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ABSTRACT

This dissertation presents three research projects on the decomposition of anomalous di↵usion in

various stochastic processes.

Stochastic processes that scale anomalously with time, such that the Mean-Squared Displace-

ment (MSD) of the expanding particle is hx
2(t)i ⇠ t

2H where H is the Hurst exponent and H 6= 1/2.

Anomalous di↵usion is known to occur in such processes due to auto-correlations, the Joseph e↵ect,

the infinite variance of individual events, the Noah e↵ect, or the non-stationarity of increments, the

Moses e↵ect quantified as the Joseph, Latent and Moses exponents, respectively.

The first project focuses on the Pomeau-Manneville map, a chaotic dynamical system an ex-

ample of an aging system. The model can have either sub- or super-di↵usive behavior due to a

combination of the three e↵ects stated above. Scaling exponents quantifying each of the three

constitutive e↵ects are calculated analytically and confirmed numerically. Finally, the importance

of the Moses e↵ect in the anomalous di↵usion of experimental systems is discussed.

The second project studies the origins of anomalous di↵usion in an ensemble of time series. The

increment distribution converges at increasing times to a time-invariant asymptotic shape after

appropriate rescaling based on the quantification of the three e↵ects. This asymptotic limit can

be an equilibrium state, an infinite-invariant density, or an infinite-covariant density for di↵erent

processes. The three e↵ects in a non-linearly coupled Lévy walk model are quantified using time-

series analysis methods, and the results are compared to theoretical predictions.

The third project considers di↵usion processes with spatially varying di↵usivity, which can

result in anomalous di↵usion. Heterogeneous di↵usion processes are analyzed for the cases of

exponential, power-law, and logarithmic dependencies of the di↵usion coe�cient on the particle

position. The model exhibits sub- and super-di↵usive behavior depending on the value of the

space-dependent di↵usion coe�cient. The numerical methods of time-series analysis quantify the

three e↵ects in a heterogeneous di↵usion model and compare the results to theoretical predictions.

A heterogeneous di↵usion model is an alternative approach to non-ergodic, anomalous di↵usion

that may be especially useful for di↵usion in heterogeneous media.
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1 Introduction

Di↵usion is a fundamental process that defines a test particle’s stochastic motion and the broadening

of its distribution function over time. Following Robert Brown’s seminal experiments a year earlier

on micron-sized granules’ erratic movement in Clarkia pulchella pollen grains [44], the di↵usive-like

motion was first reported in 1828.

Di↵usion theory is a well-established and fundamental field of study that is still very active

today [154]. An extensive range of stochastic phenomena exhibits deviations from normal di↵usive

behavior, commonly referred to as anomalous di↵usion. Many complex systems exhibit anomalous

transport, including electronic transport in solid-state disordered systems [36], molecule motion

inside living cells [189] and on their membranes [171], telomere motion inside mammalian cells’

nuclei [43], soil transport [149], heat transport in low-dimensional systems [126], and certain classes

of billiards [19], among a variety of other phenotypes.

From a statistical viewpoint, all these diverse phenomena share a common description depending

on how the broadening of the distribution function of the process x(t) grows in time [154]. This is

measured by the variance of the second moment, the so-called mean squared displacement (MSD)
⌦
x
2(t)
↵

' t
� . Normal di↵usion corresponds to an MSD that grows linearly in time � = 1, while

anomalous di↵usion is classified as subdi↵usive for � < 1 and superdi↵usive � > 1. Stochastic

processes have been used to model a range of phenomenon from di↵usion of macro-molecules in

biological cells to animal and human locomotion [41, 81, 221].

From rather complex but objective systems of physics, we are shifting to the field of biology and

biophysics where e↵ects and phenomena are much more di�cult to quantify due to their inherent

diversity and variability. The anomalous di↵usive motion of macromolecules and organelles is

a common observation in cell biology [99], and a simple description based on the conventional

di↵usion equation with di↵usion constants measured in dilute solution fails. Anomalous di↵usion

can be caused by molecular crowding and confinement. In the crowded world of biological cells,

anomalous transport is a critical process to investigate because it leads to a better understanding
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of living cells’ underlying mechanisms. In the broader context of cell biology, living cells contain a

plethora of active, non-equilibrium processes, and their link to anomalous di↵usion will need to be

investigated further in the future.

The densely packed and heterogeneous structures of cells’ interiors and cellular membranes

are summarized by macromolecular crowding. The most well-known phenomenon is a sub-linear,

power-law increase of the mean-square displacement as a function of the lag time, but there are

other manifestations like strongly reduced and time-dependent di↵usion coe�cients, persistent

correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous di↵usion,

and a fraction of immobile particles [99]. Gaussian models such as fractional Brownian motion and

Langevin equations for visco-elastic media, the continuous-time random walk (CTRW) model, and

the Lorentz model for obstructed transport in a heterogeneous environment are some of the most

widely used theoretical models. The spatio-temporal properties of transportation are highlighted

in terms of two-point correlation functions and the mean-square displacements’ dynamic scaling

behavior.

The biggest challenge is determining the physiological implications of anomalous transport in

living cells, mainly whether it is merely a peculiarity or provides a biological benefit. More broadly,

macromolecular crowding may significantly impact essential components of systems biology such

as biochemical reaction kinetics, protein folding, and unfolding dynamics, and intracellular signal-

ing pathways. Over the next decade, at the very least, an enormous amount of interdisciplinary

research will be required to develop a unified picture of anomalous transport and its physiological

consequences.

Lévy walks are mathematical models used to describe anomalous di↵usion. Recent stud-

ies in single-particle Hamiltonian systems [112], biophysics [220, 221], and cold atom dynamics

[20, 120, 148] demonstrate that this particular type of random walk provides significant insight into

complex transport phenomena. The topic of Lévy walks has sparked interest in research communi-

ties concerned with the motility of living organisms and their foraging and search strategies [237].

Motility is a multifaceted problem on many levels. Motility can be found at many di↵erent scales,
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from swimming micron-sized bacteria to albatrosses that can travel hundreds of kilometers at a

time. Motility refers to the interactions of moving animals with their surroundings and habitats,

which are often di�cult to quantify or predict. In a very fascinating twist, Lévy walks are involved

in a particular topic of e↵ectiveness of search and foraging strategies. Lévy walks are argued to be

the most e�cient search strategy under certain conditions imposed on the distribution and proper-

ties of targets. There is an ever-increasing number of accounts in which Lévy statistics for animal

trajectories are reported.

Levandowsky’s work [127, 237] on crawling amoeba was the first to mention the Lévy walk

model in a biological context. Amoebae are unicellular organisms that move on surfaces and in

three-dimensional media by extending cell protrusions known as pseudopodia. The experiment was

carried out by tracking 17 amoeba isolates using a microscope and a video recorder. Various traces

lasting 15 to 60 minutes were recorded with a time step of 1 or 2 minutes. The species studied

had sizes ranging from 10 to 100 microns and average speeds ranging from 0.16 to 1.3 µm/s. The

authors measured turning angles, velocity distribution, and mean-squared displacement after each

step. The MSD scaled as
⌦
x
2(t)
↵

/ t
µ with µ ⇠ 1.5� 1.9 for all observed cells, leading the authors

to conclude that the Lévy walk could be a good candidate for a model.

Humans are the most sophisticated organisms, with complex environmental, sociological, tech-

nological, and urban factors governing their movement. Human mobility is an active area of study

due to its evident relevance to real-world applications. The field of human mobility is linked to the

development of transportation systems, mobile networks, and the prevention of contagious disease

spread. From dollar bill tracking [41] to mobile phone tracking [81] to a recent study of influenza

virus spreading [40], works on this topic have received a lot of attention, both in the public domain

and in academia.

Lévy walks are still in active development, and we are seeing them used in robotics and mobile

communication technologies [122]. As a result, a better understanding of the model’s underlying

mechanism would aid in the advancement of Lévy walk models into new unexplored territories.
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1.1 Stochastic Processes

A stochastic process is a sequence of random variables indexed either continuously or discretely

through a parameter often interpreted as time. The movement of ants in a labyrinth [210], the

growth of a bacterial population, or the movement of a gas molecule are examples of such processes

[62, 74, 77, 176]. They are ubiquitously used as mathematical models of systems and phenomena

that vary randomly. These processes seek applications in a wide range of fields such as biology

[38], chemistry [219], ecology [119], neuroscience [117], physics [231], image processing, signal

processing [63], control theory [33], computer science [25], and financial markets [169, 200, 208].

They are analyzed using continuous or discrete-time measurements from an ensemble of realizations.

1.2 Scaling of Stochastic Processes

A discrete version of a stochastic process X is the sum of increments �s, e.g.

Xt =
t�1X

s=0

�s (1)

The distribution of Xt can be denoted as a function f(x, t). The scaling of a stochastic process

is then defined as the measure of how f(x, t) varies with t. A stochastic process is said to be

self-similar if for any a > 0, there exists an exponent H � 0 such that

Xat

d
= a

H
Xt (2)

where “
d
=” means equality “in distribution” and H is the Hurst exponent which quantifies the

scaling of the distribution.

The scaling of a time series helps in understanding the underlying dynamics of a stochastic

process. These measurements are dependent on whether the increments of a process are station-

ary or non-stationary. If the probability distribution of the increments of a stochastic process is

independent of t, then the process is a stationary increment process (SIP) and if the probability
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distribution of the increments is dependent on t, then it is a non-stationary increment process

(NIP).

1.3 Anomalous Di↵usion and the Central Limit Theorem

A stochastic process is said to di↵use normally if the Mean-Squared Displacement (MSD) of the

distribution scales with time as t
1
2 . Most processes are found that scale as tH where H is called as

the self-a�ne exponent or Hurst exponent [66]. The MSD of the distribution is given as:

hx
2(t)i ⇠ t

2H (3)

When H 6= 1/2, a process is said to di↵use anomalously with time. This behavior is found both

in theoretical models and in many experiments; see references [94, 157, 158, 173, 185]. The

challenge is to understand the system’s underlying dynamics so that H can be precisely determined.

Additionally, there is a need to understand the various system features that cause the MSD to

deviate from the standard linear scaling predicted by the Central Limit Theorem (CLT). The CLT

states that if the increment probability distributions are

a. uncorrelated,

b. have finite variance, and

c. identical, independent of time,

then the processes scale with H = 1
2 . The stochastic processes scale with H 6= 1

2 may be due to the

failure of any one or a combination of the three conditions of the CLT.

1.4 History and State of the Exponents

1.4.1 Hurst Exponent H

In 1968, Mandelbrot [17, 139] introduced the self-similarity exponent H to represent the overall

scaling exponents for SIPs. The Hurst exponent was a remarkable discovery by hydrologist Harold
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Edwin Hurst and he calculated the exponent using the R/S statistic [98]. Mandelbrot decomposed

anomalous di↵usion (H 6= 1/2) into two e↵ects namely the Joseph e↵ect quantified by the Joseph

exponent J [136] and the Noah e↵ect quantified by the Latent exponent L. These exponents are

calculated using moment-based estimations. The moment-based estimations of the width cannot be

used for fat-tailed distributions as their variances diverge. We use the quantile di↵erence method

proposed by Fama and Roll [69] to calculate the overall scaling exponent of the processes. This

method is robust and can also be used for processes displaying Noah e↵ect.

1.4.2 Joseph Exponent J

Joseph e↵ect derives its name from the old testament prophet who foretold seven years of prosperity

followed by seven years of famine [1]. Mandelbrot introduced the Joseph exponent to describe

long-range dependence between increments of a time series in SIPs and calculated it using the

R/S statistic [17, 139]. This method has been used to estimate the exponent for processes with

non-Gaussian increments [140, 141]. Mandelbrot also argued that the R/S statistic is superior to

auto-correlation and variance analysis since it can be applied to increments with infinite variance

[31, 137]. This method can also be used to calculate the Joseph exponent for some NIPs [54].

Other methods such as the detrended fluctuation analysis (DFA) [177], detrended moving

averages [16], and scaling analysis based on the wavelet transform [4] are also used for calculating

the Joseph exponent.

1.4.3 Latent exponent L

Mandelbrot first introduced the term Noah e↵ect to describe “the observations that extreme pre-

cipitation can be very extreme indeed” [139]. He later quantified the e↵ect with Latent exponent L

and asserted that “St di↵use with exponent L� 1/2” for SIPs, where St is the denominator of R/S

statistic [136]. However, he did not clearly state what statistic (mean, variance or median) of St

scales with L�1/2 for SIPs. With further developments for calculation of L, Fama and McCulloch

developed a method to measure the tail index of ↵-stable distribution which can be used to calculate
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L as L = 1
↵

[68, 69, 153]. This method, however, cannot be applied to heavy-tailed distributions

that are not ↵-stable. Inspired by Mandelbrot’s method, it was found that the median of St scales

with L � 1/2 for SIPs and NIPs [54].

1.4.4 Moses exponent M

Moses e↵ect was first introduced in 2018 and derived its name from the biblical reference which

reads “Moses led the Israelites after their Exodus from Egypt as they wandered through the wilder-

ness, having no stationary settlements” [54]. The e↵ect is quantified as the Moses exponent M,

which is used to determine whether or not the increments of a stochastic process are stationary.

Common examples of processes with non-stationary increments are intraday prices of financial mar-

kets [27, 58, 166], the abundance of solar flares [125, 180, 181], and temperature fluctuations in

turbulence [50, 180, 181].

1.5 Notion of Aging

Anomalous di↵usion processes may exhibit aging [70, 118, 121, 147, 202]. This means that the age

of the process controls the statistical properties of the process. Aging in di↵usion processes yields

an interesting, insightful perspective on dynamics in a disordered medium, and more generally, is

used as a tool to probe complex systems [22].

The functional dependence on time is generally more involved in NIPs, and the origin of time

can no longer be chosen arbitrarily. As a result, a new concept of aging emerges. The explicit

dependence of a physical observable on the time span ta between the original preparation of the

system and the start of data recording is defined as aging of a system [187]. In some experiments,

the aging time ta is defined di↵erently. Some common examples include the time of flight measure-

ments of charge carriers in polymeric semiconductors in which the system is prepared by knocking

out the charge carriers by a light flash [191], the initiation time in blinking quantum dot systems

is given by the first exposure of the quantum dot to the laser light source [187] and the spin glass

systems [61, 87]. In some other systems like the motion of tracers in living biological cells, the
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aging time is not precisely defined.

1.6 Lévy Walks

The random walk is a fundamental concept that has applications ranging from quantum physics to

finance. Remarkably, one random walk model appears to be widely used in many fields as a tool

for analyzing transport phenomena where the dispersal process is faster than Brownian di↵usion

[237]. This random walk model is called the Lévy walk model. The term Lévy walk was coined

by Shlesinger et al. (1982). A Lévy walk model is defined as a model with the ability to generate

anomalously fast di↵usion and have a finite velocity of a random walker. These models have rich

statistical behaviors which can be found by tuning a few well-defined handles. They have found

a number of applications in classical chaos, nonlinear hydrodynamics [110, 111, 198, 199], single-

particle Hamiltonian systems [112, 238], blinking quantum dots [144, 146, 209], cold atom optics

[192], motility of living organisms, their foraging, and search strategies [221, 170], robotics, and

mobile communication technologies [122]. This wide range of applications demonstrates that Lévy

walk models provide significant insight into complex transport phenomena.

1.7 Heterogeneous Di↵usion Processes

Heterogeneous di↵usion processes are defined as processes with deterministic power-law space-

dependent di↵usivities [56]. Space-dependent di↵usivity appears to be a natural description for

di↵usion in heterogeneous systems from a physical standpoint. Examples include Richardson dif-

fusion in turbulence [182] and mesoscopic approaches to transport in heterogeneous porous media

[60, 88] and on random fractals [130, 174]. Recent studies show that the maps of the local cy-

toplasmic di↵usivities in bacterial and eukaryotic cells showed a highly heterogeneous landscape

[67, 116], recalling the strongly time-varying di↵usion coe�cients of tracers in cells [223].

In what follows, this dissertation first concentrates on Pomeau-Manneville Map: application of

an aging system in Chapter 2, starting from the basic definition and understanding of the process

and then turning to discuss the importance of Moses e↵ect in an aging system. Chapter 3 focuses

8



on the decomposition of anomalous di↵usion found in Lévy walks. This work uses simulations

and time-series analysis of single Lévy walk trajectories to investigate the emergence of the three

e↵ects in di↵erent parameter regimes of the model and compare the findings with analytical results

based on the well-developed theory for this process. Chapter 4 is devoted to the decomposition of

anomalous di↵usion for heterogeneous di↵usion processes. Chapter 5 discusses the generalization

of the exponents in di↵erent dimensions for various random processes.
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2 Anomalous Di↵usion and the Moses e↵ect in a Model of Aging

This chapter has been published [163].

