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ABSTRACT

Motivated by the numerical solution of the incompressible Navier-Stokes equations, this dissertation

studies numerical properties of threshold incomplete LU factorizations for nonsymmetric saddle-

point matrices. We consider preconditioned iterative Krylov-subspace methods, such as GMRES,

to solve large and sparse linear algebraic systems that result from Galerkin finite element (FE) dis-

cretizations of the linearized Navier-Stokes equations. The corresponding preconditioners are used

to accelerate the convergence of the GMRES method. Stabilized and unstabilized finite element

methods are used for the Navier-Stokes problem leading to systems of algebraic equations of a sad-

dle point type, which has a 2× 2-block structure. Numerical experiments for model problems of a

driven cavity flow and flow over a backward-facing step illustrate the performance of one-parameter

and two-parameter ILU factorizations as preconditioners.

We also introduce a Machine Learning (ML) based approach for building ILU factorizations for

preconditioning. For this purpose, we use the tools well-developed in the scope of image segmenta-

tion. Image Segmentation is the process of partitioning an image into separate and distinct regions.

The process has some similarities to building patterns for ILU-type preconditioner. In our inter-

pretation, the segmented regions represent a non-zero pattern for L and U factors. We applied

a convolutional neural network with the benchmark U-net architecture to predict non-zero pat-

terns for ILU-type factorizations and further use the resulting preconditioners to solve the discrete

linearized Navier-Stokes system.
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1 Introduction

This research is motivated by the numerical solution of the Navier-Stokes equations governing the

flow of viscous incompressible Newtonian fluids. The system of Navier-Stokes equations describes

the dynamics of fluid flow in terms of its velocity, pressure, and density. These equations were

derived independently by G.G. Stokes and M. Navier, in the early 1800s. The Navier-Stokes system

is a set of coupled differential equations, and for some given model flow problems, its solution can

be found using analytical tools. However, for most practical flow problems, these equations are

too difficult to solve analytically. Numerical modeling of viscous incompressible fluid flows is also

challenging. In particular, the discretization of the Navier-Stokes equations by any conventional

discretization method, like the Finite Element method (FE), results in a very large system of

algebraic equations. Solving this system of equations is computationally expensive. Moreover,

solving equations numerically is known to get harder for higher values of Reynolds number (small

values of kinematic viscosity and/or high velocities). Since the fluid flows are ubiquitous in physics,

engineering, biology and everyday life, there is still a pressing need for new methods and tools to

solve such problems numerically.

In this dissertation, we study and use matrix factorization as a tool to improve iterative solvers

for systems of linear algebraic equations with non-symmetric saddle-point matrices. Our work is

focused on practical use and improvement of the preconditioning techniques originally introduced

by Kaporin [23] for symmetric positive definite (SPD) matrices. Here it is applied to non-symmetric

matrices and the generalized minimal residual method (GMRES) as a solver. Numerical analysis

and experiments in [26] and [25] with the inf-sup stable Galerkin finite element methods for the

incompressible Navier-Stokes equations demonstrate the robustness and efficiency of this approach.

In the present dissertation, we extend the method and analysis to the system of algebraic

equations resulting from the stabilized formulations of the Navier-Stokes equations


−ν∆u + (u · ∇)u +∇p = f in Ω

div(u) = 0 in Ω,

(1)
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where u is the flow velocity, and p is the pressure field, with appropriate boundary conditions on

∂Ω, the boundary of the Lipschitz domain Ω ⊂ R3. Implicit time discretization or linearization of

the Navier-Stokes in Picard fixed-point iteration, and further application of a FE method results

in the problem of the form  A BT

B −C


︸ ︷︷ ︸

A

 u

p

 =

 f

g

 , (2)

where A is sparse n×n positive definite matrix, which combines the discretization of the diffusion,

convection, and time-dependent terms; u and p represent the discrete velocity and pressure, respec-

tively; BT is the discrete gradient, B is the discrete (negative) divergence, C is the matrix resulting

from possible pressure stabilization terms, f and g contain forcing and boundary terms. We study

several preconditioning techniques that improve the convergence of the GMRES iterations for (2).

In the last two decades, a lot of work has been done to develop preconditioned iterative methods

in application to incompressible flow problems. One can find an excellent review of preconditioning

techniques for saddle-point problems arising in computation fluid dynamics in [3]. One of the stan-

dard techniques to design a preconditioner for the matrix A from (2) is based on building individual

preconditioners for the submatrix A and Schur complement matrix S = BA−1BT +C and combin-

ing them in a 2× 2 block matrix. It was shown in [14] that Krylov subspace methods demonstrate

a noticeable improvement of performance for solving the Navier-Stokes equations when using the

pressure convection-diffusion [24] and a least-square commutator [11] preconditioners for the pres-

sure Schur complement of the system. In the same paper mesh-independent convergence rates were

observed for specific flow problems for which previous versions of the methods did not exhibit such

behavior. Thus, one of the most popular techniques to improve convergence of iterative methods

in incompressible fluid dynamics is based on block 2× 2 preconditioners. Important subclasses are

formed by block diagonal and block triangular preconditioners for the full system Au = b. Block

diagonal preconditioners have been extensively studied in [37]; also in the context of applications

2



beyond fluid dynamics. Block triangular preconditioners were first suggested in [10] and gain a

lot of attention over the last two decades. This class of preconditioners includes some of the most

effective solvers for saddle point problems, both symmetric and nonsymmetric. Paper [31] reviews

possible advantages and difficulties of using various Schur complement preconditioners, recalls ex-

isting eigenvalue bounds for the preconditioned Schur complement and proves such for the block

triangular preconditioner. Comparing to the Stokes problem, the situation is more complicated for

nonsymmetric saddle point problems resulting from the discretization of the Oseen equations. For

steady problems with small Reynolds numbers, using a pressure mass matrix to approximate the

Schur complements is usually sufficient and results in convergence rate independent of mesh size.

This uniform convergence is observed for both block diagonal and block triangular preconditioners.

Such preconditioners were also used in [13] for the linear systems arising from Newton’s method

applied to the Navier-Stokes equations.

The area of developing robust preconditioners for fluid problems has expanded in recent years.

In particular, robust preconditioners of the block triangular type for the Oseen equations are of

interest [12]. A block triangular preconditioner based on the pressure convection-diffusion operator

was also used in [38] with good results as a smoother for a multigrid method applied to the Oseen

problem. It was shown in [36] that block preconditioners result in an efficient approach for the

solution of incompressible Navier-Stokes equation discretized by finite elements and linearized by

Newton or Picard’s methods.

However, another feasible approach for building preconditioners is based on the incomplete ele-

mentwise factorization of the original matrix A. In [41], new reordering techniques were introduced

for the degrees of freedom that make the application of ILU preconditioner to saddle point problems

competitive with the most advanced block preconditioners. The principle that the preconditioning

matrix should have the same 2 × 2 block structure as the original saddle point matrix is called

constraint preconditioning. Constrained preconditioners have been widely used in the solution of

saddle point systems arising from mixed finite element formulations of elliptic partial differential

equations [16]. This is one of the cases when it is sometimes possible to find an easily invertible -

3



diagonal matrix that is spectrally equivalent to A.

Bai et al. [1] introduce the Hermitian and skew-Hermitian preconditioning (HSS) as a stationary

iterative method, where they show convergence for non-Hermitian positive definite systems. The

application of HSS as a preconditioner for rather general saddle point problems has been studied in

[3]. Unfortunately the rate of convergence of the HSS iteration is rather slow, even with the optimal

choice of a parameter. Because of that, Benzi and Golub proposed in [2] that GMRES or other

Krylov subspace methods should be used to accelerate the convergence of the HSS method. Another

type of iterative solvers for the Navier-Stokes equations in rotation form has been introduced and

studied in [29] and [30]. Although the rotation form is not widely used in practice, it has some

advantages over the (standard) convective form.

One more type of preconditioners was introduced by Benzi and Olshanskii in [4] in 2006 based

on the idea of augmenting the A block of the saddle-point matrix with a term depending on the

constraint. The authors named it the augmented Lagrangian based approach. Different variants of

the augmented Lagrangian (AL)-based block-triangular preconditioners were studied in [5]. This

type of preconditioners is used to accelerate the convergence of the GMRES applied to various finite

element discretizations of the Oseen problem in two and three space dimensions. The preconditioner

is based on an algorithm that relies on a highly specialized multigrid method involving a custom

prolongation operator and a special smoothing iteration. To generalize the preconditioner to three

dimensions, in [17] alternative finite elements were proposed for the velocity and prolongation

operators for which the preconditioner works robustly. Field-of-Value convergence analysis of the

GMRES with (AL)-preconditioner for Oseen problem can be found in [4]. AL-preconditioning

remains an active area of research.

In [26] a matrix decompostion of the form

A = LU + LRu +R`U − E, (3)

is introduced and investigated, where U and L are upper and lower triangular matrices and Ru

4



and Rl are strictly upper and lower triangular matrices respectively, E is the corresponding error

matrix. Given two small parameters 0 < τ2 ≤ τ1, the off-diagonal elements of U and L are either

zero or have absolute values greater than τ1. The absolute values of Ru and Rl entries are either

zero or belong to (τ2, τ1].

We study the numerical performance of the method for a set of linear algebraic systems that

appear in the simulation of driving cavity flow and flow over backward-facing step. We conduct

case studies of steady incompressible flow in a lid-driven square cavity for 1/1000 ≤ ν ≤ 1 and

flow over backward-facing step for 1/400 ≤ ν ≤ 1. The statistics we are interested in are the level

of fill-in of U and L factors and the average iteration numbers. We perform various qualitative

and quantitative comparisons to determine the effect of Reynolds number and mesh size for four

different finite elements discretizations of the governing equations. Furthermore, we compare the

performance of two-parameter factorization ILU(τ1, τ2) and a standard one parameter factorization

for different values of discretization, stabilization and threshold parameters.

In Chapter 6, we determine the optimal threshold parameter and show superiority of ILU(τ1, τ2)

comparing its performance to some state-of-the-art block preconditioners. We analyze the results

of using GMRES with ILU(τ1, τ2) and GMRES with pressure convection-diffusion (PCD) or the

least-squares commutator (LSC) as a preconditioner. We examine iteration numbers and building

times for various problem sizes and Reynolds numbers.

In Chapter 7 we introduce a Machine Learning (ML) based approach for building ILU factor-

izations for preconditioning. For this purpose, we employ ML tools developed in the scope of image

segmentation. In the last decade, astounding results were shown for image segmentation tasks. We

noticed that image segmentation problems is similar to a certain extent to finding a pattern based

on matrix entries. It refers to the process of associating each entry in a matrix to a label. We con-

sider a U-net architecture suggested in [34], which achieves an excellent performance on different

segmentation applications. U-Net was first designed for medical image segmentation, but it was

later successfully used in many other fields and for different tasks. In Chapter 7, we propose a deep

learning algorithm based on U-net architecture for computing the ILU preconditioners’ pattern as

5



an output of a neural network.

The rest of this dissertation is organized as follows. Chapter 2 discusses the physical background

of the Navier-Stokes equations. In Chapter 3, we consider discretization in time and linearization

techniques. In Chapter 4, the discretization of the incompressible Navier-Stokes by the finite

element discretization is introduced. Chapter 5 deals with ILU type and block preconditioners.

