subject-specific professional development of 

fractions can increase teachers' mathematical knowledge. With mathematics scores from 

the 2019 National Assessment of Educational Progress test leaving the U.S student 

achievement rate at a standstill since 2009, the education community is looking at causes 

of this stagnation (National Center for Education Statistics, 2019). One thought that has 

gained traction in the past few decades is the focus on the content knowledge and 

effectiveness of the teacher in the classroom, thus calling for educators to acquire and 

maintain a deep and concrete understanding of the subject matter they teach (Ball et al., 

2005; Kahan et al., 2003; Ma, 1999). Furthermore, research has continually shown that 

teachers often lack the understanding necessary to lead students through the required 

curriculum successfully. Evidence of this deficit is found in studies that reflect U. S 

students displaying inadequacies in conceptual understanding of key mathematical ideas 

that are critical in advancing within grade-level targets (Aksoy & Yazlik, 2017). 

Exploring these shortcomings has led to findings in the Psychological Science Journal 

that point to a correlation between success in algebra and overall mathematics 

achievement in high school, linked to a student's understanding of fractions at age ten 

(Seigler et al., 2012). For students to be versed with the resources required for future 

success, they must be prepared by teachers with a profound and fluent understanding of 

the curriculum, skills, and models necessary for effective instruction. 
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This study's results are included to establish a design for evaluating and 

modifying future teacher learning opportunities. The hypothesis was that teacher 

participation in a specialized content knowledge professional development series focused 

on fractional learning through virtual manipulatives would increase their conceptual 

understanding of fractions' foundational practices. Through the use of concrete models, 

teachers explored learning similarly to their students, strengthening necessary skills in 

content and gaining familiarity with how students learn. This experience aimed to 

increase teachers' understanding of vital fractional concepts while laying a foundation for 

quality classroom lessons.  

A critical tenet of professional development provides participants an experience 

that aims to improve the existing structure (Hill & Grossman, 2013). Program design 

elements such as content-focus, inquiry-based questioning, collaborative experiences, and 

exploration with multiple models have been shown to maximize teacher learning (Garet 

et al., 2001; Hill & Ball, 2004; Penuel et al., 2007). Furthermore, educators are 

continually seeking ways to implement adequate PD opportunities that are tied directly to 

the relevant ongoing instruction that happens in the classroom while adhering to research-

based best practices within the field (Aelterman et al., 2013; Darling-Hammond & 

McLaughlin, 1995; Grossman et al., 2001; Kennedy, 2005). The focus on job-embedded 

inquiry, or problems of practice, allows teachers to develop a skill set relevant to their 

current and future practices (Aelterman et al., 2013; Darling-Hammond & McLaughlin, 

1995; Wei et al., 2009). Moreover, offering a content-focused PD model supports real-

time solutions for practice problems, as it sets out to augment a specific instructional 



62 
 

 
 

practice. The cyclical nature of the model promotes continuous improvement within the 

classroom by identifying areas of weakness. (Hawley & Valli, 1999). 

Participants 

                 The eight participants in this study were female, seven Caucasian, and one 

African-American. The participants' average age was 39.5, with the mean number of 

years of experience at 16.25. Each participant held a Bachelor's degree, with two 

individuals completing a Master's degree in education. Neither of the Master's degrees 

focused on mathematics. The participants in this study were not Texas State certified in 

mathematics, and all except one were first career teachers. Their average number of years 

employed at the school was 3.75. Table 1 provides detailed participant information.  

Table 1 

Participant Information 

Participant 
Number 

Current Grade 
Level 

Years Taught 
in Grade 

Level 

Highest 
Degree 
Held 

Degree Specialization 

P#1 Grade 2                            4 BS Interdisciplinary Studies 

P#2 Grade 1          1 BA Educational Studies 

P#4 Grades 5 – 6          3 MLIS Library and Information 

Science 

P#4 Kindergarten          8 BS Teaching and Learning 

P#5 Grade 1          1 BA Educational Studies 

P#6 Grades 7 – 8          2 BBA Business Administration 

(Marketing) 

P#7 Grade 3          3 BS Elementary Education 

P#8 Grade 4          7 MEd Administration and 

Supervision 
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Instruments 

The instruments employed in the study included a pre-test and post-test that 

spanned fraction content knowledge in grades three through eight and exit tickets 

generated from content standards presented during the six individual sessions. The pre-

test and post-test consisted of thirty questions over fractional knowledge required for 

success within grades three through eight. The strands explored were comparison, 

equivalency, addition, subtraction, multiplication, and division of fractions. The 

assessment questions were generated from the previously released State of Texas 

Assessments of Academic Readiness, STAAR® questions, 2018 and 2019 mathematics. 

STAAR® exams were created to test the most critical content strands in each 

course subject to ensure access to college and career readiness (Texas Education Agency, 

1997). The assessments measure proficiency on the state curriculum standards, also 

known as Texas Essential Knowledge and Skills Standards, or TEKS, in the core subjects 

of mathematics, science, reading, and social studies (Texas Education Agency, 2020). 

Assessments determine the test takers' proficiency level regarding the current grade-level 

standards set forth by the Texas Education Agency (TEA). The validity and reliability of 

the assessments have been confirmed by a third party, the Human Resources Research 

Organization, HumRRO. In 2016, HumRRO provided empirical evidence of the 

reliability and validity of STAAR®, that centered on three main criteria: the 

understanding that the items presented on the assessment were correlated with the TEKS 

it expected to measure, that the test construction and scoring process allowed for validity 

and reliability in the scores, and the standard error of measurement was consistent 

(HumRRO, 2016).    
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The pre-test and post-test scores were analyzed using a paired sample t-test, 

comparing participants' means before and after their participation in the PD series. 

Additionally, the researcher analyzed exit tickets to assess teachers' understanding of 

concepts and the proper use of virtual manipulatives to represent mathematical thinking. 

The robust research design of this study adds to the body of knowledge concerning 

teachers' content knowledge for fraction instruction. The study clarified the effects of 

professional development, identified areas of continued concern, and aided in the design 

of future professional development learning opportunities.  

Limitations 

            Despite the substantial investment in professional development by districts across 

the United States, there is little empirical evidence to prove a direct correlation between a 

specific professional development series and student achievement (Huffman et al., 2003; 

Loucks-Horsley & Matsumato, 1999; Yoon et al., 2007). This issue may be partly due to 

the lack of in-depth studies and reliable instruments used to assess the connections. While 

the current study seeks to address the need for more data regarding the effects of content-

specific professional development, the study has several limitations. First, the data 

collected from this study was generated from a small sample size of educators employed 

at a private school. Many private schools in Texas do not require that their teaching staff 

hold a subject-specific certification. Not all private schools in Texas mandate that 

teaching staff extends their professional learning outside of their pre-service training. 

Therefore, the participants in this study have not been required to complete any additional 

content-specific training in the area of mathematics. 



65 
 

 
 

Additionally, the participants had not completed advanced college-level 

mathematics coursework or participated in mathematics professional development during 

their employment. Furthermore, the intervention period was relatively short, with 

participants attending a combined six hours of PD, occurring one hour a day for six days. 

Due to COVID 19 restrictions, the study's length was protracted. The delivery methods 

switched from in-person to a synchronous online format that was relatively unfamiliar to 

both the researcher and participants.   

Methods 

            Drawing from Shulman's (1986) thought that teachers must understand the 

knowledge of the subject they teach and the organizing structures foundational to the 

discipline, this study emphasized the awareness of underlying principles and forthcoming 

structures associated with acquiring knowledge of fractions. In order to impart a solid 

understanding of fractions to their students, teachers must be versed in the way that 

concepts form as well as conceptually explore the connections through vertical 

alignment, being cognizant of the current researched-based best practices that allow for 

fluency and scaffolding (Hiebert et al., 2007). The vertical knowledge included centers 

on "familiarity with the topics and issues that have been and will be taught in the same 

subject area during the preceding and later years in school, and the materials that embody 

them" (Schulman, 1986, p. 10). Crucial to design and assessment opportunities, effective 

teaching covers the required standards that scaffold future learning opportunities (Squires 

et al., 2012). Furthermore, the understanding of vertical alignment of strands provides a 

framework of what is considered "proficient" at each grade level (Tanenbaum et al., 

2017). The use of best practices in planning and delivering an effective curriculum can 
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better support the mathematical competency required for success in the classroom and 

beyond.  

This study was conducted as an evaluation to determine if there was a change in 

teachers' fractional knowledge due to participation in a content-specific professional 

development series. The quantitative data of test scores and exit tickets were used to 

assess the learning acquired in each session, allowing the researcher to analyze the impact 

of the subject-specific professional development on a small group of mathematics 

teachers. An evaluation study analyzes a program's worth or success, policy, or project 

(Payne & Payne, 2004). Thus, the current study centered on teachers' capacity of 

knowledge obtained from attendance in a subject-specific professional development 

opportunity.  

Employing the substratum that Shulman (1986) developed and has been 

continually extended and revised by educational researchers, effective educators must 

understand an exclusive domain of subject-specific professional knowledge unique to 

teachers (Ball et al., 2005). Content included in the domain centers not only the rules and 

methods of the discipline but the organizing principles and structures that form the 

framework. The knowledge provided equips teachers with a thorough understanding of 

the imperative content in discerning why a particular topic strand is central to learning, 

while others are peripheral (Shulman, 1986).  

The exit tickets used as instruments in this study provided a formative assessment 

piece that allowed the researcher to assess how well the participants understood the 

material and if they could use the virtual manipulatives to explore and express 

understanding. Like exit tickets used in mathematics classrooms, the instruments 



67 
 

 
 

provided a real-time assessment tool that helped determine whether participants had 

mastered the content presented or remained at a superficial understanding (Miranda & 

Hermann, 2015). The ongoing and immediate snapshots of learning allowed the 

researcher to address areas of concern by monitoring and adapting instruction to progress 

toward intended learning goals (Chappuis & Stiggins, 2002). 

Participants in this study worked in collaboration to explore fractions through the 

use of virtual manipulatives. Drawing from Vygotsky's theory of social development, in 

which the learner plays an active role in acquiring knowledge, the study highlighted the 

collaborative interaction of participants to develop skills and strategies (Vygotsky, 1978). 

The integral role that participants play in the learning process leads to a more extensive 

understanding of the More Knowledgeable Other (MKO) and that role in constructing 

their thoughts and understanding of the topic being explored (Abtahi, 2017). The MKO 

refers to a person with higher ability in a particular subject, acting as a guide or scaffold 

in understanding. This guidance takes place in the Zone of Proximal Development, where 

participants can develop higher mental functions concerning the topic being taught 

(Vygotsky, 1978). 

Furthermore, the MKO is considered to have a learning capability level slightly 

above the learner's current understanding level. The level is attainable when presented 

with opportunities for learners to collaborate with skilled peers or facilitators in 

navigating new concepts, skills, and models (Shabani et al., 2010). Learners that work 

through tasks jointly are typically better able to repeat success due to the ZPD level for 

that particular task being raised. 
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Professional Development Sessions 

 The six PD sessions were delivered using the Zoom platform, each lasting one 

hour in duration. The sessions were provided in a synchronous framework spanning over 

two weeks. The researcher facilitated the discussions and presented data that supported 

participant findings. During each session, the participants were introduced to various 

virtual manipulatives as options to utilize and were encouraged to access them when 

working on activities. Sessions included whole group discussion, teacher-led activities, 

collaborative learning experiences, and summaries of learning. These lessons are 

summarized below, and the full lesson plan can be found in Appendix D. 

Lessons were designed using a 5E model, an inquiry-based teaching sequence that 

comprises Engage, Explore, Explain, Elaborate, and Evaluate. The design was chosen to 

maximize student engagement in learning. With each step informing the next, the lessons 

activated prior knowledge and attempted to scaffold learning and discovery through 

activities. This method favors active engagement by the students, placing the teacher in 

the role of facilitator. The Inquiry Model of Teaching acted as a guide in the planning of 

the six 5E lessons. The Inquiry Model provided the outline for the engagement of 

participants in activities that required active investigation. The teaching model's 

investigative nature was designed to increase student involvement and promote 

ownership over the content while stimulating curiosity (Murskey, 2011). 

Session #1 

The first professional development session targeted the participants' prior 

knowledge by exploring fundamental concepts required to understand fractional 

concepts, including division related to sharing equally. The activities presented provided 
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opportunities to develop a deep conceptual understanding of part-whole relationships. 

The researcher built on what teachers already understood informally about fractions, 

specifically sharing equally, and encouraged them to use that understanding as a 

foundation for formal fraction instruction. The IES states that by the time students attend 

formal schooling, they have acquired a fundamental understanding of sharing that offers 

insight into dividing a set of objects equally among two or more people (Siegler et al., 

2010). Therefore, teachers must also have a strong foundation for sharing sets of objects 

equally to provide instruction to students. Additionally, the fair share concept highlighted 

how proportional thinking develops through the set model at an early age. The thinking 

process set the stage for students to obtain the knowledge required to share an object 

equally. The researcher aimed to build teachers' understanding of the connection between 

fair sharing scenarios and students' early understanding of fractions.  

The first activity introduced participants to the pictorial representations, 

manipulatives, and words used to model sharing a set evenly among multiple recipients. 

The problem presented asked participants to work independently to answer and then 

engaged them in a group discussion about solution plans. The following question was 

used: 

Three children want to share 12 cookies so that each child receives the same 

number of cookies. How many cookies should each child get? Please work 

independently and show your thinking through pictures, words, or numbers. If 

you finish before the time allotted, show alternative models for your answer using 

the provided materials.  
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Participants then worked on a problem over unit fractions, fractions with a numerator of 

one, and a positive integer as a denominator. Discussion of the differences between unit 

and non-unit fractions were based on the pair-share and whole group portion. 

            The follow-up activity allowed teachers to partition several shapes and number 

lines, providing an opportunity to reason about the relationship between part and whole. 

Using the area model, participants viewed various representations of partitioned shapes 

and number lines representing both equal and unequal partitioning. They were asked to 

decide if the partitions were equal or not and encouraged to individually model or shade 

particular parts of shapes !
"
, !
$
, !
%

 using virtual manipulatives. Participants compared 

their solution plans to the whole group, justifying why their solution worked. This 

activity offered participants a way to explore the relationship between parts and wholes 

while understanding the idea of equally covered space as the determining factor in 

equivalency (McNamara & Shaughnessy, 2010). In providing a region dimension activity 

that included geometric partitions that were easily reconfigured as the starting point of 

the lesson, the researcher added an extension for participants to engage in a formal 

assessment that guided the lesson's questioning and flow. The activity gave the researcher 

insight into struggles and rates of mastery for the participants. The researcher used this as 

a tool for redirecting learning and focus as the core lessons brought awareness to the 

critical patterns required for algebra's application-based work. Understanding 

multiplication, division, and fractions as a reciprocal in geometric understanding were 

central to the lesson. Next, the researcher presented the following question:  
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There are three friends. They want to run a relay race that is one mile. Each friend 

runs an equal amount of the race. How much of the race would each friend run? 

How could you partition the shape into three equal parts? Please model your 

solution plan using the fraction application. 

The partitioning activity reinforced the idea of a fractional quantity, as research shows 

that students often use whole numbers and fractions to represent the identical fractional 

quantity (Mack, 1995). An example of this is when students believe that they can use the 

numerator's value to represent the amount. Without referencing the denominator, five is 

the same as five eights because they see five pieces.                                           

            This session's activities allowed participants to work with various delivery modes 

and begin thinking more flexibly about the relationships between values. Using 

partitioned shapes, number lines, and manipulatives in this way assisted participants in 

thinking about how to present fractions as not just counting individual "parts." Rather, 

fractions represent that "the size of a fractional part is relative to the size of the whole" 

(National Council of Teachers of Mathematics, 2000). The distinction between unit and 

non-unit fractions is crucial to fractional fluency since it gives a starting point to 

introduce formal names of fractions (Empson, 1999; Streefland, 1991). This 

understanding is essential for fractions placed into the lowest terms, with the non-unit 

fraction being composed of the unit fractions, but the opposite is not true (Siegler et al., 

2010). Understanding these concepts gave the study's participants a solid base of 

knowledge for understanding equivalency. Since the concept of equivalency was 

foundational to the subsequent lessons found in the study. 
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Session #2 

The second lesson extended participants’ exploration of fractions created through 

linear models and comparison activities. Number lines and Cuisenaire models were used 

to compare fractions and discuss common misconceptions that students may hold when 

thinking about fractional values.  

