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Abstract
As the size and complexity of flow data sets continuously increase, many vector field

visualization techniques aim to generate an abstract representation of the geometric char-

acteristics of the flow to simplify its interpretation. However, most of the geometric-based

visualization techniques lack the ability to reveal the physically important features. Addi-

tional efforts are needed to interpret the physical characteristics from the geometric repre-

sentation of the flow.

In this work, the Lagrangian accumulation framework is introduced first, which ac-

cumulates various local physical and geometric properties of individual particles along

the associated integral curves. This accumulation process results in a number of attribute

fields that encode the information of certain global behaviors of particles, which can be

used to achieve an abstract representation of the flow data. This framework is utilized to

aid the classification of integral curves, produce texture-based visualizations, study prop-

erty transport structures, and identify discontinuous behaviors among neighboring integral

curves.

Although the accumulation framework is simple and effective, the detailed flow be-

havior at individual integration points (and times) along the integral curves is suppressed,

leading to incomplete analysis and visualization of flow data. In order to achieve a more

detailed exploration, a new flow-exploration framework is investigated based on the time-

series data or Time Activity Curves (TAC) of local properties. In this framework, the

physical behavior of the individual particles can be described via their respective TACs.

An event detector based on TACs is proposed to capture the local and global similarity of

any spatial point with its neighboring points with a new dissimilarity metric. A hierarchical

clustering framework is then developed based on this metric, upon which a level-of-detail
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representation of the flow can be obtained. This new framework is applied to a number of

2D and 3D unsteady-flow data sets to demonstrate its effectiveness.
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Chapter 1

Introduction

Vector field visualization is a ubiquitous technique that is employed to study a wide

range of dynamical systems involved in applications, such as automobile and aircraft en-

gineering, climate study, combustion dynamics, earthquake engineering, and medicine,

among others. Many effective approaches have been developed to visualize these complex

data [10, 28, 43, 51]. With the continuous increase in size and complexity of the gen-

erated flow data sets, there is a strong need to develop an effective abstract (or reduced)

representation that addresses the complexity of data interpretation and user interaction.

There is a large body of work on generating a reduced representation of the flow based

on its geometric behaviors. One classic representation is vector field topology, which aims

to extract special streamlines related to fixed points and periodic orbits. By extracting these

special streamlines and their connectivity, the flow fields can be segmented into different

regions with homogeneous behaviors. Such segmentation reduces drastically the informa-

tion to be displayed, conveying a holistic understanding of the flow in a more semantic
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level. Recently, streamline and pathline attribute-based flow exploration [16, 42] was in-

troduced. Other work generates a reduced representation of the flow by classifying integral

curves into different clusters based on their individual attributes. The representative curves

for each cluster are computed to provide an abstract visualization of the flow [70].

Most existing vector field visualization techniques focus on the representation of the

geometric characteristics of the vector fields, which is understandable as geometric fea-

tures (e.g., some flow patterns) are intuitive to understand. However, there are two lim-

itations of these methods. (1) Important physical relevant features could be missed. For

example, vector field topology only encodes hyperbolic features in the flow, other phys-

ically relevant information, such as vortices, and flow separation, is not included. On

the other hand, integral curve clustering methods place seeds based on spatial importance

(i.e. to ensure sufficient spatial coverage and to reduce cluttering) rather than physical

importance. Therefore, they cannot guarantee that physically important features will be

revealed. (2) Geometric representation may not intuitively reveal the physical behaviors

of the flow. Domain experts may still need additional tools or mental translation to inter-

pret the physical characteristics from the geometric representation of the flow. Figure1.1

provides an example where the physically interesting behaviors may not be revealed in

the traditional geometric representation of the flow. The pathlines shown in Figure1.1(a)

have geometrically similar behaviors, while their time activity curves of a local physical

property Q-criterion [22], shown in Figure 1.1(b), show otherwise. In particular, the black

pathline (in the middle of the pathline bundle shown in (a)) has rather different behaviors

in the attribute space from the others (i.e. lower valley values).

This dissertation aims to fill the gap between the geometric representation of the flow
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Figure 1.1: The illustration of the gap between geometrics representation and physical in-
terpretation. (a) A number of pathlines with homogeneous behaviors. (b) The time activity
curves of the physical attribute Q. (c) Accumulated Q field values of each corresponding
pathines in (a).

and the physical interpretation of the flow behaviors that are of interest to the experts.

However, the local physical characteristics of the flow are typically not intuitive to under-

stand and describe only the local and short-term behaviors of the flow. To address that,

flow data visualization and exploration need to be performed, which are guided by the

physical information associated with either the individual particles or spatial samples over

a given time window. To address that, the following two new frameworks are introduced

in this work.

The first framework is called the Lagrangian accumulation framework, in which the

local physical or geometric attributes of the individual particles are accumulated along

the integral curves associated with the particles. The accumulated values are assigned

to the starting positions of those particles, which are typically evenly distributed in the

beginning. This results in a number of attribute fields, each of which corresponds to a

specific attribute. These fields are referred to as the Lagrangian accumulation fields, or

the A fields. In this way, the overall, long-term behaviors of the particles are encoded
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in the spatio-temporal locations that they pass through in an Eulerian fashion. With this

representation, the spatial points that are located on integral curves that have similar be-

haviors will have similar attribute fields values. Note that each integral curve indicates the

trajectory of a flow particle seeded at a sampled spatial position. In that sense, the compu-

tation of the derived attribute fields summarizes the behaviors of the particles along their

individual trajectories, which provides us a global, abstract representation of their individ-

ual trajectories. Figure 1.1(c) shows the vales of the Q field, an example of A fields, of

the pathlines shown in Figure1.1(a). Though the geometric behaviors of the pathlines are

similar, their overall Q-attribute behaviors are quite different as shown in Figure 1.1(c).

The Lagrangian accumulation framework has been applied to assist a number of flow vi-

sualization tasks, including flow segmentation, integral curve seeding and discontinuity

discovery. The result included here demonstrates that these tasks can be conducted more

efficiently with the aid of the obtained A fields.

However, A fields have some significant limitations. (1) They cannot provide the

details of flow behaviors, especially the occurring time and period of an interesting feature.

(2) They cannot study the contributions of the individual local events to the global behavior

of a particle, i.e, the reason that causes the specific behavior.

Therefore, the second framework, i.e. a new flow exploration framework based on the

Time Activity Curves (TAC) of the local attributes, is introduced to achieve a more detailed

exploration. Specifically, a number of time-series data of the local physical properties are

derived along each integral curve, which provides us a series of TACs of different local

attributes, based on which an event detector of interesting flow behaviors are introduced.

With the concepts of TAC and TAC-based event, a new dissimilarity metric is defined to
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characterize the similar attribute behaviors of different particles. In order to provide differ-

ent levels of details of the flow behaviors, a TAC-based hierarchical clustering algorithm

is presented. A comprehensive distance metric EDTW is derived to describe the dissimi-

larity of TACs based on the detected events, which incorporates the global correlation of

a pair-wise TACs, DTW distance and temporal difference of events. This TAC-based hi-

erarchical clustering algorithm adopts a modified BIRCH-based clustering to resolve the

scalability issue and accelerate the computation. A similar hierarchical clustering is then

applied to the time dimension to reveal the changes of flow behaviors through different

time intervals. A statistic-based segmentation is proposed to generate a number of ini-

tial time intervals, from which a hierarchical tree is built. This hierarchical tree and the

corresponding clusters can be utilized to aid the user exploration of the flow behaviors.

In summary, this dissertation has made the following contributions.

• The Lagrangian accumulation along integral curves is revisited and extended to the

study of flow behaviors using any well-defined local flow characteristics. In addi-

tion, a systematic study and discussion on the properties of the resulting A fields

is provided. This work demonstrates how to use the properties of the A fields to

achieve a number of interesting visualizations for 2D and 3D flows. It also shows

that the A field and the information encoded in it can be utilized to enhance a num-

ber of flow visualization tasks, including seeding curve generation for integral curve

and surface placement and flow domain segmentation.

• The Lagrangian accumulation frame work is extended based on TACs to obtain a

more detailed exploration. A new hierarchical clustering algorithm is proposed and a

5



new and comprehensive TAC-based framwork is introduced to assistant flow explo-

ration. In addition, the framework is flexible and efficient in that various attributes

can be used to help users investigate different flow behaviors.

Without confusion, for all the 2D visualization of the data, the horizontal direction

is the X direction and the vertical direction is the Y direction. For 3D visualization, we

provide the reference frames to indicate the orientation of the viewpoint. Illustration and

pipeline figures do not have axes and units, because they describe the process of the pro-

posed methods rather than showing the actual results.
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Chapter 2

Related Work

There is a large body of literature on the analysis and visualization of flow data. Inter-

ested readers are encouraged to refer to recent surveys for the dense and texture-based

visualization techniques [29], geometric-based methods [37], illustrative visualization [1],

topology-based methods [28, 43], and partition-based techniques [51] for various flow

data. This section focuses on the most relevant work.

2.1 Vector Field Topological Analysis

Vector field topology provides a streamline classification strategy based on the origin

and destination of the individual streamlines. Since its introduction to the visualization

community [21], vector field topology has received extensive attention. A large body

of work has been introduced to identify different topological features, including fixed
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points [44, 59] and periodic orbits [5, 58, 68]. Recently, Chen et al. (2008) [6] stud-

ied the instability of trajectory-based vector field topology and, for the first time, proposed

Morse decomposition for vector field topology computation, which leads to a more reli-

able interpretation of the resulting topological representation of vector fields. Szymczak et

al. (2012) [57] introduced a new approach to converting the input vector field to a piece-

wise constant (PC) vector field and computing the Morse decomposition on triangulated

manifold surface.

For the topological analysis of unsteady flows, Lagrangian Coherent structures (LCS),

i.e. curves (2D) or surfaces (3D) in the domain across which the flux is negligible, were

introduced to identify separation structures in unsteady flows. The computation of LCSs

was first introduced by Haller (2001) [19] by computing the Finite Time Lyapunov Ex-

ponent (FTLE) of the flow, whose ridges indicate the LCS. Since its introduction, FTLE

has been compared with the separatrices in the steady cases [47], and its computational

performance has been improved substantially [14]. Recently, Fuchs et al.(2010) [13] pre-

sented an extended critical point concept applying vector field topology in unsteady flow.

Sadlo and Weiskopf (2010) introduced a streakline-based topology based on the concept

of generalized streaklines [48]. It successfully characterizes the saddle type of hyperbolic

features. This was extended to study the 3D unsteady flow topology [60].
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2.2 Streamline and Pathline Attributes

Sadarjoen and Post (1999) introduced the winding angle concept for streamlines and uti-

lized it to classify the streamlines within vortical regions [46]. Salzbrunn and Scheuer-

mann (2006) introduced streamline predicates, which classify streamlines by interrogat-

ing them as they pass through certain user-specified features, e.g., vortices [50]. Later, this

approach was extended to the classification of pathlines [49]. At the same time, Shi et al.

(2007) [54] presented a data exploration system to study the characteristics of pathlines

based on various attributes, including winding angle. Recently, a statistics-based method

was proposed to help select the proper set of pathline attributes to improve the interactive

flow analysis [42]. This work differs from pathline predicate and pathline attribute ap-

proaches in that it utilizes the attributes of the individual pathlines to construct a smooth

scalar field to classify the spatial locations where the pathlines are seeded. This enables us

to study the flow structure as well as to classify the integral curves via the behavior of the

derived scalar field. More recently, McLoughlin et al.(2013) [36] introduced the idea of a

streamline signature based on a set of curve-based attributes including curvature and tor-

sion. This streamline signature is used as a measure of the similarity between streamlines,

and helps domain experts place and filter streamlines for the creation of an informative

and uncluttered visualization of 3D flow.
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2.3 Lagrangian Framework for Flow Analysis

In fluid dynamics, there are two different views for the study of flow behaviors, i.e. observ-

ing the flow at fixed location–Eulerian point of view, or observing it on a moving particle–

Lagrangian point of view. This work specifically focuses on the Lagrangian framework,

which studies the behavior of particles along their individual paths, i.e. integral curves

computed from the initial positions of the particles. Based on this characteristic, the Finite-

Time Lyapunov Exponent (FTLE) [19], the streamline [50] and pathline [49] predicates,

the pathline attribute approaches [18, 42, 54], and the streamline and pathline dissimilarity

for streamline clustering [70], selection [36], and ensemble analysis [17] are all examples

of Lagrangian approaches. Among them, the FTLE approach aims to measure the rate of

separation at individual spatial sampling points. Its flow map computation is essentially

a special case of Lagrangian accumulation that sums up all the vector values scaled by

the integration step size along the path of the particle, which leads to the end position of

a particle given its starting position. This accumulation neglects all intermediate position

as well as other information of the particle that is not relevant to the particle separation.

The computed rate of separation at each point is encoded as a scalar field, which facilitates

the identification of its ridges, known as the Lagrangian Coherent Structure (LCS). This

Eulerian representation of the FTLE fields is similar to the derived A fields. Nonetheless,

the Lagrangian accumulation and the resulting A fields are more general than the FTLE

approach, and can be used to encode attributes of the particles along their paths rather than

just at their starting and ending positions.
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The idea of accumulating local characteristics along the paths of particles and assign-

ing the accumulated values to the corresponding integral curves has been employed in the

pathline attribute approaches. Specifically, Shi et al. (2007) [54] presented a data ex-

ploration system to study the different characteristics of pathlines based on their various

attributes. Pobitzer et al. (2012) [42] applied a statistics-based method to select a proper

subset of pathline attributes to improve the interactive flow analysis. While not directly

accumulating the local attributes, Gao et al. (2014) [18] proposed to accumulate the square

difference between the local attributes along pairs of integral curves to define the distance

between them. Differentiating from the pathline attribute approach, A fields adapt the Eu-

lerian representation of the texture-based visualization and the FTLE approach, and store

the accumulated attribute values to the seeding positions of the individual integral curves,

whose properties offer a number of opportunities to support various flow data exploration

tasks.

More recently, Lagrangian representation has been employed to address the scalability

of the visualization of large scale unsteady flows [18, 4].

2.4 Time-varying Data Visualization

In scientific simulations, features of interest are commonly represented as Time Activity

Curves (TAC). TAC has been studied in scientific visualization in recent years [62, 69]. Lee

et al. (2009) proposed a visualization framework to analyze time-varying data sets with a

TAC-based distance field [30]. This field provides a visualization to highlight the position

the features, while it still cannot provide the details of an individual TAC, especially the
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time of occurrence and period of an interesting feature. Wei et al. (2011) introduce a

dual-space method to analyze such data, starting by clustering the time series curves in the

phase space of the data, and then visualizing the corresponding trajectories of each cluster

in the physical space [64]. Ferstl et. al. (2017) proposed a time-hierarchical clustering

approach for analyzing the temporal growth of the uncertainty in ensembles of weather

forecasts [12]. For a thorough overview of approaches for the time-varying data, please

refer to the surveys [32, 11].
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Chapter 3

Vector Field Background

In this chapter, some of the most important concepts in vector fields are reviewed, which

will be used for the later discussion of the proposed frameworks.

3.1 Concepts of Vector Fields

Consider a spatio-temporal domain D =M×T where M ⊂ Rd is a d-manifold (d = 2,3

in this work) and T⊂R, a general vector field can be expressed as an ordinary differential

equation (ODE) ẋ =V (x, t).

In the steady (i.e. time-independent) case, ẋ = V (x), whose solution gives rise to a

flow which is a continuous function (or map) ϕ : R×M→M satisfying ϕ(0,x) = x, for

all x ∈M, and ϕ(t,ϕ(s,x)) = ϕ(t + s,x) for all x ∈M and t,s ∈ R. The trajectory of

x0 ∈M is a streamline, xx0(t) = x0 +
∫ t

0 V (xx0(τ))dτ . A point x0 ∈M is a fixed point if
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ϕ(t,x0) = x0 for all t ∈ R, that is, V (x0) = 0. A trajectory is called a periodic orbit (or

closed), if given any point, x, on it, it satisfies ϕ(T,x) = x, where T ∈ R and T 6= 0. All

the hyperbolic fixed points and periodic orbits and their connectivity defines the topology

of the steady vector field [5].

For an unsteady (or time-dependent) vector field, V (x, t), the trajectory of a particle

starting at x0 and at time t0 is called a pathline, denoted by xx0,t0(t)= x0+
∫ t

0 V (xx0,t0(τ), t0+

τ)dτ . The collection of the particles that are released from the same spatial position but

at consecutive times forms a streakline. In contrast, the collection of particles that are re-

leased from different spatial locations but at the same time forms a timeline. In this work,

we focus only on the integral curves, i.e. streamlines and pathlines, derived from a given

vector field.

3.2 Local Characteristics

There are a number of local characteristics that are of interest to the domain experts.

Specifically, the acceleration of v is defined as a(x, t) = Dv
Dt =

∂v(x,t)
∂ t +(v(x, t) ·∇)v(x, t),

where (v(x, t) ·∇) = ∇xv represents the spatial gradient of v, i.e. Jacobian, denoted by

J for simplicity. Important deformation modes of the flow can be obtained through the

decomposition of J. Specifically, the Jacobian matrix can be decomposed as J = S+R,

where S = 1
2 [J+(J)>] and R = 1

2 [J− (J)>] are the symmetric and antisymmetric com-

ponents of J, respectively. From this decomposition, the local shear rate is measured as

the Frobenius norm of S [9], and the Q and λ2 values at each point can be computed

as Q = 1
2(‖R‖

2 −‖S‖2) [22], while λ2 is the second largest eigenvalue for the tensor
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S2 +R2 [24]. They are typically used to characterize the vortical or rotational behaviors

of the flow.

In this work, the following local attributes, al , are utilized for various experiments.

• a1: vorticity, ||∇×v||.

• a2: divergence, tr(J), i.e. trace of J.

• a3: helicity, ∇×v ·v.

• a4: λ2, the second largest eigenvalue of the tensor S2 +R2 [24].

• a5: Q = 1
2(‖R‖

2−‖S‖2) [22].

• a6: local shear rate, the Frobenius norm of S.

• a7: determinant of J.

• a8: change of flow direction (also known as winding angle), ∠(v(pi),v(pi+1)) where

pi denotes a point on an integral curve. This geometric attribute essentially measures

the curvature of the integral curve at pi.

• a9: velocity vector v.