In Chapter 6, some of these preconditioners are compared for solving several standard benchmark

problems. Lastly, in Chapter 7, we present deep learning techniques for preconditioners’ design and

in Chapter 8 conclusions.
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2 Navier-Stokes equations

2.1 Mathematical model

To obtain the equation of motion for a fluid, we need to start with conservation laws applied to a

material volume W0 ⊂ Ω in a domain occupied by fluid. Let us introduce Eulerian coordinates of a

point in Ω by x = (x1, x2, x3). Let X be a material point in Ω at t = t0, where t0 is fixed and from

(0, T ), and ξ is the Eulerian coordinates of the point X at time t. Then we define a mapping:

t→Xξ(t), t ∈ (t0 − δ, t0 + δ), (4)

where δ > 0 is sufficiently small such that all functions presented below will be well-defined and

Xξ describes the coordinates of the point X. Then (4) describes the trajectory of the point X.

Therefore, the trajectory of the point X in a velocity field u = u(x, t) ∈ R3 is given by the

solution of the system:

d

dt
Xξ(t) = u(Xξ(t), t), t ∈ (t0 − δ, t0 + δ),Xξ(t0) = ξ (5)

There are two ways to describe the motion of a fluid (Figure 1):

• Eulerian specification, we record the evolution of the flow properties at every fixed point in

space as time varies.

• Lagrange specification, where we follow fluid particles (material points) as they travel in the

flow.

For the given material volume W0 at time t = t0, let

W (t) := {Xξ(t) : ξ ∈W0} (6)

First we consider the conservation of mass. For the given material volume, the conservation of

7



Figure 1: 1) Lagrange approach: the fluid flow properties are determined by tracking the motion
and properties of the particles as they move in time. 2) Eulerian approach: parameters are measured
with monitoring devices on a masts

mass can be written as

d

dt

∫
W (t)

ρdx = 0, (7)

where ρ is the density of the fluid.

Another necessary notion we need further in this thesis is that of material derivative. The

material derivative is the rate of change of an intensive property f on a particle passively advected

by the velocity field u. The material derivative is defined as:

df

dt
=
∂f

∂t
+ (u · ∇)f. (8)

Also, we need another important theorem, which is known as the Reynolds Transport Theorem.

It provides a way to transfer equations for conservation laws from the Lagrangian point of view

to the Eulerian point of view using a control surface and a control volume. For a scalar smooth

function f = f(x, t) the Reynold’s transport theorem results in the identity:

d

dt

∫
W (t)

f(x, t)dx =

∫
W (t)

df

dt
(x, t) + fdiv(u(x, t))dx =

=

∫
W (t)

∂f

∂t
(x, t) + u · ∇f(x, t) + fdiv(u(x, t))dx

=

∫
W (t)

∂f

∂t
(x, t) + div(fu)(x, t)dx

(9)

8



Using the formulas (9) in (7) we get:

∫
W (t)

∂ρ

∂t
+ div(ρu)dx = 0 (10)

Since (10) holds for any material volume W (t), with the assumption that ρ = const we get the

continuity equation

div(u) = 0 (11)

Next, we consider the conservation of momentum. Newton’s second law applied to a material

volume W (t) leads to the following relation:

d

dt

∫
W (t)

ρdx = F (t), (12)

where F(t) are forces acting on W(t). We decompose forces acting on the volume to external force

F1(t) =
∫
W (t) ρgdx, i.e. gravity, and F2(t), which describes internal forces. If a is the internal force,

then F2(t) =
∫
∂W (t) a · nds. F2 represents forces, which are acting on the surface, imposed by the

outside fluid ‘tugging’ or ‘pushing’ on the surface by means of friction. In 3D, each of the 3 sets

of surface planes bounding an element experiences a 3-component force, giving 9 components all

together. These form the stress tensor σ, defined so that the force f exerted per unit area across

a surface element, is equal to σ · n ds = nds, where n = n(x, t) is the outer normal unit on ∂W (t)

(Figure 2). We conclude that F2(t) =
∫
∂W (t) σds.

One more important theorem is needed. It is the Gauss divergence theorem:

∫
Ω
div(a)dΩ =

∫
∂Ω

a · ndΓ (13)

The boundary conditions are applied by evaluating the boundary integral in (13), if possible.

Implementing the divergence theorem, we arrive at the updated Newton’s second law for the
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Figure 2: Surface stresses on a fluid element.

forces:

d

dt

∫
W (t)

ρdx = F1(t) + F2(t) =

∫
W (t)

ρg + div(σ)dx (14)

Applying the Reynold’s Transport theorem to the left-hand side of (14), we get

∫
W (t)

∂ρui
∂t

+ div(ρui(u))dx =

∫
W (t)

ρgi + div(σi)dx (15)

We define div(σ) as a row-wise divergence of sigma. In Cartesian coordinates, the operator is

div(σ) =


∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

 (16)

Since (15) is satisfied for any material volume in Ω, we obtain the following identity, in the vector

notation:

∂ρu

∂t
+ div(ρu⊗ u) = ρg + div(σ), (17)

where u⊗ u = (uiuj)1≤i,j≤3 ∈ R3

Using that div(ρu ⊗ u) = ρ(u · ∇)u for u s.t. divu = 0 and ρ = const,we obtain momentum
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equation:

∂ρu

∂t
+ ρ(u · ∇)u = ρg + div(σ) (18)

The conservation equations derived above, in addition to a few assumptions about the forces

and the behaviour of fluids, lead to the equations of motion for fluids. We assume the fluid

is homogeneous in the sense that the relationship between stress and rate of strain is the same

throughout any given sample. We also assume that the fluid is isotropic, i.e., that there is no

preferred direction in space insofar as the relationship between stress and rate of strain is concerned.

These assumptions define Stokesian Fluid. Now we make one further assumption. We assume that

the relationship between stress and rate of strain is linear. This defines a Newtonian Fluid.

We introduce the stress tensor σij as follows: σij is the i-component of the internal force on a

surface element ds that has a normal n pointing in the j-direction. The stress tensor σij can be

decomposed into a hydrostatic pressure term P that only acts normal to the surface (i = j) and a

shear stress tensor τij :

σij = −Pδij + τij (19)

The number of unknowns in the conservation of momentum equation can be reduced by replacing

the shear stress tensor τij with an expression containing the deformation rate tensor εij , which is

a function of spatial derivatives of u.

Assume that the shear stress τij on a fluid element is linearly related to the deformation rate εij ,

then

τij = µεij . (20)

There is also a normal component of deformation but for incompressible fluids this term is zero.

Then we get:

εij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(21)

Using (21),(19), and (20) in the momentum equation (18), we arrive at the general form of the
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momentum equation:

ρ
∂

∂t
(uj) + ρuk

∂

∂xk
(uj) =

∂

∂xi
(−Pδij) + µ(

∂uj
∂xi

+
∂ui
∂xj

) + ρfj . (22)

To solve fluid flow problems, we require both the momentum equation (18) and the continuity

equation (11), which constitute a complete system subject to the boundary and initial conditions.

Using equations referred above, (11), (22), and kinematic viscosity formula ν = µ
ρ , we obtain

system, which is known as the Navier-Stokes equations for incompressible fluid flow:



∂u

∂t
− ν∆u + u · ∇u +∇p = f ;

div(u) = 0;

u(0) = u0

(23)

in a bounded Lipschitz domain Ω ⊂ R3, and on a time interval (0, T ) (T < ∞), for sufficiently

smooth initial data u0.

The flow equations require the set of conditions that act at the domain boundary. In this work, we

consider the following boundary conditions on ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅:

• Dirichlet (or no-slip) boundary condition:

u = 0 on ΓD (24)

The no-slip condition for viscous fluids assumes that at a solid boundary, the fluid will have

zero velocity relative to the boundary.

• Neumann boundary condition:

ν
∂u

∂n
− np = 0, on ΓN , (25)
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where n denotes outward-pointing normal to the boundary.

The physical meaning of the Neumann boundary condition, which fixes the component of the

stress tensor, is that the tangential ”slip” velocity, rather than zero, is proportional to the

tangential stress.

2.2 Non-dimensionalization of the Navier-Stokes equations

For any hydrodynamic problem the velocity field depends on the coordinates, time and physical

parameters of this problem. Then every change of parameters will make changes to entire flow field.

To avoid this problem for our experiments, we write the Navier-Stokes equation in dimensionless

form. For this we will use characteristic scales for all quantities in a system.

The scaling parameters are L (characteristic length), V (characteristic speed), ρ1 (characteristic

viscosity). Then x = Lx, ρ = ρ1ρ, u = V u, f = V 2

L f̄ , p = ρ1V
2p̄, µ = ρ1V Lµ̄. In non-dimensional

form, our problem will have only one dimensionless parameter called the Reynolds number

Re =
ρ1LV

µ1
. (26)

The Reynolds number is the ratio of the inertial forces and the viscous forces. For low values of

Re, the flow is tipically laminar.In this case the viscous force is comparably more important, and

disturbances in the flow are damped out by viscosity. Thus, it is difficult for disturbances to grow

and sustain themselves. When Re increased, the flow exhibits more chaotic behaviour resulting in

the developed turbulent flows for high Re number. In this thesis we will consider only laminar flows.

The final result is the non-dimensional form of the Navier-Stokes equation (23).

∂ū

∂t
− 1

Re
∆ū + ū · ∇ū +∇p̄ = f̄

div(ū) = 0

(27)

where over-bar means non-dimensional variables.
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2.3 Steady-state Navier-Stokes equations.

The steady-state or stationary Navier–Stokes equations describe flows in the equilibrium state.

Such flow fields can be expected in practice if:

• all data of the Navier-Stokes equations (23) do not depend on the time.

• the viscosity ν is sufficiently large, or equivalently, the Reynolds number Re is sufficiently

small.

Here we consider boundary-value problems in a domain Ω = Ω ∪ ∂Ω. Where Ω is a bounded

domain in Rd with Lipschitz boundary. The steady-state Navier-Stokes equations take the form


−ν∆u + (u · ∇)u +∇p = f in Ω

div(u) = 0 in Ω,

(28)

with boundary conditions

−ν(∇u) · n + pn = 0 on ΓN and u(x) = w on ΓD, (29)

where ∂Ω = ΓN ∪ ΓD, n stands for normal component and outward normal direction, ν > 0 is the

kinematic viscosity and u, p is the velocity of the fluid and pressure.

2.4 Weak formulation.

Before applying the FEM to solve equation (28) with the given boundary conditions, it is necessary

to transform it into a more suitable form. To do that, we will use a weak formulation of the

problem.

The weak formulation of equation (28) can be derived by multiplying (28) by a so-called test

function v and integrating over the domain. The choice of the class of functions to which v belongs
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determines whether (28) has a solution for ν sufficiently large or f sufficiently small. It is a common

practice to apply integration by parts to equation (28) in order to get rid of the second derivative

term. Integration by parts uses the Gauss divergence theorem (13). The resulting weak formulation

is the following one: Find u ∈ H1
E and p ∈ L2(Ω) such that:


ν

∫
Ω
∇u : ∇v +

∫
Ω

(u · ∇u)v −
∫

Ω
p(∇ · v) =

∫
Ω

f · v for all v ∈ H1
E0
,∫

Ω
q(∇·u) = 0 for all q ∈ L2(Ω),

(30)

where test space H1
E0

and solution H1
E defined as:

H1
E0

:= {v ∈ H1(Ω)|~v = 0 on ∂ΩD}

H1
E := {u ∈ H1(Ω)|~u = ~v on ∂ΩD}

and ∇u : ∇v represents the component wise scalar product.