The IES recommends that students understand that fractions are numbers with 

values that can be identified as equivalent, compared, and ordered (Sielger et al., 2010). 

Numerous studies have found positive correlations with number line representations of 

mathematical concepts, namely whole numbers and decimals, positively correlated with 

subsequent classroom success (Booth & Siegler, 2008; Seigler & Booth, 2004; Siegler & 

Ramani, 2009). One study focused on the knowledge gained after participants took part 

in a decimal number line intervention and found an increase in their ability to locate 

fraction values on a number line (Durkin & Rittle-Johnson, 2015). Additionally, the IES 

(2010) confirmed that positive correlations of linear models and mathematics concepts 

extend to fractions (Siegler et al., 2010).  

The first two activities used rods of various lengths to represent parts and wholes 

(McNamara & Shaughnessy, 2010). These differing lengths allowed participants to 

understand how a fraction’s value depends on its relationship to a whole. The value of a 

fraction fluctuates as the whole is changed out. Rather than identifying what a ½ is in a 

visual sense, they explored the descriptions of the relationships between the designated 

rod and part, not a specific example of the fraction. For example, a white rod is !
!&

 when 

an orange rod is used as the whole but, the white rod is !
'
 when a dark green is used. The 

researcher emphasized how hands-on experience helps the participants instruct their 
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students to understand specific fraction quantities without labeling the fractions or 

referring to benchmark fractions. The researcher drew participants’ attention to 

describing the relationship between the shorter rod and the one designated as the whole. 

The activities also highlighted the importance of comparing fractions and the role that the 

unit-fraction plays in decomposing fraction values. The early use of linear models in 

obtaining fractional knowledge, specifically with comparing and ordering, is beneficial to 

students' continued success in acquiring fractional knowledge. This concept is seen in 

studies such as Niemi (1996), which indicates that student experience with linear models 

can increase performance on tasks requiring conceptual understanding. The idea is 

evident when comparing students' assessment scores using the linear model and those 

exposed only to the area and set models.  

The last activities allowed participants to analyze common misconceptions that 

students hold of fractions and understand the inverse relationship between the number of 

parts and their size. Participants identified, compared, and ordered equivalent fractions 

and fractions greater than one by exploring and reasoning with linear models and models 

of various magnitudes. Providing these conceptually-based opportunities led participants 

to clear up misconceptions they held due to fractions' multifaceted nature as values with 

multiple meanings. Additionally, participants gained exposure to possible whole-number 

bias and confusion over the unique format in which fractions are written (McNamara & 

Shaughnessy, 2010). 

Session #3 

The third lesson targeted the understanding of fraction equivalency, as in two 

values representing the same number and covering the same space. Equivalent fractions 
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are interchangeable as they are part of a set of values that refer to a relative amount 

(Cathcart et al., 2006; Lamon, 2005). Throughout the lesson, the activities allowed 

participants to engage in discourse and build representations of equivalency in various 

forms, such as modeling with virtual manipulatives, pictorial representations, and 

symbolic notation. Working with these concrete models offered learners a conceptual 

explanation of equivalency's procedural understanding. The activities were selected to 

help participants understand why "rules" and prescribed steps work. This awareness can 

lead to a more robust understanding of the relationship of differing representations 

(Wong & Evans, 2011). 

The activities employed the use of linear and area models to explore the concept 

of equivalency. The understanding of equivalency is especially critical to master in the 

early stages of fraction development as it is a foundational concept that builds throughout 

the learning progression of fractions (Lortie-Forgues et al., 2015). Algebra readiness calls 

for a deep understanding of equivalent expressions and equalities (Driscoll, 1999). 

Modeling with Cuisenaire Rods offers learners a measurement perspective of fractions by 

naming the same quantity in various ways. Participants were encouraged to explore the 

rods to find how many brown rods create the selected object (marker); this led to the 

concept of mixed numbers or fractional values greater than one, as only one brown can 

fit. The remaining pieces were superimposed with red rods, which represented !
%
 of a 

brown rod. Participants then lined up the rods to show that four reds are equivalent to one 

brown; therefore, the fraction was 1 %
"
 because the red is !

"
 of the brown rod. Participants 

then work with the white rods and the brown rod to create the length of the marker. This 

model showed that four white rods create the same space as two reds or eight white rods 
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that create the one brown rod's space, which shows the equivalent fractions of !
%
	= %

"
= "

+
. 

Therefore, participants were able to identify the equivalent fractions of !
"
= %

+
 and $

"
= '

+
. 

The last activity centered on the number line and extended the work with virtual 

Cuisenaire Rods. Participants were guided in exploring equivalent fractions representing 

precise points on number lines (McNamara & Shaughnessy, 2010). By cycling through 

partitions of thirds, sixths, and twelfths, participants placed the values vertically on the 

number line, showing that the equivalent fractions can be found simultaneously. 

Participants continued to explore quantities from !
!%

 to %"
!%

, showing their understanding of 

virtual manipulatives with fraction equivalence by sharing their screen images with the 

whole group. 

Session #4 

The fourth lesson was designed to help participants understand why procedures 

for computations with fractions make sense. Teachers of mathematics must acquire a 

strong conceptual understanding of fraction computation to develop their students' 

thinking (Siegler et al., 2010). The IES panel has recommended using visual 

representations, concrete models, and real-world contexts to solidify learning. Several 

studies have confirmed a positive correlation between student success in mathematics and 

the use of pictorial and concrete models. Additionally, the IES report identifies the 

benefits of including real-world context for learners to support computational procedures 

when dealing with fractions. There are documented benefits to personalizing word 

problems when attempting fraction division (Ross and Anand, 1987). Furthermore, a 
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strong understanding of fractional computation based on conceptual knowledge leads to 

an improved understanding of procedural steps (Rittle-Johnson & Koedinger, 2009).  

            The activities included visual representations and virtual models to help 

participants gain insight into the computational procedures of addition and subtraction 

with fractions that have like and unlike denominators. Students in the early grades must 

experience opportunities to decompose and recompose fractions in many ways, gaining 

fluency with strategies and operations while experiencing the inverse relationship 

between addition and subtraction of fractions (McNamara, 2015). Furthermore, mastery 

of fraction computation depends on a successful understanding of previous learning, 

including foundational knowledge such as the part-to-whole concept, equivalence, and 

fraction magnitude (Petit et al., 2016).  

The lessons engage portion introduced participants to a real-world story problem 

that included fractions with like denominators. The problem presented asked participants 

to work independently to answer using virtual manipulatives and allowed for engagement 

of group discussions about solution plans. The following question was used: 

Jack is making a soccer bag for a friend. He uses %
,
 of a yard of green fabric and !

,
 

of a yard of blue fabric. How much fabric does he use in all? Model with 

manipulatives, pictures, or words. Be sure to include the number sentence. 

The explore activities allowed participants to work with concrete models in identifying 

equivalent fractions used for the addition and subtraction of fractions with unlike 

denominators. Instead of relying on the abstract concept of equivalent denominators, the 
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participants used models to explain how they could add fractions' varying magnitude. 

Participants created their solution plan using fraction tiles and number lines. This 

experience with visual models showed that one could use equal pieces to add and subtract 

when joining two different sized quantities, shown in the case of !
$
+ !

%
, where using the 

sixths pieces allows for the addition of the values (Siegler et al. 2010). 

Jack is making another soccer bag for a friend. He uses !
%
 yard of green fabric and 

!
"
 yard of blue fabric. How much fabric does Jack use? 

Charlie's brownie recipe requires 1 !
$
 cups of milk. Laura's recipe needs %

$
 of a cup 

of milk. How much more milk does Charlie's recipe need than Laura's?  

Will fills a hummingbird feeder with $
"
	cup of sugar water on Friday. On Tuesday, 

Will sees that !
+
	cup of sugar water is left. What is the difference in sugar water 

between Friday and Tuesday? 

The Cuisenaire activities gave participants experience using estimation when computing 

fractional values. The estimation activities involved reasoning skills, which have been 

shown to increase a learner's focus in obtaining fractional knowledge (Starkey et al., 

2004). The activities presented supported the idea of recognizing equivalent fractions as 

different ways to name the same quantity (McNamara & Shaughnessy, 2015). Therefore, 

bridging the learning from the previous session with the participants labeling a "whole", 

renaming the fractions greater than one into mixed numbers.  
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            The activities listed in the extend and evaluate sections of Lesson #4 relied on the 

area model of circles to improve understanding of formal computation strategies. Cramer 

and Wyberg (2009) found that one of the most common mistakes learners make when 

working with denominators and computation is adding both the numerator and 

denominator. The circular model is the most effective concrete model for part-whole and 

understanding of relative size. These models support students' understanding of the 

inverse relationship between the fractional piece's size and the denominator (Cramer et 

al., 2002). The understanding allows students to observe that when the circle is equally 

partitioned, the more parts there are, the smaller the parts become. Additionally, using 

these models to create equivalent denominators reinforced participants’ thinking of 

reasonable answers and justification of solution plans by giving them meaningful mental 

representations that aided in estimation. Solidifying these representations was a critical 

component in building participants’ understanding of fraction computation, as the 

subsequent sessions continued to explore operations through the use of similar models.  

Session #5  

The fifth lesson explored the conceptual understanding of multiplying fractions. 

Once again drawing, from the IES report, participants worked through problems that 

required sense-making strategies in determining mathematical situations (Siegler et al., 

2010). This work supported learners in identifying which operation to employ while 

understanding what the answer represented. The engage section allowed participants to 

use contexts and representations to identify the process of multiplication. Fosnot and 

Dolk (2006) found that using concrete representations is beneficial when introducing 

multiplication and division of fractions since learners can transfer that knowledge to a 
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more generalizable understanding that supports mathematical relationships regardless of 

the context. Additionally, the continued use of manipulatives and number lines within the 

session supported participants' understanding of fractional multiplication when 

considering time, distance, and area.  

The extend segment required that estimation be used in determining the relative 

size of the product. These activities supported participants’ understanding as they 

required the learner to think about all that they know of the problem's values. The activity 

was also relevant because it did not include a story problem that students could reference. 

Instead, they were expected to be able to solve the problems without associating it to a 

context. As mathematically proficient individuals can manipulate fractions and perform 

calculations in abstract problems that do not have a point of reference (McNamara, 

2015).  

            Fluency with the multiplication of fractions, as with whole number values, comes 

with experience and estimating values while using real-world references to explain the 

reasoning behind the computation method. Students often carry misconceptions of 

fraction computation due to their lack of conceptual understanding (Lewis & Mayer, 

1987). To address the deficit of understanding, educators must plan lessons that make use 

of real-world problem solving, include concrete manipulatives, present questions that do 

not include context, model with multiple representations, and create situations that focus 

on understanding what the answer represents in the equation (McNamara, 2015). 
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Session #6 

The division of fractions is often referred to as the most complex and 

misunderstood topic for students to master in the elementary grade levels (Tirosh, 2000). 

The common issues that learners face can be separated into three distinct categories. 

These misconceptions include mistakes made in replicating an algorithm, 

overgeneralizing properties of operations that stem from the division of natural numbers, 

and assuming that one can use the commutative property in division (McNamara, 2015; 

Tirosh, 2000). These errors may stem from the teacher's lack of conceptual 

understanding, as research indicates that even after working with the concept of dividing 

fractions, many preservice teachers were not fully equipped to explain and model the 

steps needed for mastery (Ball, 1990; Boroko et al., 1992). The professional development 

sessions in this PD series focused on the understanding required for students to succeed 

within elementary and middle school levels of mathematics by ensuring that participants 

were exposed to fractions' vertical nature. 

            The engage activity presented participants the opportunity to work with 

manipulatives on partitive problems (partition problems) that often involve sharing or 

partitioning an amount or object (Kent et al., 2015; Van de Walle et al., 2016). These 

problems were set in real-world contexts (cups, hours, gallons) to provide meaning to the 

fraction quantity. In providing this understanding, the researcher attempted to invoke the 

participants' fractional problem-solving abilities by providing context to the fractional 

values (Kamii & Warrington, 1995; Mack, 2001). Additionally, the problems presented 

focused on conceptually dividing a fraction and a whole number without referring to the 

"keep, flip, change" trick or explaining that one can rewrite the whole number as a 
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fraction by placing the value over the number one. Instead, participants were required to 

explore the values through manipulatives, arriving at a representation through virtual 

manipulatives that explained the process. 

The explore section featured work with fraction division through measurement 

problems, seen as repeated subtraction or an equal group problem. According to Van de 

Walle et al. (2016), these problems are more easily understood when presented in 

context. The researcher was aware of the importance of featuring the standard dividing 

rules of whole numbers before engaging in the activity. This exposure was done so that 

the researcher could reference those misconceptions after the activity was completed, 

calling attention to the errors that can precede the division of fractions. Participants were 

asked to complete two rounds of one-minute jogs, both with and without being told when 

¼ of a minute had passed. The participants were then asked if they could determine how 

many ¼ parts were derived from the one minute and how that would look if placed on a 

one-unit number line. As an extension of the one-unit number line activity, the 

participants were introduced to a two-unit number line and asked to model their answers 

using virtual manipulatives. They looked at the amount of ¼ pieces that would fit on a 

two-unit number line. Length models, such as Cuisenaire Rods or rectangles, are 

typically used due to the range of colors that can make it easier to identify various lengths 

as parts of a whole or designate a specific piece as the whole (Van de Walle et al., 2016).  

The extended section of the lesson utilized virtual fraction bars to represent the 

division of fractions, while showing the participants the importance of identifying the 

whole unit. Participants were asked to cut various representations of a specific "whole" 

into eights and sixths while noting the various lengths generated. Participants represented 
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their answers using fraction bar virtual manipulatives and offering pictorial 

representations to model their thinking. This activity supported the building of reasoning 

and sense-making skills through work with concrete models. The lesson emphasized the 

real-world applicability of fraction division through a conceptual understanding that 

encouraged participants to identify patterns, estimate quotients, justify their reasoning, 

and examine the connections between multiplication and division of fractions. 

Summary 
 
           This quantitative study explored the effect of subject-specific mathematics 

professional development on a group of teachers' fraction content knowledge. In 

assessing the eight private school teaching professionals before and after their attendance 

in the six hours of sustained professional development spanning one week, the researcher 

hypothesized a positive correlation of increased test scores with time spent in the 

professional development series. This treatment included professional development 

related to the fraction knowledge required for mathematical success for grades three 

through eight. The instruments, including released STAAR® questions and exit tickets, 

were used to measure the effects of the treatment. Exit tickets were analyzed by the 

researcher to confirm mastery of fraction understanding and guide forthcoming sessions. 

The findings from this study will inform future planning for subject-specific professional 

development opportunities in mathematics. 
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Chapter IV 

Results 

This chapter presents the quantitative study results of the effects that a subject-

specific professional development had on teachers' content knowledge of fractions. The 

study's purpose was to increase participants' understanding of fractional concepts found 

within the elementary and middle school grade levels. The program evaluation measured 

the change in teacher understanding after participation in an online professional 

development series covering fraction concepts explored in grades three through eight. 

The study intended to answer the following question: 

In what ways does online professional development on specialized content 

knowledge of mathematics increase teacher knowledge?  

This chapter includes (1) results, (2) representations, (3) formative assessments, 

and a (4) summary. The assessments administered at the beginning and end of the 

professional development series served as the primary instruments for gathering 

quantitative data regarding the participants' rate of understanding with fractional 

concepts. The assessments included thirty questions classified into six categories: 

comparison, equivalency, addition, subtraction, multiplication, and division. The 

assessment is located in Appendix C. Additionally, exit tickets were collected as a 

formative assessment to verify the use of representations, which provided supplemental 

data to reinforce the results from the assessments; see Appendix D.  

Results 

A paired-sample t-test was administered to determine the efficacy of the subject-

specific PD series. The pre-test and post-test, derived from previously released 



84 
 

 
 

mathematics assessments from the 2018 and 2019 STAAR®, covered the vertical 

alignment of fractional knowledge required for success in grades three through eight. The 

pre-test and post-test results served as the primary source of quantitative data regarding 

the participants’ change in understanding of fractional concepts. The assessments, located 

in Appendix C, include thirty questions classified into six categories: comparison, 

equivalency, addition, subtraction, multiplication, and division. Each question was scored 

at a value of one point for a correct response and zero points for an incorrect response. 

The results from the t-test showed a statistically significant increase of values, as detailed 

in Table 2.  

