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Abstract

Increasingly, cyber attacks (e.g., kernel rootkits) target the inner rings of a computer

system, and they have seriously undermined the integrity of the entire computer sys-

tem. To eliminate these threats, it is imperative to develop innovative solutions

running below the attack surface. This paper presents MGuard, a new most inner

ring solution for inspecting the system integrity that is directly integrated with the

DRAM DIMM devices. More specifically, we design a programmable guard that is

integrated with the advanced memory buffer of FB-DIMM to continuously monitor

all the memory traffic and detect the system integrity violations. Unlike the exist-

ing approaches that are either snapshot-based or lack compatibility and flexibility,

MGuard continuously monitors the integrity of all the outer rings including both

OS kernel and hypervisor of interest, with a greater extendibility enabled by a pro-

grammable interface. It offers a hardware drop-in solution transparent to the host

CPU and memory controller. Moreover, MGuard is isolated from the host software

and hardware, leading to strong security for remote attackers. Our simulation-based

experimental results show that MGuard introduces no speed overhead, and is able

to detect nearly all the OS-kernel and hypervisor control data related rootkits we

tested.
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Chapter 1

Introduction

1.1 Research Motivation

To gain more control over the system and make the attack stealthy, increasingly

cyber attacks target the inner rings from OS kernel, virtualization, to even the hard-

ware. Kernel rootkits (e.g., [7]), virtualization rootkits (e.g., Blue Pill [36] and Sub-

Vert [26]), and PCI rootkits [18] all represent such a trend, and they all tend to

compromise the inner rings (e.g., OS kernels, virtualizations, and hardware inter-

faces) of a computer system, as well as stealthily facilitate and conceal other add-on

attacks. Therefore, these inner ring threats seriously undermine the integrity of the

entire computer system and make many defensive solutions running at the same

privilege level ineffective.
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As these inner ring threats seriously undermine the integrity of the entire com-

puter system, numerous techniques have been proposed to defend against these

low level attacks, such as using a specification or data structure guided approach

(e.g., [33, 9, 21]), signatures (e.g., using structure field invariants [3, 10], or graph-

invariants [27]). While these techniques are certainly promising, the practical issue

is where we should deploy the security mechanism. Obviously, we should not deploy

them above or within the same ring; otherwise they will be directly tampered by the

rootkits running with the same privilege level.

Creating a security software to discover and remove malicious software is funda-

mentally hard, as both the security and malicious software share the same resources

and devices. For instance, tools designed at the application ring to gather volatile

memory data can print unreliable data when a rootkit does kernel level modification,

and tools designed at the kernel ring such as Linux page fault handler can be hijacked

to present a false valid view of the kernel and hide the kernel level rootkit from being

detected by software [7].

With the recent advances in virtualization, more solutions have been pushed

down to the inner rings. In particular, since hypervisor controls the outer computer

systems, a number of techniques use virtual machine introspection (VMI) [16] to

detect the kernel rootkits (e.g., [24, 14, 15]). Their assumption is that hypervisor is

secure and can be trusted (e.g., [16]). Unfortunately, like any other software layer, a

hypervisor can have vulnerabilities and is prone to attacks or unexpected failures.

For instance, in the past few years, we have witnessed a number of successful

hypervisor subversions, such as Bluepill [36], SubVert [26] and SubXen [44].
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Since the hypervisior approach is still vulnerable, hardware-assisted approaches

have been naturally proposed. More specifically, a number of recent studies have

explored the possibility of leveraging the existing x86 features, namely system man-

agement mode (SMM), to acquire the necessary memory contents for monitoring the

hypervisor (e.g., HyperSentry [2] and HyperCheck [39]) without any extra hardware.

Unfortunately, the security of SMM cannot be taken for granted [11]. It was demon-

strated that SMM handler can be tampered and modified by SMM rootkits [13].

It is thus imperative to design flexible and drop-in hardware-based solutions com-

patible with the exiting computer platforms for monitoring the kernel integrity. Copi-

lot [32] is such an example and it uses a dedicated PCI device to monitor the kernel

memory integrity. Unfortunately, there are attacks [35] that can prevent PCI-based

RAM acquisition devices from correctly accessing the physical memory. This is be-

cause PCI devices are located far from the CPU and physical memory, thus requests

for accessing the physical memory have to go through multiple hardware components

situating in the I/O controller hub, memory controller hub, or the CPU with inte-

grated memory controller hub. These components can be modified and configured

by rootkits such that the PCI device could be presented with a different view of the

physical memory than what is seen by the CPU, and as such those tampered physical

memory areas will be hidden from the analysis [35].

Moreover, similar to HyperSentry and HyperCheck, Copilot uses a memory snapshot-

based approach and it cannot detect the transient attacks [43] that happen in between

the snapshots. Recently, Vigilare [31] also recognized the issues in snapshot-based

approach and demonstrated a low speed bus snooping technique that snoops the
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bus traffic between an embedded processor and memory controller. Furthermore,

all these existing hardware-assisted approaches including Vigilare only support lim-

ited security policies, and cannot perform other defensive functions such as runtime

response.

In addition, a number of recent studies have explored the possibility of leverag-

ing existing x86 features, namely system management mode (SMM), to acquire the

necessary memory contents for monitoring the hypervisor (e.g., HyperSentry [2] and

HyperCheck [39]). SMM is a feature that was introduced on the Intel 386SL and

allows an OS to be interrupted and normal execution to be temporarily suspended

to execute SMM code at a very high privilege level. It is normally configured at

boot-time by the BIOS and the OS has zero knowledge about it. Unfortunately,

recent studies showed that the security of SMM cannot be taken for granted [11],

and it was demonstrated that SMM handler can be tampered and modified by SMM

rootkits [42, 13].

As such, we have to develop the solutions from the most inner ring (i.e., the

hardware ring). While there are a number of early attempts from hardware perspec-

tive, current solutions are limited in supporting advanced monitoring, detection, and

response mechanism. In particular, nearly all the hardware-assisted approaches in-

cluding PCI-based Copilot [32], SMM-assisted HyperCheck [39] and HyperSentry [2]

are kernel memory snapshot-based integrity checkers. Obviously, snapshot-based

approaches cannot detect the transient attacks that happen in between the snap-

shots. Moreover, they only support limited security policies, and cannot perform

other defensive functions such as runtime response.
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1.2 Research Approach and Objectives

In this thesis we present a new approach from the most inner ring, to enable pro-

grammable, high speed, and continuous monitoring and response of system integrity

of interest. Similar to the network firewalls that inspect all the traffic pass-through,

our system is called MGuard, and it is a memory firewall that monitors the commu-

nication between the CPU and the physical memory. As such, compared with all the

other systems, the distinctive feature of MGuard is that it can continuously monitor

all the abnormal memory data passing through with a very high speed. Moreover,

unlike the PCI-based approaches, MGuard is integrated with the physical memory

itself by extending the advanced memory buffer (AMB), and there is no other attack

surface other than physical attacks by design.

Our objective is to design an off-CPU and stand-alone solution for monitoring

physical memory states of interested kernel spaces, which is as close to the physical

memory itself as possible (preventing tampering from the chipset rootkits) and com-

patible with the existing computer hardware (requiring no change from the existing

micro-processors and chipsets). To realize MGuard, we are facing a number of new

challenges. Since it is common that modern commercial processors have integrated

memory controller hub, it is critical that the solution should be transparent to and

compatible with the existing systems. We use fully buffered DRAM as our design

target because it is designed in a point-to-point favor which is an adopted topology

in the next generation DDR4 standard. While in this paper we demonstrate our

technique by extending the AMB of fully buffered DIMM (FB-DIMM) [23, 22], the
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principle and concept behind can actually be applied to other DRAM techniques

and standards. For example, our solution can be used to the emerging DDR4 by

integrating our new components with the DDR4 switch fabric, a topic of future re-

search. For fully buffered DRAM, it is crucial that we have to make sure that there

is no performance penalty with the inspection of the memory traffic because such

overhead will likely violate DRAM time constraint and render the solution useless.

