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Abstract

Network-related problems span over many areas in computer science. In this dissertation,

we investigate two network problems, one in the domain of distributed computing, and the

other in the domain of graph mining. We approach these problems by using probabilistic

tools, to model, analyze, and design algorithms.

In the first problem, we aim to improve upon the known complexity bounds of dis-

tributed algorithms for fundamental graph problems. We propose the Smoothed analysis of

distributed algorithms, where the goal is to randomly and slightly perturb the input network

and to study how the distributed complexity changes with the amount of perturbation. We

present efficient algorithms and lower bounds for the fundamental minimum spanning tree

problem and perform smoothed analysis of the time complexity.

In the second problem, we study influence spreading in networks, which is a stochastic

process. We propose a new optimization problem: minimizing the seed set with probabilistic

guarantees on the influence. This problem relates to non-submodular target functions, and

is hard even for an approximation solution. We design an efficient polynomial algorithm

using relaxed multi-criteria approximation and Monte Carlo sampling. We prove theoretical

bounds on the performance of our algorithm and validate it with experimental results.

iii



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Useful Probabilistic Bounds . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Monte Carlo Method and Probability of Success . . . . . . . . . . . . 4
1.1.3 Graphs and Some Related Problems . . . . . . . . . . . . . . . . . . 5
1.1.4 Random Walk and Mixing Time . . . . . . . . . . . . . . . . . . . . . 6

1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Smoothed Analysis and Distributed MST . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Smoothing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Distributed MST in the Smoothing Model . . . . . . . . . . . . . . . . . . . 19

2.3.1 Part 1: Constructing an Expander . . . . . . . . . . . . . . . . . . . 20
2.3.2 Part 2: Constructing an MST . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 An Improved Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Reduction of SD to DSD: The Simulation Theorem . . . . . . . . . . 34
2.4.2 Lower Bound with Smoothing . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 Implication of the Lower Bound . . . . . . . . . . . . . . . . . . . . . 39

iv



CONTENTS

2.5 Other Smoothing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 The k-smoothing Model with Known Smoothed Edges . . . . . . . . 41
2.5.2 The k-smoothing Model with Unknown Smoothed Edges . . . . . . . 41

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Influence Maximization with Probabilistic Guarantees . . . . . . . . . . . 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Model and Problem Definition . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Comparison with MaxExpInf . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 A Multi-criteria Approximation Algorithm for Computing MaxProbInf . . 52
3.3.1 Using Submodularity and the Sample Average Approximation Technique 52
3.3.2 Fast Implementation of Algorithm MultiCritMdelta. . . . . . . . 60

3.4 Computing Mδ(I(S)) for a Fixed Set S . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Monte-Carlo Approximation of Mδ(.) . . . . . . . . . . . . . . . . . . 61
3.4.2 Approximation of Mδ(I(.)) . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.2 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 77

A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.1 Alternative Proof for Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



List of Tables

3.1 Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Execution Time, for k = 40, δ = 0.7 (applied for ProbInf-Heu and Multi-

CritMdelta), and various edge activation probabilities. The random prob-
ability is uniformly in the range [0.001, 0.05]. Execution time is measured in
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



List of Figures

2.1 The lower bound graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Comparison of average influence computed by three algorithms, with edge activation

randomly in 0.001 to 0.05. ProbInf-Heu and MultiCritMdelta are invoked

with the guarantee probability δ = 0.7. Results are for the Facebook and Twitter

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Comparison of average influence computed by three algorithms, with edge activation

randomly in 0.001 to 0.05. ProbInf-Heu and MultiCritMdelta are invoked

with the guarantee probability δ = 0.7. Results are for the Slashdot and Pokec

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Empirical cumulative distribution function (ECDF) of influence of seed sets of size

40. For ProbInf-Heu and MultiCritMdelta algorithms, the seed sets are opti-

mized with δ = 0.7. Edge activations are random values in the range [0.001, 0.05].

The further to the right around probability of 1− δ = 0.3, the better the guarantee

influence. Results are for the Facebook and Twitter datasets. . . . . . . . . . . . 72
3.4 Empirical cumulative distribution function (ECDF) of influence of seed sets of size

40. For ProbInf-Heu and MultiCritMdelta algorithms, the seed sets are opti-

mized with δ = 0.7. Edge activations are random values in the range [0.001, 0.05].

The further to the right around probability of 1− δ = 0.3, the better the guarantee

influence. Results are for the Slashdot and Pokec datasets. . . . . . . . . . . . . 73
3.5 Varying δ, with random edge activation in the range [0.001, 0.01]. For each algo-

rithm, we report the guarantee influence of the output seed sets of size 15, 30, and

40. Results are for the Facebook and Twitter datasets. . . . . . . . . . . . . . . 74
3.6 Varying δ, with random edge activation in the range [0.001, 0.01]. For each algo-

rithm, we report the guarantee influence of the output seed sets of size 15, 30, and

40. Results are for the Slashdot and Pokec datasets. . . . . . . . . . . . . . . . 75

vii



Chapter 1

Introduction

In this dissertation, we study the random phenomenon in network-related problems. In

particular, we explore two problems, one in the domain of theory of distributed computing,

the other in that of network influence spreading. Though being in separate fields, both

problems are treated from the perspective of probabilistic modeling, which is our main

approach.

In the study of the distributed computing system, we follow the graph modeling of a

distributed system, i.e., computational nodes linked by communication edges. We employ

the well-known synchronous messaging, and look at some fundamental graph algorithms,

minimum spanning tree (MST) in particular. There are already well-established asymptotic

bounds, and improving them is indeed difficult. Our motivation is to use random pertur-

bation, which is some random slight modification to the system topology, such that this

extra randomness can help to break the current bounds. We named this model Smoothed

Analysis. Under this model, we derive a new lower bound for the MST problem, which is

applicable to other fundamental problems as well. For the MST problem, we also show an

almost matching algorithm.
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CHAPTER 1. INTRODUCTION

The second study is on network influence spreading. Here, the graph is a model of

some interaction or influence, which can be found in social networks, for example. The

probability of interaction is given per node or per edge, and the model is studied as a

discrete-time stochastic process. This is a highly active area, and the works on expected

influence is well-established, where the main theme is to design efficient algorithms for

the related optimization problems. We approach the subject from another perspective:

Influence Maximizing with Probabilistic Guarantee, i.e., instead of the expectation value,

we are interested in the value with a threshold probability. With this extra guarantee, the

optimization problems become harder, as the target function is non-submodular. We analyze

one such problem: maximizing influence with probabilistic guarantee, within the constraint

of the seed set size. We design algorithms with theoretically proven properties and perform

empirical analysis. Our resulting algorithm has the same order of complexity as the state-of-

the-art algorithms for influence expectation (to the best of our knowledge). Our experiments

confirm the runtime complexity and the quality of the solutions.

In the next section, we discuss the mathematical tools and notations in use. We will focus

on the materials that are relevant to both of the mentioned works. Then in the chapters

dedicated to each problem, we will present more in-depth prior work.

1.1 Preliminaries

1.1.1 Useful Probabilistic Bounds

In our analyses and proofs, we frequently use Chernoff bounds (Chernoff and Rubin) [16,

52, 15]. Though the application is restricted to independent random variables, the bound is

very sharp, i.e., of exponential order. There are many versions, each would be handy in a

2



CHAPTER 1. INTRODUCTION

different situation, thus we introduce only those that relevant to this work.

Let X1, X2, · · · , Xn be a sequence of independent {0, 1} random variables, where Pr[Xi =

1] = pi (i.e., the Xi are Poisson trials). Let X =
∑n

i=1Xi and let µ = E[X] =
∑n

i=1 pi. For

a given δ > 0, we are interested in the probability that X deviates from the expectation by

a factor of (1± δ).

Theorem 1 (Chernoff bounds [52]). Let X1, X2, . . . , Xn be a sequence of independent Pois-

son trials such that Pr[Xi = 1] = pi. Let X =
∑n

i=1Xi and let µ = E[X]. Then the following

Chernoff bounds hold:

1. ∀δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
; (1.1)

2. ∀δ ∈ (0, 1],

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

3 ; (1.2)

and

3. ∀δ ∈ (0, 1),

Pr[X ≥ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
; (1.3)

Pr[X ≤ (1− δ)µ] ≤ e−
µδ2

2 . (1.4)

The above inequalities deal with upper and lower bounds separately. We can also derive

a handy two-sided bound, as follows.

Corollary 2 ([52]). Let X1, X2, . . . , Xn be a sequence of independent Poisson trials such

3



CHAPTER 1. INTRODUCTION

that Pr[Xi = 1] = pi. Let X =
∑n

i=1Xi and let µ = E[X]. For δ > 0:

Pr[|X − µ| ≥ δµ] ≤ 2e−
δ2µ
2+δ . (1.5)

For the more general setting, where the random variables are not only {0, 1} but bounded,

we have the Hoeffding inequality [35]. We state the special state, where all random variables

are in the same range [a, b].

Theorem 3 (Hoeffding inequality [52]). Let X1, X2, · · · , Xn be independent random variables

such that for all 1 ≤ i ≤ n, Pr[a ≤ Xi ≤ b] = 1. Let X = 1
n

∑n
i=1Xi. For all t > 0

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
−2nt2

(b− a)2

)
. (1.6)

1.1.2 Monte Carlo Method and Probability of Success

The Monte Carlo method is a class of techniques for estimating values by sampling and

simulation. The generic estimation problem is defined as follows.

Definition 1. An (ε, δ)-approximation for the value X is a value X̂ such that:

Pr[|X − X̂| ≤ εX] ≥ 1− δ. (1.7)

The quantity 1− δ is known as the confidence of the estimation. With probability of at

least 1− δ, the estimated value is within the true value by a multiplicative factor. However,

there is a chance of δ that the estimation is totally off target, i.e., arbitrarily bad.

We notice that Monte Carlo estimation can be treated as a randomized algorithm; in

such a context, 1− δ is the probability of success. Throughout this work, we use the terms

4



CHAPTER 1. INTRODUCTION

in their respective contexts. Moreover, for randomized algorithms, we usually desire a high

probability of success, which is abbreviated as w.h.p. (with high probability).

Definition 2. Given a randomized algorithm solving a problem of size n, we consider the

algorithm successes w.h.p. if such probability is at least 1− 1
nc

, for some constant c > 0.

1.1.3 Graphs and Some Related Problems

Throughout this work, we use the notation G(V,E) to indicate a graph G with V as the set

of vertices and E as the set of edges. As per common convention, we also denote n = |V |,

m = |E|, d(v) the degree of a node v, and D as the diameter of G, unless otherwise specified.

Volume and Conductance

For any nonempty set S ⊆ V , we define the following terms.

Definition 3. The volume of S, denoted Vol(S) is defined as the sum of the degrees of nodes

in S: Vol(S)
def
=
∑

v∈S d(v).

Definition 4. For S ( V , the boundary of S, denoted by ∂S, is defined as the set of edges

crossing S and S̄, where S̄
def
=V \ S.

Definition 5. For S ( V , the conductance of S is defined as ϕ(S)
def
= |∂S|

min(Vol(S),Vol(S̄))
.

Definition 6. The conductance of G is defined as

Φ(G)
def
= min {ϕ(S) | |S 6⊆ V } . (1.8)

Remark 7. An alternative, but equivalent, definition of Φ(G) would be the following:

Φ(G)
def
= min

{
|∂S|

Vol(S)
|S 6⊆ V and Vol(S) ≤ Vol(V )

2

}
. (1.9)

5



CHAPTER 1. INTRODUCTION

Remark 8. Another equivalent definition of Φ(G), which is more handy in some cases:

Φ(G)
def
= min

{
|∂S|

min(Vol(S),Vol(S̄))
|S 6⊆ V and |S| ≤ |V |

2

}
. (1.10)

1.1.4 Random Walk and Mixing Time

Random Walk. Random walk, in particular, random walk on graphs, is a fundamental

technique that has applications in many branches of theoretical computer science (e.g., [1,

2, 5, 48, 17, 62]). On a graph G, a random walk of length k is a discrete stochastic process

represented by the random variables X1, X2, · · · , Xk, where Xi indicates the vertex at step

i by the rule: Xi+1 is chosen at random from the neighbors of Xi. In general, we associate a

transition probability with an edge (u, v), for example, uniformly random (equal probability).

Denote the matrix M where Muv indicates the probability to move from u to v. Since this

process is memoryless and depends on exactly one previous state, it is usually analyzed as

order-1 Markov chain (for details, see, e.g., [47, 8]).

Definition 9 (Probability distribution of vertices). Consider a random walk on the graph

G(V,E) with probability matrix M . The probability distribution at step t is a vector of size

n:

P t = (P t(v1), P t(v2), · · · , P t(vn)); (1.11)

where P t(vi) is the probability that the walk is at node vi by step t.

If the random walk starts with some initial distribution P 0, then we have: P t = P 0M t.

Definition 10 (Stationary distribution). A distribution Π is stationary if ΠM = Π.

We are interested in the stationary distribution of a graph random walk. It is known

that for any non-bipartite, connected, undirected graph, the Markov chain is irreducible and

6



CHAPTER 1. INTRODUCTION

aperiodic and thus has a stationary distribution. To guarantee that the Markov chain is

aperiodic, for any general connected, undirected graph, we employ lazy random walks (see,

e.g., [30]): In every step, the walk remains at the current node with probability 1
2

and it

moves to a uniformly random neighbor otherwise. The stationary distribution of such a

random walk is proportional to the degree distribution, i.e., when performing enough steps

of the random walk, the probability for ending in a node v converges to d(v)
2m

.

Definition 11 (Mixing time). For V = {v1, v2, . . . , vn} and a node v ∈ V , let P t
v =

(P t
v(v1), P t

v(v2), . . . , P t
v(vn)) be the probability distribution on the nodes after t steps of a

lazy random walk starting at v. Then the mixing time (denoted by τmix(G)) of the graph G

is defined as the minimum t such that ∀ u, v ∈ V ,

|P t
v(u)− d(v)

2m
| ≤ d(v)

2mn
.

We note that — as in [30] — by running a random walk for O(τmix) steps, one can improve

the deviation from mixing time to |P t
v(u)− d(v)

2m
| ≤ 1

nc
, for any arbitrary (but fixed) positive

constant c.

There is a relationship between the conductance of a graph and its (lazy random walk)

mixing time, see, e.g., [36, 49].

Lemma 4. Given a graph G(V,E) with constant conductance, then G has fast mixing time:

τmix(G) = O(log n).

Distributed Computing Model

There are many models for a distributed system. We will be interested in theoretical models,

where any detailed implementation issues are not of concern. This approach serves the high

abstraction level, and we focus on algorithm feasibility and asymptotic bounds. In general,

7



CHAPTER 1. INTRODUCTION

we consider a set of isolated processes. The computational power of each process varies in

different models. For example, the processes in population protocol [3] or programmable

matter [70] are relatively weak. We will limit our focus on powerful, i.e., Turing complete,

processes. There are further properties that classify the models, discussed next.