According to the Central Limit Theorem, the distribution of a process that is the sum of many

random increments will have a variance that grows linearly in time. Such processes are said to di↵use

normally. Many experimental systems, however, are known to di↵use anomalously. Examples

include cold atoms in dissipative optical lattices [52, 109], motion in a crowded environment such

as the cytoplasm of biological cells [76, 229, 228], blinking quantum dots [103, 143, 186], and intra-

day trades in financial markets [27, 54, 194]. Understanding the nature of the dynamics of these

systems that leads to anomalous di↵usion is a topic of intense interest.

For stochastic processes with stationary increments, that is, increments with a time-independent

distribution, Mandelbrot [139] decomposed the nature of anomalous di↵usion into two root causes

or e↵ects. He recognized that it could be caused either by long-time increment correlations or by

increment distributions that have su�ciently fat tails so that their variance is infinite. He called

the e↵ect due to increment correlations the Joseph e↵ect, and the e↵ect due to fat-tailed increment

distributions the Noah e↵ect. Both e↵ects violate the premises of the Central Limit Theorem.

A third way that the Central Limit Theorem premises can be violated is if a stochastic process

has non-stationary increments. Chen, et al., in keeping with the biblically themed names of the

other e↵ects, recently named this root cause of anomalous di↵usion the Moses e↵ect [54]. With the

Moses e↵ect, the nature of anomalous di↵usion in processes with non-stationary increments can

now be decomposed as Mandelbrot did for processes with stationary increments. Any one of the

Joseph, Noah, or Moses e↵ects, or a combination of them, can cause anomalous di↵usion.

For self-a�ne processes, which have a distribution that scales with a power law of time tH , where

H is what Mandelbrot called the Hurst exponent, scaling exponents can be defined to quantify

each of the three e↵ects that can cause anomalous scaling. The Joseph exponent J quantifies the

increment correlations in the Joseph e↵ect. When J 6= 1/2 increment correlations exist and can

cause anomalous scaling. If J > 1/2 the increments are positively correlated, while if J < 1/2

10



they are anti-correlated. The latent exponent L quantifies the e↵ect of increment distribution fat-

tails in the Noah e↵ect. When L > 1/2, the increment distribution has “fat tails” and anomalous

scaling can result.The Moses exponent M quantifies the e↵ect of non-stationarity of the increment

distributions in the Moses e↵ect. When M > 1/2 the increment distribution widens with time, and

for M < 1/2 it shrinks with time. The exponents J , L and M are related to H through the scaling

relation

H = J + L+M � 1 . (4)

If H 6= 1/2 the di↵usion is anomalous. If H < 1/2 the process is sub-di↵usive, and if H > 1/2 it

is super-di↵usive. Robust statistical methods that analyze ensembles of realizations of a stochastic

process can be used to determine each of the four exponents [54] independently.

Physical systems with aging behavior can have non-stationary, time-dependent behavior and

di↵use anomalously. Aging systems can also be non-Markovian, having long-time increment cor-

relations, which also can contribute to the anomalous behavior [22, 187, 192].In this paper, we

decompose the anomalous di↵usion found in a simple model of aging behavior [21, 75] and discover

that it is due to a rich combination of the Joseph, Noah, and Moses e↵ects. The Moses e↵ect arises

from an intrinsic non-stationarity that leads to aging even though the increments do not explicitly

depend on time. The model process consists of increments that are generated by a nonlinear map.

Although the map is a deterministic system, it is intermittently chaotic, and the increments it

generates model stochastic, noise-driven increments in physical systems.

The chapter is organized as follows. In the first subsection, we introduce our model system

and describe its anomalous di↵usive behavior. Then, in the second subsection, we quantitatively

decompose the anomalous di↵usion into its root causes using analytic scaling arguments for each

of the di↵erent constitutive e↵ects. In the third subsection, we confirm our analytical results with

numerical simulations. In the final subsection, we discuss our results and the importance of the

Moses e↵ect for anomalous di↵usive behavior observed in experimental systems.

11



2.1 Model and its Di↵usive Behavior

Consider a one-dimensional, discrete-time process Xt, defined for integer time t 2 [0,1). The

process is the sum of increments {�t}

Xt =
t�1X

s=0

�s ; X0 = 0 (5)

that are iterates of the modified Pomeau-Manneville (PM) map [178]

�t+1 =

8
>>>><

>>>>:

�4�t + 3 if 0.5 < �t  1.0

�t

⇣
1 + |2�t|

z�1
⌘

if |�t|  0.5

�4�t � 3 if � 1  �t < �0.5

, (6)

with z > 1. This map has been studied extensively in the past. It has been linked to anomalous

di↵usion [75] aging [21] and weak ergodicity breaking [29]. The initial increment �0 is chosen

randomly from a uniform distribution in the interval [�1, 1]. Since there is aging in the system,

this initial distribution is important. The distribution changes over time as we present in subsection

3. The dependence on the initial distribution is similar to aging continuous time random walks

[22].

The distribution of the process P (Xt) scales with time

P (Xt) = t
�H

P
⇤�
Xt/t

H
�

(7)

where H is the Hurst exponent and P
⇤ is the scaling function shown in Fig. 8. In the figure, the

scaling parameter is u = Xt/t
H . The function is shown at four di↵erent times t, spanning 3 decades

from 103 to 106. Here the PM map parameter is z = 2.5 and the Hurst exponent is H = 0.38.

Lines connecting the data points are shown as guides to the eye. The scaling functions converge

for large t, but corrections to scaling are noticeable at smaller t. To measure H empirically, one
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Figure 1: Scaling function of the distribution of the process X.

can simply measure the scaling of the width of distribution

w[Xt] ⇠ t
H

, (8)

which can be defined as, say, the distance between the 75th quantile and the 25th quantile of P (Xt),

or, as the standard deviation of the distribution
p

hX2
t
i, if it is finite. Here hXti = 0 for all t.

The value of H can be calculated from the theory of stochastic renewal processes. A more

rigorous calculation was presented in [172]. Here we recall the salient points. Stochastic renewal

processes have a well-defined waiting time distribution. In our case, a waiting period is defined as

the time that the system spends in the interval |�|  0.5. In this region, the dynamics of the system

are regular with � monotonically increasing (or decreasing if it’s negative), while it escapes from
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the unstable fixed point at � = 0. The dynamics can be approximated by a continuous di↵erential

equation

d�

dt
= � (2�)z�1 when � ! 0. (9)

Once � reaches the outer part |�| > 0.5, the dynamics is chaotic until a “reinjection” into the regular

region occurs. Hence, this type of system is intermittently chaotic. Generally, the chaotic motion

is very short, thus it is su�cient to consider only the waiting periods.

Integrating Eq. (9) and assuming a uniform distribution for reinjected �, the distribution of

waiting times ⌧ can be calculated [75, 13]

P (⌧) / ⌧
z

1�z . (10)

For z > 2 the mean waiting time diverges, which gives rise to all the e↵ects we discuss in this

article. During each waiting period the process Xt performs a “jump” due to many small steps � in

the same direction. We define the displacement � during jumps that start at renewal (reinjection)

times t = tr as

� = Xtr+⌧ � Xtr . (11)

It can be calculated from Eqs. (9,10) to be [161]

� ⇠
1

2
(z � 1)

2�z
1�z

1

z � 2
⌧

2�z
1�z , (12)

thus giving a relation between � and the waiting times. The joint probability density function

(PDF) for � and ⌧ then is

P (�, ⌧) / ⌧
z

1�z
1

2

h
�(� � ⌧

2�z
1�z ) + �(�+ ⌧

2�z
1�z )

i
, (13)

where � here is the Dirac �-function. Eq. (13) is well known in stochastic renewal processes [6, 159].
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From here, the value of the Hurst exponent can be calculated from the scaling of the ensemble-

averaged mean squared displacement of the process hX
2
t i / t

2H . As for continuous-time random

walks [12], the calculation can be performed in Fourier-Laplace space. There the mean squared

displacement is equal to the second derivative of the spatial distribution of the process. Results

are known for processes of with PDFs of the form of Eq. (13) for Levy flights [12] and Levy walks

[15]. The results in both cases are the same and therefore independent of the exact path the system

takes during each waiting time. They thus apply to our system as well [161, 162, 172]

H =

8
>>>><

>>>>:

0.5 if z < 2

0.5/(z � 1) if 2 < z <
5
2

(z � 2)/(z � 1) if 5
2 < z

. (14)

At the crossover points, logarithmic corrections appear [13], which make numerical calculations

more di�cult. For 2 < z < 3, H <
1
2 and the system is sub-di↵usive, while for z > 3, H >

1
2 and

the system is super-di↵usive.

2.2 Joseph, Noah and Moses e↵ects

2.2.1 Definitions

Anomalous di↵usion can be decomposed into e↵ects that are root causes for the violation of the

premises of the Central Limit Theorem (CLT). For a process Xt that is the sum of random incre-

ments {�t}, if the increments: (1) are independent, (2) have a distribution with finite variance, and

(3) are identically distributed, the CLT holds. Violation of these premises does not necessarily lead

to anomalous di↵usion, e.g., CLT can still hold for systems with exponential decay of correlations.

However, if it does, it is referred to as the (1) Joseph, (2) Noah, and (3) Moses e↵ects, respectively.

Each of these constitutive e↵ects, or a combination of them, can cause anomalous di↵usion. For

self-a�ne processes, they can be quantified by scaling exponents, which are related to each other

and the Hurst exponent by Eq. 4. These exponents are defined as follows.
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To define the exponents, first define the following random variables: the sum of the absolute

values of increments

Yt =
t�1X

s=0

|�s|, (15)

and the sum of increment squares

Zt =
t�1X

s=0

�
2
s . (16)

Then, the Moses exponent M and the Latent exponent L, which quantify the Moses e↵ect and

Noah e↵ect, respectively, are defined by the scaling of ensemble-averaged median of these variables

m[Yt] ⇠ t
M+1/2 (17)

m[Zt] ⇠ t
2L+2M�1

, (18)

or, similarly, of their means, if they are finite.

The Joseph exponent J , which quantifies the Joseph e↵ect, is defined by the scaling of the

ensemble-averaged rescaled range statistic (R/S) [98]

E[Rt/St] ⇠ t
J
, (19)

where Rt is the range of the process

Rt = max
1st

h
Xs �

s

t
Xt

i
� min

1st

h
Xs �

s

t
Xt

i
(20)

and St is the standard deviation of increments up to time t

S
2
t =

1

t
Zt �


1

t
Xt

�2
. (21)

It should be noted that there is some confusion in the literature with exponents J and H. The

J defined in Eq. 19 is the exponent originally defined by Hurst and is the exponent that is found
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through detrended fluctuation analysis (DFA) [92, 177]. In papers utilizing DFA, it is often referred

to as the Hurst exponent, e.g., in [106]. Mandelbrot first called this exponent J and distinguished

it from the H defined in Eq. 8 [139]. Of course, in processes with no Noah or Moses e↵ects, J and

H become equivalent.

2.2.2 Values in the Pomeau-Manneville map

To calculate the values of the scaling exponents for the PM map, we utilize the concept of infinite

invariant densities in infinite ergodic theory. Such densities have well-defined shapes that scale with

time. The increment density P (�t) is an excellent example of this. It does not satisfy the central

limit theorem. However, it does satisfy two other limit theorems.

First, it can be shown [113], that there exists an infinite invariant density Pinf(|�|) / |�|
1�z that

is related to the actual density by

P (|�t|) ⇠ t
2�z
z�1Pinf(|�|) (22)

for |�t| not close to zero. The density P (|�t|) must be normalizable since it is a physical density.

Therefore, it is truncated for small values of �. For longer aging times t, the location of the cuto↵

of the density moves closer and closer towards zero. Thus, the infinite invariant density in the limit

of large t has a well-defined power law shape but is not integrable.

There is a second way to obtain an invariant expression related to the increment density. It

was derived by Dynkin [64] in the context of renewal theory, while Thaler [214] established the

connection to the underlying transformations. The application to the PM map was shown in [9].

It can be shown that by transforming the increment � according to

� = 2|�| (t(z � 1))
1

z�1 , (23)
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one obtains an invariant distribution

P (�) =
z � 1

⇡
sin

✓
⇡

z � 1

◆
1

1 + �z�1
(24)

for �.

Both of these limit theorems are necessary for understanding the scaling of Zt. It is calculated

by

hZti =
tX

s=1

h�
2
si =

tX

s=1

Z 1

0
d|�s| �

2
sP (|�s|). (25)

The sum adds a ’+1’ to the exponent describing the scaling behavior of h�
2
si, which was calculated

in [161]. For z < 2, the scaling is trivial because P (�) is stationary and integrable. For 2 < z < 4,

it can be found using the infinite invariant density in Eq. (22). For z > 4 the integral over

�
2
Pinv(|�|) diverges, but the Thaler-Dynkin limit theorem can be applied using Eq. (23). From

these considerations Zt scales as:

hZti /

8
>>>><

>>>>:

t if z < 2

t
1

z�1 if 2 < z < 4

t
z�3
z�1 if 4 < z

. (26)

Similar methods can be used to find the scaling behavior of Yt. Again, we use the ensemble

average

hYti =
tX

s=1

h|�s|i =
tX

s=1

Z 1

0
d|�s| |�s|P (|�s|). (27)

Here the expression is integrable with respect to the infinite invariant density for z < 3 and with

respect to the Thaler-Dynkin limit theorem for z > 3. Therefore, hYti scales as

hYti /

8
>>>><

>>>>:

t if z < 2

t
1

z�1 if 2 < z < 3

t
z�2
z�1 if 3 < z

. (28)
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Note that the scaling of the mean is equivalent to the scaling of the median for both Yt and Zt.

No more information is needed to calculate the exponents J , L and M . Using Eqs.(17), (18),

(27) and (28), one obtains for the Moses exponent

M =

8
>>>><

>>>>:

0.5 if z < 2

(1.5 � 0.5z)/(z � 1) if 2 < z < 3

(0.5z � 1.5)/(z � 1) if 3 < z

, (29)

and for the latent exponent

L =

8
>>>>>>>><

>>>>>>>>:

0.5 if z < 2

(z � 1.5)/(z � 1) if 2 < z < 3

1.5/(z � 1) if 3 < z < 4

0.5 if 4 < z

. (30)

Since the Hurst exponent H is given by Eq. (14), the Joseph exponent J can be determined using

the scaling relation Eq. (4),

J =

8
>>>><

>>>>:

0.5 if z < 2.5

(1.5z � 3)/(z � 1) if 2.5 < z < 4

1 if 4 < z

. (31)

At the end of this subsection we want to add a short remark about the parameter J . Throughout

this subsection followed a similar path of reasoning as in [161], where the ensemble averaged time

averaged mean squared displacement (EATAMSD) of the PM map was shown to be

D
X2
E

⌘

t��X

s=0

(Xs+� � Xs)2

t � �
/ t

��2H��
, (32)

for z > 2.5. Here t is the total measurement time. This is the result of the scale-invariant Green-

Kubo relation for time-averaged di↵usivity. The scaling of the EATAMSD is the di↵erence between
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the scaling of the ensemble-averaged mean squared displacement (= 2H) and the scaling of the

“velocity displacement” h�
2
t i / t

� , which is, in fact, the derivative of Zt. So Zt scales like t
�+1.

Then considering Eq. (18), the scaling exponent of the EATAMSD in fact is 2H � 2L � 2M + 2.

This result from the scale-invariant Green-Kubo relation for time averaged di↵usivity looks very

much like our scaling relation Eq. (4) and therefore implies that the EATAMSD scales as ⇠ t
2J .

This equivalence is true, at least, for systems with scale invariant increment correlation functions

h�t�t+�i / t
2H�2�(

�

t
) (33)

in the parameter range J > 0.5 and L+M > 0.5.

2.3 Simulation Results

To verify our analytic predictions for the exponents, we performed numerical simulations of the

PM map. For each value of z from 1.5 to 4.5 in steps of 0.1, we generated an ensemble of 105

realizations of the process Xt for t = 106 map iterations. We then measured w[Xt], m[Yt], m[Zt],

and E[Rt/St] for the ensemble. Example results for z = 2.5 are shown in Fig. 2. In the figure ,

the scaling of the functions quantified by the exponents corresponding to the slope of the function

at large t, determine the exponents quantifying di↵usion and the constitutive e↵ects that cause

anomalous di↵usion. Here the PM map parameter is z = 2.5. Lines connecting the data points are

shown as guides to the eye. The statistical error of the data points is smaller than the symbol size.

The scaling exponents describe the asymptotic, large t scaling behavior of these functions.

We fit each of the four functions over the two-decade range from t = 104 to 106 to the form

f(t) = at
⌦ (34)

where a and ⌦ are fitting parameters, and ⌦ is the asymptotic scaling exponent. Finding ⌦ for each

function, we then determined the values of H, M , L and J using Eqs. 8, 17, 18 and 19. The result

of the fitting for each exponent as a function of z is shown by the filled circles in Fig. 3. Circles
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Figure 2: Log-log plot of the width of X, median of Y and of Z, and mean of R/S as a function of
time t.

show the values resulting from numerical simulation and the solid lines the analytic predictions.

