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Abstract 

Measuring respiratory effort is critical when diagnosing sleep disordered breathing.  In 

this thesis work, the use of detecting respiratory effort by using the movement artifact 

found in the electromyographic (EMG) and electrocardiographic (ECG) recordings used 

in polysomnography was investigated.  The resulting signals were compared to effort 

measured with respiratory inductance plethysmography (RIP).  The EMG and ECG signals 

were filtered using the Savitzy-Golay method of smoothing and differentiation of data by 

simplified least squares to extract the movement artifact.  The validity of each resultant 

waveform was measured using a Pearson product moment correlation coefficient and were 

studied to determine the most reliable signal.  A total of 12 subjects were recorded in a 

clinical setting, all being evaluated for obstructive sleep apnea.  The ability to detect 

respiratory effort using movement artifact was found to perform best in the masseter.  This 

work shows that movement artifact recovered from the EMG and ECG may be a reliable 

alternative for the detection of respiratory effort. 
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 – Introduction 

 

This chapter introduces the background of the disease state that polysomnography 

(PSG) sets out to diagnose.  A review of routine PSG acquisition and analysis is discussed.  

The chapter concludes with the hypothesis and organization of this thesis. 

1.1 Background 

Sleep disordered breathing is a condition that affects 40-60% of the population and is 

defined by episodes of complete or partial airflow cessation1.  To measure the severity of 

the condition, a metric called the Apnea-Hypopnea Index (AHI) is used which is quantified 

by the number of apneas and hypopneas per hour of sleep.  The greater the AHI, the greater 

the severity of the disease and the likelihood of additional complications.  The AHI has 

been shown to correlate to daytime sleepiness, risk of cardiovascular disease and mortality1. 

The classification of a respiratory event can be obstructive, central or mixed.  During an 

obstructive apnea, there is continuation of effort.  A central event is classified as a lack of 

effort while a mixed event begins central and ends obstructive.  Various techniques have 

been used to measure respiratory effort.  The current clinical standard is respiratory 

inductance plethysmography (RIP) which is used widely.3 Other forms of indirect 

measurement including Mandibular Movements (MM) and Photo-Plethysmography (PPG) 

have been proposed.3   

This research will investigate a potential method of detecting respiratory effort using the 

motion artifact found in the electromyography (EMG) and electrocardiography (ECG) 

signals.  These sensors are already in place during routine polysomnography to measure 

muscle and cardiac activity.   
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The waveform that results from the smoothing of the EMG and ECG signals, which is 

the known to be a motion artifact, will be cross-correlated to the signal measured with the 

RIP effort belt.  The performance of the resulting waveforms will be compared to the 

Jawsens, a device used to measure respiratory effort using mandibular movements, in 

various sleep stages and positions. 

 

1.2 Routine Polysomnography Acquisition  

Polysomnography is the gold standard for the diagnosis of sleep disorders including 

sleep disordered breathing.  The standard sensors include electroencephalography (EEG) 

and electrooculography (EOG) for the determination of sleep stage.  Sleep stages are 

defined as Wake, Non-REM Stage 1, 2, 3 and Stage REM.  The submental EMG is also 

recorded for the detection of bruxism, arousals and REM detection.2 Airflow is measured 

using a nasal pressure transducer and a thermistor.  These two sensors allow for the 

detection of reductions and cessations of breathing, called apneas and hypopneas.  

Respiratory effort is measured routinely with respiratory inductance plethysmography.  

ECG is also applied for the detection of heart rate and arrhythmias.  Blood oxygen 

saturation is measured using a pulse oximeter which is used for the detection of 

desaturations.  Limb EMG sensors are applied for the detection of abnormal movement 

disorders in sleep.2 All of the applied sensors are visualized in Figure 1.1.   
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Figure 1.1 Routine Polysomnography demonstrating the ability to detect oximetry, 

brain and respiratory activity. 

 

1.3 Routine Polysomnographic Analysis 

The first step of the acquisition of a polysomnographic record is to identify the sleep 

stages based on the EEG and EOG data.  Figure 1.2 shows the various waveforms from the 

different sleep stages as seen on the EEG data acquired during routine polysomnography.1 

As seen in the figure, each stage is defined by the waveforms it contains.  Relaxed 

wakefulness is characterized by alpha waves seen in the occipital electrodes.  When the 

alpha rhythm is replaced with theta waves, the stage transitions to non-REM stage 1.  Once 

spindles and k-complexes appear, the stage is then N2.  Delta or slow waves, seen in the 

frontal derivations, indicate non-REM stage 3.  When sawtooth waves are seen in the EEG 

while chin EMG is reduced, and rapid eye movements are seen in EOG, then the stage 

becomes Rapid Eye Movement (REM).2 
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Figure 1.2 The four stages of sleep as seen on the EEG 

Once the study has been staged, the analysis of the respiratory signals begins, and all 

abnormal findings will be measured and tabulated.  In figure 1.3, the three types of events 

are seen.  An apnea is defined as an event lasting a minimum of ten seconds with over a 90 

percent reduction in airflow. 2 The classification, or type, of the apnea is based on the 

measurement of respiratory effort.  When effort is persistent throughout the event, it is 

classified as an obstructive apnea.  When effort is absent, it is then classified as a central 

apnea.  When effort is absent at the start of the event but then resumes while airflow 

remains absent, this is called a mixed apnea.  When the airflow is reduced but does not 

meet the criteria for an apnea, the event may be classified as a hypopnea or a Respiratory 

Effort Related Arousal (RERA).  A desaturation associated with the event is required for 

the detection of a hypopnea.  A cortical arousal, measured with the EEG, is required for 

the detection of a RERA.2 
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Figure 1.3 Respiratory Event Classification 

1.4 Hypothesis and Specific Aim 

The thesis will focus on the detection of respiratory effort during polysomnography 

for diagnosing sleep disordered breathing.  The hypothesis of this investigation is that a 

reliable measure of respiratory effort can be obtained from the use of the motion artifact 

observed in the EMG and ECG recordings.  Four EMG sites, one ECG and the Jawsesns 

will be compared to determine which has the highest correlation between it and the RIP 

thoracic effort belt.  The hypothesis is that the masseter will outperform all other options. 