• a10, acceleration, a(x, t) = Dv
Dt =

∂v(x,t)
∂ t +(v(x, t) ·∇)v(x, t).
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Chapter 4

A Lagrangian Accumulation

Framework

In this chapter, the first framework proposed by this dissertation, a Lagrangian accumula-

tion framework, is discussed. The attribute fields derived from Lagrangian accumulation

are first introduced, followed by the discussion of their properties and a case study of the

Lagrangian accumulation framework.
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4.1 Introduction to Lagrangian Accumulation and Attribute

Fields

Consider an integral curve, C , starting from a given point (x, t0), the Lagrangian accumu-

lation can be formulated as the following convolution process:

Ag((x, t0), t) =
∫ t

t0
k(τ)al(C (τ), t0 + τ)dτ (4.1)

where k(τ) is a filter kernel following the integral curves [2, 61]. For simplicity, this work

assumes a simple box filter [53], for all examples. al(C (τ), t0 + τ) is the value of the

selected local flow property, al , measured at location C (τ) and at time t0 + τ , which can

be either scalar, vector, or tensor values. For the later discussion, we mainly consider

scalar properties. In most cases, al is continuous in D except at some special locations,

such as fixed points in the steady cases. Ag((x, t0), t) represents the accumulated value.

t ∈ R is the integration window size. Note that t can be negative to account for backward

integration. In addition, both forward and backward integration starting at (x, t0) are also

possible. Nonetheless, this work concentrates on the forward integration at this moment.

The above formulation is appropriate for accumulation in time-dependent settings. In

the steady cases, the local attribute values are not dependent on the current integration

time but only the location, i.e. denoted by al(C (τ)). More often, in steady cases, the

accumulation is performed with a specified length s along the streamlines as in

Ag(x,s) =
∫ s

0
k(η)al(C (η))dη . (4.2)

Again, this accumulation along a streamline can also be performed in both forward and

backward directions. To simplify the subsequent discussion, the Lagrangian accumulation
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Figure 4.1: A number of A fields computed based on the accumulation of λ2 for a 2D
synthetic steady flow (a), arc-length of the integral curves for an unsteady double gyre
flow (b), and the absolute winding angle of the integral curves for a 3D steady flow behind
cylinder (c), respectively. A blue-white-red color coding is used for (a) and (c), while a
rainbow color coding is used for (b).

is referred to as the L-accumulation for the rest of the dissertation.

Given a spatio-temporal domain D = M×T, a derived scalar field can be obtained

(assuming al is scalar) from the above convolution, where the value at each sample position

is determined by Eq.(4.1) or (4.2). This field is referred to as a Lagrangian Accumulation

field or an A field. The scalar fields discussed in [55] are essentially examples of A fields.

Given different local characteristics of interest to accumulate, one can obtain various A

fields. A discussion on the relationships between several A fields is provided in the later

section. Figure 4.1 provides examples of the A fields computed based on the collection of

λ2, arc-length, and change of flow direction along the integral curves, respectively. Given

an A field, its gradient, ∇A , and the gradient magnitude can be computed, which are

used to identify places where the A field has large changes.
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4.2 Properties of L-Accumulation and the A Fields

This section proposes some detailed discussion on the L-accumulation framework and its

Eulerian representation, as well as some of its important properties, in addition to those

inherited from the convolution process [38], that may be utilized to understand what flow

information can be encoded in the resulting A field and how to use it to generate some

interesting visualizations.

4.2.1 Existence and Uniqueness of A (x, t)

One important property of a A field is that given any point (x, t) ∈ D (except at fixed

points in steady flows), there is exactly one A value returned by Eq.(4.1) or (4.2) given the

specified parameters. This is due to the uniqueness of integral curves, i.e. in theory there

exists exactly one integral curve passing through any give point except at fixed points. This

property may seem trivial but it indicates that A field achieves complete spatial coverage,

which enables us to generate a dense visualization of the flow.

4.2.2 Discontinuity in the A Fields

In mathematics, a function f (x) defined in M is said to be continuous at c if for every ε > 0,

there exists a δ > 0 such that for all x∈M |x−c|< δ ⇒ | f (x)− f (c)|< ε . This condition

need not be satisfied everywhere in D for a A field. Specifically, for a steady vector field

that consists of fixed points, the integral curves (or streamlines) passing through them

reduce to points. Therefore, the obtained A field is not continuous at a fixed point. Also,
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the A field is not continuous across the integral curves that end or start from saddles,

i.e. separatrices–a special type of streamlines, if the accumulation is performed in infinite

time window. This is because an arbitrarily small perturbation in the direction other than

the flow direction will lead to another integral curve with length much different from the

separatrix, making the A field accumulated using Eq.(4.2) discontinuous at separatrices.

In fact, there are two distinct configurations for this discontinuity, as demonstrated in

Figure 4.2. Case(a) of Figure 4.2 shows a scenario that is sensitive to the discrete sampling.

The sampling (black dots) shown in this case will miss this discontinuity, since the two

opposite sides of the separatrix have similar A values. In the meantime, the discontinuity

illustrated in case (b) is not sampling sensitive compared to (a). Given a sufficient sampling

rate, this discontinuity can be captured with certain discrete operators, such as an edge

detector [3] or a discrete gradient computation, ∇A . This observation can be used to guide

the selection of characteristics for accumulation if the goal is to encode the information of

flow separation. That is, the selected characteristic should lead to an A field that possesses

the behavior shown in case(b) of Figure 4.2 at different sides of the separation structure.

More details about the discontinuity property and its applications will be discussed in

Section 5.2.

In mathematics, a function f (x) defined in M is said continuous at c if for every ε > 0,

there exists a δ > 0 such that for all x ∈M |x− c| < δ ⇒ | f (x)− f (c)| < ε . However,

this condition may not be satisfied everywhere in D by a A field. Specifically, for a

steady vector field that consists of fixed points, the integral curves (or streamlines) passing

through them reduce to points. Therefore, the obtained A field is not well-defined there.

The second place where A may exhibit discontinuous behavior is at the separation
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Saddle
ci

A(c )i
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ca+3

ca+3ca ... ci

A(c )i

ca+3ca ...

case (a)

case (b)

Approximate curve

Figure 4.2: Discontinuity of the A field at a separatrix connecting a saddle (blue dot) and
a source (green dot). The A field is sampled along the line segment traversing through the
separatrix. ci indicate the samples along this segment. Case (a) shows a scenario of the
discontinuity that the discrete sampling may miss (illustrated by the orange curve), while
the discontinuity in case (b) could be captured with sufficient samples.

structures of the flow. Consider a smooth vector field, the transition of the (geometric)

behaviors of neighboring integral curves is smooth. However, this smooth transition is

violated at places where the integral curves have structural changes (e.g., end at differ-

ent fixed points or two far away locations). Those locations correspond to the separation

structures in the flow. In many cases, especially in unsteady vector fields, these separation

structures are not unique and are sensitive to the selection of the integration time. In con-

trast, vector field topology is a rigorous notion of the separation structures of steady vector

fields, which is defined in infinite long time. In either case, this geometric discontinuous

behavior of integral curves may or may not be reflected by the A fields that accumulate

the local characteristics along integral curves. Figure 4.2 shows two possible cases where

the A field (a0) misses or (b) captures the topological discontinuity across a separatrix.

In case (a), the accumulation values on both sides of the separatrix are similar despite

different geometric behaviors of their associated streamlines. Depending on the seeding

location and possibly the numerical error, this discontinuity may be missed. In case (b), the
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accumulation values on both sides are sufficiently different, capturing the discontinuous

geometric behavior across the separatrix.

cusps

Does this mean that the discontinuity exhibiting in

A is always a sub-set of the separation structures of the

vector fields? To answer this question, let us consider an-

other example shown in the inset to the right. This exam-

ple shows an A computed by accumulating the change

of the flow direction along the densely placed pathlines

for the Double Gyre flow. Beside the well-known sepa-

ration structure defined as the ridges of the FTLE field,

there exists additional discontinuity in the obtained A

as highlighted by the arrows. By close inspection, this

cusp-like discontinuity is caused by the abrupt direc-

tional change in the integration of the involved pathlines due to the two oscillating centers.

This behavior has already been reported in a previous work [66]. This example indicates

that the discontinuity in A may correspond to discontinuous behavior in the accumu-

lated quantity on neighboring pathlines other than geometric characteristics of the integral

curve.

Based on the above discussion and analysis, it can be concluded that under the nu-

merical error free assumption the discontinuity exhibited in A indeed corresponds to the

discontinuous geometric and/or physical behaviors of neighboring integral curves. How-

ever, in practice, not all this discontinuity can be captured by A due to the selection of

integration times and seeding strategy. With this observation, it can be argued that the
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accumulation framework and the resulting A fields are simple and effective means to pro-

duce an approximate overview on the potential discontinuity in integral curve behaviors,

which is known to be relevant to a number of important flow features.

Remark: The highlighted discontinuity in A may not provide the precise locations and

times where and when it happens. Recall the example shown in the above inset. Although

the sharp direction change occurs in a later time in the flow, the discontinuity occurs in the

first time step where those pathlines are seeded. Although this looks like a disadvantage of

the accumulation framework and A fields, it indeed provides a robust way for seeding and

selecting of integral curves that may possess interesting behaviors (i.e. the abrupt change

of direction) without extracting those features precisely. Nonetheless, there are still cases

that knowing the exact local spatio-temporal regions where those features/events occur

is necessary. In that case, additional information needs to be utilized in addition to the

accumulated value. One possible solution is to study the variation and distribution of the

local attributes along integral curves to provide more detailed information about integral

curve behaviors, which should be a valuable direction for future research.

4.2.3 Inequality Property

If k is a box filtering function and the time window is equal to T, i.e. the whole time

range of an unsteady flow or ∞ for a steady flow, then all the points correlated via the

same integral curve will get the same A value, while neighboring points that are not

correlated by the same integral curve may have different values. In this case, the following
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(a) (c)(b)

Figure 4.3: (a) highlights the places (in red) of an A field where Eq.(4.3) does not hold.
(b) highlights the places (in red) where Eq.(4.4) does not hold. As can be seen, all places
satisfy this new inequality condition. (c) shows the |∇A | using a rainbow color coding.
As can be seen, most places have very small gradient values (blue), indicating slow change
of A field there; while places near the separatrices that correspond to certain discontinuity
in the A have large gradient (red). The horizontal direction is X and the vertical direction
is Y.

inequality [35] is satisfied.

|< ∇A ,V⊥ > |> |< ∇A ,V > | (4.3)

where ∇A represents the gradient of A . This inequality depicts that the change of A

along the flow direction is smaller than along a direction perpendicular to the flow. This

inequality is employed to evaluate the quality of texture-based flow visualization tech-

niques. However, this may not be always satisfied due to the discrete sampling and the

smoothing and blurring effect that occurs during the accumulation in practice as discussed

above. Figure 4.3(a) provides an example plot that highlights the places (in red) in an A

field, where the above inequality does not hold. This A field is computed based on the

winding angles of the integral curves. As can be seen in this example, in the majority of

the domain the gradient direction of the A field are closer to the flow direction than its

perpendicular direction, except near the discontinuity. Based on [35], visualizing this A
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field will not make a good contrast. In the meantime, this does not mean that the gradient

of A will be parallel to the flow direction. Quite the opposite, in most places they do not

match, as shown in Figure 4.3(b). In addition, in most places where Eq.(4.3) does not hold,

the gradient value there is rather small (Figure 4.3(c)). Therefore, the above inequality is

weakened to introduce the following inequality for the study.

|∇A |> |< ∇A ,
V
||V ||

> | (4.4)

This is true if all points along the same integral curve have the same values using an

infinite window size. In this case, the patterns in |∇A |, which now are parallel to the

patterns of A , are also aligned with the flow direction. In practice, given different choices

of the kernel and window size, the above inequality may not be satisfied everywhere.

Nonetheless, due to the blurring effect of the L-accumulation operator, the difference along

the flow direction should still be very small if not the least. This property enables us

to study the flow patterns based on the difference between the accumulated (or average)

behaviors of neighboring integral curves, e.g., the extraction of the boundaries of different

flow regions.

4.3 Computation and Visualization of A fields

In the implementation of the Lagrangian framework, a uniform dense sampling strategy is

taken to avoid any bias under the assumption that no priori knowledge of the data is known.

Given any sample point, an integral curve (i.e. a streamline for a steady vector field or a

pathline for an unsteady vector field) is computed using the standard Runge-Kutta fourth-

order integrator (RK4) with a fixed step size. The local attribute values are interpolated
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at the integration points based on the pre-computed values at the uniform dense samples.

It is worth noting that due to the uniform sampling strategy and an axis dependent order,

the computed A may possess certain artifacts or numerical errors. To address this, two

additional processes to the original accumulation framework are introduced. First, a dual

grid is constructed with the uniform samples as the centers of the grid cells. For each

grid cell, a list of the computed integral curves passing through it is recorded. As long

as a cell is traversed by an integral curve, this cell is marked visited, and its A value is

computed as the weighted sum of the A values of the integral curves passing it. The

weights are selected based on their distance to the center of the cell. Second, after the

initial A field is obtained, is is further smoothed along the flow direction in a fashion

similar to the enhanced-LIC approach [39]. That is, another low-pass filtering process

is performed along the short integral curves seeded at the sampling points with the A

field as the input. This additional smoothing can be very usefully in cases in which the

samples are irregular (i.e. the vertices of a triangle mesh), which is typical for surface

flows. Figure 4.4 provide a few examples of the A fields computed on triangle meshes.

In these examples, the streamlines are seeded at the vertices of its respective triangle mesh

and integrated sufficiently long (e.g., twice the size of the bounding box of the geometry).

Figure 4.4(a, left) shows the initial accumulated A , which is not smooth. After performing

the aforementioned smoothing, the A field is better aligned with the flow (Figure 4.4(a,

right)). The computation times for A fields depend on the size of the data, the resolution

of the samples and the integration time, which can range from a few seconds (e.g., the 2D

steady flow) to two hours (e.g., the surface flows) on a PC with an Intel Xeron 1.6 GHz

CPU and 8 GB RAM without parallelization.
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(a) (b) (c)
before smoothing after smoothing

Figure 4.4: A fields of a synthetic surface flow (a), a cooling jacket simulation (b) and a
gas engine simulation (c), respectively.

Pseudo segmentation via discrete color coding With

the spatial coverage property and the inequality property

that makes the patterns in the A field aligned with the

flow direction, a visualization can be created using dis-

crete color coding to achieve an effect similar to a flow

domain segmentation. The inset provides an example of

discrete color visualization. Note that no actual segmen-

tation is performed in this visualization. However, a true segmentation may be obtained

with this discrete color assignment as the input [73].

Remarks: Because the patterns of the A fields are aligned with the flow except at fixed

points, the direct visualization of A and ∇A fields often provides us an overview of the

flow behavior. However, one should also realize that the sensitivity of the A fields w.r.t

the integration times, which may reveal local or global behaviors of the flow in different

scales.
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(a) (b) (c) (d)

Figure 4.5: A (top) and |∇A | (bottom) fields of a tile of the ocean simulation with dif-
ferent window sizes for accumulation. (a)10% of the size of the bounding box of the data
domain; (b) 50%; (c) 2,000%. (d) shows the A field by accumulating the divergence
along streamlines.

4.4 A Case Study: Φ Field

In this section, Φ Field, a derived attribute field based on the characteristic of flow rotation,

is taken as an example to show the computation and visualization of A fields.

Φ Field: The Φ field is determined from:

ΦC =
N−1

∑
i=1

dθi (4.5)

where for 2D vector fields dθi = (∠(
−−−→PiPi+1,

−→X )−∠(
−−−→Pi−1Pi,

−→X )) ∈ (−π,π] represents the

angle difference between two consecutive line segments on an integral curve. −→X is the

direction of the X axis of the XY Cartesian space. dθi > 0 if the vector field at Pi is

rotating counter-clockwise with respect to the vector field at Pi−1, while dθi < 0 if the
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(a) (b) (c)

Figure 4.6: An example of Φ field (b) and its gradient magnitude field |∇Φ| (c). (a) shows
the LIC of the flow.

rotation is clockwise. For 3D vector fields, dθi = arcos(
−−−→PiPi+1•

−−−→Pi−1Pi
|−−−→PiPi+1||

−−−→PiPi+1|
) is used, i.e. the

absolute difference of the direction of two consecutive line segments on an integral curve.

From a global perspective, the Φ field describes the total signed rotation for 2D flows and

total absolute rotation for 3D flows along the trajectory. Figure 4.6(b) shows an example of

the Φ field visualized using a blue-white-red color coding with blue color corresponding

to the negative Φ values, red for positive, and white for zero values.

|∇Φ| Field: The gradient of the Φ-field is defined as ∇Φ = (∂Φ

∂x ,
∂Φ

∂y ,
∂Φ

∂ z ). It is well-known

that ∇Φ points in the direction where Φ increases the fastest, and its magnitude |∇Φ|

indicates the rate of variation of Φ in this direction. Figure 4.6(c) shows a visualization of

the gradient of the Φ-field shown in Figure 4.6(a). A gray scale color coding is used with

black corresponding to larger |∇Φ| values.
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4.4.1 Computation

The computation of the Φ field starts with a flow map estimation. In order to capture the

detailed flow information, a regular sampling strategy is employed. That is, the domain is

partitioned into NX ×NY ×NZ grid cells. In the experiments, NX ×NY ×NZ matches the

resolution of the image plane in 2D or the original resolution of the data in 3D unless stated

otherwise. From each seed x (at the center of each cell), an integral curve is computed

using a 4th−order Runge-Kutta integrator. A linear interpolation scheme is applied in

both space and time during integration.

The termination conditions for streamline and pathline computations based on the def-

inition of the Φ fields for steady and unsteady flows is considered separately. For steady

flows, given a starting point (x0,y0), a streamline is computed in both forward and back-

ward flow directions until it 1) reaches a boundary of the data domain; 2) reaches a sin-

gularity; 3) forms a closed loop; or 4) reaches the maximum number of integration time

(or steps) T . Note that criterion 3) is needed because the unpredictably large Φ value near

a center-type singularity may make the visualization of the Φ-field challenging. For un-

steady flows, given a starting point (x0,y0; ti), a pathline is computed in both positive and

negative time until it reaches a boundary of the data domain D, e.g., the boundary of the

physical domain or the boundary of the time range. In other words, a complete pathline

for each sample position is computed.

After computing the integral curves starting from the sampled positions with the given

integration time (or integration steps) T , the flow rotation is accumulated along the integral

curve based on Equation 4.5. Since a regular sampling strategy is employed, ∇Φ can be
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estimated by evaluating the central difference along each axis direction.

4.4.2 Visualization

The visualization of the Φ field is straight forward. For 2D flows, the Φ field can be shown

using color plots or volume rendering with a blue-white-red color coding, where blue rep-

resents negative rotation and red represents positive rotation (Figure 4.8(a), Figure 4.7(a)).