As z ! 1, H ! 1 and M !
1
2 . The analytic predictions are shown by the solid lines in the

figure. Fig. 4 confirms the scaling relation between the exponents, Eq. 4. It shows the theoretically

predicted value of H, versus the fitted value of H from simulations and the result of the fitting for

J + L+M � 1 as a function of z.

The simulation results roughly follow our theoretical predictions, but there are deviations.

Upon close examination of Fig. 2, one can see that the functions are still curving on a log-log

plot at t = 106. Thus the deviations between simulation results and their predictions in Figs. 3

and 4 are presumably due to finite-time corrections to scaling. The corrections are especially
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Figure 3: Values of the scaling exponents quantifying di↵usion and the constitutive e↵ects that
cause anomalous di↵usion in the PM map as a function of parameter z.

evident near crossover points where they have a logarithmic form [13]. To obtain more accurate

numerical results, either corrections to scaling must be included in the fit or longer simulations

must be run. The general form of the corrections, however, is not known, and the accuracy of long

simulations is limited by the phenomenon of “round-o↵ periodicity” [28, 85]. With double-precision

calculations, the map can accurately be iterated only about 106 times. Longer simulations would

require computationally expensive quadruple precision calculations.

2.4 Discussion

The root causes of anomalous di↵usion can be decomposed into the Joseph, Noah, and Moses

e↵ects. To our knowledge, this is true for all systems, and there are no other causes; however,
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Figure 4: Verification of the scaling relation (Eq. 4) for the exponents quantifying di↵usion in the
PM map as a function of parameter z.

all e↵ects might also exist in a way that does not allow us to define the scaling exponents J , L,

and M properly, e.g., for systems that exhibit multiscaling the theory might have to be extended.

Non-stationary increments, such as what occurs in aging processes, can cause anomalous di↵usion

through the Moses e↵ect. Previous studies have found that the anomalous di↵usion in intra-day

financial market prices is solely due to the Moses e↵ect [26, 27, 54, 151, 152, 194]. Here, however, we

have found that the anomalous di↵usion in a simple model of aging is due to a complex combination

of the Joseph, Noah, and Moses e↵ects.

It is perhaps surprising that a process consisting of increments that are iterates of the PM map

can have such a rich set of behaviors. The PM map is, after all, a deterministic map from the

interval [�1, 1] onto itself. The value of increments, thus, is bounded. However, the dynamics
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of the map consist of an intermittent mixture of regular and chaotic motion, which can produce

anomalous di↵usion. For z  2, nothing surprising happens. The di↵usion of the system is normal,

the increments are stationary, and there is no Joseph, Noah, or Moses e↵ect. But for z > 2, the

system ages with time because the mean waiting time in the regular region diverges. This causes

the increment distribution to become time-dependent and a sub-di↵usive Moses e↵ect to occur.

Remarkably, a Noah e↵ect occurs despite the fact that the tails of the increment distribution

are bounded. However, for z > 2, where the increment distribution is time-dependent, rescaling

of � using Eq. (23) results in a stationary increment distribution that has fat tails. The second

moment of this stationary distribution Eq. (24) diverges for 2 < z < 4, causing the Noah e↵ect.

For larger values of z, although the distribution still has power law tails, they decay fast enough to

keep its variance finite.

For z < 2, the density P (|�|) is stationary and has a well-defined mean. For 2 < z < 3, the

density becomes non-stationary and moves towards zero. However, since it has fat tails, the mean

goes to zero more slowly than the density itself. For z > 3, the distribution (Eq. (24)) is steeper.

Here the mean goes to zero with the same scaling as the distribution itself, causing a decrease of

the Moses e↵ect. As a consequence, the Noah e↵ect also decreases because it is directly linked to

the Moses e↵ect, as stated before.

For z < 2.5, there are no long-time increment correlations, as they are disrupted by the frequent

intermittent periods of chaotic motion. However, for z > 2.5, increment correlations do exist and

contribute to the anomalous di↵usive behavior through the Joseph e↵ect, which increases with z

and becomes maximal at z = 4. Both the Noah and the Joseph e↵ects only lead to super-di↵usive

behavior in the system, as both L and J � 0.5 for all z, while the Moses e↵ect only leads to

sub-di↵usive behavior, as M  0.5 for all z. The three e↵ects combine to produce sub-di↵usive

behavior in the model for 2 < z < 3. In this range of z, the Moses e↵ect dominates over the other

two e↵ects. For z > 3, super-di↵usive behavior occurs instead as the Noah and Joseph dominate

the Moses e↵ect.

In empirical time-series analyses, it is often assumed that the increments of the process are
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stationary [135, 142]. This assumption is made to justify “sliding-window” statistical analyses that

combine di↵erent increments. This can lead, however, to spurious results if the increments are

non-stationary, such as falsely determining that the process has a fat-tailed distribution [27]. If

there are non-stationary increments, a proper statistical analysis requires studying an ensemble of

processes. This can be di�cult to acquire such data, especially if the data is a historical time series.

For some systems, there may be periodic or intermittent triggering events that can be thought of

as beginning a new process [27, 54]. For others, experiments must be repeated. Here we repeated

the numerical simulations to acquire the data for the ensemble analysis.

We have shown that decomposing anomalous di↵usive behavior into its fundamental consti-

tutive causes can contribute to understanding the nature of the system’s dynamics. It would be

interesting to similarly decompose the anomalous di↵usive behavior found in other systems, es-

pecially experimental systems. For other aging systems, which by definition have non-stationary

increments, such as blinking quantum dots [103, 143, 186], it can be expected that the Moses e↵ect

contributes to anomalous di↵usive behavior, but do the Joseph and Noah e↵ects also contribute to

the observed behavior? In other systems that di↵use anomalously, which are not necessarily known

as aging systems, will a decomposition of the di↵usion into constitutive e↵ects reveal that a Moses

e↵ect contributes to the observed behavior?
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3 Time Series Analysis of Lévy Walks

This chapter has been published [8].

Di↵usive processes that scale anomalously with time, such that the Mean-Squared Displacement

(MSD) of the expanding particle packet is

hx
2(t)i ⇠ t

2H
, (35)

and the Hurst exponent H 6= 1/2, are widely observed. This behavior is found both in theoretical

models as well as in many experiments, see, e.g., [94, 157, 158, 173, 185]. Of course, if we know

the exact underlying process responsible for the dynamics, H can be determined precisely, and the

various features of the system that lead to the deviation from the standard linear scaling of the

MSD, expected by the Gaussian Central Limit Theorem (CLT), can be understood. However, when

anomalous di↵usive scaling is detected in measurements, it is not always clear what is responsible

for the observed behavior of the system. Imagine, for example, that we obtain an ensemble of data-

series describing intra-day trades in financial markets [27, 54, 194], or experimental data obtained

from observation of molecules di↵using inside cells, e.g., [37, 115, 185, 218, 227, 233]. Here, the

proper characterization of the exact root causes of this phenomenon is essential, since it can have

implications on how we understand the underlying functioning of the system. If, for example, we

observe that the MSD grows faster than linearly with time, is this due to temporal correlations in

the data that cause large random fluctuations to be followed by similar or even greater ones? Is it

the result of a fat-tailed increment distribution, or is it because there is an actual trend of inflation

in the system? Our analysis below allows us to answer these questions, even though we cannot

completely restore the underlying process just from the data.

To make this more precise: Consider a continuous-time stochastic process x(t0) defined in

the time interval t
0

2 [0, t]. We can choose a number Q of observation windows of duration

� = t/Q, and then, represent this process by a discrete time-series composed of consecutive in-

crements, starting at times {0,�, 2�, . . . , (Q � 1)�}. The increments are {�x1, �x2, . . . , �Q} =
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{x(�) � x(0), x(2�) � x(�), . . . , x(t) � x(t � �)}. According to the Gaussian CLT, in the limit of

large Q, if the increments are independent, identically distributed (IID) random variables chosen

from a distribution with finite variance, then the MSD will grow linearly with Q and thus with

time. Each of the three ways that the CLT can be violated corresponds to a constitutive e↵ect that

can produce anomalous scaling [54].

For processes with stationary increments, where the probability distribution of �xj is indepen-

dent of time, anomalous di↵usive scaling can occur because of long-time increment correlations.

This is called the Joseph e↵ect [54, 139, 163]. A paradigmatic process that exhibits this e↵ect is

fractional Brownian motion [54, 128]. Another cause of anomalous scaling may be that the in-

crement distribution is fat-tailed, in the sense that its second moment is divergent. This is the

Noah e↵ect [54, 139, 163]. A Lévy flight process where the increments are power-law distributed,

independent random variables [158, 199], but with infinite variance, is one example of a model with

this e↵ect. When the increment distribution is non-stationary, anomalous di↵usive scaling can also

arise due to the Moses e↵ect [54, 163]. A paradigmatic model in this case is scaled Brownian

motion [101, 187, 217]. Each of the three e↵ects can appear individually in a system or in various

combinations. Importantly, the three e↵ects can be interconnected with each other. For example,

in [163], it was shown that statistical aging in the process could be associated not only with a

Moses, but Noah e↵ect.

In this chapter, we investigate these three constitutive e↵ects in a well-studied stochastic process

called coupled Lévy walk [237]. This model is known to have a rich spectrum of statistical behaviors

found by tuning a few well-defined handles. We explore the emergence of the three e↵ects in

di↵erent parameter regimes of the model using simulations and methods of time-series analysis

of single Lévy walk trajectories and compare our findings with analytical results based on the

well-developed theory for this process. This example shows that the analysis based on the three

constitutive e↵ects is a valuable tool that can be applied to study other systems.

In a two-state Lévy walk [71, 199, 237], a particle starts at x = 0 at time t0 = 0 and then moves

in independent steps. Each step has a random duration ⌧ , chosen from a Probability Density
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Function (PDF) of the form

g(⌧) ⇠
c

|�(��)|
⌧
�1�� (36)

at long ⌧ , where c, � > 0 are constants. During each step, the particle travels at a constant velocity

V , whose magnitude |V | can be either ±1 (sometimes referred to as “genuine Lévy walk” [237]),

or a deterministic function of ⌧ , but whose direction is chosen randomly to be either toward the

right, along the positive x̂ � axis (+), or left (�) along the negative axis. The latter, generalized

model, is the case studied in detail in this chapter (see also e.g., [6, 11, 12, 14, 198]), and the results

include also the constant-velocity case. The probability of the direction being to the right or the

left is equal, so the motion is unbiased, and the velocity has a symmetric PDF �(V ). At time t0 = t,

the process stops. Up to this point, the particle has made N � 1 complete steps, and one, final

“partial” step of duration

⌧
⇤ = t �

N�1X

i=1

⌧i (37)

The properties of the final step have been shown to have a dramatic e↵ect on the overall behavior

of the system [237], as the velocity VN during this step does not necessarily have to be distributed

like all its predecessors, see, e.g., [71]. For more on this point, see subsection 3.2. The number of

steps in the process N 2 [1,1), in the time interval [0, t] is random, and the particle’s position at

time t is given by the sum

x(t) =
N�1X

i=0

�i + �
⇤ (38)

where �i = Vi⌧i, and �
⇤ = VN⌧

⇤.

Table 1 summarizes the main notations we use throughout the paper, by order of their appear-

ance in the main text. Note that the instantaneous velocity v(t) is not always defined, for example

in the case of Brownian motion. This does not matter for the general analysis of the three e↵ects,

which are defined via v, see subsection 3.1. In the example that we use to demonstrate our analysis,
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Notation Definition

V, ⌧,� Lévy walk: step- velocity, duration, displacement
M,L, J,H Exponents: Moses, Noah, Joseph, Hurst

�, �x Time series: increment- duration, size
v Time series: Mean velocity during an increment

↵,� Exponents describing the shape of the distribution of v
z� v/t�

v(t) Instantaneous velocity of the Lévy walker at time t

ṽ v/t
⌫�1

Table 1: The main notations used in this chapter, by order of their appearance in the main text.

namely Lévy walk, v(t) exists, and lim�!0 v ! v(t), see also subsection 3.4. The chapter’s struc-

ture is as follows: In subsection 3.1, we define the three exponents that quantify the Moses, Noah,

and Joseph e↵ects. We discuss the relation between them and their role in determining the scaling

shape of the increment PDF. In subsection 3.2, we extend the details on the Lévy walk model.

In subsection 3.3, we summarize our main results, obtained from time-series analysis of numerical

simulations, and a brief comparison of these results with the theoretical predictions. In subsection

3.4 we get analytic results for the Moses and Noah e↵ects, and in subsection 3.5 for the Joseph.

We generalize the model in subsection 3.6, and the discussion is provided in subsection 3.7.

3.1 Story of Three Exponents: M, L And J

The complete decomposition of the origin of anomalous di↵usion presented in the introduction,

was originally derived for discrete-time processes [54]. In this case, the process starts at ⇠0 = 0, at

n = 0, and evolves in discrete jumps n = 1...N with duration �, until time t = N�. The particle’s

position after n steps is denoted ⇠n�. The Moses e↵ect is quantified by the exponent M , given by

the median of the sum, of the absolute value of the time-series increments [54]

m

2

4
t/�X

n=1

|�⇠n|

3

5 ⌘ m

2

4
t/�X

n=1

|⇠n� � ⇠(n�1)�|

3

5 / t
M+1/2 (39)
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Here, M = 1/2 yields a linear relation which is similar to normal di↵usion. The Noah e↵ect is

defined by the scaling of the median of the sum of square-increments, and quantified by the Latent

exponent L:

m

2

4
t/�X

n=1

(�⇠n)
2

3

5 / t
2L+2M�1 (40)

Here again, normal di↵usion leads to linear scaling, where M = L = 1/2. If there is no Moses

e↵ect, namely M = 1/2, the deviation from this scaling is quantified only by the exponent L, and

it arises if the increment PDF is fat-tailed. Finally, the Joseph exponent can be defined via the

sum over the auto-correlation function [163]

�̃X

�0=0

h�⇠n�⇠n+�0i/h(�⇠n)
2
i / �̃2J�1 (41)

where 0  J  1. Here, starting from an arbitrary time point n, we sum over a discrete lag time �0,

up to e.g., �̃ ⇠ O(t/10) (�̃ is not related to �, defined above), and the scaling shape is valid when

�̃, t � 1. When J > 1/2, the correlations decay very slowly with �̃, which leads to a divergent

sum when �̃ ! 1, and superdi↵usion (see discussion on “long-ranged correlations” e.g., in [30]).

When J  1/2, the correlation function decays at least as fast as 1/�̃, which may lead either to

normal di↵usion, or in some particular cases to sub-di↵usion, see Appen. A.1.

For a process x(t) in continuous time, we divide the time series into Q non-overlapping obser-

vation windows of duration � = t/Q as mentioned above, and define the average velocity in each

time interval v(t0) ⌘ |�xj |/�, where �xj = x(j�) � x [(j � 1)�], and (j � 1)� < t
0
< j�. Fig.

5 illustrates the decomposition of a continuous-time random trajectory, into a time-series of N

increments of equal duration � ⌧ t. In the figure, at the total measurement time t, the last step

is incomplete. Two red dash-dot lines mark the start and end points of one completed Lévy walk

step, whose duration ⌧ was selected from the PDF Eq. (62), and the step-velocity is V ⇠ ⌧
⌫�1.

Here � = 0.52, ⌫ = 0.5. As explained in subsection 3.1, the trajectory is decomposed into a series

of consecutive increments n = 1, 2, ..., of equal duration �, the start and end points of one such

30



increment are marked e.g. by two green dash-dot lines. The size of the average velocity |v| in that

increment is also presented.

Figure 5: An example of a Lévy walk path x(t0) (blue) versus time, generated by the model in
subsection 3.2.

Now, we can re-write the definition of the Moses e↵ect in terms of the ensemble-time averaged

absolute-velocity (when � ⌧ t)

D
|v|
E

⌘

*
1

t � �

t/�X

j=1

|�xj |

�

+
/ t

M�1/2 (42)

We use here the ensemble mean, instead of the median, since it is a more convenient property to

study analytically and numerically, hence we assume by this definition that this mean does not

diverge. In the same spirit, the Noah e↵ect is defined via the ensemble-time average of the squared

velocity, when � ⌧ t

D
v2
E

⌘

*
1

t � �

t/�X

j=1

(�xj)
2

�2

+
/ t

2L+2M�2
, (43)
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where

1/2  L  1 (44)

In this definition, one can notice that the Noah e↵ect manifestation is somewhat di↵erent from the

case of, e.g., a Lévy flight, since the mean of the squared increments is not divergent. As we explain

in detail below, what leads to L 6= 1/2 in this case, is that the increment PDF has a regime where

its shape is fat-tailed, but this regime has a time-dependent cuto↵ which is pushed towards ±1 as

time increases. The resemblance between this observation, and the source of the Noah e↵ect in its

original definition on P. 1, is the reason that we can make the association between the two cases

and refer to L in Eq. (43,44) throughout this chapter as the Latent exponent.The upper bound

on L, in Eq. (44), is true because hv2i  h|v|i2. Intuitively, tuning the parameter that leads to a

Noah e↵ect beyond L = 1 would automatically increase the scaling exponent of the first moment

and, therefore, lead to aging and a Moses e↵ect instead of Noah. The lower bound exists because

fat tails of the increment distribution, which are described by a Noah e↵ect, can never lead to a

slowing down of the process.