 

1.5 Arrangement of Chapters 

The thesis continues with chapter two where the methods of how the research was 

conducted by reviewing the subjects, sensors and processing techniques.  The results from 

the experimental procedure will be covered in chapter three.  The discussion of the results 

and the study limitations will be explained in chapter four.  The concluding chapter will 

summarize the project and offer suggestions for future directions. 
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 – Methods 

In this chapter, the subjects recorded will be discussed followed with the sensors used 

for the measurement of respiratory effort.  The signals recorded will be visualized and then 

imported for analysis into a Python programming environment. 

2.1 Subjects 

Twelve subjects of both genders were recruited according to a protocol approved by 

the Institutional Review Board (IRB) of the University of Houston.  Each subject was tested 

for a suspected diagnosis of sleep disordered breathing.  All testing was performed at the 

Kingwood Diagnostic & Rehabilitation Center.  Each of the subjects gave written consent 

to participate in the study.  All twelve subjects were found to have obstructive sleep apnea 

after each recording was scored and interpreted according the guidelines published by the 

American Academy of Sleep Medicine2 with details found in Table 2.1.  The subjects were 

those typically referred to the sleep disorders department.  The sensors were applied and 

maintained by a qualified technician with Collaborative Institutional Training Initiative 

(CITI) certification.  Great care was taken to ensure that the research modifications had no 

impact on the patient’s diagnosis. 

Table 2.1 Subject Demographics 

 Mean SD 

Age(y) 58.9 13.2 

Sex M/F 8/4  

BMI (kg/m2) 35.9 6.6 

AHI (events/h) 36.1 13.2 
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2.2 Polysomnography Recording 

All the sensors involved in routine polysomnography, as recommended by the AASM2 

were applied for each recording (Philips Respironics Alice, Murrysville, PA USA).  The 

parameters included EEG (F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1), right and 

left EOG, left and right tibialis anterior EMG, thoracic and abdominal RIP, ECG, nasal 

flow measured with both a pressure transducer and a thermistor, and O2 saturation by a 

digital oximeter (Nonin Medical, Plymouth, USA).  

In addition to the routine sensors, the Jawsens magnetic distance sensor was applied 

and included in the recording montage.  The EMG of the masseter and temporalis were 

also included for this investigation. 

2.2.1 Hardware specifications 

The specifications for the Alice system used for this study are found in Table 2.2 which 

describe the Sample Size (in bits), which specifies the bit resolution, the recording 

frequency (in Hertz), for how often the data is recorded per second and the range of values 

with the units for the channel.   

In table 2.3, the specifications for the Brizzy device can be found.  The Brizzy is the 

adapter used to connect the Jawsens to the Alice system for the recording of the mandibular 

movements.  The output of the Brizzy was plugged into the Alice using the Auxiliary input. 

Some of the channels are capable of higher recording frequencies that are not routinely 

used in practice.  To ensure that the resultant waveforms could be obtained from a recording 

using standard settings, the lower option for each channel was used for this study. 
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Table 2.2 : Alice Hardware Specifications 

Channel Sample Size 

(bits) 

Recorded 

Frequency (Hz) 

Range Units 

EEG 16 200 ± 0.30 mV 

EOG 16 200 ± 0.30 mV 

EMG 16 200 ± 0.78 mV 

ECG 16 200 ± 8.33 mV 

Airflow 16 200 ± 2.64 mV 

Effort 16 200 N/A N/A 

 

The EEG, EOG, EMG, and ECG signals are obtained using AC amplification.  The 

effort and airflow signals are DC.  The channels in polysomnography that are AC measure 

voltage between a single input and a ground.  The Brizzy device used to obtain the 

mandibular movement signal is DC.  The RIP module used to measure the thorax is also 

DC. 

Table 2.3 Brizzy Hardware Specifications 

Channel Measurement 

Range (cm) 

Resolution 

(mm) 

Sampling 

Frequency 

(Hz) 

Units 

Mandibular 

Movement 

7-23.5 0.1 10 mV 
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2.3 Respiratory Inductance Plethysmography 

 

The current clinical standard for the detection of respiratory effort is the RIP sensor.  It 

involves the recording of thoracic and abdominal excursions with sensors sensitive to 

longitudinal tension.3 The technique used in RIP is based on the measurement of electrical 

inductance.  The cross-sectional area changes within the bands result in a variation of 

inductance.  This method is currently the preferred method of measuring respiratory effort 

clinically.3 An application of a RIP belt sensor to a patient can be seen in figure 2.1. 

The belts contain a sinusoid wire coil that is placed into an elastic band.  Using 

frequency demodulation and an oscillator, the digital respiration signal is generated from 

the measured changes in inductance.  Changes in the frequency is converted to a waveform 

where the amplitude of the waveform is proportional to the inspired breath volume. 3 
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Figure 2.1 Respiratory Inductance Plethysmography for the detection of respiratory 

effort 

2.4 Mandibular Movements 

 

It has been found that the measurement of mandibular movements using a magnetic 

sensor placed midsagittaly could be used to detect respiratory effort.4 In this study, a device, 

(Brizzy Nomics, Liege, Belgium) was used to measure the mandibular movements during 

the polysomnographic recording.  The device measures distance in millimeters between 

the forehead and the chin using two parallel, couples, resonant circuits.  One of these 

circuits is the transmitter and generates pulsed magnetic wave of very low energy at a 

frequency of 10 Hz.  The receiver measures and records the change in the magnetic field 

and this results in a measure of distance with a resolution of 0.1mm.  The application of 

the Jawsens sensor can be seen in figure 2.2.   
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Figure 2.2 The Jawsens sensor with one element taped to the forehead and the other 

to the chin. 