The classical result about well-posedness of (30) is known [19].

Theorem. Let n ≤4 and let Ω be a bounded domain of Rn with a Lipschitz continious boundary Γ.

Given a function f in (H−1(Ω))n and in addition N
ν2
||f ||∗ < 1, where N = sup

u,v,w∈V

|a1(w; u,v)|
|u|1,Ω|v|1,Ω|w|1,Ω

and ||f ||∗ = sup
vV

| < f ,v > |
||v||H1

E0

, then the Navier-Stokes equation has a unique solution (u, p) in V ×

L2
0(Ω). Where a1 is the trilinear form a1(w; u,v) = Σn

i,j=1

∫
Ω
wj
∂ui
∂xj

vidx.
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3 Discretization in time

We now consider discretization in time. For this, we will implement a simple Crank-Nicolson scheme

for time-stepping. For linear evolution PDE’s this method is known to be unconditionally stable;

hence it is also thought to be a good method for some nonlinear PDE’s [40]. For the fully implicit

Crank-Nicolson scheme (implicit for both linear and nonlinear terms), Heywood and Rannacher

[22] proved that it is almost unconditionally stable and convergent, i.e., stable and convergent when

∆th−d ≤ C0, d = 2, 3 (31)

and Tone [33] provided the convergence proof under the condition

∆th−2−d/2 ≤ C0, d = 2, 3 (32)

for some positive constant C0 depending on the data (∆t denotes the step size in the time direction

and d is the space dimension for Ω ∈ Rd).

3.1 Crank-Nicolson scheme

This thesis focuses on the Crank-Nicolson scheme for solving the time-dependent Navier-Stokes

equations in the case of d = 2.

A midpoint CrankNicolson scheme for NSE reads as follows: given u0, u1, and p1, for each

k=1,2,... find velocity uk+1 and pressure pk+1 satisfying:

(
∂u

∂t
)k+1/2 + [u · ∇u]k+1/2 = ν∆uk+1/2 −∇pk+1/2 + fk+1/2, (33)

∇ · uk+1 = 0, (34)

where uk+1/2 = uk+1+uk

2 .
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For the computational efficiency, we want to have approximation of the convection velocity

uk+1/2. A second order central scheme may the be used for the temporal derivative:

(
∂u

∂t
)k+1/2 =

uk+1 − uk

∆t
+O(∆t2), (35)

yields approximate solutions at time tm+1 = tm + ∆t. The final nonlinear scheme reads:


1

∆t(u
k+1 − uk) + (u · ∇u)k+1/2 = ν∆uk+1/2 −∇pk+1/2 + fk+1/2

∇ · uk+1 = 0

(36)

We still need to approximate the advective term using nonlinear iterations, which will be dis-

cussed in the next section.

3.2 Nonlinear iteration

There are two standard techniques to the nonlinearity in the Navier-Stokes equation:

• Picard iteration

• Newton iteration

Picard iteration is a widely used technique for solving the nonlinear equation that governs fluid

dynamics. The method is simple to implement and computationally cheap but has been known to

fail or converge slowly. The Newton method is more complex and expensive (on a per-iteration

basis) than Picard.

3.2.1 Picard linearization

The non-linear system (28) is often solved using a Picard method. It is well known [19] that the

Picard scheme is convergent when the initial approximation satisfies u0 ≤ Re||f ||−1, where || · ||s

defines the Sobolev norm of order s. The sufficient condition for convergence [12] is the same

as sufficient condition for uniqueness of steady solution: ν > (c2||f ||−1)1/2/c1, where c1, c2 are
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continuity and coercivity constants. Picard type method (defined below) for solving the nonlinear

system leads to a linear system of algebraic equations of the form:

 A C

CT 0


xn+1

yn+1

 =

bn
0

 ,
where x and y are vectors of coefficients for FE velocity and pressure unknowns. Matrix A is non-

symmetric positive definite, and the complete matrix has block structure. Many solvers for linear

systems benefit from these, and our method presented below does too. Unfortunately, the Picard

method diverges when Re is not small enough. To handle the idea of higher Re numbers, we use

the following idea from [27]. We discretized equation by using a coarse mesh and then applying a

few Picard type iteration steps, as a defect correction.

We are solving the Navier-Stokes equation with a few Picard iterations which leads to Oseen

problem on each iteration. Thus, given an ”initial guess” (u0, p0) ∈ (H1
E × L2(Ω)), a sequence of

iterates is computed (ui, pi) ∈ (H1
E×L2(Ω)), i = 0, .., n The system (23) is often solved in practical

calculations using the method, given as follows.

We start computations with the nonlinear residual associated with the weak formulation (30). This

is a pair of functionals Rk(v), rk(q) satisfying:

Rk =

∫
Ω

f · v −
∫

Ω
uk · ∇uk · v − ν

∫
Ω
∇uk : ∇v +

∫
Ω
pk(∇ · v), (37)

rk = −
∫

Ω
q(∇ · uk) (38)

We have the following linear problem. For all v ∈ H1
E0

and q ∈ L2(Ω), find δuk ∈ H1
E0

and

δpk ∈ L2(Ω) satisfying:
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
∫

Ω
uk · ∇δuk · v + ν

∫
Ω
∇δuk : ∇v −

∫
Ω
δpk(∇ · v) = Rk(v)∫

Ω
q(∇ · δuk) = rk(q)

(39)

The solution of (39) is the Picard correction. Updating the previous iterate using uk+1 = uk+δuk,

pk+1 = pk + δpk defines the next iterate in the sequence.

If we substitute δuk = uk+1 − uk and δpk = pk − pk+1 into (39) then we obtain an explicit

definition for the new iterate: for all v ∈ H1
E0

and q ∈ L2(Ω) find uk+1 ∈ H1
E0

and pk+1 ∈ L2(Ω)

such that:

∫
Ω

uk · ∇uk+1 · v + ν

∫
Ω
∇uk+1 : ∇v −

∫
Ω
pk+1(∇ · v) =

∫
Ω

f · v, (40)

∫
Ω
q(∇ · uk+1) = 0; (41)

We see that the Picard iteration corresponds to a simple fixed-point iteration strategy for solving

system (28), with the part of the convection coefficient evaluated at the current velocity.

3.2.2 Newton linearizaton

Another standard method of solving nonlinear system is the Newton’s method, which followed by

solving linear system on each step. Unfortunately, for higher Re it makes some difficulties for

multilevel solvers.

The corrections δuk ∈ H1
E0

and δpk ∈ L2(Ω) should satisfy

∫
Ω

(δuk + uk) · ∇(uk + uk) · v−
∫

Ω
(uk · ∇uk) · v + ν

∫
Ω
∇δuk : ∇v−

∫
Ω
δpk(∇ · v) = Rk(v) (42)
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∫
Ω
q(∇ · δuk) = rk(q) (43)

The solution of (42) is the Newton correction. So we are updating the previous iteration by

formulas uk+1 = uk + δuk and pk+1 = pk + δpk, which define next iterate.

The Newton iteration method converges faster but within a smaller radius of convergence than

the Picard technique. It may be preferable to apply the Newton technique when a close guess to

the solution is available. For certain problems, a mixed or joint approach may be considered in

which the Picard iteration method is used to improve the initial solution guess before the algorithm

switches to the Newton iteration.
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4 Finite element approximation

4.1 The Galerkin finite element method

The goal in this chapter is the setup of discretization method, where piecewise polynomial uh

approximates a vector function u: Ω→ R.

We approximate u using Galerkin discretization on a finite dimensional space H 1
E . We split the

given domain Ω into subdomains of the same shape on which we define finite elements functions.

The discrete formulation of (23) is: find uh ∈ Xh
E and ph ∈Mh such that

ν

∫
Ω
∇uh : ∇vh +

∫
Ω

(uh · ∇uh) · vh −
∫

Ω
ph(∇ · vh) =

∫
Ω

f · vh for all vh ∈ Xh
0∫

Ω
qh(∇ · uh) = 0 for all qh ∈Mh,

(44)

where uh : ∇vh is the componentwise scalar product. To construct an approximation, we assume

that Finite Element velocity space Sh0 ⊂ H1
E0

is an n-dimensional vector space of test functions

for which {φ1, ..., φn} is a basis. To satisfy boundary conditions, we extend this set by additional

functions φn+1, ..., φn+n∂
and select fixed coefficients uj , so that the function Σujφj interpolates

the boundary data,

uh = Σn
j=1ujφj + Σn+n∂

n+1 ujφj (45)

We also construct a set of scalar (pressure) basis functions ψk, which is a basis for Mh ⊂ L2(Ω),

and set

ph = Σ
np

k=1pkψk, (46)

We define matrix A, the vector-Laplacian matrix, and the matrix B, the divergence matrix, the

vector-convection matrix N and the additional matrix W resulting from the Newton derivative as

follows:

A = [aij ], aij =

∫
Ω
∇φi : φj (47)
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B = [bij ], bij = −
∫

Ω
ψk∇ · φj (48)

N = [nij ], nij =

∫
Ω

(uh · ∇φj) · φi (49)

W = [wij ], wij =

∫
Ω

(φj · ∇uh) · φi (50)

So the matrix formulation of Navier-Stokes equation is the following:

 νA+N +W BT

B 0


 u

p

 =

 f

g

 . (51)

Where matrix A is symmetric and positive definite and Newton derivative matrix N is skew-

symmetric if uh is point-wise divergence free and uh · n=0 on the bondary. Matrix B has full rank

for the case of open boundary conditions and 1-rank deficient for enclosed flows. Matrix W is

sign indefinite. The right-hand-side vectors are the nonlinear residuals associated with the current

discrete solutions.

f = [fi], fi =

∫
Ω

fi · φi −
∫

Ω
uh · ∇uh · φi − ν

∫
Ω
∇uh : ∇φi +

∫
Ω
ph(∇ · φi) (52)

g = [gk], gk =

∫
Ω
ψk(∇ · ~uh) (53)

For Picard iteration (51) changes to:

 νA+N BT

B 0


 u

p

 =

 f

g

 (54)

The mathematical motivation for finite element approximation is the observation that a smooth

function can often be approximated to arbitrary accuracy using piecewise polynomial functions. The

idea is to choose basis functions φj that are locally nonzero on a mesh of triangles or tetrahedra or

a grid of rectangles. We will discuss some types of rectangular elements below.
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4.2 Stable rectangular elements

The discrete analogue of (30) (refereed to as uniform inf-sup stability) requires the existence of a

positive constant γ independent of h such that, for any grid,

inf
qh 6=0

sup
~vh 6=0

(qh,∇ · ~vh)

|| ~vh||1,Ω||qh||0,Ω
≥ γ > 0, (55)

Where vh ∈ Sh0 , qh ∈ Mh and ||v||1,Ω = (
∫

Ω v · v + ∇v : ∇v)1/2 is a norm for functions in H1
E0

,

||q||0,Ω = ||q − (1/|Ω|)
∫

Ω q|| is a quotient space norm.

