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Abstract

Web and social media have been influencing every aspect of today’s world, rendering

a tremendous amount of data that requires new insights to know about the current

society. The usage and dependence on these media has led to their active use by a

small yet powerful group of users to sway the sentiment of people for selfish gains. To

check the infiltration of these anomalous users, we face two challenges: (1) studying

opinions to learn their behaviors, and (2) detecting opinion spam to reduce their

effects. We study the behaviors of anomalous users in reviews collected on Yelp,

Amazon and social data from Twitter. Using Yelp reviews we explore the temporal

behaviors of spammers. Social spammers easily penetrate and are difficult to filter

as they adapt to changing filtering algorithms. Using a Twitter dataset, we study

their behaviors of success rate, fraudulence, and content posting activities. We un-

cover that successful spammers have a stronger friendship base and post an amalgam

of spam and non-spam contents. We exploit the behaviors learned from Yelp and

Twitter to generate spam detection algorithms. Our novel temporal features are in-

strumental in spam detection in consumer reivews, performing better than existing

state-of-the-art approaches. We combine the content-based features and graph based

approach embodying social relationships for spam detection in Twitter. Biased ran-

dom walks and language models significantly improve the classification. We further

characterize the review system in Amazon, a leading online marketplace. We use ver-

ified purchases as a popularity index to evaluate models of popularity prediction. We

find that it is indeed possible to analyze behaviors and develop methods that perform

well for anomaly detection in the web, even in these challenging situations.
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Chapter 1

Introduction

Opinions of people are archived on the web. Various forms of platforms encompass-

ing social networks, review websites, forums, new portals, and blogs are having an

increasing impact on shaping the knowledge of people.

Social media are becoming so dominant that traditional media are blending them-

selves with the wave. For the majority of the population, these social media, such as

Facebook, Twitter, etc., are the first sight of information. They are also important

for the government or other agencies who want to know the status of society.

With the humongous growth of online marketing, we find consumer opinions as

reviews of products and services constantly emerging as influential, and they are

among the key factors driving e-commerce. Their increasing share in the market

economy has led to a larger influence and importance in purchase and decision mak-

ing. Reviews of consumer review websites, such as Amazon, Yelp, Tripadvisor, and
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others, shape the purchase or recommendation of the service or product. Positive

reviews increase business while negative reviews adversely impact it.

Since the opinions in social media and consumer review websites are important in

e-commerce, they are being exploited for selfish gains. We label these small subsets of

users who want to sway the public opinion for personal benefits as anomalous users.

These vile users are increasing their influence and feeding misleading information.

Thus, it is very much important to detect them.

This work focuses on analyzing the behaviors of anomalous users so that they

can be detected to minimize their influence. By learning the important behaviors

that differ from normal users, we can characterize anomalous users and exploit their

characteristics for detection. We explore the temporal aspects of spamming in Yelp,

a leading consumer review websites, and detect spammers using time features [20].

We explore the social media behaviors of spammers and detect them using both their

local features and their effect on the social network graph [22]. Inspired by demoting

reviews on Yelp, we perform popularity prediction in standalone and competing

scenarios in Amazon.

1.1 Research Challenges

There are two major research challenges to check the infiltration of anomalous users.

The first challenge is to study the behaviors by mining the opinions in social media

and consumer review websites. The second challenge is to detect them. We use

temporal features and network analysis to generate models of spam detection.
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1.1.1 Temporal Dynamics of Opinion Spamming in Yelp

Recently, the problem of opinion spam has been widespread and has attracted a

lot of research attention. While the problem has been approached on a variety of

dimensions, the temporal dynamics in which opinion spamming operates is unclear.

Are there specific spamming policies that spammers employ? What kind of changes

happen, with respect to the dynamics, to the truthful ratings on entities? How do

buffered spamming operate for entities that need spamming to retain threshold pop-

ularity and reduced spamming for entities making better success? We analyze these

questions in the light of time-series analysis on Yelp. Our analyses discover various

temporal patterns and their relationships with the rate at which fake reviews are

posted. Building on our analyses, we employ vector autoregression to predict the

rate of deception across different spamming policies. Next, we explore the effect of

filtered reviews on (long-term and imminent) future rating and popularity predic-

tion of entities. Our results discover novel temporal dynamics of spamming which

are intuitive, arguable, and also render confidence on Yelps filtering. Lastly, we lever-

age our discovered temporal patterns in deception detection. Experimental results

on large-scale reviews show the effectiveness of our approach, which significantly

improves the existing approaches.

We use the truthful and fake (spam) reviews of popular restaurants in Chicago

from Yelp to characterize the dynamics of opinion spamming. We start by analyzing

the time-series of fake ratings of each restaurant in our data. We notice similar

patterns in the time-series of different restaurants that indicate presence of latent

spamming policies/trends likely to be used by spammers. To uncover them, we
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employ spectral clustering [85] on the time series. Our analyses reveal that there

exist three dominant trends of spam injection: early, mid, and late spamming across

the restaurants in our data. For each restaurant in each of the three early, mid,

and late spamming policies, we jointly characterize the time series of cumulative

deceptive ratings with the time series of various other modalities (e.g., truthful like

ratings, truthful dislike ratings, truthful review count, etc.). This yields interesting

inferences that hint that deceptive like ratings (promotion spamming) is linked with

different behavioral modalities of truthful reviews over time and the rating dynamics

of truthful reviews can potentially determine the future deception rates for each

restaurant.

To validate the relationship, we perform time-series correlation analysis. Cross

correlation results show statistically significant correlations of time-series of truthful

ratings (as covariate) with future deceptive like ratings (as response) confirming the

previous result beyond mere coincidence across each of the three polices. It further

reveals two interesting spamming trends: buffered and reduced spamming which

reveal the adaptive spam injection rates for two kinds of restaurants: i) those that

need spamming to retain threshold popularity, ii) others that are more successful

and consequently in lesser need of spamming.

Upon characterizing the spamming patterns, we predict future deceptive like rat-

ings on a restaurant using vector auto regression. The predictions, being decent,

lead us to explore the question, “How well can one predict the future truthful pop-

ularity (# of reviews) and average rating of a restaurant in the presence of decep-

tive reviews?” Working using lasso regression and vector auto regression we develop
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models capable of long term and imminent future popularity/rating predictions. The

analyses also facilitate indirect validation of Yelps filtering. Lastly, we leverage the

discovered temporal dynamics to devise a suite of novel time-series features.

1.1.2 Anomaly Detection in Social Networks

Social media are increasing their influence tremendously. Twitter is one of the most

popular platforms, where people post information in the form of tweets and share

the tweets. Twitter is available from a wide range of web-enabled services to all

people. The real time reflection of a society can thus be viewed in twitter. Celebrities,

governments, politicians, and businesses are active in twitter to provide their updates

and to listen to the views of the people. Thus, the bidirectional flow of information is

high. The openness of online platforms and reliance on users enables the spammers

to easily penetrate the platform and overwhelm the users with malicious intent and

content. This work attempts to detect spammers in social networks using a case

study of twitter.

Spammers in social networks constantly adapt to avoid detection. Moreover, they

follow reflexive reciprocity [17, 82] (users following back when they are followed by

someone to show courtesy) to establish social influence and act normal. It is thus

becoming difficult for traditional spam detection methods to detect spammers. Such

spammers have widespread impacts. There are several reports of an army of fake

Twitter accounts1 being used to troll 2 and promote political agendas3. Even US

1http://theatln.tc/2m8g3eA
2http://bzfd.it/2m8rlja
3http://bit.ly/2kJiMKu
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President Donald Trump has been accused of having fake followers4.

We present ENWalk, a framework that uses the content information to bias a

random walk of the network and obtain the latent feature embedding of the nodes

in the network. ENWalk generates biased random walks and uses them to maximize

the likelihood of obtaining similar nodes in the neighborhood of the network. We

study the twitter content dynamics that could be important to bias those random

walks. We found that there are two types of spammers: follow-flood and vigilant.

We found that success rate, activity window, fraudulence, and mentioning behaviors

can be used to compare the equivalence of users in twitter. We calculate the network

equivalence using these four behavioral features between pairs of nodes and try to

bias the random walks with interaction proximity of the pair of nodes. Experimen-

tal results on a 17-million-user network from twitter show that the combination of

behavioral features with the underlying network structure significantly outperform

the existing state-of-the-art approaches for deception detection.

1.1.3 Popularity Prediction in Online Marketplace

As products are always competing with their competitors to seize the same target

market, we anticipate such rivalry online. Potential rivalry could be one major

source of spamming to defame a competing product. We therefore want to explore

the dynamics of competition in the market. We used amazon review data and found

two dominant trends viz. death (the competitor seizes the previous market leader in

sales) and survival (where the previous leader recovers its market sales after being

4http://bit.ly/1ViorHd, http://53eig.ht/2kzrhfL
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hit by the competitor). Using a labeled dataset of 800 leader-competitor pairs, we

evaluate models that can characterize popularity and competition.

1.2 Summary of Contributions

For spam detection in consumer reviews, we analyze the temporal behaviors and

use them to model spam detection. Experimental results show that the time-series

features derived from our analyses significantly outperform the existing state-of-the-

art approaches for deception detection, demonstrating a value of our analysis beyond

mere characterization of temporal dynamics.

We analyze the node behaviors of spammer nodes in Twitter and employ these be-

haviors with network structure. Our model based on a biased random walk strategy

performs better than the benchmark models.

We further characterize competition in Amazon reviews to learn the effects of

competing products based on popularity.

1.3 Roadmap

The rest of this document is organized as follows: Chapter 2 discusses prior work

related to our research and discusses either how our work builds upon those ideas

or stands out from them. Chapter 3 introduces spamming in consumer review web-

site Yelp. We perform various analyses on spamming and develop models based on

7



temporal features for spam detection. In Chapter 4, we discuss the spamming in

social network using datasets from Twitter. We analyze the spamming behaviors

and exploit them to detect social spammers. Chapter 5 discusses our work on char-

acterizing popularity in Amazon and using various models to predict popularity in

standalone and competing environments. Finally, in Chapter 6, we summarize our

work and present some potential future directions.
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Chapter 2

Literature Review

Recent studies have uncovered the importance of opinion-rich contents on the web,

such as online posts, reviews, comments, and discussions, are having greater social

and economic impacts on consumers and companies alike compared to traditional

media [58, 34]. Sentiments expressed in social media are influential in the economy

of the country [2]. Due to the enormous economic incentive, spammers try to exploit

the dissemination of online content [18].

2.1 Spam Detection in Consumer Review Web-

sites

As positive/negative reviews can either enhance/defame products, the essence of

truthful opinions is being misused by deceptive opinion spamming. First reported in
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[18], opinion spam refers to deliberate attempts (e.g., writing fake reviews, giving un-

fair ratings) to promote/demote target products/services. Several high-profile cases

of fake reviews have been reported in the news. While credit-card fraud is as low as

0.2%, opinion spam is prevalent [55] and it is estimated that up to 20% of online re-

views could be fake [81]. The problem has also received significant research attention.

Notable works include detecting individual spammers [33], group spammers [48, 49],

and satirical news [84] using a variety of approaches such as rating behaviors [33],

unexpected association rules [19], linguistic approaches [9, 32, 56], latent variable

models [31, 46], semi-supervised methods [27, 28], etc. Other related works include

identifying multiple aliases of the same author (sockpuppet) [72, 65, 64, 14], au-

thorship attribution [70, 15], generic deception detection [54], and deceptive content

detection in forums [5, 26]. For a comprehensive survey, see [45].

Prior to our work, there were two notable stand-of-the-art approaches for spam

detection in consumer reviews. [56] developed and compare three approaches to

detecting deceptive opinion spam based on works from psychology and computa-

tional linguistics. They ultimately develop a classifier that is nearly 90% accurate on

their gold-standard opinion spam dataset. Based on feature analysis of the learned

models, they additionally make several theoretical contributions, including revealing

a relationship between deceptive opinions and imaginative writing. They used the

following three n-gram feature sets, with the corresponding features lowercased and

unstemmed: UNIGRAMS, BIGRAMS, TRIGRAMS. Another research work done

by [52] introduced behavioral features in review spam detection. Behavioral fea-

tures performed better than the n-gram features. They further performed theoretic
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analysis to uncover the precise psycholinguistic difference between AMT reviews and

Yelp reviews (crowdsourced vs. commercial fake reviews). From the analysis, they

postulate that Yelps filtering is reasonable and its filtering algorithm seems to be

correlated with abnormal spamming behaviors.