In this work, we will assume that also

h|v|i / t
M�1/2 (45)

and
⌦
v2
↵

/ t
2L+2M�2 (46)

We address the relation between our definitions and the original time-averaged definitions of these

e↵ects, which were derived when the ensemble means could be divergent, below (subsection 3.1.2).

Since the ensemble and time averaging procedures are commutative, if we know the first we can
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immediately obtain the latter via

D
|v|
E

! h|v|i = (1/t)

Z
t

0
h|v|(t0)i dt0

= (Const./t)

Z
t

0
t
0M�1/2

dt
0

= [1/(M + 1/2)]h|v|i

(47)

Since we can find
D
v2
E
in a similar way from its ensemble mean, this yields

D
|v|
E
=

h|v|i

M + 1/2
and

D
v2
E
=

hv2i

2L+ 2M � 1
. (48)

Note that Eq. (48) introduces additional limits on the possible values of M and L, for processes

with finite h|v|i and hv2i, since the ratio between the time and ensemble averages here has to be

positive. These limits are consistent with our results for the Lévy walk model.

We define the Joseph exponent also in the spirit of the discrete case, via the scaling of the

integral
Z �̃

0
d�0

hv(t)v(t+�0)i/hv(2i / �̃2J�1 (49)

for large �̃. Here again, �̃ should not be confused with �, which is the time duration from which

we defined v. In this project we only focus on the case where

1/2  J  1, (50)

see Appen. A.1 for more explanation. Taking the derivative of the integral with respect to �̃, the

autocorrelation function is

f(�̃) ⌘

D
v(t)v(t+ �̃)

E

hv2(t)i
/ �̃2J�2

, (51)

at �̃ � 1. For small �̃, we define f(�̃) ⌘ f<(�̃), where f< insures that the autocorreletation

function is regularized at �̃ ! 0. Note that in data analysis there are several known methods
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to obtain the Joseph exponent without directly calculating the autocorrelation function. These

methods have various advantages and disadvantages in practice, see subsection 3.5 and Appen. A.2

and A.3.

We note that by dividing �xj by � and defining the three e↵ects via the mean increment velocity

v, we did not limit the generality of the definitions at all. We did not at this point take the limit

� ! 0; hence, we do not require the instantaneous velocity to be defined. In any process, one can

discuss average velocities and increments of a finite-time duration interchangeably.

3.1.1 Relation between M,L, J and H

Let v ⌘ 0, using Eq. (51) and the Green-Kubo relation [161], the MSD of the process can be

written as

hx
2
i = 2

Z
t

0
d�̃

Z
t��̃

0
dt

0
hv(t0)v(t0 + �̃)i

/ 2

Z
t

1
d�̃

Z
t��̃

0
dt

0
hv2(t0)i�̃2J�2 + 2

Z 1

0
d�̃f<(�̃)

Z
t

0
hv2(t0)i dt0

/ 2

Z
t

1
d�̃�̃2J�2

Z
t��̃

0
dt

0
t
02L+2M�2 + c<t

2L+2M�1

/
2

2L+ 2M � 1

Z
t

1
d�̃�̃2J�2(t � �̃)2L+2M�1 + c<t

2L+2M�1

⇠|{z}
u $ �̃/t

t ! 1

2t2L+2M+2J�2

2L+ 2M � 1

Z 1

0
duu

2J�2(1 � u)2L+2M�1

/ t
2L+2M+2J�2

, when J > 1/2.

In Eq. (52), c< is a constant, and in the last step note that since the term / t
2M+2L�1 is subdom-

inant with respect to the other when J > 1/2, we neglected it in the long-time limit. Using Eq.

(35), this yields

H = J + L+M � 1. (52)
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The relation in Eq. (52) was previously shown to hold empirically in several models in [54, 163]. It

was conjectured to be broadly valid, even for systems beyond the case we study here, particularly

when ensemble averages diverge and the Moses and Noah e↵ects are only quantified via their original

time-averaged definitions. However, a rigorous derivation in other cases is still needed. For more

details see Appen. A.1.

3.1.2 Scaling Shapes of the Increment Distribution

Considering ensemble averages allows us to obtain additional insight about the meaning of the

Moses and Noah e↵ects. Assume that h|v|i and hv2i are not divergent. Let Pt(v) be the PDF of

finding an increment velocity v at time t, given that the process started at at rest at t = 0. This

increment PDF is said to have a single scaling shape, if for any x and t it can be described by a

time-independent function W (z�), such W (z�) = t
�
P (v/t�) and z� = v/t� . In our case, we do

not restrict Pt(v) to only one such scaling regime, and it can have two di↵erent scaling shapes in

it bulk and the tails, a situation not uncommon in anomalous di↵usion which is associated with

multifractality, see e.g., [6, 51, 83, 109, 179, 197]. If both the mean of |v| and v2 are taken from the

same scaling regime of Pt(v), then in this regime

lim
t!1

t
↵+�

Pt(v/t
�) ! W (z�), where z� = v/t� , (53)

and

L = ↵/2 + 1/2, M = � � ↵+ 1/2

(equivalently: ↵ = 2L � 1, � = M + 2L � 3/2). (54)
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Notice that since 1/2  L  1, Eq. (44), then 0  ↵  1. The limit function W (z�) is responsible

for the mean of |v| and hv2i via

h|v|qi = 2

Z 1

0
dv|v|qPt(v) ⇡|{z}

t�1

2tq��↵

Z 1

0
dz� |z� |

q
W (z�), (55)

for q = 1, 2.

WhenM,L are such that both ↵ and � are zero, the increment PDF has a stationary asymptotic

(equilibrium) state. Coincidentally, this occurs only when M = L = 1/2, which, as mentioned,

means that the time-series satisfies at least two of the Gaussian CLT conditions. Curiously, M can

also be half if ↵ = � 6= 0. When Pt(v) is non-stationary, we always have a Moses e↵ect. The PDF

has a normalized scaling shape, when ↵ = 0 but � 6= 0, namely L = 1/2,M 6= 1/2. This is the

onset of a “pure” Moses e↵ect. Now, the exponent M tells us how to re-scale the PDF in order to

find the invariant limit, since

Pt(v) ⇠ t
1/2�M

W (v/t�1/2+M ) (56)

According to Eqs. (53,55), if we define h|z� |
q
iW ⌘

R1
0 |z� |

q
W (z�) dz� for q = 1, 2, then h|v|

q
i =

2tq(1/2�M)
h|z� |

q
iW . Note that usually, based on intuition taken from Gaussian processes, there is

a tendency to vaguely associate the Hurst exponent H, with the ”self-similarity” property of the

process. However in anomalous di↵usion that is not necessarily the case; one example is when the

MSD is diverging, e.g., in Lévy flight, another example is the case of multifractality [51]. In our

case, it is �, not H, that may describe this property, from the point of view of the increment PDF.

The onset of a Noah e↵ect means that v2 becomes non-integrable with respect to the scaling

function which gives the shape of the Pt(v) in the bulk. In the paradigmatic example for this e↵ect,

Lévy flight [139], the PDF Pt(v) can be e.g., a stationary symmetric Lévy distribution l⇠,1,0(v),

with 0 < ⇠ < 2, defined as the inverse-Laplace transform of exp(�|u|
⇠), from u ! v [111]. In this

case, by definition, there is no Moses e↵ect, and the Noah e↵ect rises since
R1
�1 v2l⇠,1,0(v) dv ! 1,

though of-course, here it can only be quantified by the original definition of L, namely via the

time-average of the squared increments of single time-series [139]. If the increment PDF would
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have e.g., the scaling shape

Pt(v) ⇠ t
�1/⇠

l⇠,1,0(v/t
1/⇠) (57)

we would find both a Moses e↵ect, and a Noah e↵ect which is still characterized via the time

average.

A more involved scenario that can occur, is when the large fluctuations of the system are

reduced such that hv2i is not strictly infinity, but is increasing with time as in Eq. (43), because at

its tails the PDF Pt(v) is scaled di↵erently in time with respect to the bulk. Now, the definitions

in Eqs. (42,43) are valid. The Noah e↵ect will now appear if the function which describes the

asymptotic shape of Pt(v) at the bulk is fat-tailed (in the sense that its variance is infinite), but

the mean hv2i will be given by a second scaling function to which Pt(v) convergence at the tails. If

it happens that the mean of |v| and v
2 are obtained from di↵erent scaling regimes, then again Eq.

(53) and Eq. (54) are not valid, but one can use methods such as estimating fractional moments

[6, 83, 179] to find the various scaling shapes of Pt(v). If both h|v|i and hv2i correspond to the

second scaling function (that describes the large fluctuations), and are proportional to t
M�1/2 and

t
2M+2L�2 respectively, then Eq. (53) is valid. But in this case, W (z�) which denotes these moments

might not be normalizable, namely
R1
0 W (z�) dz� ! 1. Here, ↵ and the Latent exponent L serves

as a measure of how far the increment PDF is from having a normalized limit shape. When ↵ > 0

and � = 0, equivalently L > 1/2 and

M =
3

2
� 2L, (58)

W (z�) is an infinite-invariant density, a type of quasi-equilibrium state, see e.g., [3, 7, 10, 113,

123, 188]. The relation in Eq. (58), if observed in data, can in-fact be used to indicate that the

underlying process has an infinite-invariant density in this regime, and it was also observed in the

Pommeau-Manneville map [162]. If ↵ > 0 and � 6= 0, or equivalently L > 1/2 and M 6=[Eq.

(58)], the limit shape of the increment PDF is given by an infinite-covariant density, see e.g.,

[2, 5, 6, 97, 109, 133, 179, 225].
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↵ � L,M limt!1 t
↵+�

P (v/t�)

0 0 1
2 ,

1
2 steady-state

0 � 6= 0 1
2 ,M >

1
2 normalized scaling limit

↵ > 0 0 L >
1
2 ,M <

1
2 infinite-invariant density

↵ > 0 � 6= 0 L >
1
2 , (all) infinite-covariant density

Table 2: Summary of the di↵erent scaling limit of Pt(v), that can be found from the Moses M and
Latent L exponents.

Note that, in both the invariant and the covariant case, and also in the case when the mean-

absolute and mean-squared increments are non-divergent, but they correspond to di↵erent scaling

regimes of the PDF, a Noah e↵ect cannot appear without a Moses e↵ect. The di↵erent cases for

M,L and ↵,� are summarized in Table 2. The table gives a summary of the di↵erent scaling limit

of Pt(v), that can be found from the Moses M and Latent L exponents, via ↵,� Eqs. (53,54),

if both h|v|i and hv2i correspond to the same scaling regimes of the PDF. Note that ↵,� set the

restrictions for M,L in the various regimes, not the other way around.

3.2 The Lévy Walk Model

As mentioned in the introduction, in this work we analyse a two-state Lévy walk model. Partic-

ularly, here, we consider a continuous range of IID random step velocities, whose distribution is

�(V ). In addition, we assume a nonlinear coupling between the ith step duration and the step

velocity, namely

Vi = ±c̃1⌧
⌫�1
i

, (59)

where

⌫ > 0. (60)

The sign of the step velocity is randomly chosen to be positive or negative with equal probability

(the motion is unbiased). The constant c̃1 has units of distance/(time)⌫ , but throughout this
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manuscript we set c̃1 = 1 for convenience. Eq. (59) means that

�(V ) =
1

2

Z 1

0
d⌧g(⌧)

⇥
�(V � ⌧

⌫�1) + �(V + ⌧
⌫�1)

⇤
. (61)

Below, in our numerical simulations, we will use a specific example where the IID random step

durations are obtained from the distribution

g(⌧) = �⌧
�

0 ⌧
�1��⇥(⌧ � ⌧0), (62)

though our results are more general (see the discussion, subsection 3.7). Here, ⌧0 > 0 can be

as small as we wish, and ⇥(·) ⌘ 1 when the condition inside the brackets is satisfied and zero

otherwise. For any g(⌧) in Eq. (36), from Eqs. (59,61), when |V | < 1 one finds that

�(V ) ⇠
c

2(1 � ⌫)|�(��)|
|V |

�1��/(⌫�1)
. (63)

For our example, from Eq. (62) it follows that the step velocity distribution in the first N � 1

complete steps, when ⌫ < 1, is

�(V ) =
�⌧

�

0

2(1 � ⌫)
|V |

� �
⌫�1�1⇥(|V |  ⌧

⌫�1
0 ), (64)

and it has a similar shape but with ⇥(|V | � ⌧
⌫�1
0 ) replacing the original one when ⌫ > 1, hence

c = �⌧
�

0 |�(��)|. In this chapter we focus on the parameter regime

0 < � < 1, (65)

where h⌧i is divergent. In various models of non-linearly coupled Lévy walk, some of them are

summarized in the review [237], it was shown that in addition to the various scaling exponents, the

statistical properties of the process depend strongly on the treatment given to the last, incomplete,

step in the sequence. We choose to correspond with the model studied in [15, 10, 35], where VN
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is determined from the time interval straddling t [224]. With this choice, all the velocities Vi,

with i = 1..N are IID, though the duration of the last step is given by Eq. (37). As usual, the

displacement at each step (complete and incomplete) is the linear product of the step velocity and

its duration.

Instantaneous velocity PDF. Akimoto et al. [10], studied the instantaneous velocity PDF Pt(v)

of the Lévy walker in the process described above, at time t � 1 and the regime where 0 < ⌫ < 1.

We can apply their results to our analysis, since in this model we can associate v and v via

v = lim�!0 v, see subsection 3.4. The following analytic results are brought from that referenced

paper. At long but finite times, Pt(v) assumes di↵erent shapes in two separate ranges of v: Let

vc = t
⌫�1, then [10]

Pt(v) ⇡

8
>>><

>>>:

t
�

2(1�⌫)|�(��)|�(1+�) |v|
�1��/(⌫�1)

, |v|/vc  1

1�[1�(v/vc)1/(⌫�1)]�

c�(�+1) t
�
�(v), |v|/vc > 1.

(66)

In the fig. 6, the red dots correspond to the total time t = 104, the green for t = 105, the blue

for t = 106 and the black t = 108 (a) gives the result in the integrable regime, subsection 3.4.2,

with � = 0.5 and ⌫ = 0.875, (b) the middle regime, subsection 3.4.3, with � = 0.5 and ⌫ = 0.625,

and (c) the non-integrable regime, subsection 3.4.4, with � = 0.5 and ⌫ = 0.375. The simulation

results were generated with 108 realizations and ⌧0 = 0.01. The figure shows that the transition

point for increasing values of t shifts to the left which means that the support of the region when

v < vc which is denoted by the horizontal straight lines drops to zero. The region when v > vc

does not disappear for times t ! 1 which is denoted in the figure by slant lines.

Due to the asymptotic shape of �(v), when v itself is smaller than unity (regardless of t),

Pt(v/t⌫�1) corresponds in this regime to the scaling function ⇠ t
(⌫�1)

⇢(ṽ), where ṽ = v/t
⌫�1 and

⇢(ṽ) ⇡

8
>>><

>>>:

1
2(1�⌫)|�(��)|�(1+�) |ṽ|

�1��/(⌫�1)
, |ṽ|  1

1�[1�(ṽ)1/(⌫�1)]�

2(1�⌫)|�(��)|�(�+1) |ṽ|
�1��/(⌫�1)

, |ṽ| > 1.

(67)
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The scaling function ⇢(ṽ) is normalized to unity. On the other hand, at long times Pt(v) has a

second scaling shape valid in the region v > vc, since in the limit t ! 1 the support of the region

v/vc < 1 in Eq. (66) goes to zero, and at v/vc � 1, we can expand [1� (v/vc)1/(⌫�1)]� as a Taylor

series for the small parameter (v/vc)1/(⌫�1). This yields, to leading order in time,

Pt(v) ⇡ �(v)|v|
1

⌫�1
t
��1

c�(�)
. (68)

Asymptotically [10] eq. (68) can be written as,

lim
t!1

t
1��

Pt(v) ! I(v),whereI(v) ⌘ �(v)|v|
1

⌫�1
1

c�(�)
, (69)

and �(v) is in Eq. (64). The time-invariant asymptotic limit given by I(v) in Eq. (69) is non-

integrable around v = 0, hence it is non-normalizable:

Z 1

�1
I(v) dv ! 1. (70)

As such, this function is the infinite-invariant density of the process [10]. Note that when ⌫ > 1,

the two regimes of the PDF, Eq. (66) simply switch places, but their functional shape remains the

same.