Shared Memory vs. Message Passing. The communication among processes can be

implicit, via read and write to/from a globally shared memory. Another approach is to

require explicit messages to be sent and received. In such a message passing system, each

process only communicates with its directly connected neighbors. The system is thus con-

veniently modeled as a graph G(V,E).

Synchronous vs. Asynchronous. This classification is most relevant for message passing

systems. In the synchronous model, we assume a global clock that synchronizes all process

private clock. Thus the system can progress in lockstep, marked by the completion of sending

and receiving messages. In the asynchronous model, there is no synchronizing clock, and

messages can arrive in any order. It is known [51, 60] that one can construct synchronizers

for any asynchronous network. Thus, any synchronous algorithms can be implemented on

an asynchronous network. However, each model still serves different interests. In this work,

we focus on synchronous networks, with fundamental problems related to graph theory.

Congest vs. Local. When considering the size of the communication messages, we further

classify message passing models as Local and Congest. In the Local model, the com-

munication link has unbounded bandwidth; processes can send arbitrarily large messages. In

the Congest model, the bandwidth is bounded by O(log n) (recall that we imply n = |V |,

the number of nodes in the system). This is a more realistic assumption. We note that the

8



CHAPTER 1. INTRODUCTION

bandwidth is enough for essential tasks, such as sending a node ID: log n bits is necessary

to represent a unique ID for each of n nodes.

In this dissertation, the work on distributed computing is limited in the context of the

synchronous Congest message passing system. We will be interested in the asymptotic

bounds of time complexity and message complexity.

Time Complexity. Since the system is synchronous, time is measured by the number of

clock ticks or rounds. We take the maximum time over all nodes as the execution time of an

algorithm.

Message Complexity. In the Congest model, each message has a small size of O(log n),

thus the complexity can be measured in the number of messages. Message complexity is

defined as the total number of messages sent by all nodes, during the algorithm.

1.2 Roadmap

We provide an overview on the organization of the rest of this dissertation.

[Chapter 2] Smoothed Analysis and Distributed MST.

[Chapter 3] Influence Maximization with Probabilistic Guarantee.

[Chapter 4] Conclusion.

Since the problems in Chapter 2 and Chapter 3 are somewhat independent, we will take

the same approach in the structure of each chapter. Each problem will have an introduction

where our contribution is highlighted, followed by a discussion of the related concepts. Next,

9



CHAPTER 1. INTRODUCTION

we survey the modern literature to give a big picture view of the problem. Then we discuss

our approach in detail. We will cover the proofs, the analysis, as well as the intuitive ideas

behind. For the relevant problem, implementation and experiment are also reported.

Each problem will have its conclusion where we point out potential research questions.

Finally, the last chapter wraps up the contribution of this work and draws some interesting

connections.

10



Chapter 2

Smoothed Analysis and Distributed

MST

In this chapter 1, we study smoothed analysis of distributed graph algorithms, focusing on

the fundamental minimum spanning tree (MST) problem [29]. With the goal of studying the

time complexity of distributed MST as a function of the “perturbation” of the input graph,

we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ε(n) ≤ 1

which controls the amount of random edges that can be added to an input graph G per

round. Informally, ε(n) is the probability (typically a small function of n, e.g., n−
1
4 ) that a

random edge can be added to a node in one round. The added random edges, once they are

added, can be used (only) for communication.

We show upper and lower bounds on the time complexity of distributed MST in the above

smoothing model. We present a distributed algorithm that, with high probability, computes

an MST and runs in Õ(min{ 1√
ε(n)

2O(
√

logn), D +
√
n}) rounds 2 where ε is the smoothing

1This is joint work with Soumyottam Chatterjee and Gopal Pandurangan [11]
2The notation Õ hides a polylog(n) factor and Ω̃ hides a 1

polylog (n) factor

11



CHAPTER 2. SMOOTHED ANALYSIS

parameter. We also show a lower bound of Ω̃(min{ 1√
ε(n)

, D+
√
n}). We note that the upper

and lower bounds essentially match except for a multiplicative 2O(
√

logn) polylog(n) factor.

To the best of our knowledge, our work can be considered as a first step in understanding

the smoothed complexity of distributed graph algorithms.

2.1 Introduction and Motivation

Smoothed analysis of algorithms was introduced in a seminal paper by Spielman and Teng

[64] to explain why the well-studied simplex algorithm for linear programming does well in

practice, despite having an (worst-case) exponential run time in theory. The high-level idea

behind the smoothed analysis of the simplex algorithm is the following:

1. Perturbing the input data with a small amount of random noise (e.g., Gaussian noise

with mean zero, parameterized by the variance of the noise), and then

2. Showing that the perturbed input can be solved efficiently by the simplex algorithm,

i.e., in polynomial time. In particular, Spielman and Teng quantify the run time as a

function of the perturbation; the more the perturbation (i.e., larger the variance of the

noise), the faster the run time.

Smoothed analysis is thus different from the worst-case analysis of algorithms. It is also

different from the average-case analysis, which assumes a probability distribution on the set

of all possible inputs. Smoothed analysis, on the other hand, is sort of a hybrid between the

above two — it considers the worst-case input and then randomly perturbs it. If even small

perturbations (e.g., adding random noise) lead to efficient run time, then this means that

the worst-case is quite sensitive to the input parameters. In practice, there will usually be

noise and thus the algorithm is likely to avoid the worst-case behavior.

12



CHAPTER 2. SMOOTHED ANALYSIS

In this chapter, we initiate the study of smoothed analysis of distributed graph algorithms.

Our work is motivated by the work of Dinitz et al. [19] who initiated the study of smoothed

analysis for dynamic networks (we refer to Section 2.1.1 for more details). A main contribu-

tion of our work is positing smoothing models in the context of distributed graph algorithms

and performing analyses of the models. While many smoothing models are possible for such

algorithms, a key goal is to identify models that lead to non-trivial bounds on the distributed

complexity (here we focus on time complexity) of fundamental graph algorithms.

We focus on the distributed minimum spanning tree (MST) problem in synchronous

Congest networks. The worst-case time (round) complexity of distributed MST has been

extensively studied for the last three decades and tight bounds are now well established (see,

e.g., [63, 56]). There is an optimal distributed MST algorithm (see, e.g., [55]) that runs in

Õ(D +
√
n) rounds, where D is the graph diameter and n is the number of nodes in the

network. Also, there is a (essentially) matching lower bound of Ω̃(D +
√
n) rounds that

applies even to randomized Monte-Carlo distributed algorithms [61].

The lower bound is shown by presenting a weighted graph (in particular, a family of

graphs) and showing that no distributed algorithm can solve MST faster. This raises a

motivating question for smoothed analysis: Is the worst-case bound specific to the choice

of the weighted graph (family)? Or more precisely, is it specific to the choice of the graph

topology or the edge weights or both? If small perturbations do not change the worst-case

bound by too much then we can say that the lower bound is robust and, if they do we can say

that the bounds are fragile [19]. Thus smoothed analysis can lead to a better understanding

of the complexity of distributed MST by studying perturbations of the worst-case input.

This is one of the motivations in studying smoothed analysis of distributed algorithms.

However, to answer the above questions, one has to first come up with a suitable smooth-

13
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ing model. For example, one possible smoothing model, in the spirit of Spielman and Teng’s

original smoothing model, would be perturbing the edge weights of the input graph by a

small amount. It is apparent that if the perturbation is quite small relative to the weights

(since the weights can be well-spaced), then this does not affect the lower bound — it remains

Ω̃(D +
√
n). Another possible model, which we explore in this work, again in the spirit of

original model but now applied to perturbing the topology of the input graph, is smoothing

the input graph by adding3 a small number of random edges. While there are a few possible

ways to accomplish this, we focus on a particular smoothing model described next. We will

discuss other smoothing models (which can be considered variants of this model) in Section

2.5. A practical motivation for this kind of smoothing, i.e., adding a small number of ran-

dom edges to a given graph, is that many real-world networks might be better modeled by

graphs with some underlying structure with some amount of randomness. For example, it is

well know that real-world graphs have a power-law degree distribution; however they are not

arbitrary (worst-case) power-law graphs but can be reasonably modeled by random graphs

with power-law degree distribution [26].

We consider a smoothing model (see Section 2.2.1) that is parameterized by a smoothing

parameter 0 ≤ ε = ε(n) ≤ 1 that controls the amount of random edges that can be added to

an input graph G = (V,E) per round. ε(n) is typically a small function of n, say, ε(n) = n−
1
4 .

More precisely, our smoothing model allows any node to add a random edge with probability

ε(n) in each round; the added edges can be used for communication in later rounds. (We

note that the added edges, otherwise, do not change the underlying solution with respect to

G; e.g., for MST, the added edges have weight ∞ and hence don’t affect the MST of G.)

Besides this additional feature, nodes behave as in the standard model, i.e., can communicate

3One can also delete edges, although we do not consider this here, see Section 2.2.1.
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using edges of G. We formally define the model in Section 2.2.1. Note that nodes can as

well choose not to use this additional feature. Depending on ε(n), the number of random

edges added per round can be small. (In Section 2.5, we consider a variant of this model,

which essentially gives the same bounds as the ones discussed here.)

An alternate way of thinking about our smoothing model is as follows. Assume that the

graph G is embedded in a congested clique. The congested clique model has been studied

extensively in the distributed computing literature; see, e.g., [9, 6, 57, 32, 37, 42, 58, 59]).

A node — besides using its incident edges in E — can also choose to use a random edge

(not in G, but in the clique) with probability ε in a round to communicate (once chosen,

a random edge can be used subsequently till end of computation). Note that if ε is small,

say, for example ε = O(n−
1
4 ), then the probability of adding a random edge by a node in a

round is small. In particular, if ε = 0, then this boils down to the traditional model, i.e.,

working on the given graph G with no additional random edges, as ε increases, the number

of random edges increases with it.

We note that the smoothing model is sort of a hybrid between the traditional model

where communication is allowed only along the edges of an arbitrary graph G and a model

where G is a random graph (e.g., Erdos-Renyi graph model [10, 44]) or an expander (see

e.g., [4] and the references therein). In the smoothing model we start with an arbitrary

graph G and add random edges (parameterized by ε). In Section 2.2.1, we further explore

relationships between the smoothing model and other distributed computing models.

Our goal is to study how the distributed complexity of MST varies as a function of ε(n)

(among other usual graph parameters such as network size, network diameter, etc.). We

show upper and lower bounds on the time complexity of distributed MST in the aforemen-

tioned smoothing model. We present a distributed algorithm, which (with high probability)
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computes an MST and runs in

Õ(min{ 1√
ε(n)

2O(
√

logn), D +
√
n}) rounds,

where ε is the smoothing parameter, D is the network diameter, and n is the network size.

To complement our upper bound, we also show a lower bound of

Ω̃(min{ 1√
ε
, D +

√
n}).

Our bounds show non-trivial dependence on the smoothing parameter ε(n), and the bounds

are essentially matched except for a 2O(
√

logn) factor and a polylogarithmic factor.

2.1.1 Related Work

Smoothed analysis was introduced by Spielman and Teng [64] and has since been applied

for various algorithms problems in the sequential setting (see, e.g., [65] for a survey).

The only work that we are aware of in the context of smoothed analysis of distributed

algorithms is that of Dinitz et al. [19] who study smoothed analysis of distributed algorithms

for dynamic networks. Their dynamic network model is a dynamic graph H = G1, G2, . . .

that describes an evolving network topology, where Gi is the graph at round i. It is assumed

that all graphs inH share the same node set, but the edges can change with some restrictions,

e.g., each graph should be connected. They define a smoothing model for a dynamic graph

that is parameterized with a smoothing factor k ∈ {1, 2, . . . ,
(
n
2

)
}. To k-smooth a dynamic

graphH is to replace each static graph Gi inH with a smoothed graph G′i sampled uniformly

from the space of graphs that are: (1) within edit distance k of G, and (2) are allowed by

the dynamic network model (e.g., smoothing cannot generate disconnected graph). The edit

distance is the number of edge additions/deletions needed to transform one graph to another,

assuming they share the same node set.
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Our smoothing model can also be thought of in terms of choosing a random graph within

a positive edit distance (i.e., edges are only added to the original input graph) where the

number of random edges added is proportional to nε(n) (per round or in total — see Section

2.5).

Dinitz et al. study three well-known problems that have strong lower bounds in dynamic

network models, namely, flooding, random walks, and aggregation. For each problem, they

study robustness/fragility of the existing bound by studying how it improves under increasing

amounts of smoothing.

2.2 The Model

The model is the distributed synchronous Congest system, as presented in Section 1.1.4.

Recall that the network is represented as a graph G(V,E), and we define the following

extra properties. Each node u runs an instance of a distributed algorithm and has a unique

identifier IDu of O(log n) bits. Each edge e ∈ E may have an associated weight w(e), which

can be represented using O(log n) bits. If there is no weight on an edge, then it can be

considered to be ∞.

2.2.1 Smoothing Model

Given a (arbitrary) undirected connected graph G(V,E), the smoothing model allows adding

some random edges to the input graph G, thereby “perturbing” graph structure. We call

this process smoothing, where we add a small number of random edges to the original graph.

We describe the process of adding edges which is parameterized by a smoothing parameter

0 ≤ ε = ε(n) ≤ 1 as follows. The smoothing parameter (which in general is a function of
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n, the network size4 controls the amount of random edges that can be added per round.

Henceforth, we call this the ε-smoothing model.

More precisely, every node, in every round, with probability ε (the smoothing parameter)

can add an edge to a random node (chosen uniformly at random from V ) in the graph. Let

the added random edges form the set R (different from the original edge set E). Note that

we allow multi-edges in the random edge choosing process; however, if there is more than

one edge between two nodes, then only one edge matters (especially, if it belongs to E).

The added edge persists for future rounds and can be used henceforth for communication;

its weight is ∞. A distributed algorithm can potentially exploit these additional edges to

improve the time complexity.5

In this work, we only consider adding edges to the graph; one can also consider deleting

edges from the original graph. However, for many problems such as MST, it is arguably

more appropriate to (potentially) add edges. In fact, deleting edges can change the graph.

In contrast, in the ε-smoothing model, since the added edges to the given graph G are purely

communicating edges (with weight ∞), the MST with respect to G is unchanged. In fact,

the model allows us to study tradeoffs between the amount of random edges added to the

efficiency of computing a solution of G.

As mentioned earlier, the ε-smoothing model gives a “smooth” tradeoff between the

traditional Congest model where there no additional random edges (ε = 0) in G (the

input graph) and a model where there is a random graph embedded in G. In this sense, it is

different from studying distributed computing on (purely) random graph models or expander

graph models (e.g., [10, 4, 44]). We note the work of Ghaffari et al. [30, 31] that embeds a

random graph in a given graph G and uses this embedding to design algorithms that depend

4We sometimes just write ε, understanding it to be a function of n.
5In this work, we focus only on time complexity, but message complexity can also be relevant.

18



CHAPTER 2. SMOOTHED ANALYSIS

on the mixing time of G. We will use their results in our algorithms.