This condition guarantees that the solvability condition holds for any admissible grid, and it

is also crucial for establishing optimal a priori error bounds. Stable rectangular elements Q2 −Q1

are known as the Taylor-Hood method, where Q1 is bilinear element. On a rectangular grid each

function from Q1 is of the form (ax+ b)(cy + d). Q2 is a biquadratic finite element approximation

on a rectangular grid. Its nodal degrees of freedom consist of vertices, four midside additional node

points and centroid. The resulting approximation on each element is from

span{1, x, y, xy, x2, y2, xy2, x2y, x2y2}. In this case, our linear system still has the same form as in

(92). It is well-known that these elements satisfy the discrete inf-sup condition (55) and that there

is a unique numerical solution .

4.3 Inf-sup unstable rectangular elements.

If BT p = 0 for some nonzero pressure mode p, then γ = 0 in (92) and so the finite element

method is unstable. Such p corresponds to some spurious pressure mode different from 1. Unstable

FEM can be stabilized to make it practical. The basic idea behind stabilization is to relax the

incompressibility constraint in a special way so that spurious pressure modes are no longer in a null

space of the resulting coefficient matrix. Stabilized discrete formulation of (23) is: find uh ∈ Xh
E
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and ph ∈Mh such that

ν

∫
Ω
∇uh : ∇vh +

∫
Ω

(uh · ∇uh) · vh −
∫

Ω
ph(∇ · vh) =

∫
Ω

f · vh for all vh ∈ Xh
0∫

Ω
qh(∇ · uh) + β

∫
Ω
∇qh · ∇qh = 0 for all qh ∈Mh,

(56)

As a result of stabilization discrete solutions uh and ph satisfy rigorous error bounds. From a lin-

ear algebra viewpoint, the stabilization provides a consistent regularization of the singular matrix

that arises in the unstabilized case. It introduces a stabilization parameter β > 0 together with

stabilization matrix C in place of a zero block in the discrete system (suggesting that C should be

a symmetric positive-semidefinite matrix):

 νA+N BT

B −βC


 u

p

 =

 f

g

 (57)

with the following stability condition:

null(Sβ) = span{1}, (58)

where Sβ = BA−1BT + βC is a symmetric positive-semidefinite matrix.

To define stabilization for our problem, we will use β = 1
ν .

A finite element spatial discretization of the system results in large, sparse systems of the form,

Ax = b⇐⇒

 νA+N BT

B − 1
νC


 u

p

 =

 f

g

 , (59)

where u and p represent the discrete velocity and pressure, arising from the Picard iteration applied

to the Navier-Stokes equations. The coefficient matrices are non-symmetric. The Krylov subspace

methods can be used to solve these systems. For our case we choose GMRES. Thus, we can proceed

directly to the design of preconditioning.
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5 Preconditioners

The convergence rate of iterative methods depends on spectral properties of the coefficient matrix.

Hence one may attempt to transform the linear system into one that is equivalent in the sense that

it has the same solution, but has more favorable spectral properties. A preconditioner is a matrix

that defines such a transformation.

For instance, if a matrix M approximates the coefficient matrix A in some way, the transformed

system can be written in the following form:

M−1Ax = M−1b. (60)

It has the same solution as the original system Ax = b , but the spectral properties of its coefficient

matrix may be more favorable. It is a useful approach only if computing M−1v for an arbitrary

vector v is cheap. Such a matrix M is called a preconditioner or, more precisely, a left precondi-

tioner.

In the case of a right preconditioner, one solves:

AM−1u = b, where x = M−1u (61)

5.1 ILU factorization

In numerical analysis, LU decomposition is the factorization of a matrix as the product of a lower

triangular matrix and an upper triangular matrix. An incomplete factorization instead generates

triangular matrices L, U such that A ≈ LU rather than A = LU . Solving for LUx = b can be done

quickly but does not yield the exact solution to Ax = b. So, we instead use the matrix M = LU as

a preconditioner in iterative solvers.

To introduce the basic implementation of incomplete factorization, we will first desribe the

ILU(0) factorization as in [35]. It is the technique with no fill-in as a modified version of Gaussian
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elimination. The main idea is to drop elements of L and U which are outside the sparsity pattern

of A. The sparsity pattern of A is defined as follows

P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n}, (62)

where n is a dimension of matrix A. By the definition, L and U together have the same number of

non-zero elements as matrix A. So, in general, ILU(p) preconditioner is thus defined as a factor-

ization that retains all elements with level up to p. A level of fill-in is attributed to each element

that is processed by Gaussian elimination, and dropping will be based on the value of the level of

fill-in [35].The initial level of fill-in for element aij is defined by the formula

lev(i, j) =


1, if aij 6= 0 or i = j.

∞, otherwise.

(63)

Updated level of fill-in we compute by the formula

min{lev(i, j), lev(i, k) + lev(k, j) + 1} (64)

There is also a modification of this algorithm. Instead of using fill-in criteria, we can use ILU(τ)

algorithm with threshold. We are applying a dropping rule to an element, which means we are

replacing the element by zero if it satisfies a set of criteria. A dropping rule can be applied to a

whole row by applying the same rule to all elements of the row.

Incomplete LU factorizations of A can be written in the form A = LU −E with an error matrix

E. How small the norm of the matrix E is ruled by a threshold parameter τ > 0. For positive

definite matrices A one can choose such a small τ that the product LU of its incomplete triangular

factors L and U is also positive definite and so estimates from [20] can be applied to assess the

numerical stability of the incomplete factorization. Let cA = λmin(AS), where AS = 1
2(A + AT ).

The sufficient condition for numerical stability is τ < cAn
−1 (n = dim(A)). In practice, however,
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larger τ are used, and in the case of non-symmetric matrices non-positive or close to zero pivots

may appear, and breakdown of an algorithm may happen. Now let us take a look at the situation

with ILU factorization for saddle-point matrices with positive definite (1,1)-block, as in the given

problem. It was observed that for symmetric saddle-point systems that the block factorization can

be used to construct an incomplete factorization.

To ameliorate the performance of the preconditioning in some situations, we consider the two-

parameter Tismenetsky-Kaporin variant of the threshold ILU factorization. Below we consider an

extension of the Tismenetsky-Kaporin factorization to the case of non-symmetric and saddle-point

matrices.

Given a matrix A ∈ Rn×n, the two-parameter factorization can be written as

A = LU + LRu +R`U − E, (65)

(see [26]), where Ru and R` are strictly upper and lower triangular matrices, while U and L are

upper and lower triangular matrices, respectively. Given two small parameters 0 < τ2 ≤ τ1 the

off-diagonal elements of U and L are either zero or have absolute values greater than τ1, the

absolute values of R` and Ru entries are either zero or belong to (τ2, τ1]; entries of the error matrix

are of order O(τ2). We say that it is the ILU(τ1, τ2) factorization of A. The well-known one

parameter ILU(τ) factorization can be viewed as (65) with Ru = R` = 0 and τ1 = τ2 = τ . The

important improvement the two-parameter ILU factorization gives over the one-parameter ILU(τ)

is that the fill-in of L and U is ruled by the first threshold parameter τ1, while the quality of the

resulting preconditioner is mainly defined by τ2, once τ2
1 < τ2 holds [25]. It means that if we choose

τ2 = τ2
1 = τ , then the level of fill-in of ILU(τ1, τ2) may be similar to ILU(τ) but the rate of

convergence of preconditioned Krylov subspace method will be comparable to ILU(τ2).

In what follows, the algorithm makes no specific use of the block structure of the matrix A, but

can formally be applied to a generic nonsymmetric A ∈ Rn×n. Thus, we denote by A below some

given nonsymmetric square matrix.

27



The derivation of the ILU(τ1, τ2) preconditioner in the SPD case assumes such a scaling of the

matrix and unknowns that all diagonal elements are equal to 1. For the performance of the method,

it was found [26], that it is very important to rescale a given matrix A (see below). We can use the

condition number to judge whether a given non-singular matrix A is ill-conditioned or not, which

is defined as:

Cond(A) = ||A||||A−1||, (66)

where the matrix norm is the Frobenius norm. At the same time the value of Cond(A) measures the

sensitivity of the solution x to numerical perturbation of a matrix and the right-hand side of (4.3).

The property Cond(αA) = Cond(A) for every scalar α 6= 0 shows that it is impossible to reduce

Cond(A) by multiplying all equations by a scalar. However, it is possible to diminish Cond(A)

by multiplying every row and every column of the matrix A by suitable scaling factor li and ri,

respectively. The corresponding vectors are denoted by l ∈ Rn and r ∈ Rn.

In this project, we propose a simple procedure to find matrices diag(l) and diag(r) only through a

few operations, which are given explicitly. Thus, we look for scaling vectors l, r ∈ Rn such that the

matrix A′ = diag(l) ·A ·diag(r) has nearly balanced Euclidean norms of rows and columns. For this

purpose, we will apply the Sinkhorn algorithm to the nonnegative matrix F = [a2
kj ], k, j = 1 . . . n.

One iteration of the algorithm is as follows:

diag(r(k+1)) = diag(F T l(k))−1,

diag(l(k+1)) = diag(Fr(k+1))−1.

(67)

For the starting vector we take l(0) = {1...1}. In all experiments in the next sections, we performed

five iterations of (67) to find the scaling vectors, before any incomplete factorization is computed.

If factorization is computed for the scaled matrix A′ so that L′U ′ ≈ A′, then we have to rescale the

triangular factors for the original matrix:

LU ≈ A, L = (diag(l))−1L′, U = U ′(diag(r))−1 (68)
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5.2 The ILU(τ1, τ2) algorithm pseudo-code

Assume we are given a sparse matrix A whose elements are aij , left and right scaling diagonal

matrices DL = diag(l) and DR = diag(r), threshold parameters 0 < τ2 ≤ τ1 < 1. For a matrix A,

P(A) denotes the subset of indexes (i,j) such that aij = 0. We will use below the notation R for

the upper triangular error factor Ru (factor Rl is not computed in the course of factorization) and

v ∈ Rn for an auxiliary vector (initially v = {0, . . . , 0}).

(1) Main loop by rows of A to compute the rows of L and U :

for i = 1, . . . , n:

(2) Initialize the row accumulator vector v by the ith row of the balanced matrix A:

for j = 1, . . . , n and if (i, j) /∈ P (A):

vj := (DL)iiaij(DR)jj

end for

(3) Loop over all already computed rows of U :

for k = 1, . . . , i− 1 and if vk 6= 0:

(4) Update the accumulator vector:

vk := vk/Ukk

if |vk| > τ2 then

for j = k + 1, . . . , n and if (k, j) /∈ P (U):

vj := vj − vkUkj

end for

end if

if |vk| > τ1 then

for j = k + 1, . . . , n and if (k, j) /∈ P (R):

vj := vj − vkRkj

end for

end if

end for

(5) Rescale the ith row of U :
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λi := max
k=i,...,n

|vk|

if λi < τ2 then

λi := τ2

end if

for j = i, . . . , n and if vj 6= 0:

vj := vj/λi

end for

(6) Compute the ith row of L:

Lii = λi

for j = 1, . . . , i− 1 and if |vj | > τ1:

Lij := vj

end for

(7) Compute the ith row of U and R:

if |vi| < τ2 then

vi := τ2 · sign(vi)

end if

Uii = vi

for j = i+ 1, . . . , n and if vj 6= 0:

if |vj | > τ1 then

Uij := vj

else if |vj | > τ2 then

Rij := vj

end if

end for

(8) Clear nonzero elements of the row accumulator v:

for j = 1, . . . , n and if vj 6= 0:

vj := 0

end for

end for

(9) Perform the final re-scaling of the incomplete factors L and U :
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for i = 1, . . . , n:

for j = 1, . . . , i and if (i, j) /∈ P (L):

Lij := Lij/(DL)ii

end for

for j = i, . . . , n and if (i, j) /∈ P (U):

Uij := Uij/(DR)jj

end for

end for

5.3 LU factorization

The 2 × 2-block matrix from (59) is in general not sign definite and if C = 0, its diagonal has

zero entries. A potential source of instabilities in (4.3) is the presence of dominating convection

terms. This necessitates stabilization of the discrete system, if the mesh is not sufficiently fine to

resolve all scales in the solution. The stabilization leads to the modification of (1, 2)-block of the

matrix. It follows that (1, 2)-block is not equal to the transpose of the (2, 1)-block B. The algebraic

framework of this section admits a generic positive semi-definite matrix C. An LU factorization

of such matrices often requires pivoting (rows and columns permutations) for stability reasons.