2.5 Masseter and Temporalis Electromyography 

The electromyography of the masseter and temporalis muscles are used in the 

determination of bruxism detection and for the evaluation of temporomandibular joint 

(TMJ) disorder.  The placement of the sensors was based on three lines: TLV, TLH and Go.5   

The TLV line corresponds to the bony prominence formed by the zygomatic process of 

the frontal bone and the posterior limit of the front process of the zygomatic bone; the TLH 

line corresponds to the upper border of the zygomatic arch.  To measure the temporalis, 

electrodes were placed according the fibers directions of the anterior temporalis muscle, 

just above the zygomatic arch, posterior to the line TLV and anterior to the scalp.5   

To measure the superficial masseter muscle, the line Go was located at the angle of the 

mandible and body of the zygomatic bone.  The Muscle Line (ML) was found from these 

landmarks and was joined with Go at the midpoint between the lower posterior border of 

the zygomatic bone and the zygomatic arch. The placement of the electrodes, along with 

the above-mentioned lines and landmarks can be seen in figure 2.2 and figure 2.3.5 
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Figure 2.3 A) Lateral view of the skull with reference lines used for the study: TLV, 

TLH, and ML.  B) Lateral view of the deep facial planes, evidencing the 

Anterior temporalis and superficial masseter muscles and their 

relationship with anatomical landmarks. 

 

 

Figure 2.4 A) Reference lines visualized B) Electrode placement 

2.6 Polysomnographic Recording 

After the application of all the routine and additional sensors, the subjects were 

recorded using the Alice polysomnography system.  Figure 2.5 and 2.6 show the complete 
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montage including: from the top - the two EOG derivations, six EEG, two jaw EMG, 

Jawsens, thermistor flow, nasal pressure flow, thoracic RIP, abdominal RIP, snore 

microphone, two EKGs, heart rate, blood oxygen saturation, photo plethysmography, pulse 

rate, and two limb EMG leads.  Figure 2.5 shows the bio calibration process on a 3-minute 

window.  A visible change can be seen to the Jawsens and Jaw EMG signals when the 

patient is instructed to yawn.  Figure 2.6 is a 30 second time window showing an increased 

level of detail of the signals. 

The signals seen in figure 2.5 and figure 2.6 were filtered for display and scoring 

according to the recommendations of the American Academy of Sleep Medicine and the 

values of the filter settings can be seen in table 2.1. 

Table 2.4 Filter Settings used for Display and Scoring 

 Low Frequency High Frequency 

EEG 0.3 Hz 35 Hz 

EOG 0.3 Hz 35 Hz 

EMG 10 Hz 100 Hz 

ECG 0.3 Hz 70 Hz 

Respiratory .1 Hz 1 Hz 

The EMG and ECG signals were not considered respiratory during the display and 

scoring of the studies.  They were only used to detect bruxism activity and to assist in 

staging.  The experimental technique of motion waveform respiration had no impact on the 

diagnostic results. 
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Figure 2.5 Complete montage during bio calibration process in a three-minute 

window. 

 

Figure 2.6 A 30 second view of the recording segment of the complete montage. 
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2.7 Importing the polysomnographic data in Python 

Once the recording was complete, all the data was saved to a file using the Alice export 

to EDF feature.  The resulting EDF was then imported into a Jupyter notebook using MNE. 

6-7 Using MNE, the EDF was segmented based on epochs and then used to create a data 

frame object that can be visualized, filtered and analyzed.  Figure 2.7 shows a plot of the 

data frame after being imported into the Python environment with the Jawsens, two EMG 

sensors, and the two RIP sensors.  The Abscissa for all the plots is sample number.  All the 

plots are a measure of voltage as measured from the sensors described previously.   

Figure 2.7 is a plot of 30 seconds of raw, unfiltered data after being imported into the 

Python environment.  The 30 second segment is used routinely in polysomnography.  Each 

epoch is staged as either wake, non-REM 1, 2, 3, or REM.  The filtered segments are 

displayed in the next chapter as 10 second segments for improved ability to observe the 

morphology of the waveforms and compare the differences of the three methods of 

measuring respiratory effort. 

It can be seen clearly in the raw, unfiltered data that the Jawsens can detect respiratory 

effort as its signal looks very similar to the raw RIP data with a phase reversal.  The motion 

artifact that correlates well with the effort belt can be visualized in the raw data of the ECG.  

It is not clear from the visualization of the raw data that the EMG signal has a low frequency 

component that may be related to respiratory effort. 
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Figure 2.7 A 30 second plot of the raw data after being imported to Python 

 

2.8 Signal Processing  

 

Once the data was successfully imported into Python and each signal into an 

array, the signal processing can begin.  A well-known method of extracting a low 

frequency component of a signal while maintaining peak levels was found by Savitzy and 

Golay in 1964 who found that it was possible to smooth data using a polynomial 

approximation that is based on local least squares.7-8 Applying the Savitzy-Golay filter to 



17 

 

the signals shown above resulted in what can be seen in figure 2.8 where the processed 

EMG and ECG have a visual similarity with to the effort sensors. 