While the above works have made important progresses, we still do not know the

temporal dynamics that underpin the problem of opinion spam. How does opinion

spamming operate on a daily basis? What are the dominant spamming policies?

How do the spam injection rates vary upon increased/reduced popularity of entities?

What factors are temporally correlated with opinion spamming? How effectively

can we predict the long term/imminent future of popularity and average rating of

an entity in the presence of deception and how accurately can future deception be

predicted? In addition, we employ these learned behaviors for spam detection.

This work aims to answer these questions in the light of time-series analysis. We

use Yelp as a target of our case-study as it is one of the largest online consumer

review hosting sites for services (e.g., restaurants, hotels, etc.) in the commercial

setting. The closest works to ours were attempted in the following studies. Authors

in [8] explored temporal burstiness patterns in product reviews for singular spammer

detection. The rationale was spammers writing only one review per id (sockpuppets)

could be detected as they tend to appear in product review bursts. In [10], rating

distributional divergence was used to identify review spam, and in [51] a hardness

analysis of detection was presented based on real and pseudo fake reviews. Xie et

al., [83] investigated temporal burstiness patterns in ratings of online stores. While
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[50] explored detection using fully unsupervised generative models, in [29], spatio-

temporal patterns on the geographical distribution of spammers, were explored using

internal data (e.g., IP addresses, cookies, etc.). Although these works have looked

into the temporal dimension of spamming, their focuses were mostly on detection as

opposed to characterizing the very way opinion spamming works. They also did not

explore the behaviors which are temporally correlated with spamming and future

deception prediction, which are the core focuses of this work.

2.2 Spam Detection in Social Networks

There have been several works on spam detection in general, especially review spam

[7], and opinion spam. However, in Twitter there are limited attempts. One of the

earliest works was done by [1]. They manually labeled and trained a traditional

classifier using the features extracted from user contents and behaviors. Lee et al.

leveraged profile-based features and deployed social honeypots to detect new social

spammers [25]. Stringhini et al. also studied spam detection using honey profiles [73].

Ghosh et al. studied the problem of link farming in Twitter [11]. They hypothesize

acquiring followers not only increases the size of a user’s direct audience, but also

contributes to the perceived influence of the user, which in turn impacts the ranking

of the user’s tweets by search engines. They thus introduced a ranking methodology

to penalize the link farmers.

Abuse of online social networks was studied in [77]. They identified an emerging

marketplace of illegitimate programs operated by spammers that include Twitter
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account sellers, ad-based URL shorteners, and spam affiliate programs that help

enable underground market diversification. Their results show that 77% of spam

accounts identified by Twitter are suspended within one day of their first tweet.

Because of these pressures, less than 9% of accounts form social relationships with

regular Twitter users. Instead, 17% of accounts rely on hijacking trends, while

52% of accounts use unsolicited mentions to reach an audience. In spite of daily

account attrition, they show how five spam campaigns controlling 145 thousand

accounts combined are able to persist for months at a time, with each campaign

enacting a unique spamming strategy. Surprisingly, three of these campaigns send

spam directing visitors to reputable store fronts, blurring the line regarding what

constitutes spam on social networks.

Campaign spams was studied on [88, 30]. To detect campaign spammers, [30]

formulate the problem as a relational classification problem and solve it using typed

Markov Random Fields (T-MRF), which is proposed as a generalization of the classic

Markov Random Fields. [88] proposed a framework consisting of three steps: firstly

linking accounts who post URLs for similar purposes, secondly extracting candidate

campaigns which may exist for spam or promoting purpose and finally distinguishing

their intents.

Skip-gram model [43] has been popular to learn the features from a large corpus

of data. It inspired to establish an analogy for networks by representing a network as

a document. Similar to document being an ordered sequence of words, we can create

an ordered sequence of nodes from a network using sampling techniques. Our work is

inspired by latent representation of vertices in a network: DeepWalk [62], LINE [76],
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and Node2vec [13]. DeepWalk [62] uses local information obtained from truncated

random walks to learn latent representations by treating walks as the equivalent of

sentences. They evaluate DeepWalks latent representations on several multi-label

network classification tasks for social networks such as BlogCatalog, Flickr, and

YouTube. LINE [76] learns the d-dimensional features into two phases: d/2 BFS-

style simulations and another d/2 2-hop distant nodes. Node2vec [13] creates the

ordered sequence simulating the BFS and DFS approaches. All these feature learning

approaches dont use the data associated with node which are important to learn the

behaviors of the nodes.

Previous researches in social network spam detection were either just content

based or graph-based [36]. However, it is important to note that both the content

and social network are equally important for spam detection. Thus we want to

combine both pieces of information for better detection methods. We propose a

novel method, ENWalk, which combines both the content and network structure.

2.3 Popularity Prediction in Consumer Review Web-

sites

Our work employs time-series modeling of popularity using Amazon reviews, and in

that regard is related to the works on mining of time-stamped data such as [60, 59,

69, 68, 80] and pattern discovery from time series [4, 57, 61, 79, 44]. Currently, there

are two aspects of research: volume prediction and competition modeling.
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2.3.1 Volume Prediction

There have been several works on analyzing user generated contents (comments,

likes, views, shares, subscriptions) and modeling their volume. [78] analyzed volume

of news comments using log-normal and negative binomial distributions. Political

blog comments in context with the content was analyzed by [86]. [67] extracted

features for involvement analysis in social networks. [71] used neural networks to

predict comments in Facebook. While these are outstanding achievements, they fail

to employ the effects of competition.

2.3.2 Competition Modeling

Competition is evident in almost every part of the web. Companies want popularity

for business advantage. People want popularity to increase their social influence in

social networks. Thus, either explicitly or implicitly, there is competition all the

time. Hence, researchers are modeling competition. While linear approaches are

successful for time series mining such as auto-regression, autoregressive integrated

moving average (ARIMA), Kalman filters, linear dynamical systems, they are not

very suitable to characterize popularity in the online world that is inherently non-

linear in nature. Non-linear methods [38, 39, 12, 37, 41, 66, 7, 63, 53, 74, 40, 23]

are more popular as they can model the non-linear behaviors in the nature and are

closer to our approach. However, these works did not explore the latent features

embeddings of time series based on running window in standalone and competition

environment which is the focus of this work.
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Chapter 3

Temporal Dynamics of Opinion

Spamming in Yelp

S. KC, and A. Mukherjee. On the temporal dynamics of opinion spamming: Case

studies on yelp. Proceedings of the 25th International Conference on World Wide

Web, pages 369-379, 2016. [20]

In this chapter, we study the temporal behaviors of spamming in Yelp. We

explore the spamming patterns and allied temporal dynamics. We evaluate prediction

capabilities of temporal features on popularity and ratings. Lastly, we leverage these

time-series features to devise a novel suite of features for spam detection which

outperform the state-of-the-art approaches.
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3.1 Yelp as a Reference Dataset

Despite opinion spamming being prevalent [55], there are not many commercial web-

sites that filter fake/deceptive reviews. Yelp is an exception and implements review

filtering on a commercial scale. The filter has been in place for over a decade now

and maintained by its dedicated anti-fraud team [51]. Although Yelp’s filter may not

be perfect, it is important to note that unlike other forms of generic Web spam (e.g.,

link[72], email[6], blog[26], etc.) that are relatively easier to detect, opinion spam

is harder and usually requires a lot of internal signals [29, 48], and thus industrial

opinion spam filters (e.g., Yelp) have a unique advantage. Thus, unlike previous

small scale studies in [32, 48, 56], it is not possible to do large-scale analysis upon

relying on data tagged by human experts or solicited ground truths fake reviews

using Amazon Mechanical Turk. Even expert-annotation cannot fully eliminate the

possibility of any noise. Also obtaining ground truths in the given domain and com-

mercial setting is only possible upon spammer confessions or sting operations [35]

which again cannot be performed at large scale. Thus, Yelp’s filter although may

not be perfect, nevertheless it provides us a unique opportunity to understand the

dynamics of spamming at large-scale in the commercial setting. In fact, there have

been studies that put Yelps filtering methods to test and have found it to be reason-

ably reliable [35, 52]. Hence, we choose Yelp as a reference dataset for characterizing

the dynamics of opinion spamming.

As demonstrated by our experiments, we will see that the spamming patterns

discovered are arguable, intuitive, and further pave the way for indirectly validating
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Table 3.1: Yelp Dataset Statistics.

Deceptive Truthful

# of dislike (1-3) reviews 1630 10042

# of like (4-5) reviews 4465 30652

# of reviews 6095 40694

% of reviews 13.03% 86.97%

# of reviewers 5359 21761

Yelp’s filtering.

We use the Yelp dataset in [52] of 70 popular Chicago restaurants over a 5 year

time span (see Table 3.1). The reviews filtered by Yelp are considered deceptive

(fake/spam) while others as truthful. We refer to reviews with 1-3 ratings as exhibit-

ing dislike whereas reviews with 4-5 ratings exhibiting like connotations. Although

opinion spamming can take both promotion/demotion flavors (by injecting deceptive

like/dislike reviews), our pilot studies revealed that majority ( 75%) of the spam is

focused on promotion as opposed to demotion. Hence we focus on promotion spam-

ming. The next section lays the foundation for analyzing the dynamics of promotion

spamming.

3.2 Determining Dominant Spamming Policies

Although opinion spamming can be interleaved throughout the entire lifespan of an

entity, characterizing the dominant spamming patterns over time is the first step in
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understanding the dynamics of spamming. To find the number of promotion spam-

ming policies, for each restaurant, we compute its time series of average cumulative

rating of deceptive like (positive fake) reviews. The cumulative rating was computed

for each time step by averaging the like fake ratings on that restaurant from start

till that time step. The time series was further normalized and scaled to the range

[0, 1] to gauge the relative promotion dynamics and facilitate time-series clustering

on shape dynamics. The rationale here is that such a cumulative deceptive rating

time series can quantify how spamming grew and faded over time for that restau-

rant. For each restaurant, its time-series starts at the date of the first review and

continues until 60 months from the start. Time-series of all restaurants were aligned

by pivoting on their starting time-step.

We hypothesize that there exist commonalities in spamming trends (policies)

that exist across different restaurants. To characterize these spamming policies,

we employed time-series clustering that can discover similar shapes in the deceptive

rating time series of restaurants. We used the K-spectral Centroid (K-SC) time-series

clustering algorithm in [85]. The distance function of K-SC is invariant to scaling and

translation, which is particularly suited to our domain in capturing similarities in

spamming across restaurants with varying popularity (review volume) and different

launch dates. Its distance measure, d(x, y) for two time-series x, y is calculated as:

d(x, y) = minα,q
||x− αy(q)||
||x||

(3.1)

where y(q) is the result of shifting time series y by q time units, ||.|| is the L2 norm

and α is the scaling coefficient to match the shape of two time series. Apart from

clustering time-series having similar temporal patterns, it also yields the cluster
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3

Figure 3.1: Time series cluster centroids with K=3 for cumulative rating of deceptive

like reviews

20



(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 3.2: Time series cluster centroids with K=4 for cumulative rating of deceptive

like reviews
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

Figure 3.3: Time series cluster centroids with K=6 for cumulative rating of deceptive

like reviews

22



centroid time-series for each cluster that is representative of that cluster.

We clustered the deceptive like rating time-series of restaurants in our data using

the K-SC algorithm. As the dominant number of spamming policies are unknown,

we explored different values for K. Fig. 3.1, 3.2 and 3.3 show the time-series centroid

plots for K=3,4,6 respectively. The centroid plot header also reports the number of

restaurants for that cluster. We note that for K=6, cluster 6 (Fig. 3.3.f) is empty.

Out of the remaining five clusters for K=6, cluster 1 (Fig. 3.3.a) has similar shape

to cluster 1 (Fig. 3.2.a) in K=4 and cluster 1 (Fig. 3.1.a) in K=3 and all three have

the same 49 restaurants. Cluster 2 (Fig. 3.3.b) in K=6 and cluster 2 (Fig. 3.2.b)

in K=4 are quite similar due to their starting spikes and profile. Cluster 3 (Fig.