As mentioned in Section 2.1, we can also relate the well-studied congested clique model to

the ε-smoothing model and also give a way to understand computation tradeoffs between the

traditional Congest model and the congested clique model. Assuming the input graph G

is embedded in a congested clique, the ε parameter controls the power to use the non-graph

clique edges. If ε = 0, then we have the traditional Congest model and for any ε > 0, if we

spend enough rounds, then one can throw a random edge between every pair of nodes which

boils down to the congested clique. Of course, this is costly, which illustrates the power of

the congested clique model (where the clique edges can be used for “free”). Studying time

and message complexity bounds in terms of ε can help us understand the power of the clique

edges with respect to solving a problem on a given input graph.

2.3 Distributed MST in the Smoothing Model

For the sake of exposition, we first present a distributed MST algorithm that runs in

Õ(min{1

ε
+ 2O(

√
logn), D +

√
n}) rounds.

Then we present an improved algorithm that runs in

Õ(min{ 1√
ε(n)

2O(
√

logn), D +
√
n}) rounds.

The second algorithm is a modification of the first and its time complexity approaches the

lower bound of Ω̃(min{ 1√
ε
, D +

√
n}) shown in Section 2.4. Thus, up to a multiplicative

factor of 2O(
√

logn) polylog n, the bounds are tight.
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We give a high-level overview of our approach of our first algorithm before we get into the

technical details. We next present an algorithm that computes an MST on a given graph G

in the ε-smoothing model. The algorithm can be described in two parts which are described

in Sections 2.3.1 and 2.3.2, respectively. At the outset we note that if 1/ε is larger compared

to Õ(D+
√
n), then we simply run the standard time-optimal MST algorithm ([55]) without

doing smoothing.

2.3.1 Part 1: Constructing an Expander

Initially the algorithm exploits the smoothing model to add about O(log n) random edges

per node. This can be accomplished as follows: each node (in parallel) tries to make a

random edge selection for the (first) Θ( logn
ε

) rounds, where ε is the smoothing parameter.

Since the probability of adding a random edge, i.e., a smoothing edge, is ε per round, it is

easy to show that with high probability a node will add Θ(log n) random edges. Via a union

bound, this holds for all nodes.

Now consider the graph R(G) induced only by the smoothed (random) edges of G after

Θ( logn
ε

) rounds. In the following Lemma 6, we show that R(G) is a graph with O(log n)

mixing time.

The proof of this result comes from the relation of ε-smoothing model to Erdős-Renyi

random graph, which we will show next.

Lemma 5. Consider a graph G(V,E) under ε-smoothing. If we invoke smoothing for `

rounds (where `ε = o(n)), then the graph induced by the smoothed edges is an Erdős-Renyi

random graph G(n, p) where p = Θ
(
lε
n

)
.

Proof. We calculate the probability of a smoothed edge between nodes u and v. Clearly

the edge is present if either u or v successfully adds the other end during ` steps. Hence,

20



CHAPTER 2. SMOOTHED ANALYSIS

p = 1−
(
1− ε

n

)2`
= Θ

(
`ε
n

)
.

Remark 12. The following lemma (Lemma 6) applies only to R(G) and not necessarily to

G ∪R(G).

Lemma 6. Let G = (V,E) be an arbitrary undirected graph and let R(G) = (V, F ) be the

random graph induced (only) by the set F of random (smoothed) edges after Θ( logn
ε

) rounds.

Then, with high probability, R(G) has mixing time τmix(R) = O(log n).

Proof. Using Lemma 5, where ` = Θ( logn
ε

), we have R(G) is a Erdős-Renyi random graph

G(n, p = Θ( logn
n

)). It is well-known that with high probability this random graph is an

expander (i.e., has constant conductance) and thus has O(log n) mixing time (see e.g., [30]).

(We refer to the Appendix — see Section A.1 — for an alternative, self-contained proof.)

2.3.2 Part 2: Constructing an MST

In the second part, the algorithm uses R(G) as a “communication backbone” to construct

an MST in O(log2 n)2O(
√

logn) rounds.

Our algorithm crucially uses a routing result due to Ghaffari et al. [31, 30] who show,

given an arbitrary graph G = (V,E), how to do permutation (or more generally, multi-

commodity) routing fast. We briefly describe the problem and the main result here and refer

to [31] for the details. Permutation or multi-commodity routing is defined as follows: given

source-destination pairs of nodes (si, ti) ∈ V ×V and suppose si wants to communicate with

ti (ti does not know si beforehand, but si knows the ID of ti). The width of the pairs is

W if each v ∈ V appears at most W times as si or ti. The goal is to construct a routing

path Pi (not necessarily simple) from si to ti such that the set of routing paths has low

congestion and low dilation. Congestion is the maximum number of times any edge is used
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in all the paths. Dilation is simply the maximum length of the paths. The main result of

[31] is that routing paths Pi with low congestion and dilation can be found efficiently. Once

such low congestion and dilation routing paths are found, using a standard trick of random

delay routing, it is easy to establish that messages can be routed between the source and

destination efficiently, i.e., proportional to congestion and dilation.

Theorem 7 (Efficient Routing). (Theorem 8 from [31]). Suppose we solve a multicommodity

routing instance {(si, ti)}i and achieve congestion c and dilation d. Then, in Õ(c+d) rounds,

every node si can send one O(log n)-bit message to every node ti, and vice versa.

Next, let us formally restate their routing results for ease of discussion. First we state

their result on multi-commodity routing on a random graph G(n, log n), i.e., a random graph

where each node has O(log n) random edges (each endpoint chosen uniformly at random.)

Theorem 8. (Theorem 1 from [31]) Consider a multicommodity routing instance of width

Õ(1). There is a multicommodity routing algorithm on a random graph G(n, (log n)) that

achieves congestion and dilation 2O(
√

logn), and runs in time 2O(
√

logn).

Then, by the construction of a random-graph-like hierarchy routing over a given graph

G, we have the following result.

Lemma 9. (Lemma 11 from [31]) In any graph G with n nodes and m edges, we can embed

a random graph G(m, d) with d ≥ 200 log n into G with congestion Õ(τmix · d) and dilation

τmix in time Õ(τmix · d).

Using Lemma 9, we have the following trivial corollary for permutation routing.

Corollary 10 (Permutation Routing). Consider a graph G = (V,E) and a set of n point-to-

point routing requests (si, ti), where si, ti are IDs of the corresponding source and destination.
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Each node of G is the source and the destination of exactly one message. Then there is a

randomized algorithm that delivers all messages in time τmix(G)2O(
√

logn), w.h.p.

Based on their multicommodity routing algorithm, they showed how to construct an

MST of G in τmix(G)2O(
√

logn) rounds (Ghaffari et al. [30]). However, this MST algorithm

cannot be directly employed in our setting, i.e., to construct a MST of G, over G ∪R(G).

We briefly summarize the idea from Section 4 in their paper [30], to explain why this

algorithm is not applicable directly in a black box manner. There is the main reason for

this: while the algorithm of [30] operates on the graph G, ours operates on the graph

G′ = G ∪ R(G). Applying the algorithm directly to G ∪ R(G) can (in general) yield an

algorithm running in τmix(G
′)2O(

√
logn) rounds where τmix(G

′) is the mixing time of G′. Note

that τmix(G
′) (in general) can be of the same order of τmix(G) (even for constant smoothing

parameter ε) in some graphs6. Thus the running time bound does not (in general) depend

on ε and does not give our desired bound of Õ(log n/ε) rounds. We give more details on the

approach of [30] and then discuss our algorithm.

The approach of [30] is to modify Boruvka’s algorithm [53], where the MST is built by

merging tree fragments. In the beginning, each node is a fragment by itself. The fragment

size grows by merging. To ensure efficient communication within a fragment, they maintain

a virtual balanced tree for each fragment. A virtual tree is defined by virtual edges among

nodes, where virtual edges are communication paths constructed by the routing algorithm.

It follows that for each iteration, fragment merging may increase the number of virtual edges

of some node v by dG(v), where dG(v) is the degree of v in G. Since Borukva’s method

takes O(log n) iterations, the virtual degree of any node v is at most dG(v)O(log n). Thus

virtual trees communication is feasible via commodity routing by Theorem 8 which takes

6For example consider two cliques of size n/2 connected to each other via O(n) edges.
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τmix(G)2O(
√

logn) rounds. Applying the above approach directly to our setting yields only an

MST algorithm running in τmix(G
′)2O(

√
logn) rounds as mentioned in the last paragraph.

In our setting, to obtain an algorithm running in Õ(log n/ε) rounds, we would like to

perform routing (only) on R(G) instead of G∪R(G). However, if we use the same algorithm

of [30] in R(G) then during the computing of the MST in G, some node v may become

overloaded by dG(v) virtual edges which causes too much congestion in R(G) (where each

node has degree Θ(log n) only) when dG(v) is large. It follows that the routing is infeasible

in R(G) and the algorithm fails. To solve the problem we proposed a modified algorithm

that uses aggregate routing.

The idea of aggregate routing is to perform permutation routing, where some destinations

are the same. In other words, assume a permutation routing problem where there are only

k ≤ n (distinct) destinations and t1, . . . , tk and there are n sources s1, . . . , sn. Let Ci be

the set of sources who have the same destination ti. In aggregate routing, we would like

to aggregate the set of messages in Ci and deliver it to ti. The aggregate function can be

a separable (decomposable) function such as min, max, or sum. Then we can modify the

permutation routing easily as follows. For a node u that is performing the routing, suppose

there are multiple messages arriving at u in the same round. Then u computes the aggregate

of the messages belong to the same set Ci (for every 1 ≤ i ≤ k) and forwards that message

according to the routing algorithm. At the destination, the aggregate is computed over any

received messages destined for this particular destination. With this intuition, we state the

following definition and lemma.

Definition 13 (k-aggregate routing). Consider a graph G = (V,E), where nodes are divided

into k disjoint partitions C1, C2, . . . , Ck. For each partition Ci, there is a leader li, known

to all members of Ci. Each node u ∈ V has one message to deliver to its leader. Let f
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be a separable aggregate function (such as min, max, or sum). The k-aggregate routing

problem is to compute the aggregate f over the nodes in each partition and route it to the

corresponding leader of the partition.

We show that k-aggregate routing can be solved in the same time bounds as multi-

commodity routing.

Lemma 11. Consider a graph G = (V,E) with an instance of the k-aggregate routing

problem. There is a randomized algorithm that solves the problem in time τmix(G)2O(
√

logn),

w.h.p.

Proof. Let mu denote the original message at u. We will send the tuple (mu, lu) where lu is

the leader of the partition that u belongs to. Let f be the separable aggregate function.

Each node v executes the multi-commodity routing algorithm, with this extra rule: In a

round t, suppose v receives multiple messages having the same destination, which is some

leader li, v computes the aggregate ft,i over those messages, and prepares a tuple (ft,i, li). v

then forwards the aggregated message to the appropriate next-hop neighbor in the routing

path for the next round. v performs the same reduction for messages targeting other leaders.

It is easy to see that this routing schema is not congested, i.e., it is as fast as the multi-

commodity/permutation routing. Observing the local invariance of permutation routing:

for each destination u, every node, in each round of the algorithm, sends out at most one

message routing towards u. This invariance holds in our k-aggregate routing, by the above

construction.

At the end of the routing, each leader aggregates over its received messages, which is the

aggregate in its partition.

While k-aggregate routing can be seen as upcast [55], the complementary operation of
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downcast, i.e., sending a message from a source to several destinations, can also be done

efficiently as shown below.

Lemma 12 (k-aggregate routing and downcast). Consider a graph G = (V,E) with an

instance of the k-aggregate routing problem. Furthermore, we require that every member of

a partition knows the corresponding aggregate value. There is a randomized algorithm that

solve the problem in time τmix(G)2O(
√

logn), w.h.p.

Proof. Using the algorithm in Lemma 11, each node also records the source of the incoming

messages together with the associated leader ID and round number. Then the routing can be

reversed. Starting from the leader of each partition, it sends out the aggregate message with

its ID, and each node reverses the aggregate message towards the matching sender. Hence

the downcast can be accomplished in the same number of rounds as k-aggregate routing.

We are now ready to implement the MST algorithm.

Theorem 13. Consider a weighted graph G = (V,E) in the ε-smoothing model. There exists

a randomized distributed algorithm that finds an MST of G in time Õ(1
ε

+ 2O(
√

logn)), w.h.p.

Proof. As discussed in Part 1 (Section 2.3.1), the algorithm executes Θ( logn
ε

) rounds of

random edge selection to construct the random graph R(G) (the graph induced only by the

random edges). As shown in Lemma 6, R(G) is an expander with constant conductance and

hence has O(log n) mixing time.

We use the permutation routing result of [31] to construct the routing structure on R(G),

which allows permutation routing in τmix(R(G))2O(
√

logn) = O(log n)2O(
√

logn) = 2O(
√

logn)

rounds.

Our MST algorithm is based on the standard Gallagher-Humblet-Spira (GHS)/Boruvka

algorithm, see e.g., [55] which is also used in [30] and many other MST algorithm see e.g.,
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[56, 22]. The main modification compared to the standard GHS algorithm is that the growth

(diameter) of fragments is controlled during merging (as in the controlled GHS algorithm

[55]).

We summarize the algorithm here and sketch how it is implemented.

Let T be the (unique) MST on G (we will assume that all weights of edges of G are

distinct). A MST fragment (or simply a fragment) F of T is defined as a connected subgraph

of T , that is, F is a subtree of T . An outgoing edge of a MST fragment is an edge in E where

one adjacent node to the edge is in the fragment and the other is not. The minimum-weight

outgoing edge (MOE) of a fragment F is the edge with minimum weight among all outgoing

edges of F . As an immediate consequence of the cut property for MST, the MOE of a

fragment F = (VF , EF ) is an edge of the MST.

The GHS algorithm operates in phases (see e.g., [55]). In the first phase, the GHS

algorithm starts with each individual node as a fragment by itself and continues till there is

only one one fragment — the MST. That is, at the beginning, there are |V | fragments, and

at the end of the last phase, a single fragment which is the MST. All fragments find their

MOE simultaneously in parallel.

In each phase, the algorithm maintains the following invariant: Each MST fragment has

a leader and all nodes know their respective parents and children. The root of the tree will

be the leader. Initially, each node (a singleton fragment) is a root node; subsequently each

fragment will have one root (leader) node. Each fragment is identified by the identifier of its

root — called the fragment ID — and each node in the fragment knows its fragment ID.

We describe one phase of the GHS (whp there will be O(log n) phases as discussed below).

Each fragment’s operation is coordinated by the respective fragment’s root (leader). Each

phase consists of two major operations: (1) Finding the MOE of all fragments and (2)
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Merging fragments via their MOEs.

We first describe how to perform the first operation (finding the MOE). Let F be the

current set of fragments. Each node in V finds its (local) minimum outgoing edge (if any),

i.e., an edge to a neighbor belonging to a different fragment that is of least weight. We then

execute a |F |-aggregate routing and downcast, using min as the aggregate function, with

each node being the source and having its fragment leader as its destination. At the end

of this step, for each fragment, every member knows the minimum outgoing edge (MOE)

of the entire fragment. This MOE edge will be chosen for merging in the second operation

(merging fragments). Also, each node keeps the reversed routing paths for further usage.