3.3 Summary of Main Results

This summary brings the main results of our analysis of Lévy walk trajectories generated by the

process described in subsection 3.2, and the detailed derivations appear below. For further dis-

cussion about the generality of the three-e↵ect decomposition, also see below. Our simulations

generated an ensemble of 108 realizations of the process x(t) for di↵erent values of � and ⌫. We

observed the increments �xj of the paths at di↵erent times ranging from t = 104 to 108. We then

measured the ensemble averages of |�xj |, �x
2
j
(namely, we used v with observation windows of

duration � = 1), as well as x2, to calculate the values of M , L and H respectively. To obtain the
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value of the exponent J , we used a method based on the time-averaged MSD �
2, as explained in

detail in subsection 3.5 and Appen. A.2. This method’s results correspond to those of a direct

measurement of the correlation function, but it is numerically more convenient (see Appen. A.2).

What the data analysis says: Without relying on prior knowledge about the underlying process,

we found that in the range defined by Eqs. (60,65), the Lévy walk data exhibits five separate

dynamical phases. These phases are summed up above and in Fig. 7. The three solid lines in

the figure 7, separating regions A-B, B-C and C-D are respectively: ⌫ = �/2 + 1/2, ⌫ = � and

⌫ = �/2. The dashed-line is ⌫ = �/2 + 1. The results for the three-e↵ect decomposition in the

various regimes are discussed in subsection 3.3. Region A: H = ⌫, J = 1, L = 1/2, M = ⌫ � 1/2

(“maximal” Joseph e↵ect, namely the autocorrelation function Eq. (51) does not decay at large

values of �, no Noah, Pt(v) has a normalized scaling shape corresponding to M). Region B: H = ⌫,

J = (1 + 2⌫ � �)/2, L = 1 � ⌫ + �/2, M = ⌫ � 1/2 (onset of a Noah e↵ect). Region C: H = ⌫,

J = (1 + 2⌫ � �)/2, L = 1 � �/2, M = � � 1/2 (Pt(v) ! infinite-invariant density). Region D:

H = �/2, J = 1/2, L = 1 � �/2, M = � � 1/2 (infinite-invariant density, no Joseph e↵ect). In

the “100 regime, H ! 1, and M,L, J are not well defined.The summation formula, Eq. (52) is

confirmed in all but the “1” regime.

• In regime A, when �/2 + 1/2 < ⌫ < �/2 + 1: H = ⌫, J = 1, L = 1/2, M = ⌫ � 1/2. Here,

the auto-correlation function does not decay with �̃, in Eq. (51), namely the increments are

essentially completely correlated. In this situation, we say that the Joseph e↵ect is maximal,

since by definition J can never be bigger than its value here. There is no freedom left in the

increment distribution for any Noah e↵ect to be present. There can be, however, a Moses

e↵ect as the increment distribution does “age” with time. The existence of a Moses e↵ect

without a Noah e↵ect means that in this regime, we expect a single scaling function in the

form of t⌫�1
Pt(v/t⌫�1) to describe the regime of the PDF, which gives rise to the first and

second moments of |v| (which is, therefore, no-fat tailed). Our numerics show that this regime

extends also to the range 1 < ⌫ < �/2 + 1 (and � < 1).
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• In regime B, � < ⌫ < �/2 + 1/2: H = ⌫, J = (1 + 2⌫ � �)/2, L = 1� ⌫ + �/2, M = ⌫ � 1/2.

In this regime all the three e↵ects contribute to the anomalous di↵usion. Here, the Joseph

e↵ect is present but is not maximal, as the auto-correlation function decays as a power-law

function of �̃. This allows for a Noah e↵ect to be present too. Here, the Noah e↵ect means

that the scaling shape at the bulk of Pt(v) is fat-tailed, in the sense that its second moment

is divergent. But the mean of |v| remains unchanged from regime A, so it is expected to still

be given by the same scaling regime of the increment PDF as before, namely h|v|i and hv2i

correspond to di↵erent regimes of Pt(v). Accordingly, our numerical analysis shows that Eq.

(53) is not valid in this case. The Moses e↵ect occurs here in a similar way as it does in

regime A, namely also in this regime, the increment PDF is not time-invariant.

• In regime C, �/2 < ⌫ < �: H = ⌫, J = (1 + 2⌫ � �)/2, L = 1 � �/2, M = � � 1/2.

Still, all three e↵ects contribute to the anomalous di↵usion. Here, just as in regime B, the

Joseph e↵ect is present, but is not maximal. In this regime, the Moses and Noah e↵ects are

coupled, with the Moses and the Latent exponents obeying Eq. (58). This suggests that the

large fluctuations of the system are described by an infinite-invariant density, Eq. (53) with

↵ = 1 � �,� = 0.

• In regime D, ⌫ < �/2: H = �/2, J = 1/2, L = 1 � �/2, M = � � 1/2. Here, M,L remain

coupled as in region C. Hence we expect the same infinite-invariant density to be valid in this

regime too. Interestingly, now there are no long-range increment correlations and, thus, there

is no Joseph e↵ect. At this stage anomalous di↵usion occurs due to the non-stationarity of

Pt(v) and the fat tails of the scaling-shape describing this PDF at the bulk.

• When ⌫ > �/2+1, the MSD is divergent. The scaling relations in Eqs. (43-51) don’t hold, and

in this regime the decomposition is not valid. We call this the “1” regime. See Appen. A.5.

The figure 9 shows the phase diagrams of the scaling exponents where (a) gives the Moses

exponent M that quantifies the Moses e↵ect, (b) gives the Latent exponent L that quantifies the

Noah e↵ect, (c) gives the Joseph exponent J that quantifies the Joseph e↵ect, and (d) gives the
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Hurst exponent H. These results were obtained with for ⌘ = 1 (see subsection 3.6). In the “1”

regime, the Hurst exponent is divergent and the other exponents are not well defined, see subsection

3.6 and Appen.A.5

What we know from the model, in comparison with the data analysis: When �, ⌫ < 1, Eq.

(67) and Eq. (69) describe two di↵erent ways to obtain a time-invariant scaling-shape of the

instantaneous velocity PDF Pt(v), the first is valid for small v and the second for large. We can

associate this velocity PDF with the distribution of the increment velocity (see subsection 3.4).

As expected from the numerics, the analytic results presented in subsection 3.4 show that the bulk

function and the infinite-invariant density describe the shape of the increment PDF in regimes A

and C,D respectively, in the range of v which is responsible for the various moments. In regime

B, h|v|i, hv
2
i, (hence h|v|i, hv2i) are obtained separately from the two scaling regimes. The fact

that the Joseph e↵ect, studied in subsection 3.5, is “maximal” in regime A matches the fact that

the bulk limit-function describing the PDF is thin-tailed, for the same reason that in regime D,

it is “minimal”: if the increments are long- (short-) ranged correlated; their size is more (less)

predictable from the first step. Therefore, large fluctuations are less (more) possible.

In regime A, when ⌫ > 1, it is easy to show that one can find similar results for h|v|i and hv2i as

in the case when ⌫ < 1 since as mentioned, the shape of Pt(v) is similar to Eq. (66), but with the

two regimes for v  1 and v > 1 switching roles. In addition, here ⌧
⌫�1
0 becomes a lower, instead

of an upper cuto↵ for the step velocity PDF in Eq. (64). The divergence of the MSD in the “1”

regime, was shown analytically in [15, 35], further details in subsection 3.6 and Appen. A.5.

3.4 Calculation of Latent exponent L and Moses exponent M

As explained in subsection 3.1, in order to obtain M and L, we need to examine the temporal

behavior of the ensemble-time averages
D
|v|
E
and

D
v2
E
, where v is the mean velocity obtained at

increments �x, whose duration � is defined independently from step duration of the underlying

Lévy walk (namely � 6= ⌧). Choosing � ⌧ 1, the mean velocity v can be exchanged with the

instantaneous velocity v of the random walker at various points in time, and then we can replace

44



v $ v in Eqs.(42-43). Accordingly, this means that we can obtain the exponents of the time

series from
D
|v|

E
and

D
|v|2
E
, where we now use the following definition for the time average of an

observable f : f = (1/t)
R
t

0 f(t
0) dt0. We note that here one should use a bit of care, since during

an increment of duration �, the particle might have ended one step of the underlying random

walk, and started another, and in this interval of the motion the mean velocity is di↵erent from

the instantaneous value before/ after the transition. However we assume that if � is small enough,

the e↵ect of these occurrences is negligible in the context of the results in this manuscript. This is

also confirmed by our numerics.

3.4.1 Three Regimes for M and L

One can obtain the long-time asymptotic behavior of the ensemble mean of any symmetric observ-

able O(v) in the system, as follows:

hO(v)i = 2

Z 1

0
O(v)Pt(v) dv

= 2

Z
vc

0
O(v)Pt(v) dv + 2

Z 1

vc

O(v)Pt(v) dv. (71)

Given Eqs. (64,66), for the mean of |v|, we get

h|v|i ⇡ 2

Z
vc

0

1

2(1 � ⌫)|�(��)|�(1 + �)
t
�
|v|

� �
⌫�1 dv

+ 2

Z
⌧0

⌫�1

vc

1 � [1 � (v/vc)1/(⌫�1)]�

2(1 � ⌫)|�(��)|�(� + 1)
t
�
|v|

� �
⌫�1 dv

⇡ �
�(�� + ⌫ � 1)t⌫�1

|�(��)|�(⌫)
+

⌧0
⌫��

t
��1

|�(��)|�(�)(� � ⌫)
. (72)
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Similarly, for the mean of v2, we get

hv
2
i ⇡ 2

Z
vc

0

t
�

2(1 � ⌫)|�(��)|�(1 + �)
|v|

1� �
⌫�1 dv

+ 2

Z
⌧0

⌫�1

vc

1 � [1 � (v/vc)1/(⌫�1)]�

2(1 � ⌫)|�(��)|�(� + 1)
t
�
|v|

1� �
⌫�1 dv

⇡ �
�(�� + 2⌫ � 2)t2⌫�2

�(2⌫ � 1) |�(��)|
+

⌧0
��+2⌫�1

t
��1

(� � 2⌫ + 1)�(�) |�(��)|
. (73)

To determine the leading behavior of these two means in the long time limit, note that Eqs. (67,69)

create a distinction between two di↵erent cases, depending on whether O(v) = |v| or v2 is integrable

with respect to ⇢(v), Eq. (67), or it is integrable with respect to the infinite-invariant density I(v),

Eq. (69). In the first case, the leading order is obtained by first changing variables: v/t⌫�1
! ṽ

hO(v)i = 2tq(⌫�1)
Z 1/t⌫�1

0
O(ṽ)⇢(ṽ) dṽ + 2tq(⌫�1)

Z 1

1/t⌫�1
O(ṽ)Pt(ṽt

⌫�1) dṽ, (74)

and then in the range t � 1 the first term is ⇡ 2tq(⌫�1)
R1
0 O(ṽ)⇢(ṽ) dṽ and the second term

approaches zero since its support vanishes. So, in this case

hO(v)i ⇡ 2tq(⌫�1)
Z 1

0
O(ṽ)⇢(ṽ) dṽ. (75)

In the second case, when hO(v)iI ⌘
R1
0 O(v)I(v)v < 1, O(v) is integrable with respect to the

infinite-invariant density, the contribution to its mean from the region v < vc can be neglected in

Eq. (71) in the limit t ! 1, to leading order, hence using Eq. (69) we get

hO(v)i ⇡ 2

Z 1

vc!0
O(v)Pt(v) dv !|{z}

t!1

2t��1
hO(v)iI . (76)

Notice that in this case, the temporal scaling of hO(v)i is similar for all the integrable observables

since it is determined only by the scaling of the infinite-density. For O(v) = h|v|i and hv
2
i together,

there are three regimes of behavior, included within the range �, ⌫ < 1: The integrable regime,

where both h|v|i and hv
2
i are integrable with respect to ⇢(v); the middle regime, where only the
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mean-absolute velocity is integrable; and the non-integrable regime, where neither observable is

integrable (details below). In the figures 8, red dots and the blue diamonds represent the values

of < |v| > and < v
2
>, obtained from simulated data for di↵erent values of t, respectively. The

solid green and black lines correspond to Eq. (72) and Eq. (73) respectively. The yellow and the

magenta dashed lines represent the leading order terms in these equations, in the long time limit.

(a) gives the result in the integrable regime, Sec. 3.4.2, with � = 0.5 and ⌫ = 0.875, (b) the middle

regime, Sec. 3.4.3, with � = 0.5 and ⌫ = 0.625, and (c) the non-integrable regime, Sec. 3.4.4, with

� = 0.5 and ⌫ = 0.375. The simulation results were generated with 108 realizations and ⌧c = 0.01.

Figs. 8 a-c display simulation results for the temporal behaviour of h|v|i and hv
2
i in the integrable,

the middle and the non-integrable regimes, respectively. The simulations match perfectly at long

times with the exact expressions in Eqs. (72,73), which denote both the leading order behavior of

h|v|i and hv
2
i in time and the next-to-leading order. They also confirm the approach to the leading

order asymptotic results, though this approach is slow. The results for the exponents M and L in

the various regimes are shown in the lower two panels of Fig. 9.

In figures 10, 11 and 12, we use the results for these exponents in the three regimes to seek for

a time-invariant asymptotic shape of Pt(v), based on Eqs. (53,54). The quantification of the Moses

and Noah e↵ects based on Eqs. (53,55) are seen in these figures. From Eq. (55): ↵ = 2L � 1 and

� = M + ↵ � 0.5. The log-log plots in figures 10, 11 and 12, in symbols, we see the rescaled PDF

t
↵+�

Pt(v), obtained from simulation results of 3⇤108 paths, in regimes A, B and D respectively (in

regime C the shape of the PDF behaves similar to the last, at increasing times). The measurements

were performed at times t = 104 (red dots), 105 (green dots), 106 (blue dots) and 107 (black dots).

In figure 10, � = 0.5, ⌫ = 0.875, leading to L = 0.5, and M = 0.375. The figure shows that the

simulation results converge at increasing times to the normalized scaling shape given in Eq. (67)

(solid mustard line). In figure 11, � = 0.5, ⌫ = 0.625, and L = 0.625, M = 0.125. Attempting to

find an asymptotic scaling shape in this regime, which corresponds to Eq. (53), does not work, since

h|v|i and hv2i do not correspond to a single scaling regime of Pt(v). In figure 12, � = 0.5, ⌫ = 0.375,

and L = 0.75, M = 0. M and L here obey the scaling relation in Eq. (58), hence we expect to
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find that the increment PDF approaches the shape of a non-normalizable infinite-invariant density.

This is confirmed by the solid mustard line, that represents Eq. (69). The insets for figures 10, 11

and 12 show the same results, but in semi-log plots.

3.4.2 The Integrable Regime, 1/2 + �/2 < ⌫ < 1

In this regime, the leading behavior in time of h|v|i and hv
2
i is given by the ⇠ t

⌫�1 and ⇠ t
2⌫�2

terms in Eq. (72) and Eq. (73), respectively. The second term in both equations gives the next-

to-leading order behavior. This result agrees with the calculation based on Eq. (75). Similar to

the argument in Eq. (48), the ensemble-time averages h|v|i / t
⌫�1 and hv2i / t

2⌫�2, like their

corresponding ensemble averages, and since we associate v with v, we now obtain the Latent and

Moses exponents using Eqs. (42,43):

M = ⌫ �
1

2
, and L =

1

2
. (77)

Since here both means are obtained from the same scaling limit of Pt(v), we can now associate

⇢(ṽ) in this regime with W (z�), Eq. (53), and here z� = ṽ = v/t
⌫�1, so � = ⌫ � 1 and ↵ = 0,

in agreement with Eqs. (54,77). Fig. 10 displays the convergence of simulation results of Pt(v) at

increasing times, rescaled according to Eq. (53), as function of z� , to the scaling limit Eq. (67).

Note that the Moses e↵ect originates from the diverging mean duration of the Lévy walk steps,

namely because h⌧i ! 1 in g(⌧), Eq. (62), which leads to statistical aging [79].