3.3.c) in K=6 is similar to cluster 3 (Fig. 3.2.c) as both plummet in the right end

and have similar starting spikes. Further, cluster 5 (Fig 3.3.e) in K=6 and cluster

4 in K=4 (Fig. 3.2.d) also have similar profiles. We see that the similar profiles

are getting merged as K is reduced. Cluster 1 is same across all three values of K.

Fifteen cluster 2 and two cluster 3 restaurants in K=6 and K=4 are clustered in

cluster 2 in K=3. Remaining restaurants from K=6 (two from cluster 3 and one

each from cluster 4, 5) and K=4 (three from cluster 3 and one from cluster 4) are

merged to cluster 3 in K=3. Thus, we clearly see that there are three dominant

promotion spamming policies corresponding to representative cluster centroids. We

now explain each spamming policy using the plots for K=3.

Cluster 1 of K=3 (Fig. 3.1.a) refers to early spamming where the representative

centroid shows steady spamming beyond the 5 months of launch. Although centroid

has a zero till the fifth month, the deceptive like reviews of restaurants in the early
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spam cluster gradually build up a momentum from their inception. They tend to

maintain continuous spamming until the end as depicted by the profile of cluster

1. The second cluster centroid (Fig. 3.1.b) refers to mid spamming policy where

spamming is a bit delayed and starts rising only after the 14th month (after more

than a year). On average, it takes about 10 more months to have the peak rating of

1 after gradual improvement in spamming. The third spamming policy (Fig. 3.1.c)

starts rather late, stalls for 10 months before attaining the peak in deceptive like

ratings. Only few restaurants exhibited such late spamming. Thus, we find three

dominant spamming policies prevalent in restaurant promotion. The next section

evaluates each spamming policy by assessing it in tandem with other behavioral

modalities.

3.3 Dynamics of Spamming Policies

To study the dynamics of the three promotion spamming policies, we generated the

time series of the ten modalities as follows:

1. Number of fake dislike reviews

2. Cumulative rating of fake dislike reviews

3. Number of non-fake dislike reviews

4. Cumulative rating of non-fake dislike reviews

5. Number of fake like reviews
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6. Cumulative rating of fake like reviews

7. Number of non-fake like reviews

8. Cumulative rating of non-fake like reviews

9. Cumulative rating of n-fake reviews

10. Cumulative rating of non-fake reviews

For each of the three spamming policies, we grouped all restaurants belonging

to a policy and computed an additional set of normalized time-series on the ten

modalities. For each behavioral modality, we further employed time-series clustering

of restaurants in a given policy (cluster) and chose the dominant sub-cluster of that

modality in a given policy. We now explain the three spamming policies based on the

centroids of the dominant sub-clusters of relevant behavioral modalities for a policy.

3.3.1 Early Spamming

Fig. 3.4.a shows the reference centroid plot for this pattern (Fig. 3.1.a) where 49 out

of 70 restaurants employ this policy. The restaurants employing early spamming wait

for the truthful reviews for the initial period of around five months. Then they start

spamming as shown in Fig. 3.4.a. It is interesting to note that the average truthful

rating is seen rapidly dropping in the initial months (Fig. 3.4.b.) There is also a

rapid increase in the truthful dislike rating (Fig. 3.4.c) and increase in the count

of such dislike reviews (Fig. 3.4.d) till the fifth month. Though, the truthful like
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(a) Early Spamming (b) Truthful avg. rating (c) Truthful dislike rating

(d) # of truthful dislike (e) Truthful like rating (f) # of deceptive like

Figure 3.4: Normalized average cumulative rating and review count (#) of early

spamming policy
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(a) Mid Spamming (b) Truthful avg. rating (c) Truthful dislike rating

(d) # of truthful dislike (e) Truthful like rating (f) # of deceptive like

Figure 3.5: Normalized average cumulative rating and review count (#) of early mid

policy

rating is constant as shown in Fig. 3.4.e, the restaurants inject more spam to check

the influence of the truthful dislikes. This explains the sustained rate of deceptive

like fake ratings (Fig. 3.4.a) with increase in the count of deceptive like reviews

(Fig. 3.4.f). Thus, in early spamming, the influx of deceptive reviews starts early

and maintains a steady promotion spamming rate to balance the truthful dislike

influence.
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3.3.2 Mid Spamming

We find 17 restaurants employing mid spamming as shown by the reference centroid

plot in Fig. 3.5.a. These restaurants dont exhibit spam injection until the 14th

month. However, truthful average rating keeps on dropping rapidly till about 11th

month (Fig. 3.5.b). It is worth noting that spamming picks up momentum after 14th

month (Fig. 3.5.a). In the same time, truthful dislike rating rapidly increases from

10th month onward (Fig. 3.5.c) along with the increase in the number of truthful

dislike reviews (Fig. 3.5.d). The truthful like rating is not affected (Fig. 3.5.e). So,

the number of deceptive like ratings increases after 14th month (Fig. 3.5.f) and as

if counteracts the increase in the truthful dislike ratings (Fig. 3.5.c). This clearly

shows that deceptive like rating (spam injection) is almost in tandem with truthful

average and dislike ratings.

3.3.3 Late Spamming

The late spamming pattern was found in 4 restaurants only. Fig. 3.6.a shows the

reference centroid plot. These restaurants start promotion spamming only after the

30th month (Fig 3.6.a). Interestingly, truthful average rating (Fig 3.6.b) is seen

monotonically decreasing. After 28th month, there is rapid increase in the truthful

dislike rating (Fig. 3.6.c) caused by the soaring of truthful dislike reviews (Fig.

3.6.d). Since, the truthful like rating rate does not differ much (Fig 3.6.e), promotion

spamming seems to be carried out after 30th month (Fig 3.6.f) to check the influx

of the truthful dislike reviews. We also note that after a slight decrease in truthful
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(a) Late Spamming (b) Truthful avg. rating (c) Truthful dislike rating

(d) # of truthful dislike (e) Truthful like rating (f) # of deceptive like

Figure 3.6: Normalized average cumulative rating and review count (#) of early late

policy
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dislike rating, it increases again after 40th month (Fig. 3.6.c). Interestingly enough,

we find the restaurants increase spamming after 40th month (Fig. 3.6.a) as if to

bring an equilibrium with the dislike ratings spike. This phenomenon of increasing

spam injection being tightly connected with the dynamics of dislike ratings across

all policies can be inferred as buffered spamming.

3.4 Causal Modeling of Deceptive Ratings

In this section, we aim to characterize the plausible causes of spamming by comparing

the time series of deceptive like ratings with the truthful like/dislike ratings. We

use week as time interval for the time series in this section. We first explore the

potential causes that are forerunners of deceptive ratings using cross correlation.

Next, we encode the potential causal time-series in a vector autoregressive framework

to forecast future deceptive ratings.

3.4.1 Time Series Causal Analysis Framework

From the spamming dynamics explored in previous sections, it reflects the intuition

that variations in truthful review ratings has a certain influence in the dynamics

of deceptive like ratings. To discover the relationship between truthful ratings and

deceptive like ratings (promotion spams) of restaurants, we consider their respective

cumulative time-series. To validate the relationship, we extracted three segments

of truthful ratings time-series (overall truthful average, truthful like, and truthful
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dislike) and compared them against the deceptive like rating time series of individ-

ual restaurants. To discover potential causality, we analyzed their cross-correlation

(CCF) at different time lags. CCF at lag k estimates the relationship between a

response Y (t), and a covariate X(t) time-series at different time-steps shifted by k

time units and is given by:

CCF (k) =

∑
i ((X(i)− µX)(Y (i+ k)− µY ))√∑

i (X(i)− µX)2
√∑

i (Y (i+ k)− µY )2
(3.2)

Correlation at a positive lags implies that X is a good predictor of Y and posi-

tive/negative CCF values indicate the changes in the series X and Y are in the

same/opposite directions respectively.

3.4.2 Buffered Spamming

How do restaurants deal with their weaning popularity and growth of dislike rat-

ings? Do they proactively inject deceptive reviews to maintain threshold average

rating/popularity or to lessen the impact of truthful dislike reviews? To analyze the

impact of truthful ratings on the rate of deceptive like ratings, we compare the time-

series of truthful average rating, truthful like rating and truthful dislike rating (as

covariates) with the deceptive like time-series (as the response). From Fig. 3.7, we

note that the time-series for deceptive like ratings is shifted in future and increases

with decrease in truthful average rating (Fig. 3.7.a) and truthful like rating (Fig.

3.7.b). Further, the increase in truthful dislike ratings tends to also cause increase

in deceptive like ratings (Fig. 3.7.c). It is also interesting to note that the changes

in the response time-series (Y ∼ deceptive like ratings) are tightly connected with
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(a) Truthful average rating

(b) Truthful like rating

(c) Truthful dislike rating

Figure 3.7: Buffered Spamming - Time series of truthful ratings (solid blue) vs decep-

tive like rating (dashed red) for different representative restaurants. Representative

restaurants refers to the ones where the behavior was most prominent.
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(a) Truthful average rating

(b) Truthful like rating

(c) Truthful dislike rating

Figure 3.8: Buffered Spamming CCF plots for respective time-series in 3.7 for

representative restaurants. Red lines indicate the CCF value and blue lines indicate

the confidence interval bounds at 99% (p < 0.01) confidence.
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the covariate time-series (e.g., steep drops in truthful avg. ratings from week 9 fol-

lows a rise in deceptive like ratings from week 11 in Fig 3.7.a, gradual decrease of

truthful like ratings from week 15 almost co-occur with steady increase in deceptive

like ratings in Fig 3.7.b, increase in truthful dislike in the first 20 weeks follow an

increase of deceptive like in Fig 3.7.c). These patterns tend to indicate a causality

beyond mere coincidence. It is as if there is a buffer action at work which adjusts the

spamming rate by injecting deceptive like reviews as the truthful average and like

ratings decrease or truthful dislike ratings increase. Hence, we refer to this spamming

pattern as buffered spamming.

To further confirm and quantify the strength of the correlation, we computed

the CCF plots (Fig. 3.8) of the covariate and response time-series corresponding to

Fig 3.7. We note that for all potential causalities, the CCF values exceed the 99%

confidence interval bounds indicating statistically significant correlations. Further,

all the correlations exhibit positive lags (in the range of [0, 5] weeks) indicating

that truthful rating influences the future rate of deceptive like ratings. Negative

correlations in Fig. 3.8.a, 3.8.b explain the fact that the spamming increases when

the average truthful rating and like truthful rating decrease. Positive correlations

in Fig. 3.8.c explain the increase in deceptive like ratings with increase in truthful

dislikes. These results tend to confirm the buffered nature of spamming in Fig. 3.7

which is an attempt of self-promotion via deceptive like reviews when the truthful

reviews are not in their favor.
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(a) Truthful average rating

(b) Truthful like rating

(c) Truthful dislike rating

Figure 3.9: Reduced Spamming - Time series of truthful ratings (solid blue) vs decep-

tive like rating (dashed red) for different representative restaurants. Representative

restaurants refers to the ones where the behavior was most prominent.
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(a) Truthful average rating

(b) Truthful like rating

(c) Truthful dislike rating

Figure 3.10: Reduced Spamming - CCF plots for respective time-series in 3.9 for

representative restaurants. Red lines indicate the CCF value and blue lines indicate

the confidence interval bounds at 99% (p < 0.01) confidence.

36



3.4.3 Reduced Spamming

We now explore the case when restaurant maintain decent popularity and rating. Is

there a reduction in the spam injection rate, as they have a better standing already?

We again analyze the impact of truthful ratings on deceptive like ratings. In Fig.

