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ABSTRACT

Identifying lithofacies and pore fluids is still a problematic issue in the Hutton Formation,
Queensland field, onshore Australia. The target reservoir is usually a one-well prospect since it is
of limited size and most wells drilled on basement influenced highs are dry amidst similar
structures that are hydrocarbon charged. On the same anticlinal closure, two wells encountered
different pore fluids, oil and brine, though both were high on structure, suggesting stratigraphic
complexity. Because of ambiguous facies distribution, quantitative seismic analysis is badly

needed to predict facies changes between wells.

In this research study, different quantitative analysis methods and datasets were used for
facies prediction. These included: AVO analysis, post-stack inversion, pre-stack simultaneous
inversion, sparse-layer inversion, probabilistic facies prediction by Bayes classification,
supervised machine learning using neural network and unsupervised machine learning using Self-
Organizing Maps (SOM). To address methods and data performance for lithology and pore-fluids
prediction, blind validation wells were used. In addition, a confusion matrix was constructed to

compare methods.

Post-stack inversion on bandwidth-extended seismic data, accomplished with sparse-
layer inversion, has the highest pore-fluid prediction accuracy (94.5%). Although supervised and
unsupervised machine learning shows good lateral facies distribution along wells, insufficient
validation wells prevented statistically meaningful evaluation. High acoustic impedance and
compressional-to-shear-wave velocity ratio correlate with meandering stratigraphic features

identified from curvedeness and dip of maximum similarity seismic attributes. After co-rendering
iv



these attributes with facies distribution horizon slices, shale and brine-sand facies are distributed
along these meandering features. These facies are probably the low stand systems tract of the
overlaying Birkhead Formation deposited in incised paleo valley system formed after falling base
level. This incision removed the whole, or the upper part of the, Hutton Formation at some
locations. In addition, an observed braided channel has anomalous Class 4 AVO response and is
characterized by low acoustic impedance. After using a rock-physics template and Bayesian
classification, high-probability oil sand facies with high porosity are distributed along the channel

feature.



[Ty o Y 1= o] (=T3P iX

[ o) 7=V TP PPPUUP PR X
(@10 =Y o] 0= gt e [ oY o o [Tl T o 1R 1
1.1 ProbI@Mic e e 2

O O o1 =Tt YOO PSP PPRR 2

I TV 11 o Vo o [o] [o -V PP PR RRPPPPPPRN 3

R - | - SO PSSO PPPPPPPTPR PPN 5

1.5. Geological background of StUAY area .......ccoceoe e e 6
1.5.1. Cooper-Eromanga Basin petroleum system .........cccceevevievevivessss s 7

1.5.2. HUTEON FOrmMatioNn. ... e e e e e 10
Chapter 2: Petrophysical and Rock-property ANalySis........ccueurieirinereeneese e e e e see e s e envesees 13
2.1, PetrophysiCal @NalySiS....iciiiiiieieeicee ettt e sttt ste e sr et s e e e nan 13

2.2. ROCK-Property @analysiS......cociiiiieieiecie ettt e e e sress et e s e s seestesaeeanessasseenen 22

2.3. ROCK-Property CroSSPIOtS.....cccu i cciereisietie ettt sttt e ste e s s e e e e e seeeaaaeaeeenas 30
Chapter 3: Fluid Substitution and AVO MOdeliNg........cccevviriieiecieieee et e 44
3.1, Fluid SUBSTITUTION L.eiiiiiiiieiieeeee e e e 44

3.2, SENSIIVILY @NAIYSIS wicurriiiiiiiiiiiee et e e e e e e e e e e e s e et r e e aeeaaaaeaeaeeanananen 55
Chapter 4: Qualitative Seismic INterpretation ... e 60
4.1. Seismic to well tie and wavelet eXtraction..........cccceeeieeieenieenieene e 60
4.1.0. Creating SYNTNETICS . .vvuiieiiieiiee e e e e e e e e e e e e s s enaranes 60

4.2, DHI GN@IYSISeeiiiiiiiiieiieiiiitririeeeee et et ettt e eee e e ees bbb ee b e rrerereeeeeeeeeessessessssssrsssrereeeesaeeeeesenns 68

e BT =TIy T Tol= 1 o ] o 10 =TT 72



Chapter 5: AVO ANGIYSiS...cuiieiiiieieeite et eereettete et stesreereeseeebaes e e e sae s sessessests sesbessensssestesresnssssaessennean 80

LT I N V@ I 4 =T o SRR 80

5.2. AV @NAIYSIS crriieeeii ettt e e e e e e e e e e e e e e e e e e e e e et r e e aaaaaeas 81

5.3  AVO QtEFIDULES ... 92
Chapter 6: SEISIMIC INVEISION ....cuiieiiietirtiet sttt ee et stestesteste st e e st e e e ae e e s esssbaaeaae s sesssneeesesnnnns 96
6.1. LOW-freqUENCY MOEL.....ccooi ittt st st st st st e s 96

6.2, SEISIMIC INVEISION. ...ttt ettt et s s st e s s e e s e e s e s e er e e e e e eeeeeeeeesanes 96
6.2.1. POSt-Stack SEISMIC INVEISION....c..ouiriiieiietiet ettt sttt s st st e see s 98

6.2.2. Pre-stack sSimultan@ous iNVErSIiON........coocuriireie st s 101

6.3, SPArSE-1aYEI INVEISION...c.ciiciecieies ettt ettt erese e s e aaeeaeeaestestesaeseesaenennsnenens 109
Chapter 7: Probabilistic Facies PrediCtion ..........ccccueieirininisecse s ee e s e e s e e e e 119
7.1. ROCK-physiCs tEMPIALES ..ceeeiieieeece e et aereeaes 119
7.1.1. Lithofacies disCrimination........ccooeiriieiinneiieeee e s e 122

7.1.2. Pore-fluid disCrimination........c.occoueuiiiii it e 130

7.2. Bayesian classifiCation ... 135
7.2.1. Probabilistic lithofacies discrimination........c.c.cceeeeeiiiiiiiiiiiiiii e 138

7.2.2. Probabilistic pore-fluid discrimination.........cccccevvviieeieeiiie e 143
Chapter 8: Facies and Rock Properties Prediction Using Machine Learning.........ccccccvveeeeeeeennnn. 147
8.1. Supervised Maching |EArNINEG.....cc.ccoovieiiiee et e e e e e e e e e eaes 148
8.1.1. POrosity eStimMatioN......ccc it r e e aaas 151
8.1.1.1. Broadband seiSmiC data........cccoeveerireeriieriie e 151

8.1.1.2. Conventional SeiSMIC data........cocoeeerreeeiiieeiieeree e e 156

Vii



8.1.1.3. CONTUSION MATIIX uttiiitiiiteieittitee ettt et ettt s e eeeereneeseeeeatneesseeeeennassseerennnnne 159

8.1.2. P-impedance eStiMation .......ccccecceeiiiiececr e e e e 160
8.1.2.1. Broadband seismic data.........coceeieieiiiiiiiiiiiicciec e 160

8.1.2.2. Conventional SeismiC data ......ccccceceeiviiiiiiiiiie e 164

8.2. Unsupervised Maching [@arniNg.......ccueuiiiciiiieeiiiiiiiiee st e e s sre e e e s anaeee e 167
Chapter 9: Discussion and CONCIUSION........ccuvvieiriirieiieeirtirtiet sttt ereste s st st see s e e e e e sensans 175
9.0 DISCUSSION ..ttt sttt ettt st et tre e eb et e et e e e e s e e se s sa s s reereneeeeeeeeeeesessansnes 175

9.2, CONCIUSION ..ttt sttt ettt sttt et et sttt e s at e e e s ab e e e sasseeeenbeeeeesaneeeennneeesanns 188

(27 oY [T =4 =T o1 1 V75 TP 191

viii



Table 1.1:

Table 3.1:

Table 3.2:

Table 4.1:

Table 5.1:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 8.1:

Table 8.2:

Table 8.3:

Table 8.4:

Table 9.1:

List of Tables

Available 105 in the fOUr WEIIS........c.coii ettt e see e 5
Reservoir pore-fluids Properties....... i iiiirieiee e e e er e 44
MatriX PhySICal PrOPEITIES. ...ciiiiiietietirtee e e er e saeeaeseesae e s 45
Relative amplitudes estimated from near- and far-angle stacks at four well

locations using @ scale from (0-9)....cciciiieiie e e e 69
Approximations for the Zoeppritz equations. Modified from (Castagna and Chopra,
2014) after Li €1 al., 2007 ...ceeiieeiiiiiiceectecee et eetves et sbe e e sesaes s e s estesssbestesrnsnseeranernes 81
Statistical analysis at WEIl A.......oe ettt st s s 135
Gaussian parameters for sand and shale facies........cccooeeevecececiiinicicceeceeee 138
Gaussian parameters for high-porosity sand, low-porosity sand and shale facies....141

Gaussian parameters for high-probability oil, brine-filled sandstone, and shale

AT et e et st sbe st st st st st st e e e e e et n s e 144
Seismic attributes used in multiple-regression prediction of porosity using high
freqUENCY SEISIMIC ata.. .ttt e e st e e sr s e be e saesbe e enee s 153
Seismic attributes used in multi attribute analysis to original seismic data............... 157
Seismic attributes used in multi attribute analysis of broadband seismic data......... 161
Seismic attributes used in multi attribute analysis of conventional seismic data......166
Summary of results at the four wells. Inaccurate results are highlighted by

(o] = ] 7= T TSROSO RPRPPN 179



List of Figures

Figure 1.1: Methodology workflow chart for seismic reservoir characterization..........ccccevvveuenee. 4
Figure 1.2: Map of the study area shows four wells and the extent of the 3D seismic
survey represented DY bIUE @r@a..... e e e e 6

Figure 1.3: Study area, Onshore Australia (modified from GSA, 2019).......cccceevevrmreerecererereee s 7

Figure 1.4: Stratigraphic Column of Eromanga Basin in the Cooper region (modified from
DEM, 2018)....eieeiierie et st ettt e sttt s e b s e ehe s es b s et eae st ebe st es b s s b et 9
Figure 1.5: Schematic diagram shows oil migration from the Cooper Basin to the Eromanga
Basin (modified from BUiCk, 2015).......cuiririciire ettt sreersenessreens 10
Figure 1.6: Schematic diagram shows sediment provinces and paleogeography during early

deposition of seal rock overlaying the target pay zone (modified from Boult et al.,

Figure 2.1: Petrophysical analysis of Well A. Dashed lines represent top and base of Hutton
FOrMatioN. ..o 16
Figure 2.2: Petrophysical analysis of Well B. Dashed lines represent top and base of Hutton
FOrMatioN. ..o 16
Figure 2.3: Petrophysical analysis of Well C. Dashed lines represent top and base of Hutton
FOrMAatioN. oot e 17
Figure 2.4: Petrophysical analysis of Well D. Dashed lines represent top and base of Hutton

(L0 T 0 4 =1 A o] o 1S 17



Figure 2.5: Brine-saturated zone of the Hutton Formation at Well A is plotted on density log

versus neutron log Schlumberger chart........covvecccece e 18

Figure 2.6: Brine-saturated zone of the Hutton Formation at Well B is plotted on density log

versus neutron log Schlumberger chart........coovveece e 18

Figure 2.7: Brine-saturated zone of the Hutton Formation at Well C is plotted on density log

versus neutron log Schlumberger chart.......coove i 19

Figure 2.8: Brine-saturated zone of the Hutton Formation at Well D is plotted on density log

versus neutron log Schlumberger Chart........cco e 19

Figure 2.9: Well logs correlation between Well B and Well A at the Hutton Formation............... 20
Figure 2.10: Well log correlation between Well B, Well C and Well D at the Hutton Formation.

The Hutton Formation top was used as a datum plane.......cccoceee e cceeceeevveeceeieen 21
Figure 2.11: Lower part of Birkhead Formation is incised in the upper part of the Hutton

FOPMATION . e e et e e e e e e e e 22
Figure 2.12: Vp vs. Vs relationship for depth interval 3608 ft — 5512 ft at Well A..........cccenne. 24
Figure 2.13: Vp vs. Vs relationship for brine-saturated zone of Hutton Formation at Well A......24
Figure 2.14: Comparison between measured and predicted shear-wave velocity by the

Greenberg and Castagna (1992) eqUatioN.......ccccceceiecece et 26
Figure 2.15: Comparison between measured and predicted shear-wave velocity by modifying

FEEIESSION CORTIICIENTS...eitviiiiie ettt ettt st ere s eer e essen e e e saeenes 26
Figure 2.16: Velocity-Depth trend at A, B, C and D Wells. Red dashed line represents

the Cadna-Owie, C, SEISMIC MATKEN. ...coovuiiee et et et 27

Xi



Figure 2.17:

Figure 2.18:

Figure 2.19:

Figure 2.20:
Figure 2.21:

Figure 2.22:

Figure 2.23:

Figure 2.24:

Figure 2.25:

Figure 2.26:

Figure 2.27:

Figure 2.28:

Figure 2.29:

Figure 2.30:

Velocity-Depth trend at A, B, C and D Wells. Black horizontal line represents

the Hutton FOrmation tOP. .o e st e s e s 28

Density-Depth trend at A, B, C and D Wells. Datum at zero level represents

the Hutton Top and dashed lines represents the Hutton bottom...........cccoeeceennnee. 29
Density-Depth trend at A, B, C and D Wells for 100 m below the Hutton

FOPMAtION TOP ittt iitiiie ittt sttt sttt st st e e st e seesnae s e saness e e sbe st aessee s sunasssessses 30
Velocity-Density relationship at Well A and Well B colored by Vsh........ccccueunn....e. 34
Velocity-Porosity relationship at Well A ..o 34
Velocity-Porosity relationship at Well B. ...t e 35
Velocity-Porosity relationship at Well C. ... 35
Velocity-Porosity relationship at Well D. ..ot 36
Velocity-Density relationship at Well A. ... et 36
Velocity-Density relationship at Well B. .......c.uoueeoie et 37
Velocity-Density relationship at Well C. ...t 37
Velocity-Density relationship at Well D. ...ttt e eervenneaes 38
Multiple regression coefficients calculated for pore-fluid zones at the four

WIS, ettt e et e e e s bbbttt et e e ae e e e s eteebe she st s nae e e e ntens 39
Velocity-Porosity relationship shows shale volume lines along brine saturated
ZONES OF TOUN WIS ..ottt st st bt st 39

xii



Figure 2.31: Brine-saturated zone of Hutton Formation at Well A on Pickett chart...................... 41

Figure 2.32: Vp/Vs — Vp relationship using the Hutton Formation data at Well A......................... 42
Figure 2.33: Vp/Vs — Al relationship using the Hutton Formation data at Well A......................... 42
Figure 2.34: AI? - SI? relationship using the Hutton Formation data at Well A..........ccccevevveeennnenes 43
Figure 2.35: Hutton Formation data using pseudo-lambda-rho attribute at Well A...................... 43

Figure 3.1: Fluid substitution at Well A. Blue curve represents oil zone after fluid substitution

0 DrINE (SW = 100%6).....c.ccue ettt ettt et ss e er e seeresaeesestestesaesbestestesaeseesnenannsens 48

Figure 3.2: AVO fluid substitution modelling at Well A. a) Qil saturated case (Sw=30%) before

fluid substitution. b) After fluid substitution to brine (Sw = 100%).....c..cccccvcevrerennns 49

Figure 3.3: Fluid substitution at Well B. Blue curve represents oil zone after fluid substitution

tO DrINE (SW = 100%)...cue ettt et ettt rr e e se e e steeteste st sa stesaesae s e s sensseeseanes 49

Figure 3.4: AVO fluid substitution modelling at Well B. a) Oil saturated case (Sw=30%) before

fluid substitution. b) After fluid substitution to brine (Sw = 100%)......c.ccceceveeeeeeveennen. 50

Figure 3.5: Fluid substitution at Well C. Red curve represents oil zone after fluid substitution

from 0il (SW = 60%) 10 Oil (SW = 10%)...c..cuerirrierirricriieee e ettt ste e et n e 50

Figure 3.6: AVO fluid substitution modelling at Well C. a) Oil saturated case (Sw = 60%) before

fluid substitution. b) After fluid substitution to brine (Sw = 100%)........ccccvveevveerreennen. 51

Figure 3.7: Fluid substitution at Well D. Red curve represents the Hutton Sandstone

Formation zone after fluid substitution to 0il (SW =20 %).....c.cceeeeereeecreceeeceerenene 51

Xiii



Figure 3.8: AVO fluid substitution modelling at Well D. a) Brine saturated case before fluid

substitution. b) After fluid substitution to il (SW = 20%).....c.cccccverereeeeieieeeeeeee 52

Figure 3.9: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at

Well A are represented by blue POINtS.......cuiviririreiie e 53

Figure 3.10: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at

Well B are represented by blue pOints. ... e e e 53

Figure 3.11: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at

Well C are represented by blue points........cccccieieiiinini e 54

Figure 3.12: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at

Well D are represented by blue points.......ccccooeeieceiceevieiicecce e 54
Figure 3.13: Al versus Ksat -Kdry. Pore fluid discrimination using the four wells............c.ccccucu...... 55
Figure 3.14: Forward fluid substitution at Well B. ..ottt 56
Figure 3.15: Velocity-Porosity crossplot for brine-saturated zone of Well B. .......cccccovecveecereinne. 57
Figure 3.16: Reverse fluid substitution at Well B. .......cveciieeieeiee et e e 58

Figure 3.17: Anomaly amplitude to background amplitude at near and far offset in response to

porosity change of target zone at Well B. ..o 58

Figure 3.18: Anomaly amplitude to background amplitude at near and far offset in response to

thickness change of target zone at Well B. a) Near offset. B) Far offset.........c......... 59

Figure 4.1: AVO syNthetiC @t WEIL Aottt e st taes e st st e eaas 61

Xiv



Figure 4.2: Ricker wavelet of 40 Hz used for creating synthetic at Well A, Well B, well C

AN WEII D ettt et e ettt e et e eae e s st see st e e e bennbens 62
Figure 4.3: Seismic to Well tie at WEIl Aottt s st st s 62
Figure 4.4: Seismic to Well tie @t WEII B.....c.eoee ettt et et st s e sraen s n s aees 63
Figure 4.5: Seismic to Well tie at WEll C. ...ocooue ettt st e e e 63
Figure 4.6: Seismic tO Well tie @t WEIl D....c.voueeeieeieeeececece ettt s 64
Figure 4.7: Arbitrary line along the four Wells.........coo e 64
Figure 4.8: Cartoon section along the wells based on seismic interpretation. .......c.ccoevevceveeennes 65
Figure 4.9: Structure contour map of the Hutton Formation top.......cccceceeevveieiiececcecce e 66
Figure 4.10: Isochrone map between Cadna-Owie top and the pay zone top......ccccecveveeveeeeennneee 67
Figure 4.11: Basement tOP OVEF STUAY Gr€a......ccccevveereeceerrenrreieiieeseesreeneeeessaesseseessestesseesssesssessessssens 67
Figure 4.12: RMS amplitude of the Hutton Formation top from far angle stack. ........c............... 69

Figure 4.13: Comparison between RMS amplitude extracted from near-and far-angle stacks

along horizon slice of 10 ms time window around the Hutton Formation top......... 70

Figure 4.14: Change amplitude along the Hutton top at Well B from near to mid to far

Figure 4.15: Figure 4.15: Curvature attributes. Vectors, which are normal to surface, are

represented by arrows (modified from Roberts, 2001).........ccceeeeerercenececveineeenreens 72

Figure 4.16: Dip of maximum similarity attribute. a) Time slice 1122 ms. B) Time slice

XV



Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Dip of maximum similarity attribute. a) Time slice 1175 ms. B) Time slice

L1204 Mttt e e s s s b sa s e e e bbb 74
Curvature (Curvedness) attribute. a) Time slice 1122 ms. B) Time slice

L50 MISuuiiiiiiiitiiti i e s s s sh s s e e bbb 74
Curvature (Curvedness) attribute. a) Time slice 1175 ms. B) Time slice

T204 NSttt ettt ettt sttt et et et et et sheeeb b et et e e a e ehe e eeh st e ebe e e esee e st eenbeeeereeanes 75
Most positive curvature attribute co-rendered with most negative curvature

attribute. a) Time slice 1122 ms. b) Time slice 1150 MS. c.ccccovvevvveveecerccreeeeveeee 75
Most positive curvature attribute co-rendered with most negative curvature
attribute. a) Time slice 1175 ms. b) Time slice 1204 MS. ..ccocceeveeerereeinieieriereen 76
a) Time slice shows dip of maximum similarity attribute. b) Time slice co-rendered

positive and negative curvature attributes.......cceevvveiivecccicce e 77

a) Time slice shows curvedness attribute at the Hutton Formation top around

Well C and Well D. b) Arbitrary line was taken along Well C and Well D................ 77

a) Time slice shows curvature attribute at the Hutton Formation top around

Well C and Well D. b) Arbitrary line was taken along Well C.........cccecveevveceereeenen.. 78

Arbitrary line along Well C. Vsh is compared with amplitude of mid-angle stack....79

Figure 5.1: Gradient-Intercept crossplot. Modified from Castagna et al., (1998) and Foster

€1 A1., (2000) ittt et et et b e saesheere b e bbb e aesheereeneeraerbense e eanes 83

Figure 5.2: Angle gathers before seismic data conditioNing........cccoecvveieiecececciecce e, 84

XVi



Figure 5.3: Angle gathers after seismic data conNditioNiNg ......ccocceveeveiiereeiecicie e 84

Figure 5.4: AVO analysis from angle gather at Well A, Well B and Well C locations...................... 85
Figure 5.5: AVO analysis from angle gather at Well A, Well B and Well D locations...................... 85
Figure 5.6: Intercept versus gradient crossplot from seismic angle gather at four wells.............. 86

Figure 5.7: Comparison between AVO responses of Hutton Formation top at Well D and

Figure 5.8: AVO analysis of a seismic angle gather at Well C location and the proposed