1.3 Research Contributions of this Thesis

To this end, we have designed a programmable hardware guard that is integrated

with the AMB of FB-DIMM to continuously monitor all the memory traffic and

detect kernel integrity violations. Because of such design, MGuard provides a pro-

grammable interface and allows customized security policies to check the integrity

and invariant violation of all the outer rings including both OS kernel and hypervisor

of interest. On top of MGuard, we design a number of system integrity checkers,

and our experimental results show that MGuard introduces no performance overhead

(because it does not introduce any additional latency on the critical path), and is able

to detect all the outer ring control data related rootkits including SMM, hypervisor

and OS-kernel we tested. In short, this paper makes the following contributions:

• We present a new off-CPU and stand-alone solution, MGuard, to check the

system integrity of interest. Unlike the existing solutions that provide limited

capability, our system is fully programmable and allows both detection and

response;
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• We have implemented MGuard by leveraging the existing open source IP

blocks. We evaluate the MGuard performance based on cycle-based archi-

tectural and FB DRAM simulators;

• On top of MGuard, we design a number of kernel control data integrity check-

ers, which continuously check the memory traffic to system call table (SCT),

interrupt handler table (IDT), SMM handler, etc.; and

• Our empirical evaluation results show that MGuard has less than extra 3.5%

power consumption and almost no performance overhead. It can detect a wide

range of tested rootkits include 11 kernel rootkits, 3 hypervisior rootkits, and

3 SMM rootkits.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 gives background information, including

a brief introduction to recently cyber vulnerabilities, and a review of previous work

on security platforms on preventing cyber attacks.

Chapter 3 depicts the overview of the system we developed in this thesis. First, a

general description of the threat modeling is proposed. Then we present a extended

hardware advanced memory buffer that are used to capture and analysis memory

traffic. We show how MGuard boots up and how it works.

The design and schematics of our system is presented in Chapter 4. We describe

four main function of MGuard in this section: frame interception, address mapping,
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active probing, and kernel state monitoring. The structure and function of logics are

discussed. We implements the system in both RTL design and full system simulation.

We give a simple example how MGuard protects the integrity of kernel.

In order to prove MGuard is working, Chapter 5 analysis the system from secu-

rity perspective. The system degradation information and its analysis are shown in

Chapter 6.

Chapter 7 summarizes the thesis conclusion and provides directions for future

work.

A short manual of how to hookup GEM5 and DRAMSIM2 is given in Appendix

A.
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Chapter 2

Background

This chapter introduces background information and reviews previous work in the

relevant areas. Section 2.1 describes what is rootkits and how rootkits generally

work. Section 2.2 gives a review of previous work on how system and hardware

diversity could detect the rootkits and prevent malicious code execution. The pro-

tection approaches include virtualization-based detection, hardware-assist detection,

and extra-hardware detection.

2.1 Cyber Attacks and Rootkits

A rootkit is a type of malicious software that is activated each time your system

boots up. Rootkits are difficult to detect because they are activated before your

system’s Operating System has completely booted up. A rootkit often allows the

installation of hidden files, processes, hidden user accounts, and more in the systems
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OS. Rootkits are able to intercept data from terminals, network connections, and

the keyboard.

Rootkits have two primary functions: remote command/control (back door) and

software eavesdropping. Rootkits allow someone, legitimate or otherwise, to adminis-

tratively control a computer. This means executing files, accessing logs, monitoring

user activity, and even changing the computer’s configuration. Therefore, in the

strictest sense, even versions of VNC are rootkits. This surprises most people, as

they consider rootkits to be solely malware, but in of themselves they are not ma-

licious at all. One famous (or infamous, depending on your viewpoint) example of

rootkit use was Sony BMG’s attempt to prevent copyright violations. Sony BMG

did not tell anyone that it placed DRM software on home computers when certain

CDs were played. On a scary note, the rootkit hiding technique Sony used was so

good not one antivirus or anti-spyware application detected it.

There are several types of rootkits, but we will start with the simplest one.

User-mode rootkits run on a computer with administrative privileges. This allows

user-mode rootkits to alter security and hide processes, files, system drivers, net-

work ports, and even system services. User-mode rootkits remain installed on the

infected computer by copying required files to the computers hard drive, automati-

cally launching with every system boot. Sadly, user-mode rootkits are the only type

that antivirus or anti-spyware applications even have a chance of detecting. One

example of a user-mode rootkit is Hacker Defender. It’s an old rootkit, but it has

an illustrious history. If you read the link about Hacker Defender, you will learn

about Mark Russinovich, his rootkit detection tool called Rootkit Revealer, and his
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cat-and-mouse struggle with the developer of Hacker Defender.

Malware developers are a savvy bunch. Realizing that rootkits running in user-

mode can be found by rootkit detection software running in kernel-mode, they de-

veloped kernel-mode rootkits, placing the rootkit on the same level as the operating

system and rootkit detection software. Simply put, the OS can no longer be trusted.

One kernel-mode rootkit that’s getting lots of attention is the Da IOS rootkit, devel-

oped by Sebastian Muniz and aimed at Cisco’s IOS operating system. Instability is

the one downfall of a kernel-mode rootkit. If you notice that your computer is blue-

screening for other than the normal reasons, it just might be a kernel-mode rootkit.

Rootkit developers, wanting the best of both worlds, developed a hybrid rootkit that

combines user-mode characteristics (easy to use and stable) with kernel-mode char-

acteristics (stealthy). The hybrid approach is very successful and the most popular

rootkit at this time.

Firmware rootkits are the next step in sophistication. This type of rootkit can

be any of the other types with an added twist; the rootkit can hide in firmware when

the computer is shut down. Restart the computer, and the rootkit reinstalls itself.

The altered firmware could be anything from microprocessor code to PCI expansion

card firmware. Even if a removal program finds and eliminates the firmware rootkit,

the next time the computer starts, the firmware rootkit is right back in business.

Virtual rootkits are a fairly new and innovative approach. The virtual rootkit

acts like a software implementation of hardware sets in a manner similar to that used

by VMware. This technology has elicited a great deal of apprehension, as virtual

rootkits are almost invisible. The Blue Pill is one example of this type of rootkit.
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2.2 Related Work

Virtualization-based detection As hypervisor is positioned underneath the ring

of OS, it can be naturally used for inspecting the OS kernel integrity. Livewire [16]

pioneered virtual machine introspection (VMI) and numerous efforts have been fo-

cused on how to extend VMI to detect such as kernel rootkits. Notable examples

include such as VMwatcher [24], Lycoisid [25], and they all infer kernel rootkit pres-

ence using a cross-view comparison approach. HookSafe [41] intercepts guest-kernel

function calls to check the integrity; KOP [9] and OSck [21] collects all kernel func-

tion pointers through source code analysis and traverses the kernel memory for this

purpose.

However, as alluded in Chapter 1, today’s hypervisors often have a large code base

(with hundreds of thousands lines of code), and it is challenging to have a bug-free

implementation. For instance, there are still hundreds of vulnerabilities being found

recently in popular hypervisors such as Xen and VMware ESX, as summarized in

HyperWall [37]. While HyperSafe [40] enforces a lightweight control flow integrity to

protect the hypervisor from being compromised, it is still a software-only approach

and requires rewrite the hypervisor.

Hardware-assisted detection Through leveraging system management mode (SMM)

present in modern hardware, HyperSentry [2] monitors the integrity of hypervisors

using an agent planted in the SMM. Similarly, HyperCheck [39] also leveraged the

SMM feature but with the cooperation from a PCI device. Unfortunately, SMM

is not secure and can be attacked by SMM rootkits [13]. Flicker [30] provides a
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framework to isolate sensitive code execution and attestation, by using the new pro-

cessor features in modern x86 CPU. However, Flicker requires the cooperation from

OS and applications. HyperWall [37] extends the instruction set and protects guest

VMs from a compromised hypervisor. It also requires the guest VM cooperations.