 

Figure 2.8 30 second plots of data before and after filter has been applied 

The filter was applied using a window size of 1711 samples with a polynomial order 

of 5.  The parameters used for the filter determine its frequency characteristics.  The values 

chosen to allow for respiratory effort to be extracted while maintaining some of the higher 

frequencies that may be needed for the detection of abnormal respirations. This filtering 

process was applied five times for increased smoothing.  The same filtration process was 

applied to all the waveforms before the Pearson product-moment correlation coefficients 

were tabulated.   
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  Results 

 

This chapter will review the measurements of the seven sensors and demonstrate their 

clinical usefulness by displaying the resulting filtered plot next to the raw unfiltered data.  

One plotted ten second segment from each subject will be displayed and briefly discussed.  

The calculations of the cross-correlation coefficients will be tabulated for each segment.  

The effectiveness of the signal is seen as its ability to reproduce what is detected by the 

RIP sensor visually as well as measured using the cross-correlation coefficient. 

 

3.1 Subject 1 

 

The first recording in this study was able to demonstrate that filtering the EMG signal 

results in a signal that correlates well with respiratory effort.  This was validated by the 

similarity of the result to the raw signal of the RIP sensor.  In Figure 3.1, a ten second 

segment of data is plotted where the filtered EMG signal very closely matched the output 

of the RIP sensor.   
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Figure 3.1 Plots from a ten second segment of data from Subject 1's recording. 

The cross-correlation coefficients for this ten second segment can be seen in Table 3.1.  

This value is the focus of this project as it is the measure of how well the motion artifact 

waveform method performs.  In this segment, the value is negative of the Masseter as the 

signals are out of phase.  This does not reduce the effectiveness or clinical significance of 

the signal and is very easily correctable.  The value of -0.98 indicates that the two signals 

are nearly identical, except for the phase difference. 

The phase difference is dependent on how the acquisition was setup, and how each 

channel was plugged in.  For the AC channels, such as the EMG and ECG, one channel is 

subtracted from the other, with one of the inputs being 1 and the other 2.  The decision for 

which electrode is 1 causes the polarity reversal.  These decisions are made at the time of 
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acquisition and are different for each subject.  The phase difference is correctable either in 

hardware or software.  When visualizing the waveforms, the ability to invert the tracing is 

available.  There is also the option of reversing the polarity of the inputs during the setup 

of the acquisition.  The smoothed signal was not available to the technician during the 

hookup and so it could not have been corrected at that time.   

The cross-correlation coefficient measurement is a measure of similarity between each 

waveform and the one obtained from the RIP belt.  It is calculated for each ten second 

segment.  The segments will be grouped by stage and position with their results tabulated 

and plotted in the Analysis section of this chapter.  In this section of the chapter, one 

segment with their waveforms is displayed with their correlation values as an example of 

the data that is studied in the analysis section. 

Table 3.1 RIP Cross Correlation Coefficients from Subject 1 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.1968 -0.9916 -0.6812 -0.04112 0.4074 -0.1603 N2 

 

3.2 Subject 2 

The next ten second segment that will be discussed originates from the second 

recording of the study.  In Figure 3.2, the three signals are shown in their raw state on the 

left and then after signal processing on the right.  In this segment, all the filtered signals 

correlate well with the RIP belt except for the Jawsens and Temporalis.  A waveform 

recovered from a motion artifact may be able to out-perform a device intended to measure 

respiratory effort. 
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Figure 3.2 Plots from a ten second segment of data from Subject 2's recording. 

In this ten second segment, some of the filtered signals produce a waveform that is 

visually nearly identical to the filtered RIP waveform and very also like the plot of the raw 

RIP.  With this segment, the credibility of the motion artifact method becomes clear.  In 

Table 3.2 the cross coefficients of this segment are tabulated.  The Masseter coefficient in 

this segment was the highest with the ECG a very close second with both in the correct 

phase. 

Table 3.2 RIP Cross Correlation Coefficients from Subject 2 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.0739 0.9986 -0.4836 0.6577 0.5974 0.9479 N1 
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3.3 Subject 3 

 

This pattern continues with the next recording, where the plots can be seen in Figure 

3.3.  This ten second segment is very significant as it demonstrated the ability of the filtered 

waveforms to not only measure respiratory effort, but also the lack of effort.  The ability 

to classify central and mixed apneas requires a period with reduced or absent effort.  This 

ability is seen in this segment.  This segment also shows another example where the phase 

is reversed between the two methods in some channels.  Another observation in the raw 

data of all the sensors is the simultaneous increase in amplitude when effort resumes. 

This is also the first segment where the Jawsens performed well at detecting the effort.  

The segment shows two breaths where the first is reduced to a level considered absent.  

Some of the filtered EMG waveforms did not appear to detect this reduced breath.  This 

could be due to the physiological reason where the breath wasn’t strong enough to make a 

change measurable with motion artifact or may have been a consequence of the filtering 

method.  It is likely not the filtering technique, as it did not influence the RIP signal. 
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Figure 3.3 Plots from a ten second segment of data from Subject 3's recording. 

This segment also demonstrates a high negative cross correlation of the RIP-EMG.  In 

this example, the Jawsens also correlated well with the RIP data.  The absolute correlation 

coefficient was higher than any of the examples seen so far.  

Table 3.3 RIP Cross Correlation Coefficients from Subject 3 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.9424 -0.9345 -0.2405 -0.4896 0.1914 -0.8556 N2 
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3.4 Subject 4 

In this plot, we can see a ten second segment of data from Subject 4.  In this segment, 

it is most interesting to note that the third breath was seen to have a higher amplitude 

observed in the raw RIP signal and in some of the movement artifact waveforms.     

 

  

Figure 3.4 Plots from a ten second segment of data from Subject 4's recording. 
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The cross-correlation coefficients calculated from the above segment can be seen in 

Table 3.4.  In this example, the Jawsens produced a cross correlation coefficient that was 

the largest in magnitude but was out of phase.  The Masseter was second for this 

segment.  All the filtered channels did produce a visible slow wave that did correlate well 

with the respiratory effort.  The performance of the limb EMG is unexpectedly high.  

