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tMine is a long and sad tale!

said the Mouse, turning to Alice, and sighing
'It is a long tail certainly!

sald Alice, looking down with wonder at

the Mouse tail;

'but why do you call it sad?!

Lewis Carrol

Alice's Adventures in Wonderland

to my mother for the past
to my wife for the present

to my children for the future
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ABSTRACT

A class of axisymmetric boundary value problems for
a torsionless semi-infinite hollow circular cylinder is
considered; the lateral surface of the cylinder is assumed
to be traction free, whereas its end-sectlion is subjected
to given self-equilibrated loads, given displacements or
to mixed boundary conditions. The solution utilizes Love's
stress representation - - known to be complete - -~ to gen-
erate an aggregate of biorthogonal eigenfunctions in the
interval asns<b ., The problem is formally reduced to an
infinite system of linear algebraic equations; explicit ex-
pressions beihg given in the case of mixed boundary condi-
tions,

The close association of the problem with two classi-
cal ones, namely, Saint-Venant's problems and Saint-Venant's
principle 1s discussed and supplemented with substantial

references,
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NOMENCLATURE

Symbols are defined where they first appear; this

list includes only the more important ones,

E 3d Euclidian space
@ set in E
5% boundary of Q
(f?@ﬂ class of continuous fields over % with continu-
ous partial derivatives up to the order k
X position vector, =« =Ixl
(x1,%2,%3) Cartesian coordinates
. (n,v,z) cylindrical coordinates
Y dispiacement vector
U Cartesian components of ¢
Un,Vp,Y2z physical components of y in cylindrical coordinates
£  stress tensor
tﬁ Cartesian components of

Tan,Xyy, Physical components of t: in cylindrical coodinates

T traction vector
Q,:f prescribed boundary values for the displacement
and traction |
N unit exterior normal

& body force (per unit volume) vector

S = <y, £> , elastic state



xiii

. shear modulus
O" Poisson's ratio >
T=2(1 - o) _
%)FU rz;z,“—g ; see eq, (1.11)
‘S resultant force on Ilo _
'\’13 resultant moment about the centroid of TYQ
&j Kronecker's delta (i,j = 1,2,3)
€«p 24 - permutation symbol (o(,(s = 1,2)

€ ijx 34 - permutation symbol (4, j;x=1,2,3)

jL = a'i‘ » partial derivatives in Cartesian coordinates
L 2
_ L 5 2 )
A=z ()5
N _ AA , axisymmetric biharmonic operator

QAN a”/%xLBX[, 3d - Laplace operator
A, = >/ ax, 9%« 2d - Laplace operator
X Love's stress function
a,b internal and external radii
§>= a, b
°‘j>(5'<)5j:7‘\<) parameters defined in the text which are re-
3 stricted to certain values.
T,(me),\/,(%x'l) Bessel and Weber - C. Neumann functions of order
Yy = 0,1,
Ip(fxi't). Ky(ui’\) modified Bessel (Basset) and MacDonald functions
of order Y= 0,1.
gy({:)|<a)=jy(g>,<n) + D A (pen) s eylinder function of
order y = O, L.
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Qi(ﬁﬂ)=-ly(qu.) + My K, (¢n ), modified cylinder

function of order y-=0,1. >

“h?)(XS“)= 3;(&N1)'J’>i(GVO’ second Hankel function of

order v=0,1.

S@?u(xyn) = T, ()Y e =Y (i) 34,(b'i§>) cylinder |
function of order v =0,1, with §>= a,b,

N transposition symbol defined by eq. (3.12).

det determinant function

The following trivial set - theoretic notations are
also used in a few Instances.
€ (is) and element (of)
U union of sets

{Q\Pﬂﬂ} set of all elements e satisfying the property
P(e).

lle-

equal by definition
£a,b,> ordered pair of elements a and b
%(a | ) function of the ordered pair <a,b>

J(X*) function that satisfies the inequality

| 09 < M x>
where M 1s a constant and x> co .,

0(x¥)  function for which the ratio o (x¥)/x% 2= O

uniformly with respect to the position vector Xx.

~

o norm operator



CHAPTER I
"INTRODUCT ION

"Of what 1is passed, or
passing or to come.,"
William B. Yeats
1.1 SAINT-VENANT'S PRINCIPLE

TOUPIN [1965] has recently obtained a strong result
on the Principle of SAINT-VENANT in linear elasticity.
Loosely, SAINT-VENANT'S Principle is usually taken to
mean that if a self equlilibrated stress distribution
(resultaqt force and moment equal to zero) is applied
to a section of the surface of a given body, the
lstresses and stfains produced at po;nts far removed
from the stressed area will be negligibly small. As
stated, the principle is ambiguous and, in many cases,
false; cf. HOFF [1945], Dou [1964) , TouPIN [1965] and
FILONENKO-BORODICH [1965,par.31l] for counter examples.
A rigorous SAINT-VENANT Principle should give suffici-
ent conditions under which the internal effects
(stress, strain, etec.) will decrease in some specified
sense with the distance from the stressed part of the
boundary.

TOUPIN has shown that for a cylinder of arbitrary

length and cross-section, with zZero body force which



has a self-equilibrated loading on one end but is other-

wise stress free,

-2
Utz) o~ (Zscm) (1.1)
U (0)

where
(1) U(z) is the stored elastic energy in that part
of the cylinder whose distance from the stressed
end 1is greater than z,
(11) U(o) is the total elastic energy in the cylinder,
(111) Sc (P) 1s a "decay length" which depends on
the physical constants of the c¢ylinder and the
smallest characteristic frequency of free vi-
bration of the cylinder of length ﬂ,

(iv) L is an arbitrary positive parameter which may
be chosen so as to provide the smallest possi-
ble value for S, ().

The question of comparing stress distributions pro-
duced by statically equivalent loads first arose in
connection with the problem of the deformation of a
cylinder by prescribed surface tractions distributed
over its plane ends. SAINT VENANT [i855, 1856] con-
structed a solution to the relevant boundary value
problem in the theory of elasticity which corresponds

to a particular set of end loads. The principle which



bears his name was originally enuncilated 1n'order to
Justify the use of his result as an approximé%ioh in
cases where the end loads are statically equivalent
to, but not ldentical with, the loads for which his
solution is rigorously valid.

A generalized statement of SAINT-VENANT'S Prin-
ciple, intended to apply to elastlic bodies of arbi-
trary shape, was apparéntly first introduced by
BOUSSINESQ [1885; p. 298], whose version of the prin-
ciple became traditional in the literature, LOVE [}927;
pamB@. BOUSSINESQ supported his version of the prin-
ciple by~analyzing an elastic half-space subjected to
"concentrated forces applied normal to its boundary.

FILON [1902] (cf. also LOVE [1927;par.226}
PICKETT [194@ ) constructed, in essence, a large but
not exhaustive c¢lass of solutions for circular cylin-
ders (namely the tantlplane c¢lass', ¢f. MILNE-
THOMSON [1962; p. 42]). Simply by examination of sol-
utions in this c¢lass he perceived a rapld decay in the
strain lnduced in a circular rod by self-equilibrated
forces applied to one end, but no common feature of
all solutions can be easily deduced from his analysis.

The remarks of Love, loc. c¢it., do not constitute a



proof of the "exponential decay" of the energy even
for this restricted class of loadings of circular cyl-
inders.

Two other classes of general theorems have been
proved in connection with the SAINT-VENANT Principle
and put forward as having some bearing on the original
question posed by SAINT-VENANT'S remarks. The first
of these are due to v. MISES [1945] and STERNBERG
[1958}. These theorems concern a representation of
the strain at an interior point of a given elastic
body which 1s caused by a sequence of loads on a se-
quence of regions of its boundary. The second class
- of theorems is due to ZANABONI [1937]1’2 and concerns
estimates for the total energy of a sequence of bodles
under the action of a fixed system of loads on a gilven
common portion of the boundary; this work has been dis-
cussed in the treatlise by BIEZENO and GRAMMEL [}95&].
The efforts of SOUTHWELL [1923] and GOODIER [1937] can
also be included in thié second class.

Although a comprehensive review of the liferature
on SAINT-VENANT'S Principle in the linearized equilib-
rium theory of elastic solids would serve a useful
purpose, such a survey 1s clearly beyond the scope of -«

these introductory remarks; we mention, however, that
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it has recelved great attention in recently published
literature towards a sharper mathematical formulation.
We single out specially the work of KNOWLES [1966] on
two-dimensional problems, ROSEMAN [1966] using TOUPIN'S
formulation to obtain a pointwise estimate for the
stress in simply connected cylindrical bodies,
STERNBERG and KNOWLES [1967] on the torsion of solid
and hollow cylinders. The earlier statements due to
SAINT-VENANT and BOUSSINESQ are surveyed 1n the clas-
sic of TODHUNTER and PEARSON [1893], more recent de-
velopments being reviewed in STERNBERG [}958].

THE END PROBLEM OF A CYLINDER

Determining the state of stress and strain within a
homogeneous, 1sotropic and elastic circular cylinder
subjected to prescribed forces and/or displacements

at its surfaces, is one of the classlcal problems of
the mathematical theory of elasticity. It has re-
ceived great attention from various authors. The
problem essentially reduces to flnding solutions to
the equations of elasticity in cylindrical coordinates
and then adapting them to the prescribed boundary con-
ditions at the curved and flat surfaces of the cylin-

der.



Problems of this type arise, for example, in the
thermal~stress problem of bonding of a semi-infinite
¢cylinder at'its plane end to another cylinder or plate.
A knowledge of the stress distribution and how it de-
cays away from the bonded end shows how long a finite
cylinder needs to be for its free end to be unaffected
by conditions at the bonded end. This problem and
simlilar ones are often referred to by englneers as
"the end problem of a cylinder."

The method of series expansions in terms of speci-
al functions can be employed successfully to solve the
equationé involved. Pernaps the first investigations
‘along these lines are those of POCHHAMMER [1876] and
CHREE [1886, 1889] using FOURIER-BESSEL series which
were restricted in the freedom of prescribing arbi-
trary stresses on displacements on all surfaces of the
cylinder. Later DOUGALL [1914] presented a more ex-
tensive and detailed general analytic study of the
problem. This paper indicated quite clearly the com~
plexity involved in the mathematical treatment. SYNGE
[1945] considered the equilibrium of a homogeneous
cylinder with arbitrary cross section which is free
from stress on the bounding surface. He examlned in

some generallty the nature of the elgenvalue problen,



and, 1n the case of a circular c¢ross sectlon, he in-
dicated the form of the equation for the eigenvalues,
and this is 1in agreement with the results of DOUGALL
(this equation can also be lifted from under the haze
notation of CHREE [1886; eq (29)] where the problem
studied is a dynamical one).

MURRAY [;945} considered the problem of the ther-
mal stresses and strains in an elastic circular cylin-
der of finite length which is free from stress on its
curved boundary. He obtained expressions for the
stresses in terms of solutlons of the biharmonic equa-
tion and his application of the boundary conditions
-on the curved surface gave rise to a transcedental
equation involving Bessel functions of complex argu-~
ment. Only the first two elgenvalue solutions of this
equation were stated, but no indication was given of
how they had been obtalned. The boundary conditions
on the end face were satisfled in an approximate man-
ner.