[ =11 o 1=1 KPP PPRRPRRRR 88

Figure 5.9: Amplitude versus angle crossplot for comparison between the seismic angle gather

and AVO SYNThetic @t WEIl Bu.....oeeecece et et sae e 89

Figure 5.10: Intercept versus gradient crossplot for comparison between seismic angle gather

and AVO synthetic at WEII B......c.ooeeeeee et sttt s 90

Figure 5.11: Intercept versus gradient crossplot for 250 ms window of the AVO synthetic at

Well B. Colors are projected on a seismic trace at the Well B location..................... 90

Figure 5.12: Gradient versus Intercept for 30 ms window around the Hutton Formation top.
Red elliptical shape covers possible trends for hydrocarbon pore fluids deviated

from backgroUund treNd........ooe et st e re e e 91

Figure 5.13: 10 ms horizon slice around the Hutton Formation top. Red color indicates

possible hydrocarbon Pore flUIdS.......ovcuieireie e e e et eae s 91

XVii



Figure 5.14: Horizon slice shows A*B product AVO attribute........coocevvvevveviiicieiecreceeceeereeesreens 94

Figure 5.15: Horizon slice shows polar magnitude AVO attribute........cccccocvereieienini e, 94
Figure 5.16: Horizon slice shows scaled Poisson ratio AVO attribute........ccecveeveveveccee e, 95
Figure 5.17: Horizon slice shows [Far Angle *(Far Angle — Near Angle)] AVO attribute................95

Figure 6.1: A statistical wavelet extracted from seismic data. Red arrow indicates low

frequencies deficiency in amplitude SPeCtrUM.......ccceceei i 97

Figure 6.2: The low-frequency model (LFM) compensates for missing low-frequency

content of seismic data (modified from Johnson, 2017).......ceeeevvevrvcinece e e, 97

Figure 6.3: Schematic diagram of forward modeling and inversion (modified from CGG,

01 1 TSRS 98
Figure 6.4: Post-stack inversion analysis for far-angle stack at Well A.........ccoooveirieeccieecce e, 99
Figure 6.5: Horizon slice sShows Al iNVersion result.........cccooeceeceevreeieciinccieecee e s 100

Figure 6.6: Arbitrary line passing through wells shows Al inversion result using post-stack

inversion of far-angle Stack.......c e e e e 101

Figure 6.7: Logarithmic P-impedance, S-impedance, and density crossplots at the wells are
generated to calculate regression coefficients k, kc, m, and mc .........cocvevvvvevennee.. 103

Figure 6.8: Ricker Wavelet Of 60 Hz.......cvicieeiieieeceeeieeteteeeee et et eeree sttt sre e ene e nee 104

Figure 6.9: Pre-stack simultaneous analysis at Well A. The original logs are in blue, the low-

frequency model logs are in black, and the inverted logs are in red.........ccceu........ 104

XViii



Figure 6.10: Arbitrary line passing through the four wells shows Vp/Vs inversion result........... 105

Figure 6.11 Comparing Vp/Vs horizon slices for inversions using different starting low-

frequency models built by one well. a) Well A. b) Well B. c) Well C. d) Well D........ 106

Figure 6.12: Group wavelet created from near-, mid- and far-statistical wavelets estimated

AFOUNG WEIT Aottt ettt s ettt s s e sebete s sebste e bessesesssbabeenssesbnnsssesnnnas 107

Figure 6.13: Pre-stack simultaneous analysis at Well A using the group wavelet. The original
logs are in blue, the low-frequency model logs are in black, and the inverted

[O8S Are IN FEU... e ettt e et et st st see s e e es s ten b et e e ese s e e eneene 107

Figure 6.14: Vp/Vs inversion horizon slice using group wavelet.........ccccocveeeveeeesecveeeecnee e, 108

Figure 6.15: Arbitrary line passing through wells shows Vp/Vs inversion result using group

WAV O oottt e e et et ee e e e e et e e ee e eeeeataeeseneueaessan e aaeseeaarteeeaanaeenaneeaaeeeanee 108

Figure 6.16: Arbitrary line passing through wells shows Al inversion result after

conducting pre-stack simultaneous INVErsioN.........cccoceeceeeeeiieciieeccee e 109

Figure 6.17: Peak frequency versus time thickness. Modified from (Puryear and Castagna,

2008; Izarra Dial, L.A 2011; and Okonkwo, 2014).....cccccveeeeereereceeeeseeerreeec e eve e 110
Figure 6.18: AVO synthetic of Well C constructed by Ricker wavelet 40 Hz...........cccvevverennnnee. 111
Figure 6.19: AVO synthetic of Well C constructed by Ricker wavelet 60 Hz...........cccvrvevrennninee. 112

Figure 6.20: Comparison between a) Conventional and b) High-frequency far-offset stacks....113

Figure 6.21: Post-stack inversion analysis for high-frequency far-angle stack at Well A............ 114

XiX



Figure 6.22: Arbitrary line passing through wells shows Al inversion result for the high

frequency SeiSMIC data. ..o e e e 115

Figure 6.23: Al horizon slice below the Hutton Formation top for the high-frequency seismic

Figure 6.24: Al horizon slice from high-frequency seismic data below the Hutton Formation

top around the Well Cand Well D @rea.....ccccve e e e et st 116

Figure 6.25: Arbitrary line through Well C and the proposed channel...........ccvvevvveeceicvceenennen. 117

Figure 6.26: Arbitrary line constructed from acoustic-impedance inversion from high-

frequency seismic data passing through Well C, proposed channel, and

Figure 6.27: A 10 ms acoustic impedance horizon slice above the Hutton Formation to

Figure 7.1:

Figure 7.2:

Figure 7.3:

address seal occurrence of the overlying Birkhead Formation.........cccccceveuvecnnennen.. 118

Rock-physics template (RPT) for gas, oil and brine-saturated sandstones and
shale illustrated on a Vp/Vs verses Al crossplot. Modified from (Avseth and

VEEEEIANA 2015)....cuuiiiieiierietietiet ettt e e ete e stesteste st e et e see s e e e e es e s sesssesaessaenneerea s 120

Effective-medium model trends for sandstone. Modified from (Avseth et

811, 20055) . vvveeeeoeeeeeeeeeseeeeeeseeseeeseesees e es e eee e ses e et e eeseeeee e 120

Rock-physics template of friable, constant-cement and contact-cement
sandstone using Vp verses porosity crossplot. Brine data of Well A and Well B

iS COlOred bY amMMa rAY....c.coevieieecce ettt st ettt e et sbesbe s saeeseernaens 121

XX



Figure 7.4: Vp/Vs versus Al crossplot of the Hutton Formation at Well A colored by

00T 0 1] | 1Y OO PSPPSR 121

Figure 7.5: Separation between sand and shale facies on Vp/Vs versus Al crossplot. Well A

data is colored by volume of Shale........ccooiieeceieeee et 123

Figure 7.6: Projection of sand and shale facies zones at Well A. Sand facies is represented

Figure 7.7: Lithofacies distribution along arbitrary line passing through the four

Figure 7.8: Lithofacies distribution along arbitrary line passing through Well C and proposed

[ o =11 o 1=1 FO PP 125

Figure 7.9: Sand and shale facies distribution along arbitrary line passing through Well C,

proposed channel anNd WEII D.......ccueeeieceieeeeerceeceeeeee ettt sbeste s sresneeennens 125

Figure 7.10: Horizon slice shows sand and shale facies distribution over the study area...........126

Figure 7.11: Separation between high-porosity sand, low-porosity sand and shale facies on a

Vp/Vs versus Al crossplot. Well A data is colored by porosity .........ccceceveeveveevevnnene. 127

Figure 7.12: Projection of high-porosity sand, low-porosity sand and shale facies zones at

Well A. High-porosity sand facies is represented by yellow color.........cccceerueununnens 128

Figure 7.13: High-porosity and low-porosity sand facies distribution along arbitrary line

PASSING The FOUTN WEIIS....cuviieee ettt ettt et sreeer e e er et e ne s 128

XXi



Figure 7.14:

Figure 7.15:

Figure 7.16:

Figure 7.17:

Figure 7.18:

Figure 7.19:

Figure 7.20:

Figure 7.21:

Figure 7.22:

Figure 7.23:

High-porosity and low-porosity sand facies distribution along arbitrary line

passing through Well C and proposed channel........cccocveveeeeceivieecceecene s 129
High-porosity and low-porosity sand facies distribution along arbitrary line

passing through Well C, the channel and Well D..........ouoeeveiiececeecce e 129
Horizon slice shows high- and low-porosity sands and shale facies distribution

OVEr the STUAY @Attt st e st s seesan e s saeeenn e 130
Separation between high-probability oil sand, brine sand and shale facies on

Vp/Vs versus Al crossplot. Well A data is colored by water saturation.................... 131
Projection of high-probability oil, brine-filled sandstone, and shale facies at

Well A. High-probability oil facies are colored red .......ccovvvvieceecceie e 131
High-probability oil and brine-sand facies distribution along arbitrary line

PASSING throUgh all WELLS ....c..cueeee et er et 132
High-probability oil and brine-sand facies distribution along arbitrary line

passing through Well Cand the channel ... 132
High-probability oil and brine-sand facies distribution along arbitrary line

passing through Well C, the channel and Well D .........ccovvevveeveieciiccecceee e 133
Horizon slice shows high probability oil and brine sand facies distribution

LoV LT (U Lo LY A T <Y T TR 134
The proposed channel has high probability of oil occurrence with commercial

guantities compared with Well C that has high water saturation ..........cccceevueneen... 134

XXii



Figure 7.24:
Figure 7.25:

Figure 7.26:

Figure 7.27:

Figure 7.28:

Figure 7.29:

Figure 7.30:

Figure 7.31:

Figure 7.32:

Figure 7.33:

Figure 7.34:

Probability density function for the Hutton Formation lithofacies at Well A..........
Posterior probability for the Hutton Formation facies at Well A...........cccccvevnnnene
Separation between sand and shale facies on a Vp/Vs versus Al crossplot

after applying Bayesian classification

Lithofacies distribution along an arbitrary line passing through the four wells
after applying Bayesian classification .........ccoccevieiececicenie e,

Lithofacies distribution along arbitrary line passing through Well C and

proposed channel after applying Bayesian classification

Lithofacies distribution along arbitrary line passing through Well C, proposed

channel and Well C after applying Bayesian classification

Separation between high-porosity sand, low-porosity sand and shale facies
on Vp/Vs versus Al crossplot after applying Bayesian classification
High-porosity and low-porosity sand facies distribution along arbitrary line

passing through the four wells after applying Bayesian classification

High-porosity and low-porosity sand facies distribution along Well C and

proposed channel after applying Bayesian classification

High-porosity and low-porosity sand facies distribution along Well C,

proposed channel and Well D after applying Bayesian classification

Separation between high-probability oil sand, brine sand and shale facies

on Vp/Vs versus Al crossplot after applying Bayesian classification

XXiii

137



Figure 7.35: High-probability oil and brine-sand facies distribution along an arbitrary line

passing through the four wells after applying Bayesian classification ................... 145

Figure 7.36: High-probability oil and brine-sand facies distribution along an arbitrary

line passing through Well C, the channel and Well D after applying Bayesian

Lol XYY Lot 14 o o FOVRUUUT RSO OO O TP RORORRRUPRRRN 145

Figure 7.37: High-probability oil and brine-sand facies distribution along an arbitrary line

Figure 8.1:

Figure 8.2:

Figure 8.3:

Figure 8.4:

Figure 8.5:

Figure 8.6:

passing through Well C and the channel after applying Bayesian classification.....146

Types of machine learning (modified from Mathworks, 2019).........ccccccvvvevecrveeenee.. 147
Each sample in well log is related to a weighted group of samples in seismic
attributes using a multi-channel deconvolution operator. Modified from

(Hampson et al., 2001; and Kabaka, 2018)......cccccecveveevrerreeiecienee et e 149

Multilayer Feedforward Neural Network. Modified from (Hampson et al., 2001)...150

Average errors versus number of attributes used for predicting porosity.
Training errors are represented by black dots and validation errors are

represented DY red dOtS.. ...ttt et et see s ete e e srees s eaenees 152

Predicted porosity versus measured porosity crossplot at the four

wells using MUltiple regreSSiON ..ottt ere s e 154

Predicted porosity versus measured porosity crossplot at the four

wells using a probabilistic neural network analysis........cccceevcene e cecceeereeneeereceenn 154

XXiv



Figure 8.7: Arbitrary line passing through the four wells shows porosity estimated from

neural network analysis with high-frequency seismic data........cccceeeeeveciecieneennen. 155

Figure 8.8: Arbitrary line passing through Well C, the channel and Well D. Well Cis used as

a blind validation well to test porosity estimates.......c.cccceveieinininininrcne e 155

Figure 8.9: Average errors versus number of attributes used for predicting porosity................ 157

Figure 8.10: Predicted porosity versus measured porosity crossplot at the four wells using

MUILIPIE FEEIESSION ..ttt ettt e re e e saesae e s e e nrnaeaeas 158

Figure 8.11: Predicted porosity versus measured porosity crossplot at the four wells

using a probabilistic neural network analysis.........ccccovvveecieccnie e, 158

Figure 8.12: Arbitrary line passing through the four wells shows porosity estimated

from neural network analysis to conventional seismic data.......ccocccoeeeevvecrveceeeenne. 159

Figure 8.13: Comparison between high-frequency and original seismic data in predicting

porosity. Results quality degrades with decreasing training data.........cccccvvuenee.e. 160

Figure 8.14: Average errors versus number of attributes used for predicting P-impedance.....162

Figure 8.15: Predicted acoustic impedance versus measured acoustic impedance using a

probabilistic neural network analysis to broadband seismic data ............ccoeeeeeee... 162

Figure 8.16: Arbitrary line passing through the four wells shows acoustic impedance

estimated from neural network analysis to high-frequency seismic data............... 163

XXV



Figure 8.17:

Figure 8.18:

Figure 8.19:

Figure 8.20:

Figure 8.21:

Figure 8.22:

Figure 8.23:

Figure 8.24:

Figure 8.25:

Figure 8.26:

Figure 8.27:

Horizon slice shows p-impedance distribution predicted by using high-

frequency SEISMIC data.......coce i e 163
Average errors versus number of attributes used for predicting acoustic

(18 oX=To =T Lol T OO PO PPRR 165
Predicted acoustic impedance versus measured acoustic impedance after

applying the probabilistic neural network analysis to broadband seismic data......165

Arbitrary line passing through the four wells shows P-impedance estimated

from neural network application to conventional seismic data. Result quality

degrades due to insufficient training data........ccceceeveieiveeieccecce e 166
Calculated eigenvalues of first principal component at each inline. The red

bar represents the eigenvalue at Well B..........coooeieie e 168
The Principal Component Analysis (PCA) at Well B........oooeerecieceie e 169
Attributes contribution to first and second principal components.........c..cccoeuvnueee. 169
High-frequency seismic data SOM created by using 64 neurons represented

DY AIffEIENT COLOTS....uiirietietiece ettt e eer et ebe sae e e s s esbe e sae sbeetesnnens 171
High-frequency seismic data SOM after highlighting neuron number 61................ 172
High-frequency seismic data SOM around Well C and Well D area.........ccccevvuuununes 173
Conventional far-offset stack SOM shows distribution of low probability

AATA POINTS .ottt ettt st et er s et e saesbesae s aesbessesnsessestesrsennaesbenneen 174

XXVi



Figure 8.28: Conventional far-offset stack SOM shows distribution of low probability

Figure 9.1:

Figure 9.2:

Figure 9.3:

Figure 9.4:

Figure 9.5:

Figure 9.6:

Figure 9.7:

Figure 9.8:

data points aNd NEUION 45..........e et st e e rr s e e st enes 174

Comparing between different 10 ms horizon slices below the Hutton
Formation top. a) Vp/Vs, b) Acoustic impedance, c) RMS amplitude,
d) High-probability oil distribution. e) scaled Poisson’s ratio and f) Anomalous

hydrocarbons from intercept versus gradient crossplot........cccccceceeie e cceecveevieiennne, 178

Confusion matrices estimated from comparing Well C actual values of

acoustic impedance with predicted one using different methods and datasets......180

Predicted pore fluids using different methods and datasets.........cccccceeerireinreennen. 181

Paleogeographic meandering features shown in maximum similarity seismic

attribute matches with high acoustic impedance........cccveveveveeiecicccene e, 183

Paleogeographic meandering features shown in curvedness seismic attribute

matches With high VP/VS ratio........ccccieie ettt e 183

Shale facies is distributed along paleogeographic meandering features observed

from most-positive curvature attribute.........cooeeceeveeeireeeeceee e 184

Conceptual model for the Hutton Formation distribution over the study area

before Birkhead formation deposition.........ccceeceerieieciieece e e 184

Integration between qualitative interpretation of mid angle stack and acoustic

impedance result from quantitative analysis.......cceeevivveineeieiiene e 187

XXVii



Figure 9.9: Facies distribution along arbitrary line passing through Well C, Channel and

XXviii



Chapter 1

Introduction

The aim of quantitative seismic interpretation is pore-fluid and lithology discrimination
away from existing wells (Avseth et al., 2005). Many scientific approaches have been used to
achieve these ends including: AVO attributes, post-stack and pre-stack simultaneous inversion.
Amplitude-variation-with-offset (AVO) has widely been used for hydrocarbon detection (e.g.,
Chopra and Castagna, 2014). Russell (1988) integrated seismic data and well logs to build a
complete model of subsurface elastic properties. Hampson et al., (2005) conducted pre-stack
simultaneous inversion for simultaneously extracting rock-physical properties such as P-
impedance, S-impedance, density and compressional-to-shear-wave velocity ratio which are
linked to different pore fluids and facies. Interpretation can be based on statistical relations such
as statistical rock physics (Mukerji et al., 2001). Multiattribute analysis and probabilistic neural
networks are also commonly used (Hampson et al.,, 2001). Muker;ji et al., (2001) developed
statistical rock physics using Bayesian classification for identifying pore-fluids and lithology from
seismic data. @degaard and Avseth (2004) introduced the idea of a rock physics template (RPT)
which uses petrophysical properties estimated at wells for classifying seismic-inversion data.
Trappe and Hellmich, (2000) used neural networks for lithofacies prediction. Hampson et al.,
(2001) derived multiple attributes from seismic data using stepwise regression for well-log
predictions and introduced probabilistic neural networks for enhancing resolution of
multiattribute analysis. Roden et al., (2015) used the Self-Organizing Map (SOM) algorithm for

identifying geologic variations.



My study area is located in the Eromanga Basin, Onshore Australia, and the target
reservoir is the Hutton Sandstone Formation. In this area, mixed drilling results suggest that
guantitative seismic analysis may result in better exploration success rates. The purpose of this
thesis is to attempt to use advanced seismic analysis to explain unusual drilling results in the
Queensland field, with the hope of generalizing any learning to other localities in the Eromanga
Basin. Because all the above-mentioned approaches have non-unique solutions, a comparison of
methods may allow increased confidence in the estimation of pore fluids and lithology
distribution in the Hutton Sandstone.

1.1. Problem

Identifying facies and pore fluids is problematic in the Hutton Sandstone Formation. The
target is usually a one-well prospect of limited size. Most wells have been drilled on basement
influenced highs. Numerous positive structures are dry (exploration failures) amidst similar
structures that are hydrocarbon charged. In my dataset, two wells were drilled in the same
anticlinal closure; the up-dip well has 100% brine saturation in the Hutton Sandstone while the
well mid-dip has lower density oil in the same interval at a greater depth; firm evidence of
reservoir compartmentalization. Stratigraphic interference on the anticlinal closure could
potentially be the reason for this apparently gravity defying distribution of pore fluids.

1.2. Objectives

My research objective is focused on seismic reservoir characterization of the target
reservoir. Seismic reservoir characterization means identifying reservoir properties and hence,

discriminating different lithology and pore fluids. Rock-property analysis provides the link



between reservoir properties at wells and the seismic response, which is sensitive to changes in
reservoir properties such as porosity, lithology and pore fluids. By using available data such as
well logs and 3D seismic volumes, rock properties away from the well bore can be estimated.
Thus, facies and pore fluids may be discriminated and their distribution over the study area can
be reasonably addressed. This could potentially lead to the delineation of new prospects and the
avoidance of dry holes in the area. In addition to the lithology and pore-fluid discrimination
objective, a comparison between different approaches such as AVO analysis, post-stack seismic
inversion, pre-stack simultaneous inversion and multiattribute analysis using machine learning
applied to conventional and high-frequency seismic data is another goal. Results will be validated
at blind out-of-sample wells. It is hoped that this comparison will reveal the best approach for
deciphering the available data and may improve future exploration in the vicinity.
1.3. Methodology

The workflow proposed for quantitative seismic reservoir characterization consists of the
following steps: (1) Petrophysical and rock property analyses are performed around and through
the target formation in the existing wells. (2) Fluid substitution is conducted to address rock
property change to water saturation change and to monitor hydrocarbon pore-fluid detectability
from seismic data. In addition, sensitivity and seismic-resolution analyses provide expected
seismic-amplitude changes to petrophysical-property changes. (3) AVO analysis was conducted
to address pore-fluid discrimination by AVO attributes. (4) Inversion of three offset-limited
seismic volumes for Extended Elastic Inversion (EEI) to yield bandlimited P-wave velocity (Vp), S-
wave velocity (Vs), and density volumes. Rock properties estimated from inversion are used to

characterize reservoir heterogeneity. (5) Rock-property crossplots are tied to the petrophysical
3



properties for discriminating different pore fluids and lithology and for establishing facies cubes.
(6) To reduce exploration risk and address uncertainty, Bayesian classification is conducted. (7)
Supervised and unsupervised machine learning are used to estimate rock properties and then
accuracy of predicted results. (8) Evaluation of these results using the F-test and confusion
matrix. and (9) Investigation of blind validation wells. (10) For a more robust rock-physical
property estimate, sparse-layer inversion is conducted to create high-frequency seismic data.
Then, quantitative seismic interpretation is repeated with the high-resolution seismic data. A
workflow for the methodology is shown in Figure 1.1. Methodology will be discussed in detail in

the following chapters.
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Figure 1.1: Methodology workflow chart for seismic reservoir characterization.