 

Table 3.4 Cross Correlation Coefficients from Subject 4 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.9767 0.9185 -0.8560 -0.9491 -0.6899 -0.8344 N2 

 

 It will be seen in the Results section of the results how each sensor was able to 

correlate with the belt for each stage and position.  It is in that section that the performance 

will be measured.   
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3.5 Subject 5 

The plot visualized in figure 3.5 is from a ten second segment of data from subject 5.  

In this segment, both the filtered Jawsens and the EMG resemble the raw RIP signal.    

 

Figure 3.5 Plots from a ten second segment of data from Subject 5's recording. 

The cross-correlation coefficients from this segment report that two of the EMG 

sensors were able to outperforms the Jawsens in a measure of absolute value of the cross-

correlation coefficient.  

Table 3.5 Cross Correlation Coefficients from Subject 5 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.8880 -0.9247 -0.11206 0.7244 0.9259 -0.7256 N3 
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3.6 Subject 6 

A ten second segment of data from the recording of Subject 6 is seen in Figure 3.6.  

This segment contains an example of a ECG artifact in the EMG.  This example shows 

how the filtering method performs in a difficult state like that seen in the recording of 

Subject 6.   

 

Figure 3.6 Plots from a ten second segment of data from Subject 6's recording. 

 Despite the noisy signal found in the EMG, the cross-correlation coefficient 

measured after the filter has been applied shows a strong performance for the method.  

The highest absolute value comes from the cross correlation between the Jawsens and the 

RIP.  Also observed is that the Jawsens is now out-of-phase while the EMG is in-phase.   
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Table 3.6 Cross Correlation Coefficients from Subject 6 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.9949 0.9643 -0.9093 0.5864 -0.6892 -0.8253 N2 

3.7 Subject 7 

The plot of a ten second segment of data from Subject 7 is seen in figure 3.7.  In this 

segment, the edges on both sides of the segment are distorted and do not represent the raw 

data well.  This is due to windowing method used by the filtering method.  At the start of 

the segment, there is no access to the previous segment.  A different windowing method 

may be able to resolve this type of artifact. 

This artifact is one of the reasons why the same filtering method was applied to all the 

signals before display and cross correlation has been calculated.  The artifact effect is equal 

to all the signals and so the coefficient is still a valid measure of similarity. 
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Figure 3.7 Plots from a ten second segment of data from Subject 7's recording. 

 

The cross-correlation coefficients from the subject 7 segment can be seen in Table 3.7.  

The coefficients are not very high compared to some of the previously seen segments.  

However, the filtered signals do have a strong visual resemblance to the raw RIP data and 

so many of the lower cross correlated readings still are able to detect effort on a level that 

can be clinically useful. 

Table 3.7 Cross Correlation Coefficients from Subject 7 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.7702 0.5880 0.4536 0.3101 0.6327 0.1832 N2 
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3.8 Subject 8 

In the ten second segment from subject 8, a slower respiratory rate is observed than has 

been observed in the previous segments and this is visualized in figure 3.8. 

 

 

Figure 3.8 Plots from a ten second segment of data from Subject 8's recording. 

In this segment, the RIP-EMG cross correlation of 0.98 was not only very high but also 

in phase.  The ECG also had a very high correlation value in the segment of data. 
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Table 3.8 Cross Correlation Coefficients from Subject 8 Data Segment 

      

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.5278 0.9871 -0.5799 -0.4550 -0.1732 0.9664 N2 

 

3.9 Subject 9 

 

In Figure 3.9, plots from Subject 9 are seen.  In this ten second segment, the low 

frequency component that correlates with the respiratory effort signal can be seen in the 

raw data.  This is another example where the phase has been reversed.  It also observed 

that the Jawsens did not perform as well in this segment compared to the previous sets of 

samples. 
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Figure 3.9 Plots from a ten second segment of data from Subject 9's recording. 

 

The results from the cross-correlation calculations for the above figure can be seen in 

Table 3.9.  A very high absolute value was observed with the RIP and Masseter while the 

Jawsens did not perform as well.  All the signals were in the same phase in this segment. 

 

 



33 

 

 

Table 3.9 Cross Correlation Coefficients from Subject 9 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.5165 -0.9630 0.3609 -0.9309 -0.9516 -0.7090 N1 

3.10 Subject 10 

Figure 3.10 contains the plots obtained from a ten second segment of data on Subject 

10’s recording. 

 

Figure 3.10 Plots from a ten second segment of data from Subject 10's recording. 

The cross-correlation coefficients from subject 10’s segment above are seen in table 

3.10.  All the plots in this segment are in phase and the highest cross correlation is the 
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Jawsens.  All the filtered signals do look very similar visually and the filtered EMGs result 

in a signal that has a morphology like that seen in the Jawsens. 

Table 3.10 Cross Correlation Coefficients from Subject 10 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

0.7365 0.6806 -0.8375 -0.3713 0.3930 0.7489 N3 

3.11 Subject 11 

The plots from a ten second segment from subject 11 are seen in Figure 3.11.   

 

Figure 3.11 Plots from a ten second segment of data from Subject 11's recording. 
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The cross-correlation results from Subject 11 are seen in Table 3.11.  The middle breath, 

as seen in the raw RIP data does appear to have a greater amplitude when compared to the 

neighboring breaths.  It is observed that in the filtered masseter, this quality of the signal 

was maintained.  The cross-correlation coefficient for the RIP and masseter is very high 

and is out of phase. 

