THE END PROBLEM FOR A TORSIONLESS

 HOLLOW CIRCULAR ELASTIC CYLINDER
A Dissertation

Presented to
the Faculty of the Department of Mechanical Engineering University of Houston

In Partial Fulfillment

- of the Requirements for the Degree Doctor of Philosophy

by
Guilherme Mauricio de La Penha
August, 1968

'Mine is a long and sad tale'
said the Mouse, turning to Alice, and sighing
'It is a long tail certainly'
said Alice, looking down with wonder at
the Mouse tail;
'but why do you call it sad?'
Lewis Carrol
Alice's Adventures in Wonderland

> to my mother for the past to my wife for the present to my children for the future

ACKNOWLEDGMENT

Papyrus of Ramses III

I am deeply indebted to Dr . S. B. Childs for guidance and support received during the course of this investigation; his numerous hints and discussions as well as doubts over and about large portions of the derivations have left an indelible mark on this work. In particular, the programing of numerical results rests solely in his skill. His help is acknowledged with sincere thanks.

I am under great obligations to Professor D. Muster in ways more than one. I take this opportunity to express my gratitude for his continual willingness during two years to aid me not only by putting at my disposition his personal library but also for assistance in both academic and private matters.

I am fortunate to have as both friends and colleagues Messrs. A. Mossé and A. P. Ripper who played a decisive role connected with my work. They not only encouraged it at all stages but also let me comment on their dissertations (in subjects foreign to me) while I could not proceed with mine.

A list of works which have been of service to me is appended and for the valuable assistance in obtaining copies of a majority of them I am indebted to Mrs. E. Roberson and C. Conrath for earlier help and to Mrs. R. Banks for more recent ones.

The financial support of the Coordenação do Aperfeiçoamento do Pessoal de Nivel Superior (CAPES, Brazil) is gratefully acknowledged.

Thanks are also due to Mrs. C. Callahan who typed a difficult manuscript with patience and ability. Finally, I am indebted most to my wife who suffered it all (if not altogether in silence).

THE END PROBLEM FOR A TORSIONLESS HOLLOW CIRCULAR ELASTIC CYLINDER

An Abstract of a Dissertation
Presented to
the Faculty of the Department of Mechanical Engineering University of Houston

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by

Guilherme Mauricio de La Penha August, 1968

Abstract

A class of axisymmetric boundary value problems for a torsionless semi-infinite hollow circular cylinder is considered; the lateral surface of the cylinder is assumed to be traction free, whereas its end-section is subjected to given self-equilibrated loads, given displacements or to mixed boundary conditions. The solution utilizes Love's stress representation - - known to be complete - - to generate an aggregate of biorthogonal eigenfunctions in the interval $a \leqslant \pi \leqslant b$. The problem is formally reduced to an infinite system of linear algebraic equations; explicit expressions being given in the case of mixed boundary conditions.

The close association of the problem with two classical ones, namely, Saint-Venant's problems and Saint-Venant's principle is discussed and supplemented with substantial references.

TABLE OF CONTENTS
CHAPTER PAGE
I. INTRODUCTION 1
Saint-Venant's Principle 1
The end problem of a cylinder 5
Some definitions and formulation of the
problem 17
II. LOVE'S STRESS FUNCTION AND REPRESENTATION 28
Love's function 28
Biharmonic functions in terms of harmonic functions 34
A representation for Love's function in the region Σ 35
III. THE MIXED-MIXED PROBLEMS 39
PM1: The coefficients C, D, E, F 39
PM1: The coefficients A_{k}, B_{k} 46
The second mixed-mixed problem: PM2 49
A partial summary 50
IV. THE GENERAL APPROACH 53
Notational agreements 53
The mixed problems PM1 and PM2 58
The general solution 58
Solution of specific boundary conditions 61
CHAPTER PAGE
v. CONCLUDING REMARKS 67
Summary 67
Conclusions 68
BIBLIOGRAPHY 70
APPENDIX 79
Appendix I 80
Some aspects of Saint-Venant problems 80
Formulation and reduction to an eigenvalue
problem 80
Mixed problem PM3 84
The zero eigenvalue 89
The non-existence of real eigenvalues 90
Appendix II 93
The coefficients $C(\alpha a \mid \alpha b)$ etc. in (3.13) 93
Appendix III 95
The series expansions in PMI and PM2 95
A modified Lömmel formula 95
Summation of series appearing in PMI and PM2 96
Appendix IV 102
The eigenvalues of the circular hollow
cylinder 102

LIST OF TABLES

TABLE PAGE
I. Series summations 101
II.A Eigenvalues of the characteristic
equation (4.17), $a=.02$ 106
II.B Ibid, $a=.04$ 106
II.C Ibid, $a=.06$ 107
II.D Ibid, $\mathrm{a}=.08$ 107
II.E Ibid, $a=.1$ 108
II.F Ibid, $a=.2$ 109
II.G Ibid, $\mathrm{a}=.3$ 110
II.H Ibid, $\mathrm{a}=.4$ 111
II.I Ibid, $a=.5$ 112

LIST OF FIGURES

FIGURE PAGE
1.1 Cylinder geometry 20
AI. 1 Notations 80
AIV. 1 Eigenpaths $E_{j}=\gamma_{j}(a)$ for cylindrical
regions 105

NOMENCLATURE

Symbols are defined where they first appear; this list includes only the more important ones.

```
            E 3d Euclidian space
            B set in E
            2S boundary of }
            Ck}(\mathbb{B})\mathrm{ class of continuous fields over }\mathbb{Q}\mathrm{ with continu-
                ous partial derivatives up to the order k
            ~ position vector, }x=|\underset{~}{x
    (x
    . ( }n,v,z)\mathrm{ cylindrical coordinates
            ~ displacement vector
            vi Cartesian components of
                ~
    \mp@subsup{u}{n}{},\mp@subsup{v}{v}{},\mp@subsup{U}{z}{}}\mathrm{ physical components of }\mp@subsup{~}{~}{~}\mathrm{ in cylindrical coordinates
                            ~
                            tij Cartesian components of
tnn, tuv,... physical components of }\underset{~}{t}\mathrm{ in cylindrical coodinates
                            T traction vector
                            \overline{~},\Psi
                and traction
            ~}\mathrm{ unit exterior normal
            f body force (per unit volume) vector
                    S~
```

μ shear modulus
σ Poisson's ratio

$$
\tau=2(1-\sigma)
$$

$9, \Gamma_{1}, \Gamma_{2}, \Sigma, \pi_{5}$; see eq. (1.11)
구 resultant force on T_{0}
M resultant moment about the centroid of T_{0}
$\delta_{i j}$ Kronecker's delta (i,j$=1,2,3$)
$\epsilon_{\alpha \beta} 2 \alpha$ - permutation symbol $(\alpha, \beta=1,2)$
$\epsilon_{i j k} 3 d$ - permutation symbol (i, $j, k=1,2,3$)
,$i=\frac{\partial}{\partial x_{i}}$, partial derivatives in Cartesian coordinates
$\Delta=\frac{1}{n} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{\partial^{2}}{\partial z^{2}}$
$\Delta^{2}=\Delta \Delta$, axisymmetric biharmonic operator
$\Delta_{3}=\partial^{2} / \partial x_{i} \partial x_{i}, 3 \alpha$ - Laplace operator
$\Delta_{2}=\partial^{2} / \partial x_{\alpha} \partial x_{\alpha}, 2 d$ - Laplace operator
χ Love's stress function
a, b internal and external radii

$$
\rho=a, b
$$

$\alpha_{j}, \beta_{k}, \gamma_{j}, \lambda_{k}$, parameters defined in the text which are reM_{j} stricted to certain values.
$J_{\nu}\left(\beta_{k} n\right), Y_{\nu}\left(\beta_{\times \eta}\right)$ Bessel and Weber - C. Newman functions of order

$$
\nu=0,1
$$

$I_{\nu}\left(\alpha_{j} n\right), K_{\nu}\left(\alpha_{j} n\right)$ modified Bessel (Basset) and MacDonald functions of order $\nu=0,1$.

$$
\begin{gathered}
\mathscr{C}_{\nu}\left(\beta_{K} n\right)=J_{\nu}\left(\beta_{k} n\right)+\lambda_{k} Y_{\nu}\left(\beta_{K} n\right) \quad \text {, cylinder function of } \\
\text { order } \nu=0,1 .
\end{gathered}
$$

$$
Z_{\nu}\left(\alpha_{j} n\right)=I_{\nu}\left(\alpha_{j} n\right)+\mu_{j} K_{\nu}\left(\alpha_{j} n\right) \text {, modified cylinder }
$$

function of order $\nu=0,1$.
$H_{\nu}^{(2)}\left(\gamma_{j} \eta\right)=J_{\nu}\left(\gamma_{j} n\right)-i Y_{\nu}\left(\gamma_{j} n\right)$, second Wankel function of order $\nu=0,1$.
$\mathscr{C}_{\rho \nu}\left(\gamma_{j} n\right)=J_{\nu}\left(\gamma_{i}\right) Y_{1}\left(\gamma_{j} \rho\right)-Y_{\nu}\left(\gamma_{i}\right) J_{1}\left(\gamma_{j} \rho\right)$ cylinder. function of order $\nu=0,1$, with $\rho=a, b$.
$\exists_{\partial b}$ transposition symbol defined by eq. (3.12). Let determinant function

The following trivial set - theoretic notations are also used in a few instances.
$\epsilon \quad$ (is) and element (of)
U union of sets
$\{e \mid P(e)\}$ set of all elements e satisfying the property $P(e)$.
$\stackrel{d}{=} \quad$ equal by definition
<arb,> ordered pair of elements a and b
$f(a \mid b)$ function of the ordered pair $\langle a, b\rangle$
$\sigma\left(x^{\alpha}\right)$ function that satisfies the inequality

$$
\left|\vartheta\left(x^{\alpha}\right)\right| \leqslant M x^{\alpha}
$$

where M is a constant and $x \rightarrow \infty$.
$\theta\left(x^{\alpha}\right)$ function for which the ratio $v\left(x^{\alpha}\right) / x^{\alpha} \xrightarrow{\circ} 0$ uniformly with respect to the position vector $\underset{\sim}{x}$.
|| || norm operator

CHAPTER I

INTRODUCTION

> "Of what is passed, or passing or to come."
> William B. Yeats

1.1 SAINT-VENANT'S PRINCIPLE

TOUPIN [1965] has recently obtained a strong result on the Principle of SAINT-VENANT in linear elasticity. Loosely, SAINT-VENANT'S Principle is usually taken to mean that if a self equilibrated stress distribution (resultant force and moment equal to zero) is applied to a section of the surface of a given body, the stresses and strains produced at points far removed from the stressed area will be negligibly small. As stated, the principle is ambiguous and, in many cases, false; cf. HOFF [1945], DOU [1964], TOUPIN [1965] and FILONENKO-BORODICH [1965,par.31] for counter examples. A rigorous SAINT-VENANT Principle should give sufficient conditions under which the internal effects (stress, strain, etc.) will decrease in some specified sense with the distance from the stressed part of the boundary.

TOUPIN has shown that for a cylinder of arbitrary length and cross-section, with zero body force which
has a self-equilibrated loading on one end but is otherwise stress free,

$$
\begin{equation*}
\frac{U(z)}{U(0)} \leqslant e^{-\left(\frac{z-P}{s_{c}(P)}\right)} \tag{1.1}
\end{equation*}
$$

where
(i) $U(z)$ is the stored elastic energy in that part of the cylinder whose distance from the stressed end is greater than z,
(ii) $U(0)$ is the total elastic energy in the cylinder, (iii) $S_{c}(l)$ is a "decay length" which depends on the physical constants of the cylinder and the smallest characteristic frequency of free vibration of the cylinder of length l,
(iv) ℓ is an arbitrary positive parameter which may be chosen so as to provide the smallest possible value for $S_{c}(P)$.

The question of comparing stress distributions produced by statically equivalent loads first arose in connection with the problem of the deformation of a cylinder by prescribed surface tractions distributed over its plane ends. SAINT VENANT [1855, 1856] constructed a solution to the relevant boundary value problem in the theory of elasticity which corresponds to a particular set of end loads. The principle which
bears his name was originally enunciated in order to justify the use of his result as an approximation in cases where the end loads are statically equivalent to, but not identical with, the loads for which his solution is rigorously valid.

A generalized statement of SAINT-VENANT'S Principle, intended to apply to elastic bodies of arbitrary shape, was apparently first introduced by BOUSSINESQ [1885; p. 298], whose version of the principle became traditional in the literature, LOVE [1927; par.89]. BOUSSINESQ supported his version of the principle by analyzing an elastic half-space subjected to concentrated forces applied normal to its boundary. FILON [1902] (cf. also LOVE [1927;par.226], PICKETT [1944]) constructed, in essence, a large but not exhaustive class of solutions for circular cylinders (namely the 'antiplane class', cf. MILNETHOMSON [1962; p. 42]). Simply by examination of solutions in this class he perceived a rapid decay in the strain induced in a circular rod by self-equilibrated forces applied to one end, but no common feature of all solutions can be easily deduced from his analysis. The remarks of Love, loc. cit., do not constitute a
proof of the "exponential decay" of the energy even for this restricted class of loadings of circular cylinders.

Two other classes of general theorems have been proved in connection with the SAINT-VENANT Principle and put forward as having some bearing on the original question posed by SAINT-VENANT'S remarks. The first of these are due to v. MISES [1945] and STERNBERG [1958]. These theorems concern a representation of the strain at an interior point of a given elastic body which is caused by a sequence of loads on a sequence of regions of its boundary. The second class of theorems is due to ZANABONI [1937] 1,2 and concerns estimates for the total energy of a sequence of bodies under the action of a fixed system of loads on a given common portion of the boundary; this work has been discussed in the treatise by BIEZENO and GRAMMEL [1954]. The efforts of SOUTHWELL [1923] and GOODIER [1937] can also be included in this second class.

Although a comprehensive review of the literature on SAINT-VENANT'S Principle in the linearized equilibrium theory of elastic solids would serve a useful purpose, such a survey is clearly beyond the scope of these introductory remarks; we mention, however, that
it has received great attention in recently published literature towards a sharper mathematical formulation. We single out specially the work of KNOWLES [1966] on two-dimensional problems, ROSEMAN [1966] using TOUPIN'S formulation to obtain a pointwise estimate for the stress in simply connected cylindrical bodies, STERNBERG and KNOWLES [1967] on the torsion of solid and hollow cylinders. The earlier statements due to SAINT-VENANT and BOUSSINESQ are surveyed in the classic of TODHUNTER and PEARSON [1893], more recent developments being reviewed in STERNBERG [1958].

1.2 THE END PROBLEM OF A CYLINDER

Determining the state of stress and strain within a homogeneous, isotropic and elastic circular cylinder subjected to prescribed forces and/or displacements at its surfaces, is one of the classical problems of the mathematical theory of elasticity. It has received great attention from various authors. The problem essentially reduces to finding solutions to the equations of elasticity in cylindrical coordinates and then adapting them to the prescribed boundary conditions at the curved and flat surfaces of the cylinder.

Problems of this type arise, for example, in the thermal-stress problem of bonding of a semi-infinite cylinder at its plane end to another cylinder or plate. A knowledge of the stress distribution and how it decays away from the bonded end shows how long a finite cylinder needs to be for its free end to be unaffected by conditions at the bonded end. This problem and similar ones are often referred to by engineers as "the end problem of a cylinder."

The method of series expansions in terms of special functions can be employed successfully to solve the equations involved. Pernaps the first investigations along these lines are those of POCHHAMMER [1876] and CHREE [1886, 1889] using FOURIER-BESSEL series which were restricted in the freedom of prescribing arbitrary stresses on displacements on all surfaces of the cylinder. Later DOUGALL [1914] presented a more extensive and detailed general analytic study of the problem. This paper indicated quite clearly the complexity involved in the mathematical treatment. SYNGE [1945] considered the equilibrium of a homogeneous cylinder with arbitrary cross section which is free from stress on the bounding surface. He examined in some generality the nature of the eigenvalue problem,
and, in the case of a circular cross section, he indicated the form of the equation for the eigenvalues, and this is in agreement with the results of DOUGALL (this equation can also be lifted from under the haze notation of CHREE [1886; eq (29)] where the problem studied is a dynamical one).

MURRAY [1945] considered the problem of the thermal stresses and strains in an elastic circular cylinder of finite length which is free from stress on its curved boundary. He obtained expressions for the stresses in terms of solutions of the biharmonic equation and his application of the boundary conditions on the curved surface gave rise to a transcedental equation involving Bessel functions of complex argument. Only the first two eigenvalue solutions of this equation were stated, but no indication was given of how they had been obtained. The boundary conditions on the end face were satisfied in an approximate manner.

A calculus of variations approach to the end problem of solid cylinders has been given by HORVAY and MIRABAL [1958]. They consider the case when selfequilibrating axially-symmetric normal and shear tractions act on the end of a semi-infinite circular cyl-
inder. They stated that in principle a rigorous solution can be obtained if one follows an analysis after the manner of MURRAY [1945]. Because of the complexity of the method of this last paper when presented in detail, they prefer to obtain approximate values for the stresses from a variational approach. They use special representations for the stresses and find the EULER equations. They give approximate values for the first three eigenvalues. For these eigenvalues the product approximations used in this method appear to create large discrepancies in the verification of the conditions of compatability, a point which is noted by the authors.

The variational method of the last paragraph is improved in the article by HORVAY, GIAEVER and MIRABAL [1959]. In particular the values of the displacements are much better than those obtained in HORVAY and MIRABAL, op. cit., and the compatibility requirements are satisfied to a greater accuracy.

Two stress potential functions ϕ, ψ are introduced into the basic equations by HODGKINS [1962] and the stresses are expressed in terms of them. The following equations satisfied by ϕ, ψ are deduced from the equations of equilibrium:

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial n^{2}}-\frac{1}{n} \frac{\partial \phi}{\partial n}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \\
& \frac{\partial^{2} \psi}{\partial r^{2}}-\frac{1}{n} \frac{\partial \psi}{\partial r}+\frac{\partial^{2} \psi}{\partial z^{2}}=\frac{\partial^{2} \phi}{\partial z^{2}} \tag{1.2}
\end{align*}
$$

where r, z are cylindrical coordinates. These equations are solved by the method of finite differences using various mesh sizes. Four problems involving a finite cylinder are investigated.

Problems involving a finite hollow cylinder which is free from stress on its inner and outer curved surfaces, and has normal and shear loadings on its end faces are considered in the article of MENDELSON and ROBERTS [1963]. Here the basic equations are written in terms of the four stresses and after systematic elimination, and integration, they yield a partial integro-differential equation for the shear stress in the bases of the cylinder. This equation incorporates all the boundary conditions except for those dependent on prescribed values of the shear stresses on the ends. They write an expression of the form

$$
\begin{equation*}
t_{n z}=\sum_{n} \sum_{m} P_{n}(n) Q_{m}(z) t_{n m}+\phi(n) Q_{0}(z) \tag{1.3}
\end{equation*}
$$

as an approximation to the shear stress. The quantities P_{n}, Q_{m} are station functions such that P_{n} vanishes at $z= \pm l$ but $Q_{0}(\pm e)=1$, so that $t_{n z}$ takes the given value $\phi(\pi)$ on the ends $z= \pm P$. Here $t_{m n}$ is the shear stress at the station (r_{n}, z_{m}) and \underline{a} and \underline{b} are respectively the internal and external radii of the cylinder and $2 l$ is its length. When the above representation for $t_{r z}$ is substituted in the integro-differential equation, and the technique of double collocation used, a system of simultaneous linear equations is produced. Two problems are then solved, one for a solid cylinder, and the other for a hollow cylinder, using the end conditions. The values of the longitudinal stress are prescribed on $z= \pm \ell$. By considering various numbers of collocation stations MENDELSON and ROBERTS indicate that their computed results satisfy the basic differential equations. An advantage of the method is that the formulation in terms of the integrodifferential equations gives a kind of averaging of values throughout the cylinder, but a serious objection to it is that the above representation to the shear stress certainly does not satisfy the prescribed conditions on the curved surfaces, where in particular $t_{r z}$ ought to be zero. In illustrative examples they
choose $\phi(r)$ to be zero so that this difficulty was avoided. This explains why their results are satisfactory.

The more complete problem for the finite solid cylinder, i.e., one in which either the displacements or stresses are prescribed at the end and the stresses or displacements on the lateral surfaces has been analyzed by VALOV [1962] using Papkovich-Neuber representation of the solution of the Navier's equationsl obtaining an infinite system of equations whose possibility of providing a bounded solution is investigated through a careful analysis of the Fourier-Bessel coefficients.

The following problem for a semi-infinite cylinder is investigated by GRINCHENKO [1963]. On the curved boundary the values of the normal and shear stresses are prescribed as arbitrary functions of z and on the plane end the longitudinal and shear stresses are prescribed as arbitrary functions of r. The Navier equations are used and the radial displacement is written in terms of a Fourier series involving the Bessel function of order zero plus a Fourier integral. A similar representation is taken for the longitudinal

[^0]displacement. Application of the boundary conditions yields a system of functional equations from which the unknown coefficients in the above representations are determined. By a systematic process these equations are then changed into an infinite system of simultaneous linear algebraic equations. The regularity of this system is established, which means that it is theoretically possible to solve the system by iteration techniques. A numerical example is concerned with a semi-infinite cylinder with zero stress on its curved boundary, zero shear stress and a prescribed value of the longitudinal stress on $\mathrm{z}=0$. However, no numerical results are quoted for the stresses and displacements, although these appear to have been computed.

The first textbook account known to the present author of problems of the type being discussed here is given by LUR'E [1964] who includes at the end of Chap. 7 a short bibliography with references. For the problem with zero stress on the curved boundary numerical results are presented for the first three complex eigenvalues together with the corresponding values of the modified Bessel functions I_{0}, I_{1}. The end of the chapter furnishes an attempt at satisfying the two
conditions on the end face of the cylinder, where the normal stress $t_{z z}=F(r)$ and the shear stress $t_{n z}=-\phi(r)$ are prescribed. To obtain the coefficients in the simultaneous representations to $F(r)$ and $\phi(r)$ a least square method is employed and the resulting infinite set of simultaneous linear equations is truncated to give a finite number of equations. Solution of these equations gives the approximate values of the coefficients. Unfortunately, no numerical values of the end stresses are presented, and the author omits the computation of the coefficients in the series expansions and the subsequent evaluation of displacements and stresses at points of the cylinder away from the end. Following the work of LURIE, WARREN, ROARK and BICKFORD [1967] and WARREN and ROARK [1967], studied the end effect numerically by expanding the solution into a series of eigenfunctions satisfying stress free boundary conditions on the lateral surface, the end face subjected to given axisymmetric self-equilibrated distribution of normal and shearing stresses. The coefficients are selected so as to minimize the square error between the prescribed boundary conditions on $z=0$ and the eigenfunction representation with a finite number of terms. Numerical results including
up to 40 terms are included.
The stress analysis for a hollow cylinder of finite length is treated by KAEHLER [1965] who formulates a partial integro-differential equation for the shear stress. He allows the normal and shear stresses on the inner and outer curved surfaces to be functions of the axial coordinate z. A representation of the shear stress is written down which satisfies the boundary conditions on $r=a, b$ requiring certain quantities $t_{1}(z), 1=1,2, \ldots, N$ to be determined. Substituting this representation into the integro-differential equation, collocating on two radial stations $1=1,2$ and thence differentiating the result yields two fourth order ordinary nonhomogeneous differential equations with constant coefficients for $t_{1}(z), t_{2}(z)$. These are solved for the complementary functions only and eventually the solutions are cast in a form whereby the conditions on $t_{r z}$ at $z= \pm l$ can be utilized. As an illustrative example the case of a solid cylinder with a band of shear stress on the curved surface is considered.