For 3D flows, since the Φ field is always positive, it can be visualized using volume ren-

dering with a standard rainbow color coding where blue maps small attribute values and

red indicates large attribute values. The |∇Φ| field is always visualized with a gray scale

color coding ( Figure 4.8(b), Figure 4.7(b)).

Figure 4.7 shows the results for the Double Gyre flow. In particular, Figure 4.7(a)

shows the volume rendering of the Φ field, from which one can easily observe the strong

rotational behavior of the pathlines that is induced by the two vortices can be observed.

This can be better revealed by a set of pathlines selected via filtering the Φ field (Fig-

ure 4.7(e)). Figure 4.7 (b) shows the |∇Φ| field in the spatio-temporal domain. Two cross

sections of this gradient field at t = 0 and 20 are shown in the bottom two images of (b),

respectively, which are overlapped with the LCS ridges (i.e. the red pixels). From this

visual comparison, it can be figured out that the |∇Φ| field captures behavior very similar

to the FTLE field. It is worth noting that the proposed accumulation process may indicate

the presence of a dynamic event (e.g., strong rotation) that occurs at a different location

in the field and at a later time through the value assigned to the seeding location as long

as they are correlated by the same pathline. In contrast, the FTLE field does not employ
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an accumulated value but instead represents the rate of divergence (convergence) of parti-

cles released from a region. The LCS, i.e. the ridges of the FTLE field, does accurately

reflect the spatial location of the divergence. Nonetheless, this method does provide a

classification for pathlines based on the similarity of their rotational behavior.

t

(a) (b) (c) (d)

t=0

t=20

(e)x

y

t

Figure 4.7: The result of the double gyre flow with T = 10. (a-b) show the forward Φ

field, the comparison between LCS and |∇Φ| ridges at time steps 0 and 20, respectively.
For FTLE, a rainbow color coding is used where red indicates larger FTLE values and blue
smaller. For the comparison of LCS and |∇Φ| ridges (b), the extracted FTLE ridge points
are highlighted in red on top of the |∇Φ| visualization that utilizes a gray scale color map.
In addition to the LCS structure, the Φ and |∇Φ| fields also capture the cusp-like seeding
curves indicated by the yellow arrows. (c) shows the Φ and |∇Φ| field based on streaklines
at t = 0, which captures the singularity paths of the two vortices over time as highlighted by
the black arrows. (d) shows the pathlines seeded at the cusp-like ridges of the |∇Φ| field.
Note that the intersections of these pathlines with the (horizontal) time planes form some
coherent structures rotating over time. (e) shows a set of selected pathlines by filtering the
Φ field.

Figure 4.8 shows the volume rendering (top) and a number of 2D slices (bottom) of the

Φ and |∇Φ| fields for the flow past a cylinder [65] using ParaView. This data set consists

of 1001 time steps. To compute the Φ field, we uniformly sample 400× 50 particles at
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each time step, and integrate the pathlines in both forward and backward time directions

until they reach the domain boundary (i.e. T = 8). For each pathline, the rotation inte-

gration starts from the position where the particle first enters the domain and along the

positive time direction until it exits the domain. The measurement of each local rotation

is performed by projecting the pathline onto the 2D plane upon which the vector field is

defined. The computation of this Φ field took about 3 hours, and the output file storing the

pathlines is of size 184 MB. From the result, it can be seen that the Φ field (Figure 4.8(a))

reveals the regions with strong rotational behavior. The blue-white-red color coding effec-

tively conveys the orientation of the rotation. The |∇Φ| field (Figure 4.8(b)) highlights the

structure of the discontinuity in the Φ field, which assembles the combined forward and

backward FTLE ridges, as shown in (c) and (d). The red pixels represent the LCS whose

FTLE values are larger than 0.65 fmax ( fmax is the maximum FTLE value).
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(a)

(b)

t

(c)

(d)

Figure 4.8: The visualization of the Φ (a) and |∇Φ| (b) fields of the cylinder flow data [65].
The time direction increases away from the view. The 2D slices correspond to time step
t0 = 200 are shown. (c) and (d) show the comparison of LCS and |∇Φ| filed computed
based on forward pathlines (c) and backward pathlines (d) at t0 = 0, respectively. The
LCS is highlighted in red on top of the |∇Φ| visualization. For each 2D slice horizontal
direction is X and the vertical direction is Y.
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Chapter 5

Applications of Lagrangian

Accumulation Framework

In this chapter, a number of flow exploration tasks are conducted under the the Lagrangian

accumulation framework, including integral curve filtering and seeding, ribbon placement

and surface seeding. Then the discontinuity study and A field based flow segmentation

are discussed in details.

5.1 A Field Based Flow Exploration

From the introduction in Section 4.4, certain interesting features of Φ and |∇Φ| fields

shown in the visualization are observed. The derived Φ and |∇Φ| fields encode useful

information that can be applied to a number of flow exploration tasks.
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5.1.1 Integral Curve Filtering

An interface is provided for users to highlight regions with a specified rotation behavior.

Specifically, the user can adjust two thresholds, α and β , for the Φ-field visualization, so

that regions with α < Φ < β will be colored white. Figure 4.7 (e) provides an example

of this type of visualization. Because all points at a given time t0 on the same integral

curve have the same or similar Φ values, performing the above filtering is equivalent to

eliminating integral curves whose Φ values are less than the threshold. However, this may

still generate a set of integral curves that are too dense. To address this, the data ranges

[Φmin,α] and [β ,Φmax] are evenly subdivided into M intervals where M is specified by the

user. For each interval, an integral curve whose Φ value is closest to the median of the

data range will be shown. With this interface, the user can easily highlight regions with

strong positive and negative rotations that may indicate the vortices in the flow. Figure 5.1

(a) shows the vortex regions highlighted by the Φ field.

5.1.2 Integral Curve Seeding

The inequality property and the discontinuity in the Φ fields can be utilized to guide the

generation of seeds for integral curves. For a 2D flow, seeds are placed at the points where

the |∇Φ| value is larger than a user-specified threshold, e.g., 0.8|∇Φ|max, where |∇Φ|max

is the maximal gradient magnitude in the domain. Integral curves are then computed

from these seeds.Randomly started from one seed, those seeds that are too close to the

remaining seeds are filtered out. This process is repeated until no more seeds are available.

Figure 4.7(d) shows an example of the seeded pathlines in an unsteady flow. The seeds of
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Figure 5.1: The volume rendering of the Φ field (a) and |∇Φ| field (b) of the Bernard flow.
(c) shows several filtered streamlines based on the Φ field. (d) shows the local attribute
and Q.

the pathlines are placed on the cusp-like seeding curves indicated by the yellow arrow in

Figure 4.7 (b).

5.1.3 An A Field Guided Ribbon Placement

3D ribbons are known to represent effectively flow characteristics that neither integral

curves nor integral surfaces can effectively convey. An example of such flow characteristic

is the helicity of the flow that quantifies the rotational behavior around an integral curve.

To utilize this information to guide the seeding and placement of ribbons, in addition to

aggregating the helicity along the individual streamlines to obtain an A , the standard

deviation of the helicity values along each streamlines is derived, denoted by σ . For
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Figure 5.2: Ribbon placement results for the Bernard data (a) and the tornado data (b),
respectively. The left image of each group shows the ribbon placement guided by local
helicity information, while the right image shows the placement guided by the derived A
field based on helicity.

each candidate seed p, a value of A (p) + σ(p) is assigned. Based on this value, all

candidate seeds that are uniformly distributed in D are ranked. From the top-ranked seeds,

a series of ribbons as the initial set of ribbons can be constructed. Then, new ribbons are

iteratively inserted to fill the blank region of D while keeping a minimum user-specified

distance away from other existing ribbons. The similarity metric introduced by Chen et al.

(2007) [8] is used to further remove redundant ribbons that are too similar to the existing

ones. Figure 5.2 shows the ribbon placement results using the proposed A field guided

framework. Compared to the ones that are produced using only the local attributes (i.e.
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the initial ribbons are placed at locations with maximum local attribute values), our results

tend to generate ribbons with longer length that can provide more coherent information

about the flow behaviors (i.e. the tornado and the four vortices of the Bernard data are

easily identifiable), which is expected.

5.1.4 An A Field Guided Surface Seeding

An integral surface is the integration of a 1D curve (i.e. seeding curve) through 3D flows.

Compared with the individual integral curves, integral surfaces can more effectively con-

vey 3D flow information with the additional visual cues (e.g., lighting, transparency and

textures). However, not all integral surfaces are intrinsic. They highly depends on the

selection of the seeding position and the shape and orientation of the seeding curve. Gen-

erating good seeding curves that can lead to expressive surface representations of the flow

is still a challenging task. With the computed A and its gradient information, a simple yet

effective seeding curve generation strategy is proposed. In particular, the candidate seed

pc that has the smallest |∇A | value is selected. Let us denote the A value at pc by g.

Next, a seeding curve starting from pc is generated and guided by the curvature field [45],

whose points have A values falling in the range [g− δ ,g+ δ ]. The obtained seeding

curve encodes streamlines, the variation of whose A values is not larger than δ . Thus, the

computed stream surface from this seeding curve is expected to have small variation. In

the meantime, a candidate seed p′c that has the largest |∇A | value can be selected, from

which a seeding curve guided by the ∇A field is generated. The computed stream surface

from this seeding curve is expected to have large variation according to the meaning of the

∇A field (i.e. it highlights the places where A has large changes). Figure 5.3 shows two
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surfaces computed from the two seeding curves constructed using the above two strategies

for the flow behind the cylinder data, respectively. The blue surface was generated from

a seeding curve with small variation of A values along it, which highlights the boundary

of a small vortex bundle next to the cylindrical object. In contrast, the red surface was

generated from a seeding curve with large variation of A values. This surface exhibits

rich and varying flow behaviors around the boundaries of various vortices.

x

yz

Figure 5.3: Comparison of two strategies of seeding curve generation. The red surface
is constructed from a seeding curve derived using the small variation strategy, while the
yellow is from a seeding curve derived using the large variation strategy. The seed of
seeding curve for the blue surface is located inside the bundle, where its |∇A | value is
small, i.e. the A values along this seeding curve are almost constant. In contrast, the
seed position of the seeding curve for the red surface is located near the boundary of the
domain, where the |∇A | value is large, and the variation of the A values on this seeding
curve is also large.

5.1.5 Visualizing Particle-based Data Aided by A

In addition to applying the accumulation framework to mesh-based vector field data, it is

also utilized to aid the visual exploration of the particle-based flow data. Different from

the previous examples where the integral curves are computed to depict the trajectories of

40



mass-less particles, the particles in the particle-based data have mass and their trajectories

need not be the integral curves of the corresponding velocity field. Nonetheless, the accu-

mulation framework still applies. In this case, the accumulated value of a particle indeed

describes the overall attribute behavior of the particle. Figure 5.4 shows an A field com-

puted based on the change of the moving direction (i.e. a8) of the particles produced by

a dam-breaking simulations computed using the position-based fluid method [34]. From

the result it can seen that particles that hit the boundary have larger change of moving

direction, as highlighted by the arrows

x

yz

Figure 5.4: Visualization of an A field derived from a dam-breaking particle based simu-
lation. Blue means the change of particle moving direction is small, while red mean large.
It shows that the particles that hit the boundary have larger change of moving direction, as
highlighted by the arrows.
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5.2 Discontinuity Study

The discontinuity property of A fields is introduced in Section 4.2.2. In this section, more

details of this property are discussed and an algorithm to extract the discontinuity among

neighboring integral curves is proposed.

5.2.1 Background of Discontinuity

From the discussion of discontinuity, it has already been known that the spatio-temporal

positions correlated by the same integral curves will have similar attribute values, while

those neighboring points traversed by integral curves that possess different behavior will

have different attribute values. The 1D plots in Figure 5.6 show the attribute values along

the seeding line segments (i.e. the red segments in Figure 5.5 left) . They exhibit cliff-like,

sharp changes (highlighted by the blue arrows), which correspond to certain discontinuities

in the corresponding attribute field. This discontinuity may be closely related to certain

flow features, such as flow separation, as shown in Figure 5.5.

There are a number of potential reasons leading to this discontinuity. In general, with-

out providing a rigorous proof that the obtained A field from a steady flow exhibits dis-

continuity at the locations where the integral curves have abrupt changes in their geometric

property, e.g., being truncated. Some examples of these integral curves include those that

connect with boundary switch points, where the flow transits from inflow to outflow or vice

versa, and those that form closed loops where the integration is terminated earlier. Again,

if the goal is to encode this discontinuity in the A fields, one should select the appropriate

characteristic that leads to an A field that possesses distinct behaviors at different sides of
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these special integral curves to avoid the influence of discrete sampling, although this may

not be trivial in practice.

For an unsteady flow, the above discontinuity may not exist due to its finite time range.

However, sharp changes in the A field may still be observed at the ridges of transportation,

i.e. the Lagrangian coherent structure (LCS) due to a similar reason. To simplify the

subsequent discussion, this sharp change is still referred to as some discontinuity.

Figure 5.5: The illustration of the relation between the attribute field and a number of well-
known flow features, including the flow separation (a) and vortices (b). The left column
shows the vector fields illustrated by streamlines, the middle column shows the rotation
field.
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(a)

(b)

Figure 5.6: The plots of the rotation field of the streamlines intersecting with given seeding

line segments (shown in Figure 5.5). Note that the discontinuities (sharp gradients) in the

rotation field indicate the flow features. The values shown in the plot have no units as they

do not correspond to any physical quantities.
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It is also worth mentioning that other abrupt changes of the local characteristics along

the integral curves could also lead to certain discontinuity in the resulting A field. One

example that has been recently reported is the cusp-like behavior in pathlines [66], which

is caused by the abrupt change in the pathline direction, i.e. almost a π angle difference be-

tween the previous and current directions. This abrupt change is caused by the intersection

of a pathline with the paths of singularity. The A field that is computed by accumulating

the change of flow direction along the pathlines can effectively capture this discontinuity

(Figure 4.7). Based on the same reason, the abrupt change in the local physical properties

of the flow along the integral curves may also lead to similar discontinuity in the resulting

A field.

In practice, due to numerical errors introduced by the integrators and the varying win-

dow sizes used to compute the accumulation (discussed next), the discontinuity may occur

in places that need not correspond to well-known flow features as discussed above. How-

ever, if the accumulation is performed along the entire integral curves in the domain D so

that all points along the same integral curves obtain the same A value, due to the inequal-

ity property (Section 4.2.3), the direction of the discontinuity in the A field is aligned

or can be made to align along the flow direction, which guarantees that no misleading

information will be provided in the subsequent visualization. In the rest of this work,

the discontinuity in a A field is referred as to the salient flow patterns under the given

accumulation window.
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(a) (b) (c) (d) (e) (f)

Figure 5.7: Discontinuity detection on a Φ field derived from a synthetic steady flow using
the Canny edge detector with different combinations of parameters. (a) The differential
topology with LIC as the background; (b) Φ field; (c-e) Detected edges with different
parameters of the Canny edge detector: (c) - σ = 3.0 α = 0.3 β = 0.8, (d) - σ = 3.0
α = 0.6 β = 0.8, (e) - σ = 3.0 α = 0.3 β = 0.86; (f) The gradient of Φ field. The
horizontal direction is the X direction and the vertical direction is the Y direction.
5.2.2 Discontinuity Extraction

As shown in Figure 5.5, the attribute fields may contain discontinuities that correspond

to the sharp gradients in the integral curve behavior. These discontinuities in the attribute

fields are similar to the edges in a digital image. The gradient of the attribute field may be

able to locate these discontinuities (Figure 5.7(f)), but may require non-intuitive thresholds

to reveal the salient ridges. Therefore, the more robust Canny edge detector [3] is selected

to locate this discontinuity in the attribute fields, which can be converted into 2D images.

The Canny edge detector has three input parameters: σ - the standard deviation of the

Gaussian smoothing filter, α - the low threshold and β - the high threshold. The lower row

of images in Fig 5.8 shows the detected edges from the corresponding attribute fields of

the Double Gyre flow. Note that for the average direction field avgDir, the field values of

the two neighboring pathlines be equal to or close to 0 and 2π , respectively, as highlighted

with the arrows in Figure 5.8(b). But it does not indicate the discontinuity because they

are in the same (or be close to) direction. Therefore, this case is filtered using the Canny

edge detector.
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(a) (b) (c) (d) (e) (f)

Figure 5.8: Illustration of a number of attribute fields derived from the Double Gyre flow
and their detected edges. (a)–(d) show the attribute fields Φ, Ł, avgDir and acceration,
avgDir computed from pathlines, respectively. (e) is the rotation field Φ from streaklines.
(f) is the rotation field Φ from pathlines using backward integration. The parameters of
Canny edge detector are σ = 2.0, α = 0.3, β = 0.8. The horizontal direction is the X
direction and the vertical direction is the Y direction.

5.2.3 Combined Attribute Fields

The study of the combined attribute fields is proposed to understand the behavior of the

discontinuities in different attribute fields. To achieve this, one can simply overlap the

detected edges from different attribute fields, as shown in Figure 5.9(a). However, the

detected edges from the individual fields are independent of each other. With this simple

overlapping, it is difficult to know whether their corresponding attribute fields have similar

behavior or not (i.e. both are descending, or one is descending while the other is ascend-

ing) at the locations that exhibit sharp change. This information may be revealed in the

combined attribute field.

Assume Ai, i = 1,2, ...,n represent the attribute fields introduced in Chapter 4. Three

combination strategies are proposed to compute a super attribute field Acom.

Linear combination is defined as Fcom =Fi+F j, where Fi and F j are selected at-

tribute fields from the attribute fields pool. However, if one of the selected attribute fields
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has a much larger value range, the super field will be dominated by this attribute field. Fig-

ure 5.9(b) is the result of combined super field from the rotation field Φ ([−11.73,11.73])

and the length field Ł ([0.,2.8]) , which shows mostly the features of the rotation field.

(a) (b)

Figure 5.9: (a) Overlap of edges in Φ (yellow) and Ł (purple) fields; (b) Simple combina-
tion of Φ and Ł fields. The horizontal direction is the X direction and the vertical direction
is the Y direction.

Weighted combination is employed to address the issue of the simple combination.