A calculus of variations approach to the end
problem of so0lid cylinders has been given by HORVAY
and MIRABAL [1958]. They consider the case when self~-
equllibrating axlally-symmetric normal and shear trac-

tions act on the end of a semi-infinite circular cyl-
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inder. They staﬁed that in principle a rigorous solu-
tion can be obtained if one follows an analysis after
the manner of MURRAY [}945]. Because of the complexity
of the method of this last paper when presented in de-
tall, they prefer to obtain approximate values for the
stresses from a variational approach. They use speci-
al representations for the stresses and find the EULER
equations. They give approximate values for the first
three elgenvalues. For these eigenvalues the product
approximations used 1n this method appear to create
large discrepancies in the verification of the condi-
tions of compatability, a point which is noted by the
authors., _ |

The variational method of the last paragraph 1is
improved in the article by HORVAY, GIAEVER and MIRABAL
ﬁ959]. In particular the values of the displacements
are much better than those obtained in HORVAY and
MIRABAL, op. cit., and the compatibllity requirements
are satlisfled to a greater accuracy.

Two stress potential functions @, ¥ are intro-
duced into the basic equations by HODGKINS [1962] and
the stresses are expressed in terms of them. The fol-
lowing equations satisfied by ¢, Y are deduced from

the equations of equilibrium:



3* 1 2¢ 222G _
o - ~ an T = O

d n* °z*
(1.2)

FY _ Ly | FY _ Y

o n2 . anr Dz2 - R

where r, z are cylindrical coordinates. These equa-
tions are solved by the method of finite differences
using various mesh sizes. Four problems involving a
finite cylinder are investigated.

Problems involGing a finite hollow c¢cylinder which
i1s free from stress on its inner and outer curved sur-
faces, ané has normal and shear loadings on its end
faces are considered in the article of MENDELSON and
ROBERTS [1963]. Here the basic equations are written
in terms of the four stresses and after systematic
elimination, and integration, they yleld a partial
integro~differential equation for the shear stress in
the bases of the c¢ylinder. This equation incorporates
all the boundary conditlons except for those dependent
on prescribed values of the shear stresses on the ends.

They write an expression of the form

b, =2 Y RQu@ T + @) Qo) (1.3)
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as an approximation to the shear stress. The quantities
Pns Qp are station functions such that P, vanishes at z=tP
but Qox®)=1 , 80 that tp, takes the gilven value
¢(n) on the ends z=*P , Here tp, is the shear
stress at the station (rn, z;,) and a and b are respec-
tively the internal and external radii of the cylinder
and 2% 1s its length. When the above representation
for t,, is substituted in the integro-differential
equation, and the technique of double collocation used,
a system of simultaneous linear equations is produced.
Two problems are then solved, one for a solid
cylinder, and the other for a hollow cylinder, using
.the end cbnditions. The values of the longitudinal
stress are prescribed on 2::1-2 . By considering
various numbers of collocation stations MENDELSON and
ROBERTS indicate that their computed results satisfy
the basic differential equations. An advantage of the
method 1is that the formulation 1n terms of the integro-
differential equations gives a kind .of averaging of
values throughout the cylinder, but a serious objec-
tion to it is that the above representation to the
shear stress certainly does not satisfy the prescribed
conditions on the curved surfaces, where in particular

tpz ought to be zero. In illustrative examples they
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choose (1) to be zero so that this difficulty was
avolded. This explains why their results are satis-
factory.

The more complete problem for the finite solid
cylinder, i1.e., one in which either the displacements
or stresses are prescribed at the end and the stresses
or displacements on the lateral surfaces has been an-
alyzed by VALOV [1962] using Papkovich-Neuber repre-
sentation of the solution of the Naviler's equa‘cionsl
obtaining an infinite system of equations whose possi-
bility of providing a bounded solution is investigated
through a careful analyslis of the Fourier-Bessel co-
efficients,

The following problem for a semi-infinlte cylinder
1s investigated by GRINCHENKO [1963]. On the curved
boundary the values of the normal and shear stresses
are prescribed as arbitrary functions of z and on the
plane end the longltudinal and shear stresses are pre-
scribed as arbitrary functions of r. The Navier equa-~
. tions are used and the radial displacement is written
in terms of a Fourler series involving the Bessel
function of order zero plus a Fourler integral. A

similar representation is taken for the longitudinal

1These are called LAME'S equations in the Russian lit-
erature. No solutions of this system of equations
other than for the axially symmetric problem are known.
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displacement. Application of the 5oundary conditions
yields a system of functional equations from which the
unknown coefficients in the above representations are
determined. By a systematlc process these equations
are then changed into an infinite system of simultane-
ous linear algebraic equations. The regularity of
this system is established, which means that it is
theoretically possible to solve the system by itera-
tion techniques. A numerical example 1is concerned
with a semi-infinite cylinder with zero stress on its
curved boundary, zero shear stress and a prescribed
value of the longitudinal stress on z = 0., However,
no numerical results are quoted for the stresses and
displacements, although these appear to have been com-
puted.

The first textbook account known to the present
author of problems of the type belng discussed here
is given by LUR'E [1964] who includes at the end of
Chap. 7 a short bibliography with references. For the
problem with zero stress on the curved boundary numer-
ical results are presented for the first three complex
elgenvalues together with the correspondlng values of
the modified Bessel functions I,, I4. The end of the

chapter furnishes an attempt at satisfying the two
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conditions on the end face of the cylinder, where the
normal stress t,, = F(r) and the shear stress tnzz>4¢(r)
are prescribed. To obtaln the coefficients in the si-
multaneous representations to F(r) and ¢ (r) a least
square method is employed and the resulting infinite
set of simultaneous linear equations 1s truncated to
give a finite number of equations. Solution of these
equations glves the approximate values of the coeffici-
ents. Unfortunately, no numerical values of the end
stresses are presented, and the author omits theAcom-
putation of the coefficlents in the series expansions
and the éubsequent evaluation of displacements and
" stresses at points of the cylinder away from the end.
Following the work of LUR'E, WARREN, ROARK and
BICKFORD [1967] and WARREN and ROARK [1967], studied
the end effect numerically by expanding the solution
Into a series of eigenfunctions satisfying stress free
boundary conditions on the lateral surface, the end
face subjected to given axisymmetric self-equilibrated
distribution of normal and shearing stresses. The
coefficients are selected so as to minimize the square
error between the prescribed boundary conditions on
Zz = 0 and the elgenfunction representation with a

finite number of terms. Numerical results including
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up to 40 terms are included.

The stress analysis for a hollow cylinder of
finite length 1s treated by KAEHLER [}965] who formu-
lates a partial integro-differential equation for the
‘shear stress, He allows the normal and shear stresses
on the inner and outer curved surfaces to be functilons
of the axial coordinate z. A representation of the
shear stress is written down which satisfies the bound-
ary conditions on r = a,b requiring certain quantities
ty(z), 1=1,2, ..., N to be determined. Substituting
this representation into the Integro-differential equa-
tion, coilocating on two radial stations i=1,2 and
" thence differentiating the result yields two fourth
order ordinary nonhomogeneous differential equations
with constant coefficients for ty(z), to(z). These
are solved for the complementary functions only and
eventually the solutions are cast in a form whereby
the conditions on tp, at z =+ can be utilized. As
an illustrative example the case of a so0lid cylinder
with a band of shear stress on the curved surface 1is
consldered.

At this stage, it 1s well to point out that the
use of Fourier transforms as potentials is by no means

new In treating axisymmetric elastic problems. The
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starting point possibly goes back to DOUGALL [1914]
(ef. also GRAY, MATHEWS and MACROBERT [1931; Chap. 15])
which has been followed by FOPPL and FOPPL [1928], and
more recently by BARTON [1941], TRANTER and CRAGGS
[1945] (cf. also TRANTER [1956;par.3.7]), LING and LEE
[1954] and KOGAN and KHRUSTALEV [1958); all for the
case of loading on the curved boundaries. We mention
this because it facllitates the Jjustification of the
form of the solution used here.

Finally, we come to the work of CHILDS [1966] and
LITTLE and CHILDS [1967J who conslder the semi-infinite
circular elastic cylinder with mixed boundary condi-
tions on fhe finite end. By using Love's stress func-
tions expressed as an infinite seriles in the eigen-

- functions of the biharmonic equation plus a Fourier
integral, and by requlring the latter to satisfy the
stress free condition on the curved boundary while the
former 1s chosen so as to generate the boundary condi-
tions on the plane end, they have constructed the gen-
eral solution of the problem in terms of a blorthogonal
family of functions whose basls are the Bessel func-
tions of order zero and one.

The problem is reduced to solving a doubly in-

finite system of linear equations wlth a strongly



16

diagonal matrix. Due to the rapid decrease of the
modulus of the Fourier-Bessel coefficients, the
system can be truncated and solved numerically,
yielding good results. They also have provided a
table containing the first twenty eigenvalues of the
characteristic equation for various values of Poisson's
ratio. An example 1s given for the case of the normal
and shearing stresses specified at the plane end;
the loading belng self-equilibrated there, the ex-
ponentlal decay of both stresses and strains 1s ap-
parent from thelir plots.

The~study reported here, is a continuation of
‘the last mentioned one and depends strongly on it
in the sense that the results contained there were
the source for the amount of formulae derived here
which would otherwise not be obvious. In this re-
spect a quotation from LOVE [1927] is adequate:

"... nothing that has once been discovered ever

loses 1ts value or has to be discarded ...".
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1,3 SOME DEFINITIONS AND FORMULATION OF THE PROBLEM

Before engaging on the rigorous statement and solution
of the problem, we turn now to some preliminary nota-
tional agreements and definitions in conformity with
the standard practice in modern mechanices of contlnua.

We employ the letter E rfor the entire three-
dimensional Euclidian space., If % 1is set in E we
write 8® for the boundary of ® . The class of con-
tinuous fields over & which possess continuous partial
derlvatives up to and including the order k 1is denoted
by Cj?§5). Standard indicial notation is used in con-
nectlon With Cartesian components of tensors of any
"order. Subscripts preceeded by a comma Indicate par-
tial differentiation, while underlined tildes desig-
nate tensors (the non-zero order of which will be
clear from the context). We also employ some of the
trivial symbols of set theory. The summation con-
vention applies to repeated indices,

Def. 1 (Elastic state)., If Y and E, are respectively
a vector-valued and a second order tensor valued
function defined in a domain % in E , we call the
ordered pair S =<v,¥> an elastic state on
corresponding to the body force field § s the shear

~

modulus s and Polsson's ratio o and write
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C-cu,E> e E(5,m,5, %) (1.4)

provided

= t e CHR) N
(a) ve CH(B) , te (1.5)
{ e cs) , m>0 ~lecoe < /2

LL and ¢ being constants.
(b) v, T, 4§, W and & on B satisfy
tij+ fo =0, Ey=t
tep = »«[ T e %uc] (1.6)

o

slojrop) = by - T

T

the last two equatlions beling equivalent.
(¢) 1If & is unbounded

V) = O (x™Y)
t )= O (x7?) as X -~ co (1.7)
£ ¢

X being the position vector and x 1ts magnitude.