Once the merging (MST) edges are identified, the second operation — merging — is

processed. In order to avoid long chains of fragments, a simple randomized trick is used.

Each fragment chooses to be a head or tail with probability 1/2. Only tail fragments will

merge if their outgoing edge points to a head fragment. It can be shown (e.g., see [30]

that this merging (still) leads to a constant factor decrease in the number of fragments (on

average) and hence the number of phases will be O(log n) in expectation and with high

probability.

We now describe how a merge can be implemented efficiently, There will be no change

in the head fragment, but all the tail ones will update to acknowledge the head leader as

the new leader. For a tail fragment T , let v ∈ T be the node that is making the merge, v

knows the ID of the head leader by communicating with its neighbor which is a member of

the head fragment). v routes this new leader ID to the current leader of T . This is done

in parallel by permutation routing. The current leader of T downcasts the new leader ID

to all T members. This is done via the saved reversed routing paths. The merging is now

completed, and time for one iteration is the same as that of permutation routing as before,
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i.e., O(log n)2O(
√

logn).

There are O(log n) phases and each phase can be implemented in O(log n)2O(
√

logn) rounds

and hence the total time for Part 2 is O(log2 n)2O(
√

logn).

The total time for MST construction is the number of rounds for Part 1 plus the number

of rounds in Part 2:

Θ( logn
ε

) +O(log2 n)2O(
√

logn) = Õ(1
ε

+ 2O(
√

logn)).

2.3.3 An Improved Algorithm

We now present an algorithm that is a variant of the previous algorithm and improves upon

it. The time complexity of the improved algorithm approaches the lower bound (cf. Section

2.4). The idea is to use the controlled GHS algorithm [55] to construct MST fragments

of suitable size. Then we apply smoothing (with a smaller number of rounds compared to

previous algorithm, i.e., Õ( 1√
ε
) instead of Õ(1

ε
)) to add an expander over the super-graph

induced by the MST fragments where each super-node is one fragment (partition). Then we

compute the final MST in a similar fashion to Theorem 13 on the super-graph.

Theorem 14. Given a weighted graph G(V,E) in the ε-smoothing model, there exists a

randomized distributed algorithm that finds an MST of G in time Õ( 1√
ε
)2O(

√
logn), w.h.p.

Proof. We give the algorithm along with its analysis, as follows.

Run O( logn√
ε

) rounds of smoothing. Denote by S the set of smoothed edges generated.

Using Lemma 5, the probability that a smoothed edge occurs between two nodes in G is

p = Θ(
√
ε logn
n

).

Run the controlled GHS algorithm [55] for log 1√
ε

phases. This takes O( log∗ n√
ε

) rounds.

Every cluster (each of which is an MST fragment) will have size Ω( 1√
ε
) and diameter O( 1√

ε
),

and there will beO(n
√
ε) such clusters [55, Section 7.4]. We call these clusters base fragments.
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We note that communication within a cluster (i.e., between any node of the cluster and its

leader) takes O( 1√
ε
) rounds.

View these clusters as a set of super-nodes, denoted by V ′. Let E ′ ⊂ E be the set of

inter-super-node edges, let S ′ ⊂ S be the set of inter-super-node smoothed edges. Consider

two super-graphs: G′(V ′, E ′) and R′(V ′, S ′). It is easy to show that due to the probability p

of the random edges introduced by the smoothing process, the super-graph R′(V ′, S ′) is an

Erdős–Rényi random graph or a G(n′, p′)-random graph, where

n′ = O(n
√
ε) (2.1)

and

p′ ≥ Ω

((
1√
ε

)2
)
p = Ω

(
log (n′)

n′

)
(2.2)

Thus, the super-graph G′ ∪ R′ is equivalent to the smoothed graph of our model in Section

3.2.1.

Similar to the previous algorithm, we solve the MST problem using Boruvka’s algorithm

on the super-graph G′, using the routing structure of Ghaffari et al. [30, 31] and the aggregate

routing over R′. To implement the algorithm on the super-graph, we pipeline messages within

all the super-nodes, i.e., inside the base fragments. There are O(log n) phases of Boruvka’s

algorithm and each phase takes

O( 1√
ε
) · 2O(

√
logn) rounds.

The extra term of O( 1√
ε
) is incurred by communication within a super-node. Thus, in total,

the second part takes O( 1√
ε
· log n) · 2O(

√
logn) rounds.

Combining the MST edges over the super-graph G′, and the MST edges in each super-

node, we have the MST for the original graph. Therefore, the total time complexity of the

30



CHAPTER 2. SMOOTHED ANALYSIS

algorithm is

O(
log n√
ε

) +O(
log n√
ε

) · 2O(
√

logn) = Õ(
1√
ε
) · 2O(

√
logn).

2.4 Lower Bound

In this section, we show the following lower bound result on the ε-smoothing model. We

note that Ω̃(D+
√
n) is an unconditional lower bound (without smoothing) that holds even

for randomized Monte-Carlo approximate MST algorithms [61].

Theorem 15 (Smooth MST Lower Bound). There exists a family of graphs G, such that,

under the ε-smoothing model, any distributed MST algorithm must incur a running time of

Ω̃( 1√
ε
), in expectation.

We will prove the lower bound theorem by using the technique used in [61]. First,

we will briefly recall the lower bound poof of Ω̃(
√
n) (we assume D = O(log n)) without

smoothing. For purposes of exposition, we simplify and slightly modify the technique in the

mentioned paper, to show only the bound for exact distributed MST. Then we extend it to

the smoothing model. The procedure is to establish a chain of algorithm reductions which

is the same as in [61], such that it relates distributed MST to a problem with a known lower

bound. The following is the chain of reductions:

• Set Disjointness (SD) to Distributed Set Disjointness (DSD). We first reduce the set

disjointness (SD) verification problem, a standard well-studied problem in two-party

communication complexity to the problem of distributed set disjointness (DSD) verifi-

cation. In the set disjointness problem (SD), we have two parties Alice and Bob, who
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each have a k-bit string — x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk), respectively.

The goal is to verify if the set disjointness function is defined to be one if the inner

product 〈x, y〉 is 0 (i.e., there is no i such that xi = yi = 1) and zero otherwise. The

goal is to solve SD by communicating as few bits as possible between Alice and Bob.

In the distributed set disjointness (DSD) verification, the goal is to solve SD in a given

input graph G = (V,E), where two distinguished nodes s, t ∈ V have the bit vectors x

and y, respectively. In other words, instead of communicating directly as in the two-

party problem (between Alice and Bob), the two nodes s and t (standing respectively

for Alice and Bob) have to communicate via the edges of G (in the Congest model)

to solve SD. The goal is to solve the DSD problem using as few rounds as possible in

the Congest model (where only O(log n) bits per edge per round are allowed).

• Reduction of Distributed set disjointness (DSD) to connected spanning subgraph (CSS)

verification. In the CSS problem, we want to solve a graph verification problem which

can be defined as follows. In distributed graph verification, we want to efficiently

check whether a given subgraph of a network has a specified property via a distributed

algorithm. Formally, given a graph G = (V,E), a subgraph H = (V,E ′) with E ′ ⊆

E, and a predicate Π, it is required to decide whether H satisfies Π (i.e., when the

algorithm terminates, every node knows whether H satisfies Π). The predicate Π may

specify statements such as “H is connected” or “H is a spanning tree” or “H contains

a cycle”. Each vertex in G knows which of its incident edges (if any) belong to H.

In the connected spanning subgraph (CSS) verification the goal is to verify whether

the given subgraph H is connected and spans all nodes of G, i.e., every node in G is

incident to some edge in H. The goal is to solve CSS in as few rounds as possible (in

the Congest model).
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• The last reduction is to reduce CSS verification to computing an MST.

The last two reductions above are done exactly as in the paper [61] that shows the time

lower bound of Ω̃(D+
√
n) rounds; however, the first reduction from SD to DSD is different

in the smoothing model, as the input graph used in the DSD can use the (additional) power

of the smoothing edges.

We will first briefly discuss the reductions as in [61] and then discuss how to modify the

first reduction to work for the smoothing model. Here we first state the bounds that we

obtain via these reductions, and refer to [61] for the details. The well-known communication

complexity lower bound for the SD problem is Ω(k) (see e.g.,[45]), where k is the length of

the bit vector of Alice and Bob. This lower bound holds even for randomized Monte-Carlo

algorithms and even under shared public coin.

Due to the graph topology used in the DSD problem (see Figure 2.1 without the smooth-

ing edges) the value of k is to be Θ(
√
n) (which is the best possible). The reduction from SD

to DSD shows that the lower bound for DSD is Ω̃(
√
n) rounds. (Note that the diameter of

the lower bound graph is O(log n) and hence subsumed.) This reduction uses the Simulation

Theorem (cf. Theorem 3.1 in [61]) which will be explained later.

The reduction from DSD to CSS shows that the same time lower bound of Ω̃(
√
n) rounds

holds for the CSS problem. This reduction shows that the given subgraph H in the CSS

problem is spanning connected if and only if the input vectors x and y are disjoint.

The reduction from CSS to the MST problem shows that the time lower bound for CSS

verification which is Ω̃(
√
n) also holds for the MST problem. This reduction takes as input

the CSS problem and assigns weight 1 to the edges in the subgraph H and weight n to all

other edges in G. It is easy to show that H is spanning connected if and only if the weight

of the MST is less than n. Hence the same time lower bound that holds for CSS also holds
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Figure 2.1: The lower bound graph.

for MST.

2.4.1 Reduction of SD to DSD: The Simulation Theorem

In this section, we explain the key reduction from SD to DSD which uses the Simulation

Theorem as in [61]. The reduction idea is as follows. Assuming that we have an algorithm

for DSD that finishes in r rounds, Alice and Bob will simulate this algorithm in the two

party model by sending as few bits as possible. The Simulation theorem accomplishes this.

The Simulation theorem in [61] that shows the simulation in the standard graph (without

smoothing) uses a constant number of bits per round to do the simulation. Thus if the DSD

algorithm finishes in r rounds, then Alice and Bob would have solved SD by exchanging O(r)

bits. If r = o(k) (where k is the length of the input bit string), then this will contradict the

lower bound of set disjointness in the two party model which is Ω(k) (even for randomized
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algorithms).

We note that the reduction is similar to that in [61] as the input graph G(x, y) for the

DSD is the same (see Figure 2.1). We will first briefly describe the idea behind the Simulation

Theorem as it applicable to G without the smoothing. The lower bound graph G(x, y) used

in the Simulation Theorem is described next .

The lower bound graph (family) for MST

G(x, y) is depicted as in Figure 2.1, where |x| = |y| =
√
n. G(.) includes

√
n paths and a

complete binary tree (to reduce the diameter to O(log n)). Each path has length of
√
n; these

are called the path edges. The full binary tree has
√
n leaves, and hence, has the height of

p = logn
2

. We number the leaves and the path nodes from left to right — 0, 1, . . . , `. Note

that leaf numbered 0 is node s and leaf numbered ` is t. Consider each leaf 0 < j < `, let it

connect to all the nodes j in all paths; we call these spoke edges. Note that the binary tree

edges, the path edges, and the spoke edges from leaf nodes other than s and t are present in

every graph of the family.

It is straightforward that G(x, y) has Θ(n) nodes and diameter D = Θ(log n).

In the reduction from SD to DSD, Alice and Bob wants to solve SD problem with Alice

having input vector x = (x1, x2, . . . , xk) and Bob having input vector y = (y1, y2, . . . , yk)

where we fix k =
√
n. Depending on x and y, Alice and Bob will fix the spoke edges from

nodes s and t. For the SD problem, Alice will add edges from s to the first node in path i if

and only if xi = 0. Similarly Bob will add edges from t to the last node in the path i if and

only if yi = 0.

Now we are ready to describe the Simulation Theorem which really gives an algorithm

for Alice and Bob to simulate any given algorithm for the DSD problem. If the DSD algo-
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rithm runs in r rounds, the Simulation Theorem will show how to solve the SD problem by

exchanging O(r) bits. We sketch the main idea here, which is quite simple, and omit the

full details which can be found in [61].

How will Alice and Bob start the simulation? Note that they want to solve the SD

problem on their respective inputs x and y in the two-party model. They will then use their

respective inputs to construct G(x, y) as described above. Note that Alice will be able to

construct all edges of G except the spoke edges of t (since that depends on Bob’s input) and

vice versa for Bob. Then, assuming that there is an algorithm for the DSD problem on the

same inputs that runs in r rounds, Alice and Bob will simulate the DSD algorithm whose

output will also give the output for the SD problem (by definition).

The main idea is for Alice and Bob to keep the simulation going as long as possible. If

one disregards the binary tree edges, all paths are of length ` = Θ(
√
n) and hence it is easy to

keep the simulation going for `/2 rounds (say). This is because, Alice has all the information

needed to simulate the DSD algorithm till `/2 steps (i.e., the middle of the path). Why?

Because Alice knows her own input and all other nodes in G do not have any input. She

does not know Bob’s input, but this does not matter for `/2 steps since in so many rounds

nothing from Bob’s part of the graph reaches the “middle” of the path. But of course, the

above is not true because of the binary tree edges which has smaller diameter. So to keep

the simulation going for Bob, Alice sends the minimum amount of information needed by

him. Note that after i rounds the computation from Alice’s side (which are the set of nodes

numbered up0 and v1
0, v

2
0, . . . , v

√
n

0 will have reached nodes at distance i on the path.

We define the Ri (intuitively i-Right) set as follows: Ri includes all nodes on the paths

with subscript j ≥ i, all leaf nodes upj where j ≥ i, and all ancestor of these leaves, see Figure

2.1.
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In round i, Bob needs to keep the correct computation for Ri. To achieve that, Alice

sends only the messages sent by the tree nodes in Ri−1 crossing into the tree nodes in Ri (see

Lemma 3.4 in [61]). (A similar observation applies for Alice to do her simulation). Hence

only messages sent by at most O(log n) nodes in the binary tree are needed. Hence in every

round at most O(log2 n) bits need to be exchanged by Alice and Bob to keep the simulation

going. Thus if the DSD algorithm finishes in o(`/ log2 n) = o(
√
n/ log2 n) rounds, then the

simulation will also end successfully.

Thus we have shown the following Simulation Theorem.

Theorem 16 (Simulation Theorem). (Restatement of Theorem 3.1 in [61]) Given the DSD

problem with input size Θ(
√
n), encoded as G(x, y) (i.e., the x and y are bit vectors of

length Θ(
√
n)), if there is a distributed algorithm that solves the DSD problem in time at

most T rounds, using messages of size O(log n). Then there is an algorithm in the two-

party communication complexity model that decides the SD problem while exchanging at most

O(T log2 n) bits.

2.4.2 Lower Bound with Smoothing

Under the ε-smoothing model, we will use the same lower bound graph G(x, y). However,

the smoothing model gives the algorithm additional power to add random edges in G(x, y)

during the course of the simulation. We will show how to modify the Simulation Theorem

to apply to the smoothing model. Naturally, since the algorithm has additional power, it

can finish faster, and hence the corresponding lower bound will be smaller.