While our MGuard is also a hardware-assisted approach, it works transparently to

the legacy systems.

Extra-hardware-based detection For convenience or transparency, extra hard-

ware was created for acquiring the contents of system memory without OS or CPU

interaction (e.g., [32]). In particular, Copilot provides a PCI-based solution for

checking the integrity of system memory by issuing PCI DMA requests periodically

to take snapshot of the physical memory of a live system. Unfortunately, PCI-based

approach can be bypassed and rootkits can modify the PCI configurations and bridge

settings.

Most recently, Vigilare [31] leverages bus snooping techniques with an extra hard-

ware to detect the system integrity, and it is able to capture the transient manipula-

tions of kernel memory. While at high level, both MGuard and Vigilare recognized

the problem of the transient attacks, the solutions and targeted environments are

actually very different. The major concern about their technique as acknowledged

by the authors is: Vigilare has host bus bandwidth limitations. The bandwidth of

the high-end modern server may exceed the computing speed of a slow embedded

processor which is used in their experiment. In this case, Vigilare is not suitable for

high-end DRAM system running at much higher speed based on point-to-point links

such as FB-DIMM. Another significant difference between Vigilare and our solution

13



is that Vigilare snoops the bus between an embedded processor core and the mem-

ory controller, which makes Vigilare unpractical as a real solution not only because

specific snoopers are required for different processors, but also because today’s com-

mercial processors have integrated memory controller and the bus between processor

cores and memory controller is hidden and inaccessible by a snoop device. Such

problems don’t exist in MGuard because MGuard is integrated with DRAM DIMM

devices and is transparent to the memory controller and host CPU. In addition, with

the DRAM page lookup table for filtering out uninterested traffic and tracking up-

dates to interested kernel space automatically, MGuard is much more efficient than

Vigilare.

By extending chipset-specific uController and internal DMA, DeepWatch [8] watches

system memory via DMA and scan for signatures of known VT-x based hypervisor

rootkits such as malicious vmexit handler and SMM rootkits. However, like many

other approaches, DeepWatch is also snapshot-based, and it cannot detect the tran-

sient attacks. In addition, there are also TPM chipset to enable trusted computing

in commodity hardware. However, TPM approaches typically do not support the

continuous monitoring of system integrity, and they are either used to ensure the

trusted booting or sealed storage (c.f., [30]).
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VMwatcher X X X X X
Lycosid X X X X X X
KOP X X X X
HookSafe X X X X X
HyperSafe X X X X
HyperSentry X X X X X X X
HyperCheck X X X X X X X X
Flicker X X X X X
HyperWall X X X X X
MGuard X X X X X X X X X
Vigilare X X X X X X X X
Copilot X X X X X X X X X
DeepWatch X X X X X X X X

Table 2.1: Summary of the Related Work Comparison.
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Chapter 3

System Overview

This chapter presents the overview architecture we have developed. We introduce

the whole system start from its threat model, background of FB-DIMM, goals and

challenges and overall design. Section 3.1 describes the threat model of the problem.

Section 3.2 presents the general approach of analyze intrusions and rootkits by using

memory dumping technique. Section 3.3 discusses the structure of FB-DIMM and

Advanced Memory Buffer(AMB). Section 3.4 introduces the design objectives and

requirements as well as the challenges when design MGuard. Finally, Section 3.5

discusses the overall solution.

3.1 Threat Model

As an extended hardware in AMB, MGuard is effective for attackers who have gained

the administrator’s privilege on the host system through such as remote exploits.
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Particularly, when the OS has already been compromised by the attackers, MGuard

is able to find out suspicious modifications. In addition, the attackers are unable to

access MGuard, because the design is transparent to both OS and users. However,

mitigating physical attacks by an insider who has direct full control to machine

hardware is not the objective of our scheme.

System rootkits including kernel and hypervisor rootkits, which run with the

most inner rings, are the primary threats prevented by MGuard. Detecting system

rootkits is one of the grand challenges because software only approaches often fail

for reasons mentioned in Chapter 1. We assume that all the software layer has been

compromised by attackers, and attackers leave such as backdoors by modifying the

kernel and hypervisor. For example, the attackers can install kernel and hypervisor

rootkits that place hooks on critical system calls. The details of threat detection will

be covered in Chapter 5.

3.2 Kernel Inspection from Physical RAM Image

To analyze intrusions and rootkits, it is a common practice to dump physical RAM

image from a live system and extract critical kernel information from the dumped

physical image. To this end, comprehensive set of software tools were developed

to examine dumped physical RAM contents. Special hardware can be used to take

a snapshot of physical DRAM to ensure a truthful kernel image is obtained. For

continuous and real-time kernel inspection, previous schemes have experimented with

PCI-based [32] and bus snoop-based approaches [31]. Our approach is one step
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Figure 3.1: Architecture Overview of FB-DIMM

further that integrates such capabilities directly into the DRAM DIMM devices for a

drop-in solution with no performance overhead and transparent to the host hardware.

3.3 Background on FB-DIMM

In modern computer systems, higher memory bandwidth is often required to meet

the need of higher CPU speeds. As a memory technology that can be used to increase

scalability, reliability, and density of the memory systems, FB-DIMM [23, 22] was

designed for the server market. For instance, Intel recently has adopted FB-DIMM

technology for their Xeon 5000/5100 series and beyond. Rather than using the

traditional memory devices that communicate through parallel bus (e.g., multi-drop

buses), the DRAM devices are buffered behind one or more Advanced Memory Buffer

(AMB) devices. The system memory controller connects to the AMB using high

speed serial communication links.

As shown in Fig. 3.1, the memory controller in CPU communicates with the
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Figure 3.2: AMB with Extended Components

AMBs through serial interface. The daisy-chained topology provides an extension

from a single DIMM per channel to up to 8 DIMMs per channel. The channel

interconnection actually consists of two unidirectional links: one in the southbound

direction and the other in the northbound direction. The memory controller sends

data to the first DIMM via southbound link. Whenever the DIMM receives the data,

it will forward the data to the next DIMM until the last DIMM receives the data.

Similarly, the DIMM sends back the data to the next DIMM via northbound link

until memory controller is reached. The AMBs can be considered as dumb forwarding

devices.

3.4 Goals and Challenges

The objective of MGuard is to design a new off-CPU technique for capturing mem-

ory states with the capability of, (i) obtaining volatile memory states in a reliable
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and timely manner using solutions as closer to the physical RAM as possible, (ii)

providing a stand-alone and drop-in solution that is compatible with the existing

hardware platforms and standards without modifying the processor or chipsets, and

(iii) capturing volatile memory states without causing any performance overhead of

the entire computer system.

Our solution is to leverage the potentials provided by the FB-DIMM to integrate

new hardware components into the AMB chip so that the extended AMB can provide

secure, reliable, and timely capture of the physical memory states. Because AMB

is the closest logic device to the DRAM modules, our solution can ensure truthful

views of the physical memory. Furthermore, our approach offers a drop-in solution

to the existing FB-DIMM-based platform because it does not require any changes

of the existing chipsets or processors that are already deployed. More importantly,

our approach has the advantage that it does not require a modified memory con-

troller because it is unrealistic to change the commercial processors that already

have integrated with memory controllers.

However, many great challenges must be addressed in order to achieve the above

aggressive goals. In particular, in FB-DIMM architecture, AMB is treated as a

passive synchronous device. It acts like a pass-through switch, directly forward-

ing the requests that it receives from the memory controller to successive DIMMs

and forwarding frames returned from southern DIMMs to the memory controller.