At this stage, it is well to point out that the use of Fourier transforms as potentials is by no means new in treating axisymmetric elastic problems. The
starting point possibly goes back to DOUGALL [1914] (cf. also GRAY, MATHEWS and MACROBERT [1931; Chap. 15]) which has been followed by FOPPL and FOPPL [1928], and more recently by BARTON [1941], TRANTER and CRAGGS [1945] (cf. also TRANTER [1956;par.3.7]), LING and LEE [1954] and KOGAN and KHRUSTALEV [1958]; all for the case of loading on the curved boundaries. We mention this because it facilitates the justification of the form of the solution used here.

Finally, we come to the work of CHILDS [1966] and LITTLE and CHILDS [1967] who consider the semi-infinite circuiar elastic cylinder with mixed boundary conditions on the finite end. By using Love's stress functions expressed as an infinite series in the eigenfunctions of the biharmonic equation plus a Fourier integral, and by requiring the latter to satisfy the stress free condition on the curved boundary while the former is chosen so as to generate the boundary conditions on the plane end, they have constructed the general solution of the problem in terms of a biorthogonal family of functions whose basis are the Bessel functions of order zero and one.

The problem is reduced to solving a doubly infinite system of linear equations with a strongly
diagonal matrix. Due to the rapid decrease of the modulus of the Fourier-Bessel coefficients, the system can be truncated and solved numerically, ylelding good results. They also have provided a table containing the first twenty eigenvalues of the characteristic equation for various values of Poisson's ratio. An example is given for the case of the normal and shearing stresses specified at the plane end; the loading being self-equilibrated there, the exponential decay of both stresses and strains is apparent from their plots.

The study reported here, is a continuation of the last mentioned one and depends strongly on it in the sense that the results contained there were the source for the amount of formulae derived here which would otherwise not be obvious. In this respect a quotation from LOVE [1927] is adequate: "... nothing that has once been discovered ever loses its value or has to be discarded ...".

1.3 SOME DEFINITIONS AND FORMULATION OF THE PROBLEM

Before engaging on the rigorous statement and solution of the problem, we turn now to some preliminary notational agreements and definitions in conformity with the standard practice in modern mechanics of continua. We employ the letter E for the entire threedimensional Euclidian space. If \mathscr{Q} is set in E we write $\partial \mathbb{Q}$ for the boundary of \mathbb{Q}. The class of continuous fields over \oint which possess continuous partial derivatives up to and including the order k is denoted by $C^{k}(8)$. Standard indicial notation is used in connection with Cartesian components of tensors of any order. Subscripts preceeded by a comma indicate partial differentiation, while underlined tildes designate tensors (the non-zero order of which will be clear from the context). We also employ some of the trivial symbols of set theory. The summation convention applies to repeated indices.

Def. I (Elastic state). If $\underset{\sim}{u}$ and $\underset{\sim}{t}$ are respectively
a vector-valued and a second order tensor valued function defined in a domain \mathbb{S} in E, we call the ordered pair $S=\langle\underset{\sim}{u}, \underset{\sim}{t}\rangle$ an elastic state on corresponding to the body force field $\underset{\sim}{f}$, the shear modulus μ and Poisson's ratio σ and write

$$
\begin{equation*}
S=\left\langle\underset{\sim}{u}, t_{\sim}^{t}\right\rangle \in \mathcal{\sim}(\underset{\sim}{f}, \mu, \sigma, B) \tag{1.4}
\end{equation*}
$$

provided
(a)

$$
\begin{aligned}
& \underset{\sim}{v} \in C^{2}(\Re), \underset{\sim}{t} \in C^{1}(\mathscr{B}) \\
& \underset{\sim}{f} \in C^{0}(\Omega),
\end{aligned}
$$

μ and σ being constants.
(b) $\underset{\sim}{v}, t, f, \mu$ and σ on Θ satisfy

$$
\begin{align*}
& t_{j i, j}+f_{i}=0, \quad t_{i j}=t_{j i} \\
& t_{i j}=\mu\left[\frac{2 \sigma}{1-2 \sigma} \delta_{i j} u_{k, k}+u_{i, j}+u_{j, i}\right] \tag{1.6}\\
& \mu\left(u_{i, j}+u_{j, i}\right)=t_{i j}-\frac{\sigma}{1+\sigma} \delta_{i j} t_{k k}
\end{align*}
$$

the last two equations being equivalent.
(c) If \oint is unbounded

$$
\left.\begin{array}{l}
\underset{\sim}{v}(\underset{\sim}{x})=V\left(x^{-1}\right) \tag{1.7}\\
\underset{\sim}{t}(\underset{\sim}{x})=\theta\left(x^{-2}\right) \\
\underset{\sim}{f}(\underset{\sim}{x})=O\left(x^{-3}\right)
\end{array}\right\} \quad \text { as } x \cdot \infty
$$

$\underset{\sim}{x}$ being the position vector and x its magnitude. The symbol $\sigma($.) having the usual meaning of order of magnitude.
If $\underset{\sim}{f}=O$ on \mathbb{G} it has been shown by FICHERA [1950] that (1.4) implies $\underset{\sim}{u} \in C^{\infty}(93), \quad \underset{\sim}{t} \in C^{\infty}(3)$ a more elaborated proof has been given previously by FRIEDRICHS [1947; p. 459 et seqq.]. We recall that the inequalities imposed in (1.5) on the elastic moduli μ and σ are necessary and sufficient for the post-
tive definiteness of the strain energy density. (1.6) 1 represents the stress equations of equilibrium (Cauchy), while (1.6) 2,3 are the stress-displacement relations (constitutive assumptions). If $\underset{\sim}{f}=\underset{\sim}{O}$, the order conditions at infinity (1.7) are implied by

$$
\begin{equation*}
\underset{\sim}{u}(\underset{\sim}{x})=v(1) \text { as } x \rightarrow \infty \tag{1.8}
\end{equation*}
$$

a result also due to FICHERA [1950]. If $S=\langle\underset{\sim}{u}, \underset{\sim}{t}\rangle$ is a state on Φ and Σ is one side of a regular surface with the unit outer normal vector $\underset{\sim}{\boldsymbol{n}}$, we call I the traction vector of S on \sum if

$$
\begin{equation*}
T_{i}=t_{i j} n_{j} \tag{1.9}
\end{equation*}
$$

at all regular points of Σ.
CLEBSH [1862] called the determination of the elastic state within a cylinder (or prism) which in the absence of body forces - is subjected to surface tractions arbitrarily prescribed over its ends and which is free from lateral loading the "Problem of SAINT-VENANT" (cf. WEBSTER [1912; p. 478], MUSKHELISHVIL [1953; Chap. 22], SYNGE [1945], STERNBERG and KNOWLES [1966]). SAINT-VENANT treatment of the foregoing problem rests on a relaxed formulation in which the detailed assignment of the terminal tractions is abandoned in favor of prescrib-
ing merely the appropriate stress resultants.
Here we are concerned with the determination of the elastic state within a semi-infinite hollow circular cylinder unstressed on the lateral surfaces and supporting an axisymmetric self-equilibrated loading on the finite plane end.

Let Θ be such a cylinder, $\partial \Omega$ consists of two coaxial circular cylindrical surfaces and a plane annulus. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be rectangular Cartesian and (r, ϑ, z) circular cylindrical coordinates related by

$$
\begin{array}{ll}
x_{1}=\pi \cos v, & x_{2}=\pi \sin v, \tag{1.10}\\
x_{3}=z \\
0 \leqslant r<\infty & , 0 \leqslant v<2 \pi,-\infty<z<\infty
\end{array}
$$

and suppose the axis of Θ coincident with the x_{3}-axis.

Fig. 1.I. Cylinder geometry

For convenience we define (Fig. ll):

$$
\begin{align*}
& 9 \stackrel{d}{=}\{(n, v, z) \mid a \leqslant r \leqslant b, 0 \leqslant v<2 \pi, 0 \leqslant z<\infty\} \\
& \Gamma_{1} \triangleq\{(r, v, z) \mid \pi=a, \quad 0 \leqslant v<2 \pi, \quad 0 \leqslant z<\infty\} \\
& r_{2} \stackrel{d}{=}\{(n, v, z) \mid n=b, \quad 0 \leqslant v<2 \pi, \quad 0 \leqslant z<\infty\} \tag{1.11}\\
& \Sigma \triangleq\{(r, \vartheta, z) \mid a \leqslant n \leqslant b, v=\text { cost, } 0 \leqslant z<\infty\} \\
& \Pi_{\zeta} d\{(r, v, z) \mid a \leqslant r \leqslant b, 0 \leqslant v<2 \pi, z=\zeta\} \\
& \partial Q=\Gamma_{1} \cup \Gamma_{2} \cup T_{0}
\end{align*}
$$

In view of the linearity of the underlying theory, it is clear that to investigate the question with which SAINT-VENANT'S Principle is concerned, it is sufficient to confine our attention to the stresses arising from a surface traction T which vanishes on $\Gamma_{1} \cup \Gamma_{2}$ and which is self-equilibrated on T_{0}.

Def. 2 (Self-equilibrated loading). Given T over Mo, the vector-valued linear functional $\mathcal{F}\{$.$\} and$ $m\{$.$\} defined by$

$$
\begin{align*}
& \mathcal{F}\{t\} \stackrel{d}{=} \int_{\pi_{0}} I d S \\
& m\{t\} \stackrel{d}{=} \int_{\pi_{0}} \wedge \sim T S \tag{1.12}
\end{align*}
$$

are called respectively, the resultant force and resultant moment about the centroid of $\Pi_{0}, d S$ being an area element in T_{0}.

If and only if

$$
\begin{equation*}
\underset{\sim}{\mathcal{F}}\{\underset{\sim}{t}\} \equiv 0, \quad \underset{\sim}{0}\{\underset{\sim}{t}\} \equiv 0 \tag{1.13}
\end{equation*}
$$

the traction T is self-equilibrated over Π_{0}.
Boundary conditions are never exactly known in elasticity theory. Even if the two boundary conditions were known everywhere, the corresponding problem may be too difficult to solve, so that it becomes necessary to explore the possibility of using boundary conditions that are statically equivalent (in the sense of having the same force and moment resultants) but simpler. The original boundary conditions and the "relaxed" boundary conditions2 then differ by a selfequilibrating load. It seems natural that a relaxation of boundary conditions will be justified if the load region is small compared to some characteristic dimension, e.g., distance from the load region; how-
${ }^{2}$ It is instructive to note here that the canonical classification of the relaxed problem rests on various assumptions concerning the resultants $\mathcal{F}_{\mathcal{F}}$ and \mathbb{m} namely:
I. Extension: $\mathcal{F}_{\alpha}=m_{i}=0, \mathcal{F}_{3}=F$
II. Bending: $\mathcal{F}_{i}=m_{1}=m_{3}=0, m_{2}=M$
III. Torsion: $F_{i}=m_{\alpha}=0, m_{3}=M$
IV. Flexure: $\mathcal{F}_{2}=\mathcal{F}_{3}^{\prime}=m_{i}=0, \mathcal{F}_{1}=F$
where $\alpha=1,2$. These problems of course have no unique solution.
ever the shape of the body may be an important factor. The boundary value problems which arise in this subject can be classified in the following categories; here we denote by the subscripts (n) and (t) projections along the normal and tangent plane to Π_{0}, bars indicate prescribed values.

PT: Traction problem, defined by the boundary condiLion

$$
\left.I\right|_{\partial B}=I
$$

PM 1: Mixed-mixed problem composed of
(i) Traction problem on $\Gamma_{1} \cup \Gamma_{2}$

$$
\left.\therefore\right|_{r_{1} u r_{2}}=Q
$$

(ii) 'Stick contact' problem on Π_{0}

$$
\begin{aligned}
& \left.{\underset{\sim}{(n)}}\right|_{\pi_{0}}=\Psi_{(n)} \\
& \left.\underset{\sim}{U}(t)\right|_{\pi_{0}}=\underset{\sim}{U}(t)
\end{aligned}
$$

PM 2: Mixed-mixed problem composed of
(i) Traction problem on $\Gamma_{1} \cup \Gamma_{2}$

$$
\left.I\right|_{r_{1} u r_{2}}=Q
$$

(ii) 'Rigid contact' problem on Π_{0}

$$
\begin{aligned}
& \left.{\underset{\sim}{(t)}}\right|_{\pi_{0}}=\underset{\sim}{\Psi}(\tau) \\
& \underset{\sim}{u}(n) \\
& \left.\right|_{\pi_{0}}=\underset{\sim}{\sim}(n)
\end{aligned}
$$

PM 3: Mixed problem composed of
(1) Traction problem on $\Gamma_{1} u \Gamma_{2}$

$$
\left.I\right|_{r_{1} u r_{2}}=\underline{Q}
$$

(ii) Displacement problem on Π_{0}

$$
\left.\underset{\sim}{u}\right|_{\pi_{0}}=\bar{\sim}
$$

The best compact discussion of those problems are to be found in BERGMAN and SCHIFFER [1953; Chap. 4] and MIKHLIN [1965, Chap. 4].

For the moment we will be concerned mainly with problems PM 1 and PM 2; if the traction I acting on the boundary is written in terms of the circular cylindrical physical components $t<i j>$ of the stress tensor acting at the boundary, our prescribed boundary conditions will be as follows:

PM 1:

$$
\begin{align*}
& \text { (i) } t\langle 11\rangle \equiv t_{n \pi}=0 \\
& t<12\rangle \equiv t_{n v}=0 \quad \text { on } \Gamma_{1} \cup \Gamma_{2} \\
& t<13\rangle \equiv t_{n z}=0 \tag{1.14}\\
& \text { (ii) } t\langle 33\rangle \equiv t_{z z}=e(n) \text { on } \Pi_{0} \\
& u\langle 1\rangle \equiv u_{n}=f(n) / 2 \mu
\end{align*}
$$

PM 2:

$$
\begin{align*}
& \text { (i) } t\langle 11\rangle \equiv t_{n n}=0 \\
& t\langle 12\rangle \equiv t_{n v}=0 \quad \text { on } \quad r_{1} \cup r_{2} \\
&t<13\rangle \equiv t_{n z}=0 \tag{1.15}\\
&\text { (ii) } t<13\rangle \equiv t_{n z}=g(n) \quad \text { on } \Pi_{0} \\
&\underset{\sim}{u}<3\rangle \equiv u_{z}=h(n) / 2 \mu
\end{align*}
$$

Necessary for the existence of a solution to the foregoing boundary value problems is that e, f, g, h be continuous on Π_{0} and that the given loads meet the overall equilibrium conditions (1.13) namely:

$$
\begin{aligned}
& \mathcal{F}_{i}\{\underset{\sim}{t}\}=\int_{\pi_{0}} t_{3 i} d S=0 \quad i=1,2,3 \\
& m_{\alpha}\{\underset{\sim}{t}\}=\int_{\pi_{0}} t_{33} \epsilon_{\alpha \beta} \times_{\beta} d S=0 \\
& m_{3}\left\{t_{\sim}^{t}\right\}=\int_{\pi_{0}} t_{3 \beta} \epsilon_{\alpha \beta} x_{\alpha} d S=0
\end{aligned}
$$

where $\epsilon_{12}=-\epsilon_{21}=1, \epsilon_{11}=\epsilon_{22}=0$; the componets of $\underset{\sim}{t}$ being expressed in rectangular Cartesian coordinates and the x_{i} are defined in (1.10).

Further, the solution is unique provided $\mu>0$, $-1<\sigma<1 / 2$ (cf., e.g., KNOPS [1965]).

Although the principle is not very explicitly
mentioned, the problem of the edge-layer effect in the theory of elastic plates studied by FRIEDRICHS [1949] and a decade later by FRIEDRICHS and DRESSLER [1961] is in fact a genuine case of SAINT-VENANT'S Principle. It gave rise to a concept frequently encountered in the literature of SAINT-VENANT problem and which for the sake of nomenclature we define here.

Def. 3 (Elastic boundary layer). Given $\eta>0$, $\left([\eta]=F^{2} L^{-4}\right)$, the set $\oiint_{\delta} \subset 母$ of points P such that

$$
\left\|t_{i j}\right\|_{p}=t_{i j}(P) t_{i j}(P)<\eta, P \in \Omega_{\delta}
$$

is called an elastic boundary layer of S. δ, the width of the layer, is the distance of the farthest point P from Π_{0} for which the above inequality holds.

The "end problem" for cylinders, corresponds thus to the determination of δ.

The analysis to be presented could well be extended to the case of the hollow body, i.e., when $a=a(z), b=b(z) \quad$ however, it would never allow numerical computations due to the degree of complexity of the integrals involved, let alone the determination of the eigenvalues.

A word of caution is also in order: certain displacement boundary conditions prescriked on the end face Π_{0} may produce stress singularities at the cylIndrical corner. Neither the exact linear elastic analysis nor the approximate methods are capable of adequately treating this problem, see for instance ZAK [1964].

Very recently, FLUGGE and KELKAR [1968], discussed a similar problem under different sets of boundary conditions using Navier's equations. They studied the solutions for (a) $\underset{\sim}{U}=\underset{\sim}{Q}$ in $\Gamma_{1} \cup \Gamma_{2}, \underset{\sim}{u}=\underset{\sim}{U}$ on $\Pi_{0},(b) \underset{\sim}{u}=\underset{\sim}{U}$ in $\Gamma_{1} \cup \Gamma_{2}, \underset{\sim}{U}=\underset{\sim}{Q}$ on Π_{0} and claim that by superposition any displacement boundary value problem can be solved. This paper, however, has reached the present author too late to be mastered and properly evaluated; it is based on a method devised by Professor Gordon E. Latta and as of yet unpublished.

CHAPTER II

LOVE'S STRESS FUNCTION AND REPRESENTATION

2.1 LOVE'S FUNCTION

If a particular rule enables us to find finite algebraic combinations of the derivatives of a set of arbitrary functions, possibly supplemented by quantities associated with the geometry of the space in question, such that these combinations when substituted for the stress tensor satisfy the equations of equilibrium or motion identically in the arbitrary functions, the rule is said to furnish a "solution in terms of stress functions".

Consider an internally free three-dimensional medium in equilibrium undergoing a constant and uniform velocity and with $f=O$. The stress tensor satisfies Cauchy's laws of local balance of linear momentum and moment of momentum respectively, (i,j=1,2,3)

$$
\begin{equation*}
t_{i j, j}=0, \quad t_{i j}=t_{j i} \tag{2.1}
\end{equation*}
$$

In order that $t_{i j}, j=0$ in a Euclidian space, application of the classical theorem of the vector potential shows it to be necessary and sufficient that

$$
\begin{equation*}
t_{i j}=b_{i j k, k}, \quad b_{i j k}=-b_{i k j} \tag{2.2}
\end{equation*}
$$

the condition (2.1) 2 may now be written in the form

$$
\begin{equation*}
\left(t_{i j k}-t_{j i k}\right)_{, k}=0 \tag{2.3}
\end{equation*}
$$

and this is equivalent to the existence of a tensor \mathcal{L}^{2} such that

$$
\begin{equation*}
b_{i j k}-b_{j i k} \stackrel{d}{=} e_{i j k m, m} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{i j k m}=-v_{i j m k}=-y_{j i k m} \tag{2.5}
\end{equation*}
$$

Therefore

$$
2 b_{i j k}=\left(v_{k i j m}+v_{j k m i}+v_{i j k m}\right)_{, m}
$$

so that (2.1) becomes

$$
\begin{equation*}
t_{i j}=f_{k i j m, m k} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gather*}
f_{k i j m} \stackrel{d}{=} \frac{1}{2}\left(f_{k i j m}+f_{j m k i}\right) \\
f_{k i j m}=-f_{i k j m}=-f_{k i m j}=f_{j m k i} \tag{2.8}
\end{gather*}
$$

The elegant foregoing derivation, given by DORN and SCHILD [1956] ${ }^{3}$, shows that (2.7) furnishes the $3_{\text {We }}$ are working with Cartesian coordinates just for simplicity's sake; in reality the above result is valid in a flat space of any dimension.
general solution of Cauchy's laws for equilibrium of an internally free body. If we set

$$
\begin{equation*}
a_{p q} \stackrel{d}{4} \epsilon_{p k i} \epsilon_{q m j} \text { f}_{k i j m} \tag{2.9}
\end{equation*}
$$

so that

$$
f_{k i j m}=\epsilon_{i p k} \epsilon_{j q m}{X_{p q}, \quad O_{p q}=\mathscr{K}_{q p},(2.10)}
$$

Then (2.7) becomes

$$
\begin{equation*}
t_{i j}=\epsilon_{i p k} \epsilon_{j q m} \partial_{p q, k m} \tag{2.11}
\end{equation*}
$$

which is the general solution of GWYTHER [1912] and FINZI [1934]. If we write out (2.11) explicitly in cylindrical polar coordinates, at the same time supposing that all derivatives with respect to the amimath angle are zero, for the physical components $t<i j>$ of t_{\sim}^{t} we obtain

$$
\begin{aligned}
& t\langle 11\rangle \equiv t_{n n}=a^{2}, z z+\frac{1}{n} a_{i n}^{3}-\frac{2}{n} a_{1 z}^{5} \\
& t_{\langle 22\rangle} \equiv t_{2 v}=a^{3}, n n+a_{1,2}^{2}-2 a^{5}, n z \\
& t\langle 33\rangle \equiv t_{2 z}=a^{2}, n n+\frac{2}{n} a^{2}, n-\frac{1}{n} a^{1}, n \\
& t\langle 13\rangle \equiv t_{n 2}=-\left(a_{1, n}+\frac{1}{n} a^{2}-\frac{1}{n} a^{1}\right)_{, z} \\
& t\langle 12\rangle \equiv t_{n v}=\left(a^{4}, n-\frac{1}{n} a^{4}-a^{6}, z\right)_{1 z} \\
& t\langle 23\rangle \equiv-a^{4}, n n-\frac{1}{n} a^{4}, n+\frac{1}{n^{2}} a^{4}+a^{6}, z n+\frac{2}{n} a^{6}, z
\end{aligned}
$$

which were derived by BRDIČKA [1957]. Here we have set $a^{2} \equiv u_{n n}, a^{2} \equiv u_{v v} / n, a^{3}=v_{z z}$, $a^{4} \equiv \nabla r_{v z} / r, a^{5} \equiv r_{z r}, a^{6} \equiv r_{n v} / r$. Axially symmetric stress distributions in which $t_{n v}=0=t_{v z}$ are often called "torsionless" (TIMPE [1948]). Since only a^{4} and a^{6} appear in the expressions of these stress components, the most general torsionless system is obtained by setting $\quad a^{4}=0=a^{6} \quad$ in (2.12). In the general case, the six potentials may be reduced to three in a variety of ways, and in the particular torsionless case to only two. For instance when we set, (TRUESDELL [1959])

$$
\begin{aligned}
& L_{, n} \stackrel{d}{=} a^{2}, n+\frac{1}{n} a^{2}-\frac{1}{n} a^{1} \\
& M \stackrel{d}{=} a^{2}, z z+\frac{1}{n} a^{3}, n-\frac{2}{n} a^{5}, z-L, z z
\end{aligned}
$$

the first four members of (2.12) become

$$
\begin{align*}
& t_{n n}=L_{, z z}+M ; \quad t_{v v}=(r M)_{, n}+L_{, z z} \\
& t_{z z}=L_{, n n}+\frac{1}{n} L_{1 n} ; t_{n z}=-L_{, z n} \tag{2.14}
\end{align*}
$$

variants are given by BRDIĆCKA ${ }^{4}$, op. cit. For an elastic material obeying the generalized Hooke's

[^1]constitutive laws, these potentials can be reduced to one by letting
\[

$$
\begin{aligned}
& L_{1 z}=(\sigma-1) \Delta X+X_{1 z z} \\
& M=\frac{1}{n} X_{1 n z}
\end{aligned}
$$
\]

where

$$
\begin{equation*}
\Delta \stackrel{d}{=} \frac{1}{r} \frac{\partial}{\partial r}\left(\pi \frac{\partial}{\partial r}\right)+\frac{\partial^{2}}{\partial z^{2}} \tag{2.16}
\end{equation*}
$$

We then arrive at

$$
\begin{align*}
& t_{n \eta}=\left[\sigma \Delta x-x_{1 n n}\right]_{1 z} \\
& t_{v v}=\left[\sigma \Delta x-\frac{1}{n} x_{1 n}\right]_{, z} \tag{2.17}\\
& t_{z z}=\left[(2-\sigma) \Delta x-x_{1 z z}\right]_{, z} \\
& t_{n z}=\left[(1-\sigma) \Delta x-x_{1 z z}\right]_{, n}
\end{align*}
$$

the Beltrami-Michell stress compatibility equations in cylindrical coordinates (BARREKETTE [1968]) impose on $X(n, z)$ the following restriction

$$
\begin{equation*}
\Delta^{2} x \equiv 0 \tag{2.18}
\end{equation*}
$$

i.e., that X be a biharmonic function. The function X is Love's stress function for torsionless axially symmetric stress fields, having been introduced in the second edition (1906) of Love [1927;par: 188] where its completeness was also asserted5. The reduction (2.15) is not to be read off from any work known to the author.