3.9, we see that the time series for deceptive like rating is shifted in future and now

decreases with the increase in truthful average rating (Fig. 3.9.a) and truthful like

rating (Fig. 3.9.b). Moreover, the decrease in the truthful dislike rating causes the

deceptive like rating to decrease (Fig 3.9.c). Interestingly, here also the changes

in the response time series (Y ∼ deceptive like ratings) are tightly connected with

the co-variate time series (e.g., gradual increase in truthful avg. rating from week

11 is followed by drop in deceptive like rating from week 18 in Fig. 3.9.a, rapid

increase in truthful like rating from week 14 to 15 co-occur with rapid decrease in

deceptive like rating in Fig. 3.9.b, gradual decrease in truthful dislike rating after

week 11 is followed by gradual decrease after week 18 in deceptive like rating in Fig

3.9.c). These trends show a pattern where spam injection rates are reduced when

the truthful reviews are favorable. Thus, we refer this temporal dynamics as reduced

spamming.

For significance testing, we computed the CCF plots (Fig. 3.10) of the covariate

and response time series in Fig. 3.9. The CCF values exceed the 99% confidence

interval bounds for all potential causalities indicating statistically significant corre-

lations. Further, the positive lags (in the range of [0, 5] weeks) indicate that truthful

ratings influence the future rate of deceptive like rating. Negative correlations in

Fig. 3.10.a, 3.10.b explain the fact that the spamming decreases when the average
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truthful rating and like truthful rating increase. Positive correlations in Fig. 3.10.c

explain the decrease in deceptive like ratings with decrease in truthful dislikes.

3.4.4 Average Cross Correlation

The above results although establish a decent confidence in causality, they were

based on individual restaurants. To ascertain whether these patterns are prevalent,

we evaluated their trend in all restaurants. Time series of all the restaurants cannot

be shown as average as different restaurants have the buffered and spamming trend

at different instance of time. However, it is important to note that since the lags and

directions of correlations of buffered and reduced spamming share the same trend (see

Fig. 3.8, 3.10), it is sufficient to explore the average CCF values over all the restau-

rants. The average CCF plots have been shown in Fig. 3.11 which strengthen our

conclusion that the three segments of truthful rating time series are good predictors

of deceptive like rating time-series as there exist statistically significant correlations

at positive lags. We also see that the average CCF over all restaurants have small yet

significant correlation at lag of -1, -2 weeks. This may be due to prognostic behavior

of the restaurants where they can sense an imminent consumer dissatisfaction and

thus begin spamming beforehand to maintain their ratings.

38



(a) Truthful average rating

(b) Truthful like rating

(c) Truthful dislike rating

Figure 3.11: Average CCF plot. Red lines indicate the CCF value and blue lines

indicate the confidence interval bounds at 99% (p < 0.01) confidence.
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3.5 Predicting Dynamics of Deceptive Ratings

The preceding analysis shows that the dynamics of truthful ratings are harbingers

of deceptive like rating. Naturally this raises the research question: Can we predict

the dynamics of deceptive like ratings? This section employs vector auto regression

to predict deceptive like ratings on restaurants using the time-series of the three

truthful ratings.

Let yt denote a n × 1 vector of n time series variables. A p-lag vector auto

regression V AR(p) model takes the form:

yt = a+
p∑
i=1

Aiyt−i + εt (3.3)

where a is a bias vector of offsets with n elements, Ai are n × n autoregressive

matrices and εt is an n× 1 vector of serially uncorrelated innovations (error terms).

Training a VAR model entails fitting multiple time-series and parameter estimation

via maximum likelihood estimators. Upon parameter learning, values in yt+1 are

predicted using values of yt−W+1 where W is the width of the moving window.

We employed a 4 dimensional VAR with the deceptive like rating as the response

time-series and truthful average rating, truthful like rating and truthful dislike rat-

ing as covariate time-series. For this analysis, we consider moving window based

forecasting of deceptive like ratings for the first 60 weeks (1 year approximately).

We trained the model for each restaurant at lags 1 and 2, and predicted the next

week’s deceptive like rating. We experimented with three different training window

widths W=15,30,45 weeks. For the rating prediction from 16th week to 30th week,

model with training window of 15 weeks was used. For the rating prediction (see
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(a) Early Spamming

(b) Mid Spamming

(c) Late Spamming

Figure 3.12: Spamming Policies - Deceptive like rating prediction of the next week

using VAR Model. Forecasting was done using two p-lag VARs: dotted blue refers

to p=1 week lag model; red dashed refers to p = 2 week lag predictor. Solid green

line represents the actual rating.
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(a) Buffered Spamming

(b) Reduced Spamming

Figure 3.13: Causal spamming - Deceptive like rating prediction of the next week

using VAR Model. Forecasting was done using two p-lag VARs: dotted blue refers

to p=1 week lag model; red dashed refers to p = 2 week lag predictor. Solid green

line represents the actual rating.

42



Fig. 3.12) from 31st to 45th weeks, the model with training window of 30 weeks was

used and for the rating prediction from 46th to 60th weeks, the model with 45 weeks

training window was used. So, for example to predict the rating of 21st week, the

training data of 6th to 20 weeks was used whereas to predict the rating of 41st week,

the training data of 11th to 40th week was used. Thus, the window is moved each

time to include the number of weeks specified by the window length. Fig. 3.12, 3.13

show the deceptive like time series forecast using p-lag VARs (p=1,2 weeks) across

three training windows for early; mid; late spamming policies, buffered spamming

and reduced spamming for the representative restaurants in each policy (based on

closeness to cluster centroid). Table 3.2 reports the respective MAEs averaged over

all restaurants in each policy.

From Fig. 3.12, 3.13 and Table 3.2, we note the following observations. Across

all policies, the forecasts are decent improve with longer training windows. Con-

sequently, MAEs are higher for 15 week training windows than 45 week windows

across all spamming policies as longer training windows helps learn the complexities

of deceptive rating dynamics. Also, the VAR model with lag = 2 weeks performs

better than lag 1 as it can leverage the context of an additional previous time unit.

Comparing the MAE across the three policies, we see that early spamming has the

highest while late spamming has the lowest (see Table 3.2 and Fig. 3.12) indicating

predicting deception in early spamming is more difficult compared to mid and late

spamming. One reason for this could be that early spamming starts earlier, but their

spams are also caught earlier. This can prompt spammers to devise newer and more

complex ways of deception and altering their deception rate to avoid being filtered.
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Table 3.2: Mean Absolute Error for different training windows and different spam-

ming policies and trends for deceptive rating prediction.

Spamming Lag
Training Window

15 weeks 30 weeks 45 weeks Avg.

Early
1 0.55 0.17 0.11 0.28

2 0.42 0.16 0.11 0.23

Mid
1 0.28 0.12 0.06 0.15

2 0.22 0.1 0.05 0.12

Late
1 0.22 0.12 0.03 0.12

2 0.12 0.04 0.03 0.06

Buffered
1 0.33 0.16 0.14 0.21

2 0.2 0.15 0.12 0.16

Reduced
1 0.23 0.08 0.06 0.12

2 0.18 0.07 0.04 0.1
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This can result in a higher change rate in the deceptive ratings in early spamming

(e.g., see Fig. 3.12.a) making it harder to predict.

We found that buffered/reduced spamming trends percolated across all early,

mid and late spamming policies. So, the MAE reported in Table 3.2 for buffered

and reduced spamming have been contributed by all types of restaurants. This is

the reason why the average values of MAE for buffered (0.21, 0.16) and reduced

spamming (0.12, 0.10) are those between the MAE of late (0.12, 0.06) and early

(0.28, 0.23) spamming policies for both lag = 1, 2 VARs (see Table 3.2 last row).

Upon VAR forecasting, we see that predicting buffered is harder than reduced (Fig.

3.13). This is because in buffered spamming, the reviews are injected via a counter

buffer action (Fig. 3.7) making the changes in cumulative deceptive like rates higher

(Fig. 3.13.a) thereby making forecasting harder as the spam injection rates are

changing frequently. On the other hand, the deceptive reviews are decreasing in

reduced spamming, resulting in relatively easier forecasts.

3.6 Predicting Truthful Popularity and Rating

Do deceptive reviews affect a restaurants popularity and average ratings? In order

to answer this, we need a prediction framework that can forecast the popularity and

average rating of a restaurant gained from truthful reviews. Popularity here refers

to the total number of reviews in a time period. We studied factors that govern

the truthful average rating and popularity of the restaurants 6 months in future and

trained lasso regression models for future popularity/rating predictors. The response
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variables for popularity and rating predictors used the truthful average review rating

and total number of reviews beyond 6 months of the start date for model building.

Regression models were trained on truthful reviews of the first 10 weeks from the

start date and used the following four feature families:

1. OL: Opinion lexicon of positive/negative words

2. NG: Word n-grams (n=1,2)

3. ASL: Restaurant domain specific Aspect/Sentiment Lexicon obtained by fitting

the model in [47] to our data.

4. NTF: We computed the non-text features list below:

• Weekly rating of each week of the training period

• Overall rating of the training period

• Friend count of the top 10 reviewer

• Total Friend count of all the reviewers

• Average review per user

• Average review length

• Rating deviation in each week of the training period

• Overall rating deviation in the training period

• Funny count in the reviews

• Cool count in the reviews
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Table 3.3: MAE for truthful popularity regression.

Early Mid Late

NTF 3.94 2.02 1.52

NTF+OL 3.88 2.01 1.49

NTF+OL+NG 3.78 1.99 1.29

NTF+OL+NG+ASL 3.27 1.80 0.92

• Parking type Boolean features (street, private lot, garage, valet, validated,

on-site)

• Attire type Boolean features (casual, dressy, formal)

• Ambience Boolean features (casual, intimate, classy, touristy, trendy, up-

market, hipster, upscale, divey, romantic)

• Restaurant specific Boolean features (good for kids, accepts credit cards,

good for groups, price range, reservations, delivery, takeout, waiter ser-

vice, outdoor seating, Wi-Fi available, good for lunch, dinner, desert, late

night or breakfast, alcohol and wine, bar, noise level, cuisine available and

wheelchair accessibility)

• Miscellaneous characters like (?, smileys, !)

The start date for this experiment was set to the month where fake reviews started

accumulating for each policy (see Fig. 4, 5, 6) for setting a comparison reference

for the subsequent experiments. Table 3.3, 3.4 report the MAEs of prediction of
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Table 3.4: MAE for truthful average rating regression.

Early Mid Late

NTF 0.47 0.38 0.16

NTF+OL 0.44 0.30 0.15

NTF+OL+NG 0.36 0.29 0.14

NTF+OL+NG+ASL 0.30 0.28 0.13

popularity and average rating for restaurants in each policy using 10-fold cross-

validation (over all restaurants in each policy).

We employed forward feature selection of four feature families incrementally

adding each family in the order NTF, OL, NG and ASL. From Table 3.3, 3.4 ,

we note that across all three policies, we that the regression model performs better

as we continue adding the features OL, NG and ASL respectively in both popular-

ity and rating prediction showing that natural language signals were helpful. This

could be argued by the fact that truthful review contents invariably leave sentiment

signals that eventually contribute to the truthful popularity and average ratings of

a restaurant. It is important to note that the MAEs for this task is higher in early

spamming than mid/late spamming policies. One reason for this could be that the

effect of early spamming altered the actual popularity/average rating response for a

restaurant in the policy that the regression model could not pick (as it was trained

using truthful reviews).
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Table 3.5: MAE comparison for popularity regressor.

Early Mid Late

Truthful only 3.27 1.80 0.92

All reviews 3.97 2.38 1.16

Table 3.6: MAE comparison for rating regressor.

Early Mid Late

Truthful only 0.30 0.28 0.13

All reviews 0.37 0.35 0.24

3.6.1 How reliable are Yelp’s filtered reviews?

Ideally, deceptive reviews are injected for spamming and are not grounded on true

experience, thereby regarded as fake. Hence, the information contained in fake re-

views should be detrimental in predicting the future popularity or average rating of

a restaurant. In other words, if we have a hypothetical regression oracle (a perfect

guesser/ideal solver) for predicting the future truthful popularity and average rating

of a restaurant trained on truthful reviews alone, then upon adding fake reviews to

the training data for the regression oracle, the error on predicting the response should

increase because the oracle has a noise in its training (imparted by fake reviews).

This result can be a basis to indirectly validate Yelps filtering as follows.