Table 3.11 Cross Correlation Coefficients from Subject 11 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.8982 -0.9817 0.0998 -0.0180 0.6725 -0.1673 N2 

 

3.12 Subject 12 

The final subject for this study, number 12, has the data from a ten second segment 

plotted in Figure 3.12 below. 
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Figure 3.12 Plots from a ten second segment of data from Subject 12's recording. 

Tabulated below in Table 3.12 are the coefficients from the cross-correlation 

calculations.  The waveform that resulted from the smoothing of the ECG signal did not 

have a high correlation in this segment.  There did not appear to be enough of a low 

frequency component in the original signal to recover for the determination of respiratory 

effort.   

Table 3.12 Cross Correlation Coefficients from Subject 12 Data Segment 

Jaw Masseter Temporalis Left Leg Right Leg ECG Stage 

-0.5429 0.9563 0.8281 -0.0961 0.4688 0.1874 N2 
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3.13 Analysis 

All the cross correlations from the twelve subjects have been combined into a single 

dataset.   All segments that did were labeled as awake or disconnected were discarded.  The 

ability to measure effort while awake using the methods of Jaw distance or motion artifact 

are not possible when there is voluntary activity and movement such as talking, chewing, 

or other movements.  Also, while awake, the belts were subject to non-respiratory motion 

that also resulted in the impairment of the ability to detect respiratory effort.  Each sleep 

segment was further divided into Stage 1, 2, 3 and REM.  The position of the subject was 

classified as left, right and supine.  The absolute value of the cross correlations of all twelve 

subjects were then plotted as seen below.  The descriptive statistics were also tabulated. 

3.13.1 Stage 1 

A boxplot of all the cross-correlation coefficients from ten second segments classified 

as Stage non-REM Stage 1 is seen in figure 3.13.  Each column of the boxplot represents 

that sensor’s ability to cross correlate with the RIP belt. RIP-JAW is the measurement of 

between the RIP sensor and the Jawsens.  RIP-MAS is the RIP and Masseter muscle, RIP-

TEM is the RIP and Temporalis muscle, RIP-LLG is the RIP and the Left Tibialis Anterior 

muscle, RIP-RLG is the Right Tibialis Anterior, RIP-EKG is the RIP and the ECG.  The 

Masseter has the highest correlation in terms of the median and mean while in the stage 1 

condition. 
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Figure 3.13 Boxplot of Stage 1 segments cross correlation coefficients 

The descriptive statistics from stage 1 segments are seen in table 3.13. 

Table 3.13 Descriptive Statistics for the cross-correlation coefficients for stage 1 

 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 584 584 584 584 584 584 

mean 0.406864 0.565148 0.425485 0.443051 0.418736 0.447753 

std 0.268725 0.279182 0.258267 0.282520 0.281521 0.271570 

min 0.001115 0.002126 0.000477 0.000132 0.001084 0.000942 

25% 0.182887 0.323727 0.208881 0.186914 0.157253 0.214794 

50% 0.369168 0.600218 0.394293 0.407611 0.416478 0.426605 

75% 0.616261 0.816762 0.640864 0.668479 0.660996 0.667905 

max 0.992166 0.986471 0.991370 0.984228 0.988219 0.991524 
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3.13.2 Stage 2 

A boxplot of the cross-correlation coefficient calculations for all the segments that were 

classified as Stage 2 can be seen in Figure 3.14. 

 

 

Figure 3.14 Boxplot of Stage 2 segments cross correlation coefficients 

A table describing the above boxplot can be seen in Table 3.14.  Most of all sleep 

segments were classified as stage 2 and so the count was higher for this stage than any 

other.  In stage 2, the highest magnitude average and median cross correlation was achieved 

using the Masseter.  The Jawsens was very close in this stage of sleep. 
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 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 14620 146200 14620 14620 14620 14620 

mean 0.484766 0.542227 0.459520 0.441845 0.446432 0.443202 

std 0.288770 0.285889 0.276415 0.279652 0.281326 0.285537 

min 0.000057 0.000046 0.000052 0.000020 0.731283 0.000032 

25% 0.228090 0.301828 0.219001 0.202628 0.201756 0.194016 

50% 0.483788 0.567135 0.449449 0.414043 0.421819 0.410206 

75% 0.739217 0.796227 0.692511 0.666609 0.677661 0.684697 

max 0.995876 0.996116 0.997487 0.997278 0.995268 0.997361 

 

Table 3.14 Descriptive Statistics for the cross-correlation coefficients for stage 2 

3.13.3 Stage 3 

The box plot of the results from segments classified as stage 3 are seen in figure 3.15.  

Stage 3, or slow wave sleep is a very deep stage of sleep.1 While in stage three, growth 

hormones are released, and immune system function occurs.  Muscle tone is relaxed in the 

deeper stages of sleep.1 This data can assist in determining if stage of sleep has an impact 

on the ability to detect respiration using movement. The descriptive statistics in for the 

stage 3 condition are found in Table 3.15. 
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Figure 3.15 Boxplot of Stage 3 segments cross correlation coefficients 

Table 3.15 Descriptive Statistics for the cross-correlation coefficients for stage 3 

 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 5991 5991 5991 5991 5991 5991 

mean 0.546478 0.620695 0.467793 0.429196 0.469590 0.472263 

std 0.303112 0.274727 0.277035 0.267391 0.275371 0.310183 

min 0.000237 0.000150 0.000151 0.000066 0.000102 0.000070 

25% 0.262582 0.414574 0.223972 0.204459 0.228553 0.194094 

50% 0.588847 0.689922 0.466211 0.400603 0.465189 0.436397 

75% 0.826096 0.857169 0.703879 0.639756 0.708304 0.762053 

max 0.994888 0.993580 0.994760 0.996218 0.992463 0.998973 
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3.13.4 Stage REM 

In stage REM, all muscles become paralyzed except the heart, diaphragm and eyes.  It 

is also when obstructive respiratory events become more severe.1 When the muscles relax, 

the airway is more easily blocked due to the loss of muscle tone.  In this study, all the cross-

correlation coefficients in the segments stages as REM are seen using a boxplot in figure 

3.16.  