3.4.3 Middle Regime, � < ⌫ < 1/2 + �/2

In this regime, v2 is no longer integrable with respect to the scaling function ⇢(v). |v|, however,

still is. Therefore, the leading-order behavior of h|v|i and h|v|i, remains proportional to ⇠ t
⌫�1,

similar to the previous, integrable region. However since hv
2
i is now integrable with respect to the

infinite-density I(v) instead of ⇢(v), its leading behavior is now obtained from Eq. (76). The result

is equal to the term / t
��1 in Eq. (73) (and the second term there is now the next-to-leading order
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behaviour). Therefore, also hv2i ⇠ t
��1. Note that in this regime we can obtain the time average

of v2(t) also using arguments based on infinite-ergodic theory [10]. Using Eqs. (42,43), this yields

M = ⌫ �
1

2
, and L =

� � 2⌫ + 2

2
. (78)

This regime continuously extends the one introduced in Eq. (77). The scaling shape of the

PDF can still describe the first moment at the bulk. However, since the second moment of this

PDF diverges with respect to ⇢(v), here we see for the first time the emergence of a Noah e↵ect,

in addition to Moses. Since the mean of |v| and v
2 are obtained from two di↵erent scaling regimes

of Pt(v), Eqs. (53-55) are not valid, and ↵ and � are not defined. Fig. 11 shows that, if we did

not know the model, and try to obtain ↵,� from Eq. (54) in this regime from the data, we would

find ↵ = � � 2⌫ +1,� = � � ⌫, but with this rescaling, Pt(v) does not converge to a time-invariant

shape.

3.4.4 The Non-Integrable Regime, ⌫ < �

In this regime neither the first, nor the second moment of |v| are integrable with respect to ⇢(v),

Eq. (67). Instead, both the mean velocity, and the mean squared velocity are integrable with

respect to the infinite-density. Here, using Eqs. (64,69,76) we get h|v|i, h|v|i / t
��1, as well as

hv
2
i, hv2i / t

��1, so from Eqs. (42,43), we find

M = � �
1

2
, and L = 1 �

�

2
. (79)

In this case, we associate W (z�), Eq. (53), now with the infinite-invariant density I(v), Eq.

(69), and ↵ = 2L � 1,� = 0, so z� = v. The Noah e↵ect tells us that the asymptotic shape of the

increment PDF is given by a non-normalizable function, and the relation between M and L here

also agrees with Eq. (58), as it should. Fig. 12 shows how simulation results of t↵Pt(v) at converge

increasing times to I(v), the infinite invariant density. As in the other regimes, here the mean

duration of the Lévy walk steps in g(⌧), Eq. (62) is divergent, however since ⌫ is small, the step
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velocity decays very quickly with the duration. Therefore the step displacement � ⇠ ⌧
⌫ , is almost

decoupled from ⌧ . This implies two things: First, the MSD of the process now mainly depends on

how many steps the walker can have between t
0 = 0 and t, which is determined only by the value of

�. So the Hurst exponent in this regime depends only on �. Second, by a hand-waving argument,

we can see why M and L depend only �; because if the step displacement depends only on this

parameter, the average velocity v in all the time-series increments within those steps will depend

only on this parameter too.

3.5 Calculation of Joseph exponent J

The Joseph exponent depends on the shape of the auto-correlation function. However, this quantity

is di�cult to obtain for many systems, analytically and numerically. In practice, the Joseph e↵ect

is often quantified by designated methods, such as the so-called rescaled range statistic (R/S) [98],

wavelet decomposition [4] or detrended fluctuations analysis [177]. Additional information on the

correspondence between our definition of J and the latter method is given in appendix A.3.

Here, for the Lévy process, we use a measure which is easier to handle analytically; the ensemble

averaged time-averaged MSD
D
�2
E
, defined as

h�2i ⌘

⌧
1

t � �

Z
t��

0
[x(t0 +�) � x(t0)]

2
dt0

�
. (80)

Note that Eq. (80) should not be confused with hv2i in Eq. (43), since in the latter the in-

crements are strictly non-overlapping, whereas in h�2i they are. This quantity is related to the

auto-correlation function, via [161]

h�2i ⇡
2

t

Z
t

0
dt0

Z �

0
dt2

Z
t2

0
dt1hv(t1 + t0)v(t2 + t0)i, (81)

when t � �. The scaling of this function for di↵erent types of auto-correlations is discussed in

Appen. A.2, where we also show the correspondence between h�2i, the autocorrelation function,

and our definition in Eq. (51). In all the cases considered in the appendix (even for J  1/2), the
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asymptotic scaling is

h�2i ⇠ t
2L+2M�2�2J

. (82)

Our model is described by type (II) in the appendix. This means that the Joseph exponent is given

by the scaling of h�2i with the lag time � (note, that this observation was already made in [163],

however, due to a typo it was read ’t’ instead of ’�’).

To obtain the Joseph exponent in various regimes, we use the results of the calculation of the

ensemble-time averaged MSD, obtained for this model in Ref. [15]. Notably, in that Ref., the

scaling of h�2i with respect to time and � was calculated for a general shape of g(⌧), with an

asymptotic fall-o↵ as in Eq. (62), at large ⌧ , and it was shown to not depend on the exact behavior

at small ⌧s. Given this knowledge, the time-averaged MSD (for 0 < {�, ⌫} < 1) for the Lévy walk

model we study here, has the following scaling [15]

h�2i /

8
>>>>>><

>>>>>>:

t
2⌫�2�2

, �/2 + 1/2 < ⌫

t
��1�1+2⌫��

, �/2 < ⌫ < �/2 + 1/2

t
��1�, ⌫ < �/2

. (83)

Using Eq. (83) and Eq. (82), we find that

J =

8
>>>>>><

>>>>>>:

1, �/2 + 1/2 < ⌫

(1 + 2⌫ � �)/2, �/2 < ⌫ < �/2 + 1/2

1/2, ⌫ < �/2

. (84)

Note that since � < 1, the mean step duration in all these regimes diverges. This implies that

the random walker essentially walks in the same direction for almost all of the time t, regardless

of how long it is. In turn, this means the process is correlated in the whole parameter regime that

we study. But when ⌫ < �/2, the average correlations decay rather quickly with � because the

step velocity changes only minimal with the step duration, hence in this regime, we do not see a
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Joseph e↵ect (the di↵erence between the mean velocity at increments belonging to the same steps

of the Lévy walk, versus increments of other steps, is small). The onset of the e↵ect is above the

line ⌫ = �/2. It is maximal when J = 1, at � + 1 < 2⌫.

Fig. 9 c shows a phase diagram summarizing the di↵erent regimes of the Joseph e↵ect, shown

in Eq. (84). Fig. 9 d shows the di↵erent regimes of the Hurst exponents, which results from the

combined e↵ect of the various e↵ects leading to the anomalous di↵usion and calculated using Eq.

(52). Our simulation results for several arbitrary samples of values of ⌫ and � in these regimes

agree with the analytic expectation.

3.6 A Generalized Model

In this subsection, following [15, 35] we extend the model displayed above by introducing a new

parameter ⌘. This parameter generalize Eq. (59) by modifying the relation between the ith step

velocity Vi, its duration ⌧i and the actual time in motion t
0, as follows

V⌫,⌘ = ±c̃1⌧
⌫�⌘

t
0⌘�1

. (85)

Some values of ⌘ correspond to special cases: The Lévy walk we studied above corresponds to

⌘ = 1, when ⌘ = ⌫ we get a Drude-like model [193, 24], and when ⌘ ! 0 or ⌘ ! 1 we approach

either a jump-then-wait type of coupled continuous-time random walk, or a wait-then-jump model,

respectively [35]. As we will now show, modifying this parameter changes the onset of the “1”

regime. Our simulation results suggest that when ⌘ is within the open range (0,1), the behavior

of all the e↵ects in regimes A,B,C,D in Fig. 7 does not change, however the regimes themselves

may expand or shrink and disappear.

Let’s look again at the PDF Pt(x), of the particles’ displacement x at time t. Here,

Pt(x) =

Z 1

�1
dx

0
Z

t

0
dt

0
A(x0, t0)r(x � x

0
|t � t

0). (86)

where A(x0, t0) is the joint probability density to land on x
0 between x and x + dx in a complete
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step ending at t0 < t, and r(x� x
0
|t� t

0) is the conditional probability density of the displacement

in the last, incomplete step given the duration of the walk is t. The following calculation of

the MSD for this model is adapted from Ref. [35]. Let f̂(k, t) =
R1
�1 f(x, t) exp(�ikx) dx, be

the Fourier transform of some function f(x, t), from x ! k. Eqs. (87,88) and Eq. (89) below,

represent the characteristic functions of the probability densities P, r and A, respectively. All the

functions except for P lack normalization on unity; the zero terms of the expansions are denoted

as r0(t) =
R
r(x|t)dx 6= 1 and A0(t) =

R
A(x, t)dx 6= 1. Let x2(t) ⌘ hx

2(t)i be MSD at time t,

A2(⌧) =
R
�
2
A(�, ⌧) d� is the marginal second moment of displacement � in a single complete

step of duration ⌧ and r2(⌧⇤) ⌘
R
�
⇤2
r(�⇤

|⌧
⇤) d�⇤ is the MSD of the displacement �

⇤ in the last,

incomplete step. The duration ⌧
⇤ of the latter is defined in Eq. (37). After Fourier transform, we

get

P̂ (k|t) = 1 �
1

2
k
2
x2(t) + o(k2) (87)

r̂(k|t) = r0(t) �
1

2
k
2
r2(t) + o(k2) (88)

Â(k|t) = A0(t) �
1

2
k
2
A2(t) + o(k2) (89)

Let f̂(k, s) =
R1
0 f̂(k, t) exp(�st) dt be the Laplace transform of f̂(k, t). In Fourier and Laplace

space, from Eq. (86) we obtain

P̂ (k, s) = A0(s)r0(s) �
k
2

2
[A0(s)r2(s) +A2(s)r0(s)] + o(k2) (90)

On comparing Eq. (87) and Eq. (90), we can now obtain the MSD using

hx
2(s)i = A0(s)r2(s) +A2(s)r0(s) (91)

Calculating the values on the right-hand side of Eq. (91), and taking the inverse Laplace transform,

one can now derive the MSD. Part of this calculation, performed in [35], was to obtain the second
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marginal moment of the function r(x|t):

r2(t) ' �c̃
2
1⌧

�

0 t
2⌘
Z 1

t

t
02(⌫�⌘)�1��

dt
0
. (92)

From here, we can see that r2, and therefore also hx
2
i, can only obtain a finite value when � >

2(⌫ � ⌘). This explains the crossover to the “1” regime, which occurs when ⌫ > �/2 + ⌘.

When ⌫ < �/2 + ⌘ and � < 1, 2⌫ < �, the MSD is [35]

hx
2(t)i ⇡ �


�(2⌫ + 1 � �)

�(1 � �)(2(⌫ � ⌘) � �)�(2⌫ + 1)
t
2⌫ +

B(2⌫ + 1, � � 2⌫)

�(1 � �)�(1 + �)
c̃
2
1t

�

�
, (93)

where B(a, b) is the Beta-function. This is dominated by the second term, since 2⌫ < �, and

therefore hx
2(t)i / t

� , which gives the value of the Hurst Exponent as H = �/2, similar to what is

seen seen in Fig. 9d. When ⌫ < �/2 + ⌘, but � < 1, 2⌫ > �, the MSD reads [35]

hx
2(t)i ' �

�(2⌫ � �)

�(2⌫ + 1)�(1 � �)

4⌫ � 2⌘ � 2�

2(⌫ � ⌘) � �
c̃
2
1t

2⌫
, (94)

which gives the value of the Hurst Exponent as H = ⌫ also similar to Fig. 9(d). The results shown

in Fig. 9 are for ⌘ = 1, whereas Eqs. (90,91) are calculated for any value of ⌘. This shows that the

power-law dependence of the mean squared displacement is independent of the exponent ⌘ and the

particular value of ⌘ only enters in the prefactors, when hx
2
i is finite. When ⌘ is very small, only

regime D in Fig. 7 survives, and beyond it we have the non-scaling “1” regime. When ⌘ is very

large, regime A expends higher into the realm of ⌫ > 1.

3.7 Discussion

Imagine that you get hold of a “blind” set of data series, containing the positions of an ensemble

of random walkers at various times in the interval [0, t]. A Lévy walk model generated this data,

but you do not have this prior knowledge. Our analysis allows us to uncover the main features

of the hidden process that cause its behavior to scale anomalously with time, even though we
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do not know what process generated the data. Elucidating the origins of anomalous di↵usion

observed in experimental data is crucial to understand the system’s underlying functioning, and

it is studied therefore these days, e.g., using new advanced methods for single-particle tracing

[107, 185, 222, 227]. We encourage the verification of our results, for example, in (but not limited

to) future such experiments, in particular, e.g., the scaling relation in Eq. (52) and Eq. (53), and

consequently its application.

In addition to learning about the origins of the anomalous di↵usion, one may use the knowledge

about the Moses, Noah, and Joseph e↵ects to extrapolate which processes can and cannot be good

candidates to represent the underlying dynamics. These days, many studies use techniques such as

machine learning [34, 100, 167], Bayesian statistics [215], and more, e.g., [108, 216], to try to infer

the Hurst exponent or distinguish between various known models such as continuous-time random

walk, fractional Brownian motion, and others, which lead to anomalous scaling of the MSD, based

only on the analysis of data obtained from single trajectories. This issue is even being studied

today as part of a multi-group competition to characterize the properties of anomalous di↵usion in

data, called the ANDI challenge [168]. Though we cannot fully and uniquely restore the underlying

dynamics just by discerning the scaling properties of the process from the data, the characterization

of anomalous di↵usion using three additional exponents M,L, and J , in addition to the Hurst, does

bring di↵erent tools which can be helpful for modeling it. In this sense, this decomposition should

also be beneficial, for example, for the modeling of di↵usion in the membranes of living cells done

in [227], where a Moses and a Joseph e↵ect seem to have been observed. Another interesting

example is found in [211], where the authors observed intercellular transport of insulin granules in

eukaryotic cells and then used information from the time-averaged MSD (Joseph) and the evolution

of the absolute mean of the increments (Moses) to model it. The authors compared two candidate

models to describe their dynamics: fractional Brownian motion and continuous-time random walk,

and concluded that non is su�ciently good for a full description of the system. They therefore

continued by proposing a di↵erent, ‘hybrid’ model based on the previous two [211]. Since the first

model leads only a Joseph e↵ect, but the second leads to both Moses and Noah, a full three-e↵ect
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decomposition here, which also considers the inherent relation between them, Eq. (52), might shed

more light on the unified model. Of course, in any case, if one seeks to reconstruct the underlying

process from the data entirely, complete knowledge of the entire correlation structure would be

required, including two-point and all the higher-order correlations.

The Lévy walk model that we studied in this paper is a prototypical example that shows how

the three e↵ects analysis can be used for many other processes. The results in Fig. 7 and Fig. 9

eventually only depend on two inputs: the shape of the step durations PDF at large ⌧s, and the

coupling between the step durations and the velocity, which can also be translated to the coupling

between the step duration and displacement, since the step-displacement � = V ⌧ . Therefore, a

class of process that can be mapped into a coupled step-duration and step-displacement process,

which also includes other processes such as the Pommeau-Manneville map [163] and ATTM [150],

will display similar properties as in the various regimes in Fig. 7 and Fig. 9. These phase diagrams

describe their dynamics as well, after the change of variables (see, e.g., [163]).
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(a) (b)

(c)

Figure 6: Log-log plots for probability distribution as defined in eq. (66) versus |v|.
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Figure 7: Phase diagram of the scaling exponents describing the decomposition of the anomalous
di↵usion.
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(a) (b)

(c)

Figure 8: Log-log plots for the averages of |v| and v
2, as function of time.
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Figure 9: Phase diagrams of the scaling exponents describing the decomposition of the anomalous
di↵usion of Lévy walks into three constitutive e↵ects, and their various magnitudes.
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Figure 10: Numerical examination of the convergence of the increment PDF Pt(v) to a time-
invariant shape, here we used � = 0.5, ⌫ = 0.875, leading to L = 0.5, and M = 0.375.
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Figure 11: Numerical examination of the convergence of the increment PDF Pt(v) to a time-
invariant shape, here we used � = 0.5, ⌫ = 0.625, leading to L = 0.625, M = 0.125.
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Figure 12: Numerical examination of the convergence of the increment PDF Pt(v) to a time-
invariant shape, here we used � = 0.5, ⌫ = 0.375, leading to L = 0.75, M = 0.
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4 Anomalous Di↵usion in Heterogeneous Di↵usion Processes

In a wide range of systems, anomalous di↵usion of the power-law [36, 159, 160] form

⌦
x
2(t)
↵

' t
� (95)

of the mean squared displacement (MSD) has been observed. Subdi↵usion (0 < � < 1) and

superdi↵usion (� > 1) are distinguished based on the value of the anomalous di↵usion exponent �.

The special cases are of normal Brownian motion (� = 1) and wave-like, ballistic motion (� = 2).

The anomalous motion of charge carriers in amorphous semiconductors [190], the motion of

tracer beads in polymer melts [18] and actin networks [232], the dynamics of sticky particles along a

surface [234], and the spreading of tracer chemicals in subsurface hydrology [234] are all examples of

subdi↵usion. In weakly chaotic systems [204], bulk-surface exchange controlled dynamics in porous

glasses [207], and the motion of tracer beads in wormlike micellar solutions [175], superdi↵usion is

observed.