Expressed in terms of Love's function, from integration of $(1.6)_{3}$, the nonzero displacements have the representations

$$
\begin{align*}
& u_{n}=-\frac{1}{2 \mu} x_{1 n z} \tag{2.19}\\
& u_{z}=\frac{1}{2 \mu}\left[2(1-\sigma) \Delta x-x_{1 z z}\right]
\end{align*}
$$

The equations $\quad t_{n v}=0=t_{v z}$ are therefore identities by using the above representation, likewise $u_{v}=0$
$5_{\text {First fully }}$ satisfactory treatment, including forms in general curvilinear coordinate systems, existence and generalization to elastodynamics: NOLL [1957]. Other references: WESTERGAARD [1952], MARGUERRE [1955], SNEDDON and BERRY [1958], YU [1962], FUNG [1965]. TRUESDELL [1959] gives an exaustive bibliography on works dealing with stress functions that are very valuable for research in this area.

2.2 BIHARMONIC FUNCTIONS IN TERMS OF HARMONIC FUNCTIONS

The biharmonic equation (2.18) is classified as a nondegenerated elliptic equation (MIKHLIN [1967; p. 124]). Sometimes a complete solution of it can be expressed as a combination of appropriate potential functions. Let us assume that a biharmonic scalar function \mathcal{X}, considered in a tri-dimensional domain can be represented in the form of a product of two scalar functions ψ and Ω, which must be of class C^{4} in this domain:

$$
\begin{equation*}
\chi=\psi \Omega \tag{2.20}
\end{equation*}
$$

BLOKH [1958] in a not widely known paper has shown that the most general expression for ψ and Ω are

$$
\begin{equation*}
\psi=\underset{\sim}{a}+\underset{\sim}{b} \cdot \underset{\sim}{x}+c{\underset{\sim}{x}}^{2}, \quad \Omega=\Phi \tag{2.21}
\end{equation*}
$$

where a and c are scalar constants, $\underset{\sim}{x}$ is the position vector of the point under consideration, $\underset{\sim}{b}$ is a constant vector and Φ is a harmonic function. This result seems more explicit for applications than that of Almansi (cf.e.g. EUBANKS and STERNBERG [1954], FUNG [1965; p. 207]) although less general. Obviously a more expanded representation may be obtained by adding such representations as (2.21) in which the constants and the value of the harmonic function Φ are changed.

Designating such variables, constants and functions by the subscript k we introduce harmonic scalar functions and a harmonic vector function

$$
\begin{equation*}
H_{1}=\sum_{k} a_{k} \Phi_{k}, H_{2}=\sum_{k} c_{k} \Phi_{k}, \underset{\sim}{\mathcal{H}}=\sum_{k}{\underset{\sim}{b}}_{k} \Phi_{k} \tag{2.22}
\end{equation*}
$$

the formal biharmonic function X may thus be written as

$$
\begin{equation*}
x=H_{1}+\underset{\sim}{x} \cdot \underset{\sim}{\mathcal{P}}+{\underset{\sim}{x}}^{2} H_{2} \tag{2.23}
\end{equation*}
$$

2.3 A REPRESENTATION FOR LOVE'S FUNCTION IN THE REGION \sum The general solution to equation (2.18) can always be expressed in the form of a sum consisting of a 'particular' solution χ_{0} and a 'complementary' function X_{1} which is biharmonic, i.e.,

$$
\begin{equation*}
x=x_{0}+x_{1} \tag{2.24}
\end{equation*}
$$

A 'particular' solution which satisfies in \sum, as defined in (l.11), homogeneous boundary conditions for equation (2.18) along $\Gamma_{1} \cup \Gamma_{2}$ is readily found to be as suggested by the work of LING and LEE [1954].
$\binom{X_{0}^{1}}{X_{0}^{2}}=\int_{0}^{\infty}\left\{\begin{array}{l}C(\alpha) I_{0}(\alpha n)+D(\alpha) \alpha n I_{1}(\alpha n) \\ +E(\alpha) K_{0}(\alpha n)+F(\alpha) \alpha \eta K_{1}(\alpha n)\end{array}\right\}\binom{\cos \alpha z}{\sin \alpha z} d \alpha$ (2.25)
where $I_{\nu}(\alpha \pi), K_{\nu}(\alpha \eta)$ are modified Bessel functions ${ }^{6}$ of order $\nu=0,1$; the expressions for the parameters C, D, E, F and the restriction on a are developed in the next chapter. We call attention to the fact that χ_{0}^{1} is an odd function in z while χ_{0}^{2} is even in this variable.

The integrals in (2.25) are supposed to be of class $C^{4}(\Sigma)$ and required to converge absolutely and uniformly in the region Σ.

The 'complementary' function χ_{1} is required for the moment, only to satisfy (2.18) and is here chosen as the following infinite series of biharmonic eigenfunctions

$$
\begin{equation*}
\chi_{1}=\sum_{k}\left[A_{k}\left(\beta_{k}\right)+B_{k}\left(\beta_{k}\right) \beta_{k} z\right] \mathscr{C}_{0}\left(\beta_{k} r\right) e^{-\beta_{k} z} \tag{2.26}
\end{equation*}
$$

obtaining from (2.23) by putting $\Phi_{k}=\mathscr{U}_{0}\left(\beta_{k} n\right) e^{-\beta_{k} 2}$ (cf. BIEZENO and GRAMMEL [1954; p. 160], MOON and SPENCER [1961; pp 12-17]), ${\underset{\sim}{k}}^{b_{k}}=B_{k} e_{3}, d_{k}=A_{k} ;$ where

$$
\begin{equation*}
\varphi_{\nu}\left(\beta_{k} \eta\right) \stackrel{d}{=} J_{\nu}\left(\beta_{k} \eta\right)+\lambda_{k} \gamma_{\nu}\left(\beta_{k} \eta\right) \tag{2.27}
\end{equation*}
$$

is a cylinder function of order ν whose singularity
6The notation used here for solutions of Bessel's equa-
tions is the one set forth by WATSON [1944] and adopt-
ed in ABRAMOWITZ and STEGUN [1965].
is avoided intrinsically by the geometry of Π_{h}. It is expected that there will be some kind of decay of the stress and displacement as we move away from Π_{0} according to (1.1) and (1.7), a fact that is called the "exponential condition", and this constitutes the justifiction of the exponential term in (2.26). The parameters λ_{k}, β_{k} are as yet undetermined; the summation in (2.26) is taken over the integral values of K.

The crucial question of whether or not this aggregate of solutions is complete, remains open. It will be seen that X_{0} and X_{1} are so closely mingled that they do not admit a distinction, this being done here, solemy for operational advantages. Remarks on completeness will then be left for the last chapter.

The original main problems (1.14) and (1.15) are now reduced to the determination of the biharmonic function $X(n, z)$ which satisfies:

PM 1: (i) $[\sigma \Delta x-x, m n]_{, z}=0$

$$
[(1-\sigma) \Delta x-x, z z], n=0 \quad \text { on } \quad \Gamma_{1} \cup r_{2}
$$

(ii) $[(2-\sigma) \Delta x-\chi, z z], z=e(r)$

$$
\text { on } \Pi_{0}
$$

$$
x_{, n z}=-f(\pi)
$$

For this problem we will choose the representation (2.24) to be of the form

$$
\begin{equation*}
x=x_{0}^{1}+x_{1} \tag{2.29}
\end{equation*}
$$

PM 2: (i) as in PM I

$$
\text { (ii) } \begin{align*}
{\left[(1-\sigma) \Delta x-x_{1 z z}\right]_{1,} } & =g(n) \\
2(1-\sigma) \Delta x-x_{1 z z} & =h(n) \tag{2.30}
\end{align*}
$$

and in this case we choose to represent χ as

$$
\begin{equation*}
x=x_{0}^{2}+x_{1} \tag{2.31}
\end{equation*}
$$

We note in passing that both problems are non self-adjoint and as such neither the eigenvalues are restricted to the real field (in fact, we show in Appendix I that they are all complex) nor are the eigenfunctions orthogonal. That the problems are physically well posed is obvious, and mathematically this can be corollated from the discussion of SOBOLEV [1963; pars. 14-15].
S as given by (1.4) is uniquely characterized in each PM 1 and PM 2 except for an additive rigid displacement field. To avoid repetitious qualifications we agree to call a displacement field uniquely determined if it is unique within the unessential indeterminacy just mentioned (again, this fact is also elaborated in Appendix I).

CHAPTER III

THE MIXED-MIXED PROBLEMS
3.1 PM 1.: THE COEFFICIENTS C, D, E, F

We analyze first the mixed-mixed problem PM 1 as stated in (1.14) and (2.28). To this end we take

$$
\begin{equation*}
x=x_{0}^{1}+x_{1} \tag{3.1}
\end{equation*}
$$

where x_{0}^{1}, x_{1} have been defined in (2.25) and (2.26).
When the representation (3.1) is substituted into $(2.17)_{4}$ we obtain:

$$
\begin{align*}
& t_{n z}=\sum_{k} 彑_{1}\left(\beta_{k} n\right)\left[A_{k}+B_{k}\left(\beta_{k} z-2 \sigma\right)\right] \beta_{k}^{3} e^{-\beta_{k} z}+ \\
& \int_{0}^{\infty}\left\{C I_{1}(\alpha \pi)+D\left[2(1-\sigma) I_{1}(\alpha n)+\alpha \pi I_{0}(\alpha \pi)\right]-\right. \\
& \left.E K_{1}(\alpha \pi)+F\left[2(1-\sigma) K_{1}(\alpha n)-\alpha \pi K_{0}(\alpha \pi)\right]\right\} \alpha^{3} \cos \alpha z d \alpha \tag{3.2}
\end{align*}
$$

while using (2.17) 1 we have

$$
\begin{aligned}
& t_{n \pi}=\sum_{k}\left\{\mathscr{C}_{0}\left(\beta_{k} r\right)\left[-A_{k}+B_{k}\left(1+2 \sigma-\beta_{k} z\right)\right]+\right. \\
& \left.\frac{1}{\beta_{k} r} \mathscr{C}_{1}\left(\beta_{k} r\right)\left[A_{k}+B_{k}\left(1-\beta_{k} z\right)\right]\right\} \beta_{k}^{3} e^{-\beta_{k} z}+
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{\infty}\left\{C\left[I_{0}(\alpha n)-\frac{1}{\alpha n} I_{1}(\alpha n)\right]+D\left[(1-2 \sigma) I_{0}(\alpha n)+\alpha n I_{1}(\alpha n)\right]+\right. \\
& \left.E\left[K_{0}(\alpha n)+\frac{1}{\alpha n} K_{1}(\alpha n)\right]-F\left[(1-2 \sigma) K_{0}(\alpha n)-\alpha \eta K_{1}(\alpha n)\right]\right\} \tag{3.3}\\
& \alpha^{3} \sin \alpha z d \alpha
\end{align*}
$$

If we are to satisfy the stress free boundary conditions along $\Gamma_{1} \cup \Gamma_{2}$, we start by letting $\mathscr{C}_{1}\left(\beta_{\kappa} \eta\right)$ be zero at these boundaries. This implies then:

$$
\begin{align*}
& J_{1}\left(\beta_{k} a\right)+\lambda_{k} Y_{1}\left(\beta_{k} a\right)=0 \tag{3.4}\\
& J_{1}\left(\beta_{k} b\right)+\lambda_{k} Y_{1}\left(\beta_{k} b\right)=0
\end{align*}
$$

which is a homogeneous linear system in λ_{k}. For a solution to exist we define:
$\beta_{k} \stackrel{d}{=}$ roots of the equation

$$
\begin{equation*}
J_{1}\left(\beta_{k} a\right) Y_{1}\left(\beta_{k} b\right)-J_{1}\left(\beta_{k} b\right) Y_{1}\left(\beta_{k} a\right)=0 \tag{3.5}
\end{equation*}
$$

then readily

$$
\begin{equation*}
\lambda_{k}=-\frac{J_{1}\left(\beta_{k} a\right)}{Y_{1}\left(\beta_{k} a\right)}=-\frac{J_{1}\left(\beta_{k} b\right)}{Y_{1}\left(\beta_{k} b\right)} \tag{3.6}
\end{equation*}
$$

It is known that the equation in (3.5) admits an infinite number of roots all of which are real and simple. Such equation plays a preponderant role concerning the orthogonality of the cylinder function $\varphi_{\nu}\left(\beta_{k} \eta\right)$
in the finite interval $[a, b]$.
To complete the requirements $t_{n z} \equiv 0 \equiv 七_{n n}$ along $\Gamma_{1} U \Gamma_{2}$ we are left with:

$$
\begin{aligned}
& C I_{1}(\alpha \rho)+D\left[2(1-\sigma) I_{1}(\alpha \rho)+\alpha \rho I_{0}(\alpha \rho)\right]- \\
& E K_{1}(\alpha \rho)+F\left[2(1-\sigma) K_{1}(\alpha \rho)-\alpha \rho K_{0}(\alpha \rho)\right]=0 \\
& \int_{0}^{\infty}\left\{C\left[I_{0}(\alpha \rho)-\frac{1}{\alpha \rho} I_{1}(\alpha \rho)\right]+D\left[(1-2 \sigma) I_{0}(\alpha \rho)+\alpha \rho I_{1}(\alpha \rho)\right]+\right. \\
& \left.E\left[K_{0}(\alpha \rho)+\frac{1}{\alpha \rho} K_{1}(\alpha \rho)\right]-F\left[(1-2 \sigma) K_{0}(\alpha \rho)-\alpha \rho K_{1}(\alpha \rho)\right]\right\} \\
& \alpha^{3} \sin \alpha z d \alpha=\sum_{k} G_{0}\left(\beta_{k} \rho\right)\left[A_{k}+B_{k}\left(\beta_{k} z-1-2 \sigma\right)\right] \beta_{k}^{3} e^{-\beta_{k} z}
\end{aligned}
$$

where from now on we use $\rho=a, b$.
If we restrict our set of roots β_{k} to the positive ones, equations $(3.7)_{2}$ can be reversed by applying the inverse Fourier transform (see egg. SNEDDON [1951; p. 18], TRANTER [1956; p. 15]). We obtain thus the system:

$$
\begin{align*}
& {\left[\begin{array}{llll}
I_{1}(\alpha a) & \alpha a I_{0}(\alpha a)+\tau I_{1}(\alpha a) & -K_{1}(\alpha a) & -\left[\alpha a K_{0}(\alpha a)-\tau K_{1}(\alpha a)\right] \\
I_{0}(\alpha a)-\frac{1}{\alpha a} I_{1}(\alpha a) & \tau I_{0}(\alpha a)+\alpha a I_{1}(\alpha a) & K_{0}(\alpha a)+\frac{1}{\alpha a} K_{1}(\alpha a)-\left[\tau K_{0}(\alpha a)-\alpha a K_{1}(\alpha a)\right] \\
I_{1}(\alpha b) & \alpha b I_{0}(\alpha b)+\tau I_{1}(\alpha b)-K_{1}(\alpha b) & -\left[\alpha b K_{0}(\alpha b)-\tau K_{1}(\alpha b)\right] \\
I_{0}(\alpha b)-\frac{1}{\alpha b} I_{1}(\alpha b) & \tau I_{0}(\alpha b)+\alpha b I_{1}(\alpha b) & K_{0}(\alpha b)+\frac{1}{\alpha b} K_{1}(\alpha b)-\left[\tau K_{0}(\alpha b)-\alpha b K_{1}(\alpha b)\right]
\end{array}\right]\left[\begin{array}{l}
C \\
D \\
0 \\
G(a) \\
O(b)
\end{array}\right]=} \\
& {\left[\begin{array}{l}
E
\end{array}\right]=} \tag{3.8}
\end{align*}
$$

Where we have defined the following symbols:

$$
\begin{align*}
& Q_{(\rho)} \stackrel{d}{\pi} \frac{2}{\pi} \sum_{k} \mathscr{C}_{0}\left(\beta_{k} \rho\right)\left\{A_{k}\left(\alpha^{2}+\beta_{k}^{2}\right)+\right. \\
& \left.B_{k}\left[(\tau-1)\left(\alpha^{2}+\beta_{k}^{2}\right)-2 \alpha^{2}\right]\right\} \frac{\beta_{k}^{3}}{\alpha^{2}\left(\alpha^{2}+\beta_{k}^{2}\right)^{2}} \tag{3.9}\\
& \tau \stackrel{d}{=} 2(1-\sigma) \tag{3.10}
\end{align*}
$$

we define further,
Def. 4: The matrix of the coefficients in equation (3.8) will be denoted by $\sqrt{i \alpha} \not \mathscr{f}(\alpha)$ and we call

$$
\begin{equation*}
\operatorname{det} \not \mathscr{Z}(\alpha)=0 \tag{3.11}
\end{equation*}
$$

the "associate characteristic equation".
Def. 5. We define a "transposition symbol" $\exists_{d b} \equiv \exists_{b a}$ to be such that, if $f(a \mid b)$ is a function of the ordered pair 〈a,b> then

$$
\begin{equation*}
\exists_{a b} f(a \mid b)=f(b \mid a) \tag{3.12}
\end{equation*}
$$

For operational purposes we postulate the linearity of Э ab. Also

$$
3_{a b}\left(3_{a b}\right)=1
$$

Solving (3.8) we obtain a suitable expression for the 'particular' solution χ_{o}^{1}, namely:

$$
\begin{align*}
& X_{0}^{1}=\frac{2}{\pi}\left(1+\ni_{a b}\right) b r \sum_{k} \mathscr{C}_{0}\left(\beta_{k} a\right) \beta_{k}^{3} \\
& \int_{0}^{\infty}\left[c(\alpha a \mid \alpha b) \frac{I_{0}(\alpha n)}{\alpha n}-D(\alpha a \mid \alpha b) I_{1}(\alpha n)+\right. \\
& \left.E(\alpha a \mid \alpha b) \frac{K_{0}(\alpha n)}{\alpha n}-F(\alpha a \mid \alpha b) K_{1}(\alpha n)\right] \tag{3.13}\\
& \frac{U_{k} \cos \alpha z}{\alpha^{2}\left(\alpha^{2}+\beta_{k}^{2}\right)^{2} \operatorname{det} 7(\alpha)} d \alpha
\end{align*}
$$

where

$$
\begin{equation*}
a_{k}=\left[A_{k}+(\tau-1) B_{k}\right]\left(\alpha^{2}+\beta_{k}^{2}\right)-2 B_{k} \alpha^{2} \tag{3.14}
\end{equation*}
$$

For convenience, the expressions for the coefficients $C(\alpha a \mid \alpha b)$, etc. have been listed in Appendix II.

In (3.13) the real part of the integrand is an even function of α, so that the path of integration can be deformed in a semicircle of infinite radius on the upper semi-plane together with the real axis. This being done, we may use the residue theorem to evaluate the integral. The following isolated singularities exist:
(a) pole of order two at the origin: the residue at this singularity does not contribute to the solution since we are assuming self-equilibrated loads (see the discussion in Appendix I; cf. also BUCHWALD [1964] and CHILDS [1966]).
(b) poles of order two at $\alpha= \pm i \beta_{k}$: the sum of residues at these poles add up to $-X_{1}$ and cancel out the series part of the solution in (3.1), (cf. KOITER and ALBLAS [1954], JOHNSON and LITTLE [1965], CHILDS [1966]). This fact shows that in reality, our representations χ_{0} and χ_{1} are so closely mingled together that they do not admit distinction and have only been used so as to facilitate operational expansions.
(c) zeros of order one at the roots α_{j} of the characteristic equation (3.11): the complete solution depends essentially on these roots. From now on the symbol α_{j} will stand for the roots of (3.11) with $O<\arg \alpha_{j}<\pi$, they will be called the eigenvalues of the problem as explained in Appendix I.