We focus on Bob and show how he can keep his simulation going. (A similar argument

applies for Alice.) We consider how Bob maintains correct states for Ri in round i. Besides

the required messages as discussed in Theorem 16, Bob needs to know the messages sent
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over (potential) smoothed edges crossing V \ Ri into Ri. Since there are more messages to

keep track, Bob cannot keep the simulation longer than that of the non-smoothing case.

Let δ be the number of rounds the simulation is valid without exceeding Θ(
√
n) bits of

communication. Since the smoothing process is randomized, we bound δ in expectation.

We will use a pessimistic estimation to estimate the number of smoothed edges that

“affect” Bob from Alice’s side. Let Ci = V \Ri, let Si be the expected number of smoothed

edges crossing Ci and Ri. Si indicates the number of extra messages Bob needs to know, in

round i. Notice that |Ci| = iΘ(
√
n).

Si = 2εiΘ(
√
n)

(n− iΘ(
√
n))

n
. (2.3)

Since δ < Θ(
√
n), for every round i, Si = Θ(εδ

√
n). After δ rounds, the expected

number of messages over the smoothed edges is thus: Θ(εδ2
√
n). Also, by Theorem 16, we

need to keep track of (δ log n) messages. To stay within the budget of
√
n bits for DSD

communication, we require:

εδ2Θ(
√
n) + δΘ(log n) ≤

√
n

B
. (2.4)

With B = Θ(log n) (the message size), we have δ ≤ Θ( 1√
ε logn

). Thus, we can keep the

simulation going for up to Θ( 1√
ε logn

) rounds.

To complete the lower bound argument, the same lower bound applies for MST in the

ε-smoothing model by the chain of reductions.
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2.4.3 Implication of the Lower Bound

Theorem 15 is stated for the MST algorithm, but is in fact applicable for many other fun-

damental algorithms. Due to the work established by Sarmar et al. [61], the same bound

in Theorem 15 trivially holds for other problems: Shallow-light tree problem [60], s-source

distance [24], shortest path tree problem [23], Minimum routing cost spanning tree problem

[73], Minimum cut problem and Minimum s-t cut problem [25], Shortest s-t path problem

[61], Generalized Steiner forest problem [61]. We note that, however, constructing matching

algorithms for those problems is non-trivial.

2.5 Other Smoothing Models

In this section, we discuss some of the other plausible smoothing models for the distributed

MST problem. The most natural smoothing model that first comes into mind in respect to

a numerical-valued computing problem and that is similar in spirit to the original Spielman-

Teng smoothing [64] is where one “perturbs” the edge-weights in the given input graph.

However, as we have already noted (see Section 2.1) this may not make for anything inter-

esting if the perturbations are too small with respect to the original edge-weights.

One is therefore tempted to make the perturbations large relative to the values of the orig-

inal edge-weights. This, however, (depending on exactly how many edges are thus smoothed)

may have the effect of essentially producing an input graph where the edge-weights are ran-

domly distributed, i.e., where every edge-weight is chosen uniformly at random from a certain

range of values. As has been shown previously [40], an MST can be constructed for such

an input graph rather fast (in Õ(D) rounds, actually, where D is the diameter of the input
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graph).7 Thus, while this model with large perturbations in edge-weights is more interesting

than the smoothing model with small perturbations in edge-weights, it has been somewhat

— even if not fully — explored in the distributed MST literature.

These considerations motivate us to explore an alternate avenue where the graph topology

rather than the edge-weights is perturbed. In particular, we consider smoothing models

where the perturbation process adds more edges to the original input graphs. Below we

describe two such models where additional edges characterize the perturbed graph compared

to the original input graph. We call these models the k-smoothing models. We distinguish

these two models based on whether or not the smoothed edges are known to the algorithm.

Remark 14. The usual smoothing concept (e.g., as originally put forth by Spielman and

Teng [64], and as recently applied in the context of dynamic networks [19]) dictates that

the new, “perturbed” graph be chosen according to some distribution (usually the uniform

distribution) from a set of graphs that are “close” to the original input graph according to

some distance metric. Thus the new, perturbed graph is presented to the algorithm as a whole

and the algorithm has no way of knowing which edges are additional and which edges are

original.

Our ε-smoothing model, however, focused on the other scenario (where the algorithm does

have such knowledge) because (1) it is algorithmically easier to approach and (2) also it may

be relevant in somewhat different contexts too (e.g., in the context of congested clique as

discussed in Section 2.1).

7The number of edges whose weights are smoothed can be parameterized, however. For example, one
can consider a smoothing model where each edge in the original input graph is smoothed (i.e., its weight is
perturbed) with a certain probability ε, say, for some small ε (e.g., ε can be made Θ̃( 1√

n
)).
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2.5.1 The k-smoothing Model with Known Smoothed Edges

The main model that we follow in this chapter, the ε-smoothing model (see Section 2.2.1)

adds smooth edges by node-local computation during the course of an algorithm. We can

look at models where smooth edges are added all at once, by some external process, prior to

the commencement of the algorithm.

1. Consider a smoothing model M(k, ∗) where the “perturbation” process adds k addi-

tional edges to the original input graph. In our notation, ∗ denotes the fact that the

smoothed (i.e., additional) edges are known to the algorithm.

These k additional edges are chosen uniformly at random from all the
(
n
2

)
possible

edges of the graph.

2. Consider another smoothing modelM(δ, ∗) where the “perturbation” process adds —

independently for each of the
(
n
2

)
possible edges — an edge with probability δ.

Remark 15. It is not difficult to see that the model M(ε, ∗) is essentially equivalent to the

model M(k, ∗) for the case when ε = k
n

.

Remark 16. By Lemma 5, consider the ε-smoothing model with ` rounds of smoothing, then

M(k = 2`εn, ∗) and M(δ = 2`ε
n
, ∗) are the equivalent models.

2.5.2 The k-smoothing Model with Unknown Smoothed Edges

Essentially, we have the counterparts of M(k, ∗) and M(δ, ∗) for the particular case when

the smoothed edges are not known to the algorithm. We denote these models by M(k,×)

and M(δ,×). We also note that both M(k,×) and M(ε,×) are essentially equivalent to

the smoothing model proposed by Dinitz et al. [19], where the new, perturbed input graph
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is chosen uniformly at random from the set of all possible graphs whose edge-sets are at a

(positive) edit-distance k from the original input graph. The only subtle difference is that, in

their model [19], the edit-distance can be positive as well as negative. We, however, consider

only positive edit-distances here.

We note that the algorithms specified in this paper do not (at least directly) work when

the smoothing edges are not known. However, note that the lower bound holds (for appro-

priate choice of k in terms of ε).

2.6 Conclusion

In this chapter, we studied smoothed analysis of distributed graph algorithms focusing on

the well-studied distributed MST problem. Our work can be considered as a first step in

understanding the smoothed complexity of distributed graph algorithms.

We presented a smoothing model, and upper and lower bounds for the time complexity

of distributed MST in this model. These bounds quantify the time bounds in terms of the

smoothing parameter ε. The bounds are within a factor of 2O(
√

logn) polylog n and a key open

problem is whether this gap can be closed.

While we focused on one specific smoothing model, our results also apply to other related

smoothing models (discussed in Section 2.5). A commonality among these models, besides

adding random edges, is that the added edges are known to the nodes. This knowledge of

the random edges is crucial to obtaining our upper bounds. Of course, our lower bounds

apply regardless of this knowledge.

An important open problem is to show non-trivial bounds when the random edges are

unknown to the nodes; i.e., the input graph consists of the original graph G plus the random

edges and the nodes cannot distinguish between edges in G and the added random edges.
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It would also be interesting to explore other fundamental distributed graph problems

such as leader election, shortest paths, minimum cut, etc., in the smoothing model.
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Chapter 3

Influence Maximization with

Probabilistic Guarantees

In this chapter 1, we study a different network problem, influence spreading. The well-studied

influence maximization problem involves choosing a seed set of a given size, which maximizes

the expected influence. However, such solutions might have a significant probability of

achieving low influence, which might not be suitable in many applications. We consider

a different approach: find a seed set that maximizes the influence set size with a given

probability. We show that this objective is not submodular and design a greedy, multi-

criteria approximation algorithm for this problem with rigorous approximation guarantees.

We also evaluate our algorithm on multiple datasets and show that they have similar or

better quality as the ones optimizing the expected influence, but with additional guarantees

on the probability.

1This is joint work with Maleq Khan, Gopal Pandurangan, Anil Vullikanti and Qin Zhang [41]

44



CHAPTER 3. INFLUENCE MAXIMIZATION

3.1 Introduction

A large number of phenomena, e.g., the spread of influence, fads, and ideologies on social

networks, can be modeled as a diffusion process on a graph; see, e.g., [21, 39]. From a

given seed set S (a subset of vertices), it is assumed that the influence spreads under a

well-studied probabilistic diffusion model called the Independent Cascade (IC) model (see

Sections 3.1.1 and 3.2.1); the size of the final influenced set, denoted I(S), is taken as the

influence of S. An optimization problem that has been extensively studied is the influence

maximization problem, stated as follows: find a seed set S of size k, so that the expectation,

E[I(S)], is maximized—this is referred to as the MaxExpInf problem. The seminal work

by Kempe, Kleinberg and Tardos [38] was the first to give a constant-factor approximation

to the MaxExpInf problem. Later, Borgs et al. [7] improved the run time by proposing a

nearly-optimal algorithm that had the same approximation guarantee. There has been a lot

of work on many variants of influence maximization for several diffusion models; see, e.g.,

[39, 21] for details.

However, there are instances, in which the expected influence set is large, but the variance

is also high, which is not desirable. A common way to understand the variance in a random

variable is by examining its quantiles. Motivated by this, we focus on the problem of finding

a seed set S of size k such that δ - the quantile value (for a given δ, 0 < δ ≤ 1) of I(S)

is maximized — we denote this by Mδ(I(S))= max{α|Pr[I(S) ≥ α] ≥ δ}. The focus of

this chapter is on finding S that maximizes Mδ(I(S)); we refer to this as the MaxProbInf

problem.

In this work, we study the structure of the MaxProbInf problem and develop efficient

approximation algorithms for it. Our contributions are the following.

1. We formalize a natural notion of influence maximization with probabilistic guarantees
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as the quantile value. We also study the structure of solutions of MaxProbInf and

what effect the probabilistic guarantees have.

2. We develop a multi-criteria approximation algorithm, MultiCritMdelta, with ap-

proximation guarantees. We also design and analyze an efficient sampling method to

estimate Mδ(I(S)) for any given seed set S.

A main technical novelty of our work is the analysis of our multi-criteria approximation

algorithm. We use the Sample Average Approximation (SAA) technique from stochas-

tic optimization (see, e.g., [66]), which involves constructing samples G1, . . . , GN of

the graph, as per the Independent Cascade model. Since it is known that Mδ(I(S)) is

not submodular [74], we define a different type of submodular function Fλ(S), using

the saturation technique of [43]. We show that finding a minimum cost set S that

ensures Fλ(S) ≥ δλ is sufficient to give a multi-criteria approximation—this problem

is a variant of the standard submodular cover problem. However, the problem does

not satisfy an important technical requirement in the submodular cover problem, and

we need to modify the analysis of [72] to account for this difference.

3. Finally, we evaluate our methods on several datasets. Not surprisingly, the solutions

to Mδ(I(S)) computed using MultiCritMdelta have similar or higher (up to 10%

in some cases) quantile values than the MaxExpInf solution. We also observe that

the running time of MultiCritMdelta is significantly faster (about 10 times faster)

compared to the standard algorithm that implements MaxExpInf (due to Kempe et

al. [39]) and comparable to the run time of Borgs et al. [7] which is a nearly-optimal

algorithm for influence maximization under the expectation measure. In fact, we also

observe that our solutions have similar or better expected influence value than the
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MaxExpInf solution (though this objective was not being optimized); additionally,

we get bounds on the probability. In particular, we find that for many instances

with low activation probabilities, the seed set output by MultiCritMdelta yields

even better (by up to 10%) expected influence values than the MaxExpInf solution,

computed using the approximation algorithm of [38] or [7] which both give a constant-

factor approximation to the optimal expected influence.

3.1.1 Related Work

The works [38] and [39] were the first to formulate the problem of influence spreading as a

discrete optimization problem. The authors consider two main diffusion models: Independent

Cascade (which we adopt in this work) and Linear Threshold. Works in these models include

two main optimization problems: maximizing the expected influence with constraints on the

seed set (usually size), and minimizing the seed set (according to some measurement) to

achieve a target expected influence. These problems are at least NP-hard [39]. In [14], it

was shown that computing the expected influence is #P-hard.

The approach proposed by [38], using a submodular set function and greedy heuristic,

gives a (1 − 1/e − ε)-approximation to maximizing the expected influence problem. The

error ε is due to Monte Carlo estimation of the expected influence, which is the main issue

in practice, where large real world graphs discourage excessive sampling. Borgs et al. [7]

propose an algorithm with a nearly optimal theoretical runtime of O((m + n)kε−2 log n)

while retaining the same approximation guarantee. The technique is to sample reversed

influence, which is adopted and improved upon in other works, e.g., [68], [67], [54]. While

reversed influence sampling has a theoretical guarantee for the expectation problem, it is

not extendable to our probabilistic Mδ(I(S)). Another approach, proposed in [50], is to

47



CHAPTER 3. INFLUENCE MAXIMIZATION

estimate expected influence as a Riemann sum, using O(nε2polylog(n)) samples which can

be implemented in parallel by using MapReduce.

Other models are also studied, for example, fixed threshold models [12], [33], time-

restricted diffusion model [34], [13], [18], continuous-time diffusion model [20], and diffusion

in dynamic network [71].

The work closest to ours is presented by Zhang et al. [74]. They introduce the Seed

minimization with probabilistic coverage guarantee (SM-PCG) problem: find the smallest

seed set S that ensures that Pr[I(S) ≥ η] ≥ P , where η and P are parameters. They also

give an additive approximation to the minimum seed set size needed for given η, P , and show

that the solutions achieve similar expected influence, but with the additional guarantee on

the probability. They show that the size of the output seed set, compared to the optimal one,

incurs both a multiplicative error of (lnn+O(1)) and an additive error of O(
√
n), under the

assumption that the standard deviation of the influence is O(
√
n). In contrast, our goal is

different — we want to maximize influence with a probabilistic guarantee, with a constraint

on the seed set size. Our multi-criteria approximation does not incur an additive error and

does not rely on assumptions about the distribution. There are two limitations of their work.

First, the additive approximation is O(
√
n), which can be quite large. In contrast, influence

maximization has typically been studied for bounded seed set sizes, which, ideally, should be

small. Second, the achievable influence η is not known a priori, and so the algorithm would

have to be run for multiple η values.
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3.2 Preliminaries

3.2.1 Model and Problem Definition

Consider a graph G with n nodes and m directed edges. This graph models a network of

influence, where an edge (u, v) has a weight (probability) 0 ≤ p(u, v) ≤ 1, indicating how

likely u influences v. The problem of interest is to analyze how influence is propagated in

the network. We use the well-studied Independent Cascades (IC) model with discrete time

to model the spread of influence which we explain below [38].