Here, Fcom = αF̂i +βF̂ j, where α +β = 1 and satisfies 0≤ α ≤ 1,0≤ β ≤ 1. F̂i and

F̂ j are the normalized values of the attribute field Fi and F j, respectively. Figure 5.10(a)

shows the super fields computed using the weighted combination of the Φ and avgDir

fields of the Double Gyre flow, with the weight for the Φ field being 0.1,0.5, and 0.9,

respectively. With this weighted combination, the discontinuity structure in the super field

that is non-sensitive to the choices of weights can be further identified. That is, no matter

what weight combination is selected, the derived super field always contains this discon-

tinuity, which is composed of stable edges. Figure 5.10(b) shows these stable edges as

gray curves super-imposed onto the edges extracted from the corresponding super field. In

this example, nine super fields, in which the weight of the Φ field is α1 = 0.1,0.2, ...,0.9,

respectively, were generated to identify the stable edge.
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(a)

(b)

Figure 5.10: Illustration of weighted combination of Φ and avgDir field. (a) Combined
attribute field; (b) Edges detected from the super field. The dark gray curves on top are
stable edges that do not change with weights. The weights of Φ and avgDir from let to
right are α1 = 0.1, α2 = 0.9; α1 = 0.5, α2 = 0.5; α1 = 0.9, α2 = 0.1, respectively. The
parameters of Canny edge detector are σ = 1.0, α = 0.3, β = 0.8. The horizontal direction
is the X direction and the vertical direction is the Y direction.

(b)(a) (c)

Figure 5.11: Results of the forced-damped Duffing system. (a)–(b) Φ and avgDir fields
and their detected edges.The parameters of Canny edge detector are σ = 1.8, α = 0.3,
β = 0.9. (c) A super field using the equally weighted combination of Φ, avgDir, L, nsV
and seDist. The horizontal direction is the X direction and the vertical direction is the Y
direction.

5.2.4 Results and Applications

The attribute field has been applied based analysis and exploration framework to a number

of synthetic and real-world 2D vector fields. The cost of pre-computation of attribute

fields depends on the resolution of the spatio-temporal domain and the time window of

trajectory integration. Pathline-based attribute field computation requires 10 to 32 seconds

for the data sets considered in this work, while streakline-based attribute field computation

requires about 4 to 15 minutes. All processing times are measured on a PC with an Intel
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Core i7-3537U CPU and 8 GB RAM.

The first example is the Double Gyre flow with a spatial resolution of 256×128, which

has been shown earlier. For the second example, a dynamical system defined by the forced-

damped Duffing oscillator [20] is considered

u(x,y, t) = y (5.1)

v(x,y, t) = x− x3−0.25y+0.4cos(t)

with the constant spatial divergence operator -0.25, which is a non-area-preserving. A

spatial resolution of 800× 600 and a time window T = 5 is chosen. The attribute fields

of the system and the corresponding detected edges are shown in Figure 5.11(a). The

detected edges from each attribute field encode the LCS information. Figure 5.11(c) upper

shows a super field generated from an equally weighted combination of all six attribute

fields. Figure 5.11(c) bottom illustrates the detected common edges.

Another example is a simulation of a 2D unsteady flow behind a square cylinder with

a Reynolds number of 160 [65]. A spatial resolution of 400× 50 is used to compute the

attribute fields. The time window for this data set is 3. Figure5.12 shows the attribute

fields and the corresponding detected edges. While the edges detected in all of the at-

tribute fields encode at least part of the LCS of the flow, the non straight velocity field nsV

(Figure5.12(b)) also reveals the swirling behavior of the flow clearly.

5.2.5 Conclusion

In this chapter, an algorithm to extract the discontinuity of the behavior between neighbor-

ing integral curves is proposed. It shows that this discontinuity may be closely related to a
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(a)

(b)

(c)

(d)

(I) (II)

Figure 5.12: Attribute fields of the flow behind cylinder and detected edges. (a) avgV field;
(b) nsV field; (c) Ł field; (d) FT LE and LCS. The parameters of Canny edge detector are
σ = 1.0, α = 0.3, β = 0.8. The horizontal direction is the X direction and the vertical
direction is the Y direction.

number of flow features. Different strategies to combine individual attribute fields to form

a super attribute field to study the spatial correlation of the attribute fields are also studied.
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5.3 A Field Based Flow Segmentation

5.3.1 Motivation

Existing flow segmentation techniques typically partition the flow domain based on either

certain local flow characteristics, such as vector magnitude and orientation, or its topo-

logical structure [51]. Specifically, segmentation techniques that are based on local flow

information usually perform vector field clustering in a hierarchical fashion, i.e. either

top-down or bottom-up [41]. Since this clustering is based on the local flow informa-

tion, the segments and their boundaries need not be aligned with the flow direction (see

Figure 5.18(b) for an example). Therefore, additional computation is needed in order to

generate other visual primitives, such as stream-lets or glyphs [41], to convey informa-

tion about the flow behavior within each segment. On the other hand, vector field topol-

ogy [28, 43] reveals the essential flow structure and partitions the flow domain into regions

with homogeneous behaviors. However, it has yet to be applied to unsteady flow and its

visual representation in high dimensional space can be too complex to be useful to domain

experts.

Integral curve attributes have been recently applied to cluster [33] and select [70] in-

tegral curves to generate an overview of the vector fields. However, depending on the

dissimilarity metric used for integral curve comparison, some important features may be

overlooked due to an inadequate spatial sampling by the integral curves. To remedy this,

very dense integral curves can be computed as input, which will significantly increase the

memory and storage requirements during computation. In the meantime, integral surfaces

may be better descriptors than integral curves for depicting important flow dynamics in
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Figure 5.13: The pipeline of the proposed method. Note that it only illustrate the proce-

dural of the algorithm and does not provide the results, therefore, there is no need to show

axes or units.

higher-dimensional spaces, although integral surface placement is a much harder problem

than integral curve placement [10].

In this section, a segmentation framework is introduced, which is based on integral

curve attributes and is applicable to both 2D and 3D vector fields. The proposed method
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combines the advantages of vector field clustering and integral curve attribute approaches

and attempts to achieve an intuitive and expressive segmentation of the flow domain whose

resulting segment boundaries are aligned with the flow. This framework consists of two

major components (Figure 5.13). First, several attribute fields are derived from the integral

curve attributes. The attribute field value, i.e. a scalar data, at each spatio-temporal posi-

tion is set equal to the attribute value of the integral curve that is seeded at this position.

The attribute value of an integral curve is computed by integrating local properties along

the curve [42, 54]. If the integral curve is computed over a long time window, the attribute

field will encode the global behaviors of the vector field [72].

Using the derived attribute fields, the vector field segmentation problem is converted

into a scalar field partitioning problem. In fact, a similar idea has been described in refer-

ence [26]. Compared to [26], where the goal was to generate implicit clusters produced by

semantic dependencies, this method generates a segmentation based on flow information

only. With the aid of the derived attribute fields, the sampled spatial positions are first

classified according to their attribute values. Then, the connected components of this clas-

sification are extracted to provide an initial segmentation. This initial segmentation may

contain some smaller segments due to the numerical error present in the attribute field

computation. Then dilation operations are performed to remove those small segments.

After filtering the initial segmentation, the boundaries of the obtained segmented regions

may still be non-smooth. To remedy this, these boundaries are further smoothed. Unlike

the boundary refinement strategy applied in [31] This method does not require computing

many contours and comparing them to the coarse segmentation curves.
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5.3.2 Segmentation Algorithm

(a) (b) (c)

Figure 5.14: The illustration of the representation of attribute values and segments. (a) An
input attribute field with labels of bin IDs. (b) The segments based on the attribute field.
(c) The boundaries of the segments.

(c) Dilation for segment 
field-based labeling

 

 

(b) Connected components 

(d) Boundary extraction(e) Boundary refinement(f) Segments with boundaries

(a) computation cleaning

Figure 5.15: The pipeline of the segmentation algorithm.

Based on the derived attribute fields, the flow segmentation problem is converted into

a scalar field partitioning problem. Figure 5.14 illustrates the output segmented regions of

the vector fields and their boundaries. This algorithm can be divided into two steps. As
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illustrated in Figure 5.15, the first step is to extract the segments from the region classifi-

cation (top row of Figure 5.15) based on the attribute field values. The second step is to

extract and clean the boundaries of the segments (bottom row of Figure 5.15). The details

will be described later.

(b)
(a)

Figure 5.16: Region classification based on different methods. (a) uniform distribute on
data range. (b) equal-sizes bins. The histograms show the data distribute under each
method. The bin number m = 5.

5.3.2.1 Segment Extraction and Cleaning

Given a specific attribute field (e.g., the rotation field Φ), this method consists of the fol-

lowing steps.

Region classification Different flow regions are firstly classified based on their attribute

field values. A simple strategy is to evenly partition the data range of the attribute field,

i.e. the ith bin (i ∈ [0,m− 1]) corresponds to the range [Φmin +(i− 1)Φmax−Φmin
m ,Φmin +
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iΦmax−Φmin
m ]. The data points are labeled as in the ith cluster based on the attribute field

value defined on it (e.g., Figure 5.14(a)). However, this simple strategy may result in

initial region classification with largely different sizes, as shown in Figure 5.16(a). An

alternative way to generate m clusters is to equalize the size of bins. That is, the number of

data points falling into each bin is the same. This generally yields better initial partitioning

(Figure 5.16(b)). Without further specification, most 2D segmentation results shown in

this section adopts the second initial partitioning strategy. For the 3D flow data sets, the

region classification is performed manually based on the data distribution histogram to

avoid generating too large bins (i.e. clusters with too many points). However, it does not

enforce equal size requirement in 3D. The actual partitioning strategy is provided via the

legends aside the results of 3D data sets.

Segment extraction After the preceding step each sample point is labeled with the ID of

the corresponding bin (i.e. cluster ID). Next, the segments are extracted from these clus-

ters. This can be achieved by computing the connected components of those sample points

based on their labeled IDs obtained in the previous step. A standard breadth first search

algorithm can be used to accomplish this task. The connected components are identified

using 4-connectivity in 2D and 6-connectivity in 3D, respectively. After identifying the

connected components, the sampled points are re-labeled based on the index of the con-

nected components to which they belong. This provides us the initial segmentation of the

domain. Figure 5.15(b) illustrates the result of this step.

Segment cleaning via dilation Due to the numerical error in the attribute fields, the above
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initial segmentation may contain small segments with only a small number of sampled

points. These small segments will increase the complexity of the segmentation and lead to

visual distraction. Therefore, it needs to remove these small or noise segments.

In order to determine whether a small segment is noise or not, a noise segment thresh-

old γ is introduced, which is a percentage of the size of the bins. A noise segment is a

segment that satisfies both of the following conditions: (1) Its size, i.e. the number of

sample points in this segment, is smaller than the product of γ and the size of the bins in

the initial clustering; (2) The attribute value in this segment is close to that in its neigh-

boring segments. In implementation, this can be identified by the differences between the

corresponding bin IDs. Figure 5.17(a) shows a number of noise segments highlighted by

arrows. The dilation operation is applied, which is one of the basic morphological oper-

ations in image processing [15], to remove these segments. Specifically, the flow domain

is converted into a gray scale image. The intensity of each sample point is determined by

the size of the segment to which it belongs. That is, the larger the size of the region, the

larger the intensity of the sample. Then, the standard dilation operation is applied to this

gray scale image. After the dilation operation, the segment ID of each point in the noise

segment is changed to the ID of its neighboring segments with the largest size, i.e. with

the largest number of sampled points. The dilation to 3D is extended to remove the noise

segments in 3D vector fields. Given a 3D noise segment, the spatio-temporal point on the

boundary is relabeled with the ID of one of its six neighboring segments whose segment

size is the largest. Figure 5.17(b) illustrates the segmentation result after applying dilation

to Figure 5.17(a), where the noise segments are removed.

Note that, when equal-size bin partitioning strategy is applied to generate the region
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(c) (d)(a) (b)

Figure 5.17: The illustration of the effect of dilation operation and boundary refinement.
(a) The segmentation before dilation operation. (b) The segmentation after dilation opera-
tion. (c) The extracted boundaries of (b) without refinement. (d) The extracted boundaries
of (b) with refinement.

classifications, the above noise segmentation threshold is equivalent to using the data size

(e.g., the diameter of the bounding box of the data domain) multiplied by γ . Nonetheless,

the local strategy described above is taken, as the initial partitioning need not be equal size

(e.g., in 3D cases). Using a global threshold to remove noise segments may lose detailed

information in those smaller segments (i.e. initial clusters that have less sample points).

5.3.2.2 Boundary Extraction

After filtering noise segments, the boundaries of the remaining segments may not be

smooth and aligned with the flow direction. A similar issue has been reported by Li et

al. (2006) [31]. They proposed a boundary refinement method via contours computed

from various derived scalar fields or streamlines from the original discrete vector field.

However, their method requires to compute a large number of contours or streamlines and

select an optimal one with additional computation. Based on the output of this segmenta-

tion algorithm, a boundary extraction algorithm is proposed, which consists of two steps.

In the following, the method to handle 2D segmentation is described first, followed by a
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discussion of the processing of 3D cases.

Extracting initial segment boundaries In 2D cases, given the unique label for each sam-

ple point based on the above segmentation, the well-known normal cut technique [7] can

be applied to identify the boundaries between segments. In practice, the boundary curves

between segments can be estimated using the boundary points of one of the two neighbor-

ing segments. In order to smooth the boundary curve, it needs to connect these boundary

pixels in the correct order.

To extract boundary curves, the boundary points can be saved in an array. Starting from

any point in the array, two directions are traced along which the boundary is constructed.

The tracing is stopped when the next point is on the boundary of the flow domain or when

the point has two or more neighboring segments. If the boundary point that already belongs

to a segment is also next to other two segments, it indicates that one boundary curve

of the segment is generated. The four points highlighted in the circle in Figure 5.14(a)

are the ends of several boundary curves (Figure 5.14(c)). All the boundary curves of a

segment have been identified when all the points in the array are traced. However, since the

boundary curves of each segment are generated independently, two neighboring segments

may share two boundary curves rather than one. So it needs to refine the initial segment

boundaries.

Boundary refinement A Laplacian smoothing algorithm is applied to refine the bound-

aries. Each point x on the two boundary curves is replaced with the average position of

x and its adjacent boundary neighbors. Thus two neighboring boundary curves can be
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merged into one. In addition, dilation only removes the noise inside a segment, while

there may be noise at or near the boundary of the segment, which is caused by the ini-

tial clustering based on the simple range classification of the attribute fields. This can be

adjusted according to the flow direction. Figure 5.17 (c) and (d) illustrate the extracted

boundaries of Figure 5.17 (b) before (c) and after (b) refinement, respectively. With this

adjustment, the extracted boundaries are smoother as highlighted with the red arrows.

For a 3D vector field, an iso-surface is utilized to estimate the boundaries of the 3D

segments. Specifically, the ID of a selected 3D segment is re-assigned as 1, and the rest as

0. Therefore, an iso-surface of the value 0.99 would be a close estimation of the boundary

of the segment. Some estimated boundaries of the 3D segments are shown in Figures 5.22

and 5.23. The Laplacian smoothing strategy for the refinement of boundaries can be

extended to 3D to smooth the extracted iso-surfaces that correspond to the boundaries of

different segments.

5.3.3 Results

The method has been applied to a number of synthetic and real-world vector field datasets,

including steady and unsteady flows for both 2D and 3D.

5.3.3.1 2D Steady Vector Fields

Figure 5.13(right), Figure 5.18(c) and Figure 5.19(column (a)) show the proposed seg-

mentation results for a number of synthetic and real-world 2D steady flows, respectively.
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As a comparison, the segmentation is computed using the image-space vector field

clustering technique introduced by Peng et al. (2012) [41], which adopts a bottom-up

strategy and aggregates the two most similar clusters each time until only one cluster is

left. Figure 5.18(b) shows the result of the image-space clustering for a 2D synthetic steady

vector field with an error threshold of 0.081. However, only showing these segments

cannot provide insights into the flow behavior. In comparison, result generated by the

proposed method shown in Figure 5.18(c) generates segments whose boundaries are better

aligned with the flow. By looking at the segments or the boundaries of the segments

(Figure 5.18(d)), one can easily understand the flow behavior. In order to quantify how

well the boundaries of the obtained segments are aligned with the input flow, one can adapt

the work by Matvienko and Kruger (2013) [35], which is beyond the scope of this work.

Effects of the number of bins m Figure 5.19(a) shows the effects of using different

numbers of bins for the initial region classification for the Atlantic Ocean dataset, which

is taken from the top layer of a 350-day 3D simulation of global oceanic eddies for the

year 2002 [56]. Each time step corresponds to one day. The first time step of the dataset,

i.e. slice #20106, is selected to generate the 2D steady vector field. As what can be seen,

with a larger m, more details of the flow are revealed. For example, as highlighted in the

dashed area, there are more segments when m is larger and the flow direction, including

the sharp turn in the flow, is gradually revealed.

Extracted boundaries v.s. seeded streamlines Figure 5.19 (b) shows the extracted bound-

aries of the corresponding segmentations shown in Figure 5.19 (a). These boundaries are
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similar to the streamlines seeded on the boundaries, as shown in Figure 5.19 (c). The points

on a streamline have the same or similar attribute field value, while those on a boundary

of one segment have the same range rather than a specific attribute field value. Therefore,

the streamlines seeded on the boundaries need not exactly match the boundaries of the

segments, as indicated by the arrows in Figure 5.19 (b) and (c), but they are sufficiently

close to each other.

5.3.3.2 2D Unsteady Vector Fields

The second example of a real-world dataset is a simulation of a 2D unsteady flow behind

a square cylinder with a Reynolds number of 160 [65]. This simulation covers a subset

of the spatio-temporal domain, [−0.5,7.5]× [−0.5,0.5] ×[15,23]. The resolution of the

dataset is 400× 50× 1001 (number of grid points in x,y,t-direction ). The first 200 time

steps are chosen and a resolution of 400×50×200 is used to compute the attribute fields

based on pathlines. The time window for the pathline computation is 3. Figure 5.20 shows

the segmentation results of this dataset based on different attribute fields, i.e. determinant

field, non-straight velocity field nsV , and curl field, respectively. The bin number m is 6,

and the noise segment threshold γ is 0.01. The segments from the curl field (Figure 5.20(c))

encode the LCS information of the flow and those from the non straight velocity field nsV

(Figure 5.20(b)) reveal the Von Karman vortex street.

Noise segment threshold γ Figure 5.21 shows the segmentation of the Double Gyre

flow [52] based on the rotation field. When γ increases from 0.01 to 0.05, the four seg-

ments, highlighted in black in Figure 5.21(a), merge with their neighboring segments after
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dilation (Figure 5.21(b)). Interestingly, these four long thin segments have rather different

attribute values compared to their neighboring segments. They reveal a symmetric, helical

configuration of the pathlines in the Double Gyre flow that are not easy to see with other

methods. As shown in Figure 5.21(d), the pathlines seeded in those regions display similar

behaviors in each region.