Table 2 

Analysis Findings 

Analysis Performed Calculated Value 

Mean −31.65000  

Standard Deviation 19.17677  

Standard Error Mean 6.78001  

95% Confidence Interval of the Difference Lower −47.68218  

95% Confidence Interval of the Difference Upper −15.61782  

𝑡-test  −4668  

𝑓  7  

Sig (2-tailed) . 002  

 

Correct Responses 

The scores for each participant increased upon completion of the professional 

development series. Participants experienced a cumulative increase of 31.67% in correct 

responses. The test was comprised of thirty questions, with each question worth one 
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point, for a total of thirty points per assessment. Table 3 details the participants’ point 

change from the pre-test to the post-test. On average, participants showed a 9.25-point 

increase following the professional development series. This change in points shows a 

difference in correct responses equivalent to approximately 30% per participant. 

Table 3 

Participant Point Change from Pre-Test to Post-Test 

Participant Individual Pre-Test Points Individual Post-Test Points Point Change 

#1 8 26 +18 pts 

#2 23 27 +4 pts. 

#3 15 29 +14 pts. 

#4 21 26 +5 pts. 

#5 12 26 +14 pts 

#6 25 28 +3 pts. 

#7 21 29 +8 pts. 

#8 22 30 +8pts. 
 

The evaluation of content-specific categories confirmed that all eight participants 

improved their fractional knowledge in each category assessed. The most significant 

cumulative improvement was seen in the fraction division category, with a 47.95% 

increase in correct responses. Two of the eight participants experienced their highest 

gains in this area, as shown in Table 4. 
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Table 4 

Highest Category Increases per Participant 

Participant Highest Increase Second Highest Increase 
P#1 Subtraction 80% Comparison 75% 

P#2 Subtraction 60% Division 33.4% 

P#3 Division 66.7% Subtraction 60% 

P#4 Subtraction 60% Division 33.4% 

P#5 Subtraction 80% Division 66.7% 

P#6 Division 33.4% Multiplication 33.4% 

P#7 Addition 66.7% Division 33.4% 

P#8 Addition 66.7% Division 66.7% 

 
The subtraction category showed similar gains, with a cumulative increase of participant 

scores equivalent to 47.5%. Three of the eight participants experienced their highest gains 

in this area. As seen in Table 5, the remaining categories also showed cumulative 

percentage increases for all participants. The researcher calculated each participant’s 

change in scores for the categories of multiplication, addition, equivalency, and 

comparison. Those values were then used to obtain the cumulative increases found within 

each category after participation in the PD series.  

Table 5 

Cumulative Percent Increase per Category 

Category Percent Increase 

Multiplication +25%  

Addition +20.8%  

Equivalency +23.4%  

Comparison +15.6%  
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Additionally, results revealed an increase from the pre-test to the post-test in the 

number of representations used by participants to justify answers. Representations are 

defined as physical or visual models, such as diagrams, concrete objects, number lines, 

fractions tiles, or equations that demonstrate mathematical relationships and concepts 

(Goldin, 2014). The cumulative use of representations, including pictorial, abstract, or a 

combination of pictorial and abstract, was reported as increasing from 18.33% on the pre-

test to 92.08% on the post-test. Therefore, suggesting that the participants’ employed 

strategies introduced through the professional development series at a rate of 73.75% 

upon completion. As shown in Figure 4, there was an increase in representations by all 

eight of the participants. 

Figure 4 

Use of Representation per Participant 

 
Notes. Figure 4 details the individual percent change that each participant experienced 

after the treatment. The increased use of representations from the pre-test to the post-test 

ranged from 16.6%-96.6% per participant. 
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The increase in representations was explicitly evident in pictorial representations, 

with a 76.5% increase in pictorial representations from the pre-test to the post-test. A 

review of the pre-tests revealed that only two of the participants employed pictorial 

representations, leaving six of the eight participants without pictorial representations on 

the pre-test. As shown in Figure 5, the post-test confirmed that all eight participants 

increased their use of pictorial representations. 

Figure 5 

Pictorial Representations 

 
 
Notes. Figure 5 represents the individual percentage change in use of pictorial 

representations per participant from the pre-test to the post-test. The increased scores 

ranged from 73.3%-83.3% per participant. 

In the next section, data are analyzed for each of the eight participants in the 

study. The researcher looked at the participant’s score for correct responses, analyzed 

items by content strand, and calculated the change in the use of representations on the 

pre-test and post-test. To calculate the total number of pictorial representations used, the 
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researcher combined all answers that contained these models, including the categories 

labeled as pictorial and both. 

Participant #1 

The first participant, P#1, scored 26.6% for correct responses on the pre-test and 

86.6% on the post-test results. These findings indicated an increase in teacher knowledge 

equivalent to 60% or 18 points. As seen in the individual item analysis in Table 6, there 

were gains in all categories assessed. The most sizable gains were seen within the 

categories of comparison and subtraction of fractions.  

Table 6 

Participant #1 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison  +75%  1/4 to 4/4 

Equivalency  +54% 3/9 to 8/9 

Subtraction +80%  1/5 to 5/5 

Addition +33.3% 1/3 to 2/3  

Multiplication +33.3%   1/3 to 2/3 

Division   +66.7% 1/6 to 5/6 

 
     P#1 did not include representations on the pre-test. The post-test revealed that 

P#1 employed representational models to justify answers for 29 of the 30 questions 

assessed, for a 96.6% increase, as seen in Figure 6. Further analysis confirmed that P#1 

favored pictorial representations, using this model for 73.3% of the post-test or 22 of the 

30 questions.   
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Figure 6 

Participant #1 Representation Analysis 

 

Participant #2 

The second participant, P#2, scored 76.6% for correct responses on the pre-test 

and 90% on the post-test results. These findings indicated an increase in teacher 

knowledge, equivalent to 16.6% or four points. As seen in the individual item analysis in 

Table 7, there were gains in less than half of the categories assessed. The most substantial 

increases were found in the division and subtraction categories. Additionally, there was a 

decrease of 14.2% in the category of equivalency. 
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Table 7 

Participant #2 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison No Change 4/4 to 4/4 

Equivalency -14.2%  9/9 to 8/9 

Subtraction +60%  2/5 to 5/5 

Addition    No Change 2/3 to 2/3 

Multiplication No Change 1/3 to 2/3 

Division +33.4% 4/6 to 6/6 

   P#2 lacked pictorial representations on the pre-test, providing abstract 

representations for 70% or 21 questions. The post-test revealed that P#2 employed 

representational models to justify answers for 26 of the 30 questions assessed, for a 

16.67% increase, as seen in Figure 7. Additionally, the number of pictorial 

representations increased by 73.3%, with 22 of the 30 questions answered using pictorial 

models. 

Figure 7 

Participant #2 Representation Analysis 
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Participant #3  

The third participant, P#3, scored 50% for correct responses on the pre-test and 

96.6% on the post-test results. These findings indicated an increase in teacher knowledge 

equivalent to 46.6%, or 14 points. As seen in the individual item analysis in Table 8, 

there were gains in all categories assessed. The highest increases were found in 

subtraction and division of fractions. 

Table 8 

Participant #3 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison +25%  3/4 to 4/4 

Equivalency +55.6% 4/9 to 9/9 

Subtraction +60%  2/5 to 5/5 

Addition +33.3% 2/3 to 3/3 

Multiplication +33.3%  2/3 to 3/3 

Division +66.7 % 1/6 to 5/6 

 
P#3 did not include representations on the pre-test. The post-test confirmed that 

representations were used for 28 of the 30 questions, for a 93.3% increase, as seen in 

Figure 8. The post-test revealed that the number of pictorial representations increased 

80%, with 24 of the 30 questions answered using pictorial models.  
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Figure 8 

Participant #3 Representation Analysis 

 

Participant #4 

The fourth participant, P#4, scored 70% for correct responses on the pre-test and 

86.6% on the post-test results. These findings indicated an increase in teacher knowledge, 

equivalent to 16.6% or five points. As seen in Table 9, the highest increases were seen in 

subtraction and division of fractions.  

Table 9 

Participant #4 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison No Change 8/9 to 8/9 

Equivalency No Change 9/9 to 9/9 

Subtraction +60% 2/5 to 5/5 

Addition No Change  2/3 to 2/3 

Multiplication No Change 2/3 to 2/3  

Division +33.3% 3/6 to 5/6 
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P#4 included abstract representations for 6.67%, or two questions, on the pre-test. 

The post-test confirmed that representations were used for 27 of the 30 questions, for an 

83.33% increase of representation use, as seen in Figure 9. Further analysis confirmed 

that P#4 employed pictorial representations for 83.33% of the post-test or 25 of the 30 

questions assessed.  

Figure 9 

Participant #4 Representation Analysis 

 

Participant #5  

The fifth participant, P#5, scored 40% for correct responses on the pre-test and 

93.3% on the post-test results. These findings indicated an increase in teacher knowledge, 

equivalent to 53.3% or 16 points. As seen in Table 10, the item analysis confirmed an 

increase of correct responses in five of the six categories. Findings show that the most 

significant increase was found within the subtraction and division categories.  
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Table 10 

Participant #5 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison +25% 2/4 to 3/4 

Equivalency +44.5% 5/9 to 9/9 

Subtraction +80% 1/5 to 5/5 

Addition No Change 3/3 to 3/3 

Multiplication +33.4% 2/3 to 3/3 

Division +66.7% 1/6 to 5/6 

 

P#5 included abstract representations for 26.67%, or eight questions, on the pre-

test. The post-test confirmed that representations were used for 26 of the 30 questions, for 

a 60% increase, as seen in Figure 10. Further analysis confirmed that P#5 chose pictorial 

representations for 23 of the 30 questions on the post-test, for an increase of 86.67%. 

Figure 10 

Participant #5 Representation Analysis  
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Participant #6 

The sixth participant, P#6, scored 83.3% on the pre-test and 93.3% on the post-

test results. These findings indicated an increase in teacher knowledge equivalent to 10%, 

or three points. As seen in Table 11, the item analysis confirmed an increase of correct 

responses in 50% of the categories. The most significant increases were found within 

multiplication and division of fractions. Additionally, P#6 experienced a decrease of 

33.4%, equivalent to one item, in the addition category. 

Table 11 

Participant #6 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison No  Change 4/4 to 4/4 

Equivalency +11.2% 8/9 to 9/9 

Subtraction No Change 4/5 to 4/5 

Addition -33.4% 3/3 to 2/3 

Multiplication +33.4% 2/3 to 3/3 

Division +33.4% 4/6 to 6/6 

 

P#6 included abstract representations for 43.3%, or 13 items, on the pre-test. The 

post-test confirmed that representations were used for 27 of the 30 questions, for a 46.7% 

increase, as seen in Figure 11. Further analysis confirmed that P#6 chose pictorial 

representations for 25 of the 30 questions on the post-test, for an increase of 83.3%. 
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Figure 11 

Participant #6 Representation Analysis 

 
 
Participant #7  

The seventh participant, P#7, scored 70% on the pre-test and 96.6% on the post-

test results. These findings indicated an increase in teacher knowledge, equivalent to 

26.6% or eight points. As seen in Table 12, the item analysis confirmed an increase of 

correct responses in five of the six categories. The most significant increases were found 

in addition and division of fractions. 
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Table 12 

Participant #7 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison No Change 4/4 to 4/4 

Equivalency +11.2%   8/9 to 9/9 

Subtraction +20%  3/5 to 4/5 

Addition +66.7% 1/3 to 3/3 

Multiplication +33.3%  2/3 to 3/3 

Division +33.4% 4/6 to 6/6 

P#7 included abstract representations for 20%, or 6 items, and pictorial 

representations for 10%, or 3 items on the pre-test. Therefore, P#7 employed 

representations for 30% of the pre-test. The post-test indicated that representations were 

used for 28 of the 30 questions, for a 60% increase, as seen in Figure 12. Further analysis 

confirmed that P#7 chose pictorial representations for 27 of the 30 questions on the post-

test, for an increase of 80%. 

Figure 12 

Participant #7 Representation Analysis 
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Participant #8 

The eighth participant, P#8, scored 73.3% on the pre-test and 100% on the post-

test results. These findings indicated an increase in teacher knowledge equivalent to 

26.7%, or eight points. As seen in Table 13, the item analysis confirmed an increase of 

correct responses in five of the six categories. The most significant gains were found in 

addition and division of fractions. 

Table 13 

Participant #8 Change per Category 

Category Percent Increase/Decrease Number of Questions Answered Correctly 

Comparison No Change 4/4 to 4/4 

Equivalency +11.2% 8/9 to 9/9 

Subtraction +20% 4/5 to 5/5 

Addition +66.7% 1/3 to 3/3 

Multiplication +33.3% 2/3 to 3/3 

Division +50% 3/6 to 6/6 

 

P#8 included representations for 33.3%, or 10 items on the pre-test. The pre-test 

showed that pictorial representations were employed for 6.67%, or 2 items, abstract 

representations for 10%, or 3 items, and a combination of both for 16.67%, or 5 items. 

The post-test confirmed that representations were used for all 30 questions, for an 

increase of 66.7%, as seen in Figure 12. Further analysis confirmed that P#8 chose 

pictorial representations for 27 of the 30 questions on the post-test, for an increase of 

66.7%.  
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Figure 13 

Participant #8 Representation Analysis 

 
 
Exit Tickets 

The submission of exit tickets confirmed participant use of the virtual 

manipulatives for justifying answers. Exit tickets were completed by the participants at 

the end of each of the six sessions. The results located in Table 14 and Table 15 

document a sample of the digitally collected responses from the eight participants. The 

remaining exit tickets can be found in Appendix D. The combined exit tickets and 

evaluation of the use of representations on the pre-test and post-test confirmed that 

participants correctly utilized virtual manipulatives to show their thinking, with an overall 

increase of 73.75% in the use of representations. 

Exit Tickets from Session #3-A 

Table 14 provides participant responses to the following exit ticket question: Can you 

show three fractions that are equivalent to ½ with manipulatives? 
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Table 14 

Participant Exit Ticket Responses, Session #3-A 

Visual Representation Participant Response 

 

P#1: Participant one was able to represent 
their thinking using an area model and 
abstract representation. This is a clear 
pictorial representation of equivalency. 
The participant used the selected VM to 
model their thinking. 

 

P#2: Participant two was able to represent 
their thinking using an area model with 
reference to part-whole thinking. This is a 
clear pictorial representation of 
equivalency. The participant used the 
selected VM to model their thinking. 

 

P#3: Participant three was able to 
represent their thinking using an area 
model with reference to part-whole 
thinking. This is a clear pictorial 
representation of equivalency. The 
participant used the selected VM to model 
their thinking. 

 

P#4: Participant four was able to represent 
their thinking using an area model and 
abstract representation with reference to 
part-whole thinking. This is a clear 
pictorial representation of equivalency. 
The participant used the selected VM to 
model their thinking. 
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P#5: Participant five was able to represent 
their thinking using a circular area model. 
This is a clear pictorial representation of 
equivalency. The participant used the 
selected VM to model their thinking. 

 

P#6: Participant six was able to represent 
their thinking using an area model and 
abstract representation. This is a clear 
pictorial representation of equivalency. 
The participant used the selected VM to 
model their thinking. 

 

P#7: Participant seven was able to 
represent their thinking using a circular 
area model and abstract representations. 
To further show equivalency, the 
participant could have used an alternate 
virtual model that offered the ability to 
superimpose the images, for a more 
effective representation. The participant 
used the selected VM to model their 
thinking. 

 

P#8: Participant eight was able to 
represent their thinking using an area 
model and abstract representation. This is 
a clear pictorial representation of 
equivalency. The participant used the 
selected VM to model their thinking. 

Exit Tickets from Session #5 

Table 15 provides participant responses to the following exit ticket question: Tom spent 

¾ of an hour each day for 3 days working on his writing project.  Ed spent ¼ of an hour 

each day for 7 days working on his writing project. Who spent more time in total working 

on their writing project? 
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Table 15 

Participant Exit Ticket Responses, Session #5 

Visual Representation Participant Response 

 

P#1: Participant one was able to 
represent their thinking using a circular 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#1 was able to 
further show mathematical thinking by 
displaying the equivalent mixed 
numbers for fractions greater than one. 
The participant used the selected VM to 
model their thinking. 

 

P#2: Participant two was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#2 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fractions. The participant 
used the selected VM to model their 
thinking. 

 

P#3: Participant three was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#3 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fractions. The participant 
used the selected VM to model their 
thinking. 
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P#4: Participant four was able to 
represent their thinking using an area 
model and an abstract representation. 
The pictorial representations are 
labeled and the answer is correct. P#3 
displayed mathematical thinking by 
providing the equivalent mixed 
numbers for the improper fractions. 
The participant used the selected VM to 
model their thinking. 