12

)y = O (X7

The symbol (/'( . ) having the usual meaning of
order of magnitude.
If §=Q on % it has been shown by FICHERA [1950]
that (1.4) implies v e C(B) ., t e CTU(D)
a more elaborated proof has been given previously by
FRIEDRICHS [}947; p.459 et seqq.]. We recall that the
inequalities imposed in (1.5) on the elastic modulil

M. and O are necessary and sufficlent for the posi-
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tive definiteness of the strain energy denéity. (1.6)1
represents the stress equations of equilibriﬁm (CauchyL
while (1.6)2’3 are the stress-displacement relations

(constitutive assumptions). If £=Q , the order con-

ditions at infinity (1.7) are implied by

oo (l.é)

v ix) = e (1) as X

-

a result also due to FICHERA [1950]. If S=<u,Lt>
is a state on @ and J, is one side of a regular sur-
face with the unit outer normal vector o, we call ff
the traction vector of S on 2, if

- T = {:Rfvﬂ (1.9)
“at all regular points of 2.

CLEBSH [1862] called the determination of the
elastic state within a cylinder (or prism) which —
in the absence of body forces ~— 1is subjected to
surface tractions arbltrarily prescfibed over its
ends and which 1s free from lateral loading the
"Problem of SAINT-VENANT" (cf. WEBSTER [;912; p. 478],
MUSKHELISHVIL [1953; Chap. 22] , SYNGE [1945],
STERNBERG and KNOWLES [1966]). SAINT-VENANT treat-
ment of the foregoing problem rests on a relaxed
formulation in which the detailed assignment of the

terminal tractions is abandoned in favor of prescrib-
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ing merely the appropriate stress resultants.

Here we are concerned with the determination of
the elastic state within a semi-infinite hollow circu-
lar cylinder unstressed on the lateral surfaces and
supporting an axisymmetric self-equilibrated loading
on the finite plane end.

Let @ be such a cylinder, @8 consists of two
coaxlal circular cylindrical surfaces and a plane an-
nulus. Let (xl, Xos x3) be rectangular Cartesian and

(r, V, z) circular cylindrical coordinates related by

Xy =n cos ¥V , K= FLSLYL?)') Rz =2Z

- (1.10)
O¢n<oo , 0gV < 2T ,-cdZ < <O

and suppose the axls of @% coincident with the x3-axis.

Fig., 1.1. Cylinder gegﬁetry
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For convenience we define (Fig. 1.1):

= L(’HV)Z)\ &$méb)o\<7}’<2ﬂ R Oéz(m}

&
jo-

{(n,=)] n=a, OV <2m, O¢ z< o0}

oy
ffo-

{(nﬁz)h1=b) Oslh;ZW,Osz<aﬂ

-
e

(1.11)
{'('l,‘l},z)\ abSrLS‘::)l V= c_onst‘ )052409}

M
fle-

ﬂkéﬁ(nﬂﬁz)&asnsb)OévYQW, == }

2 ®= MU UT,

In view of the linearity of the underlying theory, it
is clear that to investigate the question with which
SAINT-VENANT'S Principle is concerned, it is suffici-
ent to confine our attention to the stresses arising
from a surface traction T which vanishes on rLur,
and which is self-equilibrated on [lo .

Def. 2 (Self-equilibrated loading). Given | over ([, ,

the vector-valued linear functionals ﬁfit-‘) and
T {.} defined by

Filgy ¢ S“ T ds

©

(1.12)
miny e f eaTds
~ 7 Mo
are called respectively, the resultant force and
resultant moment about the centroid of 1o, dS

being an area element in TT; .
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If and only if
Tlel=0 , min)

the traction | is self-equilibrated over Tlo .

I

Q (1.13)

Boundary conditions are never exactly known in
elasticity theory. Even if the two boundary condi-
tions were known everywhere, the corresponding prob-
lem may be too difficult to solve, so that it becomes
necessary to explore the possibility of using boundary
conditlons that are statically equivalent (in the
sense of having the same force and moment resultants)
but simpler. The original boundary conditions and the
"pelaxed" boundary conditions2 then differ by a self-
equilibrating load. It seems natural that a relaxa-
tion of boundary conditions will be Justified if the
load region is small compared to some characteristic

dimension, e.g., distance from the load region; how-

21t is instructive to note here that the canonical

classification of the relaxed problem rests on vari-
ous assumptions concerning the resultants ¥ and m
namely:

I. Extension: F,=Mm, =0 , F,=F

II. 'Bending: F; =™M; =" _=0O , ™, = ™M
III. Torsion: F; = Me= O , TNy =M
IV. Flexure: ?; = Tﬁ; =M, =0, TFL==F7

where x =1,2. These problems of course have no
unique solution,
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ever the shape of the body may be an important factor.
The boundary value problems which arise in this

subject can be classified in the following categories;

here we denote by the subscripts (n) and (t) projec-

tlons along the normal and tangent plane to My , bars

indicate prescribed values.

PT: Traction problem, defined by the boundary condi-
tion

=il

T e

PM 1: Mixed-mixed problem composed of
(1) Traction problem on Iy Ul

Tl = ©Q

GQury, ~
(11) 'Stick contact' problem on Tl
T \11-,, = T(n)

g

Yoo by, =
PM 2: Mixed-mixed problem composed of

(1) Traction problem on [ Ul

Lo, = ®
~ v, ~

(11) 'Rigid contact' problem on o

Py

= i[<t)

T(t) \“TO

= U
Yo \Tr° ~ )
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PM 3: Mixed problem composed of

(1) Traction problem on [, U, ”

T g = ©

~ rl'u.r’z_ ~—
(i1) Displacement problem on 'lo
9.‘TT° = ¥

The best compact dliscussion of those problems are
to be found in BERGMAN and SCHIFFER [1953; Chap. 4] and
MIKHLIN [ 1965, Chap. 4] .

For the moment we will be concerned mainly with
problems PM 1 and PM 2; if the traction i[ acting on
the boundgry 1s written in terms of the circular cyl-
"indrical physical components tf<ij> of the stress
tensor acting at the boundary, our prescribed boundary

cbnditions wlll be as follows:

PM1: (1) t<it>= T, = O
k<iz>=tae=0  on NUR
t<15>:"=tnz = O
(1.14)
(11) £<33>= Tpp = &)

on Wo

U<l> = U, = $()/ /2
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PM 2: (1) Tell>=5,=0O
t<L2>§ tﬂ‘" ::O on r:_urz_
tlzny = tnz."‘ o

(11) £ <i13>= Lz = Q) on .

Necessary for the existence of a solution to the fore-
going boundary value problems 1s that e, })%, Pf\ be
continuous on T\'o and that the given loads meet the

overall equilibrium conditions (1.13) namely:

]

‘?{t} X t‘sl dS =O ‘.-=L)2|3
T T

o

]

mq{t} gn ’C55 Exp x@,dS: O (1.16)

0(1(5:1,2

myiel = S Eop ExpXpdS= O

where ¢€,,=-¢€,, =1, ;= &€., = O ; the compo-

nents of ’g being expressed in rectangular Cartesian

coordinates and the x; are defined in (1.10).
Further, the solution is unique provided ~>O,

“L<o<liz  (ef., e.g., KNOPS [1965]).

Although the principle is not very explicitly
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mentiohed, the problem of the edge-layer effect in the
theory of elastic plates studied by FRIEDRICHS [1949]
and a decade later by FRIEDRICHS and DRESSLER [1961]
is in fact a genuine case of SAINT-VENANT'S Principle.
It gave rise to a concept frequently encountered in
the literature of SAINT-VENANT problem and which for
the sake of nomenclature we define here.

Def. 3 (Elastic boundary layer). Given n>0

(L] = Fa- ), the set %3C% of points P

such that

Negl,=tt (P <m , Pe By

is called an elastic boundary layer of @b. S,
the width of the layer, is the distance of the
farthest point P from o for which the above in-
equality holds.
The "end problem" for cylinders, corresponds thus to
the determination of § .

The analysis to be presented could well be ex-
tended to the case of the hollow body, 1.e., when
a=al(z), ba=b(z) however, it would never
allow numerical computations due to the degree of com-
plexity of the integrals involved, let alone the de-

termination of the elgenvalues,
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A word of caution is also in order: éertain dis-
placement boundary conditions prescrited on ﬁﬁe énd
face (o may produce stress singularities at the cyl-‘
Indrical corner. Neither the exact linear elastic
analysis nor the approximate methods are capable of
adequately treating this problem, see for instance
zak [1964].

Very recently, FLUGGE and KELKAR [1968J, dis-
cussed a similar problem under different sets of boun-
dary conditions using Navier's equations. They studl-
ed the solutions for (a) Y=CQ in UM , =Y
on _[To,‘(b) Wu=9 in QU , u=9 on T, and
claim that by superposition any displacement boundary
value problem can be solved. This paper, however, has
reached the present author too late to be mastered and

properly evaluated; it 1s based on a method devised by

Professor Gordon E. Latta and as of yet unpublished.



CHAPTER II

e

LOVE'S STRESS FUNCTION AND REPRESENTATION

2.1 LOVE'S FUNCTION

If a particular rule enables us to find finite alge-
braic combinations of the derivatives of a set of ar-
bitrary functions, possibly supplemented by quantities
associated with the geometry of the space in question,
such that these combinations when substituted for the
stress tensor satisfy the equations of equllibrium or
motion ldentically in the arbitrary functions, the
rule is said to furnish a "solution in terms of stress
—functions“.

Consider an internally free three-dimensional
medium in equilibrium undergoing a constant and uni-
form velocity and with {=Q . The stress tensor sat-

isfies Cauchy's laws of local balance of linear momen-

tum and moment of momentum respectively, (1,J =1,2,3)
tij,j = O B tl’.j =t.|.':' (2-1)

In order that tlpj = O in a Euclidian space, applica-
tion of the classical theorem of the vector potentilal

shows it to be necessary and sufficient that

ti= b b = - Tinj (2.2)

L e . P3Ny L
Yy ij,K D L&l( A
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the condition (2.1)2 may now be written in the form

>

(@* - -&’JLK ))K_ = O (2-3)

LIK

and this is equivalent to the existence of a tensor Zf4

such that
d
‘@LIK - "@'J-(-_K = %Lj&m,m (2.4)
where
7)1&-,(% = - V—cl'mx. == vlji.&m (2.5)
Therefore
ya ‘chjK = ('V"kil'wx. + 'I):,%mi + %djkm))m (2.6)
so that (2.1) becomes
t—(." = fKéjm,me (2.7)

where

d .
Fuijrn & (Piggon ¥ M)
(2.8)

B = = B = = Pwiong = Eis

The elegant foregoing derivation, given by DORN
and SCHILD [1956] 3, shows that (2.7) furnishes the

3we are working with Cartesian coordinates Jjust for
simplicity's sake; in reality the above result is
valid in a flat space of any dimension.
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general solution of Cauchy's laws for equilibrium of

an internally free body. If we set >
d | .- - ’
so that '
%ﬂ'm = €ipr Ejqm Dpq, py= Hgp (2.10)

Then (2.7) becomes

Ly = Cipx &qm Dpg,wm (2.11)
which is the general solution of GWYTHER [1912] and
FINZI [193H]. If we write out (2.11) explicitly in
cylindrical polar coordinates, at the same time sup-

posing that all derivatives with respect to the azi-
'muth angle are zero, for the physical components titi>

of 'E we obtailn

T<ii> .-‘z't,,,,t = a*zz + %—L a-%:n. - %L a‘s,z_

teas=Top = aSan + &=z — 2 a5 nz

tezsy = Ty = &nn + %éfim - ",:L al,n (2.1?)
tas> = t_fnz = = (az""‘ * é‘i & - ;'I_L ai)/z

telzy = Cap = (a%a -—-‘,Z&L'A - a% . )’z_

- 4 | 54 | L4 6
t<25>=‘a-/llm-7t&)’l.+7{& +a,zn,+-2;‘:a6,l
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which were derived by BRDICKA [;95f]. Here we have
set at=s Uy , &%= Oy /., &%= oy ,