5.3.3.3 3D Steady Vector Fields

To test this method in a steady 3D flow framework, an instant is taken from a 3D time-

dependent flow behind a square cylinder with a Reynolds number of 160 [65]. It covers

the spatial domain [−12,20]× [−4,4]× [0,6]. The spatial resolution of this dataset is

192× 64× 48. The attribute fields based on 3D streamlines are computed first. Fig-

ure 5.22(a) shows the segmentation of this dataset based on the curl field. Eight segments

are generated with the bin number m = 3. Figure 5.22(b) shows the estimated boundaries

of two segments by iso-surfaces. The left image shows a segment inside the flow domain,

where the curl field has large values. The right image shows a segment near the flow

domain boundaries, where the curl field has small values.

Figure 5.23 shows the segmentation and estimated boundaries of the Bernard flow [67],

whose domain is [−16,16]× [−4,4]× [−8,8]. From the eighteen segments generated with

bin number m = 5, eight are selected, whose average rotation field value is above 525.6.

The estimated boundaries of the eight segments shown in Figure 5.23 (a) highlight the

eight vortex regions of the Bernard flow. There are also some segmented regions covering

the whole flow domain rather than a specific vortex region. Figure 5.23 (b) shows such a

segment.
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As discussed earlier, the boundaries of the segments generated by the proposed method

are closely aligned with the flow. This is also true for the 3D segmentation results. Even

though a comprehensive comparison is beyond the scope of this work, the 3D segmentation

results can potentially be utilized to describe the complex 3D flow behavior in a similar

way to stream-surfaces without explicitly placing stream surfaces.

5.3.3.4 3D Unsteady Vector Fields

This framework is also applied to a 3D unsteady flow, i.e. the unsteady ABC vector

field [27]. The parameters are A =
√

3+ 0.5tsin(πt), B =
√

2 and C = 1. The spatial

domain considered here is [0,2π]3. The attribute fields of the 3D unsteady flow are de-

fined in a 4D space and are based on pathlines. The time window for pathlines computation

is 10. Figure 5.24(a) is the visualization of the rotation field projected into the time slice

t = 0. With the bin number m = 2, four segments are generated (Figure 5.24(b)). Three

of them highlight the vortex regions of the flow, whose boundaries are estimated with the

iso-surfaces shown in Figure 5.24(c).

5.3.4 Conclusion

In this chapter, a vector field segmentation algorithm based on derived attribute fields

is proposed. A number of attribute fields are computed based on the accumulation of

local properties along the integral curves. Then the connected components are extracted

based on the classification of the attribute values and apply dilation to filter the noise

segments in the segmentation results. Finally the boundaries of the segments are extracted
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and smoothed in order to obtain a cleaner segmentation for visualization. The segments

generated by the proposed algorithm are better aligned with the flow than those obtained

from existing local methods. Domain experts can employ various attribute fields to explore

different flow behaviors. The proposed segmentation can be applied to 3D steady flows,

where iso-surfaces is computed to estimate the boundaries of the segments. It shows that

these iso-surfaces could potentially be used to visualize high dimensional flows in a similar

fashion to integral surfaces.
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(a) (b)

(c) (d)

Figure 5.18: Comparison between the bottom-up algorithm and the proposed method with
a synthetic flow . (a) The LIC of the flow; (b) The segmentation result for the bottom-up
algorithm based on the direction of the flow. (c) The segmentation result for the proposed
algorithm based on the rotation field. (d) The boundaries of the segments in (c).
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(a) (b) (c)

Figure 5.19: The effect of the number of bins m for the initial region classification. Col-
umn (a) shows the segmentation results based on the rotation field with m as 5, 8 and 15
from top to bottom, respectively. Column (b) are the extracted boundaries of the corre-
sponding segmentation in (a). Column (c) shows the streamlines seeded on the extracted
boundaries.

68



(c)

(b)
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Figure 5.20: Segmentation of a 2D unsteady flow behind a square cylinder based on dif-
ferent attribute fields: determinant field (a), nsV field (b) and curl field (c), respectively.
The bin number m = 6.
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Figure 5.21: The segmentation result of an unsteady Double Gyre flow with different noise
segment threshold γ . (a) γ = 0.01; (b)γ = 0.05; (c) The four γ-sensitive segments; (d) The
estimated boundaries of the four γ-sensitive segments with sampled pathlines (red). The
bin number m = 6.
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Figure 5.22: Segmentation and estimated boundaries of a 3D steady flow behind cylinder.
(a) The segmentation result based on the curl field. (b) Several segmentation boundaries
generated using the iso-surfaces. The bin number m = 3. The legend aside shows the
partitioning strategy for initial region classification.
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Figure 5.23: Segmentation and estimated boundaries of the Bernard flow. (a) Eight seg-
mentation boundaries generated from the iso-surfaces. (b) one of the generated segments.
The bin number m = 5. The legend aside shows the partitioning strategy for initial region
classification, where the X axis shows the range of the attribute field in each bin, and the
Y axis illustrates the number of samples in each bin.
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Figure 5.24: Results of the unsteady ABC flow projected into t = 0. (a) Visualization of
the rotation field. (b) Four segments of the rotation field with bin number m = 2. (c) Three
segmentation boundaries generated from the iso-surfaces. The bin number m = 2. (d) The
legend shows the partitioning strategy for initial region classification, where the X axis
shows the range of the attribute field in each bin, and the Y axis illustrates the number of
samples in each bin.
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5.4 Discussion

In this section, An informal study of relations among different attribute is first conducted.

Then the attribute selection and the window size parameter is discussed. At the end, La-

grangian accumulation is compared with the Eulerian accumulation, and it shows the abil-

ity of the Lagrangian accumulation frame work extended to non-integral curves.

5.4.1 An Informal Study of Relations Among Attributes

Considering the large number of A fields that can be used to describe various flow behav-

iors, it would be interesting to see how their corresponding attribute fields are correlated.

In this section, An informal study is conducted, which discusses the relation among a num-

ber of selected geometric characteristics of the integral curves and their corresponding flow

properties. It starts with the pairwise scatter plots among different A fields.

To understand how well different A fields correlate with one another, a scatter plot

matrix is constructed based on the Double Gyre flow, as shown in Figure5.25. Each of

the entries of this matrix shows a scatter plot with two attributes as its X and Y axes,

respectively. Based on this matrix, the following useful relations can be found.

Length Field Ł vs. Average Particle Velocity Field avgV These two attributes show

a strong linear relationship (entry highlighted by the purple box in the matrix). This is

because the arc-length of each integral curve is equal to the sum of the velocity magnitude,

multiplied by the integration step-size, measured along this curve.
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Figure 5.25: The scatter plot matrix of different A fields of the Double Gyre flow. Note
that the scatter plots associated with FTLE shows the correlation among the magnitude of
the gradient of the individual attribute fields with the FTLE field. Note that tis figure is a
matrix not a real plot, therefore there are no axes or unites. Due to the limitation of page
size, this figure is split into four parts and put in the Appendix (Figure 8.1, Figure 8.2,
Figure 8.3, and Figure 8.4).

5.4.1.1 Arc-length vs. Velocity Magnitude

It is not surprising that these two properties are directly related, as the arc-length of each

segment of an integral curve is determined by the length of the vector value at the starting

point of this segment scaled by the integration step size, i.e. scaled velocity magnitude.

As shown in Figure 5.25 (entry highlighted by the purple box in the matrix), these two

attributes show a strong linear relationship .
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5.4.1.2 Acceleration Field vs. other Attribute Fields

The scatter plots of the acceleration field, which is computed by integrating the accel-

eration magnitude along a set of pathlines, and the remaining attribute fields (raw acce)

generally display clear patterns. In particular, when the value of the acce field is small,

the other attributes tend to be small. When the value of the acce field is increasing and

becomes sufficiently large, the other attribute values tend to be large as well. This is con-

sistent with the knowledge that the acceleration, a result of the net applied external force

based on Newton Second Law, is the source of many different flow behaviors, such as flow

separation and rotation. However, this relation is not true between acce and λ2 or Q. That

is, the smaller the acce value, the larger the the absolute values of λ2 and Q. This in fact

matches the result of the work [25] that utilizes the local minima of the acceleration field

to detect vortex cores.

5.4.1.3 Winding Angle vs. Curl

Figure 5.26(a-c) shows a comparison of two A fields computed by accumulating the

change of the flow direction, i.e. winding angle (top) and curl (bottom) for some 2D

flows, respectively. As can be seen, they exhibit almost identical patterns in the steady

case (a-b). This is because curl quantifies the amount of rotation of the flow, i.e. twice

the angular velocity in 2D, at a point in the flow domain, while the angle difference of the

two vectors at two consecutive points along integral curve measures the amount of turning

of this curve. If these two points are infinitely close, this angle change will tend to be the

curl with the difference of a scale factor. Nonetheless, in general the curl-based A fields
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tend to be smoother than the winding angle based A fields. This is because the curl at any

given integration point is obtained via interpolation during the accumulation, while the

angle difference between flow vectors is estimated via the angle change of the orientation

of the two consecutive line segments of the integral curve, which is subject to numerical

error. However, curl-based A fields may not be able to capture some discontinuity of the

geometric behaviors of the integral curves. As shown in Figure 5.26(c), the cusp-like be-

havior of pathlines (highlighted by the arrows) is not captured by the curl-based A field.

This is because this cusp-like behavior corresponds to a sharp angle (i.e. π) change which

makes the flow directions before and after the cusp pointing to almost opposite directions,

i.e. they are almost co-linear. Thus, the discrete curl computation that is perform while

cross product computation will return zero or a very small value. Nonetheless, the relation

between curl and the change of flow direction, as well as relation among other vortex iden-

tification criteria, such as λ2 and Q, should be systematically studied as a potential path

forward to address the problem of the current lack of a unified definition of vortices.

5.4.1.4 FTLE Approach vs. Accumulating Flow Vectors along Pathlines

In addition to accumulating the scalar quantities along the integral curves, vector-valued

properties can also be accumulated. The resulting A field is then a vector field. This

vector-valued accumulation is used to study the relation of the FTLE computation and a

derived scalar field computed from an A field by accumulating the flow vectors scaled by

the integration step size along integral curves. Assume a forward accumulation is consid-

ered, i.e. t > 0 in Eq.(4.1), the resulted vector is an orientation vector that points from the

starting point to the end point of the integral curve [54] based on vector calculus, denoted
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(a) (b) (c)

Figure 5.26: Comparison of the A fields computed by accumulating the curl (bottom) and
the change of the flow direction (top), i.e. winding angle, respectively. (a) shows the A
fields of a synthetic 2D steady flow. Their corresponding edges are in (b). (c) shows the
A fields of a 2D force duffing system.

by VSE(x) = ϕ
t0+t
t0 (x)−ϕ

t0
t0 (x) based on the notion of flow map [19]. This accumulated

vector is saved to the corresponding seeding point of the integral curve, resulting in a

vector-valued version of the A field. It is not difficult to verify that

F =
dVSE(x)

dx
=

dϕ
t0+t
t0 (x)
dx

− I2 (5.2)

where dVSE(x)
dx denotes the gradient of the vector-valued A field,

dϕ
t0+t
t0

(x)
dx denotes the flow

map deformation, and I2 is an 2×2 identity matrix. Then st
t0(x) =

1
t ln

√
λmax(G) is com-

puted, where G = FT F–a Cauchy tensor and λmax is the maximum eigen-value of G. This

gives rise to a scalar field that seems to have similar patterns to the corresponding FTLE

field computing using the same time window according to Eq.(5.2). Figure 5.27 provides
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the comparison of the original FTLE fields (top) and the derived scalar fields (bottom)

from VSE for a number of 2D unsteady flows. This indicates that the attribute that quanti-

fies the difference from the starting point to the end point of an integral curve encodes the

information of flow separation. Nonetheless, the accumulation of vectors using direct vec-

tor summation may lead to degeneracy. For instance, accumulating tangent vectors along a

closed integral curve results in a zero vector. Therefore, a more appropriate accumulation

may be to separate the accumulation of the direction and magnitude components, which

requires further investigation.

-0.02

0.56

-0.41

0.56

-1.132

0.787

-0.153

0.784

(a) (b)

Figure 5.27: Comparison of the FTLE fields (top) and a derived fields (bottom) from the
A fields–vector fields defined by VSE for the double gyre flow (a) and the force duffing
system (b).

Similarly, one can use this above accumulation to verify the relation among other vec-

tor quantities, such as the difference vector between two consecutive flow vectors along

integral curves and the acceleration of the flow. In addition, the Jacobian of the vector

field–an asymmetric tensor [71], may be accumulated along the integral curves, which

could provide additional insights into the general deformation of the flow particles along
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their paths.

5.4.2 Relation of A and |∇A | Fields to Flow Features

Steady flow features Many discontinuities (i.e. edges identified by the edge detector) of

these attribute fields share characteristics with certain well-known flow features. For ex-

ample, Figure 5.7 compares the discontinuity structure of the rotation field Φ of a synthetic

steady flow to its topology (Figure 5.7(a)), which is illustrated via a set of integral curves

that end or start from saddles, i.e. separatrices–a special type of streamline. The Φ field

is not continuous across the separatrices if the accumulation is performed using an infinite

time window. This is because an arbitrarily small perturbation in the direction other than

the flow direction will result in another integral curve with a length much different from

the separatrix, making the Φ field accumulated using Eq.(4.1) discontinuous at separatri-

ces. With different parameters, different levels of detail of the discontinuity in the Φ field

can be revealed (Figures 5.7(c)-(e)). Figure 5.7(f) shows the gradient of the Φ field, which

does not provide a clean discontinuity structure.

LCS Lagrangian Coherent Structures (LCS) are defined as the ridges of the corre-

sponding FTLE field. It indicates the regions of the domain with relatively large separa-

tion. Compared to LCS, it appears that the edges detected from all the attribute fields of

the Double Gyre flow encode at least part of this information. This is also true for the other

data sets that have been investigated. The discontinuity may be observed at the ridges of

transport, i.e. LCS due to a similar reason to the separatrices in steady flow. A pathline

seeded on the ridges may have behaviors different from its neighboring pathlines caused
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by the separation, leading to the discontinuity in the attribute fields.

Cusp seeding curves The cusp seeding curve has been discussed in [66] to reduce self-

intersecting pathlines in the pathline placement. These cusp seeding curves of the Double

Gyre flow can be identified from the discontinuities in the rotation field Φ as shown in

Figure 4.7(a). This cusp-like behavior in pathlines is caused by the abrupt change in the

pathline direction, i.e. almost angle of π difference between the previous and current

directions, which is in turn caused by the intersection of the pathlines with the paths of

singularities.

Singularity path Singularity paths reveal the trajectories of fixed points in an unsteady

flow. Among all the attribute fields studied, only the Φ field computed based on streaklines

encodes such information. See Figure 4.7(c) for an example showing where the paths of

the two vortices of the Double Gyre flow are revealed by the edges detected from the

streakline-based Φ field. This is because singularity paths induce the cusp-like behavior

in pathlines, also discussed in [66]. This cusp-like behavior corresponds to a large local

angle change, which in turn leads to a large change, i.e. a discontinuity, in the Φ field.

In addition, the temporal behavior illustrated by the translation of the singularities can

only be captured by measuring the attributes of particles released at the same position at

consecutive times, i.e. streaklines.

5.4.3 Which Characteristics to Accumulate?

Based on the existing results in the literature, it can be observed that if the goal is to

study the transport behavior of the flow or the variation of the state of the particles along
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their paths, then physical properties are typically selected [55]. On the other hand, for the

integral curve dissimilarity computation, geometric characteristics are usually considered

over physical properties [36]. However, this should not be treated as a general rule, as

demonstrated by a recent work [18] in which the physical properties can also be used to

define the distance between integral curves.

In addition, different local characteristics may be related by physical principles [42].

Nonetheless, given certain flow behaviors of interest, there could have more than one char-

acteristic to measure it, and the A fields that are computed from different characteristics

may encode overlapping flow information. For the specific applications, selection of the

appropriate characteristics deserves a detailed and comprehensive discussion as provided

in [42], which is beyond the scope of this work.

5.4.4 Accumulation Window Size

The definition of A is unfortunately sensitive to the specified accumulation window size,

i.e. integration time/length. That means different A s computed with different integra-

tion times/lengths may exhibit different patterns (i.e. different discontinuity structures).

Figure 5.28 provides an example showing the A fields based on the accumulation of the

change of flow direction (aka. signed curvature) of a simple separation flow with differ-

ent integration times/length. From the results, it can be figured out that with a smaller

integration length (Figure 5.28 a), the A field tends to capture the local and short-term

flow behaviors. Interestingly, it captures places with large flow curvature. In contrast, a

larger integration length may reveal the global and long-term flow behaviors (Figure 5.28
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Figure 5.28: The influence of the accumulation window size. (a) shows the A field com-
puted with the integration length equal 10% of the size of the bounding box of the flow
domain, while (b) shows the A field with the length equal twice of the size of the bound-
ing box. (c) shows the plots of the A values sampled along two seeding line segments. As
can be seen, even they have the same length, the two segments encode different amount of
information quantified by the range of the A values along the segments. This also demon-
strates how the varying density of the integral curve may influence the encoding of certain
flow features in the A field.

b), and produce smoother A fields at the same time. This effect is similar to the observa-

tion for the convolution process used by the texture-based techniques [35]. Figure 5.28 (c)

shows the plots of the A values along two line segments (shown in Figure 5.28 (b)). As

can be seen, the ranges of the A values on these two sampled segments are not identical.

This again can be attributed to the sensitivity of the sampling location on the separation

structure and the smeared effect of long integration. In practice, the selection of the inte-

gration times/lengths depends on the needs of the applications. If the local characteristic
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Figure 5.29: The A fields computed without (left) and with average (right).

of the flow is of interest, a small integration time can be selected, while if the global and

structure information of the flow is the focus, a long integration may be used. A similar

consideration on the selection of integration time can be seen in the FTLE computation.

5.4.5 Average of the Accumulated Value

To avoid the possible artifacts introduced by the number of integration steps, especially

when the integral curves are getting closer to fixed points, A′g(x, t) = 1
t Ag((x, t0), t) is also

computed for unsteady flow and A′g(x,s) = 1
s Ag(x,s) for steady flow, which essentially de-

scribes the average behavior of the particle along its path. The resulting A fields with and

without this average computation are compared. They in general have similar behaviors

with the difference of some scalar factor (Figure 5.29). The benefit of using the average

value is to enable us to inspect the overall attribute behavior along the integral curves.