At any given time t, the nodes have one of three states: active, newly active, inactive. At

time t, let At be the set of active nodes, St be the set of newly active nodes, and the rest be

inactive. Each node u ∈ St can activate each of its inactive neighbors v with a probability

p(u, v). Let Ut be the set of nodes activated in this step. At time t + 1, At+1 = At ∪ Ut,

and St+1 = Ut. Starting from an initial configuration of a seed set S = S0, we apply the

process until time τ where Uτ = ∅, indicating no new nodes can be activated. We denote

I(S) = |Aτ | as the influence of the set S. More generally, we have a weight wv for each node

v, and w(I(S)) =
∑

v∈Aτ wv is the total weight of the influence set I(S). For simplicity, we

will focus on the unweighted version of the problem; all our results hold for the weighted

version as well, with natural changes in bounds. We note that I(S) is a random variable

that depends on S (and the underlying diffusion process).

As mentioned in Section 3.1, the MaxExpInf problem, maximizing E[I(S)], is a coarse

optimization. In particular, it does not give probabilistic guarantees on the influence of the

chosen seed set. To get a better idea of I(S), we may need to estimate the variance, or even

to acquire the distribution of I(·). However, this task is usually quite difficult and costly.

Here, we propose another measure which could be more useful: given a threshold proba-
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bility δ, find a seed set S such that the δ-quantile value of I(S) is maximized. This measure

gives direct probabilistic guarantees on the random variable I(S).2 More formally, for some

set S, and a threshold δ, define the following measure:

Mδ(I(S)) = max{a|Pr[I(S) ≥ a] ≥ δ}. (3.1)

The new optimization problem, referred to as MaxProbInf is defined in the following

manner: given an instance (G = (V,E), B, w, δ), find a (seed) set S such that we:

maximize Mδ(I(S))

subject to
∑
i∈S

wi ≤ B.
(3.2)

The goal of this work is to study the above optimization problem and design algorithms for

it.

3.2.2 Comparison with MaxExpInf

As mentioned, the standard influence maximization problem, MaxExpInf, is defined as

follows [39]: given an instance (G = (V,E), k), find a set S ⊆ V of size at most k such that

E[I(S)] is maximized.

A natural question is whether one could find a solution to the problem of maximizing

Mδ(I(S)), i.e., MaxProbInf by solving MaxExpInf. We show below that, in general, the

solutions of these two problems can be quite different.

Lemma 17. There exist instances (G, k, δ), for which E[I(S∗)]
Mδ(I(S∗))

is arbitrarily large, where S∗

2Note that one can obtain a one-sided probability bound from expectation using Markov’s inequality; but
this is usually quite weak.
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is an optimum solution to the MaxExpInf problem.

Proof. Consider the following graph G = (V,E): we have r cliques C1, . . . , Cr. Let |Ci| = C

for all i. There is a vertex s which has edge (s, vi) for a specific vertex vi ∈ Ci. The edges

in the cliques Ci all have probability 1. The edges (s, vi) all have probability p = 2/r.

We consider k = 1. Then, E[I(s)] = prC = 2C. For a vertex v ∈ Ci for any i,

E[I(v)] ≤ C + p2rC ≤ C + 2pC < 2C if p < 1/2, which happens if r is large enough.

Therefore, the optimum solution to MaxExpInf(G, 1) is S∗ = {s} and E[I(S∗)] = 2C.

Next, consider the MaxProbInf instance (G, 1, 0.9). For v ∈ Ci, I(v) ≥ C. How-

ever, note that Pr[I(s) = 1] = (1 − p)r = (1 − 2
r
)r > 0.1 for r ≥ 10. Therefore, for

δ = 0.9, Mδ(I(S∗)) = 1. This implies for the instance (G, 1, 0.9), the solution computed

using MaxExpInf (ignoring δ) is arbitrarily bad, compared to the optimum solution to the

MaxProbInf objective. �

3.2.3 Hardness

We observe that MaxProbInf is NP-hard to approximate within a factor of (1 − 1/e),

which is similar to the hardness of the MaxExpInf problem.

Lemma 18. It is NP-hard to obtain an approximate solution to the MaxProbInf problem,

within a factor of (1− 1/e).

Proof. The proof is by a reduction from MAXIMUM COVERAGE. An instance of this

problem is a ground set U = {u1, . . . , un}, a collection of subsets S1, . . . , Sm of U , and

parameter k. The objective is to select a set of k subsets, whose union has the maximum

size – this is NP-hard to approximate within a factor of (1− 1/e).

We construct the same reduction as in [38]. We construct the graph G = (V,E) in the

following form. We have V = L ∪ R, where L has m nodes, corresponding to the subsets,
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and R has n nodes, corresponding to the elements in U . If ui ∈ Sj, there is a directed edge

from the node corresponding to Sj in L to the node corresponding to ui in R. All edges have

diffusion probability 1.

Therefore, for a subset S ⊆ L of seeds, I(S) equals the union of the corresponding subsets.

We choose δ = 1. Therefore, there is a set S of size k with |I(S)| ≥ C with probability δ = 1

if and only if there is a solution to COVERAGE of size at least C.

3.3 A Multi-criteria Approximation Algorithm for Com-

puting MaxProbInf

Motivated by the hardness from Lemma 18, and the non-submodularity of Mδ(I(S)) [74],

we consider a multi-criteria approximation algorithm, which relaxes the seed set size k, as

well as the probability parameter δ. Specifically, we consider the following variant of the

MaxProbInf problem: find S such that Mδ(I(S)) ≥ γMδ′(I(S∗)) and |S| ≤ βk, where S∗

is an optimal solution, and γ < 1, β > 1 are the relaxation parameters, and δ′ > δ.

3.3.1 Using Submodularity and the Sample Average Approxima-

tion Technique

MaxProbInf is a stochastic optimization problem. We reduce this to a deterministic

problem using the sample average approximation technique: assume we have N samples

G1, . . . , GN of the graph G = (V,E); Gi = (V,Ei) is the ith sample, and is obtained by

picking each edge e ∈ E independently with probability p(e). Let Fi(S) denote the total

influence due to S in graph Gi – this equals the sum of the sizes of the components containing

nodes in S in sample Gi. For any S ⊆ V , let hδ(S) be the δ-quantile value estimated from
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these samples in the following manner: suppose the samples are ordered so that F1(S) ≥

. . . ≥ FN(S). Then hδ(S) = FbδNc(S). Let S∗ be the optimum solution that maximizes

Mδ(I(S)).

Lemma 19. Given δ ∈ (0, 1), then for any ε ∈ (0, 1), there exists N = Ω(n log n) such that

hδ(S) ∈ [Mδ(1+ε)(I(S)),Mδ(1−ε)(I(S))], for all S ⊆ V , with high probability.

Proof. Let us fix some set S. Let L be the number of Fi greater than the (1− ε)δ quantile,

and let R be the numberer of Fi greater than the (1 + ε)δ quantile. We have: µL = E[L] =

(1 − ε)δN and µR = E[R] = (1 + ε)δN . hδ(S) will fall outside the desired range if either

L > (1 + ε)δN or R < (1 − ε)δN . Let ES indicate such a failure event. The probability of

failure is:

Pr[ES] ≤ Pr[L > µL(1 +
2ε

1− ε
)] + Pr[R < µR(1− 2ε

1 + ε
)].

Applying a Chernoff bound yields

Pr[ES] ≤

(
e2ε/(1−ε)

(1+ε
1−ε)

1+ε
1−ε

)(1−ε)δN

+

(
e−2ε/(1+ε)

(1−ε
1+ε

)
1−ε
1+ε

)(1+ε)δN

.

Since the bases of the exponents are in the range (0, 1) for 0 < ε < 1, we have:

Pr[ES] ≤ e−cN for some c > 0. (3.3)

With 2n possible sets S, let E2n indicate the event that at least one set has the wrong hδ(.)

estimation. By the union bound:

Pr[E2n ] ≤ e−cN2n = e−cN+n ln 2. (3.4)
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Thus, when N = Ω(n log n), with probability of 1−O(n−1), all hδ(S) are correctly estimated.

It turns out approximating the function hδ(S) directly is hard; in particular, it is not

submodular, and thus a greedy strategy might not work. Instead, we will consider a slight

variant, using ideas from the result of Krause et al. [43] on the minimum cost submodular

cover problem. Let λ be a “guess” of Mδ(I(S∗)), where S∗ is an optimal solution. Define

the truncated function Fi,λ(S) = min{Fi(S), λ}, and

Fλ(S) =
1

N

∑
i

Fi,λ(S).

A critical observation is that the truncated functions are submodular, formally:

Lemma 20. (see [28]) The functions Fi,λ(S) and Fλ(S) are monotone and submodular.

We show that maximizing Fλ(S) is good enough for our purpose, due to the following

property.

Lemma 21. If hδ(S) ≥ λ, then Fλ(S) ≥ δλ. On the other hand, if Fλ(S) ≥ δλ, then

hδ/2(S) ≥ δλ/2.

Proof. The first part: let A = {i : Fi,λ(S) ≥ λ}. Since hδ(S) ≥ λ, it follows that |A| ≥ δN .

This implies

Fλ(S) =
1

N

∑
i

Fi,λ(S) ≥ 1

N

∑
i∈A

Fi,λ(S)

≥ 1

N
(λδN) = λδ.
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The second part: let B = {i : Fi,λ(S) ≥ δλ/2}. We have:

λ|B|+
∑
i 6∈B

δλ/2 ≥
∑
i∈B

Fi,λ(S) +
∑
i 6∈B

Fi,λ(S)

= Fλ(S)N ≥ δλN.

This implies

λ|B|+ (N − |B|)δλ/2 ≥ δλN,

so that

|B|λ(1− δ/2) ≥ Nδλ/2.

Therefore,

|B| ≥ Nδ/2

1− δ/2
≥ Nδ/2.

This implies hδ/2(S) ≥ δλ/2. �

Lemma 21 motivates the following strategy in order to maximize hδ(·) (which is sufficient

for solving MaxProbInf, due to Lemma 19): find S such that Fλ(S) ≥ δλ and cost(S) =∑
j∈S wj is minimized, where wj is the weight of node j. This is a variant of the minimum

cost submodular cover problem [27], which involves finding a minimum cost set S such that

F (S) = F (V ) for a submodular function F (·), where V is the universe.

Algorithm 1 describes SimpleGreedy, which guesses λ and greedily computes a set

Sλ. This algorithm is the same as that for the standard minimum cost submodular cover

problem, except that the stopping condition is Fλ(Sλ) ≥ δλ, instead of Fλ(Sλ) = Fλ(V ).

We show, however, that the same guarantee can be obtained by appropriately modifying the

analysis of the minimum cost submodular cover problem.
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Algorithm 1 Algorithm SimpleGreedy

1: function SimpleGreedy(G(V,E), w, δ′, n,N)
2: for each guess λ do
3: Sλ ← ∅
4: C ← δ′λ
5: while Fλ(Sλ) < C do
6: Pick node j that minimizes

wj
Fλ(Sλ∪{j})−Fλ(Sλ)

7: Sλ ← Sλ ∪ {j}
return Sλ = Sλ,δ′ that maximizes Fλ(Sλ)

For a constant δ′ ∈ (0, 1), let S∗δ′ = argmaxS,cost(S)≤khδ′(S), and λ∗δ′ = hδ′(S
∗
δ′).

Lemma 22. Let S∗δ′ and λ∗δ′ be as defined above. Let set Sλ be the solution returned by

algorithm SimpleGreedy for some λ, when the probability parameter is set to δ′. Then,

we have: (1) λ ≥ λ∗δ′, (2) Fλ(Sλ) ≥ λ∗δ′δ
′, and (3) cost(S) = O(ln (Nλ))cost(S∗).

Our proof of Lemma 22 is a variation of the proof by Wolsey [72]. For notational simplic-

ity, we drop the subscript λ in Fλ(S) below. Let ρj(S) = F (S ∪ {j})− F (S). First observe

that the following IP is feasible: (IP) min
∑

j wjxj such that for all S ⊆ V , with xj ∈ {0, 1}

we have
∑

j 6∈S ρj(S)xj ≥ C − F (S).

Lemma 23. The program (IP) is valid, i.e., the optimum solution SIP satisfies F (SIP ) ≥ C

and SIP has the minimum cost.

The dual program of the linear relaxation of (IP) is the following

(D) max
∑
S

(C − F (S))yS such that∑
S:j 6∈S

ρj(S)yS ≤ wj for all j

yS ≥ 0.

Observe that the algorithm actually picks element j which minimizes
wj
ρj(S)

. We construct an

approximate dual solution. Suppose the greedy algorithm picks elements {j1, . . . , j`}. Let
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Si = {j1, . . . , ji}. Define

θi =


wji

F (Si)−F (Si−1)
=

wji
ρji (Si−1)

, for i < `,

wj`
C−F (Si−1)

, for i = `.

Define

yS =


θ1, if S = S0 = ∅,

θi+1 − θi, if S = Si for 0 < i < `,

0, otherwise.

Observe that the dual solution ySi covers the cost of the solution S`:

∑
S

(C − F (S))yS =
`−1∑
i=0

(C − F (Si))ySi

=
`−1∑
i=0

(C − F (Si))(θi+1 − θi)

=
`−1∑
i=1

θi(F (Si)− F (Si−1)) + θ`(C − F (S`−1))

=
`−1∑
i=1

wji + wj` = cost(S`).

Next, we observe that the dual constraints are approximately feasible. First, consider any
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j ∈ V − S`. We have

∑
S:j 6∈S

ρj(S)yS =
∑̀
i=0

ρj(Si)ySi

= ρj(S0)θ1 +
`−1∑
i=1

ρj(Si)(θi+1 − θi)

=
`−1∑
i=1

θi(ρj(Si−1)) + θ`ρj(S`−1)

≤
`−1∑
i=1

wj
ρj(Si−1)− ρj(Si)

ρj(Si−1)
+ wj,

because θi ≤ wj
ρj(Si−1)

by construction, for each i ≤ `.

For x ∈ (0, ρj(∅)), define h(x) = 1
ρj(Si−1)

, if ρj(Si) < x ≤ ρj(Si−1). Let

δ = min
S:ρj(S)>0

ρj(S) = min
S:ρj(S)>0

F (S + j)− F (S) ≥ 1

N
.

Therefore,

`−1∑
i=1

ρj(Si−1)− ρj(Si)
ρj(Si−1)

=

∫ ρj(∅)

0

h(x)dx

≤
∫ δ

0

1

δ
dx+

∫ ρj(∅)

δ

1

x
dx = 1 + ln

ρj(∅)
δ
≤ 1 + ln(Nλ),

since ρj(∅) ≤ F (j) ≤ λ. This implies

∑
S:j 6∈S

ρj(S)yS ≤ (2 + ln (Nλ))wj.