However, exploiting the block structure and the properties of blocks A and C, one readily checks

that the LU factorization

A =

 A B̃T

B −C

 =

 L11 0

L21 L22


 U11 U12

0 −U22

 (69)

with lower (upper) triangle matrices L11, L22 (U11, U22) exists without pivoting, once det(A) 6= 0

and there exist LU factorizations for the (1,1)-block

A = L11U11
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and the Schur complement matrix S̃ := BA−1B̃T + C is factorized as

S̃ = L22U22.

Decomposition (69) then holds with U12 = L−1
11 B

T and L21 = BU−1
11 .

Assume A is positive definite. Then the LU factorization of A exists without pivoting. Its

numerical stability (the relative size of entries in factors L11 and U11) may depend on how large

is the skew-symmetric part of A comparing to the symmetric part. To make this statement more

precise, we denote AS = 1
2(A+AT ), AN = A−AS (similar notation will be used to denote symmetric

and skew-symmetric parts of other matrices) and let

CA = ‖A−
1
2

S ANA
− 1

2
S ‖.

Here |M | denotes the matrix of absolute values of M -entries. The following bound on the size of

elements of L11 and U11 holds (see eq.(3.2) in [26]):

‖|L11||U11|‖F
‖A‖

≤ n
(
1 + C2

A

)
. (70)

If C ≥ 0, B̃ = B, and matrix BT has the full column rank, then the positive definiteness of A

implies that the Schur complement matrix is also positive definite. However, this is not the case for

a general block B̃ 6= B. In the application studied in [25], block B̃T is a perturbation of BT . The

analysis below shows that the positive definiteness of S̃ and the stability of its LU factorization is

guaranteed if the perturbation E = B̃ −B is not too large. The size of the perturbation will enter

our bounds as the parameter εE defined as

εE := ‖A−
1
2

S ET ‖.
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For the ease of analysis we introduce further notations:

S = BA−1BT + C, ÂN = A
− 1

2
S ANA

− 1
2

S .

We shall repeatedly make use of the following identities:

(A−1)S =
1

2

(
A−1 +A−T

)
= A

− 1
2

S (I − Â2
N )−1A

− 1
2

S ,

(A−1)N =
1

2

(
A−1 −A−T

)
= A

− 1
2

S (I + ÂN )−1ÂN (I − ÂN )−1A
− 1

2
S .

(71)

From the identities

〈(Sq, q)〉 = 〈(Bv, q)〉+ 〈(Cq, q)〉 = 〈(v,BT q)〉+ 〈(Cq, q)〉 = 〈(Av, v)〉+ 〈(Cq, q)〉,

which are true for q ∈ Rm and v := A−1BT q ∈ Rn, we see that S is positive definite, if A is positive

definite. For S̃ we then compute:

〈S̃q, q〉 = 〈Sq, q〉+ 〈A−1ET q,BT q〉

= 〈Sq, q〉+ 〈A
1
2
SA
−1ET q, A

− 1
2

S BT q〉

= 〈Sq, q〉+ 〈A
1
2
SA
−1ET q, (I − ÂN )(I − ÂN )−1A

− 1
2

S BT q〉

= 〈Sq, q〉+ 〈
(

(I + ÂN )A
1
2
SA
−1A

1
2
S

)
A
− 1

2
S ET q, (I − ÂN )−1A

− 1
2

S BT q〉.

We employ identities (71) to get

(I + ÂN )A
1
2
SA
−1A

1
2
S = (I + ÂN )A

1
2
S ((A−1)S + (A−1)N)A

1
2
S

= (I + ÂN )((I − Â2
N )−1 + (I + ÂN )−1ÂN (I − ÂN )−1)

= (I − ÂN )−1 + ÂN (I − ÂN )−1

= (I + ÂN )(I − ÂN )−1.
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Noting ‖(I − ÂN )−1‖ ≤ 1 for a skew-symmetric ÂN , it was estimated that

〈S̃q, q〉 ≥ 〈Sq, q〉 − ‖(I + ÂN )(I − ÂN )−1‖‖A−
1
2

S ET q‖‖(I − ÂN )−1A
− 1

2
S BT q‖

≥ 〈Sq, q〉 − ‖(I + ÂN )‖‖A−
1
2

S ET ‖‖q‖‖(I − ÂN )−1A
− 1

2
S BT q‖

≥ 〈Sq, q〉 − (1 + CA)εE‖q‖‖(I − ÂN )−1A
− 1

2
S BT q‖

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈(I − ÂN )−1A
− 1

2
S BT q, (I − ÂN )−1A

− 1
2

S BT q〉
1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈A
− 1

2
S BT q, (I + ÂN )−1(I − ÂN )−1A

− 1
2

S BT q〉
1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈A
− 1

2
S BT q, (I − Â2

N )−1A
− 1

2
S BT q〉

1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈BT q, A
− 1

2
S (I − Â2

N )−1A
− 1

2
S BT q〉

1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈B(A−1)SB
T q, q〉

1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈BA−1BT q, q〉
1
2

= 〈Sq, q〉 − (1 + CA)εE‖q‖〈Sq, q〉
1
2

≥
(

1− (1 + CA)εEλ
− 1

2
min(SS)

)
〈Sq, q〉.

(72)

Hence, we conclude that S̃ is positive definite then it holds

κ := (1 + CA)εEc
− 1

2
S < 1 (73)

where cS := λmin(SS).

If S̃ is positive definite, the factorization S̃ = L22U22 satisfies the stability bound similar to

(70):

‖|L22||U22|‖F
‖S̃‖

≤ m
(

1 + ‖S̃−
1
2

S S̃NS̃
− 1

2
S ‖

2

)
,

where S̃S = 1
2(S̃ + S̃T ), S̃N = S̃ − S̃S.

The quotients CA = ‖A−
1
2

S ANA
− 1

2
S ‖ and ‖S̃−

1
2

S S̃N S̃
− 1

2
S ‖ are largely responsible for the stability of

the LU factorization for (59). The following lemma from [25] shows the estimate of ‖S̃−
1
2

S S̃N S̃
− 1

2
S ‖

in terms of CA, εE and cS .
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Let A ∈ Rn×n be positive definite and (73) be satisfied, then it holds

‖S̃−
1
2

S S̃N S̃
− 1

2
S ‖ ≤

(1 + εEc
− 1

2
S )CA

1− κ
. (74)

To estimate the entries of U12 and L21 factors in (69) we repeat the arguments from [26] and

arrive at the following bound

‖U12‖F + ‖L21‖F
‖U11‖‖B̃‖F + ‖L11‖‖B‖F

≤ m(1 + CA)

cA

with cA := λmin(AS).

Summary of the results of this section is in the following theorem.

Assume matrix A is positive definite, C is positive semidefinite, and the inequality (73) holds

with εE = ‖A−
1
2

S (B̃ − B)T ‖, CA = ‖A−
1
2

S ANA
− 1

2
S ‖, and cS = λmin(SS), then the LU factorization

for (69) exists without pivoting. The entries of the block factors satisfy the following bounds

‖|L11||U11|‖F
‖A‖

≤ n
(
1 + C2

A

)
,

‖|L22||U22|‖F
‖S̃‖

≤ m

1 +
(1 + εEc

− 1
2

S )CA
1− κ

 ,

‖U12‖F + ‖L21‖F
‖U11‖‖B̃‖F + ‖L11‖‖B‖F

≤ m(1 + CA)

cA

with κ from (73).

The above analysis indicates that the LU factorization for (59) exists if the (1,1) block A is

positive definite and the perturbation of the (1,2)-block is sufficiently small. The stability bounds

depend on the constant CA which measures the ratio of skew-symmetry for A, the ellipticity con-

stant cA, the perturbation measure εE and the minimal eigenvalue of the symmetric part of the

unperturbed Schur complement matrix S.
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5.4 PCD and LSC preconditioners

We consider another two successful approaches for approximating the Schur complement: the

pressure convection-diffusion (PCD) preconditioner [12] and the least-squares commutator (LSC)

preconditioner [12]. Here we briefly outline the key ideas and provide basic forms of the precondi-

tioners.

5.4.1 The pressure convection-diffusion preconditioner

Pressure convection-diffusion preconditioner in [11] appears to be robust with respect to mesh re-

finement and more robust with respect to kinematic viscosity ν than the simply scaled mass matrix

preconditioner. Some deterioration of its performance happens when ν → 0 for many problems and

discretizations. The approach to building the PCD preconditioner is often motivated by considering

the commutator ε between the divergence operator and the convection-diffusion operator.

Let

F = −∇ · (2µD) + ρwh · ∇ (75)

Suppose that we have an analogous operator to F on the pressure space, denoted by Fp, so that

ε = ∇ · F − Fp∇. (76)

The idea is then to use a discrete version of ε, and deduce the Schur complement approximation

by setting the discrete commutator to 0. Upon equating the discrete commutator to be zero, one

obtains an approximation to S in terms of finite element matrices. To correctly scale the discrete

operators in the discrete commutator, one uses the finite element mass matrices:

Qi,j =

∫
Ω
φj · φi. (77)

36



The discrete commutator is then defined by

εh = (Q−1B)(Q−1A)− (Q−1Fp)(Q
−1B), (78)

where Fp represents the discrete counterpart of Fp. A and B are matrices arising from the dis-

cretization of the Navier-Stokes equation. After letting εh to be zero, this can be rearranged to

give the approximation

BA−1BT ≈ QF−1
p BQ−1BT (79)

In the continuous case we can define Fp as

Fp;i,j =

∫
Ω
µ∇ψj · ∇ψi +

∫
Ω
ρ(wh · ∇ψj) · ψi. (80)

This can be written as Fp = Ap +Np. Further the scaled Laplacian term BQ−1BT is replaced by

the sparse pressure Laplacian Ap, where

Ap;i,j =

∫
Ω
∇ψj · ∇ψi. (81)

This yields the PCD approximation to the Schur complement matrix:

Ŝ−1 = A−1
p FpQ

−1 (82)

PCD shows improved convergence properties for solving problems with inflow or outflow bound-

ary conditions [12].