Following significant developments in single-particle tracking and spectroscopic methods [23,

39, 47, 94] over the last decade or so, multiple anomalous di↵usion cases have been identified for

the motion of endogenous and artificial submicron tracers in living biological cells. As a result,

techniques like video tracking, optical tweezer tracking, and fluorescence correlation spectroscopy

have become commonplace for investigating tracers’ motion like larger biomolecules or microbeads

in vivo. The anomalous di↵usion of submicron-sized tracers is not only interesting for understanding

biochemical processes in the cell, but it also provides insight into the mechanical properties of the

intracellular fluid and cellular mechanical structures, as tracer motion is the basis for microrheology

[235].

In vivo subdi↵usion, examples include the movement of endogenous granules (lipids or insulin)

[102, 211, 212], fluorescently labeled RNA [80, 226] molecules at the tips (telomeres) of eukaryotic

DNA, and bacterial DNA loci [43, 226]. Potassium channels found in living cell plasma membranes
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were found to be subdi↵usive [227], as was the membrane proteins’ movement in the Golgi mem-

brane [230]. Superdi↵usion is observed in living cells during the motor-driven transport of viruses

[195], microbeads [48, 49], and magnetic endosomes [184].

The theoretical approaches like continuous-time random walks, fractional Brownian motion

[138], and the closely related fractional Langevin equation [132] driven by Gaussian noise when

used to model processes assume that the environment is homogeneous and isotropic, or that over

the relevant time and length scales of the spatial measurement variations of the environment in some

sense are averaged out. Nonetheless, there are clear indications that the environment significantly

impacts the local di↵usion constant in biological cells.

The MSD of Markovian, heterogeneous di↵usion processes (HDPs) with space dependent di↵u-

sion constant D(x) ' |x|
↵ scales like

⌦
x
2(t)
↵

' t
p with p = 2/(2 � ↵), whereas the time averaged

MSD �̄2 scales linearly in both sub - (↵ < 0) and super-di↵usive (↵ > 0) regimes. We calculate the

scaling exponents quantifying the constitutive e↵ects causing anomalous di↵usion present in HDPs.

In hydrological applications, descriptions of space-dependent di↵usion coe�cients D(x) are

widely used to describe di↵usion in heterogeneous porous media mesoscopically [88]. Inhomoge-

neous versions of continuous-time random walk models for water permeation in absorbent ground

layers have recently been developed [60].

In various stochastic models (compare [72, 73] and [53, 201, 205, 206]), mathematically, spa-

tially, and temporally varying di↵usivities cause anomalous sub- and superdi↵usion. Richardson

type di↵usion in turbulent media was specifically modeled using heterogeneous di↵usion processes

(HDPs) [181]. To capture the di↵usion of a particle on fractal support [174], power-law forms for

D(x) were proposed; however, as seen in [57], this approach results in weakly non-ergodic motion,

which is inherently di↵erent from ergodic motion on fractals [155, 156, 203].

We investigate in detail the motion of a di↵using particle subjected to a space-dependent dif-

fusion coe�cient D(x) for power-law x-dependency. These processes cause anomalous di↵usion of

the form (95) of both sub- and super-di↵usive forms, as well as an ultraslow time dependence of

the MSD. Furthermore, despite being described in terms of a time local di↵usion equation, these
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processes exhibit weak ergodicity breaking in the sense that the time and ensemble-averaged MSDs

do not converge, even in the long time limit [57].

In the following subsection, we introduce the HDP process in detail. In the third subsection,

we calculate and compare our analytical results with the simulations and investigate the power-law

dependence of D(x). Finally, in the last subsection, we draw our conclusions and present a brief

outlook.

4.1 Model and its Di↵usive Behavior

The stochastic Langevin equation for the displacement x(t) of a particle di↵using in a medium with

the position-dependent di↵usivity D(x) [57], namely

dx(t)

dt
=
p
2D(x)⇣(t) (96)

where ⇣(t) denotes a Gaussian white (�-correlated) noise with unit norm h⇣(t)⇣(t0)i = �(t� t
0) and

zero mean h⇣(t)i = 0. The nonlinear stochastic equation (96) is interpreted, both in our theoretical

analyses and in the simulations, with multiplicative noise in the Stratonovich sense [183]. After

averaging over the noise ⇣(t), the di↵usion equation for the PDF P (x, t) has the symmetric form

as [55, 57]

@P (x, t)

@t
=

@

@x

p
D(x)

@

@x

⇣p
D(x)P (x, t)

⌘�
(97)

The di↵erent cases for D(x) for this Markovian process with multiplicative noise are depicted

in Fig. 13. The exact functional dependencies are represented by the dashed lines, while the blue

curves depict the regularised forms for D(x) that were used in the simulations as given in eqs.

(99)-(100) where ↵ = 1 and ↵ = �0.25 for (a) and (b) respectively.

The power-law shape of the di↵usion coe�cient is as follows

D(x) = D0 |x|
↵ (98)
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where the scaling exponent ↵ may assume negative and positive values, e↵ecting sub- and super-

di↵usion respectively. The form (98) is convenient for the analytical calculations but we employ

regularised forms for simulations [55]. Thus, for positive ↵, the modified form

Dsuper = D0 (1 + |x|
↵) (99)

prevents the particle from getting trapped at the origin (x = 0), while for negative ↵ the choice

Dsub =
aD0

a+ |x|
↵ (100)

avoids the divergence of D(x) at the origin. The power-law form (98) along with the regularization

for sub- and super-di↵usion are shown in Fig. 13 . From a set of stochastic trajectories x(t)

generated for an initial particle position x(0) = x0, the ensemble and time averaged MSDs are

computed [57]. In addition, we also analysed the behaviour of HDP for the exponential as well as

logarithmic dependence where

Dexp(x) =
A

2

2
e
�2↵x (101)

Dlog(x) =
A

2

2

1

2
log[

⇣
x

x

⌘2
+ 1]. (102)

On calculating the ensemble-averaged MSD, we obtained logarithmic scaling [57] of the ensemble-

averaged MSD as seen in eq. (103),

⌦
x
2(t)
↵
=

1

4↵2

�
A1 +A2log

⇥
↵
2
A

2
t
⇤
+ log

2
⇥
↵
2
A

2
t
⇤�

(103)

where A1 and A2 are constants. To keep the calculations simple, we took A = 1.

Inserting the power-law form (98) of the di↵usion coe�cient D(x) into the di↵usion equation
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(97), we recover the PDF [55]

P (x, t) =
|x|

�↵/2

p
4D0t⇡

exp

 
�

|x|
2�↵

(2 � ↵)2D0t

!
(104)

for the initial P (x, 0) = �(x). Using the (104), we calculate the ensemble averaged MSD

⌦
x
2(t)
↵
= �

✓
6 � ↵

2 (2 � ↵)

◆
(2 � ↵)4/(2�↵)

⇡1/2
(D0t)

2/(2�↵) (105)

According to eqn (105), for ↵ < 0 the process is subdi↵usive, while for ↵ > 0 superdi↵usion occurs.

The limiting cases of Brownian motion with
⌦
x
2(t)
↵
= 2D0t correspond to ↵ = 0, and that of

ballistic motion to ↵ = 1. The di↵usion becomes increasingly fast when ↵ increases towards the

limiting value 2. The PDF (104) corresponds to a compressed Gaussian in the subdi↵usive case

↵ < 0, i.e., we obtain an exponential distribution in which the exponent of x is larger than 2. In

the super-di↵usive case 0 < ↵ < 2 the PDF (104) becomes a stretched Gaussian. Fig. 14 shows

excellent agreement between the theoretical PDF (104) and the numerical solution of the di↵usion

equation (97). The analytical results (104) for di↵erent trajectory lengths t (coloured lines) and

the numerical solution of the dynamic equation (97) are represented by the dashed lines.(a) shows

the PDF for ↵ = �2 (sub-di↵usion) and (b) PDF for ↵ = 0.25 (super-di↵usion).

4.2 Calculation of Exponents

The MSD for the HDPs does not scale linearly with time, as shown in equation (105), resulting in

anomalous di↵usion. Anomalous di↵usion can be decomposed into e↵ects that are the root causes

of the Central Limit Theorem’s premises being violated (CLT). The CLT holds for a process Xt

that is the sum of random increments �t if the increments are (1) independent, (2) have a finite

variance distribution, and (3) are identically distributed and these are referred as the (1) Joseph,

(2) Noah, and (3) Moses e↵ects, respectively.

Xt =
t�1X

s=0

�s (106)
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Each of these constitutive e↵ects, or a combination of them, can cause anomalous di↵usion. For

self-similar processes, they can be quantified by scaling exponents, which are related to each other

and the Hurst exponent by Eq. 4.

Hurst Exponent H

The Mean-Squared Displacement (MSD) of the di↵usive processes that scale anomalously with

time is
⌦
x
2(t)
↵

⇠ t
2H (107)

where H is the Hurst exponent. On comparing equation (105) and (107), we get

H =
1

2 � ↵
(108)

where ↵ is the scaling exponent as defined in equation (98). When ↵ < 0, the system lies in the

sub-di↵usive region whereas when 0 < ↵ < 2 the system lies in the super-di↵usive region. Thus by

varying the values of ↵, we observe di↵erent regions of anomalous di↵usion.

Joseph Exponent J

To analytically calculate the Joseph exponent, we use the scaling of lag time of the ensemble

averaged time-averaged MSD. The time-averaged MSD is defined as:

�2 (�) =
1

t � �

Z
t��

0
(x(t0 +�) � x(t0))

2
dt0 (109)

where the time average is over the time series x(t0), whose length is t. In order to calculate the

ensemble averaged time-averaged MSD, we additionally average over a su�ciently large number of

individual trajectories [23, 47],
D
�2 (�)

E
=

1

N

NX

i=1

�
2
i
(�). (110)

The trajectory-to-trajectory averaged time averaged MSD (110) of the HDP process with power-law
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form (98) of the di↵usion coe�cient takes on a linear dependence on the lag time � [55],

D
�2 (�)

E
= �

✓
6 � ↵

2 (2 � ↵)

◆
(2 � ↵)4/(2�↵)

⇡1/2
D

2/(2�↵)
0 �t

↵/(2�↵)
. (111)

The asymptotic scaling for the ensemble averaged time-averaged MSD is [163]

D
�2 (�)

E
⇠ t

2L+2M�2�2J
. (112)

To obtain the Joseph exponent for both sub-,super-di↵usive regions, we compare the scaling of

lag time � in (111) and (112) and get

J =
1

2
. (113)

The eqn. (113) implies that the increments of the heterogeneous di↵usion process are independent

of each other i.e., there are no correlations between the increments.

Latent Exponent L

The heterogeneous di↵usion processes considered here in this chapter have finite variance which

shows that E[Xt] ⇠ t
H and E[X2

t ] ⇠ t
2H and thus V ar[Xt] = t

2H
V ar[X1]. Hence, the value of the

Latent exponent is

L =
1

2
. (114)

Moses Exponent M

To obtain the Moses exponent, we compare the scaling of t in equations (111) and (112) and

get

2L+ 2M � 2 =
↵

2 � ↵
(115)

and then we substitute the value of L from eq. (114) which yields

M =
1

2 � ↵
. (116)

Also, on substituting the values of exponents from equations (108), (113), (114) and (116), we
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observe that the scaling relation (4) is satisfied.

4.3 Simulation Results

To verify our analytic predictions for the exponents, we performed numerical simulations for the

HDPs. We calculated exponents for various ↵ values in both the sub- and super-di↵usive regions.

We generated an ensemble of 104 realizations of the process Xt for t = 106 for di↵erent values of ↵.

The ensemble’s w[Xt], m[Yt], m[Zt], and E[Rt/St] values were then calculated using the equations

8, 17, 18, and 19. Figure 15 shows examples of results for ↵ = 0.5 and ↵ = �0.5. The scaling

of these functions, quantified by the exponents corresponding to the slope of the function at large

t, determine the exponents quantifying di↵usion and the constitutive e↵ects that cause anomalous

di↵usion. Lines connecting the data points are shown as guides to the eye. The statistical error

of the data points is smaller than the symbol size. The scaling exponents describe the asymptotic,

large t scaling behavior of these functions.

Over a two-decade range, from t = 104 to 106, we fitted each of the four functions to the form

given by equation (34). After determining ⌦ for each function, we use Eqs. 8, 17, 18 and 19 to

calculate the values of H, M , L, and J . The scaling relationship between the exponents, Eq. 4,

is confirmed in Fig. It compares the theoretically predicted value of H to the fitted value of H

derived from simulations, as well as the result of fitting for J + L + M � 1 as a function of ↵.

The simulation results are generally consistent with our theoretical predictions, but there are some

deviations. Either scaling corrections should be included in the fit, or longer simulations should be

performed to achieve more precise numerical results. However, the general form of the corrections

is unknown, and the accuracy of long simulations is restricted by the phenomenon of “round-o↵

periodicity,” as described by [28, 85]. Longer simulations would require computationally expensive

calculations.
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4.4 Discussion

Anomalous di↵usion is a widely observed phenomenon at many scales and disciplines. With the

dramatic increase in single-particle tracking studies, the question of how to physically interpret

the recorded trajectories in terms of time averages of observables like the MSD arises. In particu-

lar, most available physical theories provide results for ensemble averages of physical observables.

However, once a system exhibits weak ergodicity breaking, the inequivalence of ensemble from time

averages prevents such ensemble theories from being applied to the measured, time-averaged quan-

tities. The quantitative interpretation of time averages thus necessitates knowledge of whether the

system is ergodic, in which case the standard results can be used to fit the data or whether the

system is weakly non-ergodic. In that case, understanding the time-averaged observables is critical.

The seemingly simple Markovian HDP with power-law space-dependent di↵usion coe�cient,

defined in terms of a Langevin equation that is fully local in both space and time, was discussed

here. Despite this locality, HDPs are weakly non-ergodic: for both sub- and superdi↵usion, the

ensemble-averaged time-averaged MSD
D
�2(�)

E
scales linearly with the lag time. Subdi↵usion from

more complex processes has previously shown this behavior: CTRWs with diverging characteristic

waiting times [47, 89, 131], CTRWs with correlated waiting times [134, 213], non-renewal [55], aging

CTRWs [129], and time-scaled Brownian motion [72, 73].

HDPs are new tools used for describing anomalous di↵usion, and weakly non-ergodic dynamics

[57]. The dynamic behavior of HDPs is directly related to the physical properties of the environment

due to their intuitive formulation in terms of space-dependent di↵usivities. Let us contrast the above

observations with the subdi↵usive continuous-time random walk model (compare ref. [47]). The

characteristic waiting time h⌧i for this system diverges due to the underlying long-tailed distribution

of trapping times ⌧ , ⌧ , �(⌧) ⇠ ⌧
�(1+↵) with 0 < ↵ < 1. The system remains non-stationary due to

the lack of a finite microscopic time scale h⌧i, which negates the existence of a long measurement

time T limit. The violation of ergodicity is due solely to the spatial variation of the di↵usion process

for the HDPs considered here, and the anomalous di↵usion is due to the multiplicative nature of

the noise, which is calculated above and quantified as Moses exponent.
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As modern experimental techniques produce an increasing number of long single-particle tra-

jectories with unprecedented resolution, and anomalous di↵usion is recognized as a widespread

phenomenon [158], the need for more detailed stochastic models and understanding grows. We be-

lieve that this research adds to a growing body of knowledge about anomalous di↵usion processes.
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(a)

(b)

Figure 13: Functional dependencies on the position variable x of the di↵usion coe�cients.
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(a)

(b)

Figure 14: The PDF for sub- and superdi↵usive HDPs with power-law di↵usivity (98), computed
for the parameters a = 0.01 and D0 = 1.
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(a)

(b)

Figure 15: Log-log plot of the width of X, median of Y and of Z, and mean of R/S as a function
of time t.
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5 Conclusion

The dissertation discusses causes of H 6= 1/2 in stochastic processes with non-stationary incre-

ments, generalizing previous work [27, 65, 136, 151] and applies the tools to better understand

the anomalous di↵usion in di↵erent processes. The e↵ects, Joseph (correlated increments), Noah

(fat-tailed increments), and Moses (nonstationary increments), can each be characterized by inde-

pendent exponents, J , L, and M , respectively. Those exponents are related to the Hurst exponent

H that characterizes the scaling of the process through the scaling relation: H = J + L +M � 1

[54].

The time series analysis numerical methods used to measure each of the four scaling exponents

accurately are also discussed. Finite-time power-law corrections to scaling are also taken into

account with these methods [54]. The fact that all four exponents can be measured independently

allows the scaling relation that connects them to be verified, providing a rigorous numerical check

on the accuracy of the time-series analysis. To demonstrate each of the three e↵ects that cause

H 6= 1/2, these numerical methods can be applied to various stochastic processes, including those

with both stationary and non-stationary increments, with and without long-time auto-correlations,

and with both finite and infinite increment variance.