Next, suppose j ∈ Sr for some r. Then, ρj(Sr) = F (Sr+1) − F (Sr) = 0. Let r′ < r be the
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largest index such that ρj(Sr′) > 0. In that case, the dual constraint for j can be written as

∑
S:j 6∈S

ρj(S)yS =
r′∑
i=0

ρj(Si)ySi

=
r′+1∑
i=1

θi(ρj(Si−1)− ρj(Si))

≤
r′+1∑
i=1

wj
ρj(Si−1)ρj(Si)

ρj(Si−1)
≤ 1 + ln (Nλ),

as before. Therefore, 1
α
y is a feasible solution, for α = 2 + lnNλ, which completes the proof

for Lemma 22. �

Finally, we put everything together to obtain an approximation to the MaxProbInf

problem.

Theorem 24. Let δ ∈ (0, 1) be a constant, and let k be a parameter. Let Soptδ denote

an optimum solution to the MaxProbInf problem for parameter δ, i.e., Mδ(I(Sopt)) ≥

Mδ(I(S ′)), for all |S ′| ≤ k. For any ε ∈ (0, 1), there exists N = Ω(n log n) such that if set S

is the solution computed by algorithm SimpleGreedy with parameter δ′ = 2δ/(1 − ε), we

have Mδ(I(S)) ≥ δ
1−εM2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))), and |S| = O(k log n) The running time of

SimpleGreedy is O(n2mk log2 n).

Proof. Using Lemma 22, for the unweighted case, cost(S) = |S|. Let S∗δ′ = argmaxS,|S|≤khδ′(S),

and λ∗δ′ = hδ′(S
∗
δ′) defined similarly. We have λ ≥ λ∗δ′ , and Fλ(S

′) ≥ λδ′. By Lemma 21, this

implies that hδ′/2(S) ≥ λδ′/2 ≥ λ∗δ′δ
′/2 = δ′

2
hδ′(S

∗
δ′).

By Lemma 19, we have Mδ′(1−ε)/2(I(S)) ≥ hδ′/2(S). Next, hδ′(S
∗
δ′) ≥ hδ′(S

opt
δ′ ), by def-

inition of S∗δ′ . Again, by Lemma 19, we have hδ′(S
opt
δ′ ) ≥ Mδ′(1+ε)(I(Soptδ′ )). Combining all

these, we get

Mδ′(1−ε)/2(I(S)) ≥ δ′

2
Mδ′(1+ε)(I(Soptδ′ )).
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Setting δ′ = 2δ/(1− ε), we get the approximation guarantee

Mδ(I(S)) ≥ δ

1− ε
M2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))).

The algorithm may need to check all n possible values of λ, each check constructs a set of

size O(k log n). The number of samples N = Ω(n log n) is sufficient for high probability of

success, by adjusting the union bound from equation 3.4:

Pr[Failure] ≤ e−cNn2nk log n = ke−cN+lnn+n ln 2+ln logn = 1−O(n−1).

The complexity for one sample is O(m), and the total time complexity is: O(Nnmk log n) =

O(n2mk log2 n).

3.3.2 Fast Implementation of Algorithm MultiCritMdelta.

The pseudocode is shown in Algorithm 2. To improve the running time, we use binary

search as follows. With a given λ, an iteration decides if it is feasible to construct S such

that Fλ(S) = C = δλ, with a log factor constraint on the size of S. If it is the case, λ is a

feasible value, and S is a feasible solution for maxFλ(·) problem. Starting with λ = n/2, the

binary search increases or decreases λ as per the feasibility. The output is a feasible value

and the respective set. Lemma 22 shows the approximation guarantee of this algorithm.
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Algorithm 2 k-Influence set by MultiCritMdelta

1: function MultiCritMdelta(G(V,E), k, δ, n,N)
2: l← 1
3: h← n
4: for step← [1 . . . log n] do
5: S ← ∅
6: λ← (l + h)/2
7: C ← δλ, and F (S)← Fλ(S)
8: while F (S) < C do
9: Pick node j that minimizes

wj
F (S∪{j})−F (S)

10: S ← S ∪ {j}
11: feasible if |S| ≤ k ln(Nλ) : l← λ
12: infeasible if |S| > k ln(Nλ): h← λ

return S

3.4 Computing Mδ(I(S)) for a Fixed Set S

In this section, we show how to compute an approximation of Mδ(I(S)) for a fixed set S,

efficiently. It is known that computing Mδ(I(S)) exactly even for a fixed set S is #P-Hard

[74]. However, we show that we can estimate Mδ(I(S)) by using Monte-Carlo sampling.

3.4.1 Monte-Carlo Approximation of Mδ(.)

Firstly, it will be useful to consider the following general problem of estimating Mδ(.) for a

random variable that takes values between 0 and 1 (both included).

0 ≤ X ≤ 1 a random variable,

0 < δ ≤ 1 a probability threshold,

find Mδ(X) = sup{a|Pr[X ≥ a] ≥ δ}.

(3.5)

We define Mδ(X) in a way that is valid for both discrete and continuous distributions.

Indeed, let FX be the cumulative distribution of X; if FX is continuous, we can define:

Mδ(X) = sup{a|Pr[X ≥ a] = δ}, and the solution is given by: Mδ(X) = F−1
X (1− δ).
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In general, we cannot afford finding the distribution function, thus, we apply a Monte

Carlo sampling to give an (ν, ε, ζ)-approximation of Mδ(X).

Definition 17. M̃δ(X, ν, ε, ζ) is an (ν, ε, ζ)-approximation of Mδ(X) if the following inequal-

ity holds, with (confidence) probability 1− ζ,

Mδ+η(X)− ν ≤ M̃δ(X, ν, η, ζ) ≤Mδ−η(X) + ν. (3.6)

Notice that both the approximation errors η and ν are additive, i.e., absolute values. In

the general setting, an additive error is less desirable than a multiplicative error, since we

do not know the order of the estimated parameter in advance. We need the absolute errors

for the design and analysis of our efficient sampling method, and we observe that this is not

an issue for the specific influence problem. F irst, δ is a given constant, and we can convert

between multiplicative and additive errors, ε = η
δ
, or η = δε. Second, for the influence

problem, X is a discrete random variable in [0, n], thus we can set ν = 1
n

to have a tighter

bound.

We now describe the estimation by sampling. The idea is to perform binary search to

find the best value of a, the approximation. Initially, we guess a = 1/2, then verify if

Pr(X ≥ a) ≥ δ. If the test is confirmed, we make the next guess as a = 3/4, otherwise, we

guess a = 1/4. Continue until the step of the guess is smaller than ν.

Consider one iteration, with some fixed a; we need an estimation for the unknown prob-

ability p = Pr(X ≥ a). We proceed similarly to the proof of Lemma 19, with a different

form of Chernoff bound, which is more convenient to bound the number of samples. Take

N samples X1, X2, · · · , XN , where N will be specified later. Define N indicator random

variables Zi, where Zi = 1 if the sample Xi ≥ a, 0 otherwise. Let Z =
∑N

i=1 Zi. We have
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µZ = E[Z] = Np. Using a Chernoff bound, we bound the empirical probability p̄ = Z
N

,

within some multiplicative error κ:

Pr(|Z −Np| ≥ κNp) ≤ 2exp

(
− κ2

2 + κ
Np

)
⇐⇒ Pr (|p̄− p| ≥ κp) ≤ 2exp

(
− κ2

2 + κ
Np

)
.

With the desired error η = κp ⇐⇒ κ = η
p
, the tail bound becomes:

Pr (|p̄− p| ≥ η) ≤ 2exp

(
− η2

2p+ η
N

)
≤ 2exp

(
−η

2N

3

)
. (3.7)

Given |p̄ − p| ≥ η, clearly we have: p̄ − η ≥ δ =⇒ p ≥ δ, and p̄ + η < δ =⇒ p < δ.

This method leaves an undecided region when p̄ − η < δ ≤ p̄ + η. As we allow an η error

around δ, we can simplify the decision rule:

If p̄ ≥ δ =⇒ increase a;

If p̄ < δ =⇒ decrease a.

(3.8)

Algorithm 3 shows the pseudo code for the approximation. The following lemma states

the guarantee bound as per Equation (3.6).

Lemma 25. Assuming Algorithm 3 is successful, it returns an (ν, η, ζ)-approximation of

Mδ(X).

Proof. The decision rule in Equation (3.8) ensures this invariance: if the guess increases then

at least p ≥ δ − η, if the guess decreases then at least p ≤ δ + η. This invariance holds for

every iteration. At the final iteration, the bounds are offset by ±ν by the precision of the

binary search, taking the conservative case, we have the approximation (3.6).
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The next lemma states the number of samples required for succeeding with probability

at least 1− ζ.

Lemma 26. Algorithm 3 is successful with probability of at least (1− ζ) using

N ≥ 3

η2
log ν−1(ln(log ν−1) + ln(2ζ−1)) samples.

Proof. Let Niter be the number of samples in one iteration. From the bound in Equation

(3.7), using a union bound for log 1
ν

iterations, we require:

2exp

(
−η

2Niter

3

)
log

1

ν
≤ ζ

⇐⇒ η2Niter

3
≥ ln log

1

ν
+ ln

2

ζ
.

Thus the total number of samples is:

N = Niter log
1

ν
≥ 3

η2
log

1

ν

(
ln log

1

ν
+ ln

2

ζ

)
.

3.4.2 Approximation of Mδ(I(.))

We now apply the binary search to the Mδ(I(.)) approximation. Since influence is a discrete

random variable bounded by the size n of the graph, we set ν = 1/n, to obtain the following

corollary.

Corollary 27. Given a graph with n nodes, and seed set S, for given parameters δ, η, and

ζ. Using N ≥ 3
η2

log n(ln log n + ln(2ζ−1)) samples, Algorithm 3 finds an approximation of
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Algorithm 3 Approximate Mδ(X) with confidence (1− ζ)

1: function MDelta(X[0, 1], δ, ν, η = εδ, ζ)
2: N ← 3

η2
log ν−1(ln(log ν−1) + ln(2ζ−1)

3: l← ν
4: h← 1
5: while h− l ≥ ν do
6: mid = (h+ l)/2
7: X1, · · · , XN ← samples of X
8: p̄ = 1

N
(#Xi, Xi ≥ mid)

9: if p̄ ≥ δ then l← mid
10: else h← mid

return l

Mδ(I(S)) with success probability 1− ζ, such that: Mδ+η(I(S)) ≤ M̃δ(I(S)) ≤Mδ−η(I(S)).

Proof. Direct application of Lemma 25 with ν = 1/n.

As an example, for the approximation to succeed with high probability, we set ζ = 1/n,

and the number of samples required will be N = O(log2 n).

Combining the binary search method with the multicriteria approximation, we have the

MultiCritMdelta as listed in Algorithm 2, with the following approximation guarantee

and runtime complexity.

Theorem 28. Let δ ∈ (0, 1) be a constant, and let k be a parameter. Let Soptδ denote

an optimum solution to the MaxProbInf problem for parameter δ, i.e., Mδ(I(Sopt)) ≥

Mδ(I(S ′)), for all |S ′| ≤ k. For any ε ∈ (0, 1), there exists N = O(log2 n) such that, if set S

is the solution computed by algorithm MultiCritMdelta with parameter δ′ = 2δ/(1−ε), we

have, with high probability, Mδ(I(S)) ≥ δ
1−εM2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))), and |S| = O(k log n).

The running time of MultiCritMdelta is O(mk log n(lnn+ ln lnn)).

Proof. Let AS,λ denote the event that the probability Pr[I(S) ≥ λ] can be estimated with

absolute error η = δε. The correctness of the algorithm depends on the validation of the
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feasible λ, which requires all events AS,λ to succeed for all S, λ during the course of the

algorithm.

Assume M = o(n), the number of samples taken in the for-loop of Algorithm 2. By the

greedy construction of the feasible S, the algorithm needs to check O(n) candidate sets. The

number of iterations is the relaxed size of S, |S| = O(k ln(Mλ)) = O(k ln(n2)). Thus the

total number of events is: O(2nk lnn log n). From Equation (3.7), we take a union bound

for the failure of all events:

2exp(−η
2M

3
)O(2nk lnn log n) ≤ ζ.

For success w.h.p., we set: ζ = 1/n

−η
2M

3
≥ lnn+O(lnn+ ln log n)

=⇒ M = O(
3

η2
(lnn+ ln log n)).

We verify that M = o(n) as previously assumed. Thus the total number of samples is: N =

O( 3
η2

log n(lnn + ln log n)) = O( 3
ε2δ2

log n(lnn + ln log n)). The running time is dominated

by the complexity of the sampling, which is Nm = O(mk log n(lnn + ln log n)) where m is

the number of edges.

3.5 Empirical Evaluation

We examine the empirical performance of MultiCritMdelta on real world social networks.

For a base line method, we also implement ProbInf-Heu, which simply constructs the seed

set greedily, using Algorithm 3 to maximize Mδ(I(.)) in every step. Also, we compare the
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quality of the result seed sets with the solutions of MaxExpInf, maximizing influence

expectation. Beside the naive direct sampling method of MaxExpInf [39], referred to

as NaiveInf, we use DSSA [54], one of the state-of-the-art algorithms, based on reverse

sampling [7]. There are other efficient algorithms, see [7, 14, 68, 67] for example. However,

we reemphasize that our problem is different from maximizing the influence expectation, and

thus the running time comparison is for reference only.

We implemented MultiCritMdelta, ProbInf-Heu, and NaiveInf in C++ with

OpenMP. The source code is available at https://github.com/ngpham/probinf. For DSSA,

we used the implementation made public from [54]. The execution is carried out on a machine

with 24 cores and 16GB of memory.

We study the following questions. (1) How does Mδ(I(S)) depend on |S| and δ? (2) How

are the actual execution times compared to one another and to the theoretical bounds? (3)

How does the solution to our algorithms compare with that to the MaxExpInf problem,

in terms of both the ExpInf and Mδ(I(.)) objectives?

3.5.1 Experimental Setup

Datasets

We use four social network datasets, which were crawled from public sources, as provided

by [46]. The basic statistics of the datasets can be found in Table 3.1.

Parameters of the Algorithms

In NaiveInf, we used 104 samples, following the claim in [39] that these many samples

suffice for datasets of this scale, although the worst case bound is O(n2) samples. In DSSA,

we set the desired multiplicative error to 0.1 (notice that for large input, in scale of millions
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Table 3.1: Datasets.

Dataset Nodes Edges Diameter

Facebook 4039 88234 8
Twitter 81306 1768149 7
Slashdot 77360 905468 10
Pokec 1632803 30622564 11

and over, it is recommended to set this factor to 0.5 [54]).

For our algorithms, ProbInf-Heu and MultiCritMdelta, we take η = 0.1, which is

the additive error for the probability guarantee δ (as discussed in Section 3.4). Following

Theorem 27, we choose the number of samples to be 100× log(n), where n is the number of

nodes of the input graph. Finally, recall that MultiCritMdelta can relax the size of the

seed set by a multiplicative factor of ln(n). In order to make the comparison reasonable, we

run it with a smaller budget, so that the final seed set size (after the relaxation) is within the

bound of k; this follows the approach in other works which obtain bicriteria approximation

results, e.g., [43].

Model parameters.