 

Figure 3.16 Boxplot of Stage REM segments cross correlation coefficients 

The descriptive statistics from the dataset of all stage REM segments is found in table 

3.16.  The change in stage did seem to make a difference in the ability to detect respiratory 

effort using the various measures of movement.  It is in this state that the Masseter 

correlated lower than all others and the lowest within its own abilities.  This finding is 

consistent with our current understanding of changes in physiology in REM. 
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During inspiration, there are primary and secondary muscles and it is known that the 

elevation of the mandible is used to increase airway patency and this effect decreases in 

REM.10 

Table 3.16 Descriptive Statistics for the cross-correlation coefficients for stage REM 

 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 3099 3099 3099 3099 3099 3099 

mean 0.567075 0.459816 0.532784 0.433638 0.423752 0.492949 

std 0.290904 0.288743 0.288457 0.266082 0.271787 0.276496 

min 0.000285 0.000273 0.000282 0.000315 0.000233 0.000356 

25% 0.326483 0.207920 0.286076 0.206536 0.200018 0.258213 

50% 0.602377 0.441368 0.561404 0.427392 0.393831 0.499748 

75% 0.835257 0.703817 0.790202 0.657982 0.628778 0.733932 

max 0.992753 0.995538 0.993552 0.983266 0.991014 0.993819 

 

3.13.5 Supine 

The position during sleep does have a strong effect on respiration and does also increase 

the probability of upper airway collapse in someone who suffers from obstructive sleep 

apnea.  The boxplot of the cross correlations from the segments labeled as supine is seen 

in figure 3.17. 
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Figure 3.17 Boxplot of Supine position segments cross correlation coefficients 

The descriptive statistics from the supine labeled segments is seen in table 3.17. Table 

3.17 Descriptive Statistics for the cross-correlation coefficients for Supine position 

 Jawsens Masseter Temporalis Left Leg Right Leg ECG 

count 13998 13998 13998 13998 13998 13998 

mean 0.515996 0.536993 0.453382 0.443628 0.479559 0.440880 

std 0.299499 0.276795 0.269792 0.288880 0.291408 0.282313 

min 0.000057 0.000046 0.000052 0.000020 0.731283 0.000032 

25% 0.239720 0.308394 0.218498 0.195065 0.222789 0.194284 

50% 0.538803 0.564800 0.443935 0.408269 0.466016 0.412164 

75% 0.795509 0.777985 0.684188 0.677182 0.738016 0.678483 

max 0.993675 0.994207 0.996511 0.996218 9.931299e-

01 

0.998556 
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3.13.6 Non-Supine 

The segments where positions were labeled left, or right were merged into a condition 

that will be considered non-supine.  When a subject is on their side, the effects of gravity 

on the upper airway and is known to improve the ability to keep the airway open in those 

that suffer from obstructive sleep apnea.1 The boxplot of this condition can be seen in figure 

3.18. 

 

Figure 3.18 Boxplot of Non-Supine position segments cross correlation coefficients 

The descriptive statistics for the non-supine condition is seen in table 3.18 
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Table 3.18 Descriptive Statistics for the cross-correlation coefficients for Non-Supine 

position 

 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 10338 10338 10338 10338 10338 10338 

mean 0.497383 0.571246 0.492206 0.429740 0.406488 0.478146 

std 0.287486 0.299888 0.289097 0.254909 0.255394 0.300818 

min 0.000081 0.000150 0.000134 0.000132 0.000233 0.000104 

25% 0.250570 0.310077 0.237638 0.215772 0.185726 0.210503 

50% 0.491015 0.614606 0.495372 0.417119 0.387868 0.451241 

75% 0.751931 0.852820 0.744795 0.638023 0.602112 0.754136 

max 0.995876 0.996116 0.997487 0.997278 0.995269 0.998973 

 

3.13.7 All States combined 

All the previous data was combined into a single dataset to compare the ability of each 

sensor across all subjects and states.  In figure 3.19, a box plot from all the cross-correlation 

coefficient calculations can be seen.   
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Figure 3.19 Boxplot of all sleep conditions 

When comparing all of the available sensors, the Masseter produced the highest 

absolute cross correlation coefficient.   
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Table 3.19 Descriptive Statistics for the cross-correlation coefficients for All Sleep 

conditions 

 Jawsens Masseter Temporalis Left Leg Right 

Leg 

ECG 

count 24344 24344 24344 24344 24344 24344 

mean 0.508092 0.551539 0.469869 0.437730 0.448528 0.456705 

std 0.294596 0.287322 0.278809 0.275047 0.279029 0.290893 

min 0.000057 0.000046 0.000052 0.000020 0.731283 0.000032 

25% 0.244624 0.308862 0.225935 0.203462 0.206363 0.200798 

50% 0.518002 0.583679 0.464344 0.412111 0.427449 0.427771 

75% 0.778510 0.810253 0.709374 0.659053 0.680401 0.709585 

max 0.995876 0.996116 0.997487 0.997278 0.995268 0.998973 
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 – Discussion 

In this chapter, the results will be interpreted technically and clinically.  The limitations 

of the study will be discussed. 