5.4.2 The least-squares commutator preconditioner

The results are a little bit different for the least square commutator as a preconditioner. The perfor-

mance is sensitive to mesh size, with some degradation when the mesh is refined. The elimination

of the mesh dependence can be observed if one uses an adjustment for boundary conditions. The
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scaling for LSC is observed to be an important factor, and the choice of the scaling is necessary for

this type of preconditioner to be efficient [13]. Another way to define Fp is the LSC preconditioner,

which chooses Fp so that the discrete commutator is small in a least square sense. It turns out

that it is more convenient to consider the adjoint of the commutator and choose Fp by minimizing

each individual vector norm of the columns of F Tp ; for further details see [12]. This minimization

problem reduces to the weighted least square problem:

min ||[Q−1ATQ−1BT ]j −Q−1BTQ−1[F Tp ]j ||Q, (83)

for each column j. Using the normal equations, Fp can be given as

Fp = (BQ−1ATQ−1BT )(BQ−1BT )−1Q (84)

We get the Schur complement approximation

BA−1BT = (BQ−1BT )(BQ−1AQ−1BT )−1(BQ−1BT ). (85)

In practice one replaces Q with its diagonal T = diag(Q), and so one constructs the sparse scaled

Laplacian BT−1BT . The LSC Schur complement approximation then takes the form

Ŝ−1 = (BT−1BT )(BT−1AT−1BT )−1(BT−1BT ) (86)

For both preconditioners mesh-independent convergence rates have been observed. Eigenvalue

bounds for both methods can be found in [12] and, while for PCD they are h-independent, for LSC

the known bounds depend on h. For both the PCD and LSC methods, all known bounds depend

on the Reynolds number. Numerical tests in [7] show iteration counts for both methods that are

mildly dependent on the Reynolds number. Results in the next section will illustrate the main

properties of PCD and LCS preconditioners.
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6 Numerical results

In this chapter, we demonstrate the performance of the ILU(τ) and ILU(τ1, τ2) preconditioners for

different values of discretization, stabilization and threshold parameters. As a testbench, we applied

the given method to several problems, such as the flow over the backward-facing step and the driven-

cavity flow. For numerical tests, we use the MATLAB implementation of ILU(τ1,τ2)(algorithm from

section 5.2) . The optimal values of ILU thresholds τ1 = 0.03, τ2 = 7τ2
1 are taken from [26] where de-

tailed analysis of ILU(τ1,τ2) and ILU(τ):= ILU(τ ,τ) preconditioners for the Oseen systems without

stabilization is given. In all experiments, we use the GMRES method with the right preconditioner

defined by the ILU(τ1,τ2) or ILU(τ) factorizations. The stopping criterion in all experiments is

the decrease of the residual by ten orders of magnitude. The ILU(τ1, τ2) preconditioner was im-

plemented as described above, and for ILU(τ) the build-in MATLAB procedure ilu(τ) was used.

All results are computed for matrices preprocessed using five iterations of the balancing algorithm,

described on (67). The results will be presented in tables, using the following legend: Tbuild and

Tit show CPU time spent for building preconditioners and iterations. TCPU = Tbuild + Tit and #it

is the number of GMRES iterations needed to satisfy the stopping criterion. The fill-in ratio is

computed through the following formulas:

fillLU = (nz(L) + nz(U))/nz(A), (87)

where nz(A) = Σijsign|Aij | is the number of non-zero entries in A.

One reasonable way [21] to judge the quality of a numerical solution is to compute it for meshes

of different sizes and show that the FE solution converges to the true solution of the NSE in some

norm.
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6.1 Flow over backward-facing step

In this section, we consider two-dimensional backward-facing step flow [28],[18],[6]. It is a popular

benchmark problem for incompressible flow problems. We provide results obtained by thorough nu-

merical computations for various expansion ratios defined below and a range of Reynolds numbers.

The schematic picture of the test set-up is given in Figure 3. The left boundary is an inflow, and

the right boundary is an outflow. The bottom boundary is a solid wall, and for our test problems,

the top boundary is a solid wall too .

Figure 3: Flow over backward-facing step

Most numerical studies of backward-facing step flows were carried out for a limited number of

relevant parameters such as Reynolds number Re = UD
ν and expansion ratio H2/H. Here D = 2H1

denotes the hydraulic diameter of the inlet channel with height H1; H2 is the channel height in

the expanded region, and U is the maximum of the inlet velocity. This configuration provides a

convenient simple geometric shape for a detailed examination of the rich character of a vortical

flow. We used parabolic inflow boundary condition (a Poiseuille flow profile), and natural out-

flow boundary condition (a no-flow (zero velocity) condition), i.e., the Neumann condition (25) is

applied at the outflow boundary. We resolve the model using a sequence of successively refined

meshes and compare the computed results for these different meshes.

To discretize the problem, we build several rectangular subdivisions of Ω. First, three increasingly

fine meshes with regular rectangular elements are constructed. We compute our results using the

sequence of meshes. The coarsest mesh was build by the uniform subdivision for Ω into n rectangles

with side h = 21−l, where l is the grid refinement level.
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Finer meshes were obtained by a regular global refinement process. The geometric paremeters were

set as L = 15, H1/H = 3
2 , and for the maximum inlet velocity we take U = 1.

In all experiments in this section, the resulting linear algebra systems are solved by the precon-

ditioned GMRES method with ILU(τ1, τ2) preconditioner. Based on the results in Tables 1 and

2 below, we chose the optimal value for τ1, which we use further to compare results with other

different parameters. Comparing the fill-in level and time to realize the process, the optimal value

for τ1 was found to be 0.03 (which agrees with [26]). The computations were run with the finest

mesh 2 (grid level l = 3) for ν = 1/100. For smaller values of τ1 we observe the increase of fill-in

and Tbuild, but the decrease of iteration numbers and Tit. We run the same set of experiments with

meshes 3 and 4 (grid level l = 4, 5), and observed almost the same results in terms of iteration

numbers and the dependence of computational times of parameters τ1 and τ2. Thus we can say

that the optimal value of τ1 is grid-independent as can be observed from Tables (3) and (4).

We observe large assembling time Tbuild, since the factorization was implemented in MATLAB

rather than using efficient external implementation. These times would be significantly shorter, if

an external pre-compiled implementation of ILU(τ1, τ2) is used.

Table 1: Backward step flow, Q2 − Q1, grid level l = 5. The dependence of two-parameter
ILU(τ1, τ2) perfomance on the choice of threshold parameter. Results are shown for ν = 1/100.

τ1 fill-in iter Tbuilt Titer TCPU
0.1 0.82 90 773.5 0.2 773.52
0.08 0.9 116 993 0.086 993.086
0.07 0.96 112 588.5 0.07 588.57
0.06 1.067 115 823.78 0.12 823.792
0.05 1.45 85 620.45 0.122 620.577
0.04 1.607 55 685 0.47 685.47
0.03 2.075 40 709.4 0.029 709.429
0.02 2.47 24 804 0.022 804.022
0.01 2.81 19 926.4 0.03 926.43
0.007 3.51 14 1113.8 0.022 1113.822
0.005 4.2 12 1284.9 0.012 1284.912

For smaller values of τ we observe the increase of fill − in and Tbuild but the decrease of iteration
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Table 2: Backward step flow, Q2 − Q1 finite elements, grid level l = 4. The dependence of two-
parameter ILU(τ1, τ2) perfomance on the choice of threshold parameter. Results are shown for
ν = 1/100.

τ1 fill-in iter Tbuilt Titer TCPU
0.1 zero pivot — — —
0.08 1.08 97 71.94 0.038 71.978
0.07 1.16 117 73.37 0.025 73.395
0.06 1.27 120 85.12 0.02 85.122
0.05 1.49 120 96.6 0.38 96.98
0.04 1.75 122 111.89 0.019 111.909
0.03 1.97 119 124.69 0.016 124.709
0.02 2.26 95 139.28 0.016 139.296
0.01 2.95 118 183.39 0.02 183.392
0.007 3.12 88 190.44 0.033 190.473
0.005 3.5 67 233.44 0.022 233.462

numbers and Tit. So we observe that the optimal value for τ is close to the one reported in [26].

So we decided to keep the optimal value for τ1 = 0.03.

In tables below (Tables 7 and 8), we compare the same parameters as above for different meshes

and also compare results for ILU(τ1, τ2) with the block-triangle preconditioner from [26] with the

PCD approximation of the pressure Schur complement (see Section 5.4) and AMG preconditioner

[9] for the (1,1) block of the system. We shall denote this preconditioner as PCD-AMG. From results

in Tables 3 and 4 we see that the two-parameter ILU factorization has advantage for certain mesh

and problem parameters of the one of the best performing state-of-the-art preconditioner. We run

experiments with τ = 0.03, different meshes and 4 types of finite elements.

Table 3: The dependence of two-parameter ILU(τ1, τ2) performance on the choice of the mesh size.
Results are shown for ν = 1/100, τ1 = 0.03 and τ2 = 7τ2

1 .

Q1 −Q1 8x24 16x48 32x96

Tbuild 159 3738 130245
Tit 0.03 0.27 1.69
it 29 76 259

fill-in 1.69 1.99 2.85
PCD-AMG 64 56 56

Q1 − P0 8x24 16x48 32x96

Tbuild 112 2602 98221
Tit 0.06 0.37 2.13
it 103 118 414

fill-in 1.89 1.93 2.25
PCD-AMG 62 59 56
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Table 4: The dependence of two-parameter ILU(τ1, τ2) performance on the choice of the mesh size.
Results are shown for ν = 1/100, τ1 = 0.03 and τ2 = 7τ2

1 .

Q2 −Q1 8x24 16x48 32x96

Tbuild 119 2231 60348
Tit 0.07 0.36 2.47
it 119 301 583

fill-in 1.97 1.64 1.84
PCD-AMG 72 75 63

Q2 − P1 8x24 16x48 32x96

Tbuild 171 3440 97676
Tit 0.09 0.32 0.71
it 176 56 139

fill-in 3.06 2.24 2.39
PCD-AMG 167 160 93

We do not see a big difference in the number of iterations for stable and stabilized finite ele-

ments. The iteration numbers increase for finer meshes as expected for a method based on an ILU

factorization. For PCD-AMG, the numbers of iterations are almost the same for all mesh sizes and

elements.

Table 5: The performance of ILU(τ) Q2−Q1 and Q1−Q1, using a 16×48 uniform grid (grid level
l = 4), for the backward step flow, τ = 0.07 without balancing. The results are shown for various
values of viscosity ν.

Q2 −Q1 Tbuild Tit it fill-in

ν = 1 zero pivot — —
ν = 1/10 0.045 0.33 119 0.72
ν = 1/50 0.24 0.37 76 2.31
ν = 1/100 0.65 0.30 45 4.33
ν = 1/200 0.62 0.56 85 5.07
ν = 1/250 0.54 0.54 89 5.05
ν = 1/300 zero pivot — —
ν = 1/400 zero pivot — —

Q1 −Q1 Tbuild Tit it fill-in

ν = 1 0.11 1.02 404 0.74
ν = 1/10 0.15 0.37 175 0.94
ν = 1/50 0.25 0.6 144 1.18
ν = 1/100 div — — —
ν = 1/200 div — — —
ν = 1/250 16.7 1.54 14 66.08
ν = 1/300 20.17 1.21 9 74.13
ν = 1/400 — zero pivot —

To see benefits of using ILU(τ1, τ2), we will compare convergence results with those for ILU(τ).