 

P#5: Participant five was able to 
represent their thinking using a circular 
model and abstract representation. The 
answer is correct. P#5 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fractions. The participant 
used the selected VM to model their 
thinking. 

 

P#6 Participant six was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#6 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fractions. The participant 
used the selected VM to model their 
thinking. 

 

P#7: Participant seven was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#3 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fractions. The participant 
used the selected VM to model their 
thinking. 
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P#8: Participant eight was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representations are labeled and 
the answer is correct. P#8 displayed 
mathematical thinking by providing the 
equivalent mixed numbers for the 
improper fraction. The participant used 
the selected VM to model their 
thinking. 
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Chapter V 

Discussion 

The purpose of this study was to determine if participation in an online subject-

specific professional development series could increase teachers' knowledge of 

foundational fractional concepts. This chapter summarizes the evaluative methodology 

study that explored the following research question: 

In what ways does online professional development on specialized content 

knowledge of mathematics increase teacher knowledge? 

The researcher utilized quantitative data to identify the change in participants' 

fractional knowledge after their attendance in a subject-specific online professional 

development (PD) series. The researcher included a descriptive analysis of exit tickets to 

identify the rate of proficiency with the tools employed during the PD sessions. 

Participants completed a pre-test and post-test that covered fractional knowledge required 

for success in grades three through eight. The questions were obtained from previously 

released State of Texas Assessments of Academic Readiness, STAAR®, from 2018 and 

2019. The quantitative data yielded information on the overall percent change of correct 

responses. The researcher calculated the average percent change to determine the PD 

sessions' impact on teachers' subject-specific mathematics knowledge. The data was 

further analyzed by examining the six core categories of fractional knowledge in the 

assessments to statistically determine the percent change within each strand. The pre-test 

and post-test were further assessed to determine the percentage of representations used to 

justify answers. Additionally, participants submitted exit tickets to confirm their 
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understanding of the content and show their ability to navigate the virtual manipulatives 

introduced throughout the PD sessions. 

This chapter includes (1) results (2) fraction understanding, (3) representations, 

(4) formative assessments, (5) limitations, (6) online professional development, (7) 

recommendations, and a (8) summary.  

Data Analysis 

 The assessments administered at the beginning and end of the PD series served as 

the primary instrument for gathering quantitative data regarding the participants' rate of 

understanding fractional concepts. The assessments included thirty questions classified 

into six categories: comparison, equivalency, addition, subtraction, multiplication, and 

division. The assessment is located in Appendix C. Exit tickets were collected to verify 

the use of representations, providing supplemental data to reinforce the assessments' 

results. The following section describes the results of data collection for the pre-test and 

post-test. 

Fractional Knowledge Assessment 

The researcher administered the assessment before the start of the PD series. Due 

to national social distancing restrictions from the global pandemic, the assessments were 

delivered through the participants' school email. Participants' also completed and returned 

the assessments through school email. The researcher administered the pre-test to 

determine a baseline of teachers' understanding of topics covered in the PD. 

As discussed in Chapter 3, the assessment was derived from the previously 

released State of Texas Assessments of Academic Readiness, STAAR® questions, from 

2018 and 2019. The assessment included the foundational concepts required for mastery 
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in grades three through eight. The six categories presented spanned the scaffolding 

concepts that build the framework for fractional knowledge. The assessment consisted of 

nine equivalency, six division, five subtraction, four comparison, three addition, and three 

multiplication questions. The questions were chosen due to their ability to assess 

fractional concepts' flexible development, as fluency with these strands aid in building a 

solid mathematics foundation (Francis & Rowan, 2001). The emphasis on equivalency 

and division prioritized the importance of the two areas as critical in fully mastering the 

conceptual understanding of fractional concepts required in subsequent years of 

schooling (Ball, 1990; Cramer et al., 2008). The concept of equivalency in fractions plays 

an integral role in reasoning and scaffolding mathematics knowledge (Cramer et al., 

2008; Van de Walle et al., 2016). Securing a definite number sense within fractional 

concepts requires that students develop an intuitive feel about the relative size of 

fractions, strengthening their ability to compare, estimate, add and subtract rational parts 

(Clarke & Roche, 2009; Van de Walle et al., 2016). This study solidified the importance 

of fluency with fractional size through concrete exploration of fractional values in a 

variety of situations. Activities that highlighted common misconceptions related to 

fractions, use of multiple models, and group discussions over the relationships identified, 

all acted to deepen participants knowledge of the underlying importance of equivalency 

in fractions. As success with fractions requires a substantial understanding of fraction 

equivalence. 

Additionally, the division of fractions calls for a considerable understanding of 

the organization of a variety of interdependent relationships (Thompson, 1993; Zembat, 

2015). The group discussion in Session 6, found in Appendix B, highlighted the 
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relationship between multiplication and division. Additionally, the participants 

experienced fractional concepts that were real-world applicable, such as intervals of time 

and partitioning lengths. Fluency within the fractional quantities' relationships is essential 

to understanding multiplicative thinking, which acts as the basis for proportionality 

(Philipp, 2000). Furthermore, the researcher used the assessment as a framework for the 

PD sessions, ensuring that the content explored addressed the participants' needs. As 

research suggests that PD opportunities are more effective when the focus is on current 

teaching challenges instead of abstract concepts that are not immediately applicable in the 

classroom setting (Darling-Hammond et al., 2009). 

Results of Pre-Test Correct Responses (CR) 

The pre-test was used to identify the strengths and weaknesses of the participants' 

knowledge base of fractional concepts covered in grades three-eight. As presented in 

Table 16, three of the eight participants, 37.5%, did not have a passing score on the 

assessment. Of the six content categories presented, subtraction and division of fractions 

were the most significant areas of struggle for participants, with 83.3% of the questions 

answered in those categories coming in below 50% proficiency. These findings are in line 

with research that suggests that elementary and middle school teachers have not obtained 

a deep enough understanding of fractional concepts needed to successfully teach required 

concepts at the elementary and middle school levels (Ball, 1990; Ball et al., 2005). The 

heavy reliance on algorithms and rote methods of solving fraction problems can leave 

teachers unable to effectively teach students the conceptual understanding behind the 

steps employed (Ball 1998; Schneider & Stern, 2010). Teachers' understanding of 

fractional division has been found to specifically correlate with their ability to recall the 
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precise algorithm of invert and multiply, which is often taught abstractly, without 

reference to models for conceptual understanding, leading to a shallow knowledge base 

of the concept (Ball, 1990; Borko et al., 1992; Li & Kulm, 2008; Simon & Tzur, 1999). 

This deficit was evident throughout the study, as participants initially tried using abstract 

models to answer the questions, creating corresponding pictorial models to match. The 

researcher found that participants could explain the algorithm they used yet struggled 

when asked why that process worked or how they decided on which pictorial model to 

apply. Although as participants become fluent with the concept of fraction scaling, they 

were able to estimate the fractions' sizes, identify reasoning behind why a reciprocal is 

used, and construct equivalent fractions greater than one. The activities clarified 

participants' misconceptions and improved their understanding of fraction operations, as 

seen in the exit tickets. The information gained can further aid participants in recognizing 

meaningful scaffolding opportunities and situations that require their students to activate 

prior knowledge (Garet et al., 2010; Ma, 1999). 
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Table 16 

Pre-Test CR Scores 

Participant Pre-Test CR Scores 
P#1 26.6% 
P#2 76.6% 
P#3 50% 
P#4 70% 
P#5 40% 
P#6 83.3% 
P#7 70% 
P#8 73.3% 

 
Results of Post-Test Correct Responses (CR) 

The post-test scores indicate that all eight participants increased their 

understanding of fractional concepts presented in the PD series. As seen in Table 17, the 

increases range from 10%-53.3%. The Paired T-Test confirmed that the pre-test 

(M=61.2250, SD=19.99605) and post-test (M=92.8750, SD=4.86819) covering fractional 

knowledge indicated a statistical significance in the participants' increased scores upon 

completion of the PD series, t(7)=-4.668, p = .002 

Table 17 

Changes in Participants’ Pre-Tests and Post-Tests 

Participant Pre-Test Post-Test Percent Change 
P#1 26.6% 86.6% +20% 
P#2 76.6% 90% +13.4% 
P#3 50% 96.6% +46.6% 
P#4 70% 86.6% +16.6% 
P#5 40% 93.3% +53.3% 
P#6 83.3% 93.3% +10% 
P#7 70% 96.6% +26.6% 
P#8 73.3% 100% +26.7% 

 
The results suggest that participants can improve their understanding of 

mathematical concepts through subject-specific PD opportunities that intend to bridge 
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current understanding with research-based knowledge (Lewis & Perry, 2017). Improving 

efficacy with content-focused PD can build teachers' repertoire of best practices through 

frameworks that aid in constructing foundational teaching practices, further supporting 

the delivery of authentic learning experiences (Charalambous et al., 2007). Results on the 

post-test suggest that all participants were able to utilize the understanding gained during 

the PD and apply it to the assessment. The PD sessions intentional sequencing of 

scaffolding concepts led participants in building connections and proficiency with the 

schema that supports fractional knowledge required to provide quality teaching (Hiebert, 

1986; Schneider & Stern, 2010). 

The focus on subject-specific understanding is most effective when it aligns with 

school-wide goals and connects to the curriculum (Adler & Venkat, 2014). This study 

was part of a school-wide initiative to strengthen standardized testing scores in grades 

three through eight. By identifying the areas of concern for teachers through the pre-test 

results, the researcher was able to present topics that were relevant to the needs of group. 

Therefore, the content and best practices explored could be immediately applied within 

the classroom. This understanding was imperative as the concept of fractions is a 

significant part of the curriculum in grades three through five and lays the foundation for 

ratios, rate, and probability in the middle school years. In strengthening teachers' 

knowledge and fluency with rational numbers, they are better equipped to guide their 

students' in forming a concrete understanding of pertinent concepts through engaging 

lessons that are guided by conceptual understanding. The impact of quality PD is that it 

exposes teachers to exemplary teaching methods, skills, and content that can bring the 

depth of knowledge required to successfully teach the topic (Hill & Ball, 2009); Fennema 
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& Franke, 1992; Shulman, 1986). Additionally, continued participation in relevant PD 

that is aligned with standards and goals has been shown to significantly influence 

teachers' knowledge and practice (Darling-Hammond et al., 2019; Garet et al., 2010; 

Penuel et al., 2007).  

Increase in Specific Categories 

The participants experienced a cumulative increase of 31.67 % for correct 

responses. Referenced in Ch. 4, the point increase for individual participants’ correct 

responses ranged from eight to eighteen points, equivalent to a 9.25 increase per 

participant. The percentage change for each category was then calculated to determine 

which content strands experienced the most significant gains from time spent in the PD 

series. Analysis of the data according to specific problems, found that the greatest growth 

could be seen within the subtraction and division categories.  

Division of fractions rates as a continued area of difficulty for many elementary, 

secondary, and preservice teachers, especially in their ability to justify the procedures 

they employ (Ball, 1990; Borko et al., 1992). Meanwhile, students often struggle with the 

subtraction of fractions due to number bias, the idea that fractional values hold the same 

properties as whole numbers (Mack, 1995; Ni & Zhou, 2005). Research has continued to 

show that teachers' understanding in these areas is instrumental in creating content rich 

lessons and activities. The participants in this study were able to analyze and compare 

solution plans by dissecting the content and participating in activities that aided in 

identifying and describing mathematical relationships and underlying patterns 

(Chinnappan, 2000; Skemp, 1978).  
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 The focused sessions covering subtraction and division of fractions were based 

on the understanding that the participants were entering the PD with deficits in their 

understanding. The researcher addressed the inadequacies through research-based best 

practices for teaching of operations. Drawing from the IES (2010) report, session four 

focused on circular representations to address the need to build conceptual fluency with 

fraction subtraction problems, both with like and unlike denominators (Siegler et al, 

2010). When this concept is taught solely through a procedural lens, the idea of a 

common denominator leaves the learner confused about why the denominator contains a 

different digit. The participants in this study found that the virtual manipulatives were 

helpful in quickly identifying equivalent fractions. The visual models took away the need 

to find the least common multiple. The study results also suggest that the visual model of 

the circular shape was a powerful conceptual model for participants to build 

representations of both addition and subtraction of fractions (Cramer et al., 2008). The 

researcher made continual references to view the shift in denominators as equivalent 

fractions instead of fractions with a "common denominator." This differentiation allowed 

participants to conceptually build a fraction with the same value in the denominator, 

identifying the relationship between the two numbers. The intentional focus on fraction 

equivalency highlighted the importance of the foundational concept. Mastering 

equivalency in the early elementary and middle school grades is vital since equivalency is 

found throughout the learning progression of fractions. The process of constructing 

equivalent fractions can be seen as one of the first experiences students have with 

separating fraction values from whole numbers (Lamon, 2005). Conceptually based 

lessons, that rely on inquiry-based activities, such as the Cuisenaire rod and fraction tile 



115 
 

 
 

lessons in the third session of the PD series, found in Appendix B, allow the participants 

to investigate and use their reasoning skills to construct equivalent fractions. 

Furthermore, identifying equivalent fractions is essential when working with fraction 

arithmetic, algebra, and fraction word problems. 

Session six concentrated on the real-world applicability of the division of 

fractions. (Siegler et al., 2010). The researcher was aware that most participants had 

never taught the concept, nor expected to, as it is not included in the TEKS for 

Kindergarten through 4th grade. Additionally, the participants' accuracy on the pretest 

and their lack of exposure to the content revealed that the participants would benefit from 

contexts that were real-world applicable, showing that division of fractions is an integral 

part of life that can be found outside the classroom (Lortie-Forgues et al., 2015). 

Participants engaged in introductory activities that linked active problem-solving with 

situations experienced in daily life, such as determining a fraction of time, weight, and 

distance. The results from the study suggest that content delivered in meaningful contexts 

contributes to improved understanding and is more easily recalled by the learner (Rittle-

Johnson & Koedinger, 2009; Siegler et al., 2010). Group discussions showed that 

participants could associate the lesson’s main ideas with issues that they experienced in 

prior classroom situations and could generate ways to modify those lessons. The changes 

switched the main focus to conceptual understanding of an operation.  

Participants made improvements in all six of the categories assessed. The 

increases in the remaining content knowledge categories were as follows: multiplication, 

25%; addition, 20.8%, equivalency, 23.4%, and comparison, 15.6%. The increase in 

overall scores can be attributed to the program design elements used to maximize 
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participants' acquisition of material. The PD series incorporated the tenets of effective 

professional development to improve learning outcomes for the participants. The series 

was content-focused, incorporated active learning, supported collaboration, made use of 

various models of instruction, provided support, offered feedback, and was of sustained 

duration (Darling-Hammond et al., 2017).  

Additionally, the study was structured using the IES (2010) report that prioritized 

“improving teachers’ understanding of fractions and how to teach them” (Siegler et al, 

2010, P.42).  In building participants’ depth of understanding with fractions and 

computational procedures through concrete and pictorial representations, the study laid 

the foundation for participants to assess fractional content and identify common 

misconceptions typically found in grades three through eight. The researcher focused on 

experiences that participants needed to build conceptual knowledge within each strand. 

After actively participating in inquiry-based opening activities that addressed standards, 

collaborating with other participants, and spending dedicated time exploring ways to 

implement the virtual manipulatives, participants showed improvement in all six areas of 

fraction knowledge (Hill & Grossman, 2013; Penuel et al., 2007). 

Pictorial Representations Change 

The use of representations to justify solution plans was significantly increased 

from the pre-test to the post-test, with all eight participants employing representations on 

the post-test. The pre-test results indicated that 25% of the participants did not use any 

models to explain their reasoning, and 50% used only abstract representations. The post-

test results showed a cumulative increase of 73.75% in the overall use of representations. 
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The PD series focused on using virtual manipulatives to conceptually teach the fractional 

concepts found in grades three through eight. The virtual manipulatives were used in 

place of concrete models as a way for participants to identify the relationships between 

visual and symbolic representations. Technology-based tools, such as virtual 

manipulatives, offered participants an alternate way to discover, visualize, construct, and 

organize mathematical ideas through hands-on experiences that go beyond the traditional 

pencil and paper activities (Moyer-Packenham et al., 2013). After first learning, how to 

access and use the virtual manipulatives, participants were able to use them to model 

their thinking, justify answers, and complete exit tickets with accuracy.  