Love's function thus reduces in this case to the double series representation:

$$
\begin{equation*}
\chi=\left(1+\exists_{a b}\right) \sum_{k} \sum_{j} \frac{i \beta_{k}^{3} \mathscr{C}_{0}\left(\beta_{k}{ }^{2}\right) थ_{k} j}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)^{2} थ_{j}}\left[b_{n} \operatorname{m}_{j}\left(\alpha_{j} \beta \mid \alpha_{j} b\right)\right] e^{i \alpha_{j} z} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
& U_{k j} \stackrel{d}{=} U_{k} \quad \text { evaluated at } \quad \alpha_{j} \\
& \left.\operatorname{rrq}^{\left(\alpha_{j}\right.} \partial \mid \alpha_{j} b\right) \stackrel{d}{=} C\left(\alpha_{j} \partial \mid \alpha_{j} b\right) \frac{I_{0}\left(\alpha_{j} n\right)}{\alpha_{j} n}- \\
& D\left(\alpha_{j} a \mid \alpha_{j} b\right) I_{1}\left(\alpha_{j} n\right)+E\left(\alpha_{j} a \mid \alpha_{j} b\right) \frac{K_{0}\left(\alpha_{j} n\right)}{\alpha_{j} n}-F\left(\alpha_{j} a \mid \alpha_{j} b\right) K_{1}\left(\alpha_{j} n\right) \\
& U_{j} \stackrel{d}{=} \frac{\alpha_{j}^{2}}{2} \frac{d}{d \alpha_{j}}\left[\operatorname{det} 7\left(\alpha_{j}\right)\right] \tag{3.16}
\end{align*}
$$

3.2 PM 1, THE COEFFICIENTS $\mathrm{Ak}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}$

At the plane end $\Pi_{0}, z=0$ and condition (2.28) (ii) yield respectively using (3.1); the integral part being zero there:

$$
\begin{align*}
& \sum_{k} \mathscr{C}_{0}\left(\beta_{k} n\right)\left[A_{k}+(\tau-1) B_{k}\right] \beta_{k}^{3}=e(n) \tag{3.17}\\
& \sum_{k} \mathscr{C}_{1}\left(\beta_{k} r\right)\left[A_{k}-B_{k}\right] \beta_{k}^{2}=-f(n)
\end{align*}
$$

which are coupled Bini's series for the determination of A_{k}, B_{k}. Since $\mathscr{G}_{1}\left(\beta_{k} a\right)=0=\mathscr{C}_{1}\left(\beta_{k} b\right)$., Lommel's formula yields (WATSON [1944; p. 134]):

$$
\begin{gather*}
\int_{a}^{b} \mathscr{C}_{\nu}\left(\beta_{k} n\right) \mathscr{L}_{\nu}\left(\beta_{\imath} r\right) n d n=\delta_{k l} N_{k} \quad \nu=0,1 \tag{3.18}\\
N_{k}=\left.\frac{1}{2} n^{2} \mathscr{C}_{0}^{2}\left(\beta_{k} r\right)\right|_{a} ^{b}
\end{gather*}
$$

Using this property we determine

$$
\begin{align*}
& A_{k}=B_{k}-\frac{\int_{a}^{b} e(r) \mathscr{C}_{1}\left(\beta_{k} n\right) r d r}{\beta_{k}^{2} N_{k}} \\
& B_{k}=\frac{\int_{a}^{b} e(r) \mathscr{C}_{0}\left(\beta_{k} r\right) r d r+\beta_{k} \int_{a}^{b} f(r) \mathscr{C}_{1}\left(\beta_{k} r\right) r d r}{\tau \beta_{k}^{3} N_{k}} \tag{3.19}
\end{align*}
$$

In (3.15) we define

$$
\begin{align*}
& c_{j}(a) \stackrel{d}{\cong} i \sum_{k} \frac{r_{k j} \beta_{k}^{3} \varphi_{0}\left(\beta_{k} a\right)}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)^{2}} \tag{3.20}\\
& \text { and substituting (3.19) } \\
& c_{j}(a)=i \int_{a}^{b} \frac{e(r)}{\tau}\left[\tau \sum_{k} \frac{\mathscr{B}_{0}\left(\beta_{k} a\right) \mathscr{C}_{0}\left(\beta_{k} n\right)}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right) N_{k}}-2 \alpha_{j}^{2} \sum_{k} \frac{\mathscr{C}_{0}\left(\beta_{k a} a\right) \varphi_{0}\left(\beta_{k} n\right)}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)^{2} N_{k}}\right] r d r \\
& -i \int_{a}^{b} \frac{f(r)}{\tau}\left[2 \alpha_{j}^{2} \sum_{k} \frac{\beta_{k} \mathscr{O}_{0}\left(\beta_{k} a\right) \mathscr{l}_{1}\left(\beta_{k} r\right)}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)^{2} N_{k}}\right] r d r \tag{3.21}
\end{align*}
$$

The kernels of these integrals can be simplified by determining the convergence value of the series involved in (3.21); this is shown in Appendix III. The final solution to PM I has thus the form

$$
\begin{equation*}
\chi=\left(1-\ni_{a b}\right) \sum_{j} \frac{b r \gamma_{\gamma}\left(\alpha_{j} a \mid \alpha_{j} b\right)}{V_{j}} c_{j}(a) e^{i \alpha_{j} z} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{j}(a)=i \int_{a}^{b}-\frac{e(n)}{\tau}\left[\tau \frac{Z_{b o}\left(\alpha_{j} n\right)}{\alpha_{j} a Z_{b 1}\left(\alpha_{j} a\right)}+\frac{n Z_{b 1}\left(\alpha_{j} n\right)}{a Z_{b 1}\left(\alpha_{j} a\right)}-\right. \\
& \left.\frac{b Z_{b o}\left(\alpha_{j} b\right) Z_{a 0}\left(\alpha_{j} n\right)}{a \mathcal{Z}_{a 1}\left(\alpha_{j} b\right) \mathcal{Z}_{b 1}\left(\alpha_{j a}\right)}-\frac{\mathcal{Z}_{b o}\left(\alpha_{j} a\right) Z_{b o}\left(\alpha_{j} n\right)}{\mathcal{Z}_{b 1}^{2}\left(\alpha_{j} a\right)}\right] n d n \\
& +i \alpha_{j} \int_{a}^{b} \frac{f(n)}{\tau}\left[\frac{\pi Z_{b o}\left(\alpha_{j} n\right)}{a Z_{b 1}\left(\alpha_{j} a\right)}-\frac{b \mathcal{Z}_{b o}\left(\alpha_{j} b\right) Z_{a 1}\left(\alpha_{j} n\right)}{a Z_{a 1}\left(\alpha_{j} b\right) Z_{b 1}\left(\alpha_{j} a\right)}-\right. \\
& \left.\frac{Z_{b o}\left(\alpha_{j} a\right) Z_{b 1}\left(\alpha_{j} n\right)}{Z_{b 1}^{2}\left(\alpha_{j} a\right)}\right] n d r \tag{3.23}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{Z}_{\rho \nu}\left(\alpha_{j} \eta\right)=I_{\nu}\left(\alpha_{j} n\right)+(-1)^{\nu} \frac{I_{1}\left(\alpha_{j} \rho\right)}{K_{1}\left(\alpha_{j} \rho\right)} K_{\nu}\left(\alpha_{j} n\right) \tag{3.24}\\
& \rho=a, b \quad ; \nu=0,1
\end{align*}
$$

Using (2.17) and (2.19), $S=\left\langle\underset{\sim}{v}{\underset{\sim}{t}}_{\underset{\sim}{t}}^{t}\right\rangle$ is fully determined in the 'stick' contact problem on Π_{0}.

3.3 THE SECOND MIXED-MIXED PROBLEM: PM 2

To analyze PM 2 as stated in (1.15) and (2.30) we use

$$
\begin{equation*}
x=x_{0}^{2}+x_{1} \tag{3.25}
\end{equation*}
$$

and develop along parallel lines to PM 1. Here the boundary conditions (2.30)(ii) involve second order derivatives with respect to z so that at Π_{0} the integral part of the solution is zero. The boundary values $g(n)$ and $h(r)$ can thus be expressed in terms of Dini series.

The final result is then found to be of the form

$$
\begin{equation*}
X=\left(1-\exists_{a b}\right) \sum_{j} \frac{b r भ_{(}\left(\alpha_{j} a \mid \alpha_{j} b\right)}{r_{j}} d_{j}(a) e^{i \alpha_{j} z} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{j}(a)=\int_{a}^{b} \frac{g(n)}{\tau}\left[\frac{n \mathcal{Z}_{b o}\left(\alpha_{j} n\right)}{a Z_{b 1}\left(\alpha_{j} a\right)}-\left(\frac{\tau}{\alpha_{j a} \mathcal{Z}_{b 1}\left(\alpha_{j} n\right)}+\right.\right. \\
& \left.\left.\frac{\mathcal{Z}_{b 0}\left(\alpha_{j} a\right)}{\mathcal{Z}_{b 1}^{2}\left(\alpha_{j a}\right)}\right) \mathscr{Z}_{b 1}\left(\alpha_{j} n\right)-\frac{b \mathcal{Z}_{b 0}\left(\alpha_{j} b\right) \mathcal{Z}_{a 1}\left(\alpha_{j} n\right)}{a Z_{a 1}\left(\alpha_{j} b\right) Z_{b 1}\left(\alpha_{j} a\right)}\right] n d n+
\end{aligned}
$$

$$
\begin{align*}
& +\int_{a}^{b} \frac{h(n)}{\tau}\left[\frac{\alpha_{j} n \mathcal{Z}_{b 1}\left(\alpha_{j} n\right)}{a \mathcal{Z}_{b 1}\left(\alpha_{j} a\right)}+\left(\frac{2}{\tau} \frac{\tau}{\alpha_{j} a \mathcal{Z}_{b 1}\left(\alpha_{j} a\right)}-\right.\right. \\
& \left.\frac{\mathcal{Z}_{b o}\left(\alpha_{j} a\right)}{\mathcal{Z}_{b 1}^{2}\left(\alpha_{j} a\right)} \right\rvert\, \alpha_{j} \mathcal{Z}_{b o}\left(\alpha_{j} n\right)- \tag{3.27}\\
& \left.\frac{\alpha_{j} b \mathcal{Z}_{b o}\left(\alpha_{j} b\right) \mathcal{Z}_{a 0}\left(\alpha_{j} n\right)}{2 \mathcal{Z}_{a 1}\left(\alpha_{j} b\right) \mathcal{Z}_{b 1}\left(\alpha_{j} a\right)}\right] \pi d r
\end{align*}
$$

all symbols involved in (3.26) and (3.27) having the same significance as in PM 1 . We find $S=\langle\underset{\sim}{u}, \underset{\sim}{t}\rangle$ for the rigid contact problem by using as before (2.17) and (2.19).
3.4 A PARTIAL SUMMARY

To shorten forthcoming expressions, we define the following symbols

$$
\begin{align*}
& P_{j a} \stackrel{d}{=} / a \mathcal{Z}_{b 1}\left(\alpha_{j} a\right) \\
& Q_{j a} \stackrel{d}{=} \mathcal{Z}_{b 0}\left(\alpha_{j} a\right) / \mathcal{Z}_{b 1}^{2}\left(\alpha_{j} a\right) \\
& R_{j a} \stackrel{d}{=} \tau / \alpha_{j} a \mathcal{Z}_{b 1}\left(\alpha_{j} a\right) \tag{3.28}\\
& S_{j a} \stackrel{d}{=} b \mathcal{Z}_{b 0}\left(\alpha_{j} b\right) / a \mathcal{Z}_{a 1}\left(\alpha_{j} b\right) \mathcal{Z}_{b 1}\left(\alpha_{j} a\right)
\end{align*}
$$

and

The results obtained so far may then be summerizod as:

PM 1: Love's function is of the form

$$
\begin{gather*}
X=\left(1-\exists_{a b}\right) \sum_{j} \frac{b r \gamma\left(\alpha_{j} a \mid \alpha_{j} b\right)}{थ_{j}} c_{j}(a) e^{i \alpha_{i} z} \tag{3.30}\\
c_{j}(a)=\frac{i}{\tau} \int_{a}^{b}\left[e(n) \mathcal{L R}_{\perp j}+f(n)_{d} \eta \mathcal{R}_{3 j}\right] r d n
\end{gather*}
$$

PM 2: Love's function is

$$
\begin{align*}
& x=\left(1-\exists_{a b}\right) \sum_{j} \frac{b n M\left(\alpha_{j} a \mid \alpha_{j} b\right)}{U_{j}} d_{j}(a) e^{i \alpha_{j} z} \tag{3.31}\\
& d_{j}(a)=\frac{1}{\tau} \int_{a}^{b}\left[g(n)_{a} \eta r_{2 j}+h(n)_{a} \eta \int_{4 j}\right] n d n
\end{align*}
$$

in both solutions, α_{j} are the eigenvalues computed from (3.11) which have positive imaginary part.

CHAPTER IV

THE GENERAL APPROACH

4.1 NOTATIONAL AGREEMENTS

It is convenient to express all the results obtained so far in terms of the Bessel functions J_{ν} and Y_{ν}. To achieve this, the complex parameters α_{j} will be replaced by an equivalent one denoted by $i \gamma_{j}$, ie., we rotate the domain of the eigenvalues by $-(\pi / 2)$. We symbolize by

$$
\begin{align*}
& H_{\nu}^{(1)} \stackrel{d}{=} J_{\nu}+i Y_{\nu} \tag{4.1}\\
& H_{\nu}^{(2)} \stackrel{d}{=} J_{\nu}-i Y_{\nu}
\end{align*}
$$

the Hankel functions of order ν. For convenience in writing the complex mathematical expressions, we define:

$$
\begin{aligned}
& \hat{\rho}_{\rho} \stackrel{d}{=} \gamma_{j} \rho J_{0}\left(\gamma_{j} \rho\right)+\tau J_{1}\left(\gamma_{j} \rho\right) \\
& \hat{m}_{\rho} \stackrel{d}{=} J_{0}^{2}\left(\gamma_{j} \rho\right)+\left(1-\frac{\tau}{\gamma_{j}^{2} \rho^{2}}\right) J_{1}^{2}\left(\gamma_{j} \rho\right) \\
& \hat{n}_{p} \stackrel{d}{=} \frac{2 i}{\pi}\left\{\frac{\tau a}{\gamma_{j} b^{2}} J_{0}\left(\gamma_{j} a\right)-\left(1-\frac{\tau}{\gamma_{j}^{2} b^{2}}\right) J_{1}\left(\gamma_{j} a\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& \hat{p}_{\rho} \stackrel{d}{=} \gamma_{j} \rho H_{0}^{(2)}\left(\gamma_{i} \rho\right)+\tau H_{i}^{(2)}\left(\gamma_{j} \rho\right) \tag{4.5}\\
& \hat{q}_{\rho} \triangleq\left[H_{0}^{(2)}\left(\gamma_{j} \rho\right)\right]^{2}+\left(1-\frac{\tau}{\gamma_{j}^{2} \rho^{2}}\right)\left[H_{i}^{(2)}\left(\gamma_{j} \rho\right)\right]^{2} \tag{4.6}\\
& \hat{r} \stackrel{d}{=} \frac{2 i}{\pi}\left\{\frac{\tau a}{\gamma_{j} b^{2}} H_{0}^{(2)}\left(\gamma_{j} a\right)-\left(1-\frac{\tau}{\gamma_{j}^{2} b^{2}}\right) H_{i}^{(2)}\left(\gamma_{j} a\right)\right\} \text { (4.7) } \tag{4.7}\\
& \hat{s}_{\rho} \stackrel{d}{=} J_{0}\left(\gamma_{j} \rho\right) H_{0}^{(2)}\left(\gamma_{j} \rho\right)+\left(1-\frac{\tau}{\gamma_{j}^{2} \rho^{2}}\right) J_{L}\left(\gamma_{j} \rho\right) H_{l}^{(2)}\left(\gamma_{j} \rho\right)(4.8)
\end{align*}
$$

We also recall the Wronskian result

$$
\begin{equation*}
H_{0}^{(1)}\left(\gamma_{j} \rho\right) H_{l}^{(2)}\left(\gamma_{j} \rho\right)-H_{l}^{(1)}\left(\gamma_{j} \rho\right) H_{0}^{(2)}\left(\gamma_{j} \rho\right)=4 i / \pi \gamma_{j} \rho \tag{4.9}
\end{equation*}
$$

With these notations, we then have

$$
\begin{align*}
& m\left(\alpha_{j} a \mid \alpha_{j} b\right)=-\left(\pi^{2} / L_{1}\right) \quad m\left(\gamma_{j} a \mid \gamma_{j} b\right) \tag{4.10}\\
& C\left(\alpha_{j} a \mid \alpha_{j} b\right) \stackrel{d}{=}-\left(\pi^{2} / 4\right) i c_{j}(a \mid b) \\
& D\left(\alpha_{j} \mid \alpha_{j} b\right) \triangleq-\left(\pi^{2} / 4\right) i d_{j}(a \mid b) \\
& E\left(\alpha_{j} a \mid \alpha_{j} b\right) \stackrel{d}{=}(\pi / 2) \quad e_{j}(a \mid b) \tag{4.11}\\
& F\left(\alpha_{j} a \mid \alpha_{j} b\right) \cong-(\pi / 2) \quad f_{j}(a \mid b)
\end{align*}
$$

where

$$
\begin{align*}
& m\left(\gamma_{i} \mid \gamma_{i} b\right) \stackrel{d}{=} c_{j}(a \mid b) J_{0}\left(\gamma_{j} n\right) /\left(\gamma_{j} n\right)+d_{j}(a \mid b) J_{1}\left(\gamma_{j} n\right) \\
& +e_{j}(a \mid b) H_{0}^{(2)}\left(\gamma_{j} n\right) /\left(\gamma_{j} n\right)+f_{j}(a \mid b) H_{1}^{(2)}\left(\gamma_{j} n\right) \tag{4.12}
\end{align*}
$$

and

$$
\begin{align*}
& c_{j}(a \mid b)=\hat{l}_{a} \hat{q}_{b}-\hat{p}_{a} \hat{S}_{b}+\hat{n} \\
& d_{j}(a \mid b)=J_{L}\left(\gamma_{j} a\right) \hat{q}_{b}-H_{L}^{(2)}\left(\gamma_{j} a\right) \hat{s}_{b}+\frac{2 i}{\pi} \frac{a}{\gamma_{j} b^{2}} H_{a}^{(2)}\left(\gamma_{j} a\right) \\
& e_{j}(a \mid b)=\hat{p}_{a} \hat{m}_{b}-\hat{l}_{a} \hat{S}_{b}-\hat{n} \tag{4.13}\\
& f_{j}(a \mid b)=H_{l}^{(2)}\left(\gamma_{j} a\right) \hat{m}_{b}-J_{1}\left(\gamma_{j} a\right) \hat{s}_{b}-\frac{2 i}{\pi} \frac{a}{\gamma_{j} b^{2}} J_{0}\left(\gamma_{j} a\right)
\end{align*}
$$

Likewise

$$
\begin{align*}
V_{j} & =i \frac{\gamma_{i}^{2}}{2} \frac{d}{d \gamma_{j}}[\operatorname{det} A] \\
& \frac{d}{4}-\frac{\pi^{2}}{4} i \frac{\gamma_{i}^{2}}{2} \frac{d}{d \gamma_{i}}[\hat{A}] \tag{4.14}\\
& \doteq d-\frac{\pi^{2}}{4} i \hat{V}_{j}
\end{align*}
$$

and here we have

$$
\begin{align*}
\operatorname{det} A=-\frac{\pi^{2}}{4} a b & \left\{\hat{m}_{a} \hat{q}_{b}+\hat{m}_{b} \hat{q}_{a}-2 \hat{s}_{a} \hat{s}_{b}\right. \\
& \left.+\frac{4}{\pi^{2}} \frac{1}{\left(\gamma_{j} a b\right)^{2}}\left[a^{2}+b^{2}-\frac{2 \tau}{\gamma_{j}^{2}}\right]\right\} \tag{4.15}
\end{align*}
$$

the use of

$$
\begin{equation*}
\operatorname{det} \hat{A} \stackrel{d}{=}-\frac{\pi^{2}}{4} \hat{A} \tag{4.16}
\end{equation*}
$$

will avoid numerical multipliers in subsequent formulae. The eigen values are now the roots of

$$
\begin{equation*}
\hat{A}=0 \tag{4.17}
\end{equation*}
$$

which are tabulated on Appendix IV. It is interesting to remark that the corresponding eigenvalues on the case of the solid circular cylinder, are simply the roots of

$$
\begin{equation*}
\hat{m}_{b}=0 \tag{4.18}
\end{equation*}
$$

In obtaining the above formulae, we made use of the transformation laws:

$$
\begin{align*}
& I_{\nu}\left(\alpha_{j} n\right)=(i)^{\nu} J_{\nu}\left(\gamma_{j} n\right) \tag{4.19}\\
& K_{\nu}\left(\alpha_{j} n\right)=-(\pi / 2)(i)^{(1-\nu)} H_{\nu}^{(2)}\left(\gamma_{j} n\right)
\end{align*}
$$

we also need the following one

$$
\begin{equation*}
\mathcal{Z}_{\rho \nu}\left(\alpha_{j} n\right)=(-i)^{(1-\nu)} \mathscr{C}_{\rho \nu}\left(\gamma_{j} n\right) / H_{i}^{(2)}\left(\gamma_{j} \rho\right) \tag{4.20}
\end{equation*}
$$

where

$$
\mathscr{C}_{\rho \nu}\left(\gamma_{j n}\right)=J_{\nu}\left(\gamma_{i n}\right) Y_{1}\left(\gamma_{i} \rho\right)-Y_{\nu}\left(\gamma_{j n}\right) J_{1}\left(\gamma_{i} \rho\right)
$$

and in all these expressions $\nu=0,1$. Function (4.21) satisfies the boundary conditions $\mathscr{C}_{\rho 1}\left(\gamma_{i \rho}\right) \equiv 0$
identically for $\rho=a, b$, and $\mathcal{G}_{\rho}\left(\gamma_{j} \rho\right)=-2 / \pi \gamma_{j} \rho$. Recalling the definitions introduced in Para. 3.4, we put

$$
\begin{align*}
& p_{j a} \stackrel{d}{=} 1 / a Q_{b l}\left(\gamma_{j} a\right)=P_{j a} / H_{i}^{(2)}\left(\gamma_{j}^{b}\right) \\
& q_{j a} \stackrel{d}{=} \varphi_{b a}\left(\gamma_{j a}\right) / \mathscr{C}_{b 1}^{2}\left(\gamma_{i a}\right)=i Q_{j a} / H_{1}^{(2)}\left(\gamma_{j} b\right) \\
& \eta_{j a} \stackrel{d}{=} \tau / \gamma_{j a} \mathscr{C}_{b 1}\left(\gamma_{i a}\right)=i R_{j a} / H_{l}^{(2)}\left(\gamma_{j} b\right) \tag{4.22}\\
& s_{j a} \stackrel{d}{=} b \mathscr{C}_{b a}\left(\gamma_{i} b\right) / a \mathscr{b}_{a l}\left(\gamma_{j} b\right) \mathscr{C}_{b 1}\left(\gamma_{j a}\right) \\
&=i S_{j a} / H_{l}^{(2)}\left(\gamma_{j} a\right)
\end{align*}
$$