Frame scheduling is performed exclusively by the memory controller. The AMB

only converts the serial protocol to DDRx based commands without implementing

any scheduling functionality. This means that the AMB has no slack time or freedom
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to add extra processing steps necessary for logging memory states, otherwise it will

violate the timing as specified by the memory controller.

3.5 MGuard Overview

Our solution to these challenges is to move all the new components off the critical

paths of AMB, in contrast to Vigilare [31] that snoops the bus and is bounded with

the bus speed. Consequently, our solution is as close to the physical memory as one

can possibly get by integrating programmable detection modules directly with the

DRAM DIMM devices. Our solution is compatible with the FB-DIMM standards

[23, 22] and fully programmable by using a general purpose RISC core. It incurs

virtually no latency overhead because it does not introduce any additional latency

on the critical path; otherwise the overhead would likely violate DRAM command

timing enforced by the host memory controller.

A high level view of the design is presented in Fig. 3.2. We extend the AMB

with the following new components: a programmable RISC core, a DRAM controller

connecting to a private DRAM (hidden from the host CPU but accessible by the

programmable RISC core), a set of components that capture incoming/outgoing

DRAM frames and preserve interested DRAM pages (e.g., those storing kernel data

and codes) to the private DRAM, and a set of components for issuing DRAM read

commands into the southbound frame stream under control of the RISC core. The

extended AMB supports two modes of operations: intercept mode and probing mode.

More specifically:
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• In intercept mode, both NB and SB DRAM frames are captured and analyzed

according to the policies stored in a dual-ported SRAM. If they fall into the

ranges of interested DRAM pages, the DRAM data contained in the DRAM

frames will be copied and saved to the private DRAM for later analysis by

the RISC core. Both write update from the host and data in response to the

read request from the host are intercepted. In the intercept mode, the pri-

vate DRAM will provide the most recent view of the important kernel memory

states. We expect that the intercept mode is sufficient because it provides con-

tinuous captures of all the DRAM changes made to the interested kernel space.

However, in cases where one wants to support on-demand read accesses to the

DRAM modules from the programmable RISC core, our solution provides a

probing mode.

• In probing mode, the RISC core can issue DRAM read requests to the probe

request interface (see Fig. 3.2). The requests will be converted into DRAM

commands, sent to either the local DRAM modules or merged with the SB

frames opportunistically. The data returned from the local DRAM modules or

the NB frames received from the southerly DIMMs will be forwarded to the

probe request interface and transmitted to the private DRAM using a DMA

engine. Probing mode requires no SB commands from the memory controller,

otherwise it will cause conflict because the host memory controller is not aware

of the DRAM commands issued from the probe request interface. In probing

mode, it is preferred that the memory controller does not send DRAM com-

mands to the AMB. This can be achieved by putting the host CPU in an idle
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state (discussed in Section 4.3). When SB DRAM commands are received, and

there is an outstanding read request from the RISC core with already issued

DRAM commands, the result is a collision. The extended AMB contains logics

for detecting such collisions and responding to them when they occur.

The extended AMB does not add any extra delays to the critical paths of NB

and SB frame transmission (marked as dashed lines in Fig. 3.2). Our solution only

requires the split of NB and SB frames into FIFOs where they will be analyzed

and preserved according to the policies set by the programmable RISC core. The

split action involves only forwarding a copy of the incoming/outgoing frames thus

incurs no additional latency. For each AMB, it can have upto 4GB DRAM modules

connected locally. The size of the private DRAM is much smaller (e.g., 256MB).

Furthermore, only the first FB-DIMM connecting to the memory controller needs

the extended AMB. The rest southerly DIMMs can use the regular AMB.

The RISC core boots from a system image stored in the private flash memory

attached to the AMB. The system image contains a lightweight OS together with the

necessary detection software and data. The entire system is fully transparent to the

host processor. To the host, the AMB appears as a regular fully buffered DIMM. The

solution is completely stand-alone. No hardware or software modification is required

to an existing host.
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Chapter 4

Architecture Design

This chapter describes the architecture design of MGuard system. We mainly rely

on extending the hardware on existing chip AMB, Adavanced Memory Buffer which

forwards the traffic, to intercept the signal sent by memory controller and request

the value from certain virtual address. For some crucial design decisions, brief dis-

cussions will be given. First in Section 4.1, we describe the interception behavior

of the MGuard when memory controller communicate with DRAM by using pack-

ets. Then, in Section 4.2, we discuss how to get the virtual address from the signal

packets by address mapping. In Section 4.3, we provide a solution which MGuard

system could check the kernel value actively. Section 4.4, we discuss how the system

could continuously monitoring the kernel behavior without interfering the system

performance. Finally, we give a simple example of how MGuard work in Section 4.5.
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4.1 Frame Interception

The detailed design of our frame interception is presented in Fig. 4.1. The FB-DIMM

system uses a high speed serial packet-based protocol to communicate between the

memory controller and the DIMMs. Frames may contain data and/or commands.

Commands include DRAM commands such as row activate (RAS), column read
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(CAS), precharge command and so on, as well as channel commands such as com-

mands for initialization and synchronization. The commands are transmitted over

southbound (SB) channel that supports a frame rate at the DRAM clock frequency

(frame period equal to the DRAM clock interval). Depending on the row buffer

management policy and state of the DRAM memory system, the memory controller

translates each memory transaction into one or more DRAM commands such as

RAS, CAS and precharge. For example, in an open page memory system, a memory

transaction could be translated into: a single column access command if the row is

already open; a precharge command, a row access command and a column access

command if there is a bank conflict; or a row access command and a column access

command if the bank is currently idle.

The SB frame contains bits for identifying the command type, rank number,

and bank number. If the command is a row activation, it must include the row

address; and if it is a read or a write command, it must include the column address.

If the command contains write data, each frame can have 72 bits of write data.

Data returned from the DIMM are sent back to the memory controller through the

northbound channel with a frame rate also at the DRAM clock frequency. An NB

data frame can contain two 72 bit data chunks. Other NB frames are idle, alert, or

status frames.

In our extended AMB, copies of NB and SB frames are forwarded to a FIFO where

they will be analyzed. Before getting admitted into the FIFO, uninterested frames

such as channel frames, idle frames, and NOP frames are filtered out. This reduces

the number of frames to be analyzed. A frame intercept controller reads frames
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from the FIFO and matches them against a SRAM lookup table, called DRAM page

lookup table. The lookup table is organized into multiple rows. Each row contains a

tag field comprising a valid bit, a rank number, a bank number, a row address, and a

data field (see Fig. 4.1). The lookup table rows can be programmed and configured

by the RISC core. The SRAM is dual-ported. It allows access from both the RISC

core (through a SoC bus) and the intercept controller.

The intercept controller also monitors the flow of the captured DRAM commands.

It will check if the DRAM commands operate on data of interested DRAM pages

according to the DRAM page lookup table. If a row with matching tag field is found

and the valid bit is set, the intercept controller may update the row’s data field and

save the DRAM data to the private DRAM according to the settings in the data

field. For each row, the data field contains both dynamic data modifiable by the

intercept controller and static data. The dynamic data include a bit for tracking

whether a DRAM page is modified (updated?), and a bit for tracking whether a

DRAM page is read (read?). There is a bit (requireLog?) indicating whether the

captured data of a DRAM page should be saved to the private DRAM. The static

data contain a private DRAM physical address that points to the location where

captured data of a DRAM page should be stored. If requireLog? is set, the intercept

controller will transfer the captured data to the private DRAM using a DMA engine

that also connects to the shared SoC bus. Since the private DRAM has smaller size,

only DRAM pages of important kernel states should be kept in the private DRAM.

However, the DRAM page lookup table can monitor states of a much larger memory

space and track access history of its DRAM pages using the read? and updated?
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bits. For example, the lookup table may have 16K rows that can be used for tracking

states of 16,384 DRAM pages.