Therefore, the most relevant finding was the participants’ increase in pictorial 

models employed from the pre-test to the post-test. As seen in Table 18, there was a 

substantial increase in the participants’ use of pictorial models. The representations were 

not optional for the PD sessions; instead, they were presented as mandatory components 

of the learning process. The non-negotiable use of representations mirrors the beliefs of 

the NCTM (2000), in that teachers should hold representations as "essential elements in 

supporting students' understanding of mathematical concepts and relationships" (p. 67). 

Table 18 

Changes in the use of Pictorial Representation from Pre-Test to Post-Test 

Participant Pictorial Representations Pre-Test Pictorial Representations Post-Test 
P#1 0% 73.3% 
P#2 0% 73.3% 
P#3 0% 80% 
P#4 0% 83.3% 
P#5 0% 76.6% 
P#6 0% 83.3% 
P#7 10% 86.6% 
P#8 23.3% 90% 
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The PD highlighted scaffolding experiences through activities that required 

participants to engage with virtual manipulatives and have in-depth discussions over the 

inverse relationships and underlying patterns that they saw in work. Effective teaching of 

fractions offers learners opportunities to experience learning and actively engage in the 

process of forming their knowledge, as these higher-order concepts cannot be mastered 

through lecture or direct-instruction (Van de Walle et al., 2016). Furthermore, teachers 

can more easily employ strategies and skills that have been comprehensively developed 

in PD settings (Darling-Hammond et al., 2019). Upon completing the PD, participants 

showed strong mental representations for the fractional values. They could refer back to 

their experiences within the PD to employ models in justifying subsequent solution plans 

during sessions and they provided accurate exit tickets at the conclusion of the sessions.  

Exit Tickets 

 To guide participants in developing an understanding of how to teach with virtual 

manipulatives and navigate the wide variety of options, they explored working with the 

technology throughout the PD series. Each session concluded with a formative 

assessment, an exit ticket, a piece that served as a quick snapshot of the participants' daily 

learning (Sterrett et al., 2010). All of the exit tickets required that participants used a 

virtual manipulative to display their thinking. Participants were able to choose from any 

of the options introduced during the PD and were encouraged to employ various models, 

including linear, area, and set models.  

The exit tickets nurtured subsequent mathematics conversations over the 

strategies employed (Humphreys & Parker, 2015). Each session was tied back to the 

previous experiences to activate participants' prior knowledge and organize their thinking 
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in a way that would be beneficial for future teaching opportunities (Harbour et al., 2014). 

The results from the exit tickets, as seen in Table 19, showed that participants gained 

fluency with successfully demonstrating their thinking through the use of various virtual 

manipulatives. This use of diversified models is essential in developing a deeper 

understanding of fractions (Reeder & Utley, 2017).   

Table 19  
 
Sample of Participant Exit Ticket Responses 

Visual Representation Participant Response 

 

P#2: Participant two was able to represent 
their thinking using an area model and 
abstract representations. Placed side-by-side, 
the pictorial model represents the amount of 
ribbon each child would receive from the two 
ribbons. This representation includes clear 
partitions of the models and is labeled with 
both the original sum and the equivalent 
fraction. The participant used the selected 
VM to model their thinking. 

 

P#4: Participant four was able to represent 
their thinking using a circular area model and 
abstract representation. This is a pictorial 
representation of addition with like 
denominators. There is reference to the 
whole being 12 units. The participant did 
extend to show the equivalent fraction of 
five-sixths. The participant used the selected 
VM to model their thinking. 

 

P#6: Participant six was able to represent 
their thinking using an area model and 
abstract representations. The participant was 
able to show equivalency with four-sixths 
and eight-twelfths. The model would be 
more effective if given the reference to two-
thirds in a pictorial form.  
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Limitations 

This study's limitations include the results not being generalizable to larger 

public-school districts since the PD content was tailored to meet the individual 

participants' needs. The sessions' format was created with a small sample size as a 

primary influence in the activities chosen. The small group discussion, ability to share 

solution plans as a group, and focus on specific content strands could pose issues for 

replicating this study with larger sample sizes. In this study, the researcher was an 

employee at the testing site, in a mentor and coach's role to the participants. The 

researcher had already established familiarity, as well as motives for administering the 

pre-test and post-test. The researcher was able to address individual questions and discuss 

real-world examples that included situations that occur within the school and classrooms. 

This type of connection between researcher and participant may be more difficult to 

mirror in a larger district. 

Additionally, the participants were private school instructors, not required to 

participate in mathematics PD since the start of their employment at the testing site. The 

participants did not hold degrees or certification in mathematics, while public school 

teachers must attain specific certifications to teach mathematics. Therefore, their 

knowledge base of the items assessed on the pre-test may generate contrasting results that 

lead to a different lesson format. 

Online Professional Development   

 This study suggests that online PD that focuses on Specialized Content 

Knowledge in the area of fractions could increase teachers' conceptual understanding of 

the topic. As seen with the increase in scores from the pre-test to the post-test, 
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meaningful exposure to vertically aligned fraction concepts through virtual manipulatives 

can improve teachers' knowledge of online platforms and foundational mathematics 

concepts. Like the series presented in this study, online PD offers participants 

developmentally grounded, personalized, and targeted training (Darling-Hammond et al., 

2009).  When adequately executed, online PD has the opportunity to change teachers' 

practices and ultimately increase student outcomes (National Research Council, 2007).  

 The online PD format lends itself to versatility and flexibility in allowing teachers 

to participate in sessions on their schedule, through asynchronous and synchronous 

options. The convenience of completing classes from school or home meets the varying 

needs of teachers unable to make the time commitment that traditional PD requires. The 

platform's constant availability supports the idea of community by allowing teachers to 

interact in real-time or post comments to receive feedback and engage in group 

discussions.  

Online PD focused on foundational concepts can begin to alleviate teachers' 

deficit of fraction mastery and aid in effectively employing best practices (Ball, 1990). 

Additionally, online PD participation builds the common language required to teach and 

learn content-specific topics. Online PD can offer participants an opportunity to gain 

insight, apply that information in the classroom, and receive feedback on classroom 

practices. This idea is contrary to a one-time workshop model that does not provide the 

same guidance after receiving the information (National Research Council, 2007). 

Furthermore, evidence of teachers' continued misconceptions concerning foundational 

mathematics concepts, seen explicitly in their inability to provide meaningful 

explanations, calls for PD grounded in content-specific training (Ball et al., 2008; Ma, 
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1999). This PD directly responded to the participants' need to increase fractional 

knowledge and present that information conceptually. 

Dependence on rote methods was observed in this study. The participants did not 

have a solid familiarity with the content strands explored and struggled at the onset with 

displaying pictorial representations of their thought processes. The reliance on 

scaffolding opportunities and cognitively demanding tasks in the lesson design helped 

participants understand the scope and sequence necessary to diagnose student thinking 

and successfully engage in conceptually based lessons. During the study, algorithms' use 

was explicitly evident when working with multiplication and division of fractions. Over 

half of the participants required the researcher to model problems similar to the opening 

questions due to their confusion over using virtual manipulatives and their lack of 

understanding of fractional values. Participants who answered the multiplication and 

division problems did so using abstract representations without knowing why the 

processes worked.  

The rapid onset of remote learning becoming more mainstream in education has 

opened the door for teachers to enhance and improve their understanding of the 

challenges present in their classrooms. As Linda Darling-Hammond (2000) advises, PD 

should focus on the challenges teachers face in the classroom. The online platform is 

convenient, offers synchronous and asynchronous options, is specific in its objectives, 

and offers teachers space to work with the ideas presented before taking them back to the 

classroom. Furthermore, online PD offers real-time solutions for exploring curriculum 

and learning how to navigate new content delivery systems. 
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Recommendations for Online Professional Development 
 

 The participants in this study benefited from the whole group discussion, 

specifically in hearing how others thought of their solution plans and the similarities and 

differences that could be found between individuals' paths. Initially, the participants were 

hesitant to share their thinking on the online platform. The abundance of time allocated 

for sharing ideas and mathematical discourse required participants to display their work 

for the group. Many of them voiced that they were not comfortable with everyone 

analyzing their work, fearing that the methods employed were not sophisticated enough. 

This occurrence was amplified during the fifth and sixth sessions, multiplication and 

division of fractions, and several participants were vocal about their discomfort with the 

topic. The researcher emphasized that the PD series was a learning opportunity for all. 

Just as their students struggle at times, it was expected that they would find difficulty in 

one if not more of the activities presented. The researcher highlighted the benefits of 

celebrating growth, analyzing mistakes, utilizing virtual manipulatives, and the need for 

experience with multiple solution paths. Drawing from previously learned content 

strands, such as multiplication, the researcher discussed the significance of multiple 

models through partial products, standard algorithm, and the box method. Participants 

understood that when learning a concept, there is value in identifying multiple solution 

paths. Exposure to virtual manipulatives to build conceptual understanding acted as the 

base for many conversations as most of the participants had never included them in their 

lessons. Participants began to understand how virtual manipulatives could develop 

conceptual understanding in themselves and their students. Participants became more 

open to sharing and were able to work together, tying in learning from previous sessions 
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to answer questions through building concrete models, drawing pictorial representations, 

and explaining their thinking. 

The extended time offered for discussion allowed participants to collaborate and 

engage in a safe and accepting environment to strengthen their understanding of 

relationships and patterns in their work. The focus on a vertically aligned curricular 

framework depends on teachers looking beyond their classroom to collaborate with other 

faculty members to create a more organized and focused curriculum. PD should build 

foundational skills required for scaffolding and be designed around the prerequisite skills 

identified for success. Teachers will walk away with a better understanding of why they 

need to teach their grade level concepts in a particular order and with a tremendous 

amount of depth when they have access to the scope and sequence of what students need 

to be successful.  

As participants shared and the tone of the conversation was positive and 

encouraging, the real issues that they faced in the classroom came to the surface. 

Participants were able to share real-life examples of issues they had in developing and 

presenting conceptually based fraction lessons without fear that it would somehow be 

used against them in an upcoming goals meeting. The conversations' open and 

transparent nature switched the atmosphere of the PD sessions from a presentation style 

to more of a "think tank" situation where individuals came together to problem-solve and 

support each other in obtaining new methods and strategies. Online PD has an incredible 

opportunity to build learning communities focused on improving the overall trajectory of 

learning in a school or district. Through authentic discourse that prioritizes growth and 

learning in an encouraging and uplifting environment, participants can come together to 
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explore content and strategies. The PD should be focused on relevant issues that teachers 

face in the classroom and allow teachers flexibility in how they wish to share their ideas. 

Recommendations for Future Research 

 Future research recommendations include observations of participants' classroom 

teaching methods and assessments to determine if they successfully transferred their 

learning into effective teaching strategies. This study offered quantitative data that 

suggested an increase in the participants' fraction knowledge concerning all six categories 

assessed. The next steps would include gathering qualitative and quantitative data to 

determine if the participants can use the PD knowledge to inform their practice. Data 

collected from student samples, testing, and interviews can verify if student outcomes are 

positively affected by their teacher's participation in subject-specific PD. Last, this 

conceptually based online PD model is flexible in that it should be extended to other 

content strands designated as areas of concern. 

Summary 

 The PD series was successful in that participants experienced increased scores in 

all six categories assessed. Additionally, the study confirmed that participants 

successfully improved their understanding of concrete models through virtual 

manipulatives. The vertical alignment proved beneficial in allowing participants to build 

their knowledge and understand the previous work that goes into building a schema for 

fractional knowledge. As research suggests, there is a benefit to mathematics PD that 

encompasses topics spanning the curricula (Siegler et al., 2010). Teachers at all levels 

benefit from understanding how each grade level coherently layers the curriculum, 

scaffolding concepts to create authentic learning opportunities, and bringing awareness to 
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common misconceptions. Teachers that do not understand the scope and sequence of the 

standards are unlikely to diagnose students' thinking, plan relevant lessons that include 

cognitively demanding questions, or identify scaffolding opportunities (Ma, 1999; Polly 

& Hannafin, 2011). Through the use of research-based practices that include inquiry-

based learning opportunities, coherent sequencing of curricula, and the use of multiple 

representations, participants improved their understanding of fractional concepts (Ball et 

al., 2005).  

 The continued opportunities to engage in specialized content knowledge-based 

PD can offer elementary and middle school teachers the understanding and fluency 

needed to facilitate effective learning opportunities in their classrooms. Virtual 

manipulatives as an alternate for hands-on, concrete models in conceptually presenting 

mathematics content can prove beneficial for increasing conceptual understanding of 

high-leverage mathematics concepts as schools continue to employ more advanced 

technology in the classroom. Further research is needed to assess the direct impact that 

specialized content knowledge PD has on students. 
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Appendix A 

Session Objectives and Assessed Items 

Virtual Models 
The following virtual models were used for all sessions one through 6.  

Free Math Apps: https://www.mathlearningcenter.org/apps  
MathsBot.com - Tools for Maths Teachers 
https://www.didax.com/math/virtual-manipulatives.html 
https://toytheater.com/category/teacher-tools/virtual-manipulatives/  
https://www.sadlier.com/school/mathematics 
Fraction Squares 
Fraction Circles 

 
Session #1 
Introduction to Fractions through Partitioning and Concrete Models 

● Partitioning Equally 
● Unit Fraction 
● Non-Unit 
● Represent fractions with denominators of 2, 3, 4, 6, 8 

Session 1 Objective(s) – TEKS Addressed 

Second Grade: 2.3.A, B, C, and D 

(3) Number and operations. The student applies mathematical process standards to 
recognize and represent fractional units and communicates how they are used to name 
parts of a whole. The student is expected to: 

(A)  partition objects into equal parts and name the parts, including halves, 
fourths, and eighths, using words; 
(B)  explain that the more fractional parts used to make a whole, the smaller the 
part; and the fewer the fractional parts, the larger the part; 
(C)  use concrete models to count fractional parts beyond one whole using words 
and recognize how many parts it takes to equal one whole; 
(D)  identify examples and nonexamples of halves, fourths, and eighths. 

Third Grade: 3.3.A, B, C, D, and E 

(3) Number and operations. The student applies mathematical process standards to 
represent and explain fractional units. The student is expected to: 

(A)  represent fractions greater than zero and less than or equal to one with 
denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, 
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including strip diagrams and number lines; 
(B)  determine the corresponding fraction greater than zero and less than or equal 
to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number 
line; 
(C)  explain that the unit fraction 1/b represents the quantity formed by one part of 
a whole that has been partitioned into b equal parts where b is a non-zero whole 
number; 
(D)  compose and decompose a fraction a/b with a numerator greater than zero 
and less than or equal to b as a sum of parts 1/b; 
(E)  solve problems involving partitioning an object or a set of objects among two 
or more recipients using pictorial representations of fractions with denominators 
of 2, 3, 4, 6, and 8. 

Correlated Assessment Items 
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Session #2 
Fraction Concepts Continued: (Number Lines & Comparing Fractions) 

●  Partitioning Equally 
●  Unit Fraction 
●  Non-Unit 

Session 2 Objective(s) – TEKS Addressed 

Second Grade: 2.3.A, B, C, and D 

(3) Number and operations. The student applies mathematical process standards to 
recognize and represent fractional units and communicates how they are used to name 
parts of a whole. The student is expected to: 

(A)  partition objects into equal parts and name the parts, including halves, 
fourths, and eighths, using words; 
(B)  explain that the more fractional parts used to make a whole, the smaller the 
part; and the fewer the fractional parts, the larger the part; 
(C)  use concrete models to count fractional parts beyond one whole using words 
and recognize how many parts it takes to equal one whole; 
(D)  identify examples and nonexamples of halves, fourths, and eighths. 

Third Grade: 3.3.A, B, C, D, and E 

(3) Number and operations. The student applies mathematical process standards to 
represent and explain fractional units. The student is expected to: 

(A)  represent fractions greater than zero and less than or equal to one with 
denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, 
including strip diagrams and number lines; 
(B)  determine the corresponding fraction greater than zero and less than or equal 
to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number 
line; 
(C)  explain that the unit fraction 1/b represents the quantity formed by one part of 
a whole that has been partitioned into b equal parts where b is a non-zero whole 
number; 
(D)  compose and decompose a fraction a/b with a numerator greater than zero 
and less than or equal to b as a sum of parts 1/b; 
(E)  solve problems involving partitioning an object or a set of objects among two 
or more recipients using pictorial representations of fractions with denominators 
of 2, 3, 4, 6, and 8. 
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Correlated Assessment Items 
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Session #3 
Fraction Equivalence 

●  Equivalence 
●  Comparing with like denominators 
●  Comparing with unlike denominators 

Session 3 Objective(s) – TEKS Addressed 

Third Grade: 3.3.F, G, and H 

(3) Number and operations. The student applies mathematical process standards to 
represent and explain fractional units. The student is expected to: 

(F)  represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a 
variety of objects and pictorial models, including number lines; 
(G) explain that two fractions are equivalent if and only if they are both 
represented by the same point on the number line or represent the same portion of 
a same size whole for an area model; 
(H) compare two fractions having the same numerator or denominator in 
problems by reasoning about their sizes and justifying the conclusion using 
symbols, words, objects, and pictorial models.  