For convenience it is also advisable to define

$$
a{\underset{w}{j}}^{\sim}=\left[\begin{array}{ccc}
1 & & \tag{4.23}\\
& -i & 0 \\
0 & 1 \\
-i
\end{array}\right]=\underset{\sim}{\sim_{j}}
$$

so that

$$
a \mu_{\sim}^{\mu j}=\left[\begin{array}{cccc}
-\left(q_{j a}-r_{j a}\right) & -\pi p_{j a} & -s_{j a} & 0 \tag{4.24}\\
-\pi p_{j a} & \left(q_{j a}+n_{j a}\right) & 0 & s_{j a} \\
\gamma_{j} r p_{j a} & -\gamma_{j} q_{j a} & 0 & -\gamma_{j} s_{j a} \\
\gamma_{j}\left(q_{j a}-\frac{2}{\tau} n_{j a}\right) & \gamma_{i} p_{j a} & \gamma_{j} s_{j a} & 0
\end{array}\right]\left[\begin{array}{l}
f_{b a}\left(\gamma_{i} r\right) \\
g_{b l}\left(\gamma_{j} n\right) \\
\theta_{a b}\left(\gamma_{j} n\right) \\
\theta_{a i}\left(\gamma_{i n}\right)
\end{array}\right]
$$

4.2 THE MIXED -MIXED PROBLEMS PMI AND PM2

In terms of the notations put forward in the preceding paragraph, we may recollect the results of Chapter III in the forms:

PM1:

$$
\chi=\left(1-3_{\partial b}\right) \sum_{j} \frac{b_{n} M\left(\gamma_{i} \mid \gamma_{i} b\right) \hat{c}_{j}(a)}{\hat{\varkappa}_{j}} e^{-\gamma_{i} z}
$$

$$
\hat{c}_{j}(a)=\frac{1}{\tau} \int_{a}^{b}\left[e(\eta) a w_{d j}+f(\eta) a u_{3 j}\right] n d n
$$

PM 2:

$$
\begin{aligned}
& x=\left(1-\Xi_{a b}\right) \sum_{j} \frac{b n M\left(\gamma_{i} a \mid \gamma_{i} b\right) \hat{d}_{j}(a)}{\hat{v}_{j}} e^{-\gamma_{j} 2} \\
& \hat{d}_{j}(a)=\frac{1}{\tau} \int_{a}^{b}\left[g(n) a_{2} \int_{2 j}+h(n) a \mu_{L_{1 j}}\right] n d n
\end{aligned}
$$

4.3 THE GENERAL SOLUTION

A general representation of Love's function for circular hollow semi-inifinite cylindrical regions can now be constructed based on solutions (4.25) and (4.26). To this end we take:

$$
X=\left(1-\exists_{a b}\right) \sum_{j} \frac{b_{n} M\left(\gamma_{j} a \mid \gamma_{i} b\right) \hat{a}_{j}(a)}{\hat{v}_{j}} e^{-\gamma_{j}{ }^{2}}
$$

$$
\begin{align*}
\hat{a}_{j}(a) \stackrel{d}{=} & \hat{c}_{j}(a)+\hat{d}_{j}(a) \\
= & \frac{1}{\tau} \int_{a}^{b}\left[e(n) a^{u r_{1 j}}+f(n) a r_{3 j}\right. \tag{4.28}\\
& \left.+g(n) a_{a} u r_{2 j}+h(n) a^{u} r_{4 j}\right] n d n
\end{align*}
$$

Using (4.27) in the evaluation of formulae (2.17) and (2.19) we obtain:

$$
\begin{align*}
& t_{z z}=\left(1-\exists_{a b}\right) \sum_{k} \frac{\hat{a}_{k}(a) \hat{r}_{1 k}}{\hat{r}} e^{-\gamma_{k} z} \tag{4.29}\\
& v_{n}=\frac{1}{2 \mu}\left(1-z_{a b}\right) \sum_{k} \frac{\hat{a}_{k}(a) r_{2 k}}{\hat{r}} e^{-\gamma_{k} z} \tag{4.30}\\
& t_{n z}=\left(1-\xi_{a b}\right) \sum_{k} \frac{\hat{a}_{k}(a) r_{2 k}}{\hat{r}} e^{-\gamma_{k} z} \tag{4.31}\\
& u_{z}=\frac{1}{2 \mu}\left(1-3_{a b}\right) \sum_{k} \frac{\hat{a}_{k}(a) a r_{4 k}}{\hat{\gamma}} e^{-\gamma_{k} z} \tag{4.32}
\end{align*}
$$

The values $\bar{E}_{z z}, \bar{u}_{n}, \bar{E}_{n z}, \bar{u}_{z}$ of these components at the plane boundary Π_{0} are derived from the above by putting $z=0$.

For shortness we have defined for use in the above expressions:

$$
a \mu_{k} \stackrel{d}{=} \gamma_{k} b\left[\begin{array}{cccc}
\gamma_{k}\left[c_{k}-(2+\tau) d_{k}\right] & \gamma_{k}^{2} n d_{k} & \gamma_{k}\left[e_{k}-(2+\tau) f_{k}\right] & \gamma_{k}^{2} r f_{k} \tag{4.33}\\
-\gamma_{k}^{2} n d_{k} & \gamma_{k}\left[c_{k}-\tau d_{k}\right] & -\gamma_{k}^{2} n f_{k} & \gamma_{k}\left[e_{k}=\tau f_{k}\right] \\
\gamma_{k} n d_{k} & -c_{k} & \gamma_{k} n f_{k} & -e_{k} \\
-\left[c_{k}-2 \tau d_{k}\right] & -\gamma_{k} \imath d_{k} & -\left[e_{k}-2 \tau f_{k}\right] & -\gamma_{k} n f_{k}
\end{array}\right]\left[\begin{array}{l}
J_{0}\left(\gamma_{k} n\right) \\
J_{L}\left(\gamma_{k} n\right) \\
H_{0}^{(2)}\left(\gamma_{k} n\right) \\
H_{l}^{(2)}\left(\gamma_{k} n\right)
\end{array}\right]
$$

where $c_{k}, d_{k}, e_{k}, f_{k}$ are defined like in (4.13).

4.4 SOLUTION OF SPECIFIC BOUNDARY CONDITIONS

We return to equation (4.28) which can be expressed as

$$
\begin{align*}
\hat{a}_{j}(\rho) & =\frac{1}{\tau} \int_{a}^{b}\left[E_{z z} \rho^{u r_{1 j}}+2 \mu \bar{u}_{n} \rho^{w r_{3 j}}\right] n d r \\
& +\frac{1}{\tau} \int_{a}^{b}\left[E_{n z} \rho^{u r_{2 j}}+2 \mu \bar{u}_{z} \rho^{u w_{4 j}}\right] r d r \tag{4.34}
\end{align*}
$$

i.e., the coefficients involved on the general representation are expressed as an integral equation in the non-zero components of the stress tensor and displacement vector at the plane boundary Π_{0}. However, only a pair of these four components may be chosen to be arbitrary self-equilibrating stresses or displacements. The form (4.34) is appropriate to discuss the particular problems PM1 and PM2. In the first problem we denote the first integral in (4.34), the one containing the specified boundary conditions, by $\rho \bar{g}_{j}$, while the same symbol will represent the second integral when discussing PM2. We also define the hybrid integrals, $\left(\rho_{1}, \rho_{2}=a, b\right)$:

$$
\begin{equation*}
y_{j k}^{\left\langle\rho_{1}, \rho_{2}\right\rangle}=\frac{1}{\tau \hat{v}_{k}} \int_{a}^{b}\left[\rho_{1} u_{2 j} \rho_{\rho_{2}}^{\mu} r_{2 k}+\rho_{1}^{u} r_{4 j} \rho_{2}^{r} \mu_{4 k}\right] r d r \tag{4.35}
\end{equation*}
$$

The determination of $\hat{a}_{j}(\rho)$ is thus reduced.in each case to solving a doubly infinite set of linear equations, namely

PMI

$$
\begin{equation*}
\hat{a}_{j}(\rho)=\rho g_{j}+\sum_{k} \hat{a}_{k}(a) y_{j k}^{\langle\rho, a\rangle}-\sum_{k} \hat{a}_{k}(b) y_{j k}^{\langle p, b\rangle} \tag{4.37}
\end{equation*}
$$

PM 2

$$
\begin{equation*}
\hat{a}_{j}(p)=p g_{j}+\sum_{k} \hat{a}_{k}(a) \tilde{f}_{j k}^{\langle p, a\rangle}-\sum_{k} \hat{a}_{k}(b) f_{j k}^{\langle p, b\rangle} \tag{4.38}
\end{equation*}
$$

where as always $\rho=a, b$.
In analogy with the solid cylinder solution discussed by CHILDS [1966], the $u r$ and r eigenfunctions are expected to constitute a biorthogonal countably infinite system such that

$$
\begin{equation*}
J_{j k}^{\left\langle p_{1} p_{2}\right\rangle}=\frac{1}{2} \delta_{j k}=-f_{j k}^{\left\langle p_{1}, \rho_{2}\right\rangle} \tag{4.39}
\end{equation*}
$$

in which case, proving the completeness of the representation for the mixed-mixed class of problems is automatic.

In PT (the traction problem) we are expected to solve

$$
\hat{a}_{j}(\rho)=\rho g_{j}+\sum_{k} \hat{a}_{k}(a) \hat{2}_{j k}^{\langle\rho, a\rangle}-\sum_{k} \hat{a}_{k}(b) \hat{R}_{j k}^{\langle\rho, b\rangle} \text { (4.40) }
$$

with

$$
\begin{equation*}
\alpha_{j k}^{\left\langle\rho_{1}, \rho_{2}\right\rangle} \triangleq \frac{1}{\tau \hat{v}} \int_{a}^{b}\left[\rho_{1} \mu_{3 j} \rho_{2}^{r} r_{3 k}+\rho_{1}^{u r_{4 j}} \rho_{2}^{r} r_{4 k}\right] n d r \tag{4.41}
\end{equation*}
$$

and ρg_{j} containing the prescribed boundary values. However, in this case no similar biorthogonality is expected.

The labor involved in verifying (4.39) is not trivial, the large number of integrals required and terms involved indicate that numerical evaluation is the only feasible method of verification.

The infinite systems (4.37), (4.38) and (4.40) should be soluble by truncation to obtain values of $\hat{a}_{j}(\rho)$ to any desired degree of accuracy as shown in the similar problem discussed by LITTLE and CHILDS [1967].

The less important mixed problem PM 3 leads to a system of equations of the same form as (4.40). From another point of view this problem is discussed in

Appendix I (Para. A I.2).
To have only real values for the stress tensor and displacement vector, we have to proceed as in equation (A I.6) using the complex conjugates of the eigenvalues. It is useful to record here, in closed form, the integrals which appear in the evaluation of
$\hat{a}_{j}(\rho)$. Some of these, for Bessel functions of order zero were given by PEAVY [1967]; however, by his method one is required to compute Strive functions of first kind, and use complicated polynomial expression. Let $\mathscr{Q}_{\rho \nu}\left(\gamma_{j} n\right)$ be the cylindrical function defined in (4.21) then:

$$
\begin{align*}
I_{n \rho} & \stackrel{d}{=} \int_{a}^{b} \pi^{n} \varphi_{\rho \nu}\left(\gamma_{j} n\right) d n \\
& =(-1)^{n-1}\left\{\left[n^{n} \varphi_{\rho \mu}\left(\gamma_{j} n\right)\right]_{a}^{b}-(n-1) I_{(n-1) \rho}\right\} \tag{4.42}\\
\nu & =\left[(-1)^{n}+1\right] / 2, \mu=\left[(-1)^{n-1}+1\right] / 2
\end{align*}
$$

with $n=1,2,3 \ldots$.
If $D_{\nu}\left(\gamma_{k} \pi\right)$ is any of the Bessel or Hanker functions of order $\nu=0,1$, we have:

$$
\begin{align*}
I_{\nu \rho} & \stackrel{d}{=} \int_{a}^{b} r \mathscr{C}_{\rho \nu}\left(\gamma_{j} r\right) \mathscr{D}_{\nu}\left(\gamma_{k} r\right) d r \\
& =\frac{(-1)^{\nu}}{\gamma_{j}^{2}-\gamma_{k}^{2}}\left[\gamma_{j} r \mathscr{C}_{\rho(1-\nu)} \mathscr{D}_{\nu}-\gamma_{k} r \mathscr{Q}_{\rho \nu} \mathscr{D}_{(1-\nu)}\right] \tag{4.43}
\end{align*}
$$

also

$$
\begin{align*}
I_{\nu \rho} \triangleq & \int_{a}^{b} n^{2} \varphi_{\rho(1-\nu)}\left(\gamma_{j} n\right) D_{\nu}\left(\gamma_{k} n\right) d n \\
= & \frac{(-1)^{(1-\nu)}}{\gamma_{i}^{2}-\gamma_{k}^{2}}\left\{\left[\gamma_{j}^{n^{2}} \varphi_{\rho \nu} D_{\nu}+\gamma_{k} n^{2} \varphi_{\rho(1-\nu)} D_{(1-\nu)}\right]_{a}^{b}\right. \tag{4.44}\\
& \left.\quad-2\left(\gamma_{j}\right)^{(1-\nu)}\left(\gamma_{k}\right)^{\nu} I_{o \rho}\right\}
\end{align*}
$$

and

$$
\begin{aligned}
\text { III }_{\nu \rho} & \stackrel{d}{=} \int_{a}^{b} n^{3} \mathscr{G}_{\rho \nu}\left(\gamma_{j} n\right) \mathscr{L}_{\nu}\left(\gamma_{k} n\right) d n \\
= & \frac{(-1)^{\nu}}{\gamma_{j}^{2}-\gamma_{k}^{2}}\left\{\left[\gamma_{j} n^{3} \mathscr{G}_{\rho(1-\nu)} \mathscr{D}_{\nu}-\gamma_{k} n^{2} \mathscr{G}_{\rho \nu} \mathscr{D}_{(1-\nu)}\right]_{a}^{b}\right. \\
& \left.\quad-2\left[\gamma_{j} I_{\nu \rho}-\gamma_{k} I_{(1-\nu) \rho}\right]\right\}
\end{aligned}
$$

which were derived by suitable integrations by parts. of course, the formulae still apply when $C_{\rho \nu}$ is any Bessel or Hankel function of order $\nu=0,1$ and not just the one given in (4.21).

Formula (4.42) is used on the evaluation of while the remaining ones appear in (4.35,36,41).

CHAPTER V

CONCLUDING REMARKS

5.1 SUMMARY

The problem of a semi-infinite circular hollow cylinder was considered, where the loading (assumed self-equilibrated) is applied at the finite end. The method uses Love's stress function with a suitable representation in the form of a Fourier-Bessel series and a coupled Fourier integral. We arrive at the general solution by a linear superposition of the solutions to two particular mixed-mixed problems. Eigenvalues and eigenfunctions are then obtained and the problem is formally reduced to the solution of a doubly infinite linear system of algebraic equations which can probably be solved by truncation. The eigenvalues are tabulated for certain values of the inner radius and Poisson's ratio in the case of a normalized outer radius. The labor involved in actually obtaining the stresses and displacements indicates that the problem can only be solved numerically, all the necessary tools for this being given in the text.

For the mixed-mixed problems at the plane end, a biorthogonality is expected which should considerably
simplify the computations. However, this will not be the case in the displacement and traction problems.

5.2 CONCLUSIONS

The method employed can be extended to the case of an axisymmetric hollow body, albeit the solution will require a tremendous numerical effort.

For the axisymmetric case it is shown that no real or purely imaginary non-zero eigenvalues χ_{j} exist, and that if self-equilibrated loading is assumed that the solution is unique.

$$
\text { Write } \quad \gamma_{j}=\operatorname{Re}\left[\gamma_{j}\right]+i I_{m}\left[\gamma_{j}\right] \quad \text { and let } \omega
$$ denote the least value of $\mathscr{R}_{e}\left[\gamma_{j}\right]$ in the sequence of eigenvalues for a given section. Then $\omega^{2} A\left(\Pi_{0}\right)$, where $A\left(\Pi_{0}\right)$ is the surface area of the end section, depends only on the shape of the section. For arbitrary sections $\omega^{2} A\left(\Pi_{0}\right)$ forms a positive sequence. If Π_{0} is a circular annulus with fixed outer radius b, $\omega^{2} A\left(\Pi_{0}\right)$ is maximum for the solid cylinder and goes to zero steadily with $\underline{a} \rightarrow \underline{b}$. However, $|\omega|$ has a minimum in the open interval ($0.4,0.5$) for $b=1$. Now suppose $A\left(T_{0}\right)$ is fixed, it would be interesting to have an answer to the question: is the sequence $\omega^{2} A\left(T_{0}\right)$ bounded from below, and, if so, is the lower bound the one given by the solid cylinder

or is there a hollow one with critical radii a^{*}, b^{*} with such attribute?

The last question has a definite importance from a practical viewpoint because $|\omega|$ presents the rate at which end effects decay as we pass along the cylinder ($|\omega|$ is inversely proportional to $S_{c}(E)$ in equation (1.1)). The greater $|\omega|$, the more rapid the decay. In engineering we are concerned with the end effects, because the Saint-Venant relaxed solutions (which have been proved to furnish an absolute minimum of the total strain energy by STERNBERG and KNOWLES [1966], except in the flexure case) give no information about them. The assignment of such lower bound might be more useful than the description of a complicated process for the evaluation of the eigenvalues.

Also, we conjecture that the energy characterization of the exact solution would coincide with the one for the relaxed solution.

BIBLIOGRAPHY

[1855] de SAINT-VENANT, A.J.C.B. Mémoire sur la torsion des prismes, avec des considerations sur leur flexion, ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance a divers efforts s'exercant simultánement. Mem. Acad. Sci. des Savants Étrangers 14, 233-560.
[1856] de SAINT-VENANT, A.J.C.B. Mémoire sur la flexion des prismes, sur les glissements transversaux et longitudineux qui l'accompagnent lorqu'elle ne s'opere pas uniformément ou an arc de cercle, et sur le forme courbe affectée alors par leurs sections transversales primitivement planes. J. Math. de Liouville (2e. ser.) 1, 89-189.
[1862] CLEBSH, A. Theorie der Elastizität der Fester Körper. Leipzig: B. G. Teubner.
[1876] POCHHAMER, L. Beitrag zur Theorie der Biegung des Kreiszylinders. Z. reine angew. Math (Crelle) 81, 33-61.
[1885] BOUSSINESQ, J. Application des Potentiels a 1'Etude de I'Équilibre et du Mouvement des Solides Elastiques. Paris: Gauthier-Villars.
[1886] CHREE, C. Longitudinal vibrations of a circular bar. Quart. J. Pure Appl. Math. 21, 287-298.
[1889] CHREE, C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solution and application. Trans. Camb. Phil. Soc. 14, 250-369.
[1893] TODHUNTER, I, and K, PEARSON. A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, vol. II, part I. London: Cambridge U.P. (reprinted by Dover).
[1902] FILON, L.N.G. On the elastic equilibrium of circular cylinders under certain practical systems of load. Phil. Trans. Roy. Soc. Al98, 147-233.
[1912] DOUGALL, J. The method of permanent and transitory modes of equilibrium in the theory of thin elastic bodies. Proc. 5th Int. Congr. Mathematicians (Cambridge) 328-340. Cambridge: University Press (i913).

GWYTHER, R. R. The formal specification of the elements of stress in Cartesian and in cylindrical and spherical polar coordinates. Mem. Manchester Lit. Phil. Soc. 56, N . 10.

WEBSTER, A. G. The Dynamics of Particles and of Rigid, Elastic and Fluid Bodies. 2nd ed. N. York: Stechert (reprinted by Dover).
[1914] DOUGALL, J. An analytical theory of the equilibrium of an isotropic elastic rod of circular section. Trans. Roy. Soc. Edin. 49, 895-978.
[1923] SOUTHWELL, R. On Castigliano's theorem of least work and the principle of Saint-Venant. Phil. Mag. (6) 45, 193-212.
[1927] LOVE, A.E.H. A Treatise on the Mathematical Theory of Elasticity. London: Cambridge U.P. (4th ed. reprinted by Dover).
[1928] FÖPPL, A. and L. FÖPPL. Drang und Zwang. Berlin: R. Oldenbourg.
[1931] GRAY, A., G. B. MATHEWS and T. M. MACROBERT. A Treatise on the Theory of Bessel Functions. London: Macmillan (2nd ed.).

MACROBERT, T. M. Fourier integrals. Proc. Roy. Soc. Edin. 51, 116.
[1934] FINZI, B. Integrazione delle equazioni indefinite della meccanica dei sistemi continui. Rend. Accad. Lincei (6) 19, 578-584 and 620-623.
[1937] GOODIER, J. N. A general proof of Saint-Venant's principle. Phil. Mag. (7) 23, 607-609. Suppl. note, Ibid. 24, 325.
| ZANABONI, O. Dimonstrazione generale del principio del de Saint-Venant. Atti Accad. Naz. Iincei 25, 117-120.

ZANABONI, O. Valutazione dell errore massimo cui da luogo l'applicazione del principio del de Saint-V nant in un solido isotropo. Atti Accad. Naz. Lincei 25, 595-601.
[1941] BARTON, M. V. The circular cylinder with a band of uniform pressure on a finite length of the surface. J. Appl. Mech. 8, Trans. ASME 63, A97Allo.
[1944] PICKETT, G. Application of Fourier method to the solution of certain boundary problems in the theory of elasticity. J. Appl. Mech. 11, Trans. ASME 66, A176-A182.

WATSON, G. N. Theory of Bessel Functions. London: Cambridge U.P. (2nd ed.).
[1945] HOFF, N. J. The applicability of Saint-Venant's principle to airplane structures. J. Aer. Sci. 12, 455-460.
v. MISES, R. On Saint-Venant's principle. Bull. Am. Math. Soc. 51, 555-562.
MURRAY, F. H. Thermal stresses and strains in a finite cylinder with no surface forces. U.S. Atomic Energy Commission Rpt. AECD-2966.