&%= Ty ln, 8= O, ,, , 3°= Vlu/n . Axilally sym-
metric stress distributions in which T,pn = O = tyu,
are often called "torsionless" (TIMPE [;948]). Since
only &% and &° appear in the expressions of these
stress components, the most general torsionless system
is obtained by setting a%*=0 = a&a® in (2.12).
In the general case, the s8ix potentials may be reduced
to three in a varlety of ways, and in the particular
torsionless case to only two. For instance when we

set, (TRUESDELL [1959))

L)"Lg ﬂz,r\_ +“E ar - —‘—ri- ai
(2.13)
M ) g C'X?:zz'*"‘_‘ ‘3-3)'1.“ 2;2‘9“;42- - L—,zz
the first four members of (2.12) become
Ean = L2z + M s Ty = (M) + Lizz
(2.14)
| —
t_zz = L_’,'_,,L‘-al--;-‘.L,,-L ; t-'tz = — L)Zh..

variants are given by BRDIéKAu, op. cit., PFor an

elastic material obeying the generalized Hooke's

uIn particular the Boussinesqg-Papkovich-Neuber system.
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constitutive laws, these potentials can be reduced to

one by letting

M = L %..

where

We then arrive at

)C,m;‘= Lo MY "’X;rm.],z_

]

Eyp = Lo 8% = & %al,z
't‘Z-Z = [(2"0') Ay - X)ZZ]IZ

t-l’lz = L(l-Q‘) A-)( —Y:zzj)m

(2.15)

(2.16)

(2.17)

the Beltrami-Michell stress compatibility equations in

eylindrical coordinates (BARREKETTE [1968]) impose on

Y (n,z) the following restriction

N XY =0

(2.18)
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i.e., that X be a biharmonic function., The function X
is Love's stress function for torslonless axially sym-
metric stress fields, having been introduced in the
second edition (1906) of Love [}927;pﬂal88] where its

completeness was also asserted®. The reduction (2.15)

1s not to be read off from any work known to the au-
thor.

Expressed in terms of Love's function, from inte-
gration of (1.6)3, the nonzero displacements have the

representations

i

EETR

I

Un
o (2.19)
1 ~) A _ 'J
24
The equations Tarv = O = Tpz are therefore

identities by using the above representation, likewise

UU_-'—"O

5F1rst fully satisfactory treatment, including forms
in general curvilinear coordinate systems, existence
and generalization to elastodynamics: NOLL [1957] .
Other references: WESTERGAARD [1952] , MARGUERRE [1955],
SNEDDON and BERRY [1958], YU [196% s FUNG [;965].
TRUESDELL [1959 glves an exaustive blbliography on
works dealing with stress functions that are very
valuable for research in this area.
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2.2 BIHARMONIC FUNCTIONS IN TERMS OF HARMONIC FUNCTIONS

The biharmonic equation (2.18) is classified as a non-
degenerated elliptic equation (MIKHLIN [1967; p. 124]).
Sometimes a complete solution of it can be expressed
as a comblnation of appropriate potential functions.
Let us assume that a biharmonic scalar function K R
consldered in a tri-dimensional domain can be repre-
sented in the form of a product of two scalar func-
tions ¥ and (). , which must be of class C*% in this

domain:

X = VY (L (2.20)

BLOKH [1958] in a not widely known paper has shown that

the most general expression for ly and L are
Y=a+boxrex | =0 (2.21)

where a and < are scalar constants, X 1is the posi-
tion vector of the poilnt under consideration, b 1is a
constant vector and @ 1s a harmonic function. This
result seems more explicit for applications than that
of Almansi (cf. e.g. EUBANKS and STERNBERG [1954] s
FUNG [1965; p. 207]) although less general.

Obviously a more expanded representation may be

obtained by adding such representations as (2.21) in

which the constants and the value of the harmonic func-

tion CI) are changed.



2.3

35

Designating such varlables, constants and func-
tions by the subscript K we introduce harmonic

scalar functions and a harmonic vector function

Hiz%akém 3 Hz_‘:z'&_CK@K ) '3’:{ :'—"%.bK@K (2,22)

the formal biharmonic function X may thus be written

as

X = Hy+%x -7 + x*H, (2.23)

A REPRESENTATION FOR LOVE'S FUNCTION IN THE REGION )

The genefal solution to equation (2.18) can always be
expressed in the form of a sum consisting of a 'parti-
cular! solution X, and a 'complementary! function TKL

which is biharmonic, i.e.,

X = Xo + X, (2.24)

A 'particular' solution which satisfies in 2, as de-
fined in (1.11), homogeneous boundary conditions for

equation (2.18) along N VT2 is readily found to be

as suggested by the work of LING and LEE [1954].

+ BElx) Kolxn) + Fl) xn K,xn) =iv az

Xi OOCCN) T xn) + D) et T, Cotrt) g (c.os «z.>c1°t
- { (2.25)
X5 o
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where TX,(xn),K,(«n) are modified Bessel functionsb

of order v=0,l; the expressions for the parameters

C, D, E, F and the restriction on o« are developed in’
the next chapter. We call attention to the fact that
X5 1s an odd function in z while X% 1s even in this
variable.

The integrals in (2.25) are supposed to be of
class C“(3.) and required to converge absolutely
and uniformly in the region > .

The 'complementary'! function X: is required for
the moment, only to satisfy (2.18) and is here chosen
as the following infinite series of biharmonic eigen-

-functions

Xy =2 CAnp) + Bie(p) B =] Eo(pnr) €FF (2.26)

7 - 2.
obtaining from (2.23) by putting Q.= %30(%<R)Q»P“
(cf. BIEZENO and GRAMMEL [1954; p. 160] , MOON and
SPENCER [1961; pp 12-17]), b, = By&s, anx = A, 3

where
8)‘ ((3\-:'1) 'S'-\ jv(g’ﬁr’-) + A V), (PK’I) . (2.27)

is a cylinder function of order ) whose singularity

6The notation used here for solutions of Bessel's equa-
tions is the one set forth by WATSON [1944] and adopt-
ed in ABRAMOWITZ and STEGUN [1965].
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is avolided intrinsically by the geometry of 'TYg .
It 1s expected that there will be some kind of decay

of the stress and displacement as we move away from llo
according to (1.1) and (1.7), a fact that is called the
"exponential condition", and this constifutes the justi-
fication of the exponential term in (2.26). The para-
meters ‘RK) ﬁg, are as yet undetermined; the summatilon
in (2.26) is taken over the integral values of k .,

The crucial question of whether or not this aggre-
gate of solutions is complete, remains open. It will
be seen that X, and'X1>are so0 closely mingled that they
do not admit a distinction, this being done here, sole-
ly for operational advantéges. Remarks on completeness
will then be left for the last chapter.

The original main problems (1.14) and (1.15) are
now reduced to the determination of the biharmonic
function X (n,z) which satisfies:

PM 1: (1) [0 AKX =X,anl,» =0
[U-o)aX = %2.] =

(2.28)
(11) [(2-0)AX -X,22],,=¢(n)

—X,n‘z ="]C(")

on Tl
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For this problem we willl choose the representation

(2.24) to be of the form

X - XE 4+ X, (2.29)

PM 2: (1) as in PM 1
(11) LO-6) AX = X,z=z],A= Q1)
on 1,
20-6)AX =X, 2z = N(R) (2.30)

and in this case we choose to represent X as

2

Y o= KE 4 Xy | (2.31)

We qote in passing that both problems are non
self-adjoint and as such neither the eigenvalues are
‘restricted to the real field (in fact, we show in
Appendix I that they are all complex) nor are the
elgenfunctions orthogonal. That the problems are
physlically well posed i1s obvious, and mathematically
this can be corollated from the discussion of SOBOLEV
[1963; pars. 14-15].

fg as given by (1.4) is uniquely charactérized
in each PM 1 and PM 2 except for an additive rigid
displacement field. To avold repetitious qualifica-
tions we agree to call a displacement field uniquely
determined if it 1s unique within the unessential in-
determinacy Just mentioned (again,this fact is also

elaborated in Appendix I).



CHAPTER III
THE MIXED-MIXED PROBLEMS

3‘.1 PM 1l: THE COEFFICIENTS C, D, E, F

We analyze first the mixed-mixed problem PM 1 as stated
1n (1.14) and (2.28). To this end we take i

X=X+ X, (3.1)

i
where Xo , Xy have been defined in (2.25) and (2.26).
" When the representation (3.1) is substituted into

(2.17)y we obtain:
) 3 -Pbr=
tnz'-‘Z.gL(P’K“)[AK*B,‘(PKZ- ZG_)JPK e +

+ G x + & —
SLCI(OUL) D20~ )Il( n) o To ()]
1

o

i@&)—qn.KJymﬂ}Nscosxzéq

(3.2)

E K, (xn) + F [20-0)K

while using (2.17)3 we have
tan = Z_{ go(()-‘k“) [-AL + BK( i+2¢ —(5“2') ] +

~pPxz
L g (pe) LAk + B (Lo pe e .

Pt
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o
S{.C [IQ(NQ)— ;%{ Il((’(’l)] "I'D[(I“ZG') IOQNTL) +um11(0<q)] +
(xn) + ;‘L—{ KL(MK)] - FLO~20) Ko(oux) — "U"LKL(DUL)]}
(3.3)

ELKo

QLS sin Xz Ao

If we are to satisfy the stress free boundary
conditions along N U[; , we start by letting Z%(FKR)
be zero at these boundaries. This implies then:

T () + A Y (ps) = O

(3.4)
T, (P b) + 2 Y (peb) = O

which 1s a homogeneous linear system in ->MK . For
a solution to exist we define:

[5K ‘.i roots of the equation
T, (x2) Y (BxB) =T (Beb) ¥ (Bx8) = O (3.5)

then readily

Ty (Pes) _ Ji(Pxb)
% (Pxa) Y, (B b)

>\|< = = (3¢6)
It is known that the equation in (3.5) admits an in-
finite number of roots all of which are real and
simple. Such equation plays a preponderant role con-

cerning the orthogonality of the cylinder functlon %;(PKR)
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in the finite interval [a,b) .
To complete the requirements Tp=0Q = Tan

along GUE we are left with:
C 1, +D [2(1-0) Ty(xp) + «f Tolx@Q)] —

E K_L(tx?)—\- Fl2W1-0) KL(‘X?)— u? KQ(N?)] =0

<

S{_C [ Totxp) —uig; Il(u?)] -f-DL(l“Zcr)'Io(u?) +Qz§>j[i (@(?)] +
) (3.7)
E[Ko(oc?) + ;1:— Kl(ex?)] - F{(L-20) Ko(u?)—— &?K\(o{?)]}

§
Buinuzde =7 (@) At Bulpez-L-2e)] p3 P

‘where from now on we use S):é\, b .