Fourth Grade: 4.3.A, B, C, D, and F 

(3) Number and operations. The student applies mathematical process standards to 
represent and generate fractions to solve problems. The student is expected to: 

(A)  represent a fraction a/b as a sum of fractions 1/b, where a and b are whole 
numbers and b > 0, including when a > b; 
(B)  decompose a fraction in more than one way into a sum of fractions with the 
same denominator using concrete and pictorial models and recording results with 
symbolic representations;  
(C)  determine if two given fractions are equivalent using a variety of methods; 
(D)  compare two fractions with different numerators and different denominators 
and represent the comparison using the symbols >, =, or <; 
(F)  evaluate the reasonableness of sums and differences of fractions using 
benchmark fractions 0, 1/4, 1/2, 3/4, and 1, referring to the same whole. 
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Correlated Assessment Items 
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Session #4 
Adding and Subtracting Fractions 

●  Like denominators 
●  Unlike denominators 

Session 4 Objective(s) – TEKS Addressed 

Second Grade: 2.3.C 

(3) Number and operations. The student applies mathematical process standards to 
recognize and represent fractional units and communicates how they are used to name 
parts of a whole. The student is expected to: 

(C)  use concrete models to count fractional parts beyond one whole using words 
and recognize how many parts it takes to equal one whole; 

Third Grade: 3.3.D 

(3) Number and operations. The student applies mathematical process standards to 
represent and explain fractional units. The student is expected to: 

(D)  compare two fractions with different numerators and different denominators 
and represent the comparison using the symbols >, =, or <;. 

Fourth Grade: 4.3.A, B, E, and F. 

(3) Number and operations. The student applies mathematical process standards to 
represent and generate fractions to solve problems. The student is expected to: 

(A)  represent a fraction a/b as a sum of fractions 1/b, where a and b are whole 
numbers and b > 0, including when a > b; 
(B)  decompose a fraction in more than one way into a sum of fractions with the 
same denominator using concrete and pictorial models and recording results with 
symbolic representations;  
(E)  represent and solve addition and subtraction of fractions with equal 
denominators using objects and pictorial models that build to the number line and 
properties of operations; 
(F)  evaluate the reasonableness of sums and differences of fractions using 
benchmark fractions 0, 1/4, 1/2, 3/4, and 1, referring to the same whole. 

Fifth Grade: 5.3.H 

(3) Number and operations. The student applies mathematical process standards to 
develop and use strategies and methods for positive rational number computations in 
order to solve problems with efficiency and accuracy. The student is expected to: 

(H) represent and solve addition and subtraction of fractions with unequal 
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denominators referring to the same whole using objects and pictorial models and 
properties of operations. 

Sixth Grade: 6.2.C, and D 

(2) Number and operations. The student applies mathematical process standards to 
represent and use rational numbers in a variety of forms. The student is expected to: 

(C)  locate, compare, and order integers and rational numbers using a number 
line; 
(D)  order a set of rational numbers arising from mathematical and real-world 
contexts. 

Correlated Assessment Items 
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Session #5 
Multiplying Fractions 

●  Multiplying a whole number by a fraction 
●  Multiplying a fraction by a fraction 

Session 5 Objective(s) – TEKS Addressed 

Prekindergarten: V.B.3 

Child uses informal strategies to separate up to 10 items into equal group 

Second Grade: 2.6.A* 

(6) Number and operations. The student applies mathematical process standards to 
connect repeated addition and subtraction to multiplication and division situations that 
involve equal groupings and shares. The student is expected to: 

(A)  model, create, and describe contextual multiplication situations in which 
equivalent sets of concrete objects are joined. 

Fifth Grade: 5.3.I 

(3) Number and operations. The student applies mathematical process standards to 
develop and use strategies and methods for positive rational number computations in 
order to solve problems with efficiency and accuracy. The student is expected to: 

(I) represent and solve multiplication of a whole number and a fraction that refers 
to the same whole using objects and pictorial models, including area models. 

Sixth Grade: 6.3.E 

(3) Number and operations. The student applies mathematical process standards to 
represent addition, subtraction, multiplication, and division while solving problems and 
justifying solutions. The student is expected to: 

(E)  multiply and divide positive rational numbers fluently. 
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Correlated Assessment Items 
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Session #6 
Dividing Fractions 
 

●  Fraction by a fraction 
●  Fraction by a whole number 

Session 5 Objective(s) – TEKS Addressed 

Prekindergarten: V.B.3 

Child uses informal strategies to separate up to 10 items into equal group 

Second Grade: 2.6.B* 

(6) Number and operations. The student applies mathematical process standards to 
connect repeated addition and subtraction to multiplication and division situations that 
involve equal groupings and shares. The student is expected to: 

(B)  model, create, and describe contextual division situations in which a set of 
concrete objects is separated into equivalent sets. 

Fifth Grade: 5.3.J, and L 

(3) Number and operations. The student applies mathematical process standards to 
develop and use strategies and methods for positive rational number computations in 
order to solve problems with efficiency and accuracy. The student is expected to: 

(J) represent division of a unit fraction by a whole number and the division of a 
whole number by a unit fraction such as 1/3 ÷ 7 and 7 ÷ 1/3 using objects and 
pictorial models, including area models; 
(L) divide whole numbers by unit fractions and unit fractions by whole numbers. 

Sixth Grade: 6.3.E 

(3) Number and operations. The student applies mathematical process standards to 
represent addition, subtraction, multiplication, and division while solving problems and 
justifying solutions. The student is expected to: 

(E)  multiply and divide positive rational numbers fluently. 
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Correlated Assessment Items 
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Appendix B 

Session 5E Lesson Plans 

 
Lesson #1 Introduction to Fractions through Partitioning and Concrete Models. 
Standards & Objectives: TEKS & Vertical Alignment 
2.3 (A) partition objects into equal parts and name the parts, including halves, fourths, 
and eighths, using words; 
2.3 (B) explain that the more fractional parts used to make a whole, the smaller the part; 
and the fewer the fractional parts, the larger the part; 
2.3 (C)  use concrete models to count fractional parts beyond one whole using words and 
recognize how many parts it takes to equal one whole; and 
2.3(D) identify examples and non-examples of halves, fourths, and eighths 
3.3 (A) represent fractions greater than zero and less than or equal to one with 
denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, including 
strip diagrams and number lines 
3.3(C) explain that the unit fraction 1/b represents the quantity formed by one part of a 
whole that has been partitioned into b equal parts where b is a non-zero whole number; 
3.3(E) solve problems involving partitioning an object or a set of objects among two or 
more recipients using pictorial representations of fractions with denominators of 2, 3, 4, 
6, and 8 
 
Materials 
Paper/pencil 
Computer Access 
Virtual manipulatives 
 
Essential Questions 

• What prior knowledge would be beneficial to students' in understanding 
partitioning and the initial steps in identifying fractional parts? 

• Do we often see lessons that mirror those understandings? 
• What real-life situations could children have already experienced that would act 

as a foundation to fractional learning? 
• From your experience, what type of delivery is most commonly used to introduce 

fractions? Manipulatives, videos, direct instruction, models? 
• How does understanding what a unit fraction is aid in building fractional fluency? 
• What is the difference between a unit and non-unit fraction? 

 
Procedures 
Engage: 
Sharing Activity #1: 
Participants will explore sharing a set of objects among multiple individuals through the 
IES activity Sharing a Set of Objects Evenly Among Recipients.  Participants will use the 
number frames application from The Math Learning Center to model their thinking. They 
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will share a personalized link with the researcher that contains their representation of the 
answer. 

The following question will be presented:  
Three children want to share 12 cookies so that each child receives the same number of 
cookies. How many cookies should each child get? Please show your thinking by 
answering through pictures, words, numbers, or modeling on the number frames 
application. [Give teachers time to explore the virtual manipulative.] 
https://apps.mathlearningcenter.org/number-frames/ 
One person will share their screen and explain their thinking. Whole group discussion 
over similarities and differences of solution plans. 

Sharing Activity #2: Unit  and Non-Unit Fractions 
Working as a whole group, participants will be given a second sharing problem that 
focuses on the idea of a unit fraction.  
Researcher introduces the manipulative and allows time for teachers to work within the 
application. 
https://apps.mathlearningcenter.org/fractions/ 

Question: 
There are 3 friends. They want to run a relay race that is one mile.  Each friend runs an 
equal amount of the race. How much of the race would each friend run? 

How could you partition the shape into three equal parts?  Please model your solution 
plan using the fraction application. 

One person will share their screen and explain justification/thinking. 

Four children want to share two apples. Each child wants to have an equal amount of the 
apples. What fraction of the apple will each kid get? Show all the ways you know that 
can represent the answer with fractions? Use virtual manipulative to model. 
https://apps.mathlearningcenter.org/fractions/ 

[Caution, teachers will partition this into halves. Kids will partition into fourths because 
that’s how many children are in the problem.] 

 

Equivalent fraction 
Are there any other fractional parts that cover the same area as the pieces you chose? 
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1
4 +

1
4 

 
Explore: 
Include additional problem here for clarification: 
Five friends want to share 3 apples that are the same size. Each friend will have the same 
amount. Draw a picture to show what each child should get. (Non-unit Fraction).  

Explain: 
Sharing Activity #1 
Why are we focusing on this type of problem? (Sharing equally)  
Research shared about the importance of sharing equally. 
Partitive and Measurement Review 

Sharing Activity #2 
How is division or sharing equally similar or different to this problem. Share/record 
answers. Equal parts, equal sharing, “one for you, one for you” 

Explain Unit-Fractions - sharing one object with multiple friends or people. Partitioning 
one object into equal parts. Present research and define Unit Fraction. 

1 shared equally with 3 friends. Each friend will run 1 equal part of 3 or !
$
 

 
Elaborate/Extend: 
Discussion over the Inquiry-based learning and the value of concrete models in the 
classroom. 
 
Evaluate: 
Exit Ticket:  

1. There are four children wrapping presents. They have one yard of ribbon to wrap 
all of the presents. If each child receives an equal amount of ribbon, 
what fraction would they get?  Use a model to explain. 

2. There are 7 friends. The friends have two yards of ribbon to wrap presents. If each 
child receives an equal amount of ribbon, what fraction would they get?  Use a 
model to explain. 
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Lesson #2 Fraction Concepts Continued (Number Lines & Comparing Fractions) 
 

Standards & Objectives: TEKS & Vertical Alignment 
2.3(A) partition objects into equal parts and name the parts, including halves, fourths, and 
eighths, using words; 
2.3(B) explain that the more fractional parts used to make a whole, the smaller the part; 
and the fewer the fractional parts, the larger the part; 
2.3(C) use concrete models to count fractional parts beyond one whole using words and 
recognize how many parts it takes to equal one whole; and 
2.3(D) identify examples and non-examples of halves, fourths, and eighths. 
 
3.3(A) represent fractions greater than zero and less than or equal to one with 
denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, including 
strip diagrams and number lines; 
3.3(B) determine the corresponding fraction greater than zero and less than or equal to 
one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number line; 
3.3(C) explain that the unit fraction 1/b represents the quantity formed by one part of a 
whole that has been partitioned into b equal parts where b is a non-zero whole number; 
3.3(D) compose and decompose a fraction a/b with a numerator greater than zero and less 
than or equal to b as a sum of parts 1/b; 
3.3(E) solve problems involving partitioning an object or a set of objects among two or 
more recipients using pictorial representations of fractions with denominators of 2, 3, 4, 
6, and 8 
 
Materials 
Paper/pencil 
Math Center Apps 
Computer Accessibility 
 
Essential Questions 

• Use the word “number” to identify the fractions, to further solidify that fractions 
are numbers. 

Examples: 
• What number is halfway between zero and one? 
• What other numbers represent one-half? 
• When we share the same whole in various ways (halves, thirs, fourths), what 

happens to the size of the pieces?  
• Are there pieces that can be combined to create the same area coverage as one 

piece? 

Procedures 
Engage: 

Activity #1 Number Line Activities with Cuisenaire Rods  
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http://pbs.panda-
prod.cdn.s3.amazonaws.com/media/assets/wgbh/rttt12/rttt12_int_cuisenaire/index.html 

Participants will work with virtual Cuisenaire rods. Looking at the comparison between 
the whole and parts/fractional measurement. Developing the understanding that fractions 
are descriptions of relationships between the rod deemed as the whole and the rod 
designated as the part. 

Make note of relationships by having teachers put their thinking into words. “It takes 
three red rods to make a green rod”. This will set the foundations for 
reciprocal/multiplicative inverse relationships (½ and 2) 

Participants will partition and record the fractions according to the rods; halves, thirds, 
fourths, sixths, eights, and 12ths.  

Discussion questions: 

1. What number one-fourth more than one-half? One-sixth more than one-half? 
2. What number is one-sixth less than one? 
3. What number is one-third more than one? 
4. What number is halfway between one-twelfth and three-twelfths? 

Which number is closest to one? 
 
Explore: 

Activity #2 Connecting Cuisenaire Rods with One-Unit Number Lines 

Make a connection between and the Cuisenaire rods and the number lines.  

Exploring the idea that the smaller the number in the denominator, dictates a larger 
fraction is only true when the numerator is the same. 

Present number lines without tick marks, just 0 and 1. 

Participants will create number lines either with virtual manipulatives or with pictorial 
models. They will partition the number line and compare the fractional values while 
providing reasoning for comparisons. 

 

Present Research:  
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When grade students were given the fractions ,
'
  and <

+
, 40% of 4th grade students and 

34% of 6th grade students said that ,
'
  was bigger because sixths are bigger than eights. 

(McNamara & Shaughnessey, 2010).  

Number Lines are valuable for identifying fractional values, as they provide a more exact 
means of measurement (Siegler et al, 2010). 

Activity #3 Connecting Cuisenaire Working with the Two-Unit Number Line: 

Extending from the work with number lines to one, the researcher will introduce a 
number line that includes two whole numbers. This time focusing on the idea of mixed 
numbers. 

Participants will be asked to partition the two-unit number lines into halves, thirds, 
fourths, sixths, eights, and twelfths. 

Participants will answer the same questions as in the prior activity. As a whole group, the 
participants will discuss their reasoning about fractions greater than one compared to 
those that are less than one. 

Activity #4: Comparing Fractions 

Jen has !
%
 of  a pizza. 

Katrina has !
%
 of a pizza. 

Katrina has more pizza. Is this possible? 

 

Malik has run two thirds of the marathon. Angela has run four sixths of the same 
marathon. Who has run the least distance of the marathon? 

Use a number line.(Find a virtual manipulative that has multiple number lines.) 

Explain: 
There are many misconceptions surrounding fractions, especially when it comes to 
“rules”. This session brings to light those misconceptions and generalizations through use 
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of conceptual models. Understanding the why behind the operation encourages 
participants and students to not simply apply a rule because it is a rule, rather it supports 
their understanding of fractions by giving them experience with the foundation of 
fractional concepts. 
Elaborate/Extend: 
The group will generate a list of “rules” and misconceptions about fractions. These may 
include;  

• Smaller the denominator, bigger the fraction. This should connect back to...the 
more people we share with...the smaller the part or piece. SHARING EQUALLY 
*****  

• When comparing fraction values, you only have to look at one part of the 
numerator or denominator  

• Fractions are always less than 1. 

Participants will individually decide if the rules are sometimes true, always true, or never 
true. 
By focusing the participants' attention on the common misconceptions, they are able to 
see why the rule is incorrect and start identifying the core mathematical ideas related to 
fractions.. 
 
Evaluate: 
Exit Ticket:  

Answer the following by adding an inequality sign and show model.  
!
$
 __________ !