1.4. Data

The available data include recently acquired 3D seismic data over the study area, which
is 7860 m by 8440 m. The 3D seismic stack volumes are (1) full, (2) 0-600 m, (3) 600-1200 m, (4)
1200-1800 m, and (5) 1800-2400 m. Four suites of conventional well-log curves from the four
wells (A, B, Cand D) in the study area include three wells (A, B and C) that have oil production in
the upper Hutton formation and one dry hole (Well D). Available logs at the four wells are shown
in Table 1.1. All wells have caliper log, resistivity log, SP log, gamma-ray log, sonic log, density log
and neutron log. Well A has a measured shear log. In Figure 1.2, the map of the study area shows
the four well locations and the area covered by the seismic survey. Software packages used for
analyzing data are Hampson-Russell, SMT Kingdom, Petrel, PetroSeismic (JTIPS), RockDoc,
Techlog and Excel Microsoft Office.

Table 1.1: Available logs in the four wells.

Caliper log v v v v
Resistivity log v v v v
SP log v v v v
Gamma Ray log 4 v v v
Sonic log v v v v
Shear log 4 X X X
Density log v v v v
Neutron log v v v v
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Figure 1.2: Map of the study area shows four wells and the extent of the 3D seismic
survey represented by blue area.

1.5. Geological background of study area

The study area is in the Queensland Field, Eromanga Basin, Onshore Australia as shown in
Figure 1.3. Most of the oilfields are in the Eromanga Basin sequence where the target pay zone

is the Hutton Sandstone Formation.
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Figure 1.3: Study area, Onshore Australia (modified from GSA, 2019).

1.5.1. Cooper-Eromanga Basin petroleum system

The depositional setting of the Eromanga Basin is a non-marine sequence with high
hydrocarbon productivity overlain by two non-productive sequences of marine and non-marine
sediments. Permian rocks of the underlying Cooper Basin are regarded as the source rocks for
productive reservoirs formed by braided and meandering fluvial, shoreface and lacustrine
turbidity sandstones. These Permian source rocks have average TOC and S2 pyrolysis yields of 3.9
% and 6.9 kg/t, respectively. Lacustrine and floodplain shales cover the productive reservoirs to
form seals (Radke, 2009).

When it comes to thermal history, as mentioned by (Radke, 2009), hydrocarbons were
generated as a result of four heat flow events: Late Permian (250 Ma), late Early Cretaceous (105
Ma), Late Cretaceous (90-85 Ma), and Late Neogene — present (5-2 Ma).

The Eromanga Basin is an intracratonic basin and it dips gently toward the north-west,

plunging toward the underlying depocenters of the Cooper Basin at the Nappamerri Trough. In
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some areas, the Eromanga Basin sequences are thinning toward the east and onlapping the
basement highs of the Thargomindah Shelf. Early basement induced faults appear to have
undergone limited activity throughout the Jurassic — Cretaceous and rarely extend into the
Eromanga section.

The regional structural framework of the Eromanga Basin is represented by four-way dip
closed anticlinal trends in a regional sag basin. These anticlinal closures with stratigraphic
interferences form the trapping systems such as occur in the Queensland Field, in the Hutton—
Birkhead transition (Radke, 2009).

The stratigraphic column of the basin is illustrated in Figure 1.4. There are two key
formations of interest. The Cadna—Owie formation produces a regional seismic marker at about
1200 m depth in the study area and the Hutton formations at approximately 1600 m depth is the
main reservoir target.

Oil migrated from Cooper Basin source rocks into the upper Eromanga Basin reservoirs.
The schematic diagram in Figure 1.5 shows oil migration from Cooper Basin source rocks to
overlaying Eromanga Basin reservoirs. Due to poor sealing, net oil columns have small height

compared with the height of the closures (from PIRSA, 2000).



AGE ROCK UNIT UTHOLOGY

TERTURY LAKE EYRE BASIN

...............

WINTON FORMATION

‘w FORMATION

FORMATION TOOLEBUC |-

1
coo‘umc\ss. WALLUMBILLA
BULLDOG FORMATION

SHALE

| LAXE EYRE BASIN
(CALASONXA SUS BAS2)

CRETACEOUS

Early

CADNA-OWIE

. FORMATION [0
MURTA FORMATION | i
— ol A
MciGnlay Momber ™|

/

JURASSIC

Target Pay . .1on

T SANDSTONE
> |[Ir,. Zone
< |I{[K
S (1,
hAAAAAAA
PAAAAAAAS
LATE IMPSO.
TRIASSIC BASIN
CARB. -
| M0 TRIAS. v\ A
VAAAAAANS [~
[camBRo WARBURTON BASIN
M aasN PAAAAAAAAAAA
MAAAAAMANNAA
NEOPROT. ADELAIDE GEOSYNCUNE
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2018).
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Figure 1.5: Schematic diagram shows oil migration from the Cooper Basin to the
Eromanga Basin (modified from Buick, 2015).

1.5.2. Hutton Formation

Dodman and Rodrigues (1989) reported the characteristics of the Hutton Sandstone in
the Jackson Qil Field. They described the Hutton reservoir as a largely anticlinal structure overlain
by the Birkhead Formation as a top seal. The Hutton Sandstone was deposited in a braided fluvial
environment of high energy and consists of fine to coarse grained light brown quartzose
sandstones represented by fining upward cycles. Beneath the Hutton oil column, there is a thick
aquifer that provides the main drive mechanism. Hamilton et al., (1998) identified Hutton

stratigraphy as a sandy sequence consisting of amalgamated, blocky channel fills with few

intercalated shales.
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The Hutton Formation is overlain by the Birkhead Formation, which scours into the thick,
partially consolidated succession of the Hutton sand. This introduces compartmentalization in
the upper part of the Hutton Formation. Lateral change in facies produce reservoir heterogeneity
that can restrict pore-fluid flow through the reservoir and, hence, prevent hydrocarbon migration
into isolated compartments. Reservoir heterogeneity is enhanced by diagenetic processes that
create permeability differences among facies (Hamilton et al., 1998). The overlaying Birkhead
Formation is composed of interbedded mudstone, siltstone and medium to coarse channel
sandstones. These mixed facies were deposited in a meandering fluvial environment. Birkhead
Formation deposition is controlled by the Hutton Sandstone paleo-structure (Lanzilli, 1999). A
schematic diagram (Figure 1.6) shows sediment provinces and paleogeography during early

deposition of Birkhead Formation seal overlaying the target pay zone.
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Figure 1.6: Schematic diagram shows sediment provinces and paleogeography during
early deposition of seal rock overlaying the target pay zone (modified from Boult et al., 1998).
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According to XRD and QEMSCAN analyses of samples taken from the Hutton Sandstone,
the main framework mineral is quartz while minor minerals exist including feldspars, clay
minerals and other minerals such as K-silicate—quartz interfaces, sulphates, TiO, phases and iron
oxides as described by Dillinger et al., (2014). In addition, petrographic analysis indicates that
sandstone is influenced by diagenetic processes (compaction, cementation, recrystallization,
dissolution, authigenesis) which have a significant effect on porosity and permeability and hence,
decreasing flow rate of pore fluids within the reservoir. Furthermore, grain contact type varies
with facies change from line contacts to suture contacts (Dillinger et al., 2014).

According to core analysis of the Hutton Sandstone samples, porosity ranges from 16% to
25%, and permeability ranges from 10 mD to 1000 mD which indicates good reservoir quality

(Hamilton et al., 1998).
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Chapter 2

Petrophysical and Rock-property Analyses

2.1. Petrophysical analysis

Petrophysical analysis plays an important role in formation evaluation. It includes lithology
(mineral volumetrics), water saturation and porosity estimation through and around the Hutton
Formation. The lithology discrimination is basically a sand/shale ratio determination where the
volume of shale was estimated by the Stieber method (1970). The shale index was first estimated

and then the volume of shale was calculated as shown in following equations:

GRlog — GRpin

IGR = ,and (2-1)

GRmax — GRmin

GRmin
Vsh=—— (2-2)

3 —2xIgr !

where, Igris shaliness indicator, GRmaxis maximum gamma ray reading, GRmin is minimum gamma

ray reading, GRiog is gamma log reading and Vs is volume of shale.

Moreover, the SP logs were used to discriminate permeable zones from impermeable

ones, and thus, help in lithologic discrimination in conjunction with gamma-ray logs.

Hydrocarbon zones were detected using resistivity logs that are regarded as pore-fluid
indicator logs. The average resistivity (Ro) of the brine saturated zone of the Hutton formation

was calculated. Archie’s equation (1942) was used to calculate the water saturation (Sw):

Sw=,/Ro/Rt, (2-3a)
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where, Sw is water saturation, Rt is deep resistivity and Ro is brine-saturated zone resistivity.

When Ro was not readily available, the resistivity of the connate water, Rw was estimated

and the second Archie equation used:

Sw=c (Rw/Rt)Y2/ @ , (2-3b)

where, porosity (@) is calculated with the mass-balance equation where py, is the measured bulk

density, pgis grain density and ps is fluid density:

pb = pg (1-®) + ps®, and (2-4)

@ = (pg—pr)/ (Pg - p11), (2-5)

The fluid density is a function of the water saturation (Sw) and is expressed as:

psi= prvo(1-Sw) + perSw, (2-6)

where the density of the hydrocarbons (o+yp) and the density of brine (0sr) were estimated using
equations published by Batzle and Wang (1992). Before calculating porosity, especially in the

hydrocarbon zones, the density logs were corrected in zones of irregular values of the caliper log.

Water saturation, volume of shale and porosity curves were calculated for the zone of
interest around the Hutton Formation at the four wells as shown in Figures 2.1, 2.2, 2.3 and 2.4.
Water saturations for the upper part of the Hutton Formation are 30% in Well A and Well B,
which is an indication of hydrocarbon pore-fluid occurrence and 60% in Well C. Although high
water saturation occurs at Well C, a drill stem test tested oil from 1523 m to 1525 m depth. At

Well D, water saturation is 100%. Calculated volume of shale shows some intercalations of shale

14



within the Hutton Formation which are highest at Wells A, B and D and least at Well C. Porosity
ranges from 10% to 21% within the Hutton Formation at Wells A, B and C and from 10% to 15%

at Well D.

The density and neutron logs were crossplotted to address lithology and porosity
variations in the brine-saturated interval of the Hutton Formation in the four wells as illustrated
in Figures 2.5 to 2.8. The plotted data are colored by shale volume (Vsh). Most of data plots along
the sandstone line. As volume of shale increases, data is shifted toward limestone and dolomite
lines. In addition, porosity ranges from 14% to 22% at Well A and Well B as illustrated in Figure
2.5 and Figure 2.6. At Well C, porosity ranges from 17% to 23%. The porosity range decreases to

between 14% and 18% at Well D as shown in Figures 2.7 and 2.8.

Porosity reduction along the Hutton Formation at Well D may be attributed to compaction
and cementation increasing as a result of diagenetic processes. Sandstone facies change due to
increasing volume of shale and/or porosity reduction will lead, in turn, to rock-physical property

change.

15



5050

Resistivity (Q.m)

10 100

1000

5100 |

5150 -

5200

5350 |

5400

5450 |

5500

0.2
I

Sw (Decimal)

0.4 0.6 0.8 1]0
I I I

0.2

Vsh (Decimal)

0.4 0.6 0.3

Porosity (Decimal)
01 02 03

Figure 2.1: Petrophysical analysis of Well A. Dashed lines represent top and base of Hutton

5050

5100 4§

5150 -

g

Depth (ft)
g

5400 -

5450 4

5500

Formation.
Resistivity (Q.m) Sw (Decimal) Vsh (Decimal) Porosity (Decimal)
10 100 1000f o 0.2 0.4 0.6 0.8 1]0 0.2 0.4 0.6 0.8 0.1 0.2 0.3

o

)

o

(=]
'

Figure 2.2: Petrophysical analysis of Well B. Dashed lines represent upper and lower Hutton

Formation.

16




Resistivity (Q.m)
0 10

1000

Sw (Decimal)

0.2 0.4 0.6 0.8 1

4850

4900 -

Depth (ft)
&
3

5000 -

5050 -

5100

Vsh (Decimal)

0 0.2 04 0.6 0.8 1

0

Porosity (Decimal)
0.1 0.2 03 0.4 0.5

—

_ |

1

v
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Figure 2.5: Brine-saturated zone of the Hutton Formation at Well A is plotted on density log

versus neutron log Schlumberger chart.
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Figure 2.7: Brine-saturated zone of the Hutton Formation at Well C is plotted on density log

versus neutron log Schlumberger chart.
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Figure 2.8: Brine-saturated zone of the Hutton Formation at Well D is plotted on density log

versus neutron log Schlumberger chart.
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After identifying lithology from petrophysical analysis, well log correlation was generated
at the four wells to adjust formation tops at their correct positions. Well log correlation between

Well A and Well B is illustrated in Figure 2.9.
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Figure 2.9: Well log correlation between Well B and Well A at the Hutton Formation.

Because these two wells are close to each other and there is no complex structure
through and around them, there is a consistency in well correlation. In addition, a well log
correlation was performed at the Hutton Formation between one of these two wells (Well B) and

other wells (Well C and Well D) as shown in Figure 2.10. The correlation indicates decreasing in
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the Hutton Formation unit and increasing shale facies toward Well D. This implies lateral change

not only in the Hutton Formation thickness but also in its facies toward well D.
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Figure 2.10: Well log correlation between Well B, WeII C and Well D at the Hutton Formation.
The Hutton Formation top was used as a datum plane.

1550

The pay zone proven by the drill stem test at Well Cis distributed along the second upper
unit of the Hutton Formation and has crossover between neutron and density logs that are not
obvious along the same unit in Well B and Well D. This implies that a seal within the Hutton
Formation prevented upward hydrocarbon migration to the top of the sandstone. A layer is
observed between the lower pay in Well C and the pay in Well B which is interpreted to be
carboniferous siltstone because of its high density and resistivity as well as siltstone and
carbonaceous claystone occurrence in the formation described in the literature (Dodman and

Rodrigues (1998).
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From well correlation, it is also noticed that the upper part of the Hutton Formation is
destroyed by the lower part of the Brikhead Formation. This matches with Birkhead Formation

fluvial system incision described by Hamilton et al., (1998) as shown in Figure 2.11.
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Figure 2.11: Lower part of Birkhead Formation is incised in the upper part of the Hutton
Formation.

2.2. Rock-property analysis

In this research, the ultimate goal is to obtain estimates of the petrophysical properties
for away from wells using the seismic data, inversions and rock-property analysis from
petrophysical crossplots and trends. The 3D seismic volumes available for the 3D petrophysical
volume estimates include, though are not necessarily limited to: P-wave velocity (Vp), S-wave

velocity (Vs), Acoustic Impedance (Al), Shear Impedance (SI), Vp/Vs ratio, Poisson’s ratio and

Pseudo-Lambda-Rho.



P-wave and S-wave velocity are theoretically calculated for an isotropic medium by the

following equations:

4
K+—I.l. u
Vp = 3 dVs=|— 2-7
p S —and Vs /p, (2-7)

where Kis bulk modulus, u is shear modulus and p is density.

Using well-log inversion for grain moduli as describe by (Chaveste and Hilterman, 2007),
the saturated moduli K and u are expressed in terms of grain moduli, porosity and Sw, which is
the starting point for sensitivity analyses using appropriate empirical and/or theoretical rock-

property relationships.

One well in the study area, Well A, has sonic and shear dipole logs. Oil saturation, Vp and
Vs curves are available in Well A. However, Wells B, C, and D only have sonic logs. A Vp versus Vs
regression relationship was established at Well A. The resultant Vp versus Vs relationship is
compared with the other empirical and theoretical Vp versus Vs relationships, such as the
mudrock line (Castagna, 1985). The Vp versus Vs relationship at Well A is close to the mudrock
line trend in all formations as well as the brine-saturated interval of the Hutton formation. The
regression coefficients are shown in Figures 2.12 and 2.13 where Well A results are compared to

the mudrock line.
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Figure 2.12: Vp versus Vs relationship for depth interval 3608 ft — 5512 ft at Well A.
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Figure 2.13: Vp versus Vs relationship for brine-saturated zone of Hutton Formation at Well A.
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Measured shear-wave velocity at Well A is compared with shear-wave velocity predicted
by the Greenberg and Castagna (1992) equation. Because there is a small shift between
measured and predicted shear-wave velocity, regression coefficients of the Greenberg and
Castagna equation for sandstone were modified and velocity was calculated linearly by the

following equation:

Vs = ((0.7019*Vp - 0.3134)*Vsand) + ((0.76969*Vp -0.86735)*Vsh), (2-8)

where Vsand is volume fraction of quartz and Vsh is volume fraction of clay and Vsand + Vsh =

The modified regression coefficients were calculated at Well A from trend lines of clean
sand and shale zones. Because Vp and Vs change with depth, clean sand and shale zones were
chosen to be quite close to the target reservoir zone. Figure 2.14 and 2.15 show comparison
between measured and predicted shear-wave velocity by the Greenberg and Castagna (1992)
equation and predicted shear-wave velocity by modified regression coefficients at Well A.
Predicted shear-wave velocity by the modified regression coefficients is very close to the
measured shear-wave velocity at Well A. Thus, Vs was calculated at Well B, Well C and Well D by

using modified regression coefficients in equation (2-8).

Only the parameters of sandstone were modified in the Greenberg and Castagna (1992)
equation. Because the Greenberg and Castagna equation parameters were estimated well for
clean sandstone, the modified parameters for sandstone indicate mineralogy deviation of the
Hutton formation from pure quartz. This would be expected for immature sandstones with

feldspars, clays, and lithic fragments.
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Acoustic Impedance (A/l), Shear Impedance (S/), Poisson ratio and Lambda-Rho (Ap) are

calculated using the following equations:

Al=p*Vp, (2-9)
Sl=p*Vs, (2-10)
5-(X5)
o=2m) g (2-11)
1-(i7)
Ap = (Al)>-c(SI)? . (2-12)

As shown in Figure 2.16, there are no abrupt differences in the velocity-depth trends between
the A, B, C and D wells. Most of the velocity variations with depth are attributed to lithology

variations and not attributed to overpressure.

Well B Well C
3500
Velocity (Ft/sec) Velocity (Ft/sec) Velocity (Ft/sec) Velocity (Ft/sec)

D00

Figure 2.16: Velocity-Depth trend at A, B, C and D Wells. Red dashed line represents the Cadna-
Owie, C, seismic marker.
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Figure 2.17 focuses on velocity variations at wells within the Hutton sandstone depth
range. There is a significant change in velocity at Well D. At the upper part of the Hutton
formation, there is an increase in velocity at Well D compared with other wells which is attributed
to facies change. Furthermore, there is a large decrease in velocity in the middle part of the
Hutton Formation at Well D. Because this low-velocity zone corresponds to high gamma ray and
Well D has no significant hydrocarbons, the velocity decrease is attributed to facies changes. In
addition, there is an increase in velocity at the middle of the pay zone at Well C. This increase is

also attributed to facies change.
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Figure 2.17: Velocity-Depth trend at A, B, C and D Wells. Black horizontal line represents the
Hutton Formation top.
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To address density variation with depth, Figure 2.18 shows that there is no abrupt change
in the density-depth trends at the four wells (A, B, C and D). Most of the density variations with
depth are attributed to lithology variations and not attributed to overpressure. Figure 2.19
focuses on density variation with depth within the Hutton formation at the four wells. At the
upper and lower parts of the Hutton Formation, there is an increase in density at Well D

compared with other wells. This increase may be attributed to facies change.
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Figure 2.18: Density-Depth trend at A, B, C and D Wells. Datum at zero level represents the
Hutton Top and dashed lines represents the Hutton bottom.
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Figure 2.19: Density-Depth trend at A, B, C and D Wells for 100 m below the Hutton Formation
Top.

2.3. Rock-property crossplots

After extracting petrophysical and rock properties from well logs, crossplots of various
rock properties versus petrophysical properties were generated. From these crossplots, different
lithologies and pore fluids were discriminated. In addition, these petrophysical properties will

assist in evaluating depositional trends and the degree of lithification of the Hutton Formation.
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Velocity-Density and Velocity-Porosity crossplots are theoretically and empirically
generated by many authors. Gardner (1974) proposed an empirical relationship between velocity

and density for all sedimentary rocks:

p =1.741 V025, (2-13)

where p is density (g/cc) and V is velocity (km/sec). Castagna (1993) extended Gardner’s work

by developing velocity-density transforms that were a function of rock type.

Wyllie’s (1956) time-average equation is an empirical estimate of slowness for well

lithified brine porous rocks:

1/V= (1'¢)/Vma + (D/Vﬂ; (2'14)

where Vis rock velocity, Vmais matrix velocity and Vyis fluid velocity.

Raymer, Hunt and Gardner (RHG) (1981) provided an updated empirical time-average

equation by proposing the following expressions:

V = (1-0)?Vma + OVl (2-15)

for ® <37%, and

l/p\/2 = (1'(D)/pmavma 2+ ‘D/.Dﬂvﬂz (2'16)

for @ >47%.

where p is bulk density, V is rock velocity, pma is matrix density, Vimg is matrix velocity, py is fluid

density, Vyis fluid velocity, and @ is porosity.
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The RHG trend represents the upper bound for the velocity-density crossplot. While the
lower bound is represented by an equation similar to Wood’s equation (1955). Han (1986)
provides a velocity-porosity relationship that includes the effect of clay content on velocity at 40

MPa. For clean sandstone:

Vp =6.08 — 8.069, (2-17a)
and,
Vs =4.06 — 6.289. (2-17b)
For shaly sandstone:
Vp =5.59 - 6.939-2.18C, (2-18a)
and,
Vs =3.52 -4.91® - 1.89C, (2-18b)

where Vp is P-wave velocity, Vs is the S-wave velocity, @ is porosity, and Cis clay fraction.

Voigt (1928) proposed a theoretical model that estimates the upper limit for effective

moduli:

My= i1 fi M; (2-19)

Reuss (1929) proposed another theoretical model that estimates the lower limit for

effective moduli:

1/Mr= Y1 fi/M;, (2-20)
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where, M, is grain bulk or shear modulus.