We show in Tables 5 and 6 iteration numbers for all values of ν, from ν = 1 to ν = 1
400 . Level

of fill-in increases while the value of ν decreases. The number of iterations decreases till ν = 1
100

and then increases again. If we compare the numbers of iterations in Table 5 with those in the

Table 6, we can see that the application of balancing is very important. For ILU(τ) we did not see

any effect of balancing. Also ILU(τ), after ν becomes more than 1/50, shows huge level of fill-in

and solution does not converge. The level of fill-in for ILU(τ1, τ2) is two times smaller compare to

ILU(τ) for Q2 − Q1 elements. Therefore, with almost the same number of iterations ILU(τ1, τ2)

is much cheaper in realization.
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Table 6: The dependence of performance of ILU(τ1, τ2) on the choice of kinematic viscosity pa-
rameter. For Q2 −Q1 and Q1 −Q1 finite elements, using a 16×48 uniform grid (grid level l = 4),
for the backward step flow, τ1 = 0.03 with balancing. The results are shown for various values of
viscosity ν.
Q2 −Q1 Tbuild Tit it fill-in

ν = 1 1476 0.19 57 0.95
ν = 1/10 2726 0.5 25 2.28
ν = 1/50 2167 0.16 22 1.74
ν = 1/100 4362 1.16 297 1.64
ν = 1/200 2044 0.36 233 1.84
ν = 1/250 1904 0.35 246 1.94
ν = 1/300 1806 0.35 365 1.98
ν = 1/400 zero pivot — —

Q1 −Q1 Tbuild Tit it fill-in

ν = 1 4328 2.99 563 2.12
ν = 1/10 8058 2.58 90 4.45
ν = 1/50 4761.2 0.37 55 2.48
ν = 1/100 4031 0.32 76 1.99
ν = 1/200 3489 0.68 125 2.02
ν = 1/250 3337 0.74 215 2.09
ν = 1/300 3256 1.01 225 2.19
ν = 1/400 2737 0.81 361 2.35

We also examine the difference in performance of PCD-AMG and LSC-AMG, both methods,

are already implemented in IFISS, to see if we have any improvement over ILU(τ1, τ2). From the

Tables 7 and 8 we can see that PCD-AMG and LSC-AMG preconditioners do not change the

number of iterations for finer meshes and have almost the same number of iterations for both types

of finite elements. If we compare with Table 6, on the two finest grids used, we can say that LSC

and PSD are more efficient and require less number of iterations. It is also easy to see that the

dependence on the kinematic viscosity as a parameter is the following: the larger iteration number

can be seen as smaller the viscosity parameter.

Table 7: Backward facing step, Q1 − Q1, grid level l = 4, 5, comparison of PCD-AMG and LSC-
AMG.
l = 4 PSD LSC

ν iter Tbuild iter Tbuild
1/10 21 2.05 21 5.533
1/100 29 2.9 37 8.9
1/400 104 10.5 132 32.7

l = 5 PSD LSC

ν iter Tbuild iter Tbuild
1/10 21 1.01 21 2.53
1/100 26 1.22 30 3.5
1/400 58 2.7 87 10.2

Table 8: Backward facing step, Q2 − Q1, grid level l = 4, 5, comparison of PCD-AMG and LSC-
AMG.
l = 4 PSD LSC

ν iter Tbuild iter Tbuild
1/10 23 1.9 10 1.23
1/100 30 2.67 21 2.45
1/400 73 7.07 64 8.03

l = 5 PSD LSC

ν iter Tbuild iter Tbuild
1/10 22 1 11 7.13
1/100 30 1.28 16 9.8
1/400 54 23.3 44 26.4
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6.2 The driven cavity flow

This problem is often employed to evaluate numerical methods and to validate codes for solving the

Navier-Stokes equations [8], [32],[39],[15]. With a simple geometry of a cavity problem, applying

a numerical method to this flow problem in terms of coding is quite easy and straightforward.

Another reason for the problem to be so popular is that it is rather easy to generate solutions

exhibiting global features such as vortexes and layers one would expect in a flow.

Here the flow domain is a square; see Figure 4. Along all walls except the top one, the velocity is

required to vanish. Along the top wall, the normal velocity component vanishes, and the tangential

component is prescribed to a constant. Therefore, the model is a flow in a square cavity with

the lid moving from left to right. A difficulty associated with the driven cavity flow is that the

flow contains (at the upper corners) strong, nonphysical singularities (Figure 5). The effect of

these singularities can be mitigated in various ways by smoothing out the transition between the

boundary conditions at the corners.

Figure 4: Cavity flow

We used a square domain Ω and enclosed flow boundary condition as illustrated in Figure 4.
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Figure 5: Streamlines of the flow solution to the cavity flow

We have three different computational models:

{y = 1,−1 ≤ x ≤ 1|ux = 1}, a leaky cavity

{y = 1,−1 < x < 1|ux = 1}, a watertight cavity

{y = 1,−1 ≤ x ≤ 1|ux = 1− x4}, a regularized cavity.

(88)

For the dissertation, the regularized cavity problem was solved on uniform grids with grid levels

l = 3, 4, 5, and the wide range of Reynolds numbers (Re) increasing from zero to 1000 was used to

verify the suitability of the proposed numerical algorithm.

To choose optimal threshold parameter τ1, we run set of experiments for the cavity model with

Q2−Q1 finite element discretization and kinematic viscosity ν = 1/100 and sequence of parameters

τ1 in range from 0.1 to 0.005. We can see from Tables 10 and 9 that the optimal τ1 = 0.03 leads

to a good balance between observed values as level of fill-in and rate of convergence. We observe

that the performance of the preconditioner does not change significantly for finer mesh, so the

optimal value of τ1 was found the same. Therefore we will run ILU(τ1, τ2) with this optimal value

in experiments below.

In another set of tests, the effect of problem size was investigated, using three different grids

with 64×64, 32×32, 16×16, 8×8 grid cells. Tables 11 and 12 show results of numerical simulations
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Table 9: Lid driven cavity flow, Q2 − Q1, grid level l = 4. The dependence of two-parameter
ILU(τ1, τ2) performance on the choice of threshold parameter. Results are shown for ν = 1/100.

τ1 fill-in iter Tbuilt Titer TCPU
0.1 — — — — —
0.08 — — — — —
0.07 1.22 13 2.18 0.085 2.265
0.06 1.29 11 2.28 0.008 2.288
0.05 1.4 9 2.41 0.012 2.422
0.04 1.5 9 3.01 0.027 3.037
0.03 1.61 8 2.92 0.013 2.933
0.02 1.75 7 3.094 0.002 3.096
0.01 2.03 5 3.48 0.001 3.481
0.007 2.12 5 3.28 0.001 3.281
0.005 2.21 4 3.99 0.001 3.991

Table 10: Cavity flow, Q2 − Q1, grid level l = 5. The dependence of two-parameter ILU(τ1, τ2)
performance on the choice of threshold parameter. Results are shown for ν = 1/100.

τ1 fill-in iter Tbuilt Titer TCPU
0.1 1.07 23 15.67 0.32 15.99
0.08 1.22 21 16.34 0.015 16.355
0.07 1.33 20 17.2 0.005 17.205
0.06 1.46 18 18.6 0.005 18.605
0.05 1.64 16 21.37 0.014 21.384
0.04 1.88 14 29.57 0.008 29.578
0.03 2.13 12 29.78 0.002 29.782
0.02 2.45 9 38.6 0.022 38.622
0.01 3.033 7 60.9 0.008 60.908
0.007 3.35 6 71.62 0.004 71.624
0.005 3.65 5 52.21 0.013 52.34

with ν = 1/100 for both stabilized and stable finite elements. We did not see any difference when

the stabilization parameter β was changed, so we keep it equal to 1/3 as it is given by default

in IFISS. As the problem size increases, we can see how the iterations number increases as well.

This result is expected, since refining a mesh usually increases the condition number of the matrix

problem, therefore reducing the rate of convergence of the GMRES method. The level of fill-in

increases rapidly for the level grid l = 6. We can also observe that ILU(τ1, τ2) is more efficient for

stable finite elements discretization than the scheme with preconditioning PCD-AMG in terms of

the number of iterations.

Next, we run a set of numerical experiments to show dependence on the viscosity parameter
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Table 11: Lid-driven cavity flow,grid level 3. The dependence of two-parameter ILU(τ1, τ2) perfor-
mance on the choice of the grid level. Results are shown for ν = 1/100 and τ1 = 0.03 and different
finite elements.

Q1 −Q1 64x64 32x32 16x16 8x8

Tbuild 29054 1176 46 4
Tit 0.8 0.09 0.04 0.05
it 75 27 15 11

fill-in 6.42 4.51 3.28 2.13
AMG 46 42 39 33

Q1 − P0 64x64 32x32 16x16 8x8

Tbuild 19873 782 34 3
Tit 0.3 0.32 0.04 0.04
it 82 42 19 24

fill-in 5.71 3.84 3.14 2.01
AMG 48 39 38 32

Table 12: Lid-driven cavity flow. The dependence of two-parameter ILU(τ1, τ2) performance on
the choice of the grid level. Results are shown for ν = 1/100 and τ1 = 0.03 and different finite
elements.

Q2 −Q1 64x64 32x32 16x16 8x8

Tbuild 12040 512 25 2.5
Tit 0.2 0.06 0.04 0.04
it 40 16 11 9

fill-in 4.125 2.971 2.08 1.69
AMG 47 44 37 30

Q2 − P1 64x64 32x32 16x16 8x8

Tbuild 19832 775 38 4
Tit 0.3 0.17 0.03 0.038
it 55 19 12 10

fill-in 4.19 3.21 2.82 2.73
AMG 58 49 44 41

for stable and stabilized finite elements as we have done in a previous test. From Tables 13 and

14, which show dependence on the choice of kinematic viscosity parameter in range from 1/32 to

1/1024, we can see that ILU(τ1, τ2) works better for stabilized finite elements and decreases number

of iteration in two times. Furthermore, the level of fill-in also two times less for stabilized elements.

For the purpose of comparison, we include results of preconditioned GMRES iteration with

the built-in MATLAB ILU(τ) preconditioner. We next look at the τ−dependence of the build-in

ILU(τ) preconditioner. We run this computations for finest mesh 6 and ν = 1/100 The results

are presented in Table 15. We observed that that for smaller values of τ fill-in and Tbuild increase,

but iteration number and Tit decrease. So the optimal τ value is found to be 0.08 or 0.07. We can

observe from Tables 9 and 10 that two-parameter preconditioner works much better in terms of the

number of iterations and decreases it comparing to ILU(τ) for τ closer to 0.1 in three times and

for τ less than 0.02 in two times.

The next series of experiments (Tables 16 and 17) shows that the application of balancing is

also important in practice for the cavity problem. In all experiments in Table 17 we performed
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Table 13: Lid driven cavity flow, Q1−Q1 finite elements, grid level l = 5, τ1 = 0.03. The dependence
of two parameter ILU(τ1, τ2) performance on the choice of kinematic viscosity parameter.

ν = 1/32 ν = 1/128 ν = 1/512 ν = 1/1024

Tbuild 1634.64 894 662.6 592.9
Tit 0.459 0.07 0.130 0.26

fill-in 5.59 4.87 4.62 4.59
iter 23 24 82 231

Table 14: Lid driven cavity flow, Q2−Q1 finite elements, grid level l = 5, τ1 = 0.03. The dependence
of two parameter ILU(τ1, τ2) performance on the choice of kinematic viscosity parameter.

ν = 1/32 ν = 1/128 ν = 1/512 ν = 1/1024

Tbuild 645.41 447.63 426.308 small pivot
Tit 0.103 0.058 0.065

fill-in 3.16 2.77 3.01
iter 16 11 30

five iterations to find the scaling vectors before any incomplete factorization was computed. The

computations were run on the finest mesh 4 and with optimal values for τ and τ1 from Tables 9

and 15. We can see results similar to those found in Table 5 for the backward-facing step problem.