SYNGE, J. L. The problem of Saint-Venant for a cylinder with free sides. Quart. Appl. Math. 2, 307-317.

TRANTER, C. J. and J. W. CRAGGS. The stress distribution in a long circular cylinder when a discontinuous pressure is applied to the curved surface. Phil. Mag. (7) 36, 241-250.
[1946] SNEDDON, I. N. Finite Hankel transforms. Phil. Mag. (7) 37, 17-25.
[1947] FRIEDRICHS, K. 0 . On the boundary value problems of theory of elasticity and Korn's inequality. Ann. Math. 48, 441-471.

[1948]	TIMPE, A. Torsiosfreie achsensymmetrische Deformation von Umdrehungskörpern und ihre Inversion. Z. angew. Math. Mech. 28, 161-166.
[1949]	FRIEDRICHS, K. O. The edge effect in the bending of plates. Reissner Anniv. Vol., 197-210. Ann Arbor: J. W. Edwards.
[1950]	FICHERA, G. Sull'esistenza e sull calcolo delle soluzioni dei problemi al contorno, relativi all' equilibrio di un corpo elastico. Ann. Scu. Norm. Sup. Pisa (3) 4, 1-65.
[1951]	SNEDDON, I. N. Fourier Transforms. N. York: McGraw-Hill.
[1952]	WESTERGAARD, H. M. Theory of Elasticity and Plasticity. Cambridge (Mass): Harvard U.P. (reprinted by Dover).
[1953]	BERGMAM, S. and M. SCHIFFER. Kernel Functions and Elliptic Differential Equations in Mathematical Physics. N. York: Academic Press.
	MUSKHELISHVILI, N. I. Some Basic Problems of the Mathematical Theory of Elasticity. Groningen: P. Noordhoff.
[1954]	BIEZENO, C. B. and R. GRAMMEL. Engineering Dynamics, vol. I: Theory of Elasticity. Princeton: D. Van Nostrand.
	KOITER, W. T. and J. B. ALBLAS. On the bending of cantilever rectangular plates, III. Proc. Kon. Ned. Ak. Wet. B 57. 549-557.
	LING, C.-B. and T.-C. LEE. Stress systems in an infinite cylinder. Ann. Acad. Sinica 1, 517-526 \equiv Collected Papers (Ling), 308-317.
	STERNBERG, E. On Saint-Venant's principle. Quart. App1. Math. 11, 393-402.
	STERNBERG, E. and R. A. EUBANKS. The axisymmetric problem of elastic theory for a medium with transverse isotropy. J. Rat. Mech. Anal. 3, 89-101.

[1955] MARGUERRE, K. Ansätze zur Lösung der Grundgleichungen der Elastizitästheorie. Z. angew. Math. Mech. 35, 242-263.
[1956] BLOKH, V. I. On the representation of the general solution of the basic equations of the static theory of elasticity for an isotropic body with the aid of harmonic functions. PMM: J. Appl. Math. Mech. 22, 659-668.

DORN, W. S. and A. SCHILD. A converse to the virtual work theorem for deformable solids. Quart. Appl. Math. 14, 209-213.

TRANTER, C. J. Integral Transforms in Mathematical Physics. London: Methuem (2nd ed.).

YIH, C. S. Solutions of the hyper-Bessel equation. Quart. Appl. Math. 13, 462-463.
[1957] BRDLICKA, M. On the general form of the Beltrami equation and Papkovich's solution of the axially symmetrical problem of the classical theory of elasticity. Czechosl. J. Phys. 7, 262-274.

NOLL, W. Verschiebumgsfunktionen fur elastische Schwing-ungsprobleme. Z. angew. Math. Mech. 37, 81-87.
[1958] HORVAY, G. and J. A. MIRABAL. The end problem of cylinders. J. Appl. Mech. 25, Trans. ASME 80, A561-A570.

KOGAN, B. I. and A. F. KHRUSTALEV. On an axisymmetrical problem of the theory of elasticity for a hollow cylinder. PMM: J. Appl. Math. Mech. 22, 959-964.

SNEDDON, I. N. and D. S. BERRY. The classical theory of elasticity. Hand. der Physik, Band VI; 1-126. Berlin: Springer.

STERNBERG, E. On some recent developments in the linear theory of elasticity. Proc. lst. Symp. Naval Struct. Mechanics; 48-73. N. York: Pergamon (1960).
[1959] HORVAY, G., I. GIAEVER and J. A. MIRABAL. Thermal stresses in a heat generating cylinder. IngenieurArchiv. 27, 179-194.

TRUESDELL, C. A. Invariant and complete stress functions for general continua. Arch. Rat. Mech. Anal. 4, 1-29.
[1961] FRIEDRICHS, K. O. and R. F. DRESSLER. A boundary layer theory for elastic plates. Commun. Pure Appl. Math. 14, l-33.

MOON, P. and D. E. SPENCER. Field Theory Handbook. Berlin: Springer.
[1962] HODGKINS, W. R. A numerical solution of the end deformation problem of cylinders. U. K. Atomic Energy Authority, TRG Rept. 294(S).

MILNE-THOMSON, L. M. Antiplane Elastic Systems. N. York: Academic Press.

VALOV, G. M. On the axially-symmetric deformations of a solid circular cylinder of finite length. PMM: J. Appl. Math. Mech. 26, 975-999.

YU, Y. Y. Bodies of Revolution. Handbook of Engineering Mechanics, Chap. 41. N. York: McGrawHill.
[1963] GRINCHENKO, V. T. Axisymmetric elasticity problem of the semi-infinite circular cylinder (in Russian). Prikl. Mekh. (Soviet Applied Mechanics) 1, 109-118.

MENDELSON, A. and E. ROBERTS, Jr. The axisymmetric stress distribution in finite cylinders. Developments in Mechanics, vol. 2. Proc. 85h Midwestern Mechanics Conference, 41-57. N. York: Pergamon.

SOBOLEV. S. L. Applications of Functional Analysis in Mathematical Physics. Transl. of Math. Monographs vol. 7. Providence: American Math. Soc.
[1964] BUCHWALD, V.T. Eigenfunctions of plane elastostatics I: the strip. Proc. Roy. Soc. A277, 385400 .

DOU, A. On the principle of Saint-Venant. Math. Res. Center, U. of Wisconsin. Tech. Rept. 472.

LUR'E, A. I. Three-Dimensional Problems of the Theory of Elasticity. N. York: Interscience.

ZAK, A. R. Stresses in the vicinity of boundary discontinuities in bodies of revolution. J. Appl. Mec. 31, 150-152.
[1965] ABRAMOWITZ, M. and I. A. STEGUN (Eds.). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. N. York: Dover.

CINELLI, G. An extension of the finite Hankel transform and applications. Int. J. Engrg. Sci. 3, 539-559.

FILONENKO-BORODICH. M. Theory of Elasticity. Groningen: P. Noordhoff (also Dover).

FUNG, Y. C. Foundations of Solid Mechanics. Englewood-Cliffs: Prentice-Hall

JOHNSON, M. W. and R. W. LITTLE. The semi-infinite elastic strip. Quart. Appl. Math. 23, 335-344.

KAEHLER, H. Stress analysis of finite length cylinders by station functions. AIAA Journal 3, 2132-2137.

KNOPS, R. J. Uniqueness of axisymmetric elastostatic problems for finite regions. Arch. Rat. Mech. Anal. 18, 107-116.

MIKHLIN, S. G. The Problem of the Minimum of a Quadratic Functional. San Francisco: Holden-Day.

MANGULIS, V. Handbook of Series for Scientists and Engineers. N. York: Academic Press.

SCHMEIDLER, W. Linear Operators in Hilbert Space. N. York: Academic Press.

TOUPIN, R. A. Saint-Venant's Principle. Arch. Rat. Mech. Anal. 18, 83-96.
[1966] CHILDS, S. B. Elastic boundary layers in axisymmetric cylindrical bodies. Doctoral Dissertation, Oklahoma State University.

KNOWLES, J. K. On Saint-Venant's principle in the two dimensional linear theory of elasticity. Arch. Rat. Mech. Anal. 21, 1-21.

ROSEMAN; J. J. A pointwise estimate for the stress in a cylinder and its application to Saint-Venant's principle. Arch. Rat. Mech. Anal. 21, 23-48.

STERNBERG, E. and J. K. KNOWLES. Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant problem. Arch. Rat. Mech. Anal. 21, 89-107.
[1967] LITTLE, R. W. and S. B. CHILDS. Elastostatic boundary region problem for elastic cylinders. Quart. Appl. Math. 25, 261-274.

MIKHLIN, S. G. Linear Equations of Mathematical Physics. N. York: Holt, Rinehart and Winston.

PEAVY, B. A. Indefinite integrals involving Bessel functions. J. Res. Nat. Bur. Standards B71, 131141.

STERNBERG, E. and J. K. KNOWLES. On Saint-Venant principle and the torsion of solids of revolution. Arch. Rat. Mech. Anal. 22, 100-120.

WARREN, W. E., A. L. ROARK and W. B. BICKFORD. End effect in semi-infinite transversaly isotropic cylinders. AIAA Journal 5, 1448-1455.

WARREN, W. E. and A. L. ROARK. A note on the end effect in isotropic cylinders. AIAA Journal 5, 1484-1486.
[1968] BARREKETTE, E. S. Stress compatibility equations in cylindrical coordinates. AIAA Journal 6, 767.
FLÜGGE, W. and V. S. KELKAR. The problem of an elastic circular cylinder. Int. J. Solids Structures 4, 397-420.

APPENDIX

APPENDIX I

SOME ASPECTS OF SAINT-VENANT PROBLEMS

A I. 1 FORMULATION AND REDUCTION TO AN EIGENVALUE PROBLEM

 Consider a semi-infinite cylindrical body of homogeneous isotropic elastic material. The cross section Tζ_{ζ} is arbitrary; it may be simply or multiply connetted; the lateral bounding surface being denoted by Γ and the plane end section by T_{0}. For convenience we deal with rectangular Cartesian coordinates and Cartesian tensors; the axis x_{3} will be taken parallel to the generators of the cylinder. Latin supfixes have the range $1,2,3$ while Greek ones are restricted to the values $1,2$.

Fig. A I.l. Notations
Two formulations of the problem of SAINT-VENANT can be set out, one in terms of displacements, the other in terms of stresses. Accordingly, we have, SYNGE [1945]:
I. Stress formulation
(i) differential equations

$$
\begin{aligned}
& t_{i j, j}=0 \\
& (1+\sigma) \Delta_{5} t_{i j}+t_{k k, i j}=0
\end{aligned}
$$

respectively the equilibrium and Beltrami-. Michell compatibility equations. Here $\Delta_{3}=\partial^{2} / \partial x_{k} \cdot \partial x_{k}$ is the 3-d Laplace operator.
(ii) boundary conditions

$$
\underset{\sim}{n} \text { being the unit normal to } \Gamma \text {. }
$$

II. Displacement formulation
(i) differential equations

$$
(1-2 \sigma) \Delta_{3} u_{i}+u_{j, j i}=0
$$

which are the Navier equations.
(ii) boundary conditions

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(u_{\beta, 3}+u_{3, \beta}\right) n_{\beta}=0 \quad \text { on } \Gamma \\
2 \sigma v_{k, k} n_{\alpha}+(1-2 \sigma)\left(v_{\beta, \alpha}+u_{\alpha, \beta}\right) n_{\beta}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\sigma v_{k, k}+(1-2 \sigma) v_{3,3}=(1+\sigma)(1-2 \sigma) \bar{T}_{3} \\
u_{3, \alpha}+u_{\alpha, 3}=2(1+\sigma) \bar{T}_{\alpha}
\end{array} \text { on } \Pi_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& t_{\alpha \beta} n_{\beta}=0, t_{3 \beta} n_{\beta}=0 \text { on } \Gamma \\
& t_{33}=T_{3}, t_{3 \alpha}=T_{\alpha} \text { on } \Pi_{0}
\end{aligned}
$$

The first formulation has the advantage of having simple boundary conditions while the second has simpler equations. It is natural from the geometry of the problem to introduce what is called the "exponential condition" (transitory free mode in DOUGALL [1912, 1914] terminology). We then assume that

$$
\begin{equation*}
t_{i j}=e^{k x_{3}} \cdot \mathscr{J}\left(x_{1}, x_{2}\right) \tag{AI.I}
\end{equation*}
$$

and since stress determines displacements to within a rigid body displacement, we may write the corresponding displacement in the form

$$
\begin{equation*}
u_{i}=e^{k x_{3}} \mathscr{U}_{i}\left(x_{1}, x_{2}\right) \tag{AI.2}
\end{equation*}
$$

The displacement formulation contains simpler partial differential equations, and by substituting (A I.2) into II(1) we obtain after algebraic manipulations:

$$
\begin{align*}
& \left(\Delta_{2}+k^{2}\right) U_{\alpha}=-V_{1 \alpha} \\
& \left(\Delta_{2}+k^{2}\right) \mathscr{V}=0 \tag{AI.3}
\end{align*}
$$

where $\Delta_{2}=\partial^{2} / \partial x_{\alpha} \partial x_{\alpha}, \mathcal{V}\left(x_{1}, x_{2}\right)$ is an auxiliary function defined by

$$
\begin{equation*}
V \stackrel{d}{=} \frac{1}{1-2 \sigma}\left(k U_{3}+U_{\alpha, \alpha}\right) \tag{AI.4}
\end{equation*}
$$

and to derive (AI.3) 2 we took advantage of the fact that the components of the displacement field in Cartesian coordinates are biharmonic functions in the absence of body forces.

The lateral boundary conditions II(ii) take the form

$$
\begin{aligned}
& 2 \sigma \sqrt{n_{\alpha}}+\left(U_{\beta, \alpha}+U_{\alpha, \beta}\right) n_{\beta}=0 \\
& (L-2 \sigma) V_{\nu \beta} n_{\beta}+k^{2} U_{\beta} n_{\beta}-U_{\beta, \beta \gamma} n_{\gamma}=0 \quad \text { on } \Pi_{0} \quad(A I .5)
\end{aligned}
$$

We have thus a complex eigenvalue problem to solve, the system is consistent only for certain values of K. There is no objection to complex eigenvalues, generating complex solutions for $\mathcal{Y}, \mathcal{U}_{\alpha}$ and the corresponding stresses, for in such cases to have real values for $\underset{\sim}{t}$ and $\underset{\sim}{U}$ we should take

$$
\begin{align*}
& u_{i}=\frac{1}{2}\left(e^{k x_{3}} u_{i}+e^{\bar{k} x_{3}} \bar{U}_{i}\right) \\
& t_{i j}=\frac{1}{2}\left(e^{k x_{3}} \mathscr{T}_{i j}+e^{\bar{k} x_{3}}{\overline{T_{i j}}}\right) \tag{AI.6}
\end{align*}
$$

where superposed bars denote conjugates. If k is an eigenvalue of the problem so also are $-k$, and $\pm \bar{K}$. In fact the eigenvalues occur in sets of two if they are real or purely imaginary and in sets of four if complex. That no purely imaginary eigenvalues should exist has been shown by DOUGALL [1912],
his argument is so concise and elegant that we may well transcribe it: a purely imaginary K implies a periodic distribution of displacement and stress; consider the energy stored in a length of the cylinder equal to this period; it is equal to the work done by the terminal stress in passing from the natural state to the strained configuration, but, from the periodicity, this is zero. Hence, the energy of a strained state is zero, and for $-1<\sigma<1 / 2$ this is contrary to a basic postulate in linear elasticity.

A 1.2 MIXED PROBLEM PM 3

Consider a hollow cylinder with the geometry of
Fig. 1.1 and let us investigate the mixed problem
PM 3 of Par. 1.3, namely
(i) Traction problem on $\Gamma_{1} \cup \Gamma_{2}$

$$
\left.\underset{\sim}{I}\right|_{r_{1} \cup r_{2}}=\underset{\sim}{O}
$$

(ii) Displacement problem on Π_{0}

$$
\left.\underset{\sim}{u}\right|_{\pi_{0}}=\underset{\sim}{\bar{\sim}}
$$

We note that as formulated the degree of indeterminacy of the problem does not lie within a class of rigid body displacements, and this will be shown in Par. A I. 3 .

Navier's equations in cylindrical coordinates in the axisymmetric case read (MARGUERRE [1955;
p. 248]) after trivial manipulations

$$
\begin{align*}
& \tau \frac{\partial}{\partial n}\left[\frac{1}{n} \frac{\partial}{\partial n}\left(\eta v_{n}\right)\right]+(\tau-1) \frac{\partial^{2} u_{n}}{\partial z^{2}}+\frac{\partial^{2} u_{z}}{\partial n \partial z}=0 \tag{AI.7}\\
& \frac{1}{\tau} \frac{\partial}{\partial z}\left[\frac{1}{n} \frac{\partial}{\partial r}\left(\eta v_{n}\right)\right]+\frac{\tau-1}{\tau} \frac{1}{n} \frac{\partial}{\partial n}\left(\eta \frac{\partial u_{z}}{\partial n}\right)+\frac{\partial^{2} u_{z}}{\partial z^{2}}=0
\end{align*} \text { (A I. }
$$

Using the fact that the dilatation

$$
I_{\underline{v}}=\frac{1}{n} \frac{\partial}{\partial r}\left(r v_{n}\right)+\frac{\partial u_{z}}{\partial z}
$$

is a harmonic function, U_{z} can be eliminated from equations (A I.7) and we arrive at

$$
\begin{equation*}
\left[\Delta-\frac{1}{n^{2}}\right]^{2} u_{n}=0 \tag{AI.8}
\end{equation*}
$$

Let us assume a solution in the form (A I.2), for this purpose we take

$$
\begin{equation*}
u_{n}=e^{i \alpha z} g(n) \tag{AI.9}
\end{equation*}
$$

and (A I.8) becomes

$$
\begin{equation*}
\left[\frac{1}{r} \frac{d}{d r}\left(n \frac{d}{d r}\right)-\frac{1}{n^{2}}-\alpha^{2}\right]^{2} Q=0 \tag{AI.10}
\end{equation*}
$$

We remark that (A I.9) and (A I.10) are equivalent to invoke separation of variables, namely,

$$
\begin{align*}
& u_{n}=R(n) Z(z) \\
& \frac{d^{2} Z}{d z^{2}}=-\alpha^{2} Z \tag{AI.11}\\
& {\left[\frac{d}{d n}\left(\frac{1}{n} \frac{d}{d n}\right) n-\alpha^{2}\right]^{2} R=0}
\end{align*}
$$

where (A I.11) 3 is just (A I.10) written in a more convenient fashion. We recall that here $i \propto$ plays the role of k in the previous paragraph. (A I.11) 3 has for solution, YIH [1956]:

$$
\mathscr{R}(n)=A I_{1}(\alpha n)+B \alpha n I_{0}(\alpha n)+C K_{1}(\alpha \pi)+D \alpha n K_{0}(\alpha n)
$$

which substituted into (A I.9) gives $U_{n}(\pi, z)$. Going back to equation (A I.7) $)_{1}$ is an easy matter to solve for $U_{z}(n, z)$, then equation (A I.7) 2 gives the conditions on the undetermined functions obtained in the first integration, the final result is then

$$
\begin{align*}
U_{z} & =i e^{i \alpha z}\left\{A I_{0}(\alpha n)+B\left[2 \tau I_{0}(\alpha n)+\alpha n I_{1}(\alpha n)\right]\right. \tag{AI.13}\\
& \left.-C K_{0}(\alpha n)+D\left[2 \tau K_{0}(\alpha n)-\alpha n K_{1}(\alpha n)\right]\right\}
\end{align*}
$$

We now try to satisfy the stress free condition on $\Gamma_{1} \cup \Gamma_{2}$; for this purpose we compute

$$
\begin{aligned}
& \frac{1}{2 \mu} t_{n n}=\frac{1}{2(\tau-1)}\left\{\tau \frac{\partial U_{n}}{\partial n}+(2-\tau)\left[\frac{U_{n}}{n}+\frac{\partial U_{z}}{\partial n}\right]\right\} \\
&=\alpha e^{i \alpha z}\left\{A\left[I_{0}(\alpha n)-\frac{I_{1}(\alpha n)}{\alpha n}\right]+\right. \\
& B\left[(\tau-1) I_{0}(\alpha n)+\alpha n I_{1}(\alpha n)\right]-C\left[K_{0}(\alpha n)+\left(A I_{0} 14\right)\right. \\
&\left.\frac{K_{1}(\alpha n)}{\alpha n}\right]\left.+D\left[(\tau-1) K_{0}(\alpha n)-\alpha n K_{1}(\alpha n)\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{2 \mu} t_{n z}=\frac{1}{2}\left(\frac{\partial u_{z}}{\partial n}+\frac{\partial u_{n}}{\partial z}\right) \\
&=i \alpha e^{i \alpha z}\left\{A I_{1}(\alpha n)+B\left[\alpha n I_{0}(\alpha n)+\right.\right. \\
&\left.\tau I_{1}(\alpha n)\right]+C K_{1}(\alpha n)+D\left[\alpha n K_{0}(\alpha n)-\right. \\
&\left.\left.\tau K_{1}(\alpha n)\right]\right\}
\end{aligned}
$$

These stresses are required to vanish for all z at $n=a, b$. We have thus a homogeneous system of linear equations in A, B, C, D; the condition for the existence of a nontrivial solution requires that the determinant of the coefficients vanish. This is then the characteristic equation which gives the eigenvalues i α. Explicitly written, the above mentioned determinant coincides with the determinant of the coefficients' matrix in (3.8), i.e., the eigen-
values satisfy

$$
\begin{equation*}
-\alpha^{2} \operatorname{det} \ddot{f}(\alpha)=0 \tag{AI.16}
\end{equation*}
$$

We note thus, that the problems discussed in Chap. III and the one being discussed have, as expected, the same spectrum.

Problem PM 3 could be discussed further along the lines of the previous paragraph. For instance the homogeneity of the system implies that not all constants are independent, consequently the displacements can be expressed in the form (A I.6) with only two essential constants, the others being the corresponding complex conjugates. These constants would have, of course, to be determined by the boundary conditions along Π_{o}, but these would have to be expanded in terms of eigenfunctions. However, due to the nature of the problem these will be nonorthogonal and such representation will be difficult to obtain. The E. Schmidt's orthogonalization process (see e.g., SCHMEIDLER [1965; p. 14]) could be used to advantage, however the labor involved is considerable and satisfactory results are not warranted.