If we restrict our set of roots F)K to the
positive ones, equatilions (3.7)2 can be reversed by
applying the inverse Fouriler transform (see €.g.
SNEDDON [1951; p. 18], TRANTER [1956; p. 15]). We

obtain thus the system:
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I, (xa)

To(a) ~ = I (a)

I,(xb)

To(@b) - 2T (xb)

xaTo(ua) +T 1, (@) - K, (xs) ~[xe Ko(wa) ~ T K ()]

clolca) toa T 00) K (o) + & K(xa) = [T K (xa) ~xak, (xa)]

%3

abTglab)+7 T (xb) —K, (xb) —[ab K (ab) =T K, (atb)]

Tlo(eb)+abl, (xb) Kelab) +§LT> Ki(ab) =[ T Kot = b K, (b))

(3.8)

—di N

ch
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Where we have defined the following symbols:

8(g) = -2—4? @(@@il\g«ﬂp@ +

T
. (3.9)

2 ( «*f(‘ai )%

By L(T-1) («*+ 3 ) ~ 2x*]}

ne-

2(4-6) (3.10)

we define further,
Def. 4: The matrix of the coefficients in equation
(3.8) will be denoted by Viw T w) and we

call
det ¥(x) = O (3.11)

the "associate characteristic equation”,
Def. 5. We define a "transposition symbol" 3,=3,,
to be such that, if 3L(a\b) is a function of the

ordered pair <a,b)> then

% [(21b) = f(kla) (3.12)

For operational purposes we postulate the linearity
of dab . Also

sk (33p) = 1
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Solving (3.8) we obtain a suitable expression for

- L
the 'particular' solution X_, , namely:

Xi = %T— (.L-%‘ 55\5) brLZK_ (go ( &Ka) (bf

[ccmﬂwb)g%gﬂﬁ — D(xaluxb) T, (xn) +
° n

E(aslab) Selen)  Flaslab) Ky(xn)] (3.13)
& n
A cos xz de

a® (024 B2)% dett F ()

where

A=A+ (T-HBIP+ B — 2B, o (3.14)

For convenience, the expressions for the coefficients
C(xslxb), ete. have been listed in Appendix II.

In (3.13) the real part of the integrand is an
even function of ®« , so that the path of integration
can be deformed in a semi-circle of infinite radius
on the upper semi-plane togethér with the real axis.
This being done, we may use the residue theorem to
evaluate the integral. The followling isolated sin-

gularities exist:
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(a) pole of order two at the origin: the residue at
this singularity does not contribute to the solu-
tion since we are assuming self-equilibrated
loads (see the discussion in Appendix I; cf. also
BUCHWALD [1964] and CHILDS [1966]).

(b) poles of order two at «=*L >« : the sum of re-
sidues at these poles add up to -"X,; and cancel
out the series part of the solution in (3.1), (ecf.
KOITER and ALBLAS [1954], JOHNSON and LITTLE
[1965], CHILDS [1966]). This fact shows that in
reality, our representations X, and X are so
closely mingied together that they do not admit
distinction and have only been used so as to faci-
litate operational expansions.

(¢) =zeros of order one at the roots aj-of the char-
acteristic equation (3.11): the complete solu-
tion depends essentially on these roots. From
now on the symbol o will stand for the roots of
(3.11) with O<aro;< T , they will be called
the eigenvalues of the problem as explained in
Appendix I.

Love's function thus reduces in this case to the

double series representation:



L6

dj z

X = (Lrase) 22 'L(f“ ?"Z(F’“a) i [La Neplsgp)) @ .
J (M-‘+F>K)_ (Z/ZJ (3.15)

where
d dl o™
CZKj— < evaluated at ]
d ,
o) L
{

Dixgalegh) Tlejn) + B (xalqh) Holxind _ Flajalag ) K ()
_ Q(in.
(3.16)

7

< o o debt Y «;)
3_—}%&0[ J]

3

3.2 PM 1, THE COEFFICIENTS Ak, Bk

At the plane end No ,2=0  and condition (2.28)(11)
yield respectively using (3.1); the integral part be-
ing zero there:
3
pa go ((&N R)LAK’*'(C'L) Be]) {5\< = e
K
. (3.17)
7 G () LA - Bl e ==f
LS

which are coupled Dini's series for the determination
of fg, B . Since B, (83)=0 = €, (pcb)
Lommel's formula yields (WATSON [194&; p. 134]):



b
S €, (pxn) B, (pet) ndn = Skt Ni v=0,1

b
NK “'—%Nf bﬂ° (F"‘n)

a

Using this property we determine

b
Le(m) <€L<pkn) ndn

A =E>\«"‘
) pZ N

)
Sbg ) ‘@o(@m ndn +($.< L}(m) (g,_([Sx’k) ndn

BK:: - FE NK

In (3.15) we define

x| : go( "\a)
< (3) g L Z_ UL J fDK 2 1(3
! < koej" + [P )

and substituting (3.19)

k7

(3.18)

(3.19)

(3.20)

T

_L%b £n) I:Zoaizz_ Pr €o(pra) gl(f’*‘l) J ndn

(o(jz + %) Ne

2 e(n) [tz- go(@Ka) go(ﬁk’l) —-2,04?' Z_ éo(PKa) go(f-&\(’l)] FLA"(
k- (°<j1+(5f{) Nk } < (Nl;_*_(;:‘:)l N
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' The kernels of these integrals can be simplified by
determining the convergence value of the series in—
volved in (3.21); this is shown in Appendix III.

‘The final solution to PM 1 has thus the form

b Tl (xjalxb)

X = (b=2,) cicaye i
J U (3.22)
where
b _
c. (a) = {_g_eff) ['C' Foolajn) + R Ly (x5n)
i a © xja ?fm_(ecja) a :{bt(qja)
b %bo(b{ib) zao(dj’l) _ ’Ebo(“ja)?t,bo (0(1 ﬂ.)] n A"L
a Zay(¢h) Zpy (%3) Z S
b
Pl g £(n) [n Lol b Zue(yb) Zay(xin)
| . < a zbl(qje) a ial(dsb)%b‘_(mja)
Zpo (¢j3) Zyy (1) ] ndn (3.23)
%é‘_ (°(j'a)
and
y. L (%)
L., ()= T,(xn) + L) Y )
Qv i v Ky (=8
(3.24)
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Using (2.17) and (2.19), S =<%uL> 1s fully de-

termined in the 'stick' contact problem on iy .

3.3 THE SECOND MIXED-MIXED PROBLEM: PM 2

To analyze PM 2 as stated in (1.15) and (2.30) we use

X = X% +X, (3.25)
and develop along parallel lines to PM 1. Here the
~ boundary conditions (2}30)(11) involve second order
derivatives with respect to =z so that at s the in-
tegral part of the solution is zero. The boundary
values %(«) and h(m) can thus be expressed in terms
of Dini series,

The flnal result is then found to be of the form

b e T (xjaleb) d.(a) etw‘iz
)

U,

X = (1-2s0) 2 (3.26)
|

where
b

dj<a)=3 %"”[ n Foolyn) ( <

s C a 3{5;(“36) N sz("(j")

b ¥uoleyb)Zaslyn) J ndn +

Freolxja) ) ZbL(Wj’l) — \
2 Zyy () Z,, (%3)

Zy (o)
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T
x| Zor Lo(ia)

2
>

b
+ X h(m)[j i By (an)
a

T ca Fyy (ye)

(3.27)

) ‘é_”—’ioto{jé’) ) 2 zbo (ozjn) _—
Zbl (o(la)

=i b Zoo (57) Faclgn) } ndn
a ¥, (ij) :{bg_ (Dfia)

all symbols involved in (3.26) and (3.27) having the
same significance as in PM 1. We find S =<y,t >
for the rigid contact problem by using as before (2.17)
and (2.19).

3.4 A PARTIAL SUMMARY

To shorten forthcoming expressions, we define the fol-

lowing symbols
P 21/ a &, (ya)

Qe Fuoleyd) /ZE (%2)
‘ | (3.28)
Rjs T €/ «a Fuilxje)

Sis =N Ebo(qu)/ a Z,,(xjb) zbt("ﬁa)



~ and

Qia" Ria.
 Pa

0(3& pja

-2i(Qe-ER) %nFa

“ized as:

PM 1:

X = (1“ 3ab)ZX

Cj(a) = ? 5

Love's function 1s of the form

b

L

Z, °€,‘n)

% bL (0(‘1"()

%QQ(O(_('L)

Lay ()

The results obtained so far may then be summar-

b m<°<ja|°(jb) c: (3) eLNiZ
!

[ e(n) emj + f(ﬂ)aml‘] rdn

51

(3.29)

(3.30)
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PM 2: Love's function is

b M(qialw:‘b) Sj(a) e:’.o(')z

U

X = U—'—Bab)z_—
! i

(3.31)
b
CJJ(G) = —%‘ a[%.("l) a?’lf;_i -+ H(n)am.sl ndn

in both solutions, qj are the elgenvalues computed

from (3.11) which have positive imaginary part.



CHAPTER IV
THE GENERAL APPROACH

4,1 NOTATIONAL AGREEMENTS

It is convenient to express all the results obtalned
so far in terms of the Bessel functions J, and 7Y, .
To achieve this, the complex parameters uj will be re-
placed by an equivalent one denoted by -CXS , l.e.,
we rotate the domain of the eigenvalues by —(7v/2)
We symbolize by
H;&L)S-‘ jy“'iyu'

" . (4.1)
H, £ T, -¢ Y, 4

the Hankel functions of order 3 . For convenience

in writing the complex mathematical expressions, we

define:
Iég = yie Jelgip) + = T l§i§) (4.2)
A 2, _ ]2( ‘
me 2 3 (&\Q)"‘ (i X;€t> L &l?) (4.3)
A d 2L [ =z T
= T hx% I"(&\"“)‘(i‘ zg)iﬁ%a)} (4.4)
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2 i H (9) + = HE (b _(4.5)

P =

G¢ = LHGQT + (2~ 3—9 >U\ “qi® (u.6)
s d 21 (Ta L&,

LS e (- )H(&}(Mﬂ
S S TR + (L - X;?L) TL(zgif)Hf)(K\-g)(u,s)

We also recall the Wronskian result

HOGE) HGe) - HEOGe) H Gy = At/mye (n.9)
With thesé notations, we then have

W (valxgh) = = (m2/a) m ({alfib) (4.10)

C (aleghb) T (nva) i o alb)

D (wjalejl) & - (m/a) L d;(alb)

E («jaleb) & (W/2) 2/ lalb) (4.11)

{
Flaalayl)d - (n/2) [ (alb)
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where

M ({is i) 2 < (alb) T (g™ /gpn) + (1) T, (i)

(4.12)
4_63(3‘5)}1é”(§{q)/txfm)-+ %g(alb)lﬂfn(éim)

and
A
A o A A
Csce\b) = Da C{'b ——‘7&‘ S, + T

A &, 2 a (2)
htot) = T b - M) S, + A A M)
«

e (alb) = ba v%b —@asb —n (4.13)

L3

[ll:: :Hu)("\—j(' S —~2——— 2 > Y
_h s )\ L Kla)mb N Kla) Sy = XS’; T (g3

Likewise

I

Lt cl

= L ) z d A
= _It. _x_j_ d (4.14)
5 T [ 4]
d A
="—T—;}i ’UZJ
and here we have
det A = -——alo{m&qrb+w\b<a(&~2-:esb
4.1
L L (4.15)

A atil® 27T
NETE A
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the use of

A >

2 ,
deb 4 8 I‘: 4 (4.16).
will avoid numerical multipliers in subsequent formulae.