Both models have been used in velocity-porosity crossplots to limit the upper and lower

bounds. Hill (1952) took the average between Voigt and Ruess bounds:

M =0.5(My + Mg) . (2-21)

Velocity-porosity crossplots were generated to compare data with theoretical and
empirical trends in an aim to detect the depositional trend. Figure 2.20 shows Well A and Well B
data colored by shale volume (Vsh). It exhibits a depositional sorting trend rather than a
diagenetic trend. In addition, trends of brine-saturated data of the Hutton Formation at the four
wells are crossplotted separately as shown in Figures 2.21, 2.22, 2.23 and 2.24. Brine data also

have a depositional sorting trend and not a diagenetic trend.

In addition to identifying the depositional trend, velocity-density crossplots were
generated to identify the degree of lithification. Most brine-saturated data of the Hutton
Formation at the four wells plot below the RHG line and around the Gardner line but with a
different trend as shown in Figure 2.25, 2.26, 2.27 and 2.28. Thus, the Hutton Sandstone is not

highly lithified.
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Figure 2.20: Velocity-Density relationship at Well A and Well B colored by Vsh.
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Figure 2.21: Velocity-Porosity relationship at Well A.
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Figure 2.23: Velocity-Porosity relationship at Well C.
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Figure 2.25: Velocity-Density relationship at Well A.

36




Vp (km/sec)

Velocity - Density

@ Data Gardrner RHG Wood like

Linear [Data )

Vp = 1.5714 p = 0.1303

1.8

2 2.2 2.4 2.6
Density (g/cc)

2.8

Figure 2.26: Velocity-Density relationship at Well B.
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Figure 2.27: Velocity-Density relationship at Well C.
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Figure 2.28: Velocity-Density relationship at Well D.

Multiple regressions were established at the four wells using only measured logs to
address volume of shale and porosity effect on compressional-wave and shear-wave velocities.
The calculated regression coefficients are shown in Figure 2.29. All of the regression coefficients
basically indicate decreasing velocity with increasing porosity and/or volume of shale except for
the oil zone of Well A and B and the brine zone of Well C. Volume of shale at these zones has
positive signs which means that velocity increases with increasing shale volume. This may be
attributed to shale deficiency at these zones that affects regression coefficient calculations. Rock
templates were established using regression coefficients to show shale volume percentage
change along data points of brine-saturated zones at the four wells as illustrated in Figure 2.30.
The multiple regression equation for all the brine zones combined is Vp= 4.21275 -2.04512 @ -

0.32307 Vsh.
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Figure 2.29: Multiple regression coefficients calculated for pore-fluid zones at the four wells.

Multiple Regression

45

43

4.1

s 0% VS

39 ¢ ===20% Vish
v
E 3.7 0% V'sh
12 ——60% Vsh
>33 —e80% Vsh

33 e 100% Vsh

31 @ Brine data

2.9

0 0.05 0.1 0.15 0.2 0.25
Porosity (Decimal)

Figure 2.30: Velocity-Porosity relationship shows shale volume lines along brine-saturated
zones of four wells.

39



In addition to identifying depositional trends and the degree of lithification of the Hutton
Formation, rock-property crossplots are also used for lithology and pore-fluid discrimination. In
fact, Pickett, as early as 1963, suggested using Vp/Vs as a lithologic discriminator. Likewise,
Castagna et al., (1985) investigated Vp/Vs as a lithologic indicator and suggested using this ratio
as pore-fluid discriminator. The rock-property lambda-rho (Ap) is a pore-fluid indicator suggested
by Goodway et al. (1997)., This attribute is related to the pore-fluid term of Gassmann (1951) as
suggested by Hilterman (2001). Russell et al., (2003) modified it to a pseudo-lambda-rho attribute
for achieving a better pore-fluid discrimination by rotating the wet-trend axis in the Al? versus SI?
crossplot. This rotation enhances pore-fluid projection as suggested by Hendrickson (1999) and
Whitcombe and Fletcher (2001).

Because Well A has measured logs, it was preferable for conducting rock property
crossplots. Lithology is discriminated using the Picket (1963) chart as shown in Figure 2.31. Most
data points are plotted around Vp/Vs = 1.6, which is a characteristic Vp/Vs ratio for sandstone.
Some data points are shifted from this trend as volume of shale increases. The Vp/Vs to Vp
relationship of Castagna et al., (1985) and Vp/Vs versus Al crossplot were used to discriminate
pore fluids, but there is no separation between hydrocarbon and brine-saturated samples at the
Hutton Formation as shown in Figure 2.32 and 2.33. Difficult discrimination may be attributed
either to reservoir rock that possibly is more lithified or to pore fluid that probably approaches
dead oil characteristics. In Figure 2.34, a crossplot of Al% versus SI? was generated where (Alwet 2
=2.0625 Slywet® + 18.018) is the trend of the brine-saturated zone of the Hutton Formation at well
A. To discriminate pore fluids, a crossplot of SI? versus pseudo-lambda-rho was generated in

Figure 2.35 where (pseudo-lambda-rho = Alwet® - 2.0625 Slwet®> - 18.018). There is a poor
40



discrimination between oil- and brine-saturated samples. Qil pore-fluid is 32 API gravity with low
gas-oil ratio. Therefore, oil properties similar to those of brine provide a possible reason for little

discrimination between pore fluids at the wells.
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Figure 2.31: Brine-saturated zone of Hutton Formation at Well A on Pickett chart.
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Figure 2.32: Vp/Vs — Vp relationship using the Hutton Formation data at Well A.
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Figure 2.33: Vp/Vs — Al relationship using the Hutton Formation data at Well A.
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Chapter 3

Fluid Substitution and AVO Modeling

3.1. Fluid substitution

Fluid substitution was conducted using the Gassmann equations (1951) to monitor moduli
change in response to water-saturation change. Consequently, rock moduli with different pore
fluids can be addressed, and hence, can be used in identifying pore fluids away from wells. Before
conducting fluid substitution, reservoir fluid properties are calculated using Batzle and Wang

(1992) as shown in Table 3.1.

Table 3.1: Reservoir pore-fluids properties.

Reservoir pore-fluids properties

Pore pressure Temperature API
19.7 Mpa 26.67 °c 32
Gas gravity GOR Salinity

0.7 200 ff3/bbl 3400 ppm

Rho Vp K
0.831 g/cm? 1.41 Km/sec 1.645 Gpa

Rho Vp K
1.008 g/cm? 1.54 Km/sec 2.754 Gpa

Fluid substitution was started by estimating saturated bulk modulus (Ks.:) and saturated

shear modulus (usat) logs from compressional velocity, shear velocity and density logs using



equations (2-7). Matrix bulk modulus properties were estimated using the Reuss lower bound

and the Voigt upper bound and then averaged using the Hill average by following equations:

AN ]
Kreuss= [ + 2] (3-1)
Kreuss= [FlKl + FZKZ] , and (3-2)
1
Kyru= 3 [KVoigt + KRuessZ] , (3-3)

where K is bulk modulus for quartz and Kz is bulk modulus for shale minerals. F;and F; are sand
volume (Vsand) and shale volume (Vsh) fractions respectively. Because of unavailability of core
samples, standard quartz physical properties are used while shale physical properties are

extracted from a shale interval close to the Hutton Formation zone as shown in Table 3.2.

Table 3.2: Matrix physical properties.

Rho; K,
2.65 g/cm? 37 Gpa
Rho, K;
2.53 g/cm? 21.4 Gpa

Pore-fluids were mixed according to water saturation calculated at wells using:

e 1-1
K= [f;—w + %] , and (3-4)
pflzphc (1 - Sw) +prwr (3'5)
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where Ky is the bulk modulus of the fluid mixture, S, is the water saturation, K,, is the bulk
modulus of the water, K}, is the bulk modulus of the hydrocarbon, pg; is the density of the fluid

mixture, p,, is the density of the water, and pj,. is the density of the hydrocarbon.

Once physical properties were calculated for matrix and pore-fluids, dry rock bulk

modulus (K4, ) was calculated by the following equation:

PK
Ksat <_Krfr;a +1-0) - Kma)
Kdry = Pkma + Ksat _ 1-9 4 (3-6)
Kfl Kma

where K,y is the bulk modulus of the porous rock frame, K, is the saturated bulk modulus,
Kinq is the bulk modulus of the mineral matrix, Ky, is the bulk modulus of the pore fluid, and @ is

porosity.

Because Kary does not change with changing pore-fluid, in situ water saturation was
changed, and bulk fluid modulus of the new pore-fluid mixture was calculated. Then, saturated
bulk modulus of rock for the new pore-fluid mixture with different water saturation than the in-

situ case was calculated using Gassmann’s equation:

(-5e=)
Kma
o ,a-0 Kary-

Kf1 Kma K#.a

Ksar = Kary + (3-7)

In addition, shear modulus (usat) for the rock is held the same, even after water saturation
change, but density of the new pore-fluid content was changed and calculated using following

equation:

p2=p1+(Pri2 — Pr1a) (3-8)
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where p; and p, densities of rocks with fluid 1 and fluid 2, respectively while ps;; and pg, are

the original and new pore fluid densities.

Compressional- and shear-wave velocities as changed in response to pore-fluid change

were determined from:

4
Ksat+Z 1
V,= —tp 3_  and (2-7)
Vo= (2-7)

where K, is the saturated bulk modulus, p is the shear modulus and p is the density.

Fluid substitution was done several times from brine to oil and vice versa. There is a little
discrimination between the original saturation (Sw = 30%) and (Sw = 100%) after fluid
substitution using the Vp/Vs ratio and Poisson’s ratio at Well A and Well B as illustrated in Figures
3.1 and 3.3. However, at Well Cand Well D, there is observable pore fluid discrimination between
the high water-saturation in situ case and the oil saturation case after fluid substitution as shown

in Figures 3.5 and 3.7. This discrimination is larger than that observed in Well A and Well B.

AVO synthetics with and without hydrocarbons were created at the four wells to
determine if hydrocarbons can be potentially detected on seismic reflection data as shown in
Figures 3.2, 3.4, 3.6 and 3.8. A difference between the AVO synthetics before and after fluid
substitution was noted at some wells. There is some possibility of detecting hydrocarbons from
seismic data in certain circumstances. However, there are no noticeable AVO changes after fluid

substitution for some of the wells such as Well Aand Well C. A weak decrease in amplitude was
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noted at Well B after AVO fluid substitution from oil to brine. A noticeable increase in amplitude

of the AVO synthetics occurred at Well D after decreasing water saturation during fluid

substitution.

However, these results may be misleading. This noticeable discrimination between pore

fluids at Well B and Well C can be attributed to the predicted S-wave velocity used in fluid

substitution, especially for the brine-saturated case. In addition, at Well D, there may also be

lithologic effects.
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Figure 3.8: AVO fluid substitution modelling at Well D. a) Brine saturated case before fluid
substitution. b) After fluid substitution to oil (Sw = 20%).

Brine-saturated values of the Hutton Formation at the four wells are plotted in Kary over
Kmin versus porosity as shown in Figures 3.9, 3.10, 3.11 and 3.12. Within the same porosity range,
brine-saturated data have different dry bulk modulus. As dry incompressibility increases, Kqry over
Kmin increases, hence, Kpni over Kmin increases. Thus, the rock has a small sensitivity to fluid. On

the other hand, as rock become soft, the sensitivity to fluid increases.

Most of brine data for the four wells have moderate values of dry bulk modulus indicating
that the Hutton sandstone is not highly consolidated or cemented. There are, however, a few
data points that are shifted toward high dry bulk modulus values that indicates increased
cementation within some depth ranges. Thus, based on previous results, the Hutton Sandstone

can have a moderate degree of sensitivity to fluids.

After conducting a wide variety of rock property crossplots for pore-fluid discrimination,
Al versus Ksqot - Kary achieves the best discrimination between pore-fluids at the four wells as
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shown in Figure 3.13. Al and Ks: can be extracted from inverted seismic data, but it is still a

problem to estimate Kdry from seismic data.
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Figure 3.9: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at
Well A are represented by blue points.
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Figure 3.10: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at
Well B are represented by blue points.

53



Well C
1
0.9
|
0.8
= 0.7
w
2
=3
.E 0_6 -
= °
e 0.5 A
g
X 04
g ———Kphi/Kmin =0.5
x 03 1 ———Kphif/Kmin =0.45
Kphi/Kmin =0.4
0.2 A ——— Kphi/Kmin =0.35
Kphi/Kmin =0.3
Kphi/Kmin =0.25
g — Kphi/Kmin =0.2
Kphi/Kmin =0.15
0 T T T T 1 Kphi/Kmin =0.1
0 0.2 0.4 0.6 0.8 1 ——Kphi/Kmin =0.05
Porosity (Decimal)
Figure 3.11: Normalized rock bulk modulus. Brine-saturated data of the Hutton Formation at
Well C are represented by blue points.
Well D
14
0.9
0.8
o 0.7
w
2
=
= 0.6
=
c 0.5
g
X 04
'E- ——— Kphi/Kmin =0.5
x 0.3 ~——— Kphi/Kmin =0.45
Kphi/Kmin =0.4
0.2 ——— Kphi/Kmin =0.35
Kphi/Kmin =0.3
Kphi/Kmin =0.25
L — Kphi/Kmin =0.2
Kphi/Kmin =0.15
0 T T T T 1 Kphi/l(min =0.1
0 0.2 0.4 0.6 0.8 1~ Kehi/kmin =0.05
Porosity (Decimal)
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Figure 3.13: Al versus Ksat-Kdry. Pore fluid discrimination using the four wells.

3.2. Sensitivity analysis

Because porosity and thickness change within the same reservoir from one location to
another, | did sensitivity analyses to see how the amplitude anomaly changes in response to

thickness and porosity changes.

| used well B for doing sensitivity analysis because the seismic data at the Well B location
does exhibit a Direct Hydrocarbon Indicator (DHI) feature. A bright spot was noticed from the

amplitude map established along the Hutton Formation top.

To do sensitivity analysis, forward fluid substitution was first conducted from oil to brine.
Figure 3.14 illustrates a difference between the AVO synthetics before and after fluid substitution

at Well B. After fluid substitution from oil to brine, an average density = 2.37 gm/cc and average
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velocity = 13000 ft/sec for full brine-saturation were estimated at Well B. Then, | used the mass

balance equation to estimate a porosity of 16.9%.
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Figure 3.14: Forward fluid substitution at Well B.

The trend line for the oil interval is represented by the black line in Figure 3.15. The red
point represents the plot of 100% brine-saturated sandstone average velocity and porosity for
this zone after fluid substitution to brine and | assumed that brine (after fluid substitution) has
the pink line on the velocity-porosity crossplot. Now, | can change petrophysical properties and
measure the sensitivity of amplitude changes in response to porosity and thickness changes. |

first did a reverse fluid substitution from brine to oil as illustrated at Figure 3.16. Then, | changed
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porosity and thickness separately and monitored change of the amplitude anomaly to
background amplitude at near and far offset. The results are illustrated in Figures 3.17 and 3.18.

An increase in (A/B) was addressed while increasing porosity to more than 15% as shown
in Figure 3.17. Hence, porosity contributes to an increased amplitude anomaly especially for high
porosity zones that exceeds 15%. Furthermore, an increase in anomaly to background amplitude
(A/B) was noticed at far angles while increasing pay zone thickness. The A/B increase at far angles

is much higher compared with near angles as shown in Figure 3.18. Thus, hydrocarbons detection

is highly dependent on the hydrocarbon thickness.

Velocity vs Porosity

Figure 3.15: Velocity-Porosity crossplot for brine-saturated zone of Well B.
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Figure 3.16: Reverse fluid substitution at Well B.

a) Near offset b) Far offset

ﬁ

Figure 3.17: Anomaly amplitude to background amplitude at near and far offset in response to
porosity change of target zone at Well B.
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b) Far offset

v

Figure 3.18: Anomaly amplitude to background amplitude at near and far offset in response to
thickness change of target zone at Well B. a) Near offset. B) Far offset.
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Chapter 4

Qualitative Seismic Interpretation

4.1. Seismic to well tie and wavelet extraction

After extracting rock properties from well logs, these properties are correlated with
seismic-reflection data. The correlation is done with a seismic well-tie process. To convert the
well depth domain to time domain, check-shot surveys provide an accurate time-depth curve for
this process. However, there still remains an ambiguity brought on by near-surface corrections
to datum applied to the seismic versus datum corrections that are applied for the check-shot
survey. Fortunately, the Cadna-Owie is an easily recognized marker both on the seismic data
and the synthetics. This relationship normally allows both the amplitude and phase spectra to

be accurately extracted for the seismic wavelet.
4.1.1. Creating synthetics

AVO synthetics were first created from well logs to see if the amplitude changes with
offset or not. | noticed that there is an amplitude variation with offset at the target zone as
illustrated in Figure 4.1. So, offset-stack seismic volumes can provide better correlation than the
full-stack seismic volume because near-offset amplitude will be stacked with far-offset amplitude

with the full-stack seismic volume.

The post-stack seismic volume used in the seismic to well-tie process at Well A and Well
B has an offset range from (1200-1800 m). So, synthetics were generated for the same offset

range. The wavelet applied for the well tie is shown in Figure 4.2. For the seismic to well-tie
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process, a bulk shift was only applied to the synthetics without applying stretch or squeeze. A
good seismic to well tie is observed at Well A and Well B as shown in Figures 4.3 and 4.4. Because
of structure complexity on the post-stack seismic volume (1200-1800 m) around Well C and Well
D, the post- stack seismic volume of offset rang from (600-1200 m) was used for the seismic to
well-tie process at these wells. Although the tie is not good around the Cadna-Owie Formation
top, especially at Well C, there is a good seismic to well tie around the pay zone at Well C and
Well D as shown in Figures 4.5 and 4.6. To address the Hutton Formation top extension along the
survey, an arbitrary line was constructed along the four wells as shown in Figure 4.7. There are
continuous reflectors at the wells, and they are pinching out toward Well D. Based on qualitative

seismic interpretation, a cartoon model for the arbitrary line passing through wells is shown in

Figure 4.8.
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Figure 4.1: AVO synthetic at Well A.
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Figure 4.4: Seismic to well tie at Well B.
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Figure 4.8: Cartoon section along the wells based on seismic interpretation.

A structure contour map for the Hutton Formation top was created as shown in Figure
4.9. It shows four-way and three-way plunging anticline closures which probably are good traps
for hydrocarbons. To address possible migration patterns using available data, an isochron map
was constructed between the Cadna-Owie Formation top, which represents a good seismic
marker, and the Hutton Formation top as shown in Figure 4.10. Closed contours identified from
the isochron map are possibly locations for hydrocarbon accumulation after its migration up dip.
The isochron and structure contour maps are used to address up-dip structures along the Hutton
Formation top. In addition, a basement structure contour map was constructed to show

basement relief as shown in Figure 4.11. High structures recognized from the structure contour
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map of the Hutton Formation are related to the highs on the basement structure contour map.
Because of the up-dip migration of hydrocarbons, the Hutton Formation above basement
influenced highs is probably hydrocarbon charged. To address this probability, facies and pore
fluid should be discriminated first from seismic inversion and multiattribute analysis as will be

discussed in the following chapters.
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Figure 4.9: Structure contour map of the Hutton Formation top.
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Figure 4.11: Basement top over study area.
67



4.2. DHI analysis

Bright anomalous amplitude distribution over the study area along the Hutton Formation
is shown in Figure 4.12. The amplitudes are conformable with structure in some subareas and
unconformable with it at other subareas. The source of these anomalous amplitudes could be
hydrocarbon pore fluid, lithology effects, or noises. To address amplitude changes with offset, a
10 ms horizon slice below the Hutton top extracted from the near-angle stack is compared with
a horizon of the same time window extracted from the far-angle stack as shown in Figure 4.13.
Amplitude values are estimated from near-angle and far-angle stacks along horizons at well
locations as illustrated in Table 4.1. There is a noticeable increase in amplitude from near offset
to far offset at Well A (Sw = 30%) and Well B (Sw = 30%) while there is a small increase in amplitude
at Well D (Sw=100%). These results strengthen the probability that hydrocarbon pore fluid is the
main source for most anomalous amplitudes at the Hutton Formation. However, there is a
negligible decrease in amplitude at Well C that has oil with 60% water saturation and that may
be attributed to high water saturation estimated from petrophysical analysis at the target zone

or due to the thin pay zone at Well C that is below the seismic resolution limit.
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Figure 4.12: RMS amplitude of the Hutton Formation top from far angle stack.

Table 4: Relative amplitudes estimated from near- and far-angle stacks at four well locations
using a scale from (0-9).

Near offset amplitude Far offset amplitude
(Unitless) (Unitless)
Well A 1.179 6.205
Well B 0.527 6.977
Well C 0.967 0.736
Well D 0.768 3.102
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a) RMS Amplitude (Near angle stack)
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Figure 4.13: Comparison between RMS amplitude extracted from near- and far-angle stacks

along horizon slice of 10 ms time window around the Hutton Formation top.
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Bright spot methodology is regarded as a starting step for identifying prospects. A bright
anomalous amplitude was observed at Well B where a strong negative amplitude occurs between
two strong positive amplitudes. Because the stratigraphic column in the study area is basically
sand/shale, this strong negative amplitude represents the Hutton Sandstone Formation top. To
address the amplitude variation at Well B along the Hutton Formation top, a comparison
between observed amplitudes at the pay zone is evaluated in Figure 4.14. There is an increase in

amplitude from near-offset to far-offset stacks at the Hutton Formation.
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Figure 4.14: Change in amplitude at the Hutton top at Well B from near to mid to far stacks.
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4.3. Seismic attributes

Attributes are sensitive to lateral changes in amplitude, reflector orientation, waveforms
and reflectivity spectral content. Therefore, they can be used to delineate geological features like
channels and faults (Marfurt, 2018). Roberts (2001), Bergbauer et al. (2003), and Al-Dossary and

Marfurt (2006) described the principle components of the curvedness attribute (C):

C = (Ki?+K2)Y/?

where K7 is the most positive principle curvature and K> is the most negative principle curvature.

Figure 4.15 shows curvature attributes where normal to surface vectors are represented by

arrows.
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Figure 4.15: Curvature attributes. Vectors, which are normal to surface, are represented by

arrows (modified from Roberts, 2001).