A I. 3 THE ZERO EIGENVALUE

Let $\alpha=0$ in (A I.11) the system to be solved is thus

$$
\begin{align*}
& u_{n}^{0}=R_{0}(n) Z_{0}(z) \\
& \frac{d^{2} Z_{0}}{d z^{2}}=0 \tag{AI.17}\\
& \left(\frac{d^{4}}{d n^{4}}+\frac{2}{n} \frac{d^{3}}{d n^{3}}-\frac{3}{n^{2}} \frac{d^{2}}{d n^{2}}+\frac{3}{n^{2}} \frac{d}{d n}-\frac{3}{n^{4}}\right) R_{0}=0
\end{align*}
$$

the solution to $(A \mathrm{I} .17)_{2}$ is trivial

$$
\begin{equation*}
Z_{0}(z)=a_{0} z+b_{0} \tag{AI.I8}
\end{equation*}
$$

To solve (A I.17) 3 we note that it is a homogeneous linear differential equation which can be transformed in one with constant coefficients by introducing a new variable t such that $t=\ln r$, which is easily solvable. Return to the current variables gives

$$
\begin{equation*}
R_{0}(r)=c_{0} r^{3}+d_{0} r+e_{0} r \ln r+f_{0} r^{-1} \tag{AI.19}
\end{equation*}
$$

Substituting (A .17$)_{1}$ as given in terms of
(A I.18) and (A I.19) into (A I.7) 1 and solving for U_{z}, we obtain

$$
\begin{equation*}
u_{z}=-\tau\left(a_{0} \frac{z^{2}}{2}+b_{0} z\right)\left(4 c_{0} n^{2}+2 e_{0} b_{n} n+g_{0}\right)+ \tag{AI.20}
\end{equation*}
$$

where a_{0} through h_{0} are integration constants (we may remark that we are not interested in checking the compatibility of these solutions, the discussion is not affected by this). In order that these displacements do not increase beyond bounds with z we must choose; $c_{0}=e_{0}=g_{0}=0$ and $a_{0}=0$. Then:

$$
\begin{align*}
& u_{n}=k_{0} n+l_{0} r^{-1} \\
& u_{z}=h_{0} \tag{AI.21}
\end{align*}
$$

that is, U_{r} is composed of a uniform expansion, associated with a uniformly distributed body force over the cylinder, and an "eversion" which has no meaning for the case of solid cylinders. The axial displacement is a rigid body translation in the direction of z. To remove such solutions we may either redefine the stresses and displacements or, regard the prescribed distributions of the displacements (or stresses) as arising from a self-equilibrated traction system at the plane end.

Since the last assumption was made in our derivations, this justifies the noninclusion of the contribution of the zero eigenvalue.

A I. 4 THE NON-EXISTENCE OF REAL EIGENVALUES
Using $\alpha=i \gamma$, the determination of the eigenvalues
is equivalent to finding the roots of the equation

$$
\hat{m}_{a} \hat{q}_{b}+\hat{m}_{b} \hat{q}_{a}-2 \hat{s}_{a} \hat{s}_{b}+\frac{4}{\pi^{2}} \frac{1}{(\gamma a b)^{2}}\left[a^{2}+b^{2}-\frac{2 \tau}{\gamma^{2}}\right]=0
$$

(A I.22)
where

$$
\begin{align*}
& \hat{m}_{\rho} \stackrel{d}{=} J_{0}^{2}(\gamma \rho)+\left(1-\frac{\tau}{\gamma^{2} \rho^{2}}\right) J_{1}^{2}(\gamma \rho) \\
& \hat{q}_{p} \stackrel{d}{=}\left[H_{0}^{(2)}(\gamma \rho)\right]^{2}+\left(1-\frac{\tau}{\gamma^{2} \rho^{2}}\right)\left[H_{1}^{(2)}(\gamma \rho)\right]^{2} \tag{AI.23}\\
& \hat{s}_{\rho} \stackrel{d}{=} J_{0}(\gamma \rho) H_{0}^{(2)}(\gamma \rho)+\left(1-\frac{\tau}{\gamma^{2} \rho^{2}}\right) J_{1}(\gamma \rho) H_{1}^{(2)}(\gamma \rho)
\end{align*}
$$

The corresponding equation for the solid cylinder. is simply

$$
\begin{equation*}
\hat{m}_{b}=0 \tag{AI.24}
\end{equation*}
$$

as given egg. by CHILDS [1966].
We show first that (A I.24) has no real solutions, and since DOUGALL (cf. A I.l) has shown that no purely imaginary eigenvalue exists, we conclude that only complex roots with non-zero real and imaginary parts have to be found.

Suppose γ is a real number, from WATSON [1944; p. 147] we have

$$
\begin{equation*}
J_{\nu}^{2}(\gamma \rho)=\sum_{k=0}^{\infty} \frac{(-1)(2 k+2 \nu)!\left(\frac{\gamma \rho}{2}\right)^{2(k+\nu)}}{k!(k+2 \nu)![(k+\nu)!]^{2}} \tag{AI.25}
\end{equation*}
$$

Using this result for $\nu=0,1$ and suitable redefining the dummy index we obtain after trivial manipulations:

$$
\hat{m}_{\rho}=\sum_{k=0}^{\infty}\left[\frac{k^{2}+(3-\tau) k+(2-\tau / 2)}{(k+2)(k+1)}\right] \frac{(-1)^{k}\left(\frac{\gamma \rho}{2}\right)^{2 k}(2 k)!}{(k+1)!(k!)^{3}} \text { (A I.26) }
$$

Provided $\tau<4,(\sigma>-1)$ the square bracketed quantity is a positive one for any k. Since the series is absolutely convergent we may rearrange its terms, grouping then the first term with the second, the third with the fourth and so on, we discover that each of these combinations is nonnegative. Thus if γ is real \hat{m}_{ρ} is a sum of nonzero positive terms.

In the case of the hollow cylinder, i.e., equation (AI.22) the same can be proved with a little more labor with the help of the expansions for the products $J_{\nu} Y_{\nu}$ as given in WATSON [1944; p.150]. We may also remark that equation (AI.22) can be rewritten as:

$$
\hat{m}_{a} \hat{u}_{b}+\hat{m}_{b} \hat{u}_{a}-2 \hat{t}_{\alpha} \hat{t}_{b}-\frac{4}{\pi^{2}} \frac{1}{(\gamma a b)^{2}}\left[a^{2}+b^{2}-\frac{2 \tau}{\gamma^{2}}\right]=0
$$

and an order of magnitude analysis shows that for real γ the l.h.s. of equation (AI.27) is positive definite; where we have defined

$$
\begin{equation*}
\hat{t}_{\rho}=\gamma_{0}^{2}(\gamma \rho)+\left(1-\frac{\tau}{\gamma^{2} \rho^{2}}\right) y_{1}^{2}(\gamma \rho) \tag{AI.28}
\end{equation*}
$$

A II.1 THE COEFFICIENTS $c(\alpha a \mid \propto b)$ ETC IN (3.13)
We define

$$
\begin{aligned}
& {\left[-\alpha^{2} \operatorname{det} f(\alpha)\right] C \triangleq-\left(1+\exists_{a b}\right)[\alpha b C(\alpha a \mid \alpha b) f(a)]} \\
& \text { (A II.1) }
\end{aligned}
$$

identical expression being valid for D, E and F.
Next we recall the Wronskian result (WATSON [1944;
p. 79])

$$
W\left\{K_{0}(\alpha \rho), I_{0}(\alpha \rho)\right\}=\operatorname{det}\left[\begin{array}{cc}
I_{0}(\alpha \rho) & -K_{0}(\alpha \rho) \\
I_{1}(\alpha \rho) & K_{1}(\alpha \rho)
\end{array}\right]=\frac{1}{\alpha \rho} \text { (A II.2) }
$$

and also define

$$
\begin{aligned}
& R_{\rho} \stackrel{d}{=} \alpha \rho I_{0}(\alpha \rho)+\tau I_{1}(\alpha \rho) \\
& m_{\rho} \stackrel{d}{\cong} I_{0}^{2}(\alpha \rho)-\left(1+\frac{\tau}{\alpha^{2} \rho^{2}}\right) I_{1}^{2}(\alpha \rho) \\
& p_{\rho} \stackrel{d}{=} \alpha \rho K_{0}(\alpha \rho)-\tau K_{1}(\alpha \rho) \\
& q_{\rho} \triangleq K_{0}^{2}(\alpha \rho)-\left(1+\frac{\tau}{\alpha^{2} \rho^{2}}\right) K_{1}^{2}(\alpha \rho) \\
& S_{\rho} d I_{0}(\alpha \rho) K_{0}(\alpha \rho)+\left(1+\frac{\tau}{\alpha^{2} \rho^{2}}\right) I_{1}(\alpha \rho) K_{1}(\alpha \rho)
\end{aligned}
$$

(A II.3)

We have then the following expressions for $c(\alpha a \mid \alpha b)$ etc:

$$
\begin{aligned}
c(\alpha a \mid \alpha b)= & l_{a} q_{b}-p_{a} s_{b}-\frac{\tau}{\alpha^{2} b^{2}}\left[\alpha a k_{0}(\alpha a)+\right. \\
& \left.k_{1}(\alpha a)\right]-k_{1}(\alpha a)
\end{aligned}
$$

$$
D\left(\alpha_{a} \mid \alpha b\right)=I_{1}(\alpha a) q_{b}+K_{1}(\alpha a) s_{b}-\frac{a}{\alpha b^{2}} K_{0}(\alpha a)
$$

$$
E(\alpha a \mid \alpha b)=P_{a} m_{b}-l_{a} s_{b}+\frac{\tau}{\alpha^{2} b^{2}}\left[\alpha a I_{0}(\alpha a)+\right.
$$

$$
\left.I_{1}(\alpha)\right]+I_{1}(\alpha \alpha)
$$

$$
F(\alpha a \mid \alpha b)=K_{1}(\alpha a) m_{b}+I_{1}(\alpha a) s_{b}-\frac{a}{\alpha b^{2}} I_{0}(\alpha a)
$$

The linear terms in the modified Bessel functions appearing in these expressions are due to theorem (A II.2).

APPENDIX III

THE SERIES EXPANSIONS IN PM 1 AND PM 2

A III.1 A MODIFIED LOMMEL FORMULA

Let

$$
\begin{equation*}
\varphi_{\nu}\left(\beta_{k} n\right)=J_{\nu}\left(\beta_{k} n\right)+\lambda_{k} Y_{\nu}\left(\beta_{k} n\right) \tag{AIII.I}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{Z}_{\nu}\left(\alpha_{j} \eta\right)=I_{\nu}\left(\alpha_{j} \pi\right)+M_{j} K_{\nu}\left(\alpha_{j} \eta\right) \tag{AIII.2}
\end{equation*}
$$

then $\mathcal{C}_{\nu}\left(\beta_{k} n\right)$ and $\mathcal{Z}_{\nu}\left(\alpha_{j} n\right)$ satisfy

$$
\begin{align*}
& r^{2} \mathscr{G}_{\nu}^{\prime \prime}+r \mathscr{C}_{\nu}^{\prime}+\left(\beta_{k}^{2} n^{2}-\nu^{2}\right) \mathscr{C}_{\nu}=0 \tag{AIII.3}\\
& n^{2} \mathcal{Z}_{\nu}^{\prime \prime}+r \mathcal{Z}_{\nu}^{\prime}-\left(\alpha_{j}^{2} n^{2}-\nu^{2}\right) \mathcal{Z}_{\nu}=0 \tag{AIII.4}
\end{align*}
$$

We multiply these equations by \mathcal{Z}_{ν} / π and φ_{ν} / π respectively and subtract; then

$$
\begin{align*}
& \pi\left[\mathscr{G}_{\nu}^{\prime \prime} \mathcal{Z}_{\nu}-\mathscr{C}_{\nu} \mathcal{Z}_{\nu}^{\prime \prime}\right]+\left[\mathscr{C}_{\nu}^{\prime} \mathcal{Z}_{\nu}-\mathscr{C}_{\nu} \mathcal{Z}_{\nu}^{\prime}\right]+ \\
& \left(\alpha_{j}^{2}+\beta_{K}^{2}\right) r \mathscr{C}_{\nu} \mathcal{Z}_{\nu}=0 \tag{AIII.5}
\end{align*}
$$

where ' $d d / d n$. Integrating,

$$
\int^{\pi} r \mathscr{G}_{\nu}\left(\beta_{k} n\right) \mathcal{Z}_{\nu}\left(\alpha_{j} n\right) d n=-\frac{1}{\alpha_{j}^{2}+\beta_{k}^{2}}\left[r\left(\mathscr{E}_{\nu}^{\prime} \mathcal{Z}_{\nu}-\mathscr{G}_{\nu} \mathcal{Z}_{\nu}^{\prime}\right)\right]
$$

which we call a 'modified Lommel formula' and is not to be found in books known to the author.

Integration by parts in two different fashions yields, the useful formulae:

$$
\begin{aligned}
& \int_{a}^{b} n^{2} \varphi_{1}\left(\beta_{k} n\right) \not \mathscr{L}_{0}\left(\alpha_{j} n\right) d n=-\left.\frac{n^{2}}{\beta_{k}} \mathcal{L}_{0}\left(\alpha_{j} n\right) \mathscr{C}_{0}\left(\beta_{k} n\right)\right|_{a} ^{b}+ \\
& \frac{2}{\beta_{k}} \int_{a}^{b} \pi \varphi_{0}\left(\beta_{k} n\right) \mathcal{L}_{0}\left(\alpha_{j} n\right) d n+\frac{\alpha_{j}}{\beta_{k}} \int_{a}^{b} n^{2} \mathscr{C}_{0}\left(\beta_{k} n\right) \mathcal{Z}_{1}\left(\alpha_{j} n\right) d n
\end{aligned}
$$

and

$$
\int_{a}^{b} n^{2} \mathscr{C}_{1}\left(\beta_{k} n\right) Z_{0}\left(\alpha_{j} n\right) d n=-\frac{\beta_{k}}{\alpha_{j}} \int_{a}^{b} n^{2} \varphi_{0}\left(\beta_{k} n\right) Z_{1}\left(\alpha_{j} n\right) d n
$$

where β_{k} are such that

$$
\begin{equation*}
\varphi_{1}\left(\beta_{k} a\right)=0=\varphi_{1}\left(\beta_{k} b\right) \tag{AIII.9}
\end{equation*}
$$

The latter equations allow to solve integrals with weight function n^{2}.

A III. 2 SUMMATION OF SERIES APPEARING IN PM 1 AND PM 2
(a) Orthogonality: Let $\mathscr{\zeta}_{\nu}\left(\beta_{K} \pi\right)$ be a cylinder function; these functions are orthogonal on the inter$\operatorname{val}[a, b]$ with respect to the weighting function π :

$$
\begin{equation*}
\int_{a}^{b} \pi \varphi_{\nu}\left(\beta_{k} n\right) \varphi_{\nu}\left(\beta_{p} n\right) d n=0, k \neq e \tag{AIII.10}
\end{equation*}
$$

where boundary conditions of the form

$$
k_{1} \varphi_{\nu}\left(\beta_{k} n\right)+k_{2} \varphi_{\nu}^{\prime}\left(\beta_{k} n\right)=0
$$

apply at $\pi=a, b$ (Sturm-Liouville conditions).
An arbitrary function $f(\pi)$ can be expanded in a series of cylinder functions:

$$
\begin{equation*}
f(n)=\sum_{k=0}^{\infty} A_{k} \varphi_{\nu}\left(\beta_{k} n\right) \tag{AIII.II}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=\frac{1}{N_{k}} \int_{a}^{b} n f(n) \varphi_{\nu}\left(\beta_{k} n\right) d n \tag{AIII.12}
\end{equation*}
$$

and

$$
\begin{gathered}
N_{k}=\int_{a}^{b} n\left[Q_{\nu}\left(\beta_{k} n\right)\right]^{2} d n=\quad \text { (A III.13) } \\
\left.\frac{1}{2} n^{2}\left\{\left(1-\frac{\nu^{2}}{\beta_{k}^{2} n^{2}}\right) \Theta_{\nu}^{2}\left(\beta_{k} n\right)+\left[G_{\nu}^{\prime}\left(\beta_{k} n\right)\right]^{2}\right\}\right|_{a} ^{b}
\end{gathered}
$$

From now on we take:

$$
\begin{gather*}
\varphi_{\nu}\left(\beta_{k} \eta\right) \triangleq J_{\nu}\left(\beta_{k} \eta\right)+\lambda_{k} Y_{\nu}\left(\beta_{k} \eta\right), \nu=0,1 \\
\mathscr{C}_{L}\left(\beta_{k} a\right)=0=\varphi_{L}\left(\beta_{k} b\right) \quad \text { (A II } \tag{AIII.14}
\end{gather*}
$$

λ_{k} being given in (3.6).
We will also need

$$
\begin{align*}
& \mathcal{Z}_{\rho \nu}\left(\alpha_{j} n\right) \stackrel{d}{\triangleq} I_{\nu}\left(\alpha_{j} n\right)+\mu_{j} K_{\nu}\left(\alpha_{j} n\right) \\
& \mu_{j} \stackrel{d}{\triangleq}(-1)^{\nu} I_{1}\left(\alpha_{j} \rho\right) / K_{1}\left(\alpha_{j} \rho\right) \tag{AIII.15}
\end{align*}
$$

where $\rho=a, b$ and $\nu=0,1$.
(b) Let

$$
\begin{equation*}
\mathcal{L}_{a 0}\left(\alpha_{j} n\right)=\sum_{k} a_{k} \mathscr{C}_{0}\left(\beta_{k} n\right) \tag{AIII.16}
\end{equation*}
$$

multiplying both members by $n \mathscr{C}_{0}\left(\beta_{\mathrm{N}} n\right)$ using (3.18) on the r.h.s. of the equation and (A III.6) on the l.h.s. we obtain

$$
\begin{equation*}
a_{k}=\frac{1}{N_{k}} \frac{\alpha_{j} b}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)} \bigodot_{0}\left(\beta_{k} b\right) \mathcal{Z}_{a 1}\left(\alpha_{j} b\right) \tag{AIII.17}
\end{equation*}
$$

which is used to express the series (Sha) in Table I. For $\mathcal{Z}_{b o}\left(\alpha_{j} \pi\right)$ the same method can be applied and the correspondent a_{k} will have the same form as (A III.17) except for a negative sign and the exchange of \underline{b} by \underline{a} in the r.h.s.

The second fundamental expansion is obtained by letting

$$
\begin{equation*}
z_{a 1}\left(\alpha_{i} n\right)=\sum_{k} b_{k} \varphi_{1}\left(\beta_{k} n\right) \tag{AIII.18}
\end{equation*}
$$

Using (3.18) leads to

$$
b_{k}=-\frac{1}{N_{k}} \frac{\beta_{k} b}{\left(\alpha_{j}^{2}+\beta_{k}^{2}\right)} \mathscr{C}_{0}\left(\beta_{k} b\right) \mathcal{Z}_{a 1}\left(\alpha_{j} b\right) \quad \text { (A III.19) }
$$

the same remarks, as before, apply to the expansion for $\mathcal{Z}_{b 1}\left(\alpha_{j} n\right)$. By using (3.13) coupled with (A III.7) and (A III.8) to evaluate the expansions

$$
\begin{equation*}
n Z_{a 1}\left(\alpha_{j} n\right)=\sum_{k} c_{k} \mathscr{C}_{0}\left(\beta_{k} n\right) \tag{AIII.20}
\end{equation*}
$$

and

$$
n \mathcal{Z}_{20}\left(\alpha_{j} \pi\right)=\sum_{k} d_{k} \mathscr{G}_{1}\left(\beta_{k} \pi\right)
$$

(A III.21)
and on this way generate (S3a) and (S4a). This, however, is not necessary since we find the following recursive relations:

$$
\begin{align*}
& (53 a)=\frac{d}{d r}(51 a) \\
& (54 a)=\frac{d}{d n}(52 a) \tag{AIII.22}\\
& (55 a)=\frac{1}{n} \frac{d}{d r}[r(54 a)]
\end{align*}
$$

The expansions (SNb) with, $N=1, \ldots, 5$ in which $\mathscr{C}_{0}\left(\beta_{K} b\right)$ appear instead of $\mathscr{C}_{0}\left(\beta_{x} a\right)$ can be easily obtained through the rule

$$
\exists_{a b}[\text { l.h.s. of }(S N a)]=-\exists_{a b}[\text { r.h.s. of (SNa) }]_{(A \text { III.23) }}
$$

Table I also assures us that the series which we were dealing with are uniformly and absolutely convergent; a requirement not stated explicitly in the body of Chapter III. These series lack a place in the only modern handbook of mathematical series known to the author, MANGULIS [1965; pp.106123].
(c) Note: It is known that the MacRobert-Sneddon transform (usually called 'modified finite Hankel transform' but in fact due to MacROBERT [1931] and SNEDDON [1946]) plays an important role in potential problems associated with hollow circular regions. Such transforms are defined by

$$
\tilde{O}_{\nu}[f(n)]=\int_{a}^{b} \pi f(n) \Theta_{\nu}\left(\beta_{k} n\right) d n ; b>a
$$

where β_{k} are the positive roots of

$$
J_{\nu}\left(\beta_{k} a\right) Y_{\nu}\left(\beta_{K} b\right)-J_{\nu}\left(\beta_{K} b\right) Y_{\nu}\left(\beta_{k} a\right)=0
$$

The determination of the coefficients a_{k}, b_{k} etc. in the series expansions above are closely related to such transforms of orders $\nu=0,1$ and thus are useful results in ways more than one. A comprehensive survey of the use of the MacRobertSneddon transforms mainly for heat conduction applications has been given by CINELLI [1965].