%
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Lesson #3 Fraction Equivalence 

Standards & Objectives: TEKS & Vertical Alignment 
3.3 (F) represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a 
variety of objects and pictorial models 
3.3(G) explain that two fractions are equivalent if and only if they are both represented 
by the same point on the number line or represent the same portion of a same size whole 
for an area model 
3.3(H) compare two fractions having the same numerator or denominator in problems by 
reasoning about their sizes and justifying the conclusion using symbols, words, objects, 
and pictorial models.      
4.3(A) represent a fraction a/b as a sum of fractions 1/b, where a and b are whole 
numbers and b > 0, including when a > b  
4.3(B) decompose a fraction in more than one way into a sum of fractions with the same 
denominator using concrete and pictorial models and recording results with symbolic 
representations 
4.3(C) determine if two given fractions are equivalent using a variety of methods  
 
Materials 
Choice of virtual manipulatives: fraction squares, fraction rectangles, fraction circles, 
number lines, two-unit number lines, and Cuisenaire rods. 
 
Essential Questions 

• How do you know which students can articulate the relationships between 
fractions? Can you think of any appropriate activities for students who have not 
yet developed this understanding? 

• How can teachers adjust instruction continually in ways that support and extend 
learning?     

• When we share the same whole in various ways (halves, thirds, fourths), what 
happens to the size of the pieces?  

• Are there pieces that can be combined to create the same area coverage as one 
piece? 

Procedures 

Engage: 

Participants will be given the following question: 

Decide whether you agree or disagree with the following statement 

%
'
 is the same as 

!
$
 

Justify your reasoning by modeling with virtual manipulatives. 
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Discuss answers/solution paths. 

 

Individuals share their thinking in a round table format. 
 
Explore: 

Modeling with Cuisenaire Rods 

Participants will use the Cuisenaire rods from a measurement perspective, to identify the 
distances of different length rods to realize that equivalency is naming the same piece in a 
different way. 

They will be asked to find how many of a specified color (brown/purple/red) rods are 
needed to create the same length as the marker. Participants will then work with the 
brown rod, which is half of the identified object, looking for colors that are equivalent. 
Calling on the connection to division and equal sharing from the previous PD lesson, the 
researcher will guide students in understanding the relationship between the rods. 

Teachers will share their created images. 

Participants will continue to measure other items (pencil, book, ruler, etc.) with the rods, 
recording their findings. 

Explain: 
This lesson explores the idea of fraction equivalency through the use of various models; 
including pictorial representations, Cuisenaire rods, and fraction tiles.  

Teachers will share their equivalent fraction models with the class through screen-share. 

The goal of the lesson is for participants to build fluency with fraction equivalency, gain 
understanding of strategies to use in the classroom and recognition that fractions can be 
named in different ways.. 

Elaborate/Extend: 
Connecting Cuisenaire Measurement to the Number Line: 

Students will use number lines and double number lines to identify that equivalent 
fractions describe the same magnitude.  
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The lesson aims to show that fractions are identified by the size of the partition in relation 
to the whole and that the distance from zero is important in determining the value. 

Participants will be provided with a number line that has intervals of 12 centimeters 
between each whole number. 

Participants will use virtual manipulatives to locate and mark !
%
 and $

%
, also identifying 

&
%
, %
%
, 1 !

%
, and "

%
.  

Participants will use virtual manipulatives to partition the same line into fourths, aligning 
%
"
 with !

%
 and 1 %

"
 with 1 !

%
. 

Participants will continue to partition the line into thirds, sixths, and twelfths. This helps 
to show that as one continues to divide the segments, they continue to make smaller 
pieces. 

Participants will complete an Equivalent Fractions on the Number Line recording sheet. 
The sheet details the number that are being considered and equivalent values on the 
number line.  
Using these segments is a great transition into adding fractions with like denominators, as 
the participants start to see the fractions that can be combined to make the larger 
fractional segment.  
 
Evaluate: 
Exit Ticket:  

1. Can you show three fractions that are equivalent to !
%
 with manipulatives? 

2. Can you show two equivalent fractions for %
$
 using a number line? 
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Lesson Plan #4 Adding and Subtracting Fractions 
 
Standards & Objectives: TEKS & Vertical Alignment 
2.3(C) use concrete models to count fractional parts beyond one whole using words and 
recognize how many parts  it takes to equal one whole  
 
3.3(D) compose and decompose a fraction a/b with a numerator greater than zero and less 
than or equal to b as a sum of parts 1/b 

4.2 (H) compare two fractions having the same numerator or denominator in problems by 
reasoning about their sizes and justifying the conclusion using symbols, words, objects, 
and pictorial models.                                      
4.3(A) represent a fraction a/b as a sum of fractions 1/b, where a and b are whole 
numbers and b > 0, including when a > b  
4.3(B) decompose a fraction in more than one way into a sum of fractions with the same 
denominator using concrete and pictorial models and recording results with symbolic 
representations 
4.3(C) determine if two given fractions are equivalent using a variety of methods 
4.3(D) compare two fractions with different numerators and different denominators and 
represent the comparison using the symbols >, =, or <           
4.3 (E) Represent and solve addition and subtraction of fractions with equal 
denominators using objects and pictorial models that build to the number line and 
properties of operations 
4.3(F) represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety 
of objects and pictorial models, including number lines; 
4.3(G) explain that two fractions are equivalent if and only if they are both represented 
by the same point on the number line or represent the same portion of a same size whole 
for an area model; 

5.3(H) represent and solve addition and subtraction of fractions with unequal 
denominators referring to the same whole using objects and pictorial models and 
properties of operations                        

6.2(C) locate, compare, and order integers and rational numbers using a number line. 
6.2(D) order a set of rational numbers arising from mathematical and real-world contexts  

Materials 
Cuisenaire Rods 
Fraction strips 
https://apps.mathlearningcenter.org/fractions/ 

Essential Questions 

• How does decomposing and recomposing fractions contribute to understanding 
the concept of adding and subtracting fractions? 

• Why do we add only the numerator when adding fractions? 
• What is important to remember when adding fractions with like-denominators? 
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• What is a fraction called when the numerator and denominator are the same 
number?  

• How is a common denominator similar to an equivalent fraction? 
• What happens when students find a common denominator, not the Least Common 

Denominator (LCM)? 
• How can models aid in representing fraction computation? 
• Does the relationships and rules that apply to whole numbers also apply to 

fractions? 

Procedures 

Engage: 

Jack is making a soccer bag for a friend. He uses 2/5 of a yard of green fabric and ⅕ of a 
yard of blue fabric. How much fabric does he use in all?  Model with manipulatives, 
pictures, or words. Be sure to include the number sentence. 

Participants will share their solution plan with the group. 
The researcher will highlight the idea of finding equivalent fractions as opposed to a 
common denominator for addition of fractions. Making note of the specific parts of a 
whole being added.  
 
Explore: 

The researcher will then present the following problem: 
Jack is making another soccer bag for a friend.  He uses 1/2 yard of green fabric and 1/4 
yard of blue fabric.  How much fabric does Jack use? 

https://apps.mathlearningcenter.org/fractions/ 
https://mathsbot.com 

Participants will create models using virtual manipulatives and justify their answers. 

What’s the Difference? 

Charlie’s brownie recipe requires 1 ⅓ cups of milk. Laura’s recipe needs ⅔ of a cup of 
milk. How much more milk does Charlie's recipe need than Laura’s?  

The researcher will display a number line and work through the problem with the 
participants, showing the time spent on Monday night as intervals on the top of the 
number line and the time spent Tuesday night in intervals at the bottom of the number 
line.  

Participants will use the inverse operation, showing that by combining the difference and 
Laura’s milk needed, one can generate the larger value of milk needed by Charlie.  
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The researcher will then present the following question as an independent activity: 
Will fills a hummingbird feeder with 3/4 cup of sugar water on Friday.  On Tuesday, Will 
sees that !

+
 cup of sugar water is left.  What is the difference in sugar water between 

Friday and Tuesday? 

The participants will be encouraged to find $
"
	– !

+
 by placing three !

"
 strips beneath the 1-

whole strip.  Then place a !
+
 strip under the !

"
 strips. Finding all of the fraction strips with 

the same denominator, that can fit beneath the difference of 
$
"
 – 
!
+
. 

Participants will work in pairs using a virtual number line to solve problems that include 
the difference of two fractions that are generated by the whole group. 

Addition with Cuisenaire Rods 

Building on participants' reasoning and sense-making skills by working with 
manipulatives, they will use Cuisenaire rods to answer the following question: 

!
%
 of a brown rod + !

%
 of a brown rod = _____________brown rods. 

The researcher will encourage participants to justify their answers using various color 
rods. Circling back to what they understand about the relationship of a part to a whole 
and identify that by adding two rods together, they are essentially showing an equivalent 
length. Focus on estimation strategies and justification for possible solution plans.  

The researcher will display the following problem: 

!
"
 brown rod + !

"
  brown rod = _________brown rod(s). 

This will further justify their answers using rods. 

The researcher will next display the following problem: 

!
%
  brown rod +  !

"
 brown rod = _________ brown rod (s) 

Using the information already gained in the activity as a scaffold, they should be able to 
identify that the answer is $

"
. The researcher will remind the participants to include the 

concept of equivalency in their justification.   

Participants will continue exploring the concept while changing the unit considered to be 
the “whole” Moving into mixed numbers, such as in the example 

%
$
 of an orange rod 

added to	"
,
 of an orange rod.  
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Subtraction with Cuisenaire Rods 

The researcher will display the following problem: 

$
"
 of a brown rod - !

"
 of a brown rod = ___________brown rod.  

Encouraging participants to display the problem with their rods, the researcher will 
engage the participants in identifying the rod that shows the fractional relationship 
between !

"
 and "

"
= 1 whole. Participants will use estimation strategies to identify the 

reasonableness of their solution plan and explain strategies.  

The researcher will then display 1 $
%
 brown rod −!

$
 brown rod = __________brown rods. 

Explain: 
The activities are centered on participants becoming familiar with the foundational ideas 
of part-to-whole relationships and connection between conceptual and procedural fluency 
of adding fractions.  

The extend section helps learners to see the need for common denominators. 

Elaborate/Extend: 
Drawing from the IES (2010) report on using visual representations to improve student 
learning of formal computational practices, the participants will be asked to use fraction 
circles to complete the number sentence !

%
+ !

$
. 

The researcher will ask the participants to find the fractional pieces (all the same 
color/size) that cover the combined circular pieces of !

%
 and !

$
.  

The researcher will discuss why 6th and 12th’s work through use of equivalent fractions. 

 

Participants will continue exploring the need for Equivalent Fractions.  
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Addition 
Ed rides ¼ mile from his house to this friend's house. Together they ride %

+
 of a mile to 

school. How far does Ed ride to school? 

Subtraction 
Elliott is cutting pieces of wood to construct a dog house. The piece of wood he cuts for 
the base is !

$
 foot long. The pieces of wood he cuts for the sides are !

%
 foot tall. How much 

longer, in feet, are the pieces for the sides than the pieces for the base? 

Questions for researcher to include: 

• Using manipulatives, how can we rename the fractions so that they have like 
denominators? 

• How would this change if Ed lived !
$
 mile away from his friend’s house? 

Create 2 more scenarios where you would change the fractions to create more unlike 
denominators. Model with virtual manipulatives; Cuisenaire Rods and fraction strips. 

Evaluate: 
Participants will use fraction models to show addition with like denominators and 
subtraction with unlike denominators. Answers should include a visual representation. 

Jen ate 2/12 of the candy in the morning and another 8/12 of the candy in the afternoon. 
How much candy did she consume for the entire day?  

On Monday night Leighton spent ½ an hour on her math work. On Tuesday night, she 
spent ¾ of an hour on her math work. How much more time did Leighton spend on math 
work Tuesday night than on Monday night? Show your work using manipulatives, 
pictures, numbers, or words. 
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Lesson Plan #5 Multiplying Fractions 

Standards & Objectives: TEKS & Vertical Alignment 
V.B.3. child uses informal strategies to separate up to 10 items into equal group 
2.6(A) model, create, and describe contextual multiplication situations in which 
equivalent sets of concrete objects are joined  
5.3(I) represent and solve multiplication of a whole number and a fraction that refers to 
the same whole using objects and pictorial models, including area models  
6.3(E) multiply and divide positive rational numbers fluently   
 
Materials 
Virtual Manipulatives 
 
Essential Questions 

• Does multiplication make everything bigger? 
• What is an alternative for the repeated addition model in fractions? 
• When a product unknown fraction problem is presented, how can this be 

represented using equal groups, arrays, and comparing? 

Procedures 

Engage: 

Participants will be asked to answer the following question using a virtual concrete 
representation (area model). 

Catherine is icing a cake. She knows that 1 cup of icing will cover %
$
 of a cake. 

How much cake can she cover with !
"
 cup of icing? 

Participants will share their solution plan with the whole group.  
The researcher will model the solution using a number line model (linear) and scaling. 
 
Explore: 

Explain: 
The researcher will discuss the importance of using linear models, measurement 
approaches, and area models when presenting real-world problems. Utilizing the 
connections between the fraction notation and the problem presented. 

Participants will work on the following problem: 

Cindy had $
"
 of a candy bar. She ate !

$
 of it after lunch. What part of the candy bar 

did Cindy eat after lunch? 

Researcher will highlight the following questions: 
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• What are we looking for in this problem? (We are looking for !
$
 of $

"
 not what is 

left) 
• How does this look in a pictorial model (real world)? 

Working with two-unit number lines, display the problem 1× !
%
.  

• How would you explain it using 4×2 instead of a !
%
×2? As 4×2is four groups of 

two, !
%
×2 is two groups of a half or !

%
 of a group 

The researcher will highlight the misconception of multiplying just one part of the 
fractions (multiplying across only the numerator or only the denominator). 

Elaborate/Extend: 
Tell me all you Can, Multiplication 

The researcher will give the following problem to the participants: 

Do not give an exact answer, instead I want to know all that you can tell me about the 
answer.  

6×2
1
2 

Starters will be posted before participants begin to explore 

The answer will be more than ___________________ because ____________________. 
The answer will be less that ___________________ because ____________________. 
The answer will be between ______________ and _________________ because ______. 
The answer is _____________________. 

Whole group discussion over individual findings and reasoning. Participants will be 
asked to create a similar problem, one will be chosen to share their problems, while the 
others work out the solution. 

Whole group: Participants will be asked to complete the following, showing their 
thinking with concrete models: 

1
3×

2
4 

Evaluate: 
Participants will answer the following questions using virtual manipulatives: 

1. Tom spent $
"
 of an hour each day for 3 days working on his writing project.  

2. Ed spent !
"
 of an hour each day for 7 days working on his writing project. 
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3. Who spent more time in total working on their writing project? 

Lesson Plan #6 Dividing Fractions 
 

Standards & Objectives: TEKS & Vertical Alignment 
V.B.3. Child uses informal strategies to separate up to 10 items into equal group 
2.6(B)* model, create, and describe contextual division situations in which a set of 
concrete objects is separated into equivalent sets 
5.3(L) divide whole numbers by unit fractions and unit fractions by whole numbers 
6.3(E) multiply and divide positive rational numbers fluently  

5.3 (J) represent division of a unit fraction by a whole number and the division of a 
whole number by a unit fraction such as !

$
÷ 7 and 7 ÷ !

$
 using objects and pictorial 

models, including area models; Supporting Standard  

 
Materials 
Virtual Manipulatives 
Stop Watch 
 
Essential Questions 

• What is the best approach to use when dividing fractions?  
• What is the connection between multiplication and division? 
• Why do people use the invert and multiply method? 

Procedures 

Engage: 

Work on the following problems using concrete models (choice of fraction tiles, number 
line, Cuisenaire Rods, or fractions circles). 

The researcher will highlight; 

• Unit fractions for composing a whole  
• Multiplying by fractions reciprocal results in a product of one 
• Dividing any number by one leaves the number unchanged 

How many quarter-hours are in three hours? 
How many thirds of a cup are in two cups? 
How many half-meters are in five meters? 
How many eighths of a mile are in four miles? 
How many sixths of a yard are in two yards? 
How many fifths of a gallon are in three gallons? 
How many fourths of an ounce are in two ounces? 
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How many tenths of a pound are in four pounds? 
https://apps.mathlearningcenter.org/fractions/ 
https://mathsbot.com/ 
When we divide does the number always get smaller? 
Whole-groups discussion of how these models look as invert and multiply. 
Explore: 
The researcher will lead a discussion over what students know about division. 

Participants will be instructed to jog in place beside their desk as the researcher times 
them for 1 minute. 