Although we don’t have a regression oracle for rating/popularity predictor, the
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regression models trained in Table 3.3, 3.4 are of high quality as the MAE of popu-

larity is in the range of roughly 0,4 reviews (given median popularity as 65 reviews)

and the MAE of the average rating lies in the range of [0.13,0.4] on a normalized

average rating scale of [0, 1]. Hence, the regressors can be used as basis for testing

the quality of Yelps filtering. We again trained popularity/rating regressors (using

the same settings as in Section 3.6) with the full feature set NTF+OL+NG+ASL but

also added Yelps filtered reviews along with truthful reviews in the training set (i.e.,

used all reviews in training). Table 3.5, 3.6, report the MAEs for popularity/rating

regressors across all three policies. We note a statistically significant (p < 0.03)

increase in MAE upon adding review filtered by Yelp across all policies (see the All

reviews row in Table 3.5, 3.6).

Statistically significant increase in the MAEs of the regression models upon chang-

ing the training set renders a high confidence that the altered training set imparts a

considerable noise, i.e., the result implies that the reviews filtered by Yelp imparted

noise and were actually harmful to popularity/rating prediction. In other words, the

reviews which imparted the noise in the popularity/rating models were not represen-

tative of truthful experiences (or potentially fake) and Yelp filtered those reviews.

This indirectly raises confidence that Yelp’s filter although may not be perfect is

reasonably reliable.
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3.7 Predicting Imminent Future

The previous section provided us insights on long term (6 month) future prediction of

a restaurant’s popularity and rating. However, in the restaurant business, imminent

prediction (e.g., next weeks popularity/rating) based on the review data till current

time is more useful as it can help assess the recent impact of fake reviews or even

help restaurants devise their plans easily. This section employs VARs on popularity

and cumulative rating time-series to predict the imminent future performance of a

restaurant. We found that the restaurant businesses have different dynamics for

different days of the week. So, instead of using week or month as a time unit, we

devised a novel time unit based on pooling multiple days of a week. For each week,

Mon/Tue jointly formed the first time-step, Wed/Thu the second, and Fri/Sat/Sun

the third followed by next weeks Mon/Tue as the fourth time-step.

3.7.1 Popularity/Rating Time Series VARs

To build good VAR predictors of time-series of popularity and cumulative average

rating, we investigated various time-series features as covariates and generated their

respective CCF plots with the time-series of truthful popularity and truthful average

rating as response variables. Then for time-series feature selection, we sampled

covariates that had significant CCF values, at positive lags. The time-series features

(covariates, X(t)) for each restaurant are tabulated in Table 3.7.

We show the CCF plots for selected covariates in Fig. 3.14, 3.15. We see that

the features: (i) total number of friends of reviewers, and (ii) number of reviewers,
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(a) # of friends of reviewers

(b) # of reviewers

Figure 3.14: Truthful Popularity CCF Plot. Red lines indicate the CCF value and

blue lines indicate the confidence interval bounds obtained 99% confidence (p < 0.01).
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(a) Dislike Count

(b) # of reviewers with 5+ reviews

Figure 3.15: Truthful Average Rating CCF Plot. Red lines indicate the CCF value

and blue lines indicate the confidence interval bounds obtained 99% confidence (p <

0.01).
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Typed day index of time-step t : -1 for Mon/Tue, 0 for Wed/Thu,

and +1 for Fri/Sat/Sun.

Total # of friends of all the reviewers in time-step t

# of distinct reviewers in time-step t

# of reviewers posting 5 reviews within [-∞,t]

# of reviewers outside of the Chicago area in time-step t

Standard deviation of the rating of the reviews in time-step t

# of dislike reviews in time-step t

# of like reviews in time-step t

# of +ve lexicon words normalized by review length in time-step t

# of -ve lexicon words normalized by review length in time-step t

# of words (lol, !, ?, etc) normalized by review length in time-step t

# of restaurant specific aspect sentiment words normalized by

review length in time-step t

Table 3.7: Time series features for VAR Model

54



Table 3.8: Mean Absolute Error for next time-step’s truthful popularity (# of re-

views) prediction using VAR model.

Training Window
Early Mid Late

lag1 lag2 lag1 lag2 lag1 lag2

50 time-steps 0.161 0.149 0.143 0.140 0.108 0.102

100 time-steps 0.144 0.138 0.136 0.130 0.092 0.089

150 time-steps 0.130 0.124 0.122 0.120 0.088 0.082

Average 0.145 0.137 0.134 0.130 0.096 0.091

Table 3.9: Mean Absolute Error for next time-step’s truthful rating (# of reviews)

prediction using VAR model.

Training Window
Early Mid Late

lag1 lag2 lag1 lag2 lag1 lag2

50 time-steps 0.161 0.149 0.143 0.140 0.108 0.102

100 time-steps 0.144 0.138 0.136 0.130 0.092 0.089

150 time-steps 0.130 0.124 0.122 0.120 0.088 0.082

Average 0.145 0.137 0.134 0.130 0.096 0.091
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have significant positive correlation at positive lags, indicating that they are good

predictors of restaurant popularity in next time step (Fig 3.14.a, b). Similarly,

for the case of next time step’s average rating, the time-series of dislike count of

reviews (Fig. 3.15.a) shows a significant negative correlation which is arguable as

having more dislike reviews in previous time-steps can impact the cumulative average

rating in future time-steps. Other significantly correlated features include, number

of reviewers with 5 or more reviews (Fig 3.15.b) which is quite intuitive. In fact all

the 12 features listed above had a significant CCF value at lags 1 and 2 periods. All

twelve have thus been used as time series in the VAR model.

We trained VARs with the time-series of the 12 covariates (Table 3.7) and 2 re-

sponse variables (popularity/average rating) for each restaurant at lags 1 and 2. We

predicted the next time-step truthful popularity and truthful average and experi-

mented with 3 moving training window widths, W=50,100,150 time-steps. Similar

to Section 3.5, we use moving window based forecasting. Table 3.8, 3.9 show the

corresponding MAEs averaged over all restaurants in each policy.

We note that across all policies, longer training windows improve imminent popu-

larity and rating predictions as seen by the tightness of fit in Fig 16, 17 and respective

MAEs in Table 3.8, 3.9. VAR models with lag 2 are better as they yield one more

time step to regress on. Comparing the MAE across the three policies, we see that

for early spamming, it is harder to predict the next time-steps popularity and rating

than mid and late spamming. This is because early spamming having higher change

rate of deceptive review injection (see Section 3.5) makes the prediction of imminent

popularity and rating more difficult. It is also important to note that the trained
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models are good predictors of next time-step popularity and average rating as MAEs

are quite low. The MAE of popularity is in the range of [0.53, 1.02] reviews (given

median popularity per time-step is 19) and the MAE of rating lies in the range [0.082,

0.161] on a normalized scale [0, 1].

3.7.2 Modeling Deceptive Noise via Exogenous Variables

How do fake reviews filtered by Yelp affect the imminent future predictions of a

restaurant’s popularity and rating? Answering this can render insights into the

robustness of Yelp’s filtering on affecting the imminent future popularity/rating of

restaurant. It can also improve the confidence on the reliability of Yelp’s filtering

(strengthening the conclusions Section 3.6.1). Similar to the analysis in Section 3.6.1,

we include the filtered reviews in the VARs trained in Section 3.7.1 in predicting the

imminent truthful popularity and rating. However, since our response variable are

time-series, we cannot directly add the filtered reviews in the training set. Hence,

we modeled the filtered reviews as exogenous variables in our VAR models. A VAR

with exogenous variables takes the following form:

yt = a+Xt.b+
p∑
i=1

Aiyt−i + εt (3.4)

where Xt is an n × r matrix representing the r exogenous values for each of the n

elements in yt. The other terms are similar to the traditional VARs detailed in Section

3.5. Exogenous variables can be seen as additional signal for each time-series. In our

setting, we only used r = 1 exogenous value for each time-series. Specifically, the

exogenous variables took values of all the 14 features used in the preceding analysis
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Table 3.10: Mean Absolute Error for next time-step’s truthful popularity (# of

reviews) prediction using VAR model with the deceptive review series as exogenous

inputs.

Training Window
Early Mid Late

lag1 lag2 lag1 lag2 lag1 lag2

50 time-steps 1.44 1.28 1.36 1.32 1.18 1.08

100 time-steps 1.32 1.14 1.28 1.27 1.09 1.07

150 time-steps 1.26 1.12 1.22 1.20 0.98 0.92

Average 1.34 1.18 1.29 1.26 1.08 1.02

(Section 3.7.1) with the exception that those features were calculated only on the

filtered reviews.

We repeated the experiments in Table 3.8, 3.9 with filtered reviews included in

the training of VAR models as exogenous variables. The MAEs have been reported in

Table 3.10 and 3.11. We note that across all policies and both rating and popularity

predictors the MAE of VARs with filtered reviews as exogenous variables is higher.

The increase in MAEs for all policies and across both popularity and rating predictors

were statistically significant at 98% confidence levels (using a paired t-test). All other

trends between the relative errors across policies and prediction performance based

on lags remain the same as in Table 3.8, 3.9.

Thus, additional knowledge gained upon using the filtered reviews in VARs for

popularity and rating predictions is actually harmful indicating the filtered reviews

as being noisy and non-informative in predicting the imminent truthful popularity
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Table 3.11: Mean Absolute Error for next time-step’s truthful rating prediction using

VAR model with the deceptive review series as exogenous inputs.

Training Window
Early Mid Late

lag1 lag2 lag1 lag2 lag1 lag2

50 time-steps 0.344 0.325 0.312 0.302 0.288 0.253

100 time-steps 0.323 0.298 0.276 0.270 0.245 0.217

150 time-steps 0.283 0.212 0.244 0.200 0.196 0.194

Average 0.317 0.278 0.277 0.257 0.243 0.221

and ratings for a restaurant. In other words, those filtered reviews were likely to

be untrue experiences as using them in the exogenous variables of 12 modalities

in Table 3.7 increased the error against using the same 12 modalities on truthful

reviews which had significant cross correlations with the target responses (see Fig.

3.14, 3.15). Yelp was able to detect those reviews as fake and filter them which not

only shows that Yelp’s filter is decent but also indicates its resilience that allowed it

to pass our tests on imminent future predictions of rating and popularity.

3.8 Spam Detection in Yelp

Having characterized the temporal dynamics of opinion spamming, can we improve

deception prediction beyond the existing state-of-the-art approaches leveraging the

knowledge of temporal dynamics? To answer this we used our Yelp data and its

filtering labels (filtered: fake; non-filtered-truthful) to set up the fake review detection

59



as a classification problem. We use two state-of-the-art approaches as our baselines:

Ott et al., (2011) [56] which employed linguistic n-grams (NG) and Mukherjee et al.

(2013) [52] which uses a set of 8 anomalous behavioral features (BF) (e.g., reviewer

deviation, percentage of positive reviews, etc). Classification settings were same as

in [52], except that we partitioned the Yelp data by the spamming policies. We

trained linear kernel SVMs with 5-fold cross validation on balanced data (using

under-sampling). The soft margin parameter was tuned using cross validation and

set to C = 1.5. From our analyses in this work, we derived a set of Time-Series

Features (TSF) listed below:

• The truthful average rating of the previous week reviews only

• The truthful like rating of the previous week reviews only

• The truthful dislike rating of the previous week reviews only

• The truthful review count of the previous week

• The truthful like review count of the previous week

• The truthful dislike review count of the previous week

• The truthful average rating till the review date

• The truthful like rating till the review date

• The truthful dislike rating till the review date

• The standard deviation of the ratings of the previous week deceptive reviews
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Table 3.12: SVM 5-fold CV classification results across time series features (TSF),

behavioral features (BF), and n-gram features (NG) on Restaurants employing Early

Spamming.

Feature Setting P R F1 A

Ngrams (NG) 63.5 77.1 69.6 65.0

Behavior (BF) 82.1 85.3 83.7 84.4

TSF 65.2 92.7 76.5 73.1

NG+BF+TSF 84.9 94.8 89.6 89.0

• The deceptive average rating of the previous week reviews only

• The deceptive like rating of the previous week reviews only

• The deceptive dislike rating of the previous week reviews only

• The deceptive review count of the previous week

• The deceptive like review count of the previous week

• The deceptive dislike review count of the previous week

• The deceptive average rating till the review date

• The deceptive like rating till the review date

• The deceptive dislike rating till the review date

We compare TSF and TSF+NG+BF against the baselines in Table 3.12, 3.13

and 3.14. We note that TSF alone does significantly better than linguistic n-grams,

61



Table 3.13: SVM 5-fold CV classification results across time series features (TSF),

behavioral features (BF), and n-gram features (NG) on Restaurants employing Mid

Spamming.