TABLE I: SERIES SUMMATIONS

APPENDIX IV

THE EIGENVALUES OF THE CIRCULAR HOLLOW CYLINDER

Written in full, the characteristic equation (4.17) for the determination of the eigenvalues reads when divided throughout by $a b:$

$$
\begin{aligned}
& {\left[J_{0}^{2}\left(\gamma_{j} a\right)+\left(1-\frac{\tau}{\gamma_{1}^{2} a^{2}}\right) J_{L}^{2}\left(\gamma_{j} a\right)\right]\left\{\left[H_{0}^{(2)}\left(\gamma_{j} b\right)\right]^{2}+\left(1-\frac{\tau}{\gamma_{i}^{2} b^{2}}\right)\left[H_{L}^{(2)}\left(\gamma_{j} b\right)\right]^{2}\right\}+} \\
& {\left[J_{0}^{2}\left(\gamma_{j} b\right)+\left(1-\frac{\tau}{\gamma_{j}^{2} b^{2}}\right) J_{L}^{2}\left(\gamma_{j} b\right)\right]\left\{\left[H_{0}^{(2)}\left(\gamma_{j} a\right)\right]^{2}+\left(1-\frac{\tau}{\gamma_{i}^{2} a^{2}}\right)\left[H_{L}^{(2)}\left(\gamma_{j} a\right)\right]^{2}\right\}} \\
& -2\left[J_{0}\left(\gamma_{j} a\right) H_{0}^{(2)}\left(\gamma_{i} a\right)+\left(1-\frac{\tau}{\gamma_{j}^{2} a^{2}}\right) J_{L}\left(\gamma_{j} a\right) H_{L}^{(2)}\left(\gamma_{j} a\right)\right] \\
& \\
& {\left[J_{0}\left(\gamma_{j} b\right) H_{0}^{(2)}\left(\gamma_{i} b\right)+\left(1-\frac{\tau}{\gamma_{i}^{2} b^{2}}\right) J_{1}\left(\gamma_{j} b\right) H_{L}^{(2)}\left(\gamma_{j} b\right)\right]} \\
& +\frac{4}{\pi^{2}} \frac{1}{\left(\gamma_{j} a b\right)^{2}}\left[a^{2}+b^{2}-\frac{2 \tau}{\gamma_{j}^{2}}\right]=0
\end{aligned}
$$

Of course, this equation can be expressed in terms of J_{ν} and Y_{ν}, if this is done by using (4.1), the equivalent form corresponds to replacing $H_{\nu}^{(2)}$ by Y_{ν} and reversing the sign of the first three product terms in (A.IV.I). Substitution of the first two terms of the asymptotic expansions for $J_{\nu}\left(\gamma_{j} \rho\right)$ and $H_{\nu}^{(2)}\left(\gamma_{j} \rho\right)$ with $\left|\gamma_{j} \rho\right|>1$ into the above equation and disregarding all terms of order
$\left(1 / \gamma_{j} \rho\right)^{2}$ and higher, yields for the difference between two consecutive eigenvalues the asymptotic form:

$$
\begin{equation*}
\gamma_{j+1}-\gamma_{j} \simeq \frac{1}{b-2}\left[\pi+i \ln \left(\frac{2 j-1}{2 j-3}\right)\right] \tag{AIV.2}
\end{equation*}
$$

with $j=1,2,3, \ldots$. The first root is expected to be in. the neighborhood of the first eigenvalue for the solid cylinder, i.e., $\quad \gamma_{1} \sim 2.7+i$ 1.6. With such initial guess, the Newton-Raphson algorithm

$$
\begin{equation*}
\gamma_{N} \Leftarrow \gamma_{N-1}-[\hat{A} /(d \hat{A} / d \gamma)]_{\gamma_{N-1}} \tag{AIV.3}
\end{equation*}
$$

can be used to advantage, and requires only a few number N of iterations for each root. For $a>.5$ the modulus of the individual terms in equation (A IV.l) are very large although the factors in square brackets are small, in consequence it would be necessary to have available a larger number of significant figures than that in use with the present computer facilities at the University of Houston.

In Fig. A IV.l we picturize the eigenpaths

$$
E_{j}=\gamma_{j}(a)
$$ with $j=1,2, \ldots, 5$ for $\sigma=0.3, b=1$. For a approaching zero the eigenvalues reach those for the solid cylinder as expected. However, the thinner the cylinder the larger the imaginary part of the eigenvalues become which precludes the existence of an increasing number of vibrations modes. Increase of Poisson's ratio corresponds to a raising and a

shift of the curve to the left.
In Tables II*, we present the first five eigenvalues in the range $a=0.02(0.02) 0.08$ and the first twenty in $a=0.1(0.1) 0.5$ for the useful values $\sigma=0.25,0.30$ and the academic values $\sigma=0.0,0.50$. The outer diameter b is taken as equal to one, without loss of generality since all the previous results can be normalized by b.

Fig. AIV.1. Eigenpaths $E_{j}=f\left(a, \gamma_{j}\right)$ for cylindrical regions

TABLE II A
 EIGENVALUES OF THE CHARACTERISTIC EQUATION (4:17)

$\theta=0.02$

NO.	POISSONIS RATIO $=0.50$		POISSONIS	RATIO $=0.30$
1	2.803081	+i1.342661	2.717691	+i1.364237
2	6.051009	1.687871	6.031500	1.677019
3	9.196867	2.009703	9.203790	1.965626
4	12.33181	2.338611	12.35208	2.256190
5	15.47797	2.658850	15.50402	2.544134
No.	POISSONIS RATIO $=0.25$		POISSONIS	RATIO $=0.00$
1	2.693665	+i1.369277	2.554509	+i1.390439
2	6.025215	1.675141	5.988993	1.667206
3	9.203357	1.957926	. 9.193983	1:929643
4	12.35474	2.241261	12.35965	2.185556
5	15.50810	2.522693	15.52011	2.440744

TABTE II B
EIGENVALUES OF THE CHARACTERISTIC EQUATION \{4.17)
$a=0.04$

NO.	POISSONIS RATIO $=0.50$... PAISSONIS RATIO $=0.30$
1	$\ldots .782070 \ldots+i 1.350701$	-2.704986 $+i 1.370288$
2	5.960269 1.818185	5.9700041 .777041
3	9.085229 - 2.331905	9.124739 ... 2.230349
4	12.25000 2.802906	12.30265 2.662932
5	15.43405 . 3.196086	15.50104 . 3.038061
NO.	POISSONIS RATIO $=0.25$.-. POISSONIS RATIO $=0.00$
1	$2 \cdot 682352 \ldots+i 1.374977$	$2.548068+i 1.394819$
2	5.968969 1.769772	5.9521021 .742104
3	9.130511 2.211505	9.145347....... 2.139723
4	12.31116 2.635867	12.33849 2.529543
5	15.51194 . 3.006556	15.54829 2.879879

TABLE II C
EIGENVALUES OF THE CHARACTERISTIC EQUATION (4:17)
a $\quad 0.06$

NO.	POISSON'S	RATIO $=0.50$	PEISSONIS	RATIO $=0.30$
1	2.750666	+i1.363512	2.685700	+i1.380105
2	5.869353	1.976460	5.907241	1.906337
3	9.021740	2.614008	9.088907	2.485062
4	12.23280	3.116439	12.32066	2.970840
5	15.46439	3.488264	15.57207	3.350755
NO.	POISSONIS	RATIO 0.25	POISSONIS	RATIO $=0.00$
1	2.665139	+i1.384249	2.538194	+i1.402000
2	$5 \cdot 911487$	1.893479	5.914837	1.844164
3	9.099728	2.459855	9.133870	2.360135
4	12.33533	2.940740	12.38490	2.816982
5	15.59067	3.320493	15.65529	3.191010

TABLE II D
EIGENVALUES OF THE CHARACTERISTIC EQUATION (4.17)
a. 0.08

NO.	POISSONIS	RATIO $=0.50$		POISSONIS	RATIO $=0.30$
1	2.712326	+i1.380114		2.661705	+i1.393232
2	5.795438	2.132760		5.857378	2.042730
3	9.000800	2.827938		- 9.091919	2.697292
4	12.27731	3.310828		12.38815	3.188658
5	15.58992	3.642896		15.70932	3.546085
NO.	POISSONIS RATIO $=0.25$			POISSONIS RATIO 0.00	
1	2.643656	..- +i1.396707	-	- 2.525753	- +i1.411793
2	5.866247	2.025548		5.887682	1.958136
3	9.107265	2.670224		-	2.558744
4	12.40785	3.161106		12.47742	3.041033
5	15.73197	3.522158		15.81587	3.410992

TABLE II E
EIGENVALUES OF THE CHARACTERISTIC EQUATION (4:17)
a 0.10

NO.	POISSANIS	RATIE $=0.50$			POISSONIS	RATIO	$\theta=0.30$
1	2.670084	+i1.399321	\cdots		2.634744	+il	$1 \cdot 409064$
2	5.743233	2.274778			5.824673		2.174990
3	9.022223	2.985854			9.128905		2.868707
4	12.38757	3.438904			$12 \cdot 50367$		3.346486
5	15.80014	- 3.745442		15.91176		3.681018
6	19.24385	3.973968			19.34456		3.930078
7	22.70632	4.157730			22.79528		$4 \cdot 127200$
8	26.17973	4.312861			26.25821		4.290868
9	29.65957	4.447877			29.72926	4	4.431451
10	33.14332	4.567794			33.20574		4.555117
11	36.62.951	4.675843			36.68591		4.665779
12	40.11726	4.774256			40.16865		4.766073
13	43.60605	4.864661			43.65321		4.857871
14	47.09555	4.948286			47.13910		4.942556
15	50.58552	5.026091			50.62597		5.021184
16	54.07582	5.098837			54.11359		5.094583
17	57.56636	5.167146			57.60177		5.163418
18	61.05706	5.231528			61.09039		5.228231
19	64.54789	5.292411			64.57936		5.289471
20	68.03879	5.350154			68.06861		5.347515
NQ.	POISSONIS	RATIO $=0.25$			POISSONIS	RATIO	$\theta=0.00$
1	2.619438	+i1.411830			2.511589	$1+i 1$	1.423937
2	5.837428	. 2.155125			5.874386		2.074994
3	9.147745	2.842830			9.2134 .39		2.731342
4	12.52579	3.323756		--..	12.60803		3.218071
5	15.93463	3.663530			16.02489		3.575600
6	19.36637	- -3.917196			19.45714		3.847766
7	22.81532	4.117710			22.90219	$\cdots 4$	4.063618
8	26.27636	--... $4 \cdot 283742$	--	-	26.35752		4.241346
9	29.74567	4.425966			29.82074		4.392260
10	33.22062	----. 4.550788	-		33.28988		4.523537
11	36.69948	4.662284			36.76344		4.639879
12	40.18110	- 4.763196	--.		40.24033	$\cdots 4$	4.744488
13	43.66469	4.855462			43.71974	$\because 4$	4.839621
14	47.14975	--. 4.940508			47.20110	- - 4	4.926927
15	50.63589	5.019420			50.68396		5.007650
16	54.12287	- 5.093047			54.16803		5.082747
17	57.61049	5.162068			57.65305		5.152977
18	61.09861	5.227035			61.13885	5	5.218949
19	64.58714	5.288403			64.62528		5.281163
20	68.07599	5.346554			68.11223		$5 \cdot 340033$

TABLE II F
EIGENVALUES OF THE CHARACTERISTIC EQUATION (4.17)
a. 0.20

NO.	POISSONIS RATIO:0.50	POISSONIS RATIO $=0.30$
1	$2.463435 \cdots+i 1.504363$	- $2.496081 \ldots+i 1.509410$
2	5.815449 2.788757	5.927013 2.716671
3	9.656808 - 3.475009	9.748708 3.433308
4	13.57250 3.895833	$13.64421 \quad 3.873060$
5	17.50605 4.203991	. 17.56313 .. 4.190234
6	21.44363 4.449407	21.49056 4.440256
7	25.38141 ... 4.654076	25.42111 . 4.647529
8	29.318324 .829845	29.35267 : 4.824904
9	33.25415 ... 4.983949	33.28440 - 4.980069
10	$37.18894 \quad 5.121178$	37.21597 5.118038
11	41.12283 ... 5.244878	. 41.14725 5.242275
12	$45.05594 \quad 5.357474$	45.07821 . $5 \cdot 355276$
13	48.98837 5.460792	. 49.00884 5.458907
14	52.92023 5.556253	52.93917 ; 5.554615
15	56.85160 -... 5.644968	$56.86923 \quad 5.643531$
16	60.78256 5.727818	60.79904 5.726544
17	64.71316 5.805525	64.72863 5.804387
18	$68.64342 \quad 5.878701$	68.65801 . 5.877678
19	72.5734 .3 5.947851	72.58722 5.946925
20	$76.50320 \quad 6.013377$	76.51628 6.012534
NO.	POISSONIS RATIO:0.25	POISSONIS RATIO $=0.00$
1	$2.493928+i 1.510108$	2.436954 +i1.510044
2	$5.948150 \ldots 2.699113$	-6.025073 2.616382
3	9.768295 3.421576	$9.848862 \because 3.359447$
4	13,66052 3,866065	$13.73245 \cdots 3.825765$
5	$17.57655 \quad 4.185804$	17.63827 . 4.158949
6	$21.50181 \ldots 4.437235$	21.55480 U 4.418372
7	25.43073 4.645339	25.47677 , 4.631429
8	$29.36106 \ldots . \quad 4.823240$	$29.40159 \because 4.812565$
9	$33.29183 \quad 4.978758$	33.32796 : 4.970303
10	37.22263 - 5.116977	- 37.25518 5.110107
11	41.15328 5.241397	41.18288 - 5.235698
12	$45.08372 \ldots-\ldots .354535$	$45.11084 \ldots3 .349726$
13	$49.01392 \quad 5.458273$	$49.03894 \cdots 5.454157$
14	$52.94387 \ldots 5.554066$. 52.96709 . 5.550501
15	$56.87360 \quad 5.643049$	56.89526 5.639929
16	$60.80314 \ldots5 .726119$. 60.82343 - 5.723363
17	64.73248 5.804008	64.75156 5.801555
18	68.66164 .. 5.877338	68.67965 5.875141
19	$72.59065 \quad 5.946618$	72.60771 5.944636
20	76.51954 . 6.012255	$76.53573 \quad 6.010459$

TABLE II G
EIGENVALUES OF THE CHARACTERIST〔C EQUATןON \{4:17\}
a $=0.30$

NO.	POISSONIS RATIO $=0.50$	POISSONIS RATIO $=0.30$
1	$2.325267+i 1.603825$	$2.399112+i 11621793$
2	$6.332077 \quad 3.225980$	$6.421647 \quad 3.188272$
3	$10.86315 \quad 3.967968$	$10.92237 \quad 3.950841$
4	$15.40105 \quad 4.441743$	15.44391 4.432507
5	$19.92832-4.794644$	19.96165 4.788833
6	$24.44664 \quad 5.076932$	24.47384 5.072893
7	28.95850 5.312486	$28.98148 \quad 5.309487$
8	$33.46572 \quad 5.514625$	$33.48560 \quad 5.512295$
9	37.96948 5.691752	37.98701 5.689880
10	$42.47073 \quad 5.849322$	42.48639 - 5 847779
11	$46.96991 \quad 5.991270$	$46.98407 \quad 5.989974$
12	$51.46762 \quad 6.120427$	51.48055 . 6.119319
23	55.96399 6.23882.4	55.97588 6.237866
14	60.45941 6.348282	$60.47042 \cdots 6.347442$
15	$64.95398 \quad 6.449818$	64.96423. 6.449076
16	$69.44782 \ldots 6.544728$	69.45741 , 6 - 644067
17	$73.94109 \quad 6.633704$	73.95009 6.633111
18	78.43385 6.717469	$78.44234 \quad 6.716934$
19	82.92619 - 6.796600	$82.93421 \quad \therefore 60796114$
20	$87.41814 \ldots 6.871582$	$87.42576 \therefore \quad 60871138$
$\mathrm{N} \boldsymbol{\theta}$.	POISSONIS RATIO $=0.25$	POISSONIS RATIO $=0.00$
1	$2.406001+i 1.623628$	$2.387276+i 1.621804$
2	6.440295 3.177767	6.514875 \% 3121749
3	$10.93590 \quad 3.945540$	10.99610 31914384
4	$15.45409 \quad 4.429529$	-15.50154 4.411199
5	$19.96970 \quad 4.786933$	
6	24.48049 5:071569	, 24.51263 , 5.063185
7	$28.98712 \quad 5.308506$.29.01466 5.302275
8	33.49050 5.511535	$33.51455 \quad 5.506710$
9	$37.99134 \quad 5.689272$	$38.01263 \cdots 5.685418$
10	$42.49027 \quad 5.847280$	$42.50944 \quad$ \% 5.844123
11	$46.98759 \quad 5.989557$	$47.00498 \quad \because 50986522$
12	$51.48376 \quad 6.118963$	$51.49968 \cdots 61116725$
13	$55.97884 \quad 6.237560$	$55.99351 \quad 6.235636$
14	$60.47315 \quad 6.347175$	60.48676 \% 6,345500
15	$64.96678 \quad 6 \cdot 448841$	64.97945 \% 61447369
16	69.459796 .543859	$69.47167 \quad 6.542555$
17	$73.95234 \quad 6.632924$	$73.96350 \quad 6.631760$
18	78.44446 6.716766	78.45499 6.715720
19	$82.93621 \quad 6.795961$	82.94618 6.795016
20	$87.42766 \quad 6.870999$	$87.43712 \quad 6.870140$

TABLE II H
EIGENVALUES OF THE CHARACTERISTIC EQUATION (4.17)
$a=0.40$

N日.	POISSANIS RATIO $=0.50$	POISSONIS RATIA $=0.30$
1	$2.265791+i 1.711123$	2.362228 +i1.747135
2	7.215960 3.765203	7.280783 3.744879
3	12.58903 4.622496	12.62803 4.613691
4	$17.91426 \quad 5.176402$	$17.94189 \quad 5.171468$
5	23.21096 5.589701	23.23234 5.586480
6	$28.49072 \quad 5.920195$	28.50816 5.917901
7	$33.76004 \quad 6.195603$	33.77476 -6.193868
8	$39.02238 \quad 6.432144$	$39.03513 \quad 6.430772$
9	$44.27927 \quad 6.639216$	44.29051 \% 6,638111
10	$49.53295 \quad 6.823187$	$49.54300 \therefore$, 6.822266
11	$54.78372 \quad 6.988988$	$54.79281 \quad 6.988210$
12	$60.03235 \quad 7.139793$	$60.04064 \quad 7.139125$
13	65.27928 -7.278090	$65.28691 . \cdots 7.277510$
14	$70.52485 \quad 7.405797$	70.53192 .7 .405288
15	$75.76931 \quad 7.524421$	75.77589 , 7.523970
16	$81.01284 \quad 7.635168$	81.01899 7.634765
17	$86.25559 \cdots 7.739019$	86.26137×7.738657
18	91.49768 7.836783	$91.50313 \quad \therefore 7.836455$
13	$96.73920 \quad 7.929133$	96.74436 $\quad \because 7.928835$
20	101.2802 8.016637	$\therefore 1019881 \therefore 81016365$
No.	POISSONIS RATIO $=0.25$	POISSONIS RATIO $=0.00$
1	$2.374591+i 1.751621$	2,380802 +i1.754849
2	$7.294953-3.738727$	7.354781 3.703061
3	12.63719 4.61.0864	12.67939 4.593449
4	17.94856 - 5.169866	$\leqslant 17.98032$ - 5159812
5	$23.23756 \quad 5.585437$	-23.26284 $=5.578868$
6	28.51244 5i917163	-28.53340 5.912518
7	$33.77840 \quad 6.193313$, 33.79626 6.189839
8	$39.03828 \quad 6.430337$	$39.05385 \quad 6.427622$
9	44.29330 6.637762	44.30710 6.635592
10	$49.54550-6.821978$	49.55787 , $\because 6.820190$
11	$54.79507 \quad 6.987967$	$54.80629 \because 6.986469$
12	$60.04271 \quad 7.138918$	60.05297 7.137643
13	$65.28882 \quad 7.277331$	65.29827 7.276231
14	70.53368 - 7.405131	$70.54244 \cdots 7.404172$
15	75.77753 7.523832	75.78569 \# 7.522987
16	$81.02053-7.634642$	$81.02817 \quad 7.633893$
17	$86.26281 \quad 7.738547$	$86.27000 \quad 7.737876$
18	$91.50449 \longrightarrow 7.836356$	$91.51127-7.835752$
19	96.74565 7.928745	96.75206 7.928199
20	101.9864 - 8.016283	$101.9924 \cdots 8.015786$

IABLE II I

EIGENVALUES OF THE CHARACTERISTIC EQUATION \{4.17)

$a=0.50$

No.	POISSONIS RATIO $=0.50$	POISSONIS RATIO $=0.30$
1	$2.279673+i 1.846351$	$2.389953+i 1.900840$
2	$8.551486 \ldots 4.513028$	$8.597045 \quad 4.501382$
3	15.05541 5.542333	15.08162 5.537200
4	21.4639 2 6.208457	$21.48234 \quad 6.205496$
5	$27.82835 \quad 6.705228$	$27.84258 \quad 6.703271$
6	$34.16870 \quad 7.102111$	34.18029 7.100718
7	$40.49631 \quad 7.433966$	$40.50611 \quad 7.432869$
8	$46.81323 \quad 7.717863$	$46.82172 \quad 7.716994$
9	53.12357 7.966412	$53.13105 \cdots \cdots 7.965703$
10	$59.42912 \quad 8.187461$	59.43581 :.. ${ }^{\text {¢ }}$. 8.186871
11	65.73109 8.386502	$65.73714^{-\cdots 8.386001 ~}$
12	$72.03030 \ldots 8.567526$	$72.03583 \ldots 8.567094$
13	78.32733 8.733524	$78.33242 \therefore . . .980 .733150$
14	$84.62262 \quad 8.886805$	84.62732 (8.886475
15	$90.91647 \quad 9.029179$	$90.92086 \quad 9.028887$
16	97.20915 - 9.162093	97.21326 91161834
17	103.5008 9.286730	$103.5047 \cdots 9.286495$
18	109.7917 9.404056	109.7953 9.403847
19	116.0818 9.514886	+126.0853 9.514693
20	122.3714 9.619902	122.3746 9.619725
NO.	POISSONIS RATIO $=0.25$	POISSONIS RATIO $=0.00$
1	$2.405760+i 1.908397$	$2.428022{ }^{\text {a }}+i 1.919320$
2	8.607279 - 4.497665	8.651846 \% 4.474887
3	15.08786 - 5.535527	15.11711 5.524993
41	$21.48682 \quad 6.204537$	$\because 21.50838$, 6,198481
5	$27.84607 \quad 6.702643$	- $27.86309=1066698690$
6	$34.18315 \quad 7.100275$	- $34.19719 \quad 77.097492$
7	$40.50854 \ldots 7.432524$	140.52051 7.430390
8	$46.82383 \quad 7.716723$	46.83424 m 7.715055
9	$53.13291 \quad 7.965484$	$53.14213 \cdots 7.964141$
10	59.43748 8.186690	$59.44575 \cdots-8.185583$
11	$65.73865 \quad 8.385849$	65.74614 . 8.384919
12	72.03720 8.566964	$72.04405 \cdots 8.566172$
13	$78.33368 \quad 8.733036$	$78.33999 \quad 8.732353$
14	84.62850 8.886376	84.63435 - 8.885779
15	$90.92195 \quad 9.028797$	90.92740 $\because 9.028273$
16	97.21428 9.161755	97.21938 9.161287
17	103.5057 9.286423	103.5105 9.286006
18	$109.7962 \quad 9.403783$	$109.8008-9.403403$
19	$116.0861 \quad 9.514640$	116.0904 . 9.514292
20	122.3754 - 9.619670	122.3795 ${ }^{\text {- }} 9.619364$

[^0]: $1_{\text {These }}$ are called LAME'S equations in the Russian literature. No solutions of this system of equations other than for the axially symmetric problem are known.

[^1]: ${ }^{4}$ In particular the Boussinesq-Papkovich-Neuber system.