Seismic attributes used in this research include dip of maximum similarity, curvature
(curvedness), most positive curvature and most negative curvature. Seismic attribute time slices

are co-rendered with each other to robustly show structure and stratigraphic features. Time
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slices were constructed from 3D seismic data to show seismic attributes along 1122 ms, 1150 ms,
1175 ms and 1204 ms within the Hutton Formation as shown in Figures 4.16, 4.17, 4.18 and 4.19.
The most positive curvature attribute is co-rendered with the most negative curvature attribute
to show more details that are not seen by using dip of maximum similarity attribute as illustrated
in Figure 4.20. Most positive curvature shows high structures that are possibly hydrocarbon
charged while most negative curvature shows low structures that are possibly brine charged if
there are no stratigraphic interferences. After investigating seismic attributes, meandering

features are observed that are probably ancient paleo valley system.
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Figure 4.16: Dip of maximum similarity attribute. a) Time slice 1122 ms. B) Time slice 1150 ms.

73



a) Time slice 1175 ms |

Dip of maximum
similarity (Degree)
4
3
2
1
0
-
D D S o o
S,
b = /‘.
<t \‘ >
5T NN
B
.

b) Time slice 1204 ms |

Dip of maximum
similarity (Degree)
4

3

Figure 4.17: Dip of maximum similarity attribute. a) Time slice 1175 ms. B) Time slice 1204 ms.
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Figure 4.18: Curvature (Curvedness) attribute. a) Time slice 1122 ms. B) Time slice 1150 ms.
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a) Time slice 1175 ms ) b) Time slice 1204 ms
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Figure 4.19: Curvature (Curvedness) attribute. a) Time slice 1175 ms. B) Time slice 1204 ms.
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Figure 4.20: Most-positive curvature attribute co-rendered with most-negative curvature
attribute. a) Time slice 1122 ms. b) Time slice 1150 ms.
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a) Time slice 1175 ms | b) Time slice 1204 ms
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Figure 4.21: Most-positive curvature attribute co-rendered with most-negative curvature
attribute. a) Time slice 1175 ms. b) Time slice 1204 ms.

From seismic attributes, basement faults that cut across basement and its overlaying
sedimentary section can be seen. Figure 4.22 shows Well A and Well B drilled on high structure
surrounded by basement faults as identified from most positive curvature and dip of maximum
similarity attributes. Because of structure complexity around Well C and Well D on the far-angle
stack, | used seismic attributes extracted from the mid-angle stack to investigate area around
Well C and well D as shown in Figures 4.23 and 4.24. Curvature features are noticed around Well
Con the curvedness attribute. In arbitrary lines created along these features, they are seen to be
fault zones around Well C and between Well C and Well D. They are probably the reason for
hydrocarbon accumulation in the Hutton Formation at Well C since these faults could provide a
good seal for hydrocarbons and they probably have prevented hydrocarbon migration to Well D.
From arbitrary lines, some faults are hardly identified which indicate that they may be syn-

depositional faults.
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Figure 4.22: a) Time slice shows dip of maximum similarity attribute. b) Time slice co-rendered
positive and negative curvature attributes.

Curvedness
(Unitless)
de-4

3e-4

2e-4

le4

Time slice 1122 ms |

(sec)

Time

Inline: (Number 2043.0
Crossline:(Number,

0.8004 L ———

g

1297.0

S —

Figure 4.23: a) Time slice shows curvedness attribute at the Hutton Formation top around Well
C and Well D. b) Arbitrary line was taken along Well C and Well D.
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Figure 4.24: a) Time slice shows curvature attribute at the Hutton Formation top around Well C
and Well D. b) Arbitrary line was taken along Well C.

For the possibility of stratigraphic features occurrence around Well C and Well D, a big
obvious trough and vague peak within it along the Hutton Formation at Well C can be seen as
shown in Figure 4.25. When these events are compared with volume of shale (Vsh) estimated
from petrophysical analysis at Well C, the trough corresponds with sand rock units while the
vague peak corresponds to an increase in volume of shale that represents the seal for the
hydrocarbon trap. Furthermore, the lower part of the big trough does not continue until Well D
and can be seen to wedge out along the Hutton formation from Well C to Well D. From these
observations, | suggest the presence of channel at the Hutton Formation along Well C that

provides a reasonable reason for hydrocarbon accumulation at Well C and not Well D.
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Figure 4.25: Arbitrary line along Well C. Vsh is compared with amplitude of mid-angle stack.
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Chapter 5

AVO Analysis

5.1. AVO theory

Reflection and transmission coefficients for plane waves, as a function of the angle of

incidence, are given by the Zoeppritz equations (1919):

[ —sinf;  —cos¢y sin 6, cos ¢ ) )
Rp cos 0, —sin ¢ cos 0y —sin gy sinf)
R 27 cosf
S| = 5in 20 Vpi 0820 PV 0526 paVea Vi $26 L
Ty S T AR T b sin26; |, (5-1)
TS Var . | VP2 Ve COos 2¢1
-Y 08 2 — §in 2¢ —— 052 —— sin 2¢: - .
I oy 7o ¢ o 03 Vo )

where Rp, Rs, Tp, and Ts, are the reflected P, reflected S, transmitted P, and transmitted S-wave
amplitude coefficients, 0; is the angle of incidence, 6; is the angle of the transmitted P-wave, ¢
is angle of reflected S-wave and ¢; is the angle of the transmitted S-wave. Because the Zoeppritz
equations are mathematically complex, several approximations to the Zoeppritz equation have

been deduced by multiple authors. Table 5.1 summarizes these approximations.

| use the Aki and Richard approximation (1980) in this thesis:

V& AV

R(@%%(%+A—p)+<lﬂ— LR

2
ViA_p) X sin2g + 12% (tan*6 — sin®0) , (5-2)
. 27, 2,

2 2
Vo Vs Vo p P

where p is density and 6 is the angle of incidence. Equation (5-2) has the following form:

R(0) ~A + Bsin?0 + C sin?6 tan?6 , (5-3)
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where A is AVO intercept or normal incidence reflectivity, B is AVO gradient and C is curvature.
Because of high noise in extracting the third term C (Castagna and Swan, 1997), the first two

terms are usually preferable for AVO analysis.

Table 5.1: Approximations for the Zoeppritz equations. Modified from (Castagna and Chopra,
2014) after Li et al., 2007.

Bortfeld Zero-offset intercept and Valid for all pre-critical angles.
slope, Rp and Rs

AKki and Richards = Zero-offset intercept and Good for angles smaller than 35° for typical
slope, Rp, Rs contrasts in elastic properties, if the average

angle is not used.

Hilterman Change in Poisson Derived from Shuey’s equations; ignores

reflectivity, PR = Ao angles >30°, although Shuey’s third term can
(1-0)? e added; makes no density assumptions.

Smith and P-velocity reflectivity f—";}ﬁ Valid for all angles up to the critical angle,

Gidlow p makes no assumptions about VP/VS.
S-velocity reflectivity % Assumes density follows Gardner’s relation

s
Fatti et al. Good out to large pre-critical angles; makes

AL
P-impedance reflectivity I—p
P no assumptions about density or VP/VS.
Al

S-impedance reflectivity .
S

5.2. AVO analysis

Amplitude-variation-with-offset (AVO) has been regarded as a fundamental seismic rock-
property tool for lithology and pore-fluid identification. AVO analysis depends mainly on using
variation of P-wave reflection coefficients with offset to address contrasts in shear-wave

velocities and densities across lithology or pore-fluid interfaces. Ostrander (1984) introduced
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AVO to detect gas sands. Rutherford and Williams (1989) identified three distinct classes of gas
sand AVO anomalies. Castagna et al., (1998) added a fourth class. Hilterman (2001) illustrated a
way to classify any gas sand by comparing near and far offset amplitudes. Foster et al. (2010)
addressed effects of reservoir properties change on AVO response. Figure 5.1 shows change of
reservoir properties on a gradient-intercept crossplot. Fluid compressibility changes increase as
points plot away from a background trend. In addition, porosity increases as data points shifted
from class 1 to class 4.

In this study, angle gathers were sorted from near-, mid- and far-angle stacked seismic
volumes for conducting AVO analysis and creating AVO attribute volumes. The near-angle stack
is very noisy. To avoid noisy results of AVO and inversion, seismic data conditioning was first
applied to the angle gathers. This included: Radon filter, time-variant spectral balancing, trim-
statics, phase correction (-80° rotation), band-pass filter, and AVO filter. Because of the irregular
arrangement of near, mid and far traces, trim statics was applied to flatten arrival times as a

convenience for AVO analysis.

Angle gathers before and after noise suppression are shown in Figures 5.2 and 5.3. Noises

are well removed along the Hutton Formation top represented by trough wiggles.

After seismic data conditioning, angle gathers were investigated for AVO behavior at well
locations. Intercept and gradient were calculated using the Aki-Richards (1980) two-term
approximation. The third term was not used to avoid noise. Amplitude change with angle is
measured at the four well locations as illustrated in Figures 5.4 and 5.5. There is a great difference

between near and far-angle amplitude at Well A and Well B which is attributed to low water
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saturation. At Well C and Well D, there is a small difference between near- and far-angle
amplitude which is attributed to high water saturation. Intercept-verses-gradient crossplots were
generated from angle gathers at the four well locations to address pore-fluid discrimination and
hydrocarbon sand classes as shown in Figures 5.6. AVO analysis shows good pore fluid
discrimination at the Well B location where the plotted point is far from the background trend.
The oil sand at Well B has class 3 sand type. At the Well A location, the plotted point is shifted a
small distance from the background trend where the oil-bearing layer has class 3 sand type. Well
C, however, shows poor pore-fluid discrimination that may be attributed to high water saturation

(60%). It has class 4 sand type since amplitude decreases with angle. The points at Well C and

Well D plotted close to the background trend.

Intercept vs. Gradient

Class 4

Figure 5.1: Gradient-Intercept crossplot. Modified from Castagna et al., (1998) and Foster et al.,
(2010).
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Figure 5.2: Angle gathers before seismic data conditioning.
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Figure 5.3: Angle gathers after seismic data conditioning.
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Figure 5.4: AVO analysis from angle gather at Well A, Well B and Well C locations.
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Figure 5.5: AVO analysis from angle gather at Well A, Well B and Well D locations.
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Intercept vs. Gradient

® Well A
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® Well C

® Well D

Figure 5.6: Intercept versus gradient crossplot from seismic angle gather at four wells.

As described in Chapter 4 concerning the Hutton Formation, at Well C, a big obvious
trough and a vague peak within it occurs on the mid-angle stack at the Hutton Formation at the
Well C location. Because of the small peak occurrence within a big trough, | divided the big trough
into two troughs and did AVO analysis for both using near-angle and far-angle traces of the angle
gather as shown in Figure 5.7. | noticed an increase in amplitude with offset for the upper trough
which is a similar behavior to the AVO response at other wells especially Well D that is located
very close to Well C. The time window of the lower trough, however, has a decrease in amplitude
with offset which is a different behavior compared with what is observed at Well D. From this
observation, | suggest that the lower trough at time 1128 ms in the mid-angle stack represents a
channel. Because the trough thickness of the proposed channel increases away from Well C, AVO

analysis was conducted around Well C along it and its AVO response is compared with Well C as
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shown in Figure 5.8. An anomalous AVO response occurs at the proposed channel around Well C

which has class 4 sand type. This result strengthens the possibility of channel occurrence around

Well C.
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Figure 5.7: Comparison between AVO responses of Hutton Formation top at Well D and Well C.

To address AVO response at wells, a comparison between AVO synthetic and seismic
gathers at well locations was conducted. An example of this comparison at Well B is shown in
Figure 5.9 and 5.10. Both the AVO synthetic and the seismic gather at Well B exhibit amplitude
decreasing with angle. Although both the AVO synthetic and seismic gather at Well B have
negative intercepts and gradients, they have, however, different gradients since the estimated

gradient from the seismic gather at Well B location is more anomalous than the AVO synthetic.
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Intercept vs. Gradient
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Figure 5.8: AVO analysis of a seismic angle gather at Well C location and the proposed channel.

Furthermore, an intercept verses gradient crossplot was derived from the AVO synthetic
of Well B for a 250 ms time window around the Hutton Formation top (Figure 5.11). Background
trend and anomalous points are highlighted on the crossplot and then colors are projected on
Well B. An anomalous class 2 sand is projected on the pay zone at Well B and coincides with the

picked seismic trough at the Well B location.

To address detection of trends within the seismic volume, intercept and gradient were
estimated for 30 ms around the Hutton Formation top and then crossplotted as shown in Figure
5.12. Because hydrocarbon pore fluids can exhibit different sand classes at different locations

along the reservoir extent, anomalous trends are highlighted by only one red ellipse including all
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possible sand classes. The red color is projected onto the seismic volume to delineate
hydrocarbon lateral distribution on the 3D seismic data. A 10 ms horizon slice around the Hutton
Formation top is extracted from the resultant 3D seismic volume as shown in Figure 5.13. Red
zones are distributed along Well A and Well B which matches with oil pore fluid detectability. Red
zones, however, do not occur at Well C which also has oil pore fluid. This may be attributed to
high water saturation estimated from petrophysical analysis at Well C and/or thin pay thickness
which is below seismic resolution. In addition, there is no red zone distribution along Well D and

this result is consistent with the brine pore fluid identified at Well D.
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Figure 5.9: Amplitude versus angle crossplot for comparison between the seismic angle gather
and AVO synthetic at Well B.
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Intercept vs. Gradient
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Figure 5.10: Intercept versus gradient crossplot for comparison between the seismic angle
gather and AVO synthetic at Well B.
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Figure 5.11: Intercept versus gradient crossplot for 250 ms window of the AVO synthetic at Well
B. Colors are projected on a seismic trace at the Well B location.
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Figure 5.13: 10 ms horizon slice around the Hutton Formation top. Red color indicates possible
hydrocarbon pore fluids.
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5.3. AVO attributes

AVO attributes were created from seismic angle gathers and are compared with pore
fluids identified at wells. Intercept (A) and gradient (B) were calculated using the Aki-Richards
(1980) approximation. From gradient and intercept, other AVO attributes were calculated. |
selected attributes that have great similarity to anomalous amplitude distribution. The gradient-
intercept product (A*B) has been used as a hydrocarbon indicator especially for class 3 sands.

The product (A*B) slice was generated below the Hutton Formation Top as shown in Figure 5.14.

In addition, Keho et al.,, (2001) noticed that AVO attributes are polarized along the
background trend for brine data and at angles (called polarization angles) that differ from the
background trend for anomalous hydrocarbons. Based on this observation, they suggested
crossploting near-angle and far-angle AVO attribute traces. From this idea, Mahob and Castagna.,
(2003) created polarization attributes as tools for enhancing AVO interpretation. Polarization

angle is measured by the following equation

tan" 1 ¢==2 , (5-3)

where P, and Py are eigenvector components of the correlation matrix. Polar magnitude is one of
the attributes used in this research for improving fluid discrimination. This magnitude is
represented by the distance between origin and hodogram points. The magnitude (L) is measured

by following equation:

L = Lmin+ Lmax ’ (5-4)
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Lmin= |A%. + B2 , and (5-5)

min min

Lm0X=V A%nax + Brznax ’ (5'6)

where Aminand Amax are the most positive and most negative numbers on the A axis while Bmin

and Bmax are the most positive and most negative numbers on the B axis.

The polar magnitude increases as a result of anomalous events. Figure 5.15 shows positive
values of polar magnitude at Well A and Well B and negative value at Well D. It, however, has
negative value at Well C. This may be attributed to high water saturation or pay zone below
resolution limit at Well C. Ross (2002) established extra AVO attributes for distinguishing
hydrocarbon pore fluid such as scaled Poisson’s-ratio change (the weighted sum of AVO intercept
and gradient; aA+bB) and other attributes created from differences between near- and far-angle
volumes and multiplying the result by the far angle volume. Negative values of scaled Poisson’s-
ratio are a high indicator of anomalous hydrocarbon zones as illustrated in Figure 5.16.
Distribution of scaled Poisson’s ratio matches with pore fluids identified from petrophyiscal
analysis at the wells. Negative scaled Poisson’s ratio occurs at Well A and Well B having oil pore
fluid (Sw = 30%). Low positive scaled Poisson’s ratio occurs at Well C that has oil pore fluid with
high water saturation (Sw = 60%). Positive scaled Poisson’s ratio become high when water
saturation reaches 100% at Well D. Thus, scaled Poisson’s ratio is a robust attribute for
hydrocarbon delineation and shows higher sensitivity to water saturation compared with polar
magnitude and product attributes. In addition, the “AMOCO” product, defined as [Far Angle *(Far

Angle — Near Angle)], AVO attribute slice is shown in Figure 5.17. A high value of this attribute is
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an indicator of hydrocarbon pore-fluid as observed at Well A. However, Well C may have low

value because the pay zone is classified as class 4 sand which has small amplitude at far angle.

A*B product
(Unitless)

0.84

N

///

Well A: Oil (Sw‘30%)
Well B: Oil{Sw:30%)
Well C: @il (Sw:60%)

<. oog/e'[w: Brine (Sw:100%)
é§‘

&

™ e
0 600 1200 1800 2400 3000 m

= ao e NUWW dd00OON
R SR TR A R N A

Lbbbbbbbbbbbobbobbbbb6b66600000000000000000000

Polar magnitude
(Unitless)

N

3
Well A: Oil (Sw:30%
Well B: Oil (Sw:30%
Well C: Oif (Sw:60%
“. Well D¢ Brine (Sw:100%
%
&

W

posnaNvoauunsabbuymenaooRRERGENYREEIRGRAYNAERENAS

WeloIae Giuie biole dibibibio16 016 6/ die 612 RI0I0 PI0I0IBI0 BIRIGID 01D D/0181010/910 10 DIk

[}
0

Figure 5.15: Horizon slice shows polar magnitude AVO attribute.
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Chapter 6

Seismic Inversion

6.1. Low-frequency model

Before conducting inversion, seismic forward modeling was performed by creating a low-
frequency model. Seismic reflection data has a lack of frequency from 0to 5 Hz as shown in Figure
6.1. That’s why a low-frequency model is needed to compensate for frequency content deficiency
in seismic data as illustrated in Figure 6.2. Input well logs were first filtered from high frequency.
Then, filtered well logs and interpreted horizons were used to construct the low-frequency
model. For conducting an accurate inversion, | used Well A, which has measured logs, to create
a starting low-frequency model to ascertain that seismic inversion is not influenced by logs from
other wells. Once reliability of seismic inversion was investigated, | used other wells to create the
low-frequency model. Different inversions were conducted with different starting low-frequency
models for comparison. In the case of using more than one well during inversion, inverse distance

power was used to interpolate between those wells used.
6.2. Seismic inversion

Seismic inversion converts reflectivity data into either impedances or elastic properties
(Russell, 1988). Well-log curves will be integrated into the inversion to account for the absence
of low-frequency components in the seismic data. Inversion includes both acoustic-impedance
inversion and elastic inversion using simultaneous inversion for either two (no density
component) or three elastic components. Figure 6.3 illustrates inversion as a reverse process to

forward convolution from geology to seismic.
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Figure 6.1: A statistical wavelet extracted from seismic data. Red arrow indicates low
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Figure 6.2: The low-frequency model (LFM) compensates for missing low-frequency content of
seismic data (modified from Johnson, 2017).
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Figure 6.3: Schematic diagram of forward modeling and inversion (modified from CGG, 2017).
6.2.1. Post-stack seismic inversion

Post-stack seismic inversion is the conversion of seismic-reflection data into impedances
by removing the wavelet through deconvolution and integrating seismic data and well logs to
build a complete model of subsurface elastic properties (Russell, 1988). In this study, model-

based seismic inversion was conducted using the far-angle stack. The initial low-frequency model
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of acoustic impedance was first established to account for the deficiency of low-frequency
components in seismic reflection data. Only Well A, that has measured logs, was used to build
the low-frequency model. Before inversion is considered, an accurate estimate of the seismic
wavelet phase is critical. A statistical wavelet extracted from the far-offset stack within a time
window extended around Well A and along the Hutton Formation was used to run post-stack
inversion. Before running inversion, a correlation was conducted between initial impedance of
the low-frequency model and the inverted impedance. Then, the calculated errors were
minimized. Correlation was done in the geological domain (between well impedance and
inverted impedance) and in the geophysical domain (between synthetic seismic and real seismic
data) as illustrated in Figure 6.4. For inversion parameters, maximum impedance change was
governed by hard constraints ranging from 100% to 80%. Prewhitening was set to be 1 and the

scalar factor was adjusted to be 0.7. Furthermore, 20 iterations were allowed.
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Figure 6.4: Post-stack inversion analysis for far-angle stack at Well A.
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An acoustic impedance (Al) horizon slice with a 10 ms time window taken below the
Hutton Formation top is shown in Figure 6.5. Low acoustic impedance is distributed along all
wells. This result indicates that post-stack inversion of the far-angle stack could predict sand
facies distribution but not discriminate pore-fluids since Well D, that has brine pore fluid, shows
low acousticimpedance. Figure 6.6 shows Al inversion along an arbitrary line passing through the

four wells.

Al Horizon Slice

Al
[(ft/s)*(g/cc)]

P
Well A: Oil (Sw:30%
Well B: Oil (Sw:30%)
Well C: Oil (Sw:60%)

Well D: Bririe (Sw:100%)
4?.-%

31955.73
31855.72
31755.70
31655.68
31555.67
31455.65
31355.63
31255.62
31155.60
31055.58
30955.57
30855.55
30755.54
30655.52
30555.50
30455.48
30355.47
30255.45

30155.43
s T i e  Sooss.az
0 600 1200 1800 2400 3000 m 29955.40
29855.38
29755.37
29655.35
29555.33

29455.32
29355.30

Figure 6.5: Horizon slice shows Al inversion result.
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Figure 6.6: Arbitrary line passing through wells shows Al inversion result using post-stack
inversion of far-angle stack.

6.2.2. Pre-stack simultaneous inversion

Simmons and Backus (1996) applied inversion using the Aki-Richards approximation that
gives reflectivity as a function of angle. Buland and Omre (2003) directly estimated velocity and
density instead of determining reflectivity by adding the following reflectivity equation to the
Aki-Richards linear approximation:

Ri ~ % Alnli= % (In liss- In 1y, (6-1)
where /;is the acoustic impedance of layer i and the reflection coefficient R refers to the interface
between layersiand i+ 1.