4.1 Clinical Interpretation 

The data shows that in all twelve subjects, there is the ability to detect respiratory effort 

with the use of a motion artifact that comes from the filtered EMG and ECG data.  There 

were four EMG sites and a ECG signal compared to the ability of the Jawsens device.  In 

all states, the masseter performed better on average than the Jawsens except in stage REM 

sleep.  The mechanism and explanation for why masseter muscle movement is related to 

respiratory effort may be why the magnetic jaw distance sensor also was able to detect 

respiratory effort.  During inspiration the mouth has negative pressure applied to it causing 

a reduction in distance and the reverse occurs during exhalation.  It is this mechanical force 

that is generated from the respiratory system that may be driving the movement that is seen 

that results in a signal that can match the signal from the belts.10 

The mechanism for how caudal traction from inspiration may cause mandibular 

movements was observed to be from the pull of the descending diaphragm and the suction 

of increasingly negative intrathoracic pressure.  This mechanism does explain how the 

mandibular movement can detect respiratory effort and how the Jawsens sensor operates.10 

It has also been observed that the jaw stabilizes the airway in times of upper airway 

collapse and so that the jaw movements and EMG activity are measurements of the 

response to keep the airway open.10   

The observation that the masseter’s ability to detect respiration was reduced in REM 

was to be expected as all muscle activity is reduced in REM and the movement from the 
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masseter muscle is expected to be reduced and this was seen.  This result also suggests that 

the signals from the distance sensor and the masseter after isolating the motion artifact are 

not exactly equivalent and that the sensors on the masseter are detecting movements that 

are impacted by muscle activity of the jaw elevator muscles and not only the diaphragmatic 

forces.  In non-REM stages, these two effects are combined and give the masseter an 

advantage over the Jawsens which can only detect the mandibular movements.  In the all 

sleep dataset, we observed that there was no difference in the overall ability for the 

movement artifact waveform to detect respiratory effort from that of the magnetic distance 

sensor. 

It is also worthy of note that when the performance of the masseter sensor was reduced, 

the Jawsens increased.  This may be related.  In stage REM sleep, when the muscles are 

less active, the mandibular movements are greater due to the relaxation of the muscles 

keeping the mandible stable and so the Jawsens is better able to pick up the respiratory 

effort.  The masseter has an airway stabilizing function that reduces in stage REM. 

4.2 Technical Interpretation 

The waveform obtained are the result of isolating the low frequency component of the 

EMG and ECG recordings.  They are the result of movement and not direct electrical 

activity of the muscle or cardiac activity.  The distance between the electrodes varies with 

movement which is the indirect the result of diaphragmatic excursions.  It is this small 

deviation in distance that is seen as an increase in the amount of voltage measured with the 

EMG sensors.  A similar mechanism is how respiratory effort was detected using the ECG.  

As the diaphragm descends, the ECG sensors move in synchrony and results in a waveform 

that can be used for respiratory effort.   
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The movement potentials are originating in a combination of the skin deformation and 

the movement of the conductive gel.  These effects combine to produce the ability to detect 

movement using sensors intended for electrical activity measurements.11 Due to the limited 

motions in sleep, most detectable movement will be the result of respiration and so a 

movement artifact waveform can be used as a detection of respiratory effort.  

4.3 Performance 

An average cross-correlation of 0.48 for the best motion artifact based may at first 

appear to be insignificant or not useful.  The same value was obtained from the Jawsens 

signal and this device has been shown in multiple studies to be able to detect and classify 

respiratory events.  The motion artifact recovered waveforms, having the same measured 

performance, are therefore as able to used in diagnosis.  The performance of the method 

can also be increased by studying the methods for which motion artifact is generated and 

maximizing those parameters.  Adjustments to the placement, electrode type, cable 

thickness can improve the amount of motion artifact detected and the performance of the 

method.  This study shows the potential use of the method and can be used to generate 

further improvements in the future. 

4.4 Study Limitations 

The ability to measure respiratory effort in this study was measured against respiratory 

inductance plethysmography.  The gold standard for the measurement is esophageal 

pressure manometry (PEs).  A measure of PEs would be a valuable addition for validation 

of any measurement of respiratory effort.  The availability and ability for a subject to 

tolerate Pes measurement is a challenge.  It is invasive, uncomfortable and expensive.3 
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 All the subjects in this study were diagnosed with obstructive sleep apnea.  A study 

that includes healthy subjects should be performed to observe the possible affect that 

disordered breathing has on the correlation of effort with mandibular movements and 

movement artifact waveforms ability to detect respiration.  It may be the case that the 

motion artifact effect observed is due to the need to keep the airway open due to closure in 

sleep in those individuals who have a tendency for airway collapse and we may see a 

different distribution of abilities in a healthy subject than those seen in this study. 
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 - Conclusion 

 

In this chapter, the main findings and future directions will be discussed. 

5.1 Main Findings 

In this thesis, the need for the measurement of respiratory effort was discussed followed 

with the most common methods of obtaining the signal.  It was observed that by smoothing 

electromyographic and electrocardiographic signals, a waveform that is the motion artifact 

of the signal results.  The resulting waveform has been shown to correlate very well with 

the respiratory effort belt which uses inductance plethysmography as the method of 

detecting respiratory effort.  There were six locations where this effect was measured.  The 

masseter, temporalis, left and right anterior tibialis, and the electrocardiogram were all 

smoothed using the Savitzy-Golay method and then the cross-correlation coefficient was 

measured between the resulting waveform and the waveform from the RIP belt.  The 

masseter did show the most promise as a location for which respiratory effort could be 

detected using this technique.  There was a reduction in performance of this method while 

in stage REM, which was to be expected. 

5.2 Future Directions 

The ability of a single sensor to detect multiple signals is the goal of future diagnostics.  

Continued validation of this method is necessary before it can be recommended in use 

clinically.  To better understand the mechanisms for this, variations to the placement of the 

electrodes should be made to see if increased performance is possible.  Other signal 

processing techniques may also be attempted or developed to increase the performance of 

the technique.    
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