Feature Setting P R F1 A

Ngrams (NG) 64.2 77.7 70.3 67.5

Behavior (BF) 83.3 86.5 84.9 84.7

TSF 67.6 93.1 78.3 75.1

NG+BF+TSF 85.9 94.9 90.2 89.6

Table 3.14: SVM 5-fold CV classification results across time series features (TSF),

behavioral features (BF), and n-gram features (NG) on Restaurants employing Late

Spamming.

Feature Setting Precision Recall F1-score Accuracy

Ngrams (NG) 64.8 78.4 71.0 69.3

Behavior (BF) 83.9 87.2 85.5 86.2

TSF 68.5 93.9 79.2 76.4

NG+BF+TSF 86.3 95.3 90.6 90.1

One class SVM 61.3 68.4 64.6 66.5

62



but is weaker than the 8 anomalous behaviors proposed in [52]. However, upon

combining TSF with NG and BF feature sets, we obtain the highest F1-scores which

are significantly better than both linguistic and behavioral features demonstrating

that the discovered temporal dynamics have a value in improving deception detection

beyond just characterization. We also performed feature ablation (not shown due to

space constraints) and found deceptive review count, like and dislike ratings to be

among the most discriminative features. Since we have a imbalanced dataset, we want

to see if one class classifier performs better. We performed trained using the positive

class using all the three sets of features. However, the classification performance

decreased implying the inability of one class model’s separation of classes.

3.9 Summary

We performed an in-depth analyses on the temporal dynamics of opinion spamming.

It used a large-set of reviews from Yelp restaurants and its filtered reviews to char-

acterize the way opinion spamming operates in a commercial setting. Experiments

using time-series analyses showed that there exist three dominant spamming poli-

cies: early, mid, and late across various restaurant. Our analyses showed that the

deception rating time-series for each restaurant had statistically significant correla-

tions with the dynamics of truthful ratings time-series indicating that spam injection

may potentially be coordinated by the restaurants/spammers to counter the effect

of unfavorable ratings over time. Causal time-series analysis of deceptive like rat-

ing timeseries as response with different covariates time-series (e.g., average truthful
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ratings, truthful like and truthful dislike ratings) established the presence to two

additional trends of spam injection: buffered and reduced spamming. The covariate

time-series along with various other features were then used to predict future decep-

tive ratings, long term/imminent future popularity and rating of a restaurant in the

presence of deception using vector auto regression. The framework further allowed

us to indirectly validate Yelp’s filter which was shown to be reasonable. We also

derived a novel suite of time-series features from our discovered temporal dynamics.

Experiments on fake review detection showed the effectiveness of our features that

significantly outperformed relevant baselines for the task of opinion spam detection

establishing a value of the temporal dynamics in spam detection beyond characteri-

zation.
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Chapter 4

Spam Detection in Social

Networks

S. KC, S. Maity, and A. Mukherjee. Enwalk: Learning network features for spam

detection in twitter. Proceedings of International Conference on Social Computing,

Behavioral-Cultural Modeling and Prediction and Behavior Representation in Mod-

eling and Simulation, pages 90-101,2017. [22]

In this chapter, we study the social network behaviors in Twitter. Twitter is

one of the most powerful social media extensively being used. The behaviors of

anomalous users are important to characterize and detect them. Further, the social

relationship pattern created by anomalous users is also important as they characterize

their effectiveness to spread the message to the public. We therefore exploit both

the local node feature and the social network to model the system. We use random

walks biased by nodes’ properties to model their behavior. Results on real-world
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data verifies the effectiveness of our model.

4.1 Twitter Dataset

For this work, we use the Twitter dataset used in [85]. It contains 17 million users

having 467 million Twitter posts covering a seven month period from June 1 2009

to December 31 2009. To extract the network graph for those 17 million users, we

extracted the follower-following topology of Twitter from [24], which contains all the

entire twitter user profiles and their social relationships till July 2009. We pruned

the users so that they have social relationship in [24] and tweets in [85] and are left

with 4,405,698 users.

Twitter suspends the accounts involved in the malicious activity1. To obtain

the suspend status of accounts, we re-crawled the profile pages of all the 17 mil-

lion users. This yielded a total of 100,758 accounts that had been suspended (the

profile page redirects to the page https://twitter.com/account/suspended). We use

this suspension signal as the primary signal for evaluating our models as the pri-

mary reason for account suspension is the involvement in the spam activity. How-

ever, there might be other reasons like inactivity. So, to ensure the suspended ac-

counts are spammers, we further checked for malicious activities for those users.

For this, we examined various URLs from the accounts timeline and checked them

against a list of blacklisted URLs. We use three blacklists: Google Safebrowsing

(http://code.google.com/apis/safebrowsing/), URIBL (http://uribl.com/) and Joewein

1https://support.twitter.com/articles/18311
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(http://www.joewein.net/). We found that 75% of suspended accounts posted at least

one shortened URL blacklisted. We also looked for duplicate tweets enforced for pro-

motion. After applying these additional criteria, our final data comprised of 86,652

spammers and 4,319,046 non-spammers, which was used for evaluating our model.

4.2 Spam Analysis

Characterizing the dominant spammer types is important as it is the first step in

understanding the dynamics of spamming. We studied the follower-following network

creation strategies of the spammers. We found that there are two main types of

spamming based on the follow-following strategies: (1) follow-flood spammers and (2)

vigilant spammers. So, the question arises why some spammers are more successful?

In this section, we study the behavioral aspects of tweet dynamics of spammers. We

later leverage them in model building.

4.2.1 Spammer Type

To analyze the strategies of follower-following, we calculated the number of followers

(users that are following the current user) and the number of followings (users that

the current user is following) for each spammer. Fig. 4.1 shows the plot in log scale

count. It shows that the follower and following count differ for each spammers. The

users with more followers than followings tend to be more successful as they have

been able to earn a lot of users who are following them. So, we define success rate
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Figure 4.1: Follower-Following Count of Spammers. Each Blue dot represents a

spammer.
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as:

sru =
#offollowersofu

#offollowingsofu
(4.1)

Based on the network expansion success rate, we find that there are two dominant

spamming strategies:

• Follow-flood Spammers: These are less successful spammers who just flood the

network with friendship initiation so as to get followers who they can influence.

We categorize the spammers with success rate (sru) less than 1 in this type.

• Vigilant Spammers: These are successful spammers who take a cautious ap-

proach of friendship creation and content posting. Spammers with success rate

(sru) greater or equal to 1 are categorized as vigilant.

To learn the dynamics of each spammer type, we further analyzed the success rate of

spammers with other behavioral aspects activity window, usage of promotion words

or blacklist words and hashtag mentioning.

4.2.2 Activity Window

We compute the activity window as the number of days a user is active in the

twitter network. Since, we dont have the exact time when a user was suspended, we

approximate the time of suspension as the date of the last tweet tweeted by the user.

We found that the average activity window of a vigilant spammer is 138 days with

a standard deviation of 19 days compared to the average of 35 days and standard

deviation of 12 days for follow-flood spammers. Although, the basic strategy of
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any spammer is to inject itself into the network and emit the spam contents, the

success rate also depends how long it can remain undetected in the network. Vigilant

spammers therefore have a higher success rate.

4.2.3 Fraudulence

One of the primary reason to spam is to inject constant fraudulence information. So,

we analyzed the fraudulence behavior of the two types of spammers. We labeled the

tweets containing promotional, adult words or the blacklisted urls as fraud tweets.

So, we compute fraudulence as:

fru =
#offraudtweetsofu

total#oftweetsofu
(4.2)

We found that the average fraudulence of vigilant spammers is 0.34 compared to

0.86 for follow-flood spammers. The follow-flood spammers are thus more involved

in spam.

4.2.4 Mentioning Celebrities and Popular Hashtags

Mentioning the popular celebrities or hashtags empowers a tweet. So, one of the

common strategies of spammers is to include the popular ones in their tweets. We

studied mentioning phenomenon and found that vigilant spammers mention half the

celebrities per tweets compared to the follow-flood spammers.
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4.3 Learning Latent Features for Spam Detection

Having characterized the dynamics of spamming in Twitter, can we improve spam

detection beyond the existing state-of-the-art approaches? To answer this we used

our Twitter data to setup a latent feature learning problem in networks. Our analysis

is general and can be used to any social network.

4.3.1 Overview

As discussed in the previous section, the dynamics of Twitter are interesting and can

be leveraged to catch the spammers. So, we use the spam dynamics to formulate

the latent feature learning in social networks. Let G = (V,E,X) be a given network

with vertices, edges and the social network data of users in the social network. We

aim to learn a mapping function f :V → Rd from nodes to a d-dimensional feature

representations which can be used for prediction. The parameter d specifies the

number of dimensions of the latent features such that the size of f is |V | × d.

We present a novel sampling strategy that samples nodes in network exploiting

the spam dynamics such that the equivalent neighborhood EN(u) ⊂ V contains the

node having similar tweeting behaviors with the node u. We generate EN(u) for

each nodes in the network and predict which nodes are the members of us equivalent

neighbors based on the learnt latent features f . The basic rationale is that we wish to

learn latent feature representations for nodes that respect equivalent neighborhoods

(which are based on the spamming dynamics) so that classification/ranking using

the learned representation yields results that leverage the spamming dynamics.
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4.3.2 The Optimization Problem

As our goal is to learn the latent features f that best describe the equivalent neigh-

borhood EN(u) of node u, we define the optimization problem as follows:

max
f

∑
uεV

logPr(EN(u)|f(u)) (4.3)

To solve the optimization problem, we extend the SkipGram architecture [13, 62,

76] which approximates the conditional probability using an independence assump-

tion that the likelihood of observing an equivalent neighborhood node is independent

of observing any other equivalent neighborhood given the latent features of the source

node.

Pr(EN(u)|f(u)) = ΠvεEN(u)Pr(v|f(u)) (4.4)

Since the source node and the equivalent neighborhood node have symmetric

equivalence, the conditional likelihood can be modeled as softmax unit parameterized

by a dot product of their features.

Pr(v|f(u)) =
exp(f(v).f(u))∑
tεV exp(f(t).f(u))

(4.5)

The optimization problem now becomes:

max
f

∑
uεV

[
− logZu +

∑
tεEN(u)

exp(f(t).f(u))
]

(4.6)

For large networks, the partition function Zu =
∑
tεV exp(f(t).f(u)) is expensive

to compute. We thus use negative sampling [43] to approximate it. We use stochastic

gradient descent over the model parameters defining the features f . Feature learning
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methods based on Skip-gram architecture are developed for natural language [42].

Since natural language texts are linear, the notion of a neighborhood can be naturally

defined using a sliding window over consecutive words in sentences. Networks are

not linear, and thus a richer notion of a neighborhood is needed. To mitigate this

problem, we use multiple biased random walks each one in principle exploring a

different neighborhood [13].

4.3.3 Equivalent Neighborhood Generation

The analyses of spam dynamics leads to an important inference that the nodes are

similar if they have similar spam dynamics. We thus want to exploit those dynamics

to generate the equivalent neighborhood EN(u) for the node u. Nodes in a network

are equivalent if they share similar behaviors. We use the random walk procedure

which can be biased to generate the equivalent neighborhood.