Hampson et al., (2005) reformulated the Fatti et al., (1994) equation and conducted
inversion for P-impedance, S-impedance, and density as illustrated in the following equation:

Rpp(e) =C1 RPo +C2 RSO +C3 RD/ (6_2)
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where Rpg is the P-reflectivity, Rso is the S-reflectivity, Rp is the density reflectivity, and

C:=1+tan?(0), (6-3)

C,=-8 (::—;)2 tan?(8), and (6-4)
1. .2 VS\2 cin2

C2=--tan (6)+2 (ﬁ) sin“(6). (6-5)

Acoustic impedance (Z,), shear impedance (Zs) and density (D) volumes are extracted
simultaneously in pre-stack simultaneous inversion. From acoustic impedance and shear

impedance inverted volumes, Vp/Vs, Ap and up volumes are created using following equations:

Vp/VS = Zp/Zs, (6'6)
Ap = Zp?- 2752, and (6-7)
up = Z5. (6-8)

As illustrated in Figure 6.7, background trends were established from the relation between 2,
and Zs and between Z, and density at wells using the following equations:

In(D)=m In(Z,) + mc, and (6-9)

In(Zs)=k In(Zp) + kc. (6-10)

where D is density, k, kc, m, and mc are coefficients used to balance the inversion (Hampson and
Russell, 2005). The calculated coefficients k, kc, m, and mc are 0.875, 0.809, 0.429 and -3.559,
respectively.

Deviations from a background linear fit are possible hydrocarbon anomalies. Because
there is no discrimination between pore fluids using different rock-physical properties,

hydrocarbons do not completely deviate from the background linear fit. Thus, identifying
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hydrocarbons from inversion results were addressed on a probability basis rather than clear

discrimination from brine.
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Figure 6.7: Logarithmic P-impedance, S-impedance, and density crossplots at the wells are
generated to calculate regression coefficients k, kc, m, and mc.

The inversion process was run several times using different starting low-frequency
models. Initial low-frequency models of acoustic impedance, shear impedance, density and
compressional-to-shear-wave velocity ratio were first established using Well A that has measured
compressional-velocity, shear-velocity and density logs. Well B, Well C and Well D were used as
blind validation wells to assess reliability of the inversion results. Statistical and Ricker wavelets
were used for different inversions to determine which wavelet achieves the best inversion result.
A 60 Hz Ricker wavelet (shown in Figure 6.8) was used. Prewhitening was set to be 2% and the

scalar factor was adjusted to be 0.32. Inversion was conducted for 25 iterations over a 0° to 45°
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angle range. Pre-stack simultaneous analysis at Well A using the 60 Hz Ricker wavelet is shown in
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Figure 6.9.
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Figure 6.9: Pre-stack simultaneous analysis at Well A. The original logs are in blue, the low-
frequency model logs are in black, and the inverted logs are in red.
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An arbitrary line of inverted Vp/Vs crossing through the four wells is shown in Figure 6.10.
The inversion process was repeated with the same parameters, but with different starting low-
frequency models to address if there is an effect from measured or predicted logs to mislead the
inversion. Well B, Well C and Well D were used separately to build the starting low frequency
model. Vp/Vs horizon slices for inversions with different starting models are shown in Figures
6.11. A consistency between the inversion outputs increases confidence in the results. The
Vp/Vs results show reservoir heterogeneity that may be attributed to facies and pore-fluid
change. Low Vp/Vs values zones are distributed along Well A and Well B where there is oil
reservoir with low water saturation. However, moderate and high Vp/Vs zones occur at Well C

and Well D, respectively.
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Figure 6.10: Arbitrary line passing through wells shows Vp/Vs inversion result.
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Figure 6.11: Comparing Vp/Vs horizon slices for inversions using different starting low-
frequency models built by one well. a) Well A. b) Well B. c) Well C. d) Well D

To address wavelet effects on inversion results, a group wavelet was used for conducting

inversion and results are compared with previous inversion results estimated using a Ricker

wavelet. The group wavelet is composed of three statistical wavelets extracted from near-angle,

mid-angle and far-angle stacks as shown in Figure 6.12. Pre-stack simultaneous inversion analysis

using the group wavelet is illustrated in Figure 6.13. There is no significant difference between

conducting inversion using Ricker or group wavelets. The Vp/Vs horizon slice below the Hutton

Formation top (Figure 6.14) and arbitrary lines (Figures 6.15 and 6.16) show no significant

difference in inverted Vp/Vs and Al at the four wells.
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Figure 6.12: Group wavelet created from near-, mid- and far-statistical wavelets estimated
around Well A.
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Figure 6.13: Pre-stack simultaneous analysis at Well A using the group wavelet. The original logs
are in blue, the low-frequency model logs are in black, and the inverted logs are in red.
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Figure 6.14: Vp/Vs inversion horizon slice using group wavelet.
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Figure 6.15: Arbitrary line passing through wells shows Vp/Vs inversion result using group
wavelet.
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Figure 6.16: Arbitrary line passing through wells shows Al inversion result after
conducting pre-stack simultaneous inversion.

6.3. Sparse-layer inversion

Based on the assumption that reflection coefficient pairs are odd, the Widess (1973) limit
of resolution is one-quarter wavelength (1/4) at which amplitude reaches its peak due to
constructive interference. Partyka et al., (1999) observed a notch periodicity in the frequency

spectrum of layer reflectivity.

Peak frequency and peak amplitude for even, odd, and composite reflection coefficients
were estimated by (Puryear and Castagna, 2008) as shown in Figure 6.17 and their result shows
that resolution depends on the contribution of both odd and even pairs since amplitude
decreases for odd pairs and increases for even pairs below 4/4 which means that information
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can be extracted below the Widess tuning limit. Chopra et al., (2006) suggested improving

seismic resolution by broadening the bandwidth of the original seismic data.

Based on Puryear and Castagna (2008), spectral inversion has been used to convert
original seismic data to high-resolution broader-bandwidth seismic data since local attributes are
extracted from original seismic data after being spectrally decomposed into volumes of

amplitude and phase at different frequencies.

Odd === Eyen === Tota| =

Peak Frequency (Hz)

A/8 Al4

Time Thickness (ms)

Figure 6.17: Peak frequency versus time thickness. Modified from (Puryear and
Castagna, 2008; lIzarra Dial, L.A 2011; and Okonkwo, 2014).

Although conventional seismic data inversion has shown good results verified by using
Well B and Well D as blind validation wells, the area around the Well C validation well is still
problematic since this well has oil and oil occurrence is only verified by drill stem test and still not
detected by seismic data. Furthermore, conventional seismic data does not show geologic details

around Well C and Well D.
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After investigating the AVO synthetic at Well C created with a 40 Hz Ricker wavelet, a big
trough along the Hutton Formation Top divides into two troughs at near offset as shown in Figure
6.18. These troughs correspond to the upper two member tops of the Hutton Formation. After
increasing frequency to 60 Hz, two troughs are clearly separated as shown in Figure 6.19. Thus,
each trough corresponds to one rock unit, and hence, seismically characterizes it. From this
observation, high-frequency seismic data is badly needed to separate productive from non-
productive layers. Therefore, spectral decomposition was applied to the far-offset stack to
construct a high-frequency far-stack volume since spectral balancing using local attributes was
conducted by Lumina Geophysical and SAExploration companies to improve seismic resolution.

Then, post-stack inversion was conducted again with the high-frequency seismic volume.
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Figure 6.18: AVO synthetic at Well C constructed with 40 Hz Ricker wavelet.
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Figure 6.19: AVO synthetic at Well C constructed with 60 Hz Ricker wavelet.

Figure 6.20 shows the difference between the conventional-seismic far-angle stack and
the high-frequency far-angle stack. High-frequency seismic data can monitor fine details that
cannot be seen by conventional seismic data. The channel feature that is hardly observable with

conventional seismic data, is clearly obvious on the high-frequency seismic data.
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Figure 6.20: Comparison between a) Conventional and b) High-frequency far-offset stacks.
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The high-frequency far-angle stack was inverted in the same way with the same
parameters as the conventional seismic data. The main difference is the wavelet used for running
inversion. The high-frequency seismic data inversion was conducted using a 60 Hz Ricker wavelet.

Post-stack inversion analysis for the high-frequency seismic data is shown in Figure 6.21.
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An arbitrary line was created connecting the four wells as shown in Figure 6.22. The
acousticimpedance inverted from the high-frequency seismic data shows more geological details
than the conventional acoustic impedance inversion. The acoustic impedance horizon slice for a
10 ms time window constructed below the Hutton Formation top is shown in Figure 6.23. Well A
and Well B have low acoustic impedance at the reservoir. Acoustic impedance changes to
intermediate at Well C and high at Well D. The acoustic impedance change is attributed to water

saturation change.
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Figure 6.22: Arbitrary line passing through wells shows Al inversion result for the high-
frequency seismic data.
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Figure 6.23: Al horizon slice below the Hutton Formation top for the high-frequency seismic
data.
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After looking around 10 ms acoustic impedance horizon slice constructed from post-stack
inversion of the high-frequency far-angle stack, a low acoustic impedance zone was observed
near to Well C as shown in Figure 6.24. There is a gradient decrease in acoustic impedance from
Well C to this zone. To accurately investigate this zone, an arbitrary line was created from Well C
to the low acoustic impedance zone around it as shown in Figure 6.25. An astonishing result is
observed on the arbitrary line: a channel feature in the low acoustic impedance zone and located
just below the Hutton Formation top. The astonishing point is that the low acoustic impedance
of the proposed channel is connected to Well C at the pay zone evident in this blind validation
well. Since the pay zone at Well Cis only 2 m thick, the high-frequency seismic data is needed to
see it. In addition, some faults can now be seen around Well C from shifts of the acoustic
impedances. To address oil occurrence at Well C and oil absence at Well D, an arbitrary line was
constructed from Well C to the proposed channel to Well D as shown in Figure 6.26. It is noticed
that acoustic impedance of the proposed channel is connected to Well C and not connected to

Well D at target zone.
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Figure 6.24: Al horizon slice from high-frequency seismic data below the Hutton Formation top
around the Well C and Well D area.
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Figure 6.25: Arbitrary line through Well C and the proposed channel.
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Figure 6.26: Arbitrary line constructed from acoustic-impedance inversion from high-frequency
seismic data passing through Well C, proposed channel, and Well D.
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A high acoustic impedance above the channel feature indicates seal occurrence within
the Hutton Formation that probably prevents oil migration upward. This seal extends along the
channel, Well C and Well D periphery. High acoustic impedance does not extend to Well D. To
have a greater focus on addressing seal occurrence above and around the wells, a 10 ms horizon
slice was constructed above the Hutton Formation as shown in Figure 6.27. High acoustic
impedance is observed at all wells. However, an intermediate acoustic impedance occurs near to
Well D suggesting a channel of mixed facies in the Brikhead Formation. This is consistent with
what well log correlation indicates since the Brikhead shale facies are continuous along Well A,
Well B and Well C. Then, shale facies change to mixed facies of sand and shale at Well D. The
presence of these facies around Well D may not have good seal properties providing pathways
for upward migration. This provides a reasonable reason for oil absence at Well D although it is

located high on structure.

Al

) [(ft/s)*(g/cc)]
2000 m :

Figure 6.27: A 10 ms acoustic impedance horizon slice above the Hutton Formation to address
seal occurrence of the overlying Birkhead Formation.
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Chapter 7

Probabilistic Facies Prediction

7.1. Rock-physics templates

Based on Dvorkin and Nur (1996), @degaard and Avseth (2004) developed the idea of the
rock-physics template (RPT) which uses petrophysical properties estimated at wells for classifying
seismic inverted data. An example of a standard rock-physics template used in lithology and pore-
fluid discrimination of sand/shale sequences is shown in Figure 7.1. In my study area, calculated
petrophysical properties at wells were used to discriminate lithology and pore-fluids with a local
RPT. These properties include shale volume (Vsh), porosity, and water saturation (Sw).
Establishing rock-property crossplots colored by petrophysical properties can help in dividing

data into clusters or zones of different lithofacies and pore fluids.

Since brine-saturated sandstones have different trends depending on degree of
cementation as shown in Figure 7.2, a theoretical model trend should be incorporated in rock-
physics template adjustment. Brine-sandstone data of low gamma-ray values are plotted along
a constant cement model trend as illustrated in Figure 7.3. As gamma-ray values increase, data
is shifted to a friable-sand model trend. Using a constant-cement model, a rock-physics template
is constructed on a Vp/Vs versus Al crossplot where volume of shale, porosity and water

saturation trends are highlighted as shown in Figure 7.4.
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Figure 7.1: Rock-physics template (RPT) for gas, oil and brine-saturated sandstones and shale
illustrated on a Vp/Vs versus Al crossplot. Modified from (Avseth and Veggeland 2015).
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Figure 7.2: Effective-medium model trends for sandstone. Modified from (Avseth et al., 2005).
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Figure 7.3: Rock-physics template of friable, constant-cement and contact-cement sandstone
using a Vp versus porosity crossplot. Brine data of Well A and Well B are colored by gamma ray.
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Figure 7.4: Vp/Vs versus Al crossplot of the Hutton Formation at Well A colored by porosity.
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Compressional-to-shear-wave velocity ratio and acoustic impedance calculated at the four
wells are used to separate data into different lithofacies and pore fluids. For a more accurate
separation, data of the Hutton Formation at Well A was only used since it is the only well having
measured shear-wave velocity. Calculated shear-wave velocities at the other wells may produce
anomalous and inaccurate estimation that will lead, in turn, to improper separation. Data
extracted from Well A was selected along the Hutton Sandstone Formation pay zone as well as

100 ft above and below the target zone.

7.1.1. Lithofacies discrimination

Based on shale volume (Vsh) calculated at Well A, sandstone and shale facies are separated
with a small area of intersection that represents shaly sand using a Vp/Vs versus Al crossplot as
shown in Figure 7.5. The highlighted zones on the Vp/Vs versus Al crossplot represent physical-
property ranges of facies that can be projected on either well logs or seismic data to show
sand/shale facies distribution over the 3D volume. Projection of sand and shale facies at Well A

is shown in Figure 7.6. Facies distribution in Well A shows a great match with volume of shale

(Vsh).

Acoustic impedance estimated from post-stack inversion of the high-frequency far-angle
seismic volume and the compressional-to-shear-wave velocity ratio estimated from pre-stack
simultaneous inversion of conventional seismic data are the physical properties used for zones
projection on the 3D seismic volume. Sand and shale facies also are delineated along different

arbitrary lines across the 3D seismic volume as shown in Figures 7.7, 7.8 and 7.9.
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On these figures, sand, represented by red color, is distributed below the Hutton Formation
top along the four wells. Above the Hutton Formation top, there is a distribution of shale facies
that represents a seal for hydrocarbon updip migration. From arbitrary lines passing through Well
C, Well D, and the interpreted channel, facies change from sand to shale in the Hutton Formation
at Well D. In addition, the upper unit of the Hutton Formation at Well C is separated from a lower
sand by shale intercalation that probably seals hydrocarbon migration to the upper unit in Well
D from Well C. When it comes to the proposed hydrocarbon-charged channel, it has a good
distribution of sandstone facies overlain by shale seal. A 10 ms horizon slice is constructed below
the Hutton Formation top to show lithofacies distribution over the study area as illustrated in

Figure 7.10. Shale is distributed along meandering and forked features.
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Figure 7.5: Separation between sand and shale facies on a Vp/Vs versus Al crossplot. Well A
data is colored by volume of shale.
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Figure 7.6: Projection of sand and shale facies zones at Well A. Sand facies is represented by
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Figure 7.7: Lithofacies distribution along arbitrary line passing through the four wells.
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Figure 7.8: Lithofacies distribution along arbitrary line passing through Well C and proposed

channel.
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Figure 7.9: Sand and shale facies distribution along arbitrary line passing through Well C,

proposed channel and Well D.
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Figure 7.10: Horizon slice shows sand and shale facies distribution over the study area.

Based on porosity estimated at Well A, sandstone facies are separated into high-porosity and
low-porosity sand clusters using the Vp/Vs versus Al crossplot as shown in Figure 7.11. The low-
porosity sand facies are probably cemented sand or siltstone. The highlighted zones on the Vp/Vs
versus Al crossplot are projected on Well A as shown in Figure 7.12. Shale and low-porosity sand
intercalations occur within the lowest part of the Hutton Formation that means decreasing
porosity in some intervals. However, clean-sand facies are distributed along the upper part of the
Hutton Formation where the pay zone is located. Then, high-porosity sand, low-porosity sand
and shale facies are projected on the 3D seismic volume. These facies are delineated along

different arbitrary lines across the 3D seismic volume as shown in Figures 7.13, 7.14 and 7.15.
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Clean sand is distributed below the Hutton top while low-porosity sand is intercalated with clean
sand at some locations especially at Well Cand Well D. At Well C, there is an intercalation of low-
porosity sand or siltstone facies at the boundary between the two upper units of the Hutton
Formation. This intercalation of a low-porosity zone probably provides a seal for hydrocarbon
upward migration. In addition, many low-porosity sand or siltstone facies intercalations are
observed along the Hutton Formation at Well D. A 10 ms horizon slice is established below the
Hutton Formation top to illustrate porosity distribution over the study area as shown in Figure

7.16. Shale and low-porosity sand are distributed along meandering and Y features.

Porosity
. (%)
o~
| Facies [N “
u!— a a
L) . . 20.8
Shale
19.6
w | Cemented|
J— sand 18.4
("] o "
0
- High
c porosity 17.2
.9 sand
@ n
g " 16
E
% 14.8
2 9
-
o
S 13.6
124
0
-
11.2
10
=
25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000

Al (ft/s)*(g/cc)

Figure 7.11: Separation between high-porosity sand, low-porosity sand and shale facies on a
Vp/Vs versus Al crossplot. Well A data is colored by porosity.
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Figure 7.12: Projection of high-porosity sand, low-porosity sand and shale facies zones at Well
A. High-porosity sand facies is represented by yellow color.
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Figure 7.13: High-porosity and low-porosity sand facies distribution along arbitrary line passing
the four wells.
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Figure 7.14: High-porosity and low-porosity sand facies distribution along arbitrary line passing
through Well C and proposed channel.
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Figure 7.15: High-porosity and low-porosity sand facies distribution along arbitrary line passing
through Well C, the channel and Well D.
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Figure 7.16: Horizon slice shows high- and low-porosity sands and shale facies distribution over
the study area.

7.1.2. Pore-fluid discrimination

Oil sand is not discriminated from brine sand at wells using the different rock-property
crossplots. However, the oil data cluster range represents high-probability oil sand which can be
recognized on the crossplot (Figure 7.17). After highlighting oil and brine-sand facies clusters,
they are projected on both Well A and the 3D seismic volume. Projection of facies clusters on
Well A is shown in Figure 7.18. High-probability oil distribution along Well A shows a great match
with low water saturation and high resistivity below the top of the Hutton Formation. Different
arbitrary lines across the 3D seismic volume are shown in Figures 7.19, 7.20 and 7.21. High
probability oil distributes along the proposed channel until it completely matches with the thin

pay zone at Well C. However, there is no oil distribution along the Hutton Formation at Well D.
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Figure 7.17: Separation between high-probability oil sand, brine sand and shale facies on the

Vp/Vs versus Al crossplot. Well A data is colored by water saturation.

Figure 7.18: Projection of high-probability oil, brine-filled sandstone, and shale facies at Well A.
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Figure 7.19: High-probability oil and brine-sand facies distribution along arbitrary line passing
through all wells.
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Figure 7.20: High-probability oil and brine-sand facies distribution along arbitrary line passing
through Well C and the channel.
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Figure 7.21: High-probability oil and brine-sand facies distribution along arbitrary line passing
through Well C, the channel and Well D.

A 10 ms horizon slice extracted below the Hutton formation top shows high-probability oil
and brine-sand facies distribution over the study area as shown in Figure 7.22. Oil is distributed
along Well A and Well B. However, as magnified in Figure 7.23, Well C occurs in the brine zone
area and this probably is attributed to the small thickness of the pay zone compared with a 10
ms time window chosen for the horizon slice or it may be attributed to uncommercial oil
guantitates at Well C since the pay zone has 60% water saturation. However, high-probability oil
distribution along the channel location indicates that the channel has possible commercial oil

quantities.
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Figure 7.22: Horizon slice shows high-probability oil and brine sand facies distribution over
study area.

Brine sand

High
probability Channel
oil sand

Figure 7.23: The proposed channel has high probability of oil occurrence with commercial
guantities compared with Well C that has high water saturation.
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7.2. Bayesian classification

Bayesian classification is a statistical approach used to reduce uncertainty and exploration
risk. One of the main problems in zone separation using the rock physics template is
intersectional areas between two zones. To partially solve this problem, a Bayesian classification
was applied to zones to maximize separation and minimize misclassification errors. Thus,
statistics should be taken into consideration in this stage to maximize lithology and pore fluids

prediction from the rock physics template.

Bayes classification uses prior information and incorporates it with probability density

functions (PDF) to estimate posterior probability, P(c/x), using the Bayes formula:

PriorxLikelihood
evidence

Posterior probability =

’

and

P(c) * P(x|c)

P(clx) = ZX

’ (7_1)

where, P(c) is prior probability, P(x/c) is estimated from the well information and P(x) is the PDF

for the attribute or property used.

An example of applying Bayesian classification is discussed at Well A. A gamma-ray cutoff
at 65 APl units is assumed to separate sand and shale facies at Well A. Then, prior probability was
estimated for the Well A in Table 1. Then, mean and standard deviation of the Hutton Formation
were estimated for creating PDFs as shown in Table 1 and Figure 7.24. Using these PDFs and prior

probability, posterior probability was calculated for sand and shale facies within the Hutton
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Formation using the Bayes equation as shown in Figure 7.25. The vertical dashed line at which
prediction changes from one class to another is called the decision boundary. The decision

boundary for gamma ray is shifted from 84 to 68 API units after applying Bayesian classification.

Table 7.1: Statistical analysis at Well A.