Repeat the action above, this time calling out when ¼ of the time has passed (15 second 
intervals) 

Discuss the difference between the first jog and the second jog. Highlighting the fact that 
they completed 60 seconds of running through 15 second intervals. The researcher will 
ask the participants what division problem was represented. The researcher will further 
question, leading them to realize that they actually figured out 1 divided by ¼ as opposed 
to 60 divided by 15.  

The researcher will then model this on the one-unit number line using Cuisenaire rods. 

Next, the researcher will present a two-unit number line and ask how many fourths would 
they jog if they had to jog for two minutes? (2 Divided by ¼) 
Whole-group discussion over dividing a whole number by a fraction. 

Explain: 
Using the contexts of time and distance aids in making the connection of what one 
already knows about the process of division with whole numbers and how that can be 
used for the division of fractions. 

By supporting students in investigations, assessments and redefinition of their ideas of 
division of fractions, they will have more experience with reasoning, justification and 
sense-making skills. Additionally, the continued use of manipulatives gives learners a 
concrete model to visualize when encountering division of fractions. 

Elaborate/Extend: 
Math Competition  

A school is creating ribbons to give away at a Math Competition. Students were asked to 
donate ribbon scraps to help make the ribbons. The ribbons collected were cut into the 
following lengths: 

3 yards  
2 yards 
1 yard 
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$
"
 yard 
%
$
 yard 
!
$
 yard 
!
"
 yard 

The Math Competition ribbons will be !
'
 and !

$
 long. 

How many of each type of ribbon can be cut from each length of scrap ribbon collected? 

The researcher will demonstrate how to partition a ribbon that is !
%
 a yard long into sixths 

and into eights. 

               

Participants will work on the problems independently and share their findings with the 
group. 

 

Evaluate: 
Participants will answer the following questions using virtual manipulatives: 

$
"
 divided by !

%
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Appendix C 

Assessment 

Name: _________________________________ 
 
Complete the following problems. Give justification for your answers.  
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Appendix D 

Exit Tickets 

 
Session #1-A Exit Tickets  

There are four children wrapping presents. They have one yard of ribbon to wrap 
all of the presents. If each child receives an equal amount of ribbon, what fraction would 
they get?  Use a model to explain. 

 

P#1: Participant one was able to represent 
their thinking using an area model. They 
employed both abstract and pictorial 
models.  This representation includes the 
partitions that define each child receiving 
one-fourth of the piece of ribbon. There is 
also a representation of the whole, 
showing reference to part-whole thinking. 
The participant used the selected VM to 
model their thinking.  

 

P#2: Participant two was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon. 
The participant used the selected VM to 
model their thinking.   

 

P#3: Participant three was able to represent 
their thinking using a circular area model 
divided into four equal sections. The 
representation included an abstract 
representation to name the fractional piece. 
The participant used the selected VM to 
model their thinking 

 

P#4: Participant four was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon. 
The part that each child received was 
clearly labeled. The participant used the 
selected VM to model their thinking. 
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P#5: Participant five was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon. 
There is a representation of the whole, 
showing reference to part-whole thinking. 
The participant used the selected VM to 
model their thinking. 

 

P#6: Participant six was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon 
with a remaining three-fourths left over. 
The participant used the selected VM to 
model their thinking. 

 

P#7: Participant seven was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon. 
The part that each child received was 
clearly labeled. The participant used the 
selected VM to model their thinking. 

 

P#8: Participant eight was able to 
represent their thinking using an area 
model. They employed both an abstract 
and pictorial model. This representation 
includes the partitions that define each 
child receiving one-fourth of the ribbon. 
The part that each child received was 
clearly labeled. The participant used the 
selected VM to model their thinking. 

 

Session #1-B Exit Tickets 
There are 7 friends. The friends have two yards of ribbon to wrap presents. If each 

child receives an equal amount of ribbon, what fraction would they get?  Use a model to 
explain. 
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P#1: Participant one was able to represent 
their thinking using an area model. The 
pictorial model represents the amount of 
ribbon each child would receive from the 
two ribbons, although the absence of an 
abstract representation leaves questioning as 
to what fraction the child would 
receive,  two-fourteenths or one-sevenths. 
This representation includes clear partitions 
of both models. The whole is represented, 
showing reference to part-whole thinking. 
The participant used the selected VM to 
model their thinking. 

 

P#2 : Participant two was able to represent 
their thinking using an area model and 
abstract representations. Placed side-by-
side, the pictorial model represents the 
amount of ribbon each child would receive 
from the two ribbons. This representation 
includes clear partitions of the models and is 
labeled with both the original sum and the 
equivalent fraction. The participant used the 
selected VM to model their thinking. 

 

P#3 : Participant three was able to represent 
their thinking using a circular area model 
and abstract representations. The pictorial 
model represents the amount of ribbon each 
child would receive from the combined two 
ribbons and the equivalent fraction. This 
representation includes clear partitions of 
both models. The participant used the 
selected VM to model their thinking. 

 

P#4 Participant four was able to represent 
their thinking using virtual unifix cubes. 
The pictorial model represents the amount 
of ribbon each child would receive from the 
two ribbons, although it lacks an abstract 
representation to explain that the cubes 
should be considered “fraction bars” when 
linked.  The participant was able to 
represent the idea of a set model, with one 
out of each seven being pulled away. 
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However, the representation could benefit 
from additional information. 

 

P#5:  Participant five was able to represent 
their thinking using an area model and 
abstract representations. The pictorial model 
represents the amount of ribbon each child 
would receive from the two ribbons. The 
participant distinctly separated the two 
models to indicate separate ribbons. This 
representation includes clear partitions of 
the models and is labeled with the sum and 
the equivalent fraction. The participant did 
not employ the actual virtual manipulative, 
rather they chose the drawing feature, which 
is also a component of online leanring. 

 

P#6: Participant six was able to represent 
their thinking using an area model and 
abstract representations. Placed side-by-
side, the pictorial model represents the 
amount of ribbon each child would receive 
from the two ribbons. This representation 
includes clear partitions of the models and is 
labeled with both the sum and the 
equivalent fraction. The participant used the 
selected VM to model their thinking. 

 

P#7: Participant seven was able to represent 
their thinking using an area model and 
abstract representations. Placed side-by-
side, the pictorial model represents the 
amount of ribbon each child would receive 
from the two ribbons. This representation 
includes clear partitions of the models and is 
labeled with both the sum and the 
equivalent fraction. The participant used the 
selected VM to model their thinking. 
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P#8: Participant eight was able to represent 
their thinking using both an area model and 
an abstract representation. The pictorial 
model represents the amount of ribbon each 
child would receive from the two ribbons. 
This representation includes clear partitions 
of both models and is labeled with the sum 
and the equivalent fraction. The whole is 
represented, showing reference to part-
whole thinking. The participant used the 
selected VM to model their thinking. 

 

Session #2 Exit Tickets  
Answer the following by adding an inequality sign and show model. !

$
 _____ !

%
 

 

 

P#1: Participant one was able to represent 
their thinking using an area model and 
abstract representation. This 
representation includes clear partitions of 
the models and an inequality sign to show 
the comparison. There is reference to the 
whole. The participant used the selected 
VM to model their thinking. 

 

P#2: Participant two was able to represent 
their thinking using an area model and 
abstract representation. This is a clear 
pictorial representation of comparison and 
includes an inequality sign. There is 
reference to the whole. The participant 
used the selected VM to model their 
thinking. 

 

P#3: Participant three was able to 
represent their thinking using a linear 
model and abstract representation. This is 
a pictorial representation of comparison 
and includes an inequality sign. The 
participant used the selected VM to model 
their thinking. 
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P#4: Participant four was able to 
represent their thinking using an area 
model and abstract representation. This is 
a clear pictorial representation of 
comparison and includes an inequality 
sign. There is reference to the whole. The 
participant used the selected VM to model 
their thinking.  

 

 

P#5: Participant five was able to represent 
their thinking using an area model and 
abstract representation. This is a clear 
pictorial representation of comparison and 
includes an inequality sign. There is 
reference to the whole. The participant 
used the selected VM to model their 
thinking. 

 

 

P#6: Participant six was able to represent 
their thinking using an area model and 
abstract representations. This is a clear 
pictorial representation of comparison and 
includes an inequality sign. There is 
reference to the whole and the 
representations are labeled with their 
value. The participant used the selected 
VM to model their thinking. 

 

P#7:  Participant seven was able to 
represent their thinking using a linear 
model and abstract representation. This is 
a clear pictorial representation of 
comparison and includes an inequality 
sign. The participant used the selected 
VM to model their thinking. 

 

P#8: Participant eight was able to 
represent their thinking using an area 
model and abstract representation. This is 
a clear pictorial representation of 
comparison and includes an inequality 
sign. The participant used the selected 
VM to model their thinking. 
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Session #3-B Exit Tickets 
 
Can you show two equivalent fractions for ⅔ using a number line? 

 

P#1: Participant one was able to 
represent their thinking using area and 
abstract representations. This is a clear 
pictorial representation of equivalency 
for two-thirds, four-sixths and six-
ninths. The participant did not label 
their number line with the whole.  

 

P#2: Participant two represented their 
thinking using linear and abstract 
representations. The models four-sixths 
and nine-twelfths are not equivalent. 
The answer was not correct.  

 

P#3: Participant three was able to 
represent their thinking using area and 
abstract representations. This is a clear 
pictorial representation of equivalency 
for four-sixths and six-ninths. The 
model would be more effective if given 
the reference to two-thirds in a pictorial 
form. The participant did not label their 
number line with the whole.  

 

P#4: Participant four was able to 
represent their thinking using linear and 
abstract representations. This is a clear 
pictorial representation of equivalency 
for four-sixths and eight-twelfths. The 
model would be more effective if given 
the reference to two-thirds in a pictorial 
form. 
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P#5: Participant five was able to 
represent their thinking using linear and 
abstract representations. This is a clear 
pictorial representation of equivalency 
for two-thirds, four-sixths and ten-
fifteenths.  The participant used the 
selected VM to model their thinking. 

 

P#6: Participant six was able to 
represent their thinking using an area 
model and abstract representations. The 
participant was able to show 
equivalency with four-sixths and eight-
twelfths. The model would be more 
effective if given the reference to two-
thirds in a pictorial form.  

 

P#7: Participant seven was able to 
represent their thinking using linear and 
abstract representations. The 
participant was able to show 
equivalency with four-sixths and eight-
twelfths. The model would be more 
effective if given the reference to two-
thirds in a pictorial form.  

 

P#8 Participant eight was able to 
represent their thinking using linear and 
abstract representations. The 
participant was able to show 
equivalency with four-sixths and six-
ninths. The model would be more 
effective if given the reference to two-
thirds in a pictorial form.  

 

Session #4-A  Exit Tickets 

Jen ate 2/12 of the candy in the morning and another 8/12 of the candy in the 
afternoon. How much candy did she consume for the entire day?  
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P#1: Participant one was able to 
represent their thinking using a circular 
area model and abstract representation. 
This is a pictorial representation of 
addition with like denominators. There 
is reference to the whole being 12 units. 
The participant did not extend to show 
the equivalent fraction of five-sixths. 
The participant used the selected VM to 
model their thinking. 

 

P#2: Participant two was able to 
represent their thinking using an area 
model and abstract representation. This 
is a pictorial representation of addition 
with like denominators. There is 
reference to the whole being 12 units. 
The participant did show the equivalent 
fraction of five-sixths. The participant 
used the selected VM to model their 
thinking. 

 

P#3: Participant two was able to 
represent their thinking using an 
abstract representation. The participant 
did show reference to the equivalent 
fraction of five-sixths. There are 
pictorial representations of eight and 
two units, although they are not 
attached to a model that would 
represent a fraction bar.   

 

P#4: Participant four was able to 
represent their thinking using a circular 
area model and abstract representation. 
This is a pictorial representation of 
addition with like denominators. There 
is reference to the whole being 12 units. 
The participant did extend to show the 
equivalent fraction of five-sixths. The 
participant used the selected VM to 
model their thinking. 
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P#5: Participant five was able to 
represent their thinking using an area 
model and abstract representation. The 
participant used the selected VM to 
model their thinking. 

 

P#6: Participant six was able to 
represent their thinking using an area 
model and abstract representation. This 
is a pictorial representation of addition 
with like denominators. There is 
reference to the whole being 12 units. 
The participant did extend to show the 
equivalent fraction of five-sixths. The 
participant used the selected VM to 
model their thinking. 

 

P#7: Participant seven was able to 
represent their thinking using an area 
model and abstract representation. The 
participant did extend to show the 
equivalent fraction of five-sixths. The 
participant did not show the pictorial 
representation for five-sixths. 

 

P#8: Participant eight was able to 
represent their thinking using a circular 
area model and abstract representation. 
There is a reference to the whole as 12 
units and that five-sixths covers the 
same area as ten-twelfths. The models 
containing the twelfths pieces should be 
combined to effectively represent the 
equivalency shown by the abstract 
representation.  
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Session #4-B  Exit Tickets 

On Monday night Leighton spent ½ an hour on her math work. On Tuesday night 
she spent ¾ of an hour on her math work. How much more time did Leighton spend on 
math work Tuesday night than on Monday night? Show your work using manipulatives, 
pictures, numbers, or words. 

 

P#1: Participant one was able to 
represent their thinking using a circular 
model and abstract representations. The 
pictorial representation references the 
comparison of the fractions and the 
representations are labeled with their 
values. There is evidence  of fraction 
equivalence and the answer is correct. 
The participant used the selected VM to 
model their thinking.  

 

P#2:  Participant two was able to 
represent their thinking using an area 
model and abstract representations. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model 
includes a correct number sentence. 
The participant used the selected VM to 
model their thinking. 

 

P#3:  Participant three was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model 
includes a correct answer. The 
participant used the selected VM to 
model their thinking. 
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P#4: Participant four was able to 
represent their thinking using a circular 
model and abstract representation. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model 
includes a correct answer. The 
participant used the selected VM to 
model their thinking. 

 

P#5: Participant five was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model 
includes a correct answer. The 
participant used the selected VM to 
model their thinking. 

 

P#6: Participant six was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model 
includes a correct answer. The 
participant used the selected VM to 
model their thinking. 
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P#7: Participant seven was able to 
represent their thinking using an area 
model and abstract representation. The 
pictorial representation references the 
comparison of the fractions (one-half 
and two-fourths). The representations 
are labeled and there is evidence of 
fraction equivalence. The model is 
lacking a reference to the whole as 
four-fourths. The model includes a 
correct answer. The participant used the 
selected VM to model their thinking. 

 

P#8: Participant eight was able to 
represent their thinking using an area 
model. The pictorial representation 
references the comparison of the 
fractions (one-half and two-fourths). 
The model is lacking a reference to the 
whole being four-fourths. The model 
includes a correct answer. The 
participant used the selected VM to 
model their thinking. 

 
Session #6 Exit Tickets 

Show with virtual manipulatives.  $
"
 divided by !

%
 

 

P#1 Participant one displayed an area 
model and abstract representation of 
the correct answer. P#1 gave reference 
to the whole, showing the portion that 
was to be divided. The participant used 
the selected VM to model partitive 
thinking. 
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P#2: Participant two displayed a 
circular model and abstract 
representation of the correct answer. 
The participant used the selected VM 
to model partitive thinking.  

 

P#3: Participant three displayed an area 
model and abstract representation of 
the correct answer. P#3 was able to 
show the partitions that represent one 
and one-half. The participant used the 
selected VM to model partitive 
thinking. 

 

P#4: Participant four displayed an area 
model and abstract representation of 
the correct answer. P#4 gave reference 
to the whole, showing the portion that 
was to be divided. The participant used 
the selected VM to model partitive 
thinking.  

 

P#5: Participant five displayed an area 
model and abstract representation of 
the correct answer. P#1 gave reference 
to the whole, showing the portion that 
was to be divided. The participant used 
the selected VM to model partitive 
thinking.  

 

P#6: Participant six displayed an area 
model and abstract representation of 
the correct answer. P#6 gave reference 
to the whole, showing the portion that 
was to be divided. The participant used 
the selected VM to model partitive 
thinking.  
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P#7: Participant seven displayed an 
area model and abstract representation 
of the correct answer. P#7 gave 
reference to the whole, showing the 
portion that was to be divided. The 
participant used the selected VM to 
model partitive thinking. 

 

P#8: Participant eight displayed an area 
model and abstract representation of 
the correct answer. P#8 gave reference 
to the whole, showing the portion that 
was to be divided. The participant used 
the selected VM to model partitive 
thinking. 
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Appendix E 

University of Houston IRB Concent 
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Appendix F 

IRB Consent	

 
 
 
 
 
 

 