In our approach, frames are captured and analyzed without adding extra latency

overhead to the critical paths, dashed lines in Fig. 3.2. This means that the extended

AMB does not increase latency of DRAM accesses.

4.2 Address Mapping

In general, MGuard could get the virtual addresses of intercepted frames by two steps.

The physical addresses of intercepted data will be first obtained based on the frame of

commands which include the information of row activate(RAS), column read (CAS)

and so on. At high level, the memory controller will generate the channel ID, rank ID,

bank ID, row ID, and column ID from the physical address based on different mapping

scheme and send them as command packets. The mapping scheme is also related

to the memory row buffer management policy, which can be either implemented in

open-page mode or close-page mode. In the open-page mode, by getting benefits

from temporal and spatial locality of the address request stream, adjacent cacheline

addresses can be mapped into the same row across different channels. Similarly, the

consecutive cacheline addresses are mapped to different channels to minimize the

chances of bank conflict in the latter mode. The parametric variables are defined

in Table 4.1. In the baseline open-page address mapping scheme, the memory system

can be denoted as r:l:b:n:k:z where the lower case letter is the binary logarithm of

the upper case letter. The baseline close-page address mapping scheme is denoted as
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Description Description
K Number of channels in system C Number of columns per row
L Number of ranks per channel V Number of bytes per column
B Number of banks per rank Z Number of bytes per cacheline
R Number of rows per bank N Number of cachelines per row

Table 4.1: Definition of Memory System Address Variables

r:n:l:b:k:z. When MGuard intercepts a southbound command frame, the information

of row ID, column ID, channel ID, etc could be extracted. With such information,

MGuard could calculate the physical address of the data based on certain mapping

scheme.

Next, these physical addresses will be translated into virtual addresses by checking

the mapping information from “system.map” file. For instance, in a 32-bit system,

the Linux kernel usually locates in the top 1 GB of the 4GB virtual address space.

Depending on the platform’s memory map, this will be mapped to a physical address

in the physical memory. To find out where these symbols are loaded in the main

memory, subtract PAGE OFFSET, 0xC00000000 in our example, from the symbol

address to get the offset and add this offset to the starting physical address of the

kernel in the physical memory as determined from the system memory map. Vice

versa, one can always tell whether a physical address is in kernel space or not.

Each distribution of OS kernel has its own “system.map”. MGuard can detect

which OS is used by a host (e.g., through a memory-only-based OS fingerprint-

ing [17]) and choose the corresponding kernel map. It can update and configure the

DRAM page lookup table accordingly. MGuard stores kernel information for differ-

ent OS kernels in the private flash memory. For a new OS distribution, its kernel

map and associated data can be downloaded to a MGuard system through the serial
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bus interface.

4.3 Active Probing

MGuard supports continuous capture of write data to the interested DRAM pages

and reads data fetched from the interested DRAM pages. When the RISC core

decides that copy of a new DRAM page should be made, it can do so by reconfiguring
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the corresponding row of the DRAM page lookup table. Whenever the corresponding

DRAM page is updated or read by the host CPU, a copy of the data will be stored to

the private DRAM, accessible by the programmable RISC core. This is the common

and recommended way for capturing the physical memory states. A

However, our solution does support a probing mode where the RISC core can

send a read request to a DRAM page directly. As shown in Fig. 4.2, there is a

probing request interface that can take read request from the RISC core. The prob-

ing request interface can issue DRAM commands to the local DRAM interface for

reading a DRAM page or merge the DRAM commands with the SB frame traffic

forwarded to the southerly DIMMs. Data returned from the local DRAM modules

or from the NB frames will be forwarded to a collision detection unit. If no collision

is detected, the data will be returned to the probing request interface. The probing

request interface can transfer the returned data to a location at the private DRAM

using a DMA engine. The private DRAM location is specified by the RISC core

when it issues the read request. Probing mode requires special care because the

issued DRAM commands from the probing request interface may collide with the SB

commands from the memory controller. In the ideal case, when the host memory

controller does not access the DRAM for enough period of time, the probing request

interface can issue DRAM commands opportunistically. If the host memory con-

troller gives sufficient slack time, everything would be fine. Otherwise, there could

be collisions. The collision detection logic monitors outstanding DRAM command

from the probing request interface and SB frames from the host memory controller

for detecting any possible collision between them.
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To ensure that there is enough time for completing DRAM commands from the

probing request interface, the RISC core can temporarily put the host CPU into idle

state. This can be achieved, for instance, through the system management interrupt

(SMI). The system management interrupt causes the CPU to enter into the system

management mode. Write-back caches will be flushed to enter the SMM. The SMI

handler can be programmed to drain commands to the FB-DIMMs and hold the

memory controller for sufficient amount of time before the probing request interface

completes needed read accesses to the DRAM modules. SMM cannot be masked or

overridden which means that an OS has no way of avoiding being interrupted by

the SMI. AMB connects to one of the GPIO pins and uses it for raising a system

management interrupt.

The extended AMB contains collision response logic for handling collisions when-

ever they are detected. For doing so, it leverages the existing fault handling mecha-

nism of the FB-DIMM standards [23, 22]. The FB-DIMM standards support recov-

ery from a transient failure or corrupted commands on the SB channel through alert

frames sent back to the host memory controller on the NB channel. The extended

AMB takes advantage of this feature and sends back alert frames when a collision is

detected. To the host memory controller, the collision appears as a transient failure

in the SB transmission or a corrupted SB command. In response, the host will issue a

soft channel reset command to acknowledge the receipt of the alert frames and reset

the command state of the AMB. The AMB receives the soft channel reset command

and resets its internal command state. After the soft channel reset command, the
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host may issue a sequence of commands to clear all the DRAM devices such as issu-

ing a precharge all command to all the ranks. After that, the host memory controller

can issue new SB commands. This means that a read request from the RISC core

could fail if it collides with the SB DRAM commands from the host CPU and the

collision causes a soft channel reset.

Furthermore, the same data path can be used for correcting kernel memory states

if the RISC core is allowed to issue DRAM updates. Such operations are feasible

under the current solution framework. In a read-only mode, the RISC core only

sends DRAM read requests. In a second free mode, the RISC core is allowed to

correct kernel data structures using the same request interface. However, great care

must be taken to avoid memory state corruption. When updates are issued, the host

is put into an idle state through SMM interrupt.

4.4 Kernel State Monitoring

Integrity checking consists of detecting unauthorized changes to kernel components

and data structures in the volatile DRAM memory. The rationale is that kernel

control data (such as system call table) tends to be static once a kernel is compiled

and loaded into memory. Any dynamic modification to the kernel control data is

deemed malicious. Many hypervisor or hardware-based kernel rootkit detections are

based on this observation [32, 2, 39, 15].

In MGuard, the RISC core can run programs for checking integrity of the kernel

space by examining the captured DRAM page states and the copied data of DRAM
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pages. In addition, the extended AMB includes a serial interface that can transmit

the captured data to a centralized place where the captured data can be further

analyzed in detail for detecting rootkits or malware, see Fig. 3.2. The serial link

also allows administrators to upload new programs or data to the RISC core so that

the monitoring and checking software executed by the RISC core can be customized

according to the installed system, threat contexts, and knowledge of the attacks and

risks. This is one of the unique benefits of our MGuard.

The RISC core is in idle state most of the time when DRAM data are captured.

It wakes up from the low power idle state in response to the external connection

(via serial link) or periodically to run pre-installed software that performs routine

integrity check of the captured system memory image. Since the SRAM DRAM page

lookup table contains status history for the DRAM pages of interested kernel space,

the RISC core can first check the tracked states of the DRAM pages storing the

important kernel data structure (e.g., IDT, syscall table, interrupt handlers’ code).