The eligenralues are now the roots of

,J = O (4.17)

which are tabulated on Appendix IV, It 1is interesting
to remark that the corresponding eigenvalues on the
case of the so0lid circular cylinder, are simply the

roots of
‘ w, = O (4.18)

In obtaining the above formulae, we made use of
the transformation laws:
W
T, () = (W) T, ()

li~v) €2) '(4.19)
K, (&) = = (1/2) () H,T )

we also need the following one

=)

Zo() = GO B, () /HI(ip) (4.20)
where

Boo (it = TG Yo (i) = Y (i) Te Qi) (8.21)

and in all these expressions y=0,L ., Function (4.21)

satisfies the boundary conditions %2?1( 6\?) =0
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identically for g:a,b , and Q O(X‘-?)= - Z/WXS?
Recalling the definitions introduced in Para. 3.4,

we put
pie
Fis

e

d

—

L/a 8 (2 = P/ H7s)

‘@bo(g{ga)/ﬂéi(&a) =1 Qs / F\T(éi‘:)

2 T/Kj& gu(x;‘a) = 1 Rga/ \'ltq_z)(X'sIO)

(4.22)

b €. (giv) /a Ba Qi) Gy (yi2)

L s\\a/ H

2)

L (i

)

For convenlence 1t is also advisable to define

a‘li:{j =
a) "th'a
(C‘—l‘a*q)a)
-4 %ia
"j2) it bia

-

LY
< O

azyi (4.23)

‘gao(&“)—h
Byt (i)

(4.24)
lgao(xift)

gs 1 (&\ n)
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4,2 THE MIXED-MIXED PROBLEMS PM1 AND PM2

In terms of the notations put forward in the preceeding
paragraph, we may recollect the results of Chapter III
in the forms:
PM1:
A
b (yialyib) cita -¥i%
Y = (1=3p) 7 B MNRIYB) ) -

UL

(4.25)

>
N[r~

b
S [e(’l) "\“ g-("l.) a 5‘\] n Ar\_

a

Y = \(lhaab)z_ on /Wl(pe\ Yik) dila) &_xl-z
| (4.26)
b

di(a) = :‘7-? \a{%cn) a“fz; + hin) W

1nda
A )

4.3 THE GENERAL SOLUTION

A general representation of Love's function for cir-
cular hollow semi-inifinite cylindrical regions can
now be constructed based on solutions (4.25) and
(4.26). To this end we take:

_tiz

e

Yo en) = B MQielib) S )

i 'S
?}LJ - (4.27)
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é\i(e)d

i
0
(Y
z
+
-
b
r\
D

b
- %_\Laugﬂq"¥§“)§%g (4.28)
a

*a('\) &’U“rz‘ -+ \_\(r\) &w‘lil fLArL

Using (4.27) in the evaluation of formulae (2.17) and

(2.19) we obtain:

o= O-2a0) > 2xl)allic o8 (4.29)
= 1%
N EN O —p<z
U = E-’ﬁk_h(\-agb)zé_ o © (4.30)
dula) 3 Max Yz
UZ - &L—— (‘_335)2 Sy La‘)‘ a}t_AK e:—‘(mz (4.32)
2m. = (%8
The values E;Z, Un Cas , Yz of these compon-

ents at the plane boundary M1, are derived from the
above by putting =<0,
For shortness we have defined for use in the

above expressions:



_KKECK - (2+7) < ] e Ay Yo Lo =(247) [-K) 'gérz -%v\ ) P 1,(3,(&)—(
-1 d Y Lon -z ] | "'Xi n b felew-Thed i Tu(perd
AT Ik b o e o r %K _e. Hf’(gd) (4.33)
~lew -2z, ] —Yetd - lee-274k] =y fu | H Q) J

where c), dy, ey, ) are defined like in (4.13).

09
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4.4 SOLUTION OF SPECIFIC BOUNDARY CONDITIONS

We return to equation (4.28) which can be expressed as

[
A 1 - —
2(9) = = ga[ Eow gufii + 21 Uy ?MBI] ndn

(4.34)
+__%5 g L Ero o, +2 M Us €¢Qq:]rLéq_
[A

i.e., the coefficients involved on the general repre-
sentation are expressed as an integral equation in the
non-zero components of the stress tensor and displace-
ment vector at the plane boundary Tl . However, only
a pair of~these four components may be chosen to be
arbitrary self-equilibrating stresses or displacements.
The form (4.34) is appropriate to discuss the
particular problems PM1 and PM2. In the first problem
we denote the first integral in (4.34), the one con-
taining the specified boundary conditions, by f%?i s
while the same symbol will represent the second inte-
gral when discussing PM2. We also define the hybrid

integrals, (¢, = a,b):

b
PP L .
4 . )
S 2 o | L e e g7 nan (4.35)

3
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b

<?|,€1> i
, S : uf, . .
i< Z?;"L,K &i—-ﬁ 1 ?;}LLK"‘ Qiujsl gﬁsx]md”— (4.36)

The determination of 33(?) is thus reduced in each
case to solving a doubly infinite set of linear equa-
tions, namely

PM1

. A <§.a> ~ Yo
§p= i+ @I - Z Ay T (h37)

vy LS

PM2

<pio>

) . , <P 2> - b
R e A N i

(4.38)

where as always ?:: a,b.

In analogy with the solid cylinder solution dis-
cussed by CHILDS [1966], the « and ¢ elgenfunctions
are expected to constitute a bilorthogonal countably

infinite system such that

<P P> < .)fz>
T - B (4.39)

in which case, proving the qompleteness of the repre-

sentation for the mixed-mixed class of problems is

automatic.
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In PT (the traction problem) we are expected

to solve
<?|a>

- A <p.b>
él(e) = ggl “\‘41_: =18 (é\) dijk - ZK_. ev&.(b) 6@55 (4.40)

with
L

<?I)?L>d i_
. = Y .
03“‘. T M gjﬂuﬁ f e gt ?ﬁ‘“‘]mém(u.ul)

and féZj containing the prescribed boundary values.
However, in this case no similar biorthogonality i1s
expecﬁed:

The labor involved in verifying (4.39) is not
trivial, the large number of integrals required and
terms involved indicate that numerical evaluation 1is
the only feasible method of verification.

The infinite systems (4.37), (4.38) and (4.40)
should be soluble'by truncation to obtain values of

é%(?) to any desired degree of accuracy as shown
in the similar problem discussed by LITTLE and CHILDS
[1967] .

The less important mixed problem PM3 leads to a

system of equations of the same form as (4.40). From

another point of view this problem 1s discussed in
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Appendix I (Para. A I.2).

To have only real values for the stress tensor
and displacément vector, we have to proceed as in
equation (A I.6) using the complex conjugates of the
eigenvalues. It 1s useful to record here, in closed
form, the integrals which appear in the evaluation of

33(9) . Some of these, for Bessel functions of
order zero were given by PEAVY [1967]; however, by his
method one 1s required to compute Struve functions of
first kind, and use complicated polynomial expression.

Let %%v(&ﬂ) be the cylindrical function de-
fined in\(4.21) then:

Tog = &: G (gin) In

= 0T " G, = nL) T |
i (4.42)

: n-L
Y= [(—\)h'fl.] /2_,. N L= [(‘\) +_L] /2_

With n:: 1,2’3 L L]
If é@&(ékm) is any of the Bessel or Hankel

functions of order »Y= 0,1, we have:
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' b
, Iv?é_- n gfv(zfg't) a@& (5Krc) dn

; (4.43)
=:6§f1;z L Bpon Dy = g™ o D]
"" K

l; .
1 s g n* 'g?a,p) (K\'\) ‘@y (KK’\)C-L’L

)‘? -
N (1-»)

b
{(—-i) {_[Xl z@gy@ + XK’L (@fu ») "@(\ »)]
)

(4.44)
ooy Lo, )

and

b |
. - Lﬁ gs»(b/i”-) Y, (per) S

X b
— ( ‘{’) {[X f(l—») “@y - XKR gyu 9(l—»)-L‘

b - (4.45)
-21 XX -‘—I—y? — I= lu—»)?]k
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which were derived by suitable integrations by parts.
of course, the formulae still apply when %g§9 is
any Bessel or Hankel function of order v= 0,1 and not

just the one given in (4.21).

Formula (4.42) is used on the evaluation of fé;j
while the remaining ones appear in (4.35,36,41).



CHAPTER V
CONCLUDING REMARKS

5.1 SUMMARY

The problem of a semi-infinite circular hollow cylinder
was considered, where the loading (assumed self-equili-
bfated) is applied at the finite end. The method uses
Love's stress function with a suitable representation
in the form of a Fourler-Bessel series and a coupled
Fourier integral. We arrive at the general solution
by a linear superposition of the solutions to two par-
ticular mixed-mixed problems. Eigenvalues and eigen-
,functions>are then obtained and the problem 1is formal-
1y reduced to the solution of a doubly infinite linear
system of algebralic equations which can probably be
solved by truncatlon. The elgenvalues are tabulated
for certain values of the inner radlus and Polsson's
ratio in the case of a normalized outer radius. The
labor involved in actually obtaining the stresses and
displacements indicates that the problem can only be
solved numerlcally, all the necessary tools for this
being given 1n the text.

For the mixed-mixed proﬁlems at the plane end, a

biorthogonality 1s expected which should considerably
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simplify the computations. However, this will not be

the case in the displacement and traction problems.

CONCLUSIONS

The method employed can be extended to the case of an
axisymmetric hollow body, albeit the solution will re-
quire a tremendous numerical effort.

For the axlsymmetric case it 1is shown that no
real or purely imaginary non-zero eligenvalues i
exlist, and that if self-equilibrated loading 1s as-
sumed that the solution is unique.

Write = Rely{l + < Imlyj] and let w

denote the least value of q%e[&] In the sequence of

eigenvalues for a given section. Then w?* A( Ti, ),

where A( T, ) is the surface area of the end section,
depends only on the shape of the sectlon. For arbi-
trary sections @™ A( T, ) forms a positive sequence.
If Tl, is a circular annulus with fixed outer radius
b, @w?*A( Ty ) is maximum for the solid cylinder and
goes to zero steadily with g_io-g, However, |wl| has
a minimum in the open interval (0.4, 0.5) for b = 1.
Now suppose A( Tlo ) is fixed, it would be inter-
esting to have an answer to the question: 1is the se-
quence «w*A( Tl, ) bounded from below, and, if so, is

the lower bound the one given by the so0lid cylinder
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or is there a hollow one with critical radii a¥*, Db¥
with such attribute? |

The last question has a definite importance from
a practical viewpoint because lw| presents the rate
at which end effects decay as we pass along the cylin-
der (! is inversely proportional to <.(8 ) in equa-
tion (1.1) ). The greater lwl| , the more rapid the
decay. In engineering we are concerned with the end
effects, because the Saint-Venant relaxed solutilons
(which have been proved to furnish an absolute minimum
of the total strain energy by STERNBERG and KNOWLES
[1966], except in the flexure case) give no information
about them. The assignment of such lower bound might
be more useful than the description of a complicated
process for the evaluation of the elgenvalues.