We bias the random walks based on the four dynamics: common time of activity

(cttv), success rate difference (srtv), fraudulence commonalities (frtv) and common

mentioning in tweets (metv). We calculate each dynamics as follows:

cttv =
# of days with common activity

# of days either t or v is active
(4.7)

srtv = 1−
∣∣∣∣max(1,

# of t′s followers

# of t′s followings

)
−max

(
1,

# of v′s followers

# of v′s followings

)∣∣∣∣ (4.8)

frtv = 1−
∣∣∣∣max(1,

# of t′s fraud tweets

# of t′s tweets

)
−max

(
1,

# of v′s fraud tweets

# of v′s tweets

)∣∣∣∣
(4.9)

metv =
# of common mentions between t and v

total # of mentions between t and v
(4.10)
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For all the above four features, a higher value represents a closer connection between

the pair of nodes. For a source node u, we generate a random walk of fixed length

k. The ith node ci of a random walk starting at node c0 is generated with the

distribution:

P (ci = tci−1 = v) =

 βvt if(v, t)εE

0 Otherwise
(4.11)

where Bvt is the normalized transition probability between nodes v and t. The

transition probability are computed based on the spam dynamics so that the source

node has equivalent spam dynamics with its neighborhood nodes. We define four pa-

rameters which guide the random walk. Consider that a random walk just traversed

edge (t, v) to now reside at node v. The walk now needs to decide on the next step

so it evaluates the transition probabilities on edges (v, x) leading from v. We set the

transition probability to Bvx = αpqrs(t, v, x).wvx, where

αpqrs(t, v, x) = p.(cttv+ctvx)+q.(srtv+srvx)+r.(frtv+frvx)+s.(metv+mevx) (4.12)

where the parameters p, q, r, s are used to prioritize the tweet dynamics. To select

the next node, the random walk is biased towards the nodes which have similar tweet

dynamics to both the current node and the previous node in the random walk.

4.3.4 Algorithm:ENWalk

Algorithm 1 details our entire scheme. We start with λ fixed length random walks

at each node l times. To obtain each walk, we use GetEquivalentNeighbor, the

random sampler that samples the node based on the transition probabilities com-

puted in equation 4.12. It is worth noting that the tweet dynamics between the
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Algorithm 1: ENWalk (G, d, λ, l, k, [p, q, r, s])

Input: graph G(V,E,W,X)

embedding dimensions d

walks per node λ

walk length l

context size k

tweet parameters p, q, r, s

Output: matrix of latent features F

1. (CT, SR, FR,ME) = Preprocess(G, p, q, r, s)

2. Initialize walks to empty

3. for i = 1 to λ do

4. for each viεV do

5. Initialize walk to vi

6. for j = 1 to l do

7. x = GetEquivalentNeighbor(G,CT, SR, FR,ME,walk[j],W )

8. Append x to walk

9. Append walk to walks

10. F = StochasticGradientDescent(k, d, walks)
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nodes (CT, SR, FR,ME) defined in equation 4.7, 4.8, 4.9, 4.10 respectively can be

pre-computed. Once, we have random walks we can obtain d dimensional numeric

features using the optimization function in equation 4.6 with a window size of k. The

three phases preprocessing, random sampling and optimization are asynchronous so

that ENWalk is scalable.

4.4 Experiment

We applied ENWalk to twitter dataset to evaluate its effectiveness. In this section,

we discuss the baseline methods and compare with ENWalk for classification and

ranking.

4.4.1 Baseline Methods

For classification, we compare our model with two graph embedding methods: Deep-

walk and node2vec. We use PageRank and Markov Random Field (MRF) approaches

for ranking of spam nodes. We did not use feature extraction techniques like [1] as

they only use the node features without using the graph structure.

Deepwalk [62]. It is the first approach to integrate the language modeling for

network feature representation. It generates uniform random walks equivalent to

sentences in the language model.
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Node2vec [13]. It is another representation learning for nodes in the network. It

extends the language model of random walks employing a flexible notion of neighbor-

hood. It designs a biased random walk using BFS and DFS neighborhood discovery.

PageRank Models. PageRank is a popular ranking algorithm that exploits the

link-based structure of a network graph to rank the nodes of the graph.

PR = (1− α) ∗M ∗ PR + α ∗ p (4.13)

where M is transition probability matrix, p represents the prior probability with

which a random surfer surfs to a random page and α is damping factor. For varia-

tions of PageRank, we vary the values of M and p using trustworthiness of a user.

Trustworthiness (fTrust) is using a set of features (# of Blacklist URL, # of tweets,

# of mentions, # of duplicate tweets, # of tweets containing adult/bad words, #

of tweets containing violent words, # of tweets containing promotional words and

the total time of activity for the user). We manually labeled fTrust of 800 users (400

non-suspended and 400 suspended). We gave a real-valued trustworthiness score be-

tween 0 and 1. A value closer to 0 means the user is most likely a spammer. We then

obtain the weight of the features by learning linear regression model on the users.

Traditional PageRank: We use the default PageRank settings for M and p.

Trust Induced and Trust Prior: Transition matrix M is modified as Muv = Muv ∗

fTrust(v),∀u,∀v and fTrust(v) is used as prior probability.

Markov Random Field Models. Markov Random Fields are undirected

graphs (and can be cyclic) that satisfy the three conditional independence prop-

erties (Pairwise, Local, and Global). For the inference, we use the Loopy Belief
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Table 4.1: Propagation matrix.

Spammer Mixed Non-spammer

Spammer 0.80 0.40 0.025

Mixed 0.15 0.50 0.125

Non-spammer 0.05 0.10 0.850

Propagation algorithm. Inspired by spam detection in [8], we define three hidden

states Spammer, Mixed, Non-Spammer and the Propagation Matrix is used as in Ta-

ble 4.1. Logically, spammers follow other spammers more (hence 0.8 probability) and

non-spammers tend to follow other non- spammers. We also include the mixed state

to include those users who are difficult to categorize spammers or non-spammers.

4.4.2 Node Classification

We obtained the feature representations from three different algorithms: ENWalk,

node2vec and DeepWalk using the settings used in node2vec and DeepWalk. All the

feature learnings are unsupervised. Similar to node2vec and DeepWalk, we used d =

128, λ = 10, l = 80, k = 10. We found that the parameters d, λ, l, k are sensitive in

a similar style to node2vec and DeepWalk. We used each feature representation as an

example for standard SVM classifier. We used 10-fold cross-validation using balanced

data obtained from sub-sampling of the negative class. From the classification results

in Table 4.2, ENWalk performs better. It has higher precision, recall, F1-score and

accuracy due to the biased random walks.
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Table 4.2: Classification Results: Precision, Recall, F1-score and Accuracy.

Model Precision Recall F1-score Accuracy

DeepWalk 0.44 0.49 0.46 0.51

Node2vec 0.46 0.53 0.49 0.57

ENWalk 0.59 0.66 0.62 0.71

4.4.3 Node Ranking

We use two metrics to evaluate the ranking results: Cumulative Distribution Func-

tion of Suspended Users and Precision@n. We rank all the nodes in the graph and

provide a node rank percentile. For each node rank percentile, we compute the num-

ber of suspended users in that percentile. We plot the cumulative distribution func-

tion for those suspended users. We also calculate the Area Under Curve (AUC) for

the CDF. The higher the area the better the model. Precision@n of Suspended Users

evaluates how many top n nodes suggested by a model are actually the suspended

users. This is effective to screen the nodes that are probable being spammers. To

evaluate the ranking performance of ENWalk, we use Logistic Regression on the fea-

tures obtained from the model. We compare our model with PageRank and Markov

Random Field models. We present the CDF in Fig 4.2. We can see that ENWalk

outperforms all the baseline models. We also computed the AUC and precision@100

(Table 3). A higher AUC and precision@100 signifies the ability to profile the top

spammers.
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Figure 4.2: Cumulative Distribution Function of Suspended Nodes
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Table 4.3: Ranking Results: Area Under CDF Curve and Precision@100

Model Area Under CDF Curve Precision@100

PR-T 0.4059 0.02

PR-TITP 0.4181 0.03

MRF 0.4944 0.02

DeepWalk 0.5502 0.05

node2vec 0.5836 0.05

ENWalk 0.6335 0.12

4.5 Summary

We studied the problem of identifying spammers in Twitter who are involved in

malicious attacks. This is very much important as it has many practical applications

in todays world where almost everyone is actively social online. We proposed a

method of spam detection in Twitter that makes use of the online network structure

and information shared. This data driven approach is important as there is a lot of

data of social medias online these days. We demonstrated the helpfulness of biased

random walks in learning node embedding that can be used for classification and

ranking tasks.
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Chapter 5

Popularity Prediction in Online

Marketplace

S. KC, S. De Sarkar, and A. Mukherjee. Product Popularity Modeling Via Time

Series Embedding. Proceedings of 2018 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM), pages 650-653, 2018.

[21]

5.1 Introduction

With the growth of online marketing, leveraging consumer opinions as reviews are

key to business intelligence. In the past decade, several researches have explored

different facets of online reviews such as review helpfulness votes [75], sales [89],

competition [87] and spam [18, 20, 22]. However, current research discounts the
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dynamics of popularity and competition. Further, how does the popularity fare when

two products are competing in the same market? How well can these be predicted?

In this work, we choose Amazon as our case-study to explore these question.

Evaluating popularity is a subjective matter and has different meanings in dif-

ferent domains. High number of views can be considered more popular in Youtube.

More likes and comments can be an indication of popularity in social networks. In

online marketplace like Amazon, sales or number of reviews can be attributed to

popularity. Amazon does not publicly release sales data but each review in Amazon

has a Amazon Verified Purchase (AVP) tag i.e., a signature to attest whether the

reviewer indeed purchased the product from Amazon. Review of consumer who did

not buy the product on Amazon is tagged non-AVP. AVP reviews are more genuine

as consumer purchase is verified. Whereas, anyone claiming to use a product can

write non-AVP review. So, we consider only the AVP reviews in our experiment as

they are closer to verified sales and review. To generate the popularity time series,

we group the number of AVP reviews in a week. Thus, we refer the time series of

popularity as Product Popularity based on Sales Review Volume (PPSRV). We will

use the term PPSRV for popularity in rest of the paper.

In this work we leverage neural networks to generate an embedding of a time-

series and explore its effectiveness in future prediction. We feed the past time series

to neural networks in order to obtain the time series embeddings. We train our time

series models on moving window and predict the next time unit value using the time

series embeddings. We further extend our model for a competing environment where

two products are competing for the same set of consumers. Experimental results
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show the time-series embeddings learned outperform the existing state-of-the-art

approaches for popularity prediction.

5.2 Time Series Embedding Framework

In this section, we formally define the problem and propose time series embedding,

a fixed size vector that can be used for predicting the future time series.

We start by assuming that we are given a time series of popularity. This could

be a time series of sales, reviews count received in a consumer review website, views

count of Youtube video or number of likes, comments and shares in social network.

To make a better prediction, allied time series like sentiment and rating can also be

employed. Now we want to convert the fixed length time series into a d-dimensional

features which we refer as embedding. The embedding can later be used for machine

learning tasks like classification, regression and prediction.

We formally define this as a problem of time series prediction and divide into

two components: (1) learning embeddings of past time series (2) prediction of future

time series. Since, there are various types of online content with different popularity

measure and occur at different times, we devise a generic learning framework that

generates a set of features for a fixed width time window. We use the learned latent

features to predict the future popularity. Next, we extend our model of feature

learning in a competing environment. Finally, we perform more experiments in

competition dataset using embeddings and evaluate them.
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5.2.1 Model

We propose the concept of a time series embedding: learning latent features from

time series using deep neural networks. Recurrent Neural Networks are popular form

of neural networks efficient for temporal history capturing. We use different forms of

RNN to obtain the time series embedding. Time series embedding for a fixed sized

time series of length (l) is fed to a neural network model to get a fixed size vector

that represents the latent features of the input time series. We refer to these features

as time series embeddings as they embed the knowledge of the time series. Next we

employ these embeddings to predict the future time series. Thus, we summarize the

history of popularity with embeddings and predict future popularity as shown in Fig.

5.1. We further explain the two phases, namely, time series embedding generation

and future time series prediction in more details.

5.2.2 Time Series Embedding Generation

We feed the time series to different variations of sequential and attention layer models.

As input, we use the original time series instead of scaled time series as the value

of the future time series is affected by the scale at which the current time series is

progressing. The dynamics of popular product may be different from less popular

product.

From our pilot study, we found that time series prediction using embedding per-

forms better with time series of differences as response variable. The difference time

series is obtained from the original time series by finding the difference of consecutive
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Figure 5.1: Schematic diagram of our approach for future time series prediction

values. Difference time series makes the model more fine-grained. We recover the

popularity time series adding predicted difference value to one unit ahead time series

value. This accounts to the fact that the popularity scale can be different based

on type of product or service. However, the embeddings of the popular products in

respective domains should be similar. For example: scale of number of views could

be different for music videos compared to a tutorial video in Youtube considering

both are popular in their respective domains.