>65

Prior probability . 0.82
122.55

Standard deviation 29.37

The Gaussian PDF is represented by a single curve in the previous example because the
variable (gamma ray) is a single variable. In the case of using two variables of Vp/Vs and Al, the
PDF will be represented by an ellipse shape or two-dimensional vector. This 2D probability
density function is the bivariate Gaussian PDF that represents the two-variable distribution.
Gaussian parameters including Al mean, Vp/Vs mean, Al variance, Vp/Vs variance and covariance,
were first estimated for each facies cluster. Then, prior probability of a given cluster is calculated
by dividing its data points by the total number of data-cluster points and finally Bayes

classification is applied.

Using Gaussian parameters, each facies cluster is represented by bivariate Gaussian PDF
which is divided into concentric rings. Each ring or contour represents a standard deviation from

the mean since zone color changes gradually from dark color at the cluster center which
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represents the bivariate distribution peak to white color at the cluster periphery that represents
the decision boundary (Russell, 2016). Thus, the zone of maximum probability is represented by
dark color and as we go away from the bivariate distribution peak at the cluster center, as we
approach the decision boundary with another cluster, the minimum probability is represented

by faint color.
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Figure 7.24: Probability density function for the Hutton Formation lithofacies at Well A.
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Figure 7.25: Posterior probability for the Hutton Formation facies at Well A.
137



7.2.1. Probabilistic lithofacies discrimination

After applying Bayesian classification to facies zones, intersectional area between facies
clusters decreases and hence, facies separation is improved. Separation between sand and shale
facies on the Vp/Vs versus Al crossplot after applying Bayesian classification is shown in Figure
7.26. Table 7.2 shows Gaussian parameters for each facies cluster. Sand and shale facies are

delineated along different arbitrary lines across the 3D seismic volume as shown in Figures 7.27,

7.28 and 7.29.

On arbitrary lines showing sand/shale facies, facies distribution is better matched with
shale volume (Vsh) at the four wells. In addition, the upper unit of the Hutton Formation at Well
Cisidentified as a sand facies from conventional zones, but after applying Bayesian classification,
this unit is identified as a sand facies with low probability. This indicates that this unit is in a grey

area between sand and shale facies such as shaly sand. Furthermore, there is high probability of

sand facies downdip in the interpreted channel.

Table 7.2: Gaussian parameters for sand and shale facies.

Al mean [(ft/s)*(g/cc)] 30473.9 32180.2
Vp/Vs mean (Unitless) 1.60 1.74
Al variance [(ft/s)*(g/cc)] 2.31e+06 3.74e+06
Vp/Vs variance (Unitless) 0.0015 0.0051

Covariance [(ft/s)*(g/cc)] 2.25 -83.91
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Figure 7.26: Separation between sand and shale facies on a Vp/Vs versus Al crossplot after
applying Bayesian classification.
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Figure 7.27: Lithofacies distribution along an arbitrary line passing through the four wells after
applying Bayesian classification.

139



Time CDP (Unitless)
(ms) 15 20 25
1090 -
1100
1110
| -
1120 {
Hutton Top
Pay zone —
1130 - .
-’
1140 — Channel |[EEEuE—
1150 -
N

Figure 7.28: Lithofacies distribution along arbitrary line passing through Well C and proposed
channel after applying Bayesian classification.
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Figure 7.29: Lithofacies distribution along arbitrary line passing through Well C, proposed
channel and Well C after applying Bayesian classification.
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High-porosity sand, low-porosity sand and shale facies clusters are distributed on the Vp/Vs
versus Al crossplot after applying Bayesian classification as shown in Figure 7.30. Table 7.3 shows
Gaussian parameters for each cluster. High-porosity sand, low-porosity sand and shale facies are
delineated along different arbitrary lines across the 3D seismic volume as shown in Figures 7.31,

7.32 and 7.33. The proposed channel feature exhibits high-porosity sand.

Porosity
(%)
o~
|_racies |l IUE 22
- Shale = e 20.8
Cemented 19.6
0 sand
- 18.4
High -
Pcs:‘s‘;ty LI N ; - '_ .. ": ~ n : 17.2
@n

17
P

16

14.8

16

13.6

Vp/Vs (dimensionless)

12.4

15

b

”z-s'ooo 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000
Al (ft/s)*(g/cc)

Figure 7.30: Separation between high porosity sand, low porosity sand and shale facies on the

Vp/Vs versus Al crossplot after applying Bayesian classification.

Table 7.3: Gaussian parameters for high-porosity sand, low-porosity sand and shale facies.

High-porosity sand Shale facies
facies
Al mean [(ft/s)*(g/cc)] 29671.9 32342.3 32363.1
Vp/Vs mean (Unitless) 1.60 1.60 1.74
Al variance [(ft/s)*(g/cc)] 1.28e+06 289279 2.93e+06
Vp/Vs variance (Unitless) 0.0014 0.0018 0.0044
Covariance [(ft/s)*(g/cc)] -2.89 -4.90 -63.86
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Figure 7.31: High-porosity and low-porosity sand facies distribution along arbitrary line passing
through the four wells after applying Bayesian classification.
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Figure 7.32: High-porosity and low-porosity sand facies distribution along Well C and proposed
channel after applying Bayesian classification.
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Figure 7.33: High-porosity and low-porosity sand facies distribution along Well C, proposed
channel and Well D after applying Bayesian classification.

7.2.2. Probabilistic pore-fluid discrimination

After applying Bayesian classification, high-probability oil sand, brine-sand and shale facies
clusters on the Vp/Vs versus Al crossplot are shown in Figure 7.34. Table 7.4 shows Gaussian
parameters for each cluster. To address the pore fluid distribution over the 3D seismic volume,
high-probability oil and brine-sand facies are delineated along different arbitrary lines as shown
in Figures 7.35, 7.36 and 7.37. The high probability oil-sand facies are distributed along Well A,
Well B and the channel. However, there is no oil sand facies evident at Well C. This result indicates
the robustness of Bayesian classification in delineating the high probability cluster since Well C

has high water saturation (Sw=60%) which may be non-commercial. Thus, drilling at the channel
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location, which has a high-probability oil classification, may be a better drilling location. This
matches with the acoustic impedance gradual increase from the channel to Well C as observed

from previous results.
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Figure 7.34: Separation between high-probability oil sand, brine sand and shale facies on Vp/Vs
versus Al crossplot after applying Bayesian classification.

Table 7.4: Gaussian parameters for high-probability oil, brine-filled sandstone, and shale facies.

Al mean [(ft/s)*(g/cc)] 29026.6 31566.4 31794.4
Vp/Vs mean (Unitless) 1.59 1.62 1.74
Al variance [(ft/s)*(g/cc)] 771538 1.05e+06 4.93e+06
Vp/Vs variance (Unitless) 0.00069 0.00057 0.0019
Covariance [(ft/s)*(g/cc)] -6.66 -13.78 -27.29
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7.35: High-probability oil and brine-sand facies distribution along an arbitrary line
passing through the four wells after applying Bayesian classification.
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Figure 7.36: High-probability oil and brine-sand facies distribution along an arbitrary line
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g through Well C, the channel and Well D after applying Bayesian classification.
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Figure 7.37: High-probability oil and brine-sand facies distribution along an arbitrary line
passing through Well C and the channel after applying Bayesian classification.
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Chapter 8

Facies and Rock Properties Prediction Using Machine Learning

There are two types of machine learning, supervised and unsupervised as shown in Figure
8.1. In supervised machine learning, facies are predicted using labeled data. Input data (x)
consisting of seismic attributes extracted at well locations, is crossploted against output data (y)
represented by well logs of labeled information. Then, regression and classification techniques
are applied to find a relation between the input and output data. This is called training. After
training, the algorithm is validated with well logs that are not used in the training. Once validation
is achieved with small validation error, facies are predicted between wells depending on the
established relationship between input and output data. In unsupervised machine learning, only
input unlabeled data represented by seismic data, are used to predict patterns of similar attribute
characteristics. In this research study, supervised and unsupervised machine learning were used
to address facies distribution over study area and to compare their results with physics guided

methods discussed in previous chapters.

s B

3 CLASSIFICATION
SUPERVISED L )
LEARNING
Develop predictive
model based on both s N
input and output data
/\ REGRESSION

MACHINE LEARNING L J
N
UNSUPERVISED e N
LEARNING
Group and interpret d CLUSTERING
data based only L J

on input data

Figure 8.1: Types of machine learning (modified from Mathworks, 2019).
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8.1. Supervised machine learning

Multiattribute analysis using neural networks has been used to statistically estimate
petrophysical properties from seismic data. In this research study, the objective is to predict a
porosity cube from 3D seismic data. In the supervised machine learning, | used input data (x)
represented by extracted seismic attributes, and output data (y) represented by porosity well
logs. Selecting appropriate seismic attributes is regarded as a starting step for conducting
supervised machine learning. Stepwise regression analysis, introduced by (Draper and Smith,
1966), was conducted to select a seismic attribute set that best predicts the target log. It arranges
attributes in a descending order according to their contribution. Then, cross-validation was used
to divide the data into two datasets (a training dataset and a validation dataset). For the training
dataset, supervised machine learning using neural networks was conducted to find a nonlinear
operator between the input data (x) and the output data (y). Least square optimization was used
in training to estimate weight coefficients (Kabaka, 2018). Once the nonlinear operator was
established, the training model was applied to predict the 3D porosity cube from the 3D seismic
volume. When it comes to the validation dataset, it was used to evaluate the degree of fitting
after crossplotting actual and predicted porosity. To accurately estimate porosity, the process

was run iteratively changing the seismic attributes used until validation error was minimized.
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One of the drawbacks of using multiattribute statistical analysis is that input logs and
seismic attributes have different resolutions. This limitation cannot be just solved by smoothing
well logs that have higher resolution than seismic attributes when using more than one seismic
attribute with different resolutions, and because the smoothed logs may not resolve the layer of
interest. To solve this problem, a deconvolution operator for each attribute that assumes that
each sample in the log is related to a group of samples can be used (Hampson et al., 2001) as

illustrated in Figure 8.2.

Well Log Data Seismic Attributes
(L) (A;) (Az) (A3)

3

Figure 8.2: Each sample in well log is related to a weighted group of samples in seismic
attributes using a multi-channel deconvolution operator. Modified from (Hampson et al., 2001;
and Kabaka, 2018).

The Multilayer Feedforward Neural Network (MLFN) was used by Yao and Liu (1998) to
predict log properties. As described in Figure 8.3, MLFN consists of different layers; input layer,
hidden layer and output layer (Hampson et al., 2001). The layers consist of nodes that have
assigned weights. The input layer nodes represent seismic attributes that are used to predict one
property represented by one node in the outer layer.
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Figure 8.3: Multilayer Feedforward Neural Network. Modified from (Hampson et al., 2001).

A better neural network approach called the Probabilistic Neural Network (PNN) was
introduced by Masters (1995) and Specht (1990 and 1991). In PNN, the target log value (L) is

estimated by the following equations:

ZL; exp(—D(x, x:))
+ =1

Ly == ,and (8-1)
D exp(—D(x,x;))
=1

D(x, %) = i (M)z (8-2)

j=1 7

where, D(x, x;) is the distance between the input point (x) and the training points (x;), and gjis a

smoothing parameter for each attribute.

After conducting multiattribute analysis using regression and neural networks, an F-test
was conducted to address the fit between the statistical model and the data. The F-test is define

by:
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explained variance

unexplained variance’

and computed using:

_ [R?/K
i TeErryremrar (8:3)

where, K is the number of parameters, n is the number of data points, and R is the correlation
coefficient. An F-value less than 1 indicates that the correlation cannot be assumed to be

statistically significant.

High-frequency and conventional seismic data were incorporated in the multiattribute
analysis. Because one of the main objectives of this research study is to address the prediction
accuracy of different methods, external attributes such as inversion results were not

incorporated into the multiattribute analysis.

8.1.1. Porosity estimation

8.1.1.1. Broadband seismic data

For porosity estimation, porosity logs at the four wells and 28 seismic attributes extracted
from the high-frequency far-offset stack were used in a multiattribute analysis process.
Validation error decreases as seismic attributes are added to the prediction process, but
increases at the eighteenth seismic attribute, as illustrated in Figure 8.4. To achieve more reliable
predictions, only seventeen seismic attributes were selected. The selected attributes are shown

in Table 8.1. Using these attributes in multiple regression, actual and predicted porosity are
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crossploted at the four wells as illustrated in Figure 8.5 where correlation coefficient is 0.686 and

estimated error is 3.05% porosity.
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Figure 8.4: Average errors versus number of attributes used for predicting porosity. Training
errors are represented by black dots and validation errors are represented by red dots.

Because of high error using multiple regression, the seismic attributes identified in table
8.1 were incorporated in a probabilistic neural-network (PNN) prediction. Porosity predicted by
the PNN has a better linear relation than porosity predictions from multiple regression when
crossploted versus measured porosity as shown in Figure 8.6. The correlation coefficient
increases to 0.967. An arbitrary line passing through the four wells shows lateral porosity
variations (Figure 8.7). There is a significant correlation at the four wells. To address porosity at
the proposed channel, the neural network process was repeated by taking out Well C from
training and using the other three wells to evaluate how well the neural network method predicts

the channel feature. An arbitrary line passing through Well C, the channel and Well D is shown in
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Figure 8.8. The channel porosity ranges from 13% to 15%. Porosity varies continuously from the
channel to Well C. On the other hand, porosity decreases toward Well D which indicates facies

change toward it.

Table 8.1: Seismic attributes used in multiple-regression prediction of porosity using high-
frequency seismic data.

No Seismic attributes Training error | Validation error
(%) (%)
1 Filter 5/10-15/20 3.70 4.13
2 Average Frequency 3.56 4.31
3 X-Coordinate 3.50 4.37
4 Y-Coordinate 3.41 4.12
5 Filter 25/30-35/40 3.36 4.12
6 Filter 45/50-55/60 3.32 4.15
7 Integrated Absolute Amplitude 3.27 4.22
8 Amplitude Weighted Frequency 3.24 4.17
9 Filter 15/20-25/30 3.22 4.17
10 Second Derivative Instantaneous Amplitude 3.21 4.17
11 Integrate 3.20 4.25
12 Instantaneous Phase 3.16 4.26
13 Filter 35/40-45/50 3.14 4.33
14 Filter 3.10 4.31
15 Quadrature Trace 3.06 4.35
16 Amplitude Weighted Phase 3.06 4.31
17 Cosine Instantaneous Phase 3.05 4.29
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Figure 8.5: Predicted porosity versus measured porosity crossplot at the four wells using

multiple regression.
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Figure 8.6: Predicted porosity versus measured porosity at the four wells using a probabilistic

neural network.
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Figure 8.7: Arbitrary line passing through the four wells shows porosity estimated from neural
network analysis with high-frequency seismic data.
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Figure 8.8: Arbitrary line passing through Well C, channel and Well D. Well Cis used as a blind
validation well to test porosity estimates.
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Since the number of attributes used in multiattribute analysis are 17, number of data
points are 200 and correlation coefficient is 0.686, the F-value was estimated to be 9.5. However,
F-value increases to 154 after incorporating selected seismic attributes in the neural network

process.

8.1.1.2. Conventional seismic data

To compare between conventional and high-frequency seismic data, porosity was also
estimated at the four wells and 5 seismic attributes extracted from the original far-offset stack.
Validation error decreases with increasing number of seismic attributes, but it begins to increase
at the sixth seismic attribute as illustrated in Figure 8.9. That is why only five seismic attributes
were selected. The selected seismic attributes are shown in Table 8.2. Actual and predicted
porosity are crossplotted at the four wells as illustrated in Figure 8.10 where the correlation
coefficient is 0.53 and estimated error is 3.56% porosity. Using a probabilistic neural network,
the correlation coefficient increases to 0.96 and estimated error is 1.15% porosity as shown in
Figure 8.11. An arbitrary line passing through all wells is shown in Figure 8.12 to illustrate porosity

prediction from conventional seismic data.
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Figure 8.9: Average errors versus number of attributes used for predicting porosity.
Table 8.2: Seismic attributes used in multi attribute analysis to original seismic data.
No Seismic attributes Training error Validation error
(%) (%)
1 Filter 5/10-15/20 3.78 3.98
2 Derivative Instantaneous Amplitude 3.68 3.94
3 Filter 45/50-55/60 3.63 3.96
4 Integrate 3.59 3.95
Filter 55/60-65/70 3.56 3.99
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Figure 8.10: Predicted porosity versus measured porosity crossplot at the four wells using
multiple regression.
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Figure 8.11: Predicted porosity versus measured porosity crossplot at the four wells using a
probabilistic neural network.
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Figure 8.12: Arbitrary line passing through the four wells shows porosity estimated from neural
network analysis to conventional seismic data.

Estimated F-test after conducting multiattribute analysis for conventional seismic data, is
7.297 which increases to 478.5 after incorporating selected seismic attributes in the neural

network process.

8.1.1.3. Confusion matrix

Confusion matrices were used to compare between high-frequency seismic data and
conventional seismic data in porosity prediction accuracy. First of all, the actual porosity log was
subdivided into 3 classes, low porosity sand (less than 13%), medium porosity sand (13% -16%)
and high porosity sand (more than 16%). Then, confusion matrices were conducted to compare
porosity predictions at Well C with actual porosity of the Well using 247 samples chosen within
the Hutton Sandstone Formation and 20 m above and below it. Confusion matrix results are

shown in Figure 8.13. High-frequency data has much better accuracy than conventional seismic
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data. In addition, accuracy decreases with less training data which indicates that multiattribute

analysis using neural network needs more training data to reach high accuracy prediction.
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Figure 8.13: Comparison between high-frequency and original seismic data in predicting
porosity. Results quality degrades with decreasing training data.

8.1.2. P-impedance estimation
To conduct a comparison between multiattribute analysis and other previous methods
used in this research study, some wells were used as blind validation wells and have not

incorporated in the analysis. Result quality degrades with decreasing number of wells used.

8.1.2.1. Broadband seismic data

P-impedance logs at Well B and Well D and fifteen seismic attributes extracted from the
high-frequency far-offset stack were used in the multiattribute analysis process. Figure 8.14

shows all seismic attributes used in the analysis. Only eight seismic attributes were selected
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based on minimum validation error and are shown in Table 8.3. Selected seismic attributes were
incorporated in probabilistic neural network analysis. Actual and predicted acoustic impedance
are crossploted as illustrated in Figure 8.15 where correlation coefficient is 0.926 and estimated

error is 880.7 (ft/s*g/cc).

Table 8.3: Seismic attributes used in multi attribute analysis of broadband seismic data.

No Seismic attributes Training error Validation error
[(ft/s)*(g/cc)] | [(ft/s)*(g/cc)]

1 Average Frequency 1969.68 2437.55

2 Filter 5/10-15/30 1776.38 2337.23

3 Integrated 1686.33 2254.71

4 Integrated Absolute Amplitude 1627.39 1966.76

5 Apparent Polarity 1574.96 1989.51

6 Second Derivative 1517.48 1944.63

7 Instantaneous Frequency 1472.47 1879.07

8 Derivative Instantaneous Amplitude 1439.40 1914.24

An arbitrary line passing through the four wells shows acoustic impedance estimated
from neural network analysis using high-frequency seismic data (Figure 8.16). A 10 ms acoustic
impedance horizon slice extracted below the Hutton Formation top is shown in Figure 8.17. Low

acoustic impedances are distributed over high structures.
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Figure 8.14: Average errors versus number of attributes used for predicting P-impedance.
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Figure 8.15: Predicted acoustic impedance versus measured acoustic impedance using a

probabilistic neural network analysis to broadband seismic data.
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Figure 8.16: Arbitrary line passing through the four wells shows acoustic impedance estimated
from neural network analysis to high-frequency seismic data.

Al
[(ft/s)*(g/cc)]

19.11]

33732.80

33646.50

: N N 33473:522

5 33387.59

. 3 < E—iaoe

N 33042.38

: Oi . o, - s R 32956.07

Well A: Oil (Sw:30% . . S3me0.77
o 5 - 32783.47

Well B: Oil (Sw: - 3260710
Well C: Oil (Sw- 2 N I e
i - 2 X X \‘“\Q\é"\‘» =

Well D: Br . L L NS e
4. - - s \ & ms.c;:
% o ~ 3= - ot 31920.43
o - : 2, %%, 31834.13
v\?’Q \\ > S 3 - o,;,/"'é 2] 31747.83

e e ™ e o
0 600 1200 1800 2400 3000 M Zo7ez.as

Figure 8.17: Horizon slice shows P-impedance distribution predicted by using high-frequency
seismic data.
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8.1.2.2. Conventional seismic data

Conventional seismic data is also incorporated in neural network analysis to predict
acoustic impedance. Two wells were used in the analysis while the other two wells were kept as
test wells. P-impedance logs at Well A and Well B and four seismic attributes extracted from
conventional far-offset stack were used in the multiattribute analysis process. Figure 8.18 shows
all seismic attributes used in the analysis. Only seven seismic attributes were selected based on
minimum validation error and are shown in Table 8.4. Actual and predicted acoustic impedance
are crossploted as illustrated in Figure 8.19 where correlation coefficient decreases to 0.789 and
estimated error increases to be 941.4 (ft/s*g/cc) when compared with analysis of high-frequency
seismic data. An arbitrary line passing through the four wells shows P-impedance estimated from
neural network analysis applied to conventional seismic data is shown in Figure 8.20. The result
quality degrades which is probably attributed to using insufficient training data or possibly

possibly inadequate resolution of the original seismic data.
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Figure 8.18: Average errors versus number of attributes used for predicting acoustic
impedance.
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Figure 8.19: Predicted acoustic impedance versus measured acoustic impedance after applying
the probabilistic neural network to broadband seismic data.
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Table 8.4: Seismic attributes used in multi attribute analysis of conventional seismic data.