The analysis of anomalous di↵usion found in the Pomeau-Manneville (PM) map and Lévy walk

models enables us to understand various processes’ underlying dynamics. The results mentioned in

the dissertation may find applications in a wide variety of processes. Consider the on-o↵ blinking of a

single, illuminated quantum dot as it transitions from a light-emitting to a dark state [42, 145, 209].

While such an experiment will show many rapid transitions between on and o↵ states, there will

be some instances where very long on or o↵ periods appear. The duration of these long events

typically increases with t over a su�ciently long observation period t [42, 145]. The motion of

potassium channels in the plasma membrane of living cells [227] and the di↵usion of submicron

tracers in a cross-linked actin mesh [232] exhibit a similar e↵ect. Glassy systems, in which the

term “ageing” was first coined, are well known for such strongly non-stationary, out-of-equilibrium
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behavior.[32, 46, 61, 82, 86, 165]

A model for HDPs with distance-dependent di↵usivities that exhibit sub-, super-, and ultra-

slow di↵usion as well as weak ergodicity breaking was also investigated. Power-law variation of

the di↵usion coe�cient was examined. This framework can be applied to other variations of the

di↵usion coe�cient’s spatial dependence D(x) [57]. Our findings could be used in a wide range of

spatially heterogeneous media. They could also be used to complement other approaches to anoma-

lous di↵usion, such as continuous-time random walks or di↵usion in viscoelastic environments. A

particular example is the viral infection dynamics, a mathematical rationale to discriminate nearly

Brownian and anomalous populations of di↵using viral particles, which was observed by single-

particle tracking in living bacteria [195]. An extension of the analytical and computational schemes

for HDPs in higher dimensions is currently under progress [55].

These findings show that anomalous di↵usion has di↵erent di↵usive and ergodic properties de-

pending on the system. The challenge is to incorporate the features of anomalous di↵usion and

non-ergodicity into a pluralistic range of stochastic models for the description of non-Brownian

di↵usion processes. Other, more physical recurrent stochastic processes with non-stationary incre-

ments could benefit from the time series analysis methods we’ve developed here. The amount of

daily precipitation recorded at some locations [45, 104, 105, 180, 181], for example, maybe amenable

to our methods. In this case, the process can be assumed to repeat itself every year, resulting in

an ensemble of precipitation amounts on a given day of the year for di↵erent years that can be

statistically analyzed. Our methods could also be applied to the study of hard turbulence. The

temperature as a function of time at a given location can be considered as a stochastic process with

non-stationary increments, in this case, [180, 181]. After a non-periodic triggering event, such as

the separation of a boundary layer [50], this process repeats itself. The temperatures at a given

time after a triggering event-form an ensemble in this case.

It will also be interesting to expand our study of ageing research beyond the stochastic processes

we’ve looked at so far to more specific systems. The Lorentz gas model, with its rich behavior of

cross-overs and density e↵ects [93, 124], the motion in periodically structured environments like
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elastic gels [78], or the folding dynamics of proteins [114, 236] are examples of the latter. Finally, we

mention that active transportation processes may benefit from concepts similar to those discussed

here. From a more practical point of view, the discussion of the extent to which anomalous di↵usion

may impact biological function has just begun. [23, 80, 90, 95, 99, 130, 196]
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Appendices

A Proofs for Time Series Analysis of Lévy Walks

A.1 Generality of H = L + J + M � 1

As mentioned in the main text, the summation relation, Eq. (52), between M,L, J , and H was

previously presented for several examples of processes, in [54, 163]. These studies suggest that this

relation is also valid for a much larger range of systems, even though a unified proof is still required

in future work. The following example shows that we can prove this relation analytically also for a

widely useful system where J  1/2 (in the derivation in Eq. (52) we assumed that J > 1/2), and

the correlation function is negative. Consider the ARFIMA (0, d, 0) process [30, 84] x(t) =
P

t

i=0Xi,

in discrete time, whose increments are defined via the transformation (1 � B̂)dXi = �
2
⌘(i), where

⌘i is Gaussian white noise with zero mean and h⌘i⌘ji = �ij . Here, B̂n
Xi = Xi�n, d < 0 and

(1 � B)d =
1X

k=0

⇧k�1
a=0(d � a)(�B)k

k!
= 1 � dB +

d(d � 1)

2!
B

2 + .. (117)

When �1/2  d  0, this process is long-ranged anti-correlated, and the autocorrelation function

of the increments of this process is [30]:

c(�̃) = hX
i+�̃Xii =

�̃Y

k=1

k � 1 + d

k � d
=

�(�̃+ d)�(1 � d)

�(�̃ � d+ 1)�(d)
. (118)

For large �̃;

c(�̃) ⇠
�(1 � d)

�(d)
�̃2d�1 (119)
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so according to the definition in Eq. (51), the Joseph exponent is J = d+1/2. The MSD is related

to the correlation function via

hx
2(t)i = h(

tX

i=1

xi)
2
i =

tX

i,j=1

hxixji

= �
2(t+ 2

tX

�̃=1

(t � �̃)c(�̃)). (120)

Plugging Eq. (118) into Eq. (120), we find that at long t

hx
2(t)i ⇠

t
2d+1

|�(�d)|

(2d+ 1)�(d)
+

d

2d+ 1
+ O

⇣
t
2d�1

⌘
, (121)

and from the leading-order term, using J = d � 1/2, we find hx
2(t)i / t

2J , namely H = J . This

is a well known result, and note that in the standard ARFIMA process the increment distribution

is stationary and thin-tailed, hence M = L = 1/2 and the summation relation in the section title,

and Eq. (52) is fulfilled. Now, consider the related process: x̃(t) =
P

t

i=0 X̃, where (1 � B̂)dXi =

�
2
t
2L+2M�2

⌘(i). Here we introduced the time dependence of the variance of the increments in the

same way is in Eq. (43), which means that now the process can have both a Noah and a Moses

e↵ect, in addition to Joseph. A calculation in this case, which follows exactly the same lines as the

above, will now yield hx
2(t)i ⇠ t

2L+2M+2J�2, which again leads to Eq. (52). Further generalizations

of this summation relation are discussed below, in Appen. A.2.

A.2 The ensemble-time averaged MSD and the correlation function

In this section we want to clarify the connection between the autocorrelation function and the

Ensemble-Time (ensemble averaged - time averaged) Mean-Squared Displacement (EATA MSD)

and thereby show the types of correlations that lead to specific values of the Joseph exponent J . The

time-averaged MSD defined in Eq. (80) depends on two times, t and �. Here t is the measurement

time and � is the lag time. However, for some systems, especially the ones of interest for this

study, the time-averaged MSD does not converge to a single value. For an analytical approach, we
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therefore consider the ensemble average of the time-averaged MSD, namely the EATA MSD

h�2i ⇡
1

t

Z
t

0
h[x(t0 +�) � x(t0)]

2
idt0. (122)

As discussed in [161], in the limit t ! 1 only the upper bound of the integral is important and the

behavior around zero is negligible. Now for the expression below the integral we have to find the

MSD recorded between time t0 and t0+� under the condition that t0 � �. It is given in equation

(52). It connects the integrand in Eq. (122) to the velocity correlation function. We denote

h[x(t0 +�) � x(t0)]
2
i = 2

Z �

0
dt2

Z
t2

0
dt1hv(t1 + t0)v(t2 + t0)i. (123)

Now we want to discuss four di↵erent cases, i.e. three di↵erent types of correlation functions. (I)

In the first step we consider correlation functions hv(t1 + t0)v(t2 + t0)i = C(t2 � t1), that do not

depend on the measurement time t0. In this case the only way to violate the Gaussian CLT is with

diverging correlation times, i.e. the correlation function asymptotically scales like a power law

hv(t1 + t0)v(t2 + t0)i ⇠ (t2 � t1)
2J�2

. (124)

The equivalence of H and J can also be found by plugging the correlation function into equation

(52). Now using equation (123), the exact same scaling, h[x(t0 +�) � x(t0)]
2
i ⇠ �2H , is obtained.

Since this still does not depend on t, the EATA MSD exhibits the same scaling

h�2i ⇠ �2J
. (125)

(II) For the second scenario we consider a correlation functions that, asymptotically, exhibits

power-law scaling, both in t and �. Now, we can write the correlation function as

hv(t)v(t+�)i ⇠ t
2H�2�

✓
�

t

◆
, (126)
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where �(q) (and q = �/t), is a positive valued function describing asymptotic scaling. The scaling

exponent 2H � 2 can again be obtained using Eq. (52). This was shown in [59]. The total

measurement time in this case has to be much larger than the lag time � ⌧ t, then only the

small-q asymptotic behavior of �(q) is relevant

�(q) ⇠ q
2J�2 with 2 � 2H  2 � 2J < 1 q ! 0. (127)

The conditions above are necessary in order to ensure that the correlation function decays with

�, and at the same time does not blow up with time t. Since in the q = 0 case, the correlation

function is equal to the velocity displacement Eq. (43), continuity demands

2 � 2J = 2L+ 2M � 2H , H = J + L+M � 1. (128)

Now, the correlation function for q ! 0 can be inserted into Eq. (123)

h[x(t0 +�) � x(t0)]
2
i ⇠ 2

Z �

0
dt2

Z
t2

0
dt1 (t1 + t0)

2L+2M�2 (t2 � t1)
2J�2

. (129)

Integration yields with t0 � t1, t2

h[x(t0 +�) � x(t0)]
2
i ⇠

2

(2J � 1) (2J)
(t0)

2L+2M�2�2J
. (130)

Inserting this result into Eq. (122) only yields an additional pre-factor. Therefore, the EATA MSD

scales like

h�2i ⇠ t
2L+2M�2�2J

. (131)

(III) The third case occurs for processes with correlations that do scale with the measurement

time t, but decay faster with the lag time �. Here, we write the correlation function as

hv(t)v(t+�)i ⇠ t
2H�2� (�) , (132)
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with a positive function �(�), which decays faster than ��1, i.e. the integral over the autocor-

relation function with respect to � becomes finite for � ! 1. The dependence on H can again

be verified using Eq. (52). Here, we specify the shape to be � (�) = (1 +�)2'�2 with ' < 1/2.

The calculation is as simple for the relevant cases of exponential decay or the velocity correla-

tion function being (Dirac-) delta-distributed with �(�). Using Eqs. (123) and (132) we find for

t0 � t1, t2

h[x(t0 +�) � x(t0)]
2
i ⇡

2

Z �

0
dt2

Z
t2

0
dt1 (t1 + t0)

2�2H (1 + t2 � t1)
2'�2

⇡
2

2' � 1

Z �

0
dt2 (t0)

2�2H
⇣
1 � (1 + t2)

2'�1
⌘

⇡
2

2' � 1
(t0)

2�2H

✓
�+

1

2'
(�2'

� 1)

◆
. (133)

Since ' < 1/2, for � ! 1, the linear term is dominant. Accordingly, the scaling of the EATA

MSD for short range correlated processes is

h�2i ⇠ t
2�2H�. (134)

The Hurst exponent is independent of ' and of the exact shape of the distribution as long as it

decays su�ciently fast. The Joseph exponent is therefore always J = 1/2.

(IV) In all cases discussed so far, the Joseph exponent is J � 1/2. This is also a necessary

condition for the derivation in equation (52). However, it is possible, to construct antipersistent

processes with a autocorrelation functions, that lead to J < 1/2. Looking at the calculation (133)

we see, that in order to obtain a scaling with H < 1/2, the constant factor after the first integration,

which leads to the linear scaling, has to be eliminated. This is possible if the correlation function

is not strictly positive. The most prominent example of a continuous process, which can fulfill

this condition is fractional Gaussian noise, which is the continuous-time version of the discrete

ARFIMA(0, d, 0) studied in Appen. A.1. This process has a correlation function similar in shape
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as in case III above, but without the dependence on t, it reads

hv(t)v(t+�)i =
1

2

�
|�+ 1|2J � 2|�|

2J + |� � 1|2J
�
. (135)

Putting this into equation (133) leads to H = J < 1/2.

In conclusion we want to point out that the exponent J is given by the scaling of the auto-

correlation function with �2J�2 directly for J > 1/2, and by the scaling of the integral over the

autocorrelation function with �2J�1 for all cases.

A.3 The Joseph e↵ect via DFA

There are several methods that are used in practice in order to quantify long range correlations

in discrete measured time series. Examples are R/S statistics, detrended moving averages [16],

scaling analysis based on the wavelet transform [4] and detrended fluctuation analysis [177]. In

[96] it was shown that the latter three can be expressed in the same framework. In this section we

want to discuss whether or not the definition of long range correlations in DFA is di↵erent from

our definition, Eq. (51) for J .

The squared fluctuation function of DFA is defined as

F
2
q (s) =

1

K

KX

k=1

0

@1

s

ksX

t=1+(k�1)s

(xt � pt,q)
2

1

A . (136)

Here pt,q is a polynomial that is fitted to the series xt for segments of lengths s. The squared error

(xt � pt,q)2 of these fits is then averaged over all the non-overlapping segments of equal length s.

The index q is the order of the polynomial. DFA is not sensitive to trends with polynomial shape

of order q � 1, i.e. the slow dynamics is filtered by the method. For the definitions used above,

data with trends does not yield a meaningful exponent. So we want to concentrate on stationary

data. If the detrending order is zero, in each window just the mean value is subtracted and Eq.

(136) simplifies to a discrete version of the time-averaged MSD, with non-overlapping windows.

So what is di↵erence if detrending is performed with q > 0? Here, for stationary systems, a
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relation between the fluctuation function and the autocorrelation function was derived in [92]

hF
2
q (s)i = hv

2
i

 
Lq(0, s) + 2

s�1X

t=1

hv(t+�)v(t)i

hv2i
Lq(t, s)

!
. (137)

Lq(0, s) is some sophisticated kernel. Its leading order is linear. So the fluctuation function is a

measure of the integral (here discrete) over the autocorrelation function. Thus it measures the

Joseph e↵ect for 0 < J < 1.

If a Noah e↵ect is present, i.e. the variance is infinite in theory, the formula can still be

used, since a measured time series always has a finite variance [164]. The Moses e↵ect is more

complicated. Even though a scaling of the increment distribution as in scaled Brownian motion

(or in the parameter range A in the Lévy walk) is not visible in DFA due to the averaging over

the segments, the scaling exponent DFA still might di↵er from J . This is true if v is di↵usive as in

fractional Brownian motion (DFA results shown in [91]). Here the DFA exponent is > 1 in contrast

to J . In fact it is equal to H. So DFA is usually, but not always, a measure of the Joseph e↵ect.

A.4 Calculation of r0(s) and r2(s)

The generalised model of Lévy walk mentioned in section 3.6 corresponds to an ordinary Lévy walk

starting at x = 0, where A corresponds to a set of complete stretches and r to the last, incomplete

stretch starting at time t
0 [35]. The calculations for the last step of the walk are as follows [35]:

r (x | t) =

Z 1

t

1

2
�

⇣
|x| � ct

⌘
t
0
⌫�⌘

⌘
g
�
t
0�
dt

0 (138)

where ⌘, ⌫ are constants and g(t) is the waiting time density.

Equation 138 is normalized such that the overall probability to stay within a single step/stretch

for a time longer than t
Z

r (x | t) =

Z 1

t

g
�
t
0�
dt

0 (139)
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Taking the Fourier transform of r(x, t) for small k,

r (x | t) =

Z 1

�1
dx e

ikx

Z 1

t

1

2
�

⇣
|x| � ct

⌘
t
0
⌫�⌘

⌘
g
�
t
0�
dt

0

= r0(t) �
k
2

2
r2(t) + o(k2)

(140)

we find the marginal moments [35]

r0(t) =
1

(1 + t/⌧0)�
(141)

r2(t) = �
1

⌧0
t
2⌘
Z 1

t

t
02(⌫�⌘)

(1 + t0/⌧0)�+1
dt

0 (142)

where ⌧0 is the cuto↵. The Laplace transforms for equations 141 and 142 depend on the relationship

between �, ⌫ and ⌘. By varying the values of these constants, we calculte the values of r0(t) and

r2(t) in di↵erent regimes.

A.5 The “1” regime, ⌫ > �/2 + 1

As explained in Sec. 3.6, the analytic results show that when ⌘ = 1 and ⌫ > �/2 + 1, the Hurst

exponent diverges. We expect to find a similar behaviour if we fix time and increase the ensemble

size.
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[94] Höfling, F., and Franosch, T. Anomalous transport in the crowded world of biological
cells. Reports on Progress in Physics 76, 4 (2013), 046602.

[95] Holcman, D., and Schuss, Z. Time scale of di↵usion in molecular and cellular biology.
Journal of physics. A, Mathematical and theoretical 47, 17 (2014), 173001.

93
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483–530.

[238] Zumofen, G., Klafter, J., and Shlesinger, M. Lévy flights and Lévy walks revisite.
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