This can be useful when studying the behaviors of particles in unsteady flows. How-

ever, the differences between the A values near the discontinuity tend to become smaller

(Figure 5.29(right)), which may make the identification of these occurrences challenging.
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(a) Eulerian accumulation (b) Lagrangian accumulation

Figure 5.30: Comparison of Eulerian (a) and Lagrangian (b) accumulations using various
attributes of the flow behind cylinder data. Note that the Eulerian accumulation highlights
the places where the vortices sweep through, while the Lagrangian accumulation empha-
sizes the oscillating behaviors of the individual vortices.

Therefore, in most of the experiments, we use the non-average version of the A fields.

5.4.6 Comparison with the Eulerian Accumulation

To some extent, the above Lagrangian accumulation framework allows us to inspect the

aggregated (or overall) behaviors of particles during their advection (especially in the un-

steady setting). In the meantime, the attribute values measured at the fixed locations but

over time can be accumulated (or aggregated) to obtain the overall information of the flow

at those locations. This scenario shares some similarity with the way of how different

weather measurements are collected at those fixed stations. This accumulation is referred

to as the Eulerian accumulation.

Figure 5.30 (a) shows the Eulerian accumulation results of a number of attributes for

the 2D flow behind cylinder data. Most of these attributes are relevant to the vortical

behaviors of the flow. As the vortex street pattern behind the cylinder in this flow is

well known (which is also depicted by the texture image of the original flow minus the
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ambient component), we can clearly observe that the obtain A fields all highlight the

regions where the vortices sweep through. In particular, the regions highlighted by the

accumulation of acceleration magnitude, λ2 and the determinant of the Jacobian clearly

highlight the places that the vortex centers pass, which induce two tails in the later part of

the domain (highlighted by the arrows). In contrast, the Lagrangian accumulation of the

same attributes (Figure 5.30 (b)) does not provide this overall aggregated information of

vortex regions but rather highlights the oscillatory behaviors of the individual vortices.

5.4.7 Extension to Non-integral Curves – Streak Lines

The accumulation framework for integral curves can be

extended to other geometric curves derived from the vec-

tor fields, such as streak lines. A streak line, s̃(t), is the

connection of the current positions of the particles, pti(t),

that are released from position p0 at consecutive time ti.

Since the meaning of accumulating physical attributes

along a streak line is yet to be clarified, this work con-

centrates on the local geometric characteristics, such as

the curvature or the change of the streak line direction. To reduce the memory overload,

this work limited the number of particles released for each streak line to 200. This may

affect the smoothness of streak lines depending on the time window used for the computa-

tion. To handle boundaries, the computation of a streak line is simply terminated once any

of its particles hit a boundary. The inset shows the result for the Double Gyre flow. From
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this result, it shows two edge segments in both the A field (top) and the |∇A | field (bot-

tom) (highlighted by the arrows). With a closer look, it can be figured out that these two

edge segments correspond to the paths of the two oscillating centers. To further verify the

conjecture, accumulation is performed along streak lines derived from a number of syn-

thetic unsteady vector fields that possess various moving singularities. Figure 5.31 shows

the results. Not surprisingly, the highlighted ridges in the |∇A | fields of these examples

indeed correspond to the paths of the singularities.

(e) Combination of a dynamic center, source, and saddle

previous positions

previous positions

previous positions

(a) A dynamic center (b) A dynamic saddle

(c) A dynamic attractin focus (d) Pair of dynamic source and saddle

Figure 5.31: The |∇Φ| fields based on streaklines for a number of synthetic unsteady flows.
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Why the A field computed based on streak links reveal the singularity paths, while

the one based on the pathlines cannot? To explain this, let us consider a pathline starting

at position x0 at time ti, which defines a flow map φ t
ti(x0). Once it moves away from x0,

information about what happens at x0 after ti is not encoded in that pathline. In contrast,

a streak line starting from x0 and perceived at time t j(> ti) is a collection of particles that

are released at x0 from ti to t j. Therefore, it naturally encodes the temporal variation of

flow maps passing x0 after ti. As showed before, the translation of the singularities will

cause the sharp change in the direction of integral curves. This abrupt geometry change is

captured by the accumulation along streak lines. Nonetheless, additional effort should be

made to provide a more rigorous interpretation of the patterns revealed in the streak line

based A fields.
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Chapter 6

A TAC-based Framework

The previous chapters have shown that to provide an overview of the general or aver-

age behavior of a particle in the flow, certain (physical or geometric) attributes of it are

typically accumulated, which derives A fields. However, this accumulated attribute infor-

mation suppresses the detailed information of the flow that is of paramount importance in

identifying local features in space and time, leading to incomplete representation of flow

behaviors. To address this issue, a new framework for the visualization and exploration of

unsteady flows is presented based on the time-dependent attributes measured at any given

position and time. These time-dependent attributes can be represented as series of time

activity curves (TAC) that are associated with either the individual spatial locations (Eu-

lerian TAC) or the individual particles (Lagrangian TAC). In this chapter, the relations of

the characteristics of these TACs with some well-known flow features is studied. Based

on their characteristics, a hierarchical clustering framework for TACs is developed. In ad-

dition, a new distance metric is proposed to measure the similarity of segments of TACs
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for the clustering. Our hierarchical clustering supports a level-of-detail representation of

flow behavior in both space and time.

Lee et al. (2009) proposed a visualization framework to analyze time-varying data

sets with a TAC-based distance field [30]. This field provides a visualization to highlight

the position the features. However, there are still some limitations of the global attribute

fields. (1) They cannot provide the details of an individual TAC, especially the occurring

time and period of an interesting feature. In other words, the identification of an interesting

behavior, i.e. the spacial location, the time information and duration, cannot be revealed.

(2) They cannot study the contributions of the individual local events to the global behavior

of a particle, i.e, the reason that causes the specific behavior.

To solve these problems, a novel framework is proposed to visualize and analyze time-

dependent flows based on local physical properties. Specifically, the Time Activity Curves

(TAC) of those local attribute is utilized to describe time-varying flow features of interests.

Our contributions are summarized as follows.

• An event detector for interesting flow behaviors is introduced based on local attribute

TACs. The events are expressed as a combined information including the details,

such as time and location of a given behavior.

• In order to provide different levels of details of the attributes, a TAC-based hierar-

chical clustering algorithm is presented. A comprehensive distance metric EDTW

is derived to describe the dissimilarity of TACs based on the detected events, which

incorporates the global correlation of a pair-wise TACs, DTW distance of the clus-

tering and temporal difference of events. A modified BIRCH-based clustering is
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applied to resolve the scalability and accelerate the computation.

• The hierarchical clustering algorithm is applied to the time dimension to reveal the

changes of flow behaviors through different time intervals in the whole time pe-

riod. A statistic-based segmentation is proposed to generate a number of initial time

intervals, and a hierarchical tree of the time intervals is built.

• A modified edge-bundling visualization of TAC clusters is proposed, which is able

to represent the general behaviors of TACs in a cluster. In addition, the connection

of clusters among different time intervals is well illustrated.

• The above algorithms have been integrated into an exploration system and which is

applied to a number of 2D and 3D unsteady flows to reveal their respective behaviors

of interest.

6.1 Time Activity Curve (TAC) Generation

This section describes how TACs are derived based on a given local attribute and provides

a discussion on the potential benefits of TACs in revealing flow behaviors.Ana event de-

tection algorithm applied to TACs is proposed, which is the basis of the distance metric in

Section 6.2.1. In the following, I start with the introduction of TACs.

6.1.1 Definition of TAC

Given a specific local attribute A, its value at a spatial position x ∈M at time t ∈ T can be

denoted as A(x, t). Computing A(x, t) at a location x over times gives us a time series of
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the attribute values, referred to as a Time Activity Curve (TAC), which can be expressed

as follows.

ΓA,x[i] = A(x, ti)|i = 1,2 . . .n (6.1)

where t1, t2 . . . tn are time steps in the time window T ⊂ T.

Since x in Eq.6.1 is a fixed spatial position in the flow domain, the time series of A

is generated in an Eularian way, which is called an Eularian TAC. Similarly, the local

attribute A can also be computed along the pathline, C , seeded at the particle released at x

at time t, which gives rise to a time series in the Lagrangian view, which can be expressed

as follows.

ΓA,C [i] = A(C (x, ti), ti)|i = 1,2 . . .n (6.2)

where C (x, ti) is the location of x on the pathline, C , at time ti, and ti ∈ T ⊂ T.

In general, a Time Activity Curve is defined as a time serial data Γ= {Γ[i]|i= 1,2 . . .n}

where Γ[i] is the local attribute value at time ti. Figure 6.1(a) is an example TAC where x

axis indicates time series and y axis shows the local attribute values at the corresponding

times. The length of a TAC is the number of elements in the TAC, indicating the lifespan

of the time series data.
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Figure 6.1: (a) An example TAC. (b) Event of the TAC in (a). (c) An example of time

interval segments of TACs.
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6.1.2 TAC Analysis

One benefit of TACs is that their geometric characteristics show the trend of the corre-

sponding local attribute. Figure 6.2(a) shows several Eularian TACs sampled in a 2D

unsteady flow behind a square cylinder. The attribute used to construct these TACs is

curl. The seeding positions are highlighted with the colored dots (Figure 6.2(a), left).

Their corresponding TAC curves are shown in the TAC plot (Figure 6.2(a), right) with

the corresponding colors. While the periodicity of the TACs in Figure 6.2(a) indicates

the left-to-right transportation behavior of the flow, the peak-to-peak amplitude of a TAC

reflects the distance between the seeding position of the TAC and the vortex center. That

is, the larger the peak magnitude, the closer its seeding position to the vortex center (see

the red dot and its corresponding TAC). This observation is consistent with the fact that

the changes of the attribute curl are smaller at the locations that far away from the vortex

center.

In contrast to Eulerian TACs that show the trends of the attribute at a given seeding

position in a given time range, Lagrangian TACs are capable of collecting the attribute

information along pathlines, indicating the transport of the local attributes carried by par-

ticles. Figure 6.2(b) are two Langrangian TACs of the attribute Q seeded at the vortex

center and on the vortex boundary, respectively. The TAC associated with the particle

seeded at (or near) the vortex center (the red dot) is mostly flat (see the TAC plot on the

right), indicating that the vortex center has a rather stable behavior.

The above examples show that compared to integral curves that only convey the geo-

metric characteristics of the flow, Eulerian and Lagrangian TACs can reveal not only the
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geometric but also the physical characteristics of the flow with the appropriate attributes.

This indicates that analyzing TACs may allow us to develop an effective exploration frame-

work to reveal more fruitful flow behaviors than only inspecting the integral curves.
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Figure 6.2: (a) Eularian TAC samples of attribute curl. (b) Lagrangian TAC samples of

attribute Q. X axis is the time and Y axis stands for the attribute values. Those values are

derived from the velocity and are not real physical quantities, therefore, there is no unit for

them.
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Figure 6.3: Different types of primitive trends.

6.1.3 TAC-based Event Definition

In order to describe the behavior of a TAC, it needs to identify one or multiple interesting

temporal trends of the local attribute either at a fixed location (Eularian TAC) or along

an integral curve (Lagrangian TAC). The detected temporal trends are used to determine

the similarity (or dissimilarity) between TACs. Given a TAC Γ, its event is defined as the

segmentation of the TAC that contains a sequence of sub-TACs, Γ = 〈Γ′1,Γ′2, ...,Γ′z〉 where

Γ′i is a sub-TAC, i.e. a continuous subset of Γ, so that:

• (a) The union of the sub-TACs Γ′i ∈ Γ, i = 1,2, ...z forms the initial TAC Γ, i.e.⋃z
i=1 Γi = Γ.

• (b) Fi∩Fj = /0(i 6= j)

• (c) Each sub-TAC consists of only one primitive trend, which can be either stable,

increasing or decreasing, as illustrated by Figure 6.3. In other words, no Γ′i ∈ Γ

contains combined trends.

• (d) Each pair of two neighboring sub-TACs have different primitive trends.
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In our implementation, given an individual TAC Γ = Γ[1 . . .n], the 1D Morse decom-

position [5] is applied to generate a number of temporal sequences of TAC segments, i.e.

sub-TACs. Assume there are z primitive trends in Γ, corresponding to z−1 splitting points

s1,s2 . . .sz−1, si ∈ [1,n]. The event of Γ, i.e. the sequence sub-TACs can be extracted as

follows.

Γ
′
i =



Γ[1 . . .si−1] i = 1

Γ[si−1 . . .si−1] 1 < i < z

Γ[si−1 . . .n] i = z

(6.3)

Figure 6.1(b) shows an example of event defined on the TAC in Figure 6.1(a). There

are three primitive trends ( in the order of increasing, decreasing and increasing) in Γ,

so the event consists of three sub-TACs, i.e. Γ = 〈Γ′1,Γ′2,Γ′3〉 corresponding to splitting

positions s1 and s2. Note that the correspondent splitting times are ts1 and ts2, respectively.

6.2 Methodology

Given the above concepts of TACs, a new framework is proposed to use TACs to per-

form clustering to aid the subsequent TAC-based flow exploration. In particular, given

sequences of TACs that are computed based on the densely sampled seeds in the flow do-

main, a hierarchical clustering based on the characteristics of the entire TACs is performed

to characterize their similarity in both the attribute and physical spaces. Second, based on

the clustering result obtained in the first step, a hierarchical temporal clustering of TACs
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is performed to provide a level-of-detail characterization of their temporal behaviors (i.e.

split or merge over time). To assist these two-stage clustering of TACs, a new dissimilarity

metrics for TACs is first discussed.

6.2.1 TAC-based Dissimilarity Metrics

Given two TACs with equal length, Γ1 = Γ1[1 . . .n] and Γ2 = Γ2[1 . . .n], their distance can

be measured using either

Euclidean distance:

De(Γ1,Γ2) =

√
n

∑
i=1

(Γ1[i]−Γ2[i])2 (6.4)

or Pearson correlation:

Dp(Γ1,Γ2) =
cov(Γ1,Γ2)

σΓ1σΓ2

(6.5)

where cov is the covariance and σΓ is the standard deviation of Γ.

Although both Euclidean distance and Pearson correlation measure are easy to com-

pute, they have their own drawbacks as TAC-based dissimilarity metrics. Euclidean dis-

tance is not able to reveal the transformation of TACs. As shown by an example in Fig-

ure 6.4(a), Γ2 has a flipped trend of Γbase and Γ1 has the same trend as Γbase, but their

Euclidean distance to Γbase is the same. Pearson correlation is a measure of the linear

correlation between two TACs, which has a value between -1 and 1. It can reveal the

trend difference between two TACs. DP(Γ1,Γ2)> 0 indicates Γ1 has a similar trend to Γ2

(DP(Γ1,Γ2) = 1 means they have exactly the same trend). DP(Γ1,Γ2) < 0 indicates Γ1
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has a different trend than Γ2. (DP(Γ1,Γ2) =−1 means they have flipped trends). Pearson

correlation cannot measure the dissimilarity of two TACs when they have the same trend

(i.e. shifting in TACs). Figure 6.4(b) is such an example. Γ1 and Γ2 have the same trend

as Γbase, but the event in Γ2 happens latter than that in Γ1. In addition, both Euclidean

distance and Pearson correlation measure require the TACs to have the same length. This

may not be satisfied when the events of TACs have different durations. For example, a

pathline stopping at the boundary of flow domain will lead to the early termination of the

corresponding Lagrangian TAC.

To address the above issues of the Euclidean distance and Pearson correlation measure,

another distance metric, Dynamic Time Warping (DTW), has been employed to consider

both the shift and deformation of the time series [30]. DTW is a dynamic programming

algorithm that aligns two time series with the smallest distortion. With DTW, TACs of

similar shapes with different temporal shifts and time spans can be classified into the same

group. In addition, DTW applies to TACs with different length because a time warping is

considered. DTW is defined and computed as DTW (Γ1,Γ2) = M[n,n], where M can be

derived from a recursive equation:

M[i, j] = |Γ1[i]−Γ2[ j]|+



0 i = 1& j = 1

M[i−1, j] i > 1& j = 1

M[i, j−1] i = 1& j > 1

N[i, j] i > 1& j > 1

(6.6)

where N[i, j] = min(M[i−1, j],M[i, j−1],M[i−1, j−1]), i = 1 . . .n, j = 1 . . .n.
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DTW metric focuses on the shape of the TACs, considering the shift and deformation

of the time series data. However, only the sequence of the sampled positions is taken

into account, while the difference in temporal dimension is ignored. For example, in

DTW (Γ1,Γ2) computation, the first elements in Γ1 and Γ2 are aligned, no matter Γ1 and

Γ2 start at the same time or not. Obviously, leaving the absolute temporal difference out of

the definition of the distance functions omits important information regarding the temporal

distribution of relationships between TACs. In Figure 6.4(a), Γ1 and Γ2 have similar DTW

distance to Γbase since Γ1 can be deformed to Γ2 by a flipping operation. Obviously,

Γ1 should be grouped to Γbase rather than Γ2 considering that they have similar trends.

In Figure 6.4(b), according to the definition of DTW, Γ1 and Γ2 have the same DTW

distance to the TAC Γbase because the different temporal shifts do not influence the DTW

computation after the dynamic warping. In fact, compared to Γ1, Γ2 is more different from

Γbase because the main feature in Γ2 happens much later than that in Γ1. In addition, since

DTW considers the deformation of TACs, the trend information is not reflected by DTW

distance metric.

Since all the previous methods fail to measure the similarity of two TACs properly

and more importantly, to capture the similarity of events decomposed from the two TACs,

a new distance metric, called Event-based Dynamic Time Warping (EDTW) to calculate

the dissimilarity of TACs based on the events of TACs, is introduced. As discussed in

Section 6.1.3, the events of a given TAC are a sequence of sub-TACs that reveal trend

information in different time intervals.

The distance between Γ1 and Γ2 is defined as the dissimilarity of the corresponding

events detected from Γ1 and Γ2, Γ1 = 〈Γ1
′
1,Γ1

′
2, ...,Γ1

′
k〉 and Γ2 = 〈Γ2

′
1,Γ2

′
2, ...,Γ2

′
k〉. The
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Figure 6.4: Two examples of TACs that cannot be accurately measured by Euclidean dis-
tance, Pearson correlation or DTW. (a) De(Γbase,Γ1) = De(Γbase,Γ2), DTW (Γbase,Γ1) =
DTW (Γbase,Γ2), Γ2 has different trend from Γbase. (b) Dp(Γbase,Γ1) = Dp(Γbase,Γ2),
DTW (Γbase,Γ1) = DTW (Γbase,Γ2), Γ2 is farther away from Γbase w.r.t temporal differ-
ence.