Thus, these models take a vector of fixed size (containing the popularity history

over a fixed period of time) as input, and output the future time series using difference

value. For all models apart from the Dense model, the popularity time series is

divided into fixed sized windows (as shown in Fig.5.2), in order to produce sequential

data that can be given as inputs sequentially.

5.2.3 Time Series Embedding in Competing Environments

We use the popularity time series of two products under competition to predict

the future time series for both products. Here, the model learns the dynamics of the

competing products together. This enables it to make better predictions for both the
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Figure 5.2: Standalone time series prediction. Input Representation with time series

value of two competing products shown in red and green.

Figure 5.3: Competition time series prediction. Input Representation with time

series value of two competing products shown in red and green.

individual products, since it has a bigger picture to look at. These models produce

a single time series embedding that is used for the prediction of the popularity

difference value of both the products together. Thus, these models expect the fixed

length vector inputs, with the popularity history of the two competing products, and

outputs the popularity difference value of both the corresponding products. Since

the model expects the popularity time series of two products, the input size is twice

as compared to the standalone prediction models. The popularity history is divided

into t fixed length vectors, each of size (2l/t), with the time series of the products

concatenated with each other(as shown in Fig.5.3) in each vector.
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5.2.4 Future Time Series Prediction

Once we have the time series embeddings that encode the past time series, we can

predict the future time series using various machine learning regression techniques.

After evaluating various models, we find neural networks perform best. We thus use

a single Dense Layer.

5.2.5 Time Series Embedding Models

We use various types of embeddings models to evaluate the effectiveness of our ap-

proach. We train all our models with l values of the past time series. We further

divide the input into t vectors, each of size l/t (as shown in Fig. 5.2). For competing

environments, we have two input time series that are trained together as shown in

5.3. We now explain the embedding models we use for our experiments:

• LSTM: standard LSTM model followed by ReLU activation to obtain the time

series embedding.

• GRU: standard GRU model followed by ReLU activation to obtain the time

series embedding.

• BLSTM LSTM: LSTM stacked on top of a Bidirectional LSTM followed by

ReLU activation to obtain the time series embedding.

• BGRU GRU: GRU stacked on top of Bidirectional GRU followed by ReLU

activation to obtain the time series embedding.
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• BLSTM A: Bidirectional LSTM followed by ReLU activation and Attention

Layer to obtain the weighted average time series embedding

• BGRU A: Bidirectional GRU followed by ReLU activation and Attention

Layer to obtain the weighted average time series embedding

5.3 Experimental Evaluation

This section describes the dataset, experimental setup, evaluation and findings.

5.3.1 Dataset

We crawled a large set of reviews from Amazon consisting a total of 1,091,159 prod-

ucts across 5 domains (see Table 5.1). Our data consists of a snapshot of reviews in

Amazon till May 31, 2016. Each review contains the reviewer information, review

title, review content, helpfulness votes, number of comments, star rating (ranging

from 1 to 5) and the Amazon Verified Purchase (AVP) tag. We generate PPSRV for

all the products for succeeding experiments and analyses.

If we use day or week as time unit of the time series for PPSRV, we often face

the problem of sparseness as there are generally a lot of days or weeks when there is

no review for a product. On the other hand, using months or higher time unit, will

generally not catch the dynamics of temporal signals. So, we first estimate the kernel

density of the AVP reviews histogram for each product (with bin=1 week) via kernel

density estimation (KDE) using diffusion [3] and then use it as the time-series. We
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Table 5.1: Dataset Statistics

Domain # of Products # of Reviews

Books 455,254 17,455,747

Electronics 84,238 4,334,226

Manufactured 308,636 18,248,638

Media 208,342 11,286,938

Software 34,689 1,366,697

Total 1,091,159 52,692,246

use KDE time series for all the experiments. The dataset can be downloaded from

http://bit.ly/2ikkaC4.

In the similar fashion, we create the time series of sentiment and rating for each

products. The rating of products range from 1 to 5. However, We normalize it to [0,

1] for our models. To create the time series of sentiment, we count the positive and

negative sentiment lexicon in the reviews. We use the lexicon set from [16]. Average

sentiment is calculated as normalized difference of positive and negative sentiment

lexicon count.

5.3.2 Competition in Amazon

There is always competition between similar products in the market. We anticipated

similar phenomenon in Amazon and found several cases between similar products of

different brands. Amazon recommends to the customer different products based on
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the search, browsing, and purchase history of several other customers. Some of the

recommendation types are ”Sponsored Products Related To This Item”, ”Customer

Who Bought This Item Also Bought”, ”What Do Customers Buy After Viewing This

Item?” . For each products, we populated such recommendations and generated the

PPSRV of other related products. However, not all the recommendations from Ama-

zon are potential competitors (i.e., not the same product type but different brand).

So, we profiled 800 product pairs manually where we saw potential competition, i.e.,

the two products were of the same type but different brand, were being sold in the

market in the same absolute time (even though one of them could have its reviews

earlier than the other), and one product (competitor) took over the other product

(leader) in PPSRV that was previously leading the market and show two representa-

tive examples in Fig 5.4. The first type is referred to as death where the introduction

of the competitor completely seizes the market. The second type is survival where

the previously leading product was hindered by the introduction of the competitor,

but altogether regains its market share.

In most competitions in the real world, there are multiple products competing

instead of just two. We found some cases in Amazon as well. However, we have

very limited data of such multiple competitors. So, we ignore such products. The

modeling of competition in online marketplace with more than two products could

be an interesting problem for future research.
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(a) Death

(b) Survival

Figure 5.4: Competition Examples. Scaled normalized PPSRV time-series depicting

competition between leader (dashed blue) and competitor (solid red).
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5.3.3 Baselines

For performance comparison, we show the best performing state-of-the-art approaches,

one from linear method and another from non-linear method. For linear method,

ARIMA performs the best while COMP-CUBE [39] is the best performing non-linear

method that predicts better than the other state-of-the-art approaches. We only re-

port these two approaches for our analysis as they perform best among the linear and

non-linear algorithms. Each baseline model is trained on the same time window and

the shifting of training window is performed in the similar fashion. COMP-CUBE

learns the compressed model of the large collection of timestamped data. ARIMA

is a regression model employing moving average. We also use a single Dense Layer

to compare the effectiveness of simple neural networks instead of sequential models

that are capable of capturing the histories.

5.3.4 Experimental Setup

For all experiments including baselines, we used PPSRV history and two normalized

allied time series (rating, sentiment). We performed grid search on the parameters

and found that training on the previous 250 data points works best for each product.

Thus, standalone prediction models take an input vector of size 250, while compe-

tition models take an input vector of size 500. For sequential models, we used 5

windows, creating a sequence of 5 vectors as input, i.e., we used a window size of 50

for standalone sequential models, and a window size of 100(50 points of each prod-

uct) for competition models. From the grid search, we used time series embedding
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size of 50 and 100 for standalone and competition models respectively. Thus, l = 250

and t = 5 for all the models. We use 70%-10%-20% of the total number of competing

product pairs to prepare train-validation-test data.

We trained all models using Stochastic Gradient Descent (learning rate 0.05 &

batch size 32). We optimized models using MAE as loss. All models were trained

for 20 epochs.

5.3.5 Results

Table. 5.2 shows the average MAE values for the various models explored. All

the models predict the future time series values. We see that competition models

perform better than all of their standalone counterparts. It highlights that charac-

terizing competition helps popularity better. It also indicates change in dynamics of

time series due to competitor’s standing. Further, we note that sequential models

perform better than baselines. The worse performance of baselines indicate that the

dynamics of popularity are inherently complex. Better performance of sequential

model indicates superiority of their time series in encoding the history, which later

can be used for other machine learning tasks.

5.4 Summary

We studied the effect of competition from the perspective of product popularity in

online marketplace. We evaluate time series feature embedding using sequential deep
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Table 5.2: Result showing the average MAE values for baselines models and Neural

network models.

Model Standalone (×10−3) Competition (×10−3)

Baselines

COMP-CUBE 1.53 1.37

ARIMA 1.62 1.04

Dense Layer 0.82 0.79

Sequential Models

LSTM 0.53 0.42

GRU 0.59 0.50

BLSTM LSTM 0.57 0.48

BGRU GRU 0.61 0.40

BLSTM A 0.56 0.52

BGRU A 0.55 0.46
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neural network models. We further extend our model for competing environment

where two products compete to seize the same market. We found that the effect of

competition helps model perform better. We demonstrate the effectiveness of our

time series embeddings on large review dataset from Amazon.
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Chapter 6

Conclusion

We have analyzed, designed and tested ideas based on anomaly detection in opinion

media: social media and consumer review websites. We studied the behaviors of the

anomalous users and exploit them to model methods to detect them.

Chapter 3 performed an in-depth analyses on the temporal dynamics of opinion

spamming. It used a large-set of reviews from Yelp restaurants and its filtered re-

views to characterize the way opinion spamming operates in a commercial setting.

Experiments using time-series analyses showed that there exist three dominant spam-

ming policies: early, mid, and late across various restaurants. Our analyses showed

that the deception rating time-series for each restaurant had statistically significant

correlations with the dynamics of truthful ratings time-series indicating that spam

injection may potentially be coordinated by the restaurants/spammers to counter

the effect of unfavorable ratings over time. Causal time-series analysis of deceptive

like rating time-series as response with different covariates time-series (e.g., average
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truthful ratings, truthful like and truthful dislike ratings) established the presence to

two additional trends of spam injection: buffered and reduced spamming. The co-

variate time-series along with various other features were then used to predict future

deceptive ratings, long term/imminent future popularity and rating of a restaurant

in the presence of deception using vector auto regression. The framework further

allowed us to indirectly validate Yelp’s filter, which was shown to be reasonable.

We also derived a novel suite of time-series features from our discovered temporal

dynamics. Experiments on fake review detection showed the effectiveness of our fea-

tures that significantly outperformed relevant baselines for the task of opinion spam

detection establishing a value of the temporal dynamics in spam detection beyond

characterization.

Chapter 4 studied the problem of identifying spammers in Twitter who are in-

volved in malicious attacks. This is very important, as it has many practical ap-

plications in today’s world, where almost everyone is actively social online. This

paper proposed a method of spam detection in Twitter that makes use of the online

network structure and information shared. This data driven approach is important

as there is a lot of data of social medias online these days. We demonstrated the

helpfulness of biased random walks in learning node embedding that can be used for

classification and ranking tasks.

Chapter 5 explored the phenomenon of competition in the market where different

brands of the same product type compete in sales. We found two cases of competition:

(i) Death (the competitor beats the previous leader in the market), and (ii) Survival

(the leader survives in the market with increasing its sales after being hit by a
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competitor). Using a labeled dataset of 800 competing pairs, we further modeled

product popularity in standalone and competing environment. Competing models

perform better at underlining the evidence of competition, which itself is an anomaly

in the web.

This research work is more biased towards the quality of opinions expressed in the

web. Our methods work well with a dense dataset, since we are mainly evaluating

the temporal aspects. Since we are using weeks as time unit in most cases, our work

is applicable only to the opinions which have higher frequencies across time. Sparse

datasets will have time series with a lot of zero values. Prediction in such cases fails

with our current models.

Our work requires sentiment associated with the opinions. For opinion spam

detection in a consumer review website, we need to calculate sentiments such as

number of positive words and number of negative words. For social network spam

detection, we combine fraudulence scores with a graph to learn the embeddings. We

therefore need opinion-rich reviews to evaluate the sentiments expressed.

Current work does not use a lot of metadata related to the opinions. Metadata

about the person propagating the opinions, such as IP address, age, race, ethnicity,

culture, and geography, could be important in learning the trends across different

parts of the globe. Such data could be obtained from the opinion platforms to boost

the performance of detecting anomalies.

To extend the findings of this thesis, future work can be directed to model a

new rating revision approach using consumer trustworthiness in consumer review
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websites. This work can also help the researches on fake news detection. Another

interesting extension of this work will be studying effects of spamming in e-commerce

competition. Deep learning models are becoming dominant. They can be used to

better model the text data and the attention based on features we studied.
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