This can be done by reading the dual-ported SRAM. If nothing is suspicious, the

RISC core can go back to the low power idle state and wake up later to repeat

the same routine procedure. If something is wrong, the RISC core will further

examine the captured DRAM page data stored in the private DRAM. The RISC core

maintains a list of hash codes (e.g., md5) for the important kernel texts and handlers

(e.g., interrupt, syscall, and SMI). The sizes of the handlers are pre-determined for

a distribution of operating system based on dis-assembled handler codes. For each

handler, its integrity can be verified by comparing the stored hash code with the

computed hash code using the captured handler data. Note that the total size of
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the pre-computed hash values is very small because only kernel texts and handlers

are checked. The pre-computed hash values are stored in the private DRAM and

the exact size depends on the kernel version. The pre-computed hash values can

be downloaded to the MGuard DIMM using serial connection. The threat model

excludes insider attacks, and there is no attack surface for outsider attackers.

Different from the snapshot-based approaches, accesses to the physical DRAM is

monitored continuously from the very beginning when the system boots. This allows

the extended AMB and the integrated RISC core to create a baseline database of

the kernel components and structures. Different from the periodic-based approach,

every bit stored to the critical data components of the kernel space can be monitored

and captured. The extended AMB can record the kernel data structures when they

are written first time to the DRAMs. Any modifications to the kernel by the rootkits

later can be detected. Furthermore, since the inspection capability is transparent to

the system and integrated with the AMB that is the closest logic device connecting

to the DRAM modules, it is ensured that the view of physical memory wouldn’t

be affected by firmware rootkits or controller rootkits. The specific space layout

information for each system can be downloaded to MGuard DIMM via the serial

connection. It is a significant advantage over the prior solutions.

Meanwhile, the solution can be applied for capturing SMM rootkits [11, 13], one

of the most elusive types of rootkits to catch because they are stored in SMRAM

(system management RAM). In SMM, SMI handlers are stored in SMRAM that is

out of the reach of the host OS after they are configured. However, the SMI handlers

are stored in the physical RAM, any modification to the handlers can be tracked by
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the extended AMB and detected by the integrated RISC core.

Finally, thanks to the programmable feature of our FB-DIMM, MGuard also

supports more complicated rootkit detection and recovery. For instance, the captured

DRAM data can be also applied for cross-view based rootkit/malware detection. The

idea behind the cross-view-based detection is that if a host system is infected with

rootkits, it is probably hiding things and presenting a false image of the kernel

data components. The view of kernel physical memory captured by the extended

AMB can be compared with a common view of the system memory recorded using

conventional approach. Any difference between these two views can be detected

and used for revealing the rootkits hidden in the system. Our solution provides

such opportunities for experimenting new rootkit/malware detection solutions. In

addition, MGuard also performs certain data recovery. For instance, if a rootkit

contaminates a system call table entries, we can even recover the contaminated values

with the predetermined one.

4.5 An Example

To illustrate our technique, we use an example to describe how MGuard protects

the integrity of the system. When we power up the system, the introspection code

runs in the extended RISC core in AMB. For example, when the host CPU writes

back to the DRAM, the command and data will be packed and sent by the memory

controller. This packet will first go through the AMB prior to the DRAM modules.

As described in Section 4.1, MGuard is able to intercept the frame whenever data
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are transferred between the host CPU and the DRAM. The physical address will

be extracted at this stage. As an extended hardware outside CPU, MGuard has

no access to the paging files that manage the mapping between the virtual address

space and physical memory address. However, the page global directory (PGD)

has strong signatures [27] and we can actually search for PGDs in the physical

memory as demonstrated in [17]. As such, guided by the virtual address of specified

in “/boot/System.map” (for Linux kernel) file, which is a look-up table between

symbol names and their addresses in memory, with the identified PGDs, MGuard

can check the integrity for all the key kernel symbols such as system call table, ITD,

and many other kernel function pointers as demonstrated in Chapter 5.
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Chapter 5

Security Analysis

MGuard provides a holistic, off-CPU solution in detecting any rootkits outside the

hardware ring. To demonstrate this feature, we developed a kernel rootkit detector,

a hypervisor rootkit detector, and a SMM rootkit detector using the md5 approach

mentioned in Section 6.4. In this experiment, we developed a functional simulator

for MGuard that is integrated with the Bochs full-system emulator. The analysis

environment supports a complete operating system with rootkit installed. In the

following, we report our experiment results.

OS Kernel Rootkit Detection We took 12 source code available rootkits from

packetstormsecurity.org and tested them with MGuard using Linux kernel 2.6.08.

Not surprisingly, as presented in Table 5.1, MGuard performs incredibly well and it

successfully identifies 11 rootkits that tamper such as system call table (SCT), inter-

rupt descriptor table (IDT), and the global kernel function pointers (e.g., tcp4 seq show).
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It fails to identify adore-ng-2.6 because this rootkit also modifies kernel heap object

but our current detection logic does not include the heap object traversal.

When detecting a kernel rootkit intrusion, there could be multiple options for

the response. The most simple one is to notify the administrator and restart the

system. The more complicated one is to enable an automatic response. Thanks to

the programmable feature of MGuard, we can support many extra security policies

such as automatic fixing of the contaminated kernel function pointers, especially

those pointers with known instruction addresses. For instance, all the SCT entries

are always pointing to the system call handler code with known addresses, once

a kernel is compiled. We can thus prefetch these addresses before loading an OS

and repair the values if they are hijacked by kernel rootkits. In our experiment, we

configured MGuard to repair the IDT entry, SCT entry, and kernel global function

pointers. We succeeded in recovering the values when a rootkit attempts to overwrite

these pointers.

Hypervisor Rootkit Detection A hypervisor is a trusted platform in the virtual

machine environment by default. However, many attacks target hypervisor to ob-

tain a higher level privilege of either a guest OS, or even a host OS without being

detected. To demonstrate that our MGuard can detect hypervisor rootkit, we devel-

oped two in-house KVM rootkits based on kvm-kmod-3.5. In particular, one KVM

rootkit hijacks kvm vmx exit handler, and the other rootkit hijacks kvm x86 ops,

to introduce the illicit behavior. We also used a real-world HVM rootkit that targets

vmexit handler [8] to test MGuard. As summarized in Table 5.1, MGuard succeeded

to detect all the contaminations done by the hypervisor rootkits.
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Rootkit Type Name Attack-Vector Detected?
hookswrite IDT table X
int3backdoor IDT table X

kbdv3 syscall table X
kbeast-v1 syscall table, tcp4 seq show X

mood-nt-2.3 syscall table X
OS Kernel override syscall table X
Rootkit phalanx-b6 syscall table, tcp4 seq show X

rkit-1.01 syscall table X
rial syscall table X

suckit-2 IDT table X
adore-ng-2.6 global and heap pointers 7

synapsys-0.4 syscall table X
Kvm-kmod1 kvm x86 ops X

Hypervisor Kvm-kmod2 kvm vmx exit handler X
Rootkit HVM-rootkit vmexit handler X

VMBR Redirecting IRQ X
SMM-Rootkit SMM-Reload Cache Poisoning X

BIOS-Rootkit - X

Table 5.1: OS Kernel, Hypervisor, and SMM Rootkit Detection Using MGuard.

SMM Rootkit Detection Because SMM has its own memory space (called SM-

RAM) and all memory accesses to SMRAM are arbitrated through the Memory

Controller Hub (MCH), it can be made invisible to code running outside of the

SMM. Therefore, it is impossible to detect SMM rootkits by using devices residing

off the RAM (e.g., [32]). However, we can track and detect any modification to

the SMRAM (i.e., SMM rootkit) using our extended AMB and the integrated RISC

core. To show that our MGuard can detect SMM rootkit, we first implemented a

SMM-based keylogger and network backdoor (described in [13]) to enable keystroke

logging in SMM and send the logged keystroke to another machine via UDP. The
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rootkits were tested using both emulation and real hardware. Bochs supports com-

plete emulation of SMM functionality. We also tested the rootkit by injecting it

into the BIOS of ASUS P5Q based on Intel P45 hardware by using Windows kernel

driver. Encouragingly, MGuard succeeded to detect all these malicious code inside

SMRAM. In addition, as shown in Table 5.1, MGuard succeeded to detect other

kinds of SMM rootkit such as BIOS rookit as well.