We use the Independent Cascade (IC) model, with the standard setting widely used in

the literature, where edge activation probability is set to the reverse of its incident node

degree. We also experiment with activation probabilities of 0.01, 0.05, 0.1, and two random

settings, where the activation probability of each edge is picked uniformly randomly in the

range [0.001, 0.05] and [0.001, 0.01]. This setup is to understand the effect of sparsity of the

activation.

For ProbInf-Heu and MultiCritMdelta, we conduct two sets of experiments. The

first one is configured with probability guarantee δ in {0.2, 0.5, 0.7, 0.9}. We observe that
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the resulting seed set qualities do not vary much with δ (consistent with the observation in

[74]), and, therefore, report most of our results for δ = 0.7 because of limited space. In the

second set of experiments, we try ProbInf-Heu and MultiCritMdelta with extreme

values of δ, which are very close to 0 or 1.

For the constraint on size of the seed set, k, we experiment with all values in [0, 40].

It is known from the literature (e.g., [54]) that the influence is quickly saturated when one

increases k, such that increasing the seed set does not provide significant gain.

3.5.2 Results and Evaluation

We compare the algorithms by asserting the quality of the output seed sets on the original

graph. Recall from Section 3.4.1 that knowing the distribution function would give us com-

plete understanding of I(.), and Mδ(I(.)) can be inferred. Thus, with (fixed) result seed sets,

we compute and compare the expected influences, and the empirical cumulative distribution

functions (ECDF) [69].

Comparison with MaxExpInf Solution.

The experimental results, with edge activation randomly in the range [0.001, 0.05], are com-

pared according to expected influence (shown in Figure 3.1 and Figure 3.2), and probabilistic

guarantee (shown in Figure 3.3 and Figure 3.4). Since DSSA has the same estimation guar-

antee as NaiveInf, we will refer to these solutions as MaxExpInf. The seed sets are com-

puted by their respective algorithms, where both ProbInf-Heu and MultiCritMdelta

has δ set to 0.7.

In Figures 3.1 and 3.2, we observe that MultiCritMdelta gives the best seed sets,

while ProbInf-Heu gives comparable or better sets, versus MaxExpInf solutions. The
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(a) Facebook dataset.
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(b) Twitter dataset.
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Figure 3.1: Comparison of average influence computed by three algorithms, with edge activation
randomly in 0.001 to 0.05. ProbInf-Heu and MultiCritMdelta are invoked with the guarantee
probability δ = 0.7. Results are for the Facebook and Twitter datasets.

exception is the result for the Pokec dataset, Figure 3.2(b), where all algorithms give seed

sets with similar expected influence.

The observation for the Pokec dataset that MaxProbInf solutions do not have signif-

icant advantage over MaxExpInf solutions, yields some interesting though. As per the

existential proof of Lemma 17, we infer that there could be graphs such that MaxProbInf

and MaxExpInf solutions are close to each other. The experimental result on the Pokec

dataset implies that this is one such graph.

Probabilistic Guarantees

We study the probabilistic guarantees of the different algorithms through empirical cumula-

tive distribution functions (ECDF) [69]. We will only report the results for the case where

edge activation is picked randomly in the range [0.001, 0.05], with δ = 0.7. We take the
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(a) Slashdot dataset.
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(b) Pokec dataset.
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Figure 3.2: Comparison of average influence computed by three algorithms, with edge activation
randomly in 0.001 to 0.05. ProbInf-Heu and MultiCritMdelta are invoked with the guarantee
probability δ = 0.7. Results are for the Slashdot and Pokec datasets.

solutions for k = 40 and fit their ECDF’s by kernel density estimation with a Gaussian

kernel. These are plotted in Figures 3.3 and 3.4. The measurement Mδ(.) can be asserted

by the ECDF at probability (1 − δ). For example, with δ = 0.7, in Figure 3.3(b), Multi-

CritMdelta seed set and ProbInf-Heu seed set is guaranteed to have an influence higher

than 12100 for 70% of times, which is better than the MaxExpInf seed set corresponding

value of 10800. Generally, the further the ECDF to the right, around probability (1 − δ),

the higher the quality of the seed set as per Mδ(.).

Again, we observe that the Pokec dataset does not benefit much from probabilistic guar-

antee solution. In this dataset, MaxExpInf solution already has similar probabilistic guar-

antee, compared to that of MultiCritMdelta and ProbInf-Heu.
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(a) Facebook dataset.
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(b) Twitter dataset.
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Figure 3.3: Empirical cumulative distribution function (ECDF) of influence of seed sets of size 40.
For ProbInf-Heu and MultiCritMdelta algorithms, the seed sets are optimized with δ = 0.7.
Edge activations are random values in the range [0.001, 0.05]. The further to the right around
probability of 1 − δ = 0.3, the better the guarantee influence. Results are for the Facebook and
Twitter datasets.

Effects of Varying δ.

This is only applied to ProbInf-Heu and MultiCritMdelta. Figures 3.5 and 3.6 show

the influence guarantee computed by the MultiCritMdelta and ProbInf-Heu algo-

rithms for δ ∈ {0.005, 0.01, 0.05, 0.1, 0.95, 0.995}, with k ∈ {15, 30, 40}. We observe that,

for a fixed seed set S, the Mδ(I(S)) value from ProbInf-Heu decreases steadily with δ,

with a sharp decrease when δ is closer to 1. In contrast, the Mδ(I(S)) value from Multi-

CritMdelta is quite insensitive to δ. Further, ProbInf-Heu has a higher Mδ(I(S)) than

MultiCritMdelta for small values of δ.

In particular, MultiCritMdelta gives a good solution in most of the scenarios, except

when δ is close to 0 or 1, due to the 1/2 factor in approximating δ.
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(a) Slashdot dataset.
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(b) Pokec dataset.
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Figure 3.4: Empirical cumulative distribution function (ECDF) of influence of seed sets of size 40.
For ProbInf-Heu and MultiCritMdelta algorithms, the seed sets are optimized with δ = 0.7.
Edge activations are random values in the range [0.001, 0.05]. The further to the right around
probability of 1 − δ = 0.3, the better the guarantee influence. Results are for the Slashdot and
Pokec datasets.

Execution Time.

One of the main advantages of the MultiCritMdelta and ProbInf-Heu algorithms is

that their execution times are much smaller compared to NaiveInf, while the quality of the

solutions obtained is similar or better. In fact, the MultiCritMdelta algorithm is also

faster than ProbInf-Heu. The execution time depends on the number of samples. Each

sample complexity depends on the density of the graph and the edge activation probability.

We note that both MultiCritMdelta and ProbInf-Heu algorithms need significantly

fewer samples compared to that of the algorithm of [39]. We also observe that the Mul-

tiCritMdelta asymptotic running time is close to that of DSSA, especially when the

activation is dense. DSSA has the advantage that it can stop early, by verifying the current
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Figure 3.5: Varying δ, with random edge activation in the range [0.001, 0.01]. For each algorithm,
we report the guarantee influence of the output seed sets of size 15, 30, and 40. Results are for the
Facebook and Twitter datasets.

estimation error, thus, for networks with low activation, it achieves the best runtime. Mul-

tiCritMdelta, on the other hand, has to ensure the probabilistic guarantee and does not

check for early termination.

We notice that the variation of δ does not have much affect on the running time, and

only report results for δ = 0.7, as shown in Table 3.2. Also, DSSA runs out of memory on

the Pokec dataset, with the most dense activation setting (0.1). We believe this is due to

our hardware limitation of 16GB memory.

3.6 Conclusion

Our results on the MaxProbInf problem suggest that the quality of solutions to influence

maximization can be improved by adding probabilistic requirements. We developed the

first rigorous approximation algorithms with guarantee bound and efficient running time.
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Figure 3.6: Varying δ, with random edge activation in the range [0.001, 0.01]. For each algorithm,
we report the guarantee influence of the output seed sets of size 15, 30, and 40. Results are for the
Slashdot and Pokec datasets.

Our experimental results show that our algorithms outperform the naive greedy algorithm

for the MaxExpInf problem by an order of magnitude, while at the same time there is

improvement in the expected influence as well. The results suggest that optimizing based on

the MaxProbInf criterion using the MultiCritMdelta algorithm can be a better way

to solve the influence maximization problem.

One possible improvement is to incorporate the reverse sampling method [7] and its

variation, for example, the early stop detection [54]. It would be good to quantify which

theoretical bounds and guarantees can be achieved for Mδ(I(.)) following that direction.
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Table 3.2: Execution Time, for k = 40, δ = 0.7 (applied for ProbInf-Heu and MultiCrit-
Mdelta), and various edge activation probabilities. The random probability is uniformly
in the range [0.001, 0.05]. Execution time is measured in seconds.

Dataset Algorithm
Activation

1/deg rand 0.01 0.05 0.1

Facebook

NaiveInf 144 150 138 162 182
ProbInf-Heu 19 24 22 24 26
DSSA 3 3 5 5 7
MultiCritMdelta 8 9 9 9 10

Twitter

NaiveInf 3319 3483 3014 4038 4216
ProbInf-Heu 662 690 634 799 879
DSSA 193 216 221 223 230
MultiCritMdelta 225 242 249 252 260

Slashdot

NaiveInf 1913 1906 1825 2130 2517
ProbInf-Heu 411 402 383 438 506
DSSA 83 80 84 92 96
MultiCritMdelta 227 225 223 232 242

Pokec

NaiveInf 58685 59445 53703 68646 75530
ProbInf-Heu 19921 20067 16951 19723 22600
DSSA 5118 5580 5972 6233 —
MultiCritMdelta 6436 6553 6537 6850 6670
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Conclusion and Future Directions

In this dissertation, we conducted two studies in network-related problems, under the theme

of randomized algorithm and probabilistic analysis. The problems seem far apart, but the

underlying principles are connected. Both are captured by the graph model, though with

different semantics.

The first problem, Smoothed Analysis, focuses on the theoretical aspect of distributed al-

gorithms. We showed improved asymptotic bounds by adding some randomness to the topol-

ogy of a distributed system. For the MST algorithm, we designed a randomized distributed

algorithm that almost matches the lower bound. This still leaves a gap that is interesting to

reduce. Since the smoothed model is newly proposed (to the best of our knowledge), there

would have many open research problems, from studying other fundamental algorithms to

considering different flavors of smoothing.

The second problem, Influence Maximizing with Probabilistic Guarantee, is more balanced

on both theoretical analysis and empirical study. We proposed the probabilistic measurement

for the network influence problem, being unaware of the previous work by Zhang et al. [74] at

first. However, our work is still significantly different and novel. Our proposed optimization
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problem is more natural, and our assumption is more relaxed (does not require constraint

on the variance of the unknown influence). Compared to state-of-the-art algorithms, which

do not have probabilistic guarantees, our algorithm has the same order of execution time.

Since there are many other models for the network influence problem, there are multiple

open questions on applying the probabilistic guarantee.

Another direction is to consider the network influence in the distributed setting, for

example, using distributed random walks to estimate the influence (and the probabilistic

guarantee). To gain more performance, one possibility is to use the k-machine model [55].
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Appendix A

Proofs

A.1 Alternative Proof for Lemma 6

Proof. We will show that, there exist constants c > 0 and 0 < α, β < 1, such that:

Φ(R(G)) ≥ c(1−β)(1−α)
4(1+α)

.

Let the selection run for c logn
ε

rounds. For a node u, let r(u) indicate the number of

added edges by u. We have E[r(u)] = c log n. We will show that, with high probability:

∀u ∈ V, (1− α)c log n ≤ r(u) ≤ (1 + α)c log n (A.1)

Let E1 be the bad event, that at least one node added too few or too many edges outside

the above range. Using a standard Chernoff bound to bound the probability that, for one

particular node u, r(u) falls outside the above range and then union-bounding over n nodes,
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we have:

Pr[E1] ≤ n (Pr[r(u) ≤ (1− α)c log n] + Pr[r(u) ≥ (1 + α)c log n])

≤ n

(
e−

α2c logn
3 + e−

α2c logn
2

)
≤ exp

(
lnn+ ln 2− α2c log n

3

)
= o(n−1), (A.2)

for suitable constants α and c.

We note that R(G) is essentially equivalent to the Erdős-Renyi random graph G(n, p)

where p = Θ(log n/n) is the probability of having an edge between any pair of nodes. Note

that, however, there are slight differences — R(G) is a multi-graph unlike G(n, p). Since

G(n, p) with p = Θ(log n/n) is known to be an expander and hence has constant conductance

and O(log n) mixing time, here we give a self-contained proof for the conductance

Now we bound the conductance Φ(R) of the graph R(G), using the definition in equation

1.10:

Φ(R(G)) = min
S⊂V,|S|≤n

2

|∂S|
min(Vol(S),Vol(S̄))

(A.3)

Fix a subset S of V where |S| = k ≤ n
2
, and bound the conductance ϕ(S):

ϕ(S) =
|∂S|

min(Vol(S),Vol(S̄))
(A.4)

We consider the numerator and the denominator of ϕ(S) separately. For the denominator,

we have: Vol(S) ≤ 2k(1 + α)c log n and Vol(S̄) ≤ 2(n− k)(1 + α)c log n. Thus:

min(Vol(S),Vol(S̄)) ≤ 2k(1 + α)c log n (A.5)
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Consider the numerator, and recall that each node u has r(u) edges where the destination

of each edge is chosen uniformly at random. Using the bound in equation A.1, we have:

E[|∂S|] ≥ min

(
k(1− α)c log n · (n− k

n
), (n− k)(1− α)c log n · (k

n
)

)
=
n− k
n

k(1− α)c log n (A.6)

Since k ≤ n
2
, we have:

E[|∂S|] ≥ k

2
(1− α)c log n (A.7)

Let µS = E[|∂S|]. Next, similar to the steps for equation A.1, we will bound |∂S|. For

some constant 0 < β < 1, we need to show that, with high probability:

|∂S| ≥ (1− β)µS (A.8)

The Chernoff bound gives:

Pr[|∂S| < (1− β)µS] ≤ e−
β2µS

2 (A.9)

Let Ek2 be the bad event that at least one of
(
n
k

)
set has less than (1− β)µS boundary edges.

Using this fact (and k ≥ 1):

(n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
≤ (ek lnn),

and the union bound gives:

Pr[Ek2 ] ≤ exp(−β
2µS
2

+ k lnn) ≤ exp(−β
2k

4
(1− α)c log n+ k lnn) (A.10)
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We can choose the constants c, α, β such that:

Pr[Ek2 ] ≤ e−2 lnn (A.11)

Let E3 be the bad event that at least one bad event Ek2 happens, for all 1 ≤ k ≤ n
2
. Using

the union bound:

Pr[E3] ≤
n/2∑
k=1

Pr[Ek2 ] ≤ elnn−ln 2e−2 lnn = o(n−1) (A.12)

Thus, from equations A.5 and A.8, for all S where |S| ≤ n
2
, we have, with high probability

(for suitably chosen constants c, α, β):

ϕ(S) ≥
(1− β)k

2
(1− α)c log n

2k(1 + α)c log n
=
c(1− β)(1− α)

4(1 + α)
(A.13)

It follows that Φ(R(G)) is constant.

Since R(G) has constant conductance, it follows that (see, e.g., [36, 49]) R(G) has fast

mixing time: τmix(R) = O(log n).
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