Also, we conjecture that the energy characteriza-
tion of the exact solution would coincide with the oﬁe

for the relaxed solution.
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APPENDIX I
SOME ASPECTS OF SAINT-VENANT PROBLEMS

FORMULATION AND REDUCTION TO AN EIGENVALUE PROBLEM

Consider a semi-infinite c¢ylindrical body of homoge-
neous isotropic elastic material. The cross section
1‘; is arbitrary; 1t may be simply or multiply con-
nected; the lateral bounding surface belng denoted by
I and the plane end section by e . For conveni-
ence we deal with rectangular Cartesian coordinates
and Cartesian tensors; the axis X3 will be taken par-
allel to the generators of the cylinder. Latin suf-
fixes have the range 1, 2, 3 while Greek ones are re-

stricted to the values 1, 2.

Fig, A I.l1. Notations
Two formulations of the problem of SAINT-VENANT
can be set out, one iIn terms of displacements, the
other in terms of stresses. Accordingly, we have,

SYNGE [1945] :
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I. Stress formulation
(1) daifferential equations
ti'j)j = O .
(L+ o) Asttj +t<\<):_3 = O

respectively the equilibrium and Beltrami- -
Michell compatibility equations. Here
A, = 3/ox. 3%« 1is the 3-d Laplace opera-
tor.
(i1i) boundary conditions
Tepnp= O , Lspnp=0 on [’
R O =’=T; téq,:z:f;. on 1T,

)
n being the unit normal to T’ .
II. Displacement formulation
(1) differential equations

(L-20) DV + Uit = O

which are the Navier equations,.

(i1) boundary conditions
I(Ur»,a*’ Us,(s) hp =0 on
26 Uy e Nee + (L- 2) (Up,a uq,ﬁ)npr_ O

o Uk, + (L=20) Uy = (1+0)(1-20) T5
’ on g

Us, o + Ya,s = 2 (1+) Ta
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The first formulation has the advantage of having sim-
ple boundary conditions while the second has simpler
equations., It 1is natural from the geometry of the
problem to introduce what is called the "exponential
condition" (transitory free mode in DOUGALL [}912,

1914] terminology). We then assume that
ti_l‘

and since stress determines displacements to within

KX
= €% U lx,x2) (A I.1)

a rigid body displacement, we may write the corres-

ponding displacement in the form
) U; = e~ s GZ[;_(X“’Q\) (A 1.2)

The displacement formulatlion contains simpler
partial differential equations, and by substituting
(A I.2) into II(1) we obtain after algebraic manipu-

lations:
(A, +K?) ?Za;="f7jx
(a 1.3)
(A2+ Kz) V: O
where O,= /3%« Y (xy,%3) is an auxili-
ary function defined by
"1/ g__ i (K us'i‘ uq)q) (A I.}-l-)

L-2¢
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and to derive (A I.3)2 we took advantage of the
fact that the components of the displacement field
in Cartesian coordilnates are biharmonic functions in
.the absence of body forces.

The lateral boundary conditions II(ii) take the

form

20 Vncx + (Cu'f")‘xﬂ‘u“)(s) n(b = O
on I,

(L-20) Zp npt & Upnp = Uppyy=0 (4 1.5)

We have thus a complex elgenvalue problem to solve,
the system is consistent only for certain values of
K . ‘There is no objection to complex eigenvalues,
generating complex solutions for 77) ZZOL and the
corresponding stresses, for in such cases to have

real values for't and Y we should take

(A 1.6)

where superposed bars denote conjugates. If w 1is
an elgenvalue of the problem so also are - , and
K . In fact the eigenvalues occur in sets of
two 1f they are real or purely imaginary and in sets
of four if complex. That no purely imaginary eigen-

values should exist has been shown by DOUGALL [1912],
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his argument is so concise and elegant that we may
well transcribe it: a purely Imaginary K.iﬁplies a
periodic distribution of displacement and stress;
consider the energy_stored in a length of the cylin-
der equal to this period; it is equal to the work
done by the terminal stress in passing from the nat-‘
ural state to the stralned configuration, but, from
the periodicity, this 1s zero. Hence, the energy of
a strained state is zero, and for -l << i/2

this is contrary to a baslc postulate in linear elas-

ticity.

MIXED PROBLEM PM 3

Consider a hollow cylinder with the geometry of
Fig. 1.1 and let us investigate the mixed problem
PM 3 of Par. 1.3, namely

(1) Traction problem on Ty Uy

Tlon = 2

nur, ~

(11) Displacement problem on |lo

We note that as formulated the degree of indetermi-
nacy of the problem does not lie within a class of
rigid body displacements, and this will be shown in

Par. A'I.3.
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Navier's equations in c¢ylindrical coordinates
in the axisymmetric case read (MARGUERRE [}955;
p. 248]) after trivial manipulations

7: [i (mu,k)]+(z: i)auft+3”z - O

D z2 on oz
(A I.7)
-3
{1 2 rl 2 tiL_a_ DUz vz _ O
?'52[7{ an ("(U,L)]-x- r 3 (r( an.)+ B3 =z?

Using the fact that the dilatation

) du
= = L \nv 2 XM=
Ii " &Lk n)+ 3z

is a harmonic function, Y. can be eliminated from

equatidns (A I.7) and we arrive at

[A—~] Un = (A 1.8)

Let us assume a solution in the form (& I.2),

for this purpose we take

Um::qF“z R (n) (A 1.9)

and (A I.8) becomes

[%oélrz(qsl_)-}{z_oczlzqé - O (A I.10)

We remark that (A I.9) and (A I.10) are equivalent

to invoke separation of variables, namely,
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Un_z R("L) :Z(Z)

= (A 1.11)

where (A I.11)3 is just (A I.10) written in a more
convenient fashion. We recall that here L« plays
the role of Kk 1in the previous paragraph.

(A I.11)3 has for solution, YIH [1956]:

Rin) = A T, en) + Boaerd T (oen) + CK, (xn)+ D aen Ko (xn)
- (A 1.12)

which substituted into (A I.9) gives U.(n,z) .
Going back to equation (A I.7)1 is an easy matter to
solve for U,(n,z) , then equation (A I.7)2 gives
the conditions on the undetermined functions obtain-
ed in the firét integration, the final result is
then
Uy =1 &% { AToeer) +B [ 27 Tolxa) + an T, ()]
(A 1.13)
— C Kofon) + D27 Kolan) — «n K (xn)]}
We now try to satisfy the stress free con-

dition on rl‘)ri ; for this purpose we compute
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2 - T x4 (2-7 [——- + —=
2 T a(T-l) ! an NZT+ o ]}%

Iy (xn) 1+

— weF {A[Taton) = ——

Bl(c-1)Toxr)+ xn T(en)] = CL Kelxn)t+ (A I,14)

KL(OUL)] + D[T-1) Kolxn) — xn \'\/L(OUL)]}

o

and
LN aUz QU
-_— t = - ——— zr
2 = 2 Q on az)
= Lo QWZ{_A T, (xn) +Blan I (xn)+

(A 1.15)
T IL(e;n)] + C Ky(xn) —+ D[ «n Kg(xn) —

z Ky xn)]}

These stresses are required to vanish for all = at
n=a,b |, We have thus a homogeneous system of

linear equations in A, B, C, D; the condition for

the exlistence of a nontrivial solution requires that

the determinant of the coefficients vanish., This 1is

then the characteristic equation which gives the

- eigenvalues i« . Expliecitly written, the above men-

tioned determinant coincides with the determinant of

the coefficients' matrix in (3.8), i.e., the eigen-
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values satisfy

— x?* det Flv) = O (A 1.16)

We note thus, that the problems discussed in Chap.
III and the one being discussed have, as expected,
the same spectrum.

Problem PM 3 could be discussed further along
the lines of the previous paragraph. For instance
the homogeneity of the system implies that not all
constants are independent, consequently the dis-
placements can be expressed in the form (A I.6) with
only two essential constants, the others belng the
corresponding complex conjugates. These constants
would have, of course, to be determined by the bound-
ary condltions along TTO, but these would have to be
expanded in terms of eigenfunctions. However, due
to the nature of the problem these will be nonortho-
gonal and such representation will be difficult to
obtain. The E. Schmidt's orthogonalization process
(see e.g., SCHMEIDLER [1965; p. 1&]) could be used
to advantage, however the labor involved is consi-

derable and satisfactory results are not warranted.
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A I.3 THE ZERO EIGENVALUE

Let ®=0 in (A I.11) the system to be soived is
thus .
Uy = (R_o(m) Z, (=)

FZ, . O (a 1.17')

d4 2 4 3 d? 2 d 3 -
R

dnd i dn* n?
the solution to (A 1.17)2 is trivial

Z (=) = a.z +bg (A 1.18)

To solve (A I.17)3 we note that it is a homogeneous
linear differential equation which can be trans-
formed in one with constant coefficients by intro-
ducing a new variable t such that Yt =W ,
which is easily solvable. Return to the current

variables gives

R (1) = cor®+don + ecr I+ o ot (A I.19)
Substituting (A 1.17)1 as given in terms of
(A 1.18) and (A I.19) into (A 1.7)l and solving for

Uz , we obtain

- T (ao %1-4— bcz) (é\ Con? 4= ZQOQ/V\"L +%o) +
(A 1.20)
o _

Uz:
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where &, through \10 are integration constants (we
may remark that we are not interested in checking
the compatibility of these solutions, the discussion
is not affected by this). In order that these dis-
placements do not increase beyond bounds with = we

must choose; co=€o=%o=0 and a.,=9O . Then:

Up = \<<>rL+9o nd

U, = No

Z

(A 1I.21)

that 1is, U 1is composed of a uniform expansion, as-
sociated with a uniformly distributed body force over
the cylinder, and an "eversion" which has no meaning
for thé»case of solid cylinders. The axial dis~-
placement 1s a rigid body translation in the direc-
tion of =z . To remove such solutions we may elther
redefine the stresses and displacements or, regard
the prescribed distributions of the displacements
(or stresses) as arising from a self-equllibrated
traction system at the plane end.

Since the last assumption was made in our de-~
rivations, this Justifies the noninclusion of the

contribution of the zero eigenvalue.

THE NON-EXISTENCE OF REAL EIGENVALUES

Using o= Ly » the determination of the eigenvalues

1s equivalent to finding the roots of the equation
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A A A A A A L{ i 2 \bZ 2T __O
Vﬂaqb+vana_.Zsasb-k——l-—j;z[d+ i
T (20) 87 (a 1.22)

where

g T+ (L - 52) Q)

&, £ LHDGelF (L - )[}4?’5? (A 1.23)

% & Tp) \-\Z”(WH (L- f?) L) HEGp)

The corresponding equation for the solid cylinder
is simply
M, = O (A I.24)

as given e.g. by CHILDS [1966].

We show first that (A I.24) has no real solu-
tions, and since DOUGALL (cf. A I.1l) has shown that
no purely imaginary eigenvalue exists, we conclude
that only complex roots with non-zero real and
imaginary parts have to be found.