Discussion MGuard does have certain limitations. Because the program for mon-

itoring kernel space is running on the programmable RISC core, it cannot access

certain states internal to the processor. In addition, because MGuard only monitors

changes to the physical memory, it is hard to detect attacks that leave no trace in

the physical memory. However, this can be addressed by flushing the on-chip caches

periodically through SMI interrupts sent from MGuard. In other words, what the

program can observe (e.g., memory pages) may not be what we want to observe (e.g.,

processes and context switch). However, because all data required to be processed by

CPU should be eventually located in the main memory if caches flush frequently, the

attacks will be detected within short time. Also, in our current prototype, we only

demonstrate that we can identify the rootkits that tamper with kernel global function

pointers. While our experiment shows we failed to identify adnore-ng-2.6 rootkit,

MGuard can actually identify the pointers in kernel heap as well. For instance, we

can integrate other techniques such as KOP [9], SigGraph [27], or OSck [21] to tra-

verse the kernel heap and detect the rootkit. We leave this as one of the future

efforts.
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Chapter 6

Performance Evaluation

The memory integrity checking is off CPU critical path. We evaluate the perfor-

mance, energy, and area overhead of our MGuard based on the extended architectural

and DRAM simulators. In particular, we extended three simulators (i.e., GEM5 [5],

DRAMSim2 [34], and OR1ksim [1]). GEM5 is a system simulator built from a combi-

nation of M5 [6] and GEMS [28] simulators. GEM5 supports most commercial ISAs

such as x86, ARM, and MIPS. It can run a full system simulation and provide a cycle

based model for out-of-order processors. DRAMSim2 [34] is a cycle accurate open

source JEDEC DDRx memory system simulator. It provides a DDR2/3 memory

system model that can be used with many architectural simulators including GEM5.

DRAMSim2 can model power, latency, and bandwidth of DDR2 and DDR3. The

programmable RISC core is modeled based on OR1ksim, a generic OpenRISC archi-

tecture simulator capable of emulating the OpenRISC-based computer systems. To

analyze DRAM interaction while executing benchmarks, we integrated FB-DIMM
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and MGuard simulation capability with GEM5. The developed FB-DIMM simula-

tion integrates various proposed components with parameters derived from reference

RTL implementations. The simulator integrates OR1ksim with DRAMSim2 by us-

ing the DRAMSim2 library mode. FB-DIMM support is modeled according to [29]

and [23, 22]. The default AMB clock frequency is set at 400MHz.

6.1 Machine Parameters

We hook up the GEM5 simulator with MGuard simulator to model a quad-core

system. In particular, the multicore CPU is integrated with 2MB L2 cache and an

on-chip memory controller. The DRAM is modeled based on the micron FB-DIMM

specification. In the GEM5 side, the simulation is performed with an out-of-order

CPU model running at 2GHz and x86 ISA. The CPU model has seven pipeline stages:

fetch, decode, rename, issue, execute, writeback, and commit. Each processor core

has pipeline resources: branch predictor, reorder buffer, instruction queue, load-

store queue, and functional units. The I-TLB and D-TLB have 64 fully associative

entries. The L1-instruction and L1-data caches are 64KB write-back caches with

64-byte block size, and an access latency of 2 cycles. The L2 cache is unified, non-

blocking, 2MB size, 16-way associativity, 128-byte block size, and has an 10-cycle

access latency.

In the FB-DIMM side, we configure a 2GB FB-DIMM associate with the GEM5.

The parameters is shown in Table 6.1. The extended AMB is modeled with the

parameters shown in Table 6.1. By default it uses a fixed latency mode, which
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DRAM module Value DRAM timing Value

Number of channels 1 tCK 2.5ns
Number of banks 8 tRAS 18
Number of rows 16384 tCAS 5

Number of columns 2048 tRCD 5
Device width 4 tRC 23
Refresh Period 7800 tRP 5

AMB Value Memory Controller Value

Passthrough lat 2.2ns Policy open page
Deserialization lat 8.0ns Scheduler FR FCFS
Serialization lat 5.0ns Read/write queue size 32

Channel mode fixed lat mode Write mode enter/exit threshold 28/6
M-Guard Value M-Guard Value

Lookup table lat 1.9ns FIFO size 48 entries

Table 6.1: DRAM, Extended AMB, and FB-DIMM Parameters

means, to the host memory controller, all DIMMs on the channel will appear to have

a fixed latency. The DRAM is managed using an open-page policy. The FB-DIMM

latency is derived from [29, 22]. The signal path from the memory controller to the

first FB-DIMM takes 0.6 ns delay. The signal path from one FB-DIMM to another

takes 0.2 ns (assuming 4cm distance). The round trip latency can be modeled by

the simulator based on the parameters given in Table 6.1 under the fixed latency

mode and open-page policy. The AMB parameters are based on the AMB standard,

published numbers of commercially available AMB chips from vendors (e.g., [12]),

and [29].
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6.2 Benchmarks

For performance evaluation, we used the SPEC CPU2006 benchmark suite. CPU2006

is SPEC’s next-generation, industry-standardized, CPU-intensive benchmark suite,

stressing a system’s processor, memory subsystem, and compiler. SPEC designed

CPU2006 to provide a comparative measure of compute-intensive performance across

the widest practical range of hardware using workloads developed from real user ap-

plications. These benchmarks are provided as source code and require the user to be

comfortable using compiler commands as well as other commands via a command in-

terpreter using a console or command prompt window in order to generate executable

binaries. We tested ten memory intensive benchmarks of the SPEC CPU2006. These

include, bzip2, gcc, gobmk, hmmer, sjeng, libquantum, h264ref, omnetpp, namd,

and lbm. The detailed descriptions of the benchmarks can be found in [19]. We also

choose 5 popular server benchmarks applications with real-world input dataset. The

simulation started when the application passed the initialization stage. The cycle

based simulation executed each benchmark application for one billion instructions or

until it finished depending on which one was longer.

6.3 Synthesis

The major components of our extended AMB design include: a frame intercept

controller, an integrated programmable RISC core, a DRAM controller for accessing

private DDR2 memory, a shared SoC bus and a DMA engine, a SRAM lookup table,
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Table 6.2: Twenty Benchmarks for Performance Evaluation

Benchmark Description

bzip2 A popular compression utility based on Burrows-Wheeler algorithm
gcc GNU C compiler

gobmk Artificial Intelligence: go
hmmer Search Gene Sequence
sjeng Artificial Intelligence: chess.

libquantum Physics: Quantum Computing
h264ref Video Compression
omnetpp Discrete Event Simulation
namd Biology / Molecular Dynamics
lbm Fluid Dynamics

and various FIFOs and filters. For rapid prototyping, we leveraged open source IP

blocks whenever it is possible. We evaluate the power and area performance of our

MGuard by integrating these components and synthesizing the design using Synopsys

tools with FreePDK at 45nm. The dual-ported SRAM is evaluated using CACTI

6.0. The private memory is 256MB DDR2 and simulated using DRAMSim2.

The shared system bus is based on the open-source Wishbone bus [20]. Wish-

bone is defined as an on-chip internal bus for the System-on-Chip (SoC) architecture,

which is a portable interface for use with semiconductor IP cores. The DDR2 mem-

ory controller for the private DDR2 is based on [4], an open-source implementation of

DDR2 SDRAM controller. An open-source DMA engine compatible with the Wish-

bone SoC bus is used as the DMA engine for the private DRAM [38]. The Wishbone

bus provides a common bus between these IP cores. The FIFOs are adapted from

Verilog implementation of generic FIFOs. Verilog implementation of our design is
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Figure 6.1: Percentage of Kernel Accesses

synthesized using the Design Compiler of Synopsys. It provides parameters for esti-

mating overhead and tuning the cycle based simulation models.