Event-based Dynamic Time Warping (EDTW) distance is defined as follows:

EDTW (Γ1,Γ2) = (1+Pc×Distcorr(Γ1,Γ2)) (6.7)

×
k

∑
i=1

(DTW (Γ1
′
i,Γ2

′
i)× (1+Pt×Disttime(Γ1

′
i,Γ2

′
i)))

Disttime(Γ1
′
i,Γ2

′
i) = 1−2

‖ Γ1
′
i∩Γ2

′
i ‖

‖ Γ1
′
i ‖+ ‖ Γ2

′
i ‖

(6.8)

Distcorr(Γ1,Γ2) = 0.5− cov(Γ1,Γ2)

2σΓ1σΓ2

(6.9)

In the above definition, DTW (Γ1
′
i,Γ2

′
i) measures the DTW distance of sub-TACs Γ1

′
i

and Γ2
′
i. Disttime(Γ1

′
i,Γ2

′
i) quantifies the difference of sub-TACs Γ1

′
i and Γ2

′
i in temporal
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dimension. If Γ1
′
i and Γ2

′
i have the same duration of the temporal period, Disttime(Γ1

′
i,Γ2

′
i)

is 0. While if they have completely different lifespan, i.e. the time ranges have no intersec-

tion, Disttime(Γ1
′
i,Γ2

′
i) is 1. Disttime(Γ1

′
i,Γ2

′
i) is introduced to resolve the issue illustrated

in Figure 6.4(a). Distcorr(Γ1,Γ2) measures the global correlation between TACs Γ1 and

Γ2. Distcorr(Γ1,Γ2) = 1 means Γ1 and Γ2 have opposite trends while Distcorr(Γ1,Γ2) = 0

means they have the same trend. Distcorr(Γ1,Γ2) is incorporated into EDTW distance

measure to resolve the issue illustrated in Figure 6.4(b). Disttime(Γ1
′
i,Γ2

′
i) and Distcorr(Γ1,Γ2)

participate to EDTW distance measure by two penalty factors Pt and Pc which represent

user-specified importance to temporal difference and global correlation, respectively.

There are two potential issues in the above EDTW computation. One is it requires that

the events of Γ1 and Γ2 must consist of the same number of sub-TACs. To address the

case where Γ1 and Γ2 have different numbers of events, the following adjustment is made.

Assume Γ1 = 〈Γ1
′
1,Γ1

′
2, ...,Γ1

′
z〉 and Γ2 = 〈Γ2

′
1,Γ2

′
2, ...,Γ2

′
k〉, z > k. The z−k iterations are

appled to Γ1
′. In each iteration the smallest sub-TAC Γ1

′
i is merged into its neighboring

sub-TAC Γ1
′
i or Γ1

′
i+1 depending on which one is smaller. With this strategy the larger sub-

TACs that well represent the event are kept as original while the smaller ones are merged

together until the two TACs have the same number of sub-TACs. The other potential

issue is that Γ1 and Γ2 may have different length, which contradicts the requirement of

the computation of cov(Γ1,Γ2) in Distcorr(Γ1,Γ2). In this case, interpolation is applied to

the smaller TACs so that they have equal length. The interpolation operation only affects

the sample rate on a TAC, so the trend of the TAC will not be modified, i.e. making the

computation of the correlation between two TACs with different length possible.

103



6.2.2 TAC-based Clustering Algorithm

In order to provide different levels of details of flow behaviors w.r.t. the local attributes,

based on the above new distance metric, we perform the clustering of TACs using their

entire temporal samples. Specifically, the agglomerative hierarchical clustering (AHC)

is emploed, which is a popular clustering algorithm that sequentially combines smaller

clusters into larger ones until one cluster that represents all the data is left. To resolve the

scalability and complexity of AHC, a modified BIRCH-based strategy in the context of

TACs is adopted.

6.2.2.1 Agglomerative Hierarchical Clustering (AHC)

AHC is one of the most commonly used clustering methods due to its applicability to

many dissimilarity metrics types such as Euclidean distance, Pearson correlation or DTW.

Given n TACs Γ1,Γ1, ...,Γn, AHC builds a hierarchy of clusters, i.e. an unbalanced binary

tree, from which different numbers of clusters can be derived. First, each TAC is treated as

a separate initial cluster (leaf node), and the hierarchy is then built by repeatedly merging

pairs of similar clusters until all TACs are contained in a single cluster (root node). For

the given n TACs, n− 1 merge iterations are carried out. In each iteration, it needs to

decide which two clusters are merged together. Therefore, a distance metric and a so-

called linkage type needs to be specified.

The distance metric determines the similarity between individual TACs and can be

generally specified through a distance matrix D ∈ R(n×n), where each entry Di j stores the

dissimilarity, i.e. the distance, between the pair of Γi and Γ j. Throughout this work, the
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Event-based Dynamic Time Warping (EDTW) distance between TACs discussed in Sec-

tion 6.2.1 is used as the distance metric. The entry Di j is computed as Di j =EDTW (Γi,Γ j).

The linkage type, on the other hand, specifies how distances between two clusters,

each of which consists of a number of TACs, are determined from Di j. According to

the specified linkage type, in every merge iteration the pair of clusters with the smallest

distance can be merged. In this work, given two clusters Cp and Cq, a complete linkage is

used, which is defined as follows:

Dist(Cp,Cq) = max(Di j|∀Γi ∈Cp,∀Γ j ∈Cq) (6.10)

Note that several other linkage types, such as average linkage, single linkage, average

linkage and Ward’s linkage [63], can also be applied here. The discussion of linkage

selection is beyond the scope of this work, interested readers can refer to the overview

article by Jain (2010) [23] for details.

The agglomerative hierarchical clustering algorithm is implemented as follows:

Step 1: Compute TACs at the samples in the flow domain, which are the initial clusters.

Step 2: Compute the distance matrix D(n×n) of the initial clusters.

Step 3: Find the two clusters with smallest cluster distance according to the linkage type,

merge them into a new cluster in a higher level and update the distance matrix.

Step 4: Repeat step 3 until one cluster is left.
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6.2.2.2 A BIRCH-based Clustering

The classic AHC algorithm does not scale well in terms of memory overhead and compu-

tation time with the increase of the TACs (and their lifespans). According to AHC algo-

rithm, all the TACs are equally important for the clustering purpose, and in each clustering

decision (i.e. selecting the closest pair of clusters), all the TACs and currently existing

clusters are inspected equally. However, not all the TACs are equally important. In other

words, those TACs that are close or similar enough can be considered collectively instead

of individually.

To address that, the classic AHC algorithm is incorporated to the BIRCH cluster-

ing [74]. BIRCH is designed for clustering a large amount of numerical data by the

integration of hierarchical clustering at the initial stage, which is based on two main struc-

tures: clustering feature (CF) and clustering feature tree (CF-tree). A clustering feature is

a triplet summarizing information that represents a cluster, including the number of data

points in the cluster, the linear sum and the square sum of those data points. A CF-tree

is a height-balanced tree that stores the clustering features for a hierarchical clustering.

CF-tree is a very compact representation of the dataset because each entry in a leaf node is

not a single data point but a sub-cluster, which absorbs as many data points as the specific

threshold value allows [74].

However, BIRCH method cannot be applied to TAC-based clustering directly because

the above clustering feature cannot well represent a cluster of TACs. A clustering feature

is essentially a summary of the statistics information for the given cluster using linear sum

and square sum of data points. The TAC generated by applying linear sum or square sum
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to a group of TACs cannot represent this group because different trends of TACs may not

exist after the sum operation. For example, the linear sum of an increasing TAC and a

decreasing TAC may give rise to a flat TAC. Therefore, instead of building up a CF-tree

based on the above clustering features, BIRCH strategy is adapted to the TAC-based AHC.

Specifically, in the first step of AHC discussed in Section 6.2.2.1, instead of treating each

TAC as an initial cluster, i.e. a leaf node, the leaf node to store a sub-cluster of TACs

enlarged. Given a new TAC, if its distance to any leaf node, i.e, the EDTW distance

between the new TAC and the TAC that creates the leaf node, is less than a user-specified

threshold, the new TAC will be absorbed into that leaf node. Otherwise a new leaf node

will be created by the new TAC. The rest steps are the same as AHC algorithm. With

the aid of BIRCH-based clustering, the TAC-based clustering algorithm can handle large

numbers of input TACs with long lifespans.

6.2.2.3 Clustering Result Generation

Once the hierarchical tree is created, given a cluster number K, the top K clusters on the

tree is output. According to the AHC, the higher level in the tree, the larger distance is

among the TACs in the corresponding cluster on that level. Therefore, another way to

select a number of clusters is to input a distance threshold ε . Given any ε , a binary search

on the distance values on each level of the tree is conducted, then the tree at the target level

is cut to generate the output clusters. In practice, users may not have the prior knowledge

about the distance range, so a normalized distance range is provided.
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(a) (b)

(d)(c)

Figure 6.5: Illustration of clustering result generation. (a) distribution of distance values
at each level of the tree. (b)-(d) clustering results with K = 6,K = 5,K = 4, respectively.
The corresponding distance thresholds are ε = 26%,ε = 30% and ε = 43%, respectively.
X axis is the time and Y axis stands for the attribute value. Those values are derived from
the velocity and are not real physical quantities, therefore, there is no unit for them.

L1
L2
L3However, choosing an appropriate K or distance

threshold ε to generate a desired level of TAC clusters

may require the user to carry out a few trial-and-errors.

To accelerate this process, a candidate cut is provided,

which corresponds to certain K and its distance threshold ε without user specification. Re-

call that during the AHC clustering process, in each merging iteration, two clusters with

smallest cluster distance are selected and merged into a new cluster in a higher level. In

other words, there is a distance value corresponding to each level of the tree. As shown

in the inset, if ε is set as the distance at level L1, three clusters are generated (left figure).

The ε at level L2 gives rise to two clusters (right figure). In the implementation, the height
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of each level in the tree is mapped to a distance value. The heights of level L1 and level L2

are close to each other, which indicates their distance values are similar. The distribution

of the distance values on each level is then analyzed to select a cut in the tree at the level

where the distance value has a large increase (see Figure 6.5a for an example with more

details provided next). This idea is based on the observation that changing the cut level

where the distance values are densely distributed (close to each other) does not change the

clustering result much. As shown in the inset, cutting the tree at level L2 (right figure)

is preferred as the candidate cut compared with the one on the left based on the height

information.

An example of automatic selection of clusters for visualization is shown in Figure 6.5.

In Figure 6.5(a), the red dots show the changes of distance values (y axis) of each merging

operation (x axis) and the blue dots show the distribution. The level highlighted by the

green arrow is selected as the candidate cut, because before that the distance values are

densely distributed, and starting from this level, the distance value shows a large increase.

In this case, this candidate cut gives rise to K = 6 and ε = 26%. Those six clusters are

shown in Figure 6.5(b). The visualization of the clustering results is discussed in the

following Section 6.2.2.4.

6.2.2.4 Visualization of TAC-based Clusters

Traditionally, visualizing clusters is achieved by assigning each cluster a specific color. In

the proposed TAC-based clustering, the members in a cluster are individual TACs. Show-

ing all TACs with colors assigned based on their cluster IDs will easily result in clutter,

making it difficult to recognize the behaviors of the TACs. Also, TACs are often plotted
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Figure 6.6: An example of TAC-based clustering. (a) direct visualization of the two

clusters. (b) edge-bundling visualization of the two clusters. X axis is the time and Y axis

stands for the attribute value. Those values are derived from the velocity and are not real

physical quantities, therefore, there is no unit for them.
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on top of each other, which may hide the information of the TACs that are covered. As

shown in Figure 6.6(a), the three clusters are overlapping at certain time range, resulting in

the visual clutter issue. This cluttering issue is worsened with the increase of the number

of TACs.

If ts and te, i.e. the starting and end times of the entire period of TACs, are considered

as two data axis, the TACs plot is similar to the classic parallel coordinates plot (PCP).

The difference is that PCP is applied to data where the axes do not correspond to points

in time, and a point in PCP only has values at axes. While in a TAC plot, a TAC also

has its values between the two axes (i.e. ts and te), and different TACs may have different

behaviors between ts and te. Therefore, PCP technique cannot be directly applied to the

TAC plots. Inspired by the work [40] that uses an edge-bundling method to generate an

abstract version of the classic PCP to reduce visual clutter in PCP, an edge-bundling like

layout of the clusters of TACs is created, aiming to produce an informative visualization

of the TACs clusters with reduced clutter.

Different from the method in the work [40], data clustering cannot be applied on the

values at the axes in TAC setting because this will change the coverage of TACs clus-

ters at the beginning and the end. Another difference is that a cluster of TACs has its

own behaviors, which cannot be represented by a general Bezier strip. To address this, a

new visualization for the TAC clusters is presented. Specifically, given a cluster of TACs,

the centroid and boundaries of the cluster are first derived (Figure 6.5(b)). Then the two

boundaries are offset (or shrunk) towards to the centroid. The offset distance is set as

80% of the distance from the boundary to the centroid in this work (Figure 6.5(b)). The

offset operation does not change the overall behaviors of the TACs in the cluster, while
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the range of the cluster, i.e. the coverage of the attribute values at ts and te is changed. To

preserve the coverage information of the cluster, a head and a tail segments are created for

the edge-bundling (Figure 6.5(c)), whose lengths are 10% of the TAC length, respectively.

In the head and tail segments, the maximum and minimum of the attribute values at ts

and te are kept. In order to keep the smooth transition between the head (tail) segment

and the body segment, a cubic Bezier spline is constructed (Figure 6.5(d)). Furthermore,

halos around the edge-bundling of each cluster are rendered to reduce ambiguity at inter-

sections. After applying the edge-bundling method, the clusters in Figure 6.6(a) are shown

in Figure 6.6(b), which greatly reduces the clutters.

Since the clustering result is obtained from the hierarchical tree based on the AHC

algorithm, it helps to better understand the relation between clusters, i.e. the merge or

split changes with different K or ε , if the hierarchical structure of the clusters is provided.

Therefore, a hierarchical tree of clusters is generated for the clustering result. In this

hierarchical tree, each node represents a cluster (with the same color coding as the edge-

bundling visualization) at different level of the tree. The hierarchy information can be

easily extracted from the entire hierarchical tree of the AHC algorithm. Note that each

node is not necessary an individual TAC, but rather a cluster of TACs during clustering.

From this hierarchical tree, it can be easily figured out the merge/split relations among

the clusters. As shown by the hierarchical tree in Figure 6.5(b), the purple cluster and

the green cluster will be merged together when K changes from 6 to 5 (Figure 6.5(b)-(c)).

In addition, the height of the levels is adjusted in the hierarchical tree according to the

distance values on each level. In this way, even after the value of K is changed, the relative

height of clusters is reserved.
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Figure 6.7: Illustration of edge-bundling method for TACs cluster visualization. TACs
are divided into three parts: head, body, and tail to construct the edge-bundling. X axis is
the time and Y axis stands for the attribute value.

6.2.3 A Hierarchical Clustering Algorithm in Time Dimension

Since TACs similarities could vary greatly in different time intervals, simply clustering

TACs on the entire time period could miss interesting local temporal behaviors of TACs.

Also, two TACs that belong to two clusters globally may possess segments having similar

behaviors (see Figure 6.8 for an example), which cannot be captured in the above global

clustering along the entire time period. To address this, a hierarchical clustering algorithm

is proposed in time dimension, i.e. a temporal hierarchical clustering.
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Figure 6.8: Motivation of temporal clustering. (a) two clusters (in red and blue, respec-
tively) of TACs show different global behaviors in the entire time period. (b) Similar
behaviors exhibit for the two groups of TACs in a local time interval (highlighted in cyan).
X axis is the time and Y axis stands for the attribute value.

Three tasks need to be accomplished in the temporal hierarchical clustering: (1) achiev-

ing the appropriate temporal partitioning; (2) performing the AHC within each time inter-

val obtained from the temporal partitioning in (1); (3) properly handling the transition of

AHC results between consecutive time intervals. Achieving these goals is not trivial. First,

all TACs have different temporal behaviors. Even the TACs that belong to the same clus-

ters may still have slightly different behaviors (Figure 6.1(c)), which makes the selection

of cutting points (or cuts) for temporal partitioning difficult. Second, the AHC performed

in the individual time intervals and along the time axis should be consistent (e.g., in terms

of the error threshold and similarity characterization of the clusters that they belong to).

Third, the AHC results obtained in consecutive time intervals may not be identical. It is

important to keep track of their transition relation (i.e. split or merge) across the cuts.
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To address the above challenges and achieve the goals, the temporal AHC first per-

forms a time interval segmentation (Section 6.2.3.1), which segments the entire time pe-

riod T into a number of intervals with varying lengths. For each time interval, the TAC-

based hierarchical clustering discussed in Section 6.2.2 is applied to show the similarities

of sub-TACs in the specific time range (Section 6.2.3.2). Then a bottom-up hierarchy

of the time intervals is constructed (Section 6.2.3.3). In order to accurately capture and

represent the transition of AHC clusters across neighboring time intervals, a novel data

structure and visualization (Section 6.2.3.4) is introduced. Figure 6.9 shows an example

of hierarchical clustering on time dimension.
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Figure 6.9: An example of temporal clustering. (a) initial hierarchical clustering result of

M = 4 leaf nodes. (b) clustering result after merging the two most similar clusters in (a).

X axis is the time and Y axis stands for the attribute value. Those values are derived from

the velocity and are not real physical quantities, therefore, there is no unit for them.
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6.2.3.1 Time Interval Segmentation of TAC

In order to study TACs in a level-of-detail fashion, time interval segmentation is applied to

a group of TACs. The time intervals that segment TACs must preserve TAC characteristics.

In other words, one primitive trend of a TAC is not expected to be segmented into two,

which causes fragmentariness. For an individual TAC, the 1D Morse decomposition can

be applied to generate the temporal sequences of TAC segments, as shown in Figure 6.1(b).

However, for a group of TACs, it is not guaranteed that the segment splitting points are

identical for all the TACs. To address this, the distribution of the inflexion points of all the

TACs along the time axis are analyzed. Specifically, the statistics of the inflexion points in

several small time ranges is obtained first, from which the top M−1 ranges with a larger

number of inflexion points are selected. Then in each range, a cut can be obtained by

the average position of the inflexion points in the range. These M− 1 splitting positions

segment the entire time period T into a number of intervals with varying length, referred

to as T = 〈T1,T2, ...,TM〉. In this way, all TACs are segmented by these splitting positions

which could preserve the most common characteristics of all the TACs. An example of

time interval segmentation is illustrated in Figure 6.1(c).