Suppose f is a real number, from WATSON
[1944; p. 147] we have

. 2({w+¥)
2 e -1 + | (8
ygp= g ezl U5)

~ (A 1.25)
k=0 ! (k+2y)! [x+»l]
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Using this result for v=0,1l and suitable re-
defining the dummy index we obtain after trivial

manipulations:

K24 (3-T)k+{(2-T/2)
f ;z:[- (x+2) (k+1)

2=
] (__[)K (b,_g.) (2) !
(x+1D ! (K'.)s (A 1.26)

Provided <T=<4,(o>-1) the square bracketed
quantlity is a positive one for any K ., Since the
series is absolutely convergent we may rearrange

its terms, grouping then the first term with the
second, the third with the fourth and so on, we
discover that each of these combinations is non-
negative, Thus if X 1s real ﬁh? is a sum of non-
zZero positivé terms.

In the case of the hollow cylinder, i.e., equa-
tion (AI.22) the same can be proved with a little
more labor with the help of the expansions for the
products J, Y, as given‘in WATSON [}944; p.lSCﬂ.

We may also remark that equation (AI.22) can be re-

written as:

A q L 2 kf..gii]-C)
M Ub+w% “Ztétb - L e 2 4=

3 T (e 8 (a 1.27)
and an order of magnitudé analysis shows that for
real 'X the 1.h.s. of equation (AI.27) is positive

definite; where we have defined

-E? = YEige) + (4~ §§§;) Y (ye) (A I1.28)
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A II.1 THE COEFFICIENTS C(wxale« b ) ETC IN (3.13)

We define

Loddel F(@)] C & - (L42p) L b Claslab) $Ba)]
(A 11.1)

identical expression belng valid for D, E and F.

Next we recall the Wronskian result (WATSON [1944;

p. 79])
1o (q?) - KOLQ?)
L
W {Koleg), To ()} = e =% (A 11.2)
‘ T gy K ()
and also define
Q‘,:i—‘ Q? j—o(&?) + T 11 (W?)
meS TZwp) — (4 +-&'€§1)If<'«9>
(A II.3)

F@g xp Kolxp) = 7 Wy (ep)
q?g K2 («9) - (1_+;§§L)BQ(«9)

i

sp £ Tolug) Koleg) + (4 + ;%z) Lo lxp) Ky lg)
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We have then the following expressions for

c(xa b ) ete:

Clualab) = Ryay - basy — .Eb.i [ o Ko (xa) +
0(2
Ke(oa)] — Ki(xa)

Dixalab) = I (xa) Gp + Ky (xa) S ~°% Ko lxa)

E(salwb) = pamy, —Pq 5, + of*gz]—_“a Lo (oa) +

Iy we)] + I, (xa)

F(xalab) = K;(x3)M,+ I(xa) s, ~ fﬁ* 1o (ea)

(A 11.4)

The linear terms in the modified Bessel functions

appearing 1in these expressions are due to theorem
(A 11.2).



APPENDIX III

THE SERJES EXPANSIONS IN PM 1 AND PM 2

A III.1 A MODIFIED LOMMEL FORMULA

Let
¢, (pn) = J, (Ben) + Aw yy<{5<") (A ITI.1)
and
Z, (%) = 1»(“5“)*"£j‘<v () (A III.2)

then lgy(ﬁx’l) and zy(wiﬂ) satisfy
2 G wn G, +(pEnr-v) 6, =0 (A IIL3)

R ZN e &= (o] nE =) Z,=0 (A IILA4)

We multiply these equations by £,/ and

gu/fk respectively and subtract; then

RTBLE -6, L] +[8 %, -8 % 1+

(A 111.5)
(x{+pa) 8,.&, = O

where ' d/dn | Integrating,

() 2, ) dn < *;‘er [l 8%~ 42
VP (A III.6)

which we call a 'modifiéd Lommel formula' and 1s

not to be found in books known to the author.
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Integration by parts in two different fashions

yields,'the useful formulae:

b
g n* ‘él(@xn)?éo(win)c!n = - 75: Zo(x, i) ¢, (5\<'l)

x

gn@ (brr) Eo () d + _4_\ w2 B, (pen) Zy (4p)dn
s 3 (A I1II.7)

and

“I s

b
("0 € Zcgin - 2 [ €, ()

(A 111.8)

where pk are such that

€ (pea) = O = €, (peb) (A III.9)

The latter equations allow to solve integrals with

weight function n?* .

SUMMATION OF SERIES APPEARING IN PM 1 AND PM 2

Orthogonality: Let %L(PK“) be a cylinder func-
tion; these functions are orthogonal on the inter-

val [a,b] with respect to the weighting function r:

b
S m‘@y((sxn)‘@y((ﬁg'l) dni = O ) w#® (A III.10)
S
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where boundary conditions of the form
!
Ky gv((ﬁkm) 4 Kk, €, (pn) = O

apply at n =2,b (Sturm-Liouville conditions).
An arbitrary function %-(n) can be expanded

in a series of cylinder functions:

S,('L) = ii Aw g,((w) (A II1.11)
where
b
A, = _r%" g v L) ‘@,,(FKn)dm (A III.12)
and o
NK = g e | g,;((ﬂm)]zém = (A IIT.13)
a
b
\)2 2 1 2
é—mzi(i“ *fgé—r‘l;) gy(PKn) + [gu (Fn“)] } R

From now on we take:

G, (pur) & Ty () + MV (pen) V=0l

%L(Fka)z O - ‘@L((skb) (A IIX.14)
Ax Dbeing given in (3.6).
We will also need
Zév(‘xjm) 2T, (on) + mg Ky ()
(A 1II.15)

i 2 e T,(%9)/ Ky (;0)
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where ?::a,b and ¥y = O,1L |
Let

ﬁéo(ajn) = f‘.:_ S go((bw) (A II1I1.16) |

multiplying both members by n‘go%M“)using (3.18)
on the r.h.s. of the equation and (A III.6) on the
l.h.s. we obtain

1 ij

w = — o x b ze °<\°>
TN G Co () Far

(A I1I.17)

which is used to express the series (Sla) in
Table I. For E?bo(win) the same method can be
applied and the correspondent &, wlll have the
same form as (A III.17) except for a negative sign
and the exchange of b by a in the r.h.s.

The second fundamental expansion is obtained

by letting
) = be B, (Pxn) A III.
Zoy (xjn) = 2 b L (P (A III.18)
Using (3.18) leads to
b =_iL_ —&ki.* QOC(SK)O) E’ai.(djb) (A III.19)
K NK L“;-\-Fi)
the same remarks, as before, apply to the expan-

sion for Efbi(din). By using (3.13) coupled with

(A III.7) and (A III.8) to evaluate the expansions
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ne Za(xin) = J_ Sk ‘@o((bxft) (A I11.20)
w

and

e leao(oclrt) = > <k QL (Bxn) (A III.21)

and on this way generate (S3a) and (S4a). This,
however, 1s not necessary since we find the fol-

lowing recursive relations:

(53a) = gL-(Sl&)

(s4s) = = (SZa) (A TII.22)

‘Ll

(S5a)=-—-—LW(SHax}

The expansions (SNb) with, N =1, ..., 5 in which

go(fsub) appear instead of @O(an) can be

easily obtained through the rule

aéb[g.h.s. o&_ (SNQ\)] =--36b[f1.\1.s. of (SNG)](A 111.23)

Table I also assures us that the seriles which we
were. dealing with are uniformly and absolutely
convergent; a requirement not stated explicitly

in the body of Chapter III. These series lack a
place In the only modern handbook of mathematical
series known to the author, MANGULIS [}965; pp.106-
123].
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(c) Note: It 1s known that the MacRobert-Sneddon
transform (usually called 'modified finite Hankel
transform' but in fact due to MacROBERT [1931] and
SNEDDON [1946]) plays an important role in poten-
tial problems associated with hollow circular re-

gilons., Such transforms are defined by

b
5 Lee) = | afw & (poydn ; b>a
Q

where FK are the positive roots of

T, (pred) Y, (Be®) = T, (peb) Y, (frd) = O

The determination of the coefficients g, ,b
ete. In the series expansions above are closely
related to such transforms of orders Y=0,1 and
thus are useful results in ways more than one. A
comprehensive survey of the use of the MacRobert-
Sneddon transforms mainly for heat conduction ap-

plications has been given by CINELLI [1965] .
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@ (Bea) Bolpen) Zoo )
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< (“iz+(51)2 Ny Zo(jzca, Xy (xy9) 2 (xfa E"—’L(O{\ib) zlni("fja) 2_«&1 E‘i (cvje)
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(°<&?'+F>»%) NK

L
2 Z \:5_((’(53)

2a Euy ()

Ra. Esp(xb) Z,y (a)
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APPENDIX IV
THE EIGENVALUES OF THE CIRCULAR HOLLOW CYLINDER

Written in full, the characteristic equation (4.17) for
the determination of the eigenvalues reads when divided

throughout by ab:

[x2oge) + (1= Fx) 38 Gl { RS+ (1

61262

) VRG]«

[22(yh) + (L- f; YT ] (TS (- 5=, LR Cpa
}

T
2 _2
§ S

— 21 3();3) ‘t{:Z)(,xie) + kL - ) Ty (Yi9) th)(él'a)] (A 1Iv.1)

giet

L 34gib) HE (gib) + (L - i%ig)'xl(Xsb) HO Qb))
1

AL e - 2570 O

Tiek)” B

Of course, this equation can be expressed in terms of J,
and 53 , 1f this is done by using (4.1), the equivalent
form corresponds to replacing ‘ﬁf) by 7; and reversing the
sign of the first three product terms in (A.IV.1). Substi-
tution of the first two terms ofhthe asymptotic expansions
for J, ( §i© ) and ‘4:u( ¥i® ) with \Ki?l:a> 1 into

the above equation and disregarding all terms of order
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2 ' :
(l/MQ) and higher, yields for the difference between two

»

consecutive eigenvalues the asymptotic form:

~J 5‘ ' N '-L |
Ji+t 78 T Bo-a [+l Q’“(%‘:g):l (A 1v.2)

with J =1,2,3,... . The first root 1s expected to be in
the neighborhood of the first eigenvalue for the solid
cylinder, l.e.,  Ji~ 2.7 + < 1.6. With such initial

guess, the Newton-Raphson algorithm
U=y — [ A/ S4 /déﬂg{u-. (A IV.3)

can be used to advantage, and requires only a few number N

of iterations for each root. For & > .5 the modulus of the
individual terﬁs in equation (A IV.1) are very large although
the factors in square brackets are small, in consequence it
would be necessary to have available a larger number of sig-
nificant figures than that in use with the present computer
facilities at the Unlversity of Houston.

In Fig. A IV.1 we picturize the eigenpaths Ej= Xj(a)
with J =1,2, ..., 5 for &¢=0.3, b = 1. For a approaching
zero the eigenvalues reach those for the solid cylinder as
expected. However, the thinner the cylinder the larger the
imaginary part of the eigenvalues become which precludes
the existence of an increasing number of vibrations modes.

Increase of Poisson's ratio corresponds to a raising and a
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shift of the curve to the left.

In Tables II*, we present the first five eigenvalues

in the range a = 0.02 (0.02)0.08 and the first twenty in

a = 0.1 (0.1)0.5 for the useful values &= 0,25, 0.30 and

the academic values &= 0.0, 0.50. The outer diameter b

is taken as equal to one, without loss of generality since

all the previous results can be normalized by b.

*The complete programing for finding the roots of equation
(4.17) = (A.IV.1) was done by Dr. Bart Childs. I am
deeply grateful for his efforts, determination and con-
suming time in doing this so that these tables could be
presented here, I also thank Mr. C. Hatfield for drawing

Fig., A IV.1. -
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