6.4 Performance Analysis

Fig. 6.1 shows the percentage of DRAM accesses to the kernel during execution of

the benchmark applications. In most cases, only about 4% of the accesses are in the

kernel. Sjeng has the largest percentage of kernel accesses (i.e. 11%). The average

is 4.3%. The types of kernel accesses are illustrated in Fig. 6.2. Among all the

kernel DRAM accesses, only less than 15% are write accesses. All the others are

read accesses. The only exception is lbm application. Almost half of the DRAM

accesses are writes. The average of all the benchmark applications is 13%. In terms
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Figure 6.2: Types of Kernel Accesses

of kernel DRAM pages accessed during execution of the benchmark applications, the

results are displayed in Fig. 6.3. It shows how much kernel space is touched. In

most applications except lbm and omnetpp, only 2% of the kernel DRAM pages are

touched. lbm and omnetpp have about 11% and 20% touched kernel DRAM pages.

On average, 93.7% kernel DRAM pages are not accessed. There are far fewer updates

to the kernel DRAM pages than reads. The results suggest that during execution

of benchmark applications, only a small percentage of DRAM accesses are in the

kernel. Meanwhile, the majority of the kernel DRAM pages are not accessed. Of

these kernel DRAM pages touched, there are more read accesses than write accesses.

This means that under normal application execution environment, the workload of

frame interception by the extended AMB is very light.

A simulator integrated with the DRAMSim2 library is used to study how busy the
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Figure 6.3: Accesses to Kernel DRAM Pages

FB-DIMM is during execution of the benchmarks. Fig. 6.4 shows the percentage of

DRAM usage. According to the statistics, one can see that for certain applications,

the DRAM is idle most of the time during benchmark execution. For six out of

the ten benchmarks, the DRAM idle time is about 90%. Benchmark gobmk, sjeng,

and lbm have more DRAM busy time. One can further break down the DRAM idle

time in terms of how long the idle duration lasts. The results are shown in Fig. 6.5.

According to Fig. 6.5, when DRAM is not busy, most of the idle time duration is

longer than 500ns.

We developed a set of programs (written in C and compiled using OpenRISC

toolchain) for detecting modifications to the important kernel components and data

structures. These include hash-based checking (md5) of system call table (SCT),

its handlers, interrupt descriptor table (IDT), interrupt handlers including SMM
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Figure 6.4: DRAM Usage for Different Benchmarks

handlers, etc. When kernel texts and handlers are changed, the modifications can

be captured by the AMB on-chip frame intercept mechanism. The RISC core can

compute the md5 hash code of a tracked kernel space, and compare the hash result

with a known hash value pre-computed. We collected performance data on these

programs using the cycle-based OpenRISC simulator integrated with the simulation

environment and DRAMSim2. The results indicate that it takes about 1.3ms to check

the integrity of the syscall table using md5. IDT can be checked in 0.02ms because

it is much smaller than the syscall table. For checking integrity of syscall/interrupt

handler, it takes on average 4.34ms using md5 hash.

There is an interesting question on whether the system can keep up with the

memory throughput. In our paper, the AMB is running at 400MHz. The southbound

frame interval is 2.5ns at peak. The build-in filter will remove NOP frames, idle
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Figure 6.5: Distribution of DRAM Command Interval

frames, channel frames before they are handled by the intercept controller. The

intercept controller only processes the frames accessing the kernel space. It will

compare the DRAM address with data stored in a lookup table. The lookup table

has access latency of 1.9ns based on Verilog implementation and synthesis results

(listed in Table 6.1). This means that even in the very unlikely worst case scenario,

all the frames are read/write frames at peak rate, MGuard would be able to handle

the frame traffic.

6.4.1 Hardware Overhead

The area and peak power consumption of different hardware components are shown

in Fig. 6.6. A fully synthesizable implementation of MGuard AMB extension at
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Figure 6.6: Area and Peak Power Characteristics of MGuard Extension

45nm operates at 400MHz, occupies 5.3mm2, and dissipates 355mW of peak power.

Most of the area and power are consumed by the RISC core and SRAM lookup table.

For reducing die size overhead, we optimized the RISC core by removing unnecessary

components and unused facilities. The result total die size is 70% smaller than using

the default OpenRISC design. Compared with the 58mm2 die area of Intel 6400/6402

advanced memory buffer, the total overhead of die size is only about 9.1%.

In FB-DIMM architecture, the AMB can consume around 6W of power based

on vendor reported measurements and FB-DIMM standards. A large part of the

power consumption can be attributed to the high speed serial links. In our extended

AMB, it contains several on-chip components that may increase the overall AMB

power consumption. Power models of these components are created according to the

descriptions in Section 6.3. A detailed transaction-based power model for AMB is
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Figure 6.7: AMB Relative Power Overhead

constructed according to the AMB standards, vendor datasheets, and previous pub-

lished results [45]. Power consumption of the DRAM page lookup table is modeled

using Cacti 6.5. For each benchmark, the DRAM page lookup table power con-

sumption is simulated using DRAM commands captured by DRAMSim2. Only for

tracked kernel DRAM pages, the SRAM lookup table is updated. The RISC core

wakes up periodically. In rest of the time, it stays in low-power dozy mode. For the

benchmarks, the introduced AMB power overheads are shown in Fig. 6.7. For all the

applications, the AMB on-chip power overhead is rather small. The maximum is less

than 5.5% and the average is about 4.2%. In addition to the AMB power overhead,

we also evaluated the overall power overhead considering the FB-DIMM as a whole

(counting all the DRAM devices accessible by the host memory controller and the

private DDR2 DRAM devices). Power modeling of the DRAM devices is given by

DRAMSim2. The private DRAM is accessed by the frame intercept controller and

the RISC core. The overall FB-DIMM power overhead is shown in Fig. 6.8. On av-

erage, the power overhead when considering the FB-DIMM as a whole is only 4.4%.
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Figure 6.8: Total FB-DIMM Relative Power Overhead

For named, hmmer, and xalan, the overhead is over 5%.
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Chapter 7

Conclusion and Future Work

We have presented MGuard, a new hardware-assisted, most inner ring system in-

tegrity monitor integrated with AMB DRAM. The distinctive feature of MGuard

is that it continuously checks the integrity of all the outer ring memory access in-

cluding OS kernel and hypervisor of interest, off the DRAM critical path. It has

no performance overhead and consumes on average 3.5% more power according to

our simulated experimental results. We have proven with real-world rootkits that

MGuard can effectively detect 11 OS kernel rootkits, 3 hypervisor rootkits, and 3

SMM rootkits with our kernel rootkit, hypervisor rootkit, and SMM rootkit detec-

tors without any false positive or false negative. Our MGuard is entirely transparent

to all the outer ring software and hardware, and can therefore be easily applied to

commodity systems.

As discussed in Chapter 3, the protection of MGuard is based on the static kernel

addresses. In order to add/remove the kernel addresses which need to be protected,
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MGuard can update the protection list via the serial connection. This scheme re-

quires our MGuard connected to a clean host which will not tamper MGuard. The

address mapping scheme is not accurate under multiple channels situation. Thus, we

need further discussion of specific synchronization method between different memory

channels. To make the MGuard works as we expected in terms of timing, the next

step would be measure the peak throughput of OpenRISC core. Last but not the

least, we notice that FB-DIMM is not a popular DRAM in the market. How to

apply this technique to the latest DRAM technologies such as DDR4 would be an

interesting question. In the near future, we will think about how to adopt MGuard

to DDR4.
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