6.2.3.2 Sub-TACs AHC within Local Time Intervals

After performing the temporal partitioning and obtained the local time intervals, the AHC

algorithm can be performed within each interval. Different from the computation of

EDTW distance of two TACs in the entire time period that may have different numbers

of events and sizes, in a given time interval, all the sub-TACs have the same length. In
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addition, all the TACs in a time interval have the same lifespan, making Disttime(·, ·) = 0.

Therefore, to reduce the computation complexity, for a given pair Γ1 and Γ2 in a time in-

terval Ti = (ts, te) where ts and te are the starting and end times of Ti, their distance can be

computed as follows:

Dist(Γ1,Γ2) = (1+Pc×Distcorr(Γ1,Γ2))

√√√√ te

∑
i=ts

(Γ1[i]−Γ2[i])2 (6.11)

where Distcorr(Γ1,Γ2) is the correlation between Γ1 and Γ2 defined as Equation 6.9, and

Pc is the penalty factor.

Assigning the cluster number for each time interval is difficult because on one hand

the number of time intervals in temporal hierarchical clustering is varying, on the other

hand the dissimilarities in different time intervals may be different. To show the consistent

changes cross time intervals, the same standard needs to be applied to all the time intervals.

Therefore, the distance threshold ε for the global clustering is used to guide the clustering

among time intervals. Specifically, the distance threshold εi for time interval Ti is decided

by the time range of an interval, i.e. εi =
|Ti|
|T |ε . In this way, it is foreseeable that there are

more clusters generated in the time intervals where the TACs behave more diversely, i.e.

TACs have larger dissimilarities.

6.2.3.3 Temporal Hierarchical Clustering

The goal of temporal clustering is to build up a hierarchical tree of the input M time

intervals obtained in the previous temporal partitioning, i.e. M leaf nodes of the tree, so

that the level-of-details of TAC behaviors can be revealed in time dimension. Different
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from the spatial hierarchical clustering, in which any two clusters can be selected for a

merging operation, in temporal hierarchical clustering, considering the continuity of time,

only two clusters that are neighboring in time can be merged together, which makes the

merging operation easier. For example, for the initial M leaf nodes, there are only M−1

candidate pairs to choose. In the implementation, starting from the initial M leaf nodes, a

distance array D ∈ R(M−1) is created. Each entry indicates the dissimilarity changes after

a pair of consecutive time intervals is merged into one. D[i] can be computed as follows.

D[i] = η(Ti)+η(Ti+1)−η(Ti∪Ti+1) (6.12)

where η(Tk) is the average pairwise dissimilarity within a time interval Tk, Ti∪Ti+1 is the

new time interval by merging Ti and Ti+1.

η(Tk) =

√√√√∑
|Tk|
i=1 ∑

|Tk|
j=i(Dist(Γi,Γ j))2

|Tk|(|Tk|−1)
(6.13)

η(Tk) reflects the compactness of the TACs in the time interval Tk. The larger η(Tk) is, the

further the TACs in Tk are located away from the centroid.

In the spatial hierarchical clustering, two clusters with the smallest distance are se-

lected for merging. Similarly, in temporal hierarchical clustering, two time intervals with

the smallest dissimilarity changes are merged together first. In other words, time interval

Tk and its neighboring time interval Tk+1 that satisfies D[k] ≤ D[i],∀1 ≤ i ≤ M, are first

merged together to generate a new time interval Tk+Tk+1 and then removed from the node

list. Consequently, a new M− 2 dimension distance array D(M−2) is generated with the
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remaining M−1 nodes. The above merge process is iteratively applied until only one time

interval, i.e. the entire time period, is left, which is the root of the temporal hierarchical

tree. The height of the temporal hierarchical tree built on the M time intervals is M− 1.

On the ith level of the tree, i.e. height is i, there are M− i time intervals.

6.2.3.4 Visualization of Changes of Local AHC Results Across Cuts

In the visualization of TAC clusters, a specific color is assigned for each cluster according

to its unique ID, which is clear when the entire TACs are considered for clustering (i.e. no

temporal clustering). In contrast, in temporal clustering among a number of time intervals,

each time interval is clustered independently, therefore, the colors (i.e. cluster IDs) through

time intervals may not be consistent. An example is shown in Figure 6.10(a). The colors

of the three clusters in time interval T2 do not match with those in time interval T1.

To resolve the above issue, an adjustment of cluster IDs is required. The cluster IDs

in time interval Tk is adjusted based on its previous time interval Tk−1. Specifically, a

cluster Cp in Tk should be adjusted according to its main source cluster in Tk−1, i.e. the

cluster from which most TACs in Cp originate. For example, in Figure 6.10(b), most of

the TACs in cluster C1 in T2 originate from C1 in T1, so its main source cluster is C1 in T1.

In the following , Cp,k is used to denote the pth cluster in the time interval Tk. To achieve

this adjustment, a connection matrix Dm×n is created where m and n are the numbers of

clusters in Tk−1 and Tk, respectively. The value of entry Di j stores the number of TACs

from the cluster Ci,k−1 to the cluster C j,k . The adjustment is completed by re-identifying

the clusters in Tk one by one. For each column j in the connection matrix Dm×n, it finds

the largest value, for example, D(p, j). If the cluster Cp,k−1 is not assigned as the main
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source cluster to other clusters in Tk, the cluster ID of C j,k is re-assigned as p. Otherwise it

keeps searching for the next largest value. If all the clusters in Tk−1 are already assigned,

which is possible when n > m, a new cluster ID, i.e. a new color, is assigned to C j. In

Figure 6.10(b), the clusters C1,2, C2,2 and C3,2 are adjusted with Cluster IDs as 2, 1 and

3, respectively. After the adjustment, the colors of the clusters from T1 to T2 become

consistent.

With the color consistence, it is easy to identify the changes through time intervals,

especially for the sources of the clusters. However, the visual clutter and overplotting is-

sue still exists Figure 6.10(b). One solution is to apply an edge bundling visualization as

introduced in the work [40] to aggregate the sub-TACs in each time interval, as shown in

Figure 6.10(c), from which the main source of each cluster in T2 is easily identified by the

consistent colors and with the reduced clutter. However, the transition of the clustering

of two neighboring intervals across a cut is not fully revealed. Take the matrix in Fig-

ure 6.10(a) for an example, among 17 TACs in C2,2, 10 are from C1,1 and 7 are from C2,1

. The main source cluster C1,1 is indicated by the consistent color from C1,1 in T1 to C2,2.

However, the information of the minor source cluster C2,1 is ignored.

To fully reveal the connections among time intervals, given two neighboring time in-

tervals Tk−1 and Tk, the edge-bundling visualization on both the tail of Tk−1 and the head

of Tk can be improved. The tail of Tk−1 is first adjusted non-overlapping. As discussed in

Section 6.2.2.4, the tail of a cluster indicates the range of TACs at the end of the time inter-

val. TACs belonging to two clusters may overlap at the tail. One simple way is to equally

split the total range at the end of the tail into some non-overlapping sub-ranges and assign
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each cluster with one sub-range. But the sub-ranges cannot reveal the real ranges of clus-

ters, and the relative range is also hidden by the equal sub-ranges. In the proposed method,

an offset is applied to both clusters whose tails are overlapping. The offset is proportional

to the size of the clusters. As illustrated by the red arrow in Figure 6.10(d), the minimum

value of C2 at the tail end is increased and the maximum value of C3 at the tail end is de-

creased, eliminating the overlapping between C2 and C3 while keeping the relative range

size simultaneously.

Removing overlapping at the tail of Tk−1 makes the boundaries of source clusters clear.

In order to reveal all the source of clusters in Tk, including both main source and minor

sources, the head of the clusters in Tk is re-constructed. Specifically, if a cluster Ci in Tk−1

is split into a number of clusters in Tk, i.e. multiple destinations, a head from the tail of

Ci is plot no matter Ci is the main source or not. For example, as illustrated by the green

arrow in Figure 6.10(d), C2 in T1 is split into three clusters in T2, accordingly, three heads

from the tail of C2 are connected to the three clusters in T2. Note that the width of the

heads is proportional to the number of TACs from C2, which enables the differentiation of

the main sources and minor sources. From Figure 6.10(d), it is easy to identify the changes

of the clusters from Tk−1 to Tk.
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Figure 6.10: Visualization of changes through time intervals. (a) result before cluster
ID adjustment. (b) result after cluster ID adjustment. (c) edge-bundling visualization of
the result. (d) modified edge-bundling visualization. T1 and T2 represent the two time
intervals. X axis is the time and Y axis stands for the attribute value. Those values are
derived from the velocity and are not real physical quantities, therefore, there is no unit for
them.
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6.3 Results

The proposed TAC-based clustering has been applied to a number of flow data sets to

demonstrate its effectiveness. In this section, the results of TAC clustering based on dif-

ferent attributes are discussed. After selecting/setting the threshold for the hierarchical

clustering tree, a number of clusters of the TACs will be generated. An example of the

TAC-based clustering result is shown in Figure 6.11(a). Due to the large number of input

TACs, overlap of the TACs in different clusters cannot be resolved by a naive transparency

control. Therefore, for each cluster, a representative TAC is generated, as shown in Fig-

ure 6.11(b), which provides an overview of the attribute space. Figure 6.11(c) provides the

visualization of the flow domain, which is colored based on the corresponding clusters.

6.3.1 Hierarchical Clustering of Eulerian TACs

Figure 6.12 shows the TAC-based clustering result of Double Gyre flow based on Eulerian

TACs of attribute λ2. λ2 is one of the local criteria for the identification of a vortex [24].

The region within the vortex core has negative λ2 values. Figure 6.12(a) is the clustering

result based on Euclidean distance metric with the cluster number K = 2, from which

two clusters are generated. One includes TACs with local negative λ2, i.e. the green

cluster that indicates the two vortices. The other cluster contains TACs with local positive

λ2, i.e. the red cluster that indicates non-votex regions. As discussed in Section 6.2.1,

the transformation information of TACs cannot be revealed by the Euclidean distance.

Compared to Figure 6.12(a), the clustering result based on the EDTW distance metric in

Figure 6.12(b) does not indicate vortex regions directly, but rather show the oscillation
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Figure 6.11: Different views in the system. (a) shows the visualization of clustering
result. (b) shows the representative TAC in each cluster in (a) and a hierarchical tree of the
clustering result. (c) shows the visualization of temporal hierarchical clustering result. (d)
shows the clustering on flow domain based on the result in (a). X axis is the time and Y
axis stands for the attribute value of curl. Those values are derived from the velocity and
are not real physical quantities, therefore, there is no unit for them. For the texture-based
visualization of the flow, the horizontal direction is X and the vertical direction is Y.

behaviors of the two vortex systems. The TACs in the green cluster change from positive

λ2 to negative λ2, which indicates that the corresponding locations are not in a vortex

(or near the center of the vortex) at the beginning, but the vortex enters this region in a

later time. Such a temporal behavior may be better depicted via the temporal clustering.

Figure 6.12(c) shows the clustering result with K = 3 based on EDTW distance metric.

Figure 6.13 shows the hierarchical clustering result of the Cylinder Flow [65] based on

Eulerian TACs of attribute curl. When K is 3, the blue and red clusters show the regions
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Figure 6.12: Clustering result of the Double Gyre flow based on Eulerian TACs of attribute
λ2. (a) Clustering result based on Euclidean distance metric. (b) and (c) Clustering results
based on EDTW distance metric with the cluster number K = 2 and K = 3, respectively.
The columns from left to right show the visualization of TAC clusters, representative TAC
in each cluster and clustering of flow domain, respectively. X axis is the time and Y axis
stands for the attribute value of λ2. Those values are derived from the velocity and are
not real physical quantities, therefore, there is no unit for them. For the texture-based
visualization of the flow, the horizontal direction is X and the vertical direction is Y.

near the vortices. They are not exactly vortex regions because of the translational behavior

of the vortices in the flow. When K increases to 4, a yellow cluster is separated from the

green cluster, which exhibits similar behavior to the red cluster but with certain shifting.

In fact, the regions highlighted by the yellow cluster correspond to the boundaries between

two neighboring vortices with different rotational orientations. When we increase K to 5,

a cyan cluster is separated from the green cluster again, revealing similar behavior to the

yellow cluster. By changing the number of generated clusters, more and more details can
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Figure 6.13: Clustering result of Cylinder flow based on Eulerian TACs of attribute curl.
(a), (b) and (c) Clustering results based on EDTW distance metric with the cluster number
K = 3, K = 4, and K = 5, respectively. The columns from left to right show the visual-
ization of TAC clusters, representative TAC in each cluster and clustering of flow domain,
respectively. X axis is the time and Y axis stands for the attribute value of curl. Those
values are derived from the velocity and are not real physical quantities, therefore, there is
no unit for them. For the texture-based visualization of the flow, the horizontal direction
is X and the vertical direction is Y.

be revealed.

6.3.2 Hierarchical Clustering of Lagrangian TACs

Figure 6.14 shows the hierarchical clustering result of Double Gyre flow based on La-

grangian TACs of attribute curl with different cluster number K. With the increasing

number of clusters, more details are revealed. The clustering of flow domain indicates the

LCS structure, which is expected from the Lagrangian view. One noteworthy observation
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is that the vortex structure is stable when the cluster number is changed.

Figure 6.15 shows the hierarchical clustering result of the Cylinder flow based on La-

grangian TACs of attribute curl with different cluster number K. With the increasing num-

ber of clusters, more details in the vortices are revealed. The clustering on the flow domain

from the curl field reveals the Von Karman vortex street of the Cylinder flow, compared to

the results obtained with the Eulerian TACs (Figure 6.13).

6.3.3 Temporal Hierarchical Clustering

Figure 6.16 shows the temporal hierarchical clustering result of the Double Gyre flow

based on Lagrangian TACs of attribute momentum with different number of time intervals

M. With the increasing number of time intervals, the TACs in each time interval show the

merging and splitting behaviors, which indicate the temporal behaviors of the movement

of the two vortices. the temporal behavior of λ2. This temporal movement of the two

vortices cannot directly be revealed by the clustering based on Eulerian TACs shown in

Figure 6.12 (b) - (c).
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Figure 6.14: Clustering result of the Double Gyre flow based on Lagrangian TACs of
attribute curl with different cluster number K. (a) TAC clusters and its hierarchical tree.
(b) representative TACs in each cluster. (c) Clustering of flow domain. X axis is the time
and Y axis stands for the attribute value of curl. Those values are derived from the velocity
and are not real physical quantities, therefore, there is no unit for them. For the texture-
based visualization of the flow, the horizontal direction is X and the vertical direction is
Y.
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Figure 6.15: Clustering result of Cylinder flow based on Lagrangian TACs of attribute curl
with different cluster number K. (a) TAC clusters and its hierarchical tree. (b) Clustering
of flow domain. X axis is the time and Y axis stands for the attribute value of curl. Those
values are derived from the velocity and are not real physical quantities, therefore, there is
no unit for them. For the texture-based visualization of the flow, the horizontal direction
is X and the vertical direction is Y.
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Figure 6.16: Clustering result of Double Gyre flow based on Lagrangian TACs of attribute
momentum with different number of time intervals M. (a) M = 2. (b) M = 3. (c) M = 4.
X axis is the time and Y axis stands for the attribute value. Those values are derived from
the velocity and are not real physical quantities, therefore, there is no unit for them.
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Chapter 7

Conclusion

In this work, a Lagrangian accumulation framework is first proposed. By accumulating

various local physical and geometric properties along the associated integral curves, a

number of A fields are derived. The properties of A fields are discussed systematically,

which are utilized to achieve interesting visualizations for both 2D and 3D vector fields.

Some well-known flow features are compared with the results of A fields and its gradi-

ent fields. The applications of the Lagrangian accumulation framework on a number of

flow visualization tasks are then discussed, including seeding curve generation for integral

curves and surface placement and flow domain segmentation. In addition, an algorithm to

extract the discontinuity of the behavior between neighboring integral curves based on A

fields is introduced, which shows that this discontinuity may be closely related to a num-

ber of flow features. Different strategies to combine individual attribute fields are studied

to form a super attribute field to study the spatial correlation of the attribute fields. In

order to address the limitation of the Lagrangian accumulation framework on revealing
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the detailed behaviors in flow exploration, a new TAC-based flow exploration framework

is introduced. In addition, a new distance metric is proposed to measure the similarity of

segments of TACs for the clustering. The hierarchical clustering supports a level-of-detail

representation of flow behavior in both space and time.

Limitations and future work There are a number of limitations that the user should be

aware of. For the Lagrangian accumulation framework, first, even though this work has

shown that choosing different window sizes for the accumulation may be employed to gen-

erate various visualizations, the selection of an appropriate window is highly application-

dependent, which may influence both the computational cost and the revealed patterns.

Similarly, the sampling strategy could affect the information that can be captured by the

A fields. Second, during the accumulation, the characteristic values may cancel each

other. For instance, if one accumulates the change of the flow direction along a symmetric

integral curve that has the behavior similar to a sine function, the resulted value can be

zero. Third, the discussed accumulation is also a dimensionality reduction process (i.e.

reducing the 1D information into a single value), which will surely result in information

loss. However, this information loss and a solution to reducing it have not been carefully

discussed, which will be investigated in the future. For the TAC-based framework, the

relationship between TACs of neighboring particles is lack of discuss. The study of this

relationship can start with the concept of stable sets. A stable set can be defined as a group

of geometrically neighboring particles whose TACs have high similarity to a given TAC of

interest. The particles in a stable sets show coherent behaviors not only in geometrics but

also in attribute space. Exploring stable sets in the flow domain will enable domain experts

to better understand the relation between geometrics attributes and physical attributes. The
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current TAC-based framework utilize individual TACs derived from a specific attribute. If

multiple attributes are considered, multi-TACs can be generated. Therefore, a potential

extension of the current work is the multi-TAC based flow exploration, which is a way to

study the relationship between different attributes. At last, the application of TAC-based

framework to 3D unsteady flow should also be studied in the future.
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Chapter 8

Appendix
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Figure 8.1: The scatter plot matrix of different A fields of the Double Gyre flow. Part 1
of Figure 5.25
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Figure 8.2: The scatter plot matrix of different A fields of the Double Gyre flow. Part 2
of Figure 5.25
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Figure 8.3: The scatter plot matrix of different A fields of the Double Gyre flow. Part 3
of Figure 5.25
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Figure 8.4: The scatter plot matrix of different A fields of the Double Gyre flow. Part 4
of Figure 5.25
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