No Seismic attributes Training error Validation error

[(ft/s)*(g/cc)] [(ft/s)*(g/cc)]

Integrate 1368 1396

Cos instantaneous phase 1344 1372

Filter 35/40-45/50 1324 1400

Filter 5/20-25/30 1318 1417

Amplitude Envelope 1309 1430

Apparent Polarity 1299 1438

Nlo|u| | W| N| =

Filter 5/10-15/20 1290 1463
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Figure 8.20: Arbitrary line passing through the four wells shows P-impedance estimated from
neural network application to conventional seismic data. Result quality degrades due to
insufficient training data.
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8.2. Unsupervised machine learning

Unlike supervised machine learning that needs well log data to be incorporated in the
process, unsupervised machine learning classifies seismic data without using well logs. In this
research study, Principal Component Analysis (PCA) and Self-Organizing Map (SOM) algorithms
were used as unsupervised machine learning for facies classification (Roden et al., 2015).
Principal Component Analysis (PCA) is a mathematical technique that arranges seismic attributes
in descending order according to their contribution in each eigenvector component. Hence,
Principal Component Analysis (PCA) helps the interpreter to select appropriate seismic attributes
and detect the most useful attributes within a large dataset by its ability to reduce data
dimensionality. These meaningful attributes are identified based on their contribution in
producing the large variability in seismic data that probably represents geologic variations. PCA
is conducted by calculating eigenvalues and eigenvectors for the covariance matrix. At each
principle component estimated from PCA, the interpreter can select seismic attributes that
contribute a high percentage of variance for the multiattribute dataset. The selected meaningful
seismic attributes will be then employed in Self-Organizing Maps. On the other hand, unselected

seismic attributes that have less contribution will be eliminated.

Seismic attribute selection depends mainly on research study purpose. Geometric (multi-
trace) attributes such as curvature and similarity, are very helpful to identify structure and
stratigraphic geological features, but instantaneous attributes like instantaneous frequency and
amplitude (envelope) of single traces are linked to pore-fluid and rock physical properties

(Paradise, 2017). Because seismic attributes have different scales, normalization was applied
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before conducting PCA to make sure that attributes are equally treated. This normalization was

conducted using the mean and standard deviation of each seismic attribute (Roden et al., 2015).

In this study, focus is mainly on identification of oil-sand facies. Based on this purpose,
instantaneous seismic attributes were carefully selected. Geometric attributes such as curvature
attributes, were ignored. Selected instantaneous seismic attributes were incorporated in the
PCA. This analysis was only applied to small subarea around Well B that has an anomalous bright
spot and AVO class 3. The first principal component calculated at each inline, is shown in Figure
8.21. The Principal Component Analysis (PCA) at Well B is shown in Figure 8.22. The eigenvalue,
which represents spread of data, was calculated for each eigenvector. Seismic attributes that
have large contribution percentage at each eigenvector, were selected as shown in Figure 8.23.
For the first principal component, envelope, sweetness and attenuation attributes were selected.

For the second principal component, Hilbert, instantaneous phase and amplitude attributes were

selected.
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Figure 8.21: Calculated eigenvalues of first principal component at each inline. The red bar
represents the eigenvalue at Well B.
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Figure 8.22: The Principal Component Analysis (PCA) at Well B.

Attributes contribution to
2" principal component

Attributes contribution to
1t principal component

ATTRIBUTE NAME | PERCENTAGE \ ATTRIBUTE NAME PERCENTAGE
Envelope 2530 Hilbert 25.53
Sweetness 25.11 Instantaneous Phase 17.06

Seismic_Conditioned_1200_1800_SBLA_
Attenuation 10,02 12.29
Similarity_Total_Energy 427 Normalized Amplitude 10.27
Similarity_Energy_Ratio 3.61 Attenuation 0.49
DipGST_GST_Similarity 218 Thin Bed 0.36
Smoothed Frequency( 1.87 Acceleration of Phase( 0.34
Bandwidth 1.48 Similarity_Total_Energy 0.16

. B A i P 11
Relative Acoustic Impedance 037 ttenuation Bands on Phase Breaks( 0
Seismic_Conditionad_1200_1800_SBLA_ DipGST_GST_Similarity 0.08
0.10

Sweetness 0.08
Thin Bed 0.10 Envelope 0.07
Hilbert 0.09 Smoothed Frequency 0.06

Figure 8.23: Attributes contribution to first and second principal components.

A Self-Organizing Map (SOM) is a type of unsupervised machine learning that is applied
to multiattributes. This algorithm learns to classify seismic data without any external supervision

represented by well logs. It uses an unsupervised neural network to reduce data dimensions
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(Roden et al., 2017). SOM was first developed by Kohonen (1982) to classify world countries

according to personal traits.

A SOM produces neurons (prototypes) which classify seismic data into clusters based on
their properties (Paradise, 2019). A lattice of neurons represented by nodes responds to the input
set of seismic attributes. Each neuron identifies a natural cluster of attributes (Roden et al., 2017).
During construction of the SOM, neurons have two learning behaviors (cooperative and
competitive learning behaviors). In cooperative learning, neurons start to move toward data
clusters in a way that neurons depend on each other. In other words, they move toward the
clusters and toward themselves. Then, neurons behavior switches to competitive learning, in
which, neurons move independent to each other toward the data cluster. Neurons continue to

move in epochs until being attached to a data cluster (Paradise, 2019).

Because productive hydrocarbon areas are small compared to the entire seismic dataset,
they are hardly captured by these neurons (Marfurt, 2018). The data points that are not attached
to neurons, are called low probability points which may be regarded as direct hydrocarbon
indicators. Since noises may be small compared with signal, low probability points could be
noises. Furthermore, by practice, investigating low probability points as a direct hydrocarbon
indicator sometimes does not work and is not conformable with blind validation wells with oil

pore fluid.

After conducting PCA, selected attributes were incorporated in constructing Self-

Organizing Maps (SOM). Dimensions (8 by 8) were used as a topology for the constructed Self-
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Organizing Map. Thus, the number of used neurons is sixty-four as shown in Figure 8.24. Each

neuron has its own color and represents a cluster of datapoints in the 3D space.

Dimensions: (8 x 8)
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Figure 8.24: High-frequency seismic data SOM created by using 64 neurons represented by
different colors.

To address the cluster of oil-sand facies, color that passed through Well B was highlighted,
and other neuron colors were switched off as illustrated in Figure 8.25. Well A, Well C and Well
D are used as blind validation wells. Well A that has oil pore fluid passes through the cluster and
Well D that is a dry hole, does not cut across the highlighted cluster. Thus, Well A and Well D

blind validation wells show a good pore-fluid prediction match. However, the oil-sand cluster
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does not pass through Well C that has 60% water saturation. The small layer thickness and 60%
water saturation at Well C could cause that response to cluster differently from the pay responses
at Wells A and B. The channel feature is identified between well C and Well D as shown in Figure
8.26 suggesting reservoir quality similar to wells A and B. This channel feature is like that

identified previously with inversion.
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Figure 8.25: High-frequency seismic data SOM after highlighting neuron number 61.
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Figure 8.26: High-frequency seismic data SOM around Well C and Well D area.

The previous SOM was established using the high-frequency far-angle stack as input. The
unsupervised machine learning process was repeated with full-stack seismic data. The low
probability points distribution is highlighted by white after deactivating all neuron colors as
shown in Figure 8.27. To address result reliability in this case, all wells are regarded as blind
validation wells. The low probability points’ distribution, which may represent hydrocarbon
facies, passes through Well B and Well C, and does not pass through Well D. However, Well A
that has oil pore fluid does exhibit the low probability points at the pay zone. Facies passing
through Well A can be highlighted by one neuron activation. The colored zone plus low

probability data point distribution represents the entire oil-sand facies distribution.
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Figure 8.27: Conventional far-offset stack SOM shows distribution of low probability data
points.
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Figure 8.28: Conventional far-offset stack SOM shows distribution of low probability data points
and neuron 45.
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Chapter 9

Discussion and Conclusion

9.1 Discussion

Although the Hutton Formation in the Eromanga Basin is a mature play, many prospects
remain. Drilling is very risky since many wells drilled high on structure are water charged. Because
hydrocarbon chemical properties approach heavy oil properties (API=32), there is little
discrimination between oil and brine physical properties. To reduce drilling risk the area,
reservoir quality and lithology discrimination is badly needed. In this case study, | compared
seismic responses at four wells. Wells A and B had commercial hydrocarbons. Well C and Well
D, though being higher on structure, were not successful. Well C had a thin 2 m thick layer with

oil, but with high water-saturation and lower porosity. Well D was a dry hole.

Seismic amplitudes, amplitude-variation-with-offset, detailed comparisons of seismic
data to synthetic seismograms, simultaneous inversion, and crossplotting of various parameters
do not yield an unambiguous seismic direct hydrocarbon indicator in this location. These studies
were hampered by the lack of shear-wave velocity logs in Wells B, C, and D, and it is possible with

more calibration that a more definitive indicator could have been identified.

To robustly identify minute structural details that are not readily apparent on the seismic
data, seismic reflection attributes were constructed. Depositional and structural features were
robustly identified from curvedness, dip of maximum similarity, most-positive curvature and
most-negative curvature attributes. These features include faults that cut across basement and

the overlying sedimentary section as well as meandering and forked features that belong to
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ancient fluvial depositional systems. High structural locations that possibly are hydrocarbon
charged, due to updip migration of hydrocarbons, are revealed by positive curvature attributes.
These attributes are co-rendered with most negative structure attributes to robustly discriminate
between high structure locations that are probably hydrocarbon charged and low structural
locations that are probably water charged. However, hydrocarbon charged locations are not
precisely identified based only on seismic reflection attributes and the problem still exists since
high structure may be water charged as facies changes may localize hydrocarbon occurrence.
That this occurs is obvious from Well D that has no pay but is higher on structure than wells with
hydrocarbons. Thus, qualitative seismic interpretation needs to be integrated with quantitative

analysis to reasonably estimate pore fluids and lithology distribution over the study area.

Physical properties away from the wells were estimated from post-stack inversion, pre-
stack simultaneous inversion and multiattribute analysis performed on conventional and high-
frequency seismic data obtained from bandwidth extension methods. Estimated rock properties
were converted into facies delineated over the 3D seismic volume. Sand facies distribution is
observed below the Hutton Formation top overlain by shale facies. In addition, sand facies are
discriminated into low- and high-porosity sands or high-probability oil and brine sands. Thus, the
facies discrimination problem encountered in qualitative interpretation is tackled by quantitative
analysis. A comparison between compressional-to-shear-wave velocity ratio, acoustic
impedance, RMS amplitude, high-probability oil distribution, scaled Poisson’s ratio and
anomalous hydrocarbons, identified from AVO intercept and gradient horizon slices extracted

from the same time window, are shown in Figure 9.1. There are great similarities between
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horizon slices which imply that anomalous behavior may result from the interplay between
reservoir quality and hydrocarbon pore-fluid effects. For example, capillary pressure effects may
result in higher oil saturation in high porosity rocks, and higher water saturation in lower porosity
rocks. This would produce a correlation between acoustic impedance and the Vp/Vs ratio with
oil saturation, even if oil and brine had the same acoustic properties. This effect could then be
accentuated when oil and brine properties are different; further lowering the impedance and
Vp/Vs ratio of oil-bearing porous reservoir rock. There may be additional interplay, such as a
correspondence between layer thickness and reservoir quality. As thinner layers produce weaker
responses, this would again favor a higher amplitude for the thicker zones, further accentuating

the amplitude difference.

After facies discrimination using quantitative analysis methods, delineated facies should
have a geological interpretation. Thus, data integration can be achieved by co-rendering
geological features identified from qualitative interpretation with rock properties and facies
identified from quantitative analysis, and hence, extracting more information from seismic data
that leads, in turn, to a geological model with a robustly identified geological scenario

uncertainty.

Before data integration, reliability of predicted facies results was first addressed. Some
wells were used as blind validation wells for evaluating the performance of applied techniques
for lithology and pore-fluid discrimination. Table 9.1 summarizes blind well predictions using
different methods and datasets. Inaccurate results are highlighted by orange shading that are

dominantly observed at Well C and Well D test wells. In addition, a comparison was conducted

177



between applied quantitative analysis methods in this research study as well as data
incorporated in these methods including conventional and high-frequency seismic data. The aim
of this comparison is to evaluate method performance and to detect which quantitative analysis

is the best for deciphering the available data.
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Figure 9.1: Comparing between different 10 ms horizon slices below the Hutton Formation top.
a) Vp/Vs, b) Acoustic impedance, c) RMS amplitude, d) High-probability oil distribution. e) scaled
Poisson’s ratio and f) Anomalous hydrocarbons from intercept-gradient crossplot.
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Table 9.1: Summary of results at the four wells. Inaccurate results are highlighted by orange.

Techniques Attributes
Structure contour High High High High
L map
S S Positive curvature +ve +ve +ve +ve
5%
So
Qo Isochron map +ve +ve -ve +ve
S0
—_
TS
o DHI analysis (Far- High High Low Low
offset amplitude)
AVO Large Large Small Small
increase increase decrease increase
Far (Far-near) +ve +ve -ve -ve
Q
5
= A*B +ve +ve +ve +ve
£
@
9 Scaled Poisson ratio Large Large Small Large
< negative negative positive positive
Polar magnitude +ve +ve -ve -ve
- Far-angle stack | Al Low Low Low Low
c| 88
S| ot :
213 g Broadband far | Al Low Low Low High
o c
2| &= angle stack
2| x 3¢ Vp/Vs Low Low Moderate High
€ O o O
8| 8 cG
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.G "
Supervised Al Low Low Moderate High
o o
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=
§ e Unsupervised +ve +ve -ve +ve
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Because acoustic impedance can be estimated using most used methods and it can be
used to discriminate different facies, this physical property was investigated to measure how well
its estimation by different methods can predict pore fluids. Well C was used as a blind validation
well to assess different methods since confusion matrices were calculated by different methods
and data to measure acoustic impedance prediction accuracy when it is compared with well log
impedance at Well C. Since the pay zone depth range at Well C is precisely estimated from a drill
stem test, a cut off value (Al= 30000 (ft/sec*g/cc)) estimated from filtered acoustic impedance
was used to separate pore fluids (oil and brine). Confusion matrices were constructed to evaluate
different methods and datasets are shown in Figure 9.2. Post stack inversion of high-frequency
seismic data shows the highest prediction accuracy (94.5%). Figure 9.3 shows predicted pore

fluids using different methods and datasets and their comparison with the pay interval at Well C.

Accuracy
(94.5 %)

Accuracy
(74.4%)

Post-stack inversion (Original seismic data)

Accuracy
(89.9%)

Pre-stack inversion (Original seismic data)

Accuracy
(46.5%)

Accuracy
(89.9%)

Neural network (High-frequency seismic data) Neural network (Original seismic data)

Figure 9.2: Confusion matrices estimated from comparing Well C actual values of acoustic
impedance with predicted one using different methods and datasets.
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Figure 9.3: Predicted pore fluids using different methods and datasets.

After addressing results reliability of different quantitative analysis methods using
conventional and high-frequency seismic data, quantitative analysis methods of high prediction
accuracy are incorporated into data integration with qualitative seismic interpretation. Seismic
refection attributes are co-rendered with rock properties estimated from inversion results and
facies delineated from rock-physics templates. Figures 9.4 and 9.5 show acoustic impedance (Al)
and compressional-to-shear-wave-velocity (Vp/Vs) horizon slices co-rendered with dip of
maximum similarity and curvedness seismic attributes, respectively. High acoustic impedance
and Vp/Vs ratio are observed along meandering features which are probably brine sands and
shale facies. On the other hand, low acoustic impedance and Vp/Vs ratio are observed for other

subareas which are probably sand facies with high probability of oil occurrence.
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Furthermore, a lithofacies slice is co-rendered with most-positive curvature as shown in
Figure 9.6. Shale facies are distributed along meandering features located on positive structures.
From this observation, not all positive structures are hydrocarbon charged sand. This hypothesis
casts doubt on previous thoughts that relate high values of most-positive curvature to
hydrocarbon distribution since shale and brine sands can occur high on structure. This is possibly

attributed to stratigraphic interferences preventing hydrocarbon updip migration.

All the above-mentioned results show compartmentalization of the Hutton Formation
reservoir described by (Hamilton et al.,1998) which is attributed to the overlaying Birkhead
Formation incision evidenced by truncation of reflections at some locations and shale facies
distribution along meandering features. Birkhead Formation incision in the Hutton Sandstone
Formation results from incised valley filling by the Birkhead formation deposition. The upper
surface of the Hutton formation is regarded as a sequence boundary which is subjected to
erosion after base level falling. This erosion formed a paleo-valley system in which the low stand
systems tract of the Birkhead Formation was deposited (Boult et al., 1998). Unlike well-known
incised valleys initially filled by sand facies, the Birkhead Formation incision is clay rich (Lanzilli,
1999) since its lithofacies are fine to medium grain sandstone, siltstone and shale. Incision caused
by the paleo-valley system removes all or upper part of the Hutton Formation. Thus, when it
comes to risk addressing, these meandering features should not be drilled if the upper unit of the
Hutton Formation is the target. A conceptual model shown in Figure 9.7 illustrates the geological
scenario for the Hutton Formation upper surface over the study area before the Birkhead

deposition.
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Figure 9.4: Paleogeographic meandering features shown in maximum similarity seismic
attribute matches with high acoustic impedance.
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Figure 9.5: Paleogeographic meandering features shown in curvedness seismic attribute
matches with high Vp/Vs ratio.
183



| R )
0 600 1200 1800 2400 3000 M

Figure 9.6: Shale facies are distributed along paleogeographic meandering features observed on
the most-positive curvature attribute.
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Figure 9.7: Conceptual model for the Hutton Formation distribution over the study area before
Birkhead formation deposition.
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To address the poor results in the Well C and Well D area, seismic attributes were first
investigated. Faults are noticed around Well C from the curvedness attribute created from the
mid-angle stack. These faults are separating Well C from Well D. A channel feature near the pay
zone of Well C is also seen. By tracking the AVO response of the area around Well C, a class 4
AVO anomaly occurs at the same location of the channel. AVO analysis of this channel shows AVO

response different from the response of the Hutton Formation at Well D.

While investigating a 10 ms acoustic impedance horizon slice, constructed from post stack
inversion of the high-frequency far-angle stack, at the proposed channel location around Well C,
a gradual decrease in acoustic impedance was observed from Well C to the zone of interest and
vicinity. This is confirmed with an arbitrary line passing through Well C and the channel exhibiting
low acoustic impedance that ties perfectly with the pay zone at Well C. Well D exhibits high

acoustic impedance that is not continuous with the acoustic impedance at well C.

After integrating the acoustic impedance result with seismic data as shown in Figure 9.8,
faults between the channel and Well C and Well D can be seen. There is high fault displacement
between the channel and Well D. However, there is a small fault displacement between the
channel and Well C. This observation provides a plausible conclusion for oil accumulation at Well
C and its absence at Well D. When fault displacement is small, there is no seal between fault
blocks and oil can find pathways to cross between fault blocks. Thus, oil has probably migrated
from the channel to Well C. On the other hand, large fault displacement observed between the
channel and Well D probably produces a seal and this provides a plausible reason for oil absence

at Well D.
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After investigating many arbitrary lines crossing Well C and Well D from different
directions and horizon slices above and below the Hutton Formation top, facies change along
Well D not only at the Hutton Formation but also at the overlying Birkhead Formation. There is
an increase of shale intercalations within the Hutton Formation along Well D. When it comes to
the Birkhead Formation, facies change from shale to sandy shale is observed at Well D. This result
matches with facies change observed in the Birkhead Formation from well log correlation. Facies
change in the seal very close to Well D can provide pathways for upward oil migration. Facies
change is also confirmed by porosity prediction using both inversion and machine learning since

a porosity decrease was predicted at Well D.

After discriminating facies using a rock physics template, sand facies are observed along
the Hutton Formation at Well C and the channel. A siltstone or low porosity sand layer occurs
between the two upper units of the Hutton Formation providing a reason for oil absence for the
first upper unit of the Hutton Formation since the siltstone may provide a seal for oil upward
migration. On the other hand, Birkhead incision was observed at Well D on gamma-ray logs and
inverted seismic data. This incision probably removes the upper part of the Hutton Formation at
Well D. High-probability oil-sand facies are observed at Well C and the channel in the second

upper unit of the Hutton Formation but not observed at Well D.
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Figure 9.8: Integration between qualitative interpretation of mid-angle stack and acoustic
impedance result from quantitative analysis.

Based on data integration between well logs correlation, inversion and facies
discrimination using rock physics template and Bayesian classification, a cartoon section was
constructed along arbitrary line passing through Well C, the channel and Well D as shown in

Figure 9.9.
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Figure 9.9: Facies distribution along arbitrary line passing through Well C, Channel and Well D.

9.2. Conclusion

In conclusion, this study resulted in the findings summarized below.

e Integration between data using different methods and analyses enhances extracting
information from seismic data.

e A channel occurrence near Well C is probably the reason for oil occurrence at the well
since oil can find migration pathways from the channel to the well. On the other hand, oil
absence at well D is probably attributed to large fault displacement around it that

produces a seal preventing oil migration from the channel to the well. Facies change from
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sand to shale at some zones of the Hutton formation at Well D and seal absence along its
surrounding area also provide a plausible conclusion for oil absence at Well D.

Not all positive structures identified from most-positive curvature, are hydrocarbon
charged. Most-positive curvature should be integrated with facies distribution for
enhancing interpretation.

Pore fluids and lithology are more robustly discriminated using high-frequency broadband
seismic data than by conventional seismic data using different techniques.

Unlike inversion methods that can be conducted using one well, quality of supervised
machine learning using neural network degrades with fewer wells since this method
needs more training data.

A lot of blind validation wells are needed to address reliability of supervised and
unsupervised machine learning results.

Acoustic impedance inversion produced by performing post-stack inversion on high-
frequency seismic data, is the best result in this research study with the highest accuracy
of confusion matrix prediction-success percentage among other results.

Confusion matrices should be used for prediction evaluation. For example, the neural
network predicted oil occurrence at well C correctly, but with low prediction accuracy in
the confusion matrix because this method also predicted brine zones as pay zones.
Lithology and hydrocarbon prediction are enhanced by using probabilistic Bayesian
classification since high probability oil of 30% water saturation was robustly addressed

using this statistical approach.
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e The full-stack volume should not be used for direct hydrocarbon detection here as it did
not prove useful in predicting commercial pay.
e Sparse-layer inversion shows geological details that are hidden in original seismic data

and hence, is a robust method for quantitative seismic interpretation.

The methods investigated here suggest there are additional drilling locations such as the
channel near Well C. Bandwidth extension using sparse-layer inversion was invaluable in
producing the high-frequency seismic data exploited so well by seismic inversion and machine

learning.
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