We conclude that the balancing is very important and in the cavity flow, it decreases the number

of iterations by a factor of 3. Without this preprocessing ILU(τ) fails to converge for small values

of kinematic viscosity when we used stabilized finite elements.

The two-parameter ILU factorization leads to a more efficient preconditioner in terms of memory

usage (fill-in) and iteration counts, but with more expensive set-up stage, compared to the standard

ILU(τ). We do not consider the Tbuild values to conclude about the efficiency of the ILU(τ1, τ2)

preconditioner because of the same realization of this algorithm in Fortran [26] results in much

shorter built times. Our version was implemented in Matlab, and because of some build-in functions,

the execution takes much more time.

In the next set of test experiments, we compare the difference of using the convection-diffusion

preconditioner with (PCD) with AMG for the velocity block and the least-squares commutator

(LSC) preconditioner. These preconditioners are quite robust with respect to grid size and viscosity

parameter. We see from the Tables 18, 19 below that PCD preconditioner works much better in
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Table 15: Lid driven cavity flow, Q2 − Q1 finite elements, ν = 1/100, grid level l = 6. The
dependence of one parameter ILU(τ) perfomance on the choice of threshold parameter.

τ iter Tbuilt Titer TCPU fill in

0.1 90 0.018 0.123 0.141 0.77
0.08 74 0.042 0.06 0.102 0.96
0.07 74 0.058 0.064 0.122 1.09
0.06 57 0.063 0.057 0.12 1.248
0.05 53 0.079 0.044 0.123 1.506
0.04 40 0.107 0.032 0.139 1.77
0.03 29 0.131 0.029 0.16 2.155
0.02 23 0.21 0.023 0.233 2.93
0.01 16 0.325 0.02 0.345 5.12
0.007 13 0.372 0.0181 0.39 6.85
0.005 11 0.54 0.02 0.56 9.15
0.003 9 0.88 0.023 0.9 14.08
0.002 8 1.43 0.022 1.45 18.7
0.001 8 1.7 0.03 1.74 26.83

terms of number of iterations and also does not depend on the choice of finite elements. Mesh-

independence of the GMRES convergence rate is again apparent. The increase in iterations is

required as the kinematic viscosity parameter decreases. It is easy to see that LSC does not work

with stable finite elements Q2−Q1. For stabilized finite elements, we still observe that PCD works

much better in terms of Tbuild and number of iterations. For PCD, iteration time does not increase

that much as for LSC as the viscosity coefficient decreases. If we compare PCD and LSC with

ILU(τ1, τ2), we can see that two-parameter ILU works better in terms of number of the iterations

and does not have any problem with stabilized finite elements. In most experiments ILU(τ1, τ2)

needs about half of iteration number spent by other methods to reach the same accuracy.

Results show that the choice of parameters and preconditioning methods can significantly in-

fluence the rate of convergence, but there is no single precondition that performs uniformly well in

all cases.
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Table 16: Lid driven cavity flow, Q2−Q1 and Q1−Q1 finite elements, ν = 1/100, The dependence of
one parameter ILU(τ) preconditioner performance on the choice of kinematic viscosity parameter
with τ = 0.07 and without balancing.
Q2 −Q1 Tbuild Tit it fill-in

ν = 1 zero pivot
ν = 1/10 0.0016 0.055 23 0.75
ν = 1/50 0.005 0.054 15 1.43
ν = 1/100 0.07 0.05 17 1.75
ν = 1/200 0.008 0.05 27 2.57
ν = 1/250 0.007 0.06 35 2.66
ν = 1/300 0.007 0.07 52 2.75
ν = 1/400 0.008 0.09 60 2.87

Q1 −Q1 Tbuild Tit it fill-in

ν = 1 0.002 0.066 45 0.75
ν = 1/10 0.005 0.09 30 0.9
ν = 1/50 0.004 0.05 24 1.12
ν = 1/100 0.03 0.14 57 7.01
ν = 1/200 0.02 0.55 622 6.15
ν = 1/250 0.02 4.04 div 5.88
ν = 1/300 0.018 3.54 div 5.58
ν = 1/400 0.02 3.9 div 5.97

Table 17: Lid driven cavity flow, Q2 − Q1 and Q1 − Q1 finite elements, grid level l = 5, The
dependence of two-parameter preconditioner ILU(τ1, τ2) performance on the choice of kinematic
viscosity with τ1 = 0.03 and balancing.
Q2 −Q1 Tbuild Tit it fill-in

ν = 1 20.43 0.23 24 1.01
ν = 1/10 34.46 0.05 9 2.43
ν = 1/50 28.6 0.05 8 2.28
ν = 1/100 23.87 0.05 11 2.08
ν = 1/200 24.3 0.05 14 2.13
ν = 1/250 25.8 0.05 15 2.18
ν = 1/300 26.05 0.06 17 2.23
ν = 1/400 27.6 0.06 23 2.42
ν = 1/1000 small pivot .

Q1 −Q1 Tbuild Tit it fill-in

ν = 1 59 0.3 24 2.17
ν = 1/10 96 0.07 13 4.2
ν = 1/50 57 0.05 13 3.4
ν = 1/100 46 0.06 15 3.2
ν = 1/200 35 0.05 22 3.01
ν = 1/250 35.6 0.05 24 3
ν = 1/300 51.2 0.05 26 2.99
ν = 1/400 33 0.06 45 2.92
ν = 1/1000 28.7 0.45 78 2.74

Table 18: Lid driven cavity flow, Q1 − Q1 finite elements, grid level l = 6, 5 comparison modified
pressure convection-diffusion and boundary-adjusted least-squares commutator preconditioners.

PCD LSC

ν iter Tbuild iter Tbuild
1/10 19 0.28 30 0.163
1/100 36 0.27 54 0.34
1/1000 127 0.49 180 1.177

PCD LSC

ν iter4 Tbuild iter Tbuild
1/10 21 0.104 30 0.193
1/100 36 0.135 54 0.348
1/1000 127 0.63 158 4.85

Table 19: Lid driven cavity flow, Q2 − Q1 finite elements, grid level l = 6, 5 comparison modified
pressure convection-diffusion and boundary-adjusted least-squares commutator preconditioners.
l = 6 PCD LSC

ν iter Tbuild iter Tbuild
1/10 8 0.064 div —
1/100 29 0.08 div —
1/1000 64 1.8 div —

l = 5 PCD LSC

ν iter Tbuild iter Tbuild
1/10 29 0.028 div —
1/100 41 0.037 div —
1/1000 162 0.408 div —
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7 Deep learning in application to ILU preconditioning

In this chapter, we bridge deep learning networks and preconditioner design. We propose a con-

volutional neural network with a specific architecture to predict a fill-in pattern for ILU factors

further used in preconditioning.

7.1 General Static Pattern ILU

Incomplete LU factorization gives as an output a sparse lower triangular matrix L and a sparse

upper triangular matrix U in a way such that it has non-zero entries in some locations. In a

traditional approach, the non-zero pattern is chosen in advance [35]. Although the only restriction

on the fill-in is that it has to include diagonal elements (as it was shown in [35]), in a standard

approach the pattern is based on the fill-in structure of the original matrix. Such traditional

approach does not work for saddle point problems, where the (2,2)-block can be zero in the original

matrix but is densely filled in the LU decomposition. For any pattern P, which satisfies the condition

for diagonal elements

P ⊂ {(i, j); 1 ≤ i, j ≤ n}, (89)

then pattern-based ILU factorization has the following algorithm:

for k = 1, . . . , n− 1

for i = k + 1, . . . , n and if (i, k) ∈ P :

aik := aik/akk

for j = k + 1, . . . , n and if (i, j) ∈ P :

aij = aij − aik ∗ akj

End

End

End
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Based on the method described above, we decided to build a neural network that can predict a

suitable and effective pattern for the ILU decomposition without resorting to the fill-in structure

of the given matrix.

To generate a set of patterns and to train a neural network, we apply the following algorithm.

Algorithm 7.1:

1. Compute exact LU decomposition for a given sparse matrix A.

2. Find indices of 3N non-diagonal entries with the largest absolute value in L, where N is the

dimension of the matrix A. Next, do the same for U .

3. Add diagonal elements to two sets of indices above to get a full set of indices.

4. Construct a binary matrix with a non-zero pattern from the obtained set of indices.

This resulting set of binary matrices is further used to define an objective of training.

7.2 Training set

To generate the training set as an input for this experiment, we take the lid-driven cavity problem

as it was set up in Chapter 6. We modify the Navier-Stokes equation as follows:


αu− ν∆u + (w · ∇)u +∇p = f in Ω

div(u) = 0 in Ω,

(90)

Note that for the purpose of training we replace the inertia term (u · ∇)u by (w · ∇)u, where w

has two components in the form of Fourier series:

w1 = Σ3
ij=1αijsin(ix) · cos(jy)

w2 = Σ3
ij=1βijsin(ix) · sin(jy).

(91)

We take random uniform distribution for coefficients αij in the interval [0, 10] and α = 0.01.
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For a given set of coefficients we use Q2 − Q1 finite elements and apply 5 Picard iterations to

generate the matrix formulation of the problem (90):

 A BT

B 0


 u

p

 =

 f

g

 . (92)

Then we apply ILU -factorization algorithm 7.1 to generate a pattern matrix. The pair of the two

matrices describes a single data point in the training set.

Before we feed a matrix to the network, we do a preprocessing step. We normalize each of three

nonzero blocks using the formula (93):


α

. . .
α
β

. . .
β


 A BT

B 0




α
. . .

α
β

. . .
β

 (93)

where α = 1/
√
||A|| and β =

√
||A||/||B|| and || · || denotes the Frobenius norm.

We generate a training set of 1000 examples. The input matrices and their corresponding

patterns are used to train the network (Figure 6 and 7).

7.3 U-net architecture for convolutional networks

In the last decade neural networks have made huge progress in many image recognition tasks.

Initially, convolutional networks were used for classification tasks, where input is an image and

output is the corresponding label. In 2015 a new efficient algorithm was developed for various

biomedical image segmentation problems [34]. This network had an image as input and a binary

mask-matrix as output. We choose to apply this type of networks to our matrix formulation of the

Navier-Stokes equation (51) and get ILU patterns as output.
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Figure 6: Pattern predicted by CNN Figure 7: Pattern by algorithm 7.1

7.4 CNN architecture

We use the architecture as it was given in [34], but we modify the dimensions of the input and

output layers to satisfy our problem dimensions . It consists of three sections: the contracting path

(left side), the bottleneck and the expansive path (right side). The contracting path follows the

common architecture of a convolutional network. It consists of the repeated application of couple

of 3 × 3 convolutions followed by 2 × 2 max pooling. At each step of downsampling, we double

the number of feature channels so the architecture can learn patterns effectively. The bottleneck is

made from 2 convolutional layers with dropout.

The expansion section is similar to the contraction section. It consists of an upsampling of the

feature map followed by a 2× 2 convolution (“up-convolution”) that halves the number of feature

channels, a concatenation with the correspondingly cropped feature map from the contracting path,

and two 3×3 convolutions. The number of expansion blocks is as same as the number of contraction

block. In total the net- work has 23 convolutional layers (Figure 8).
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Figure 8: U-net architecture (based on Fig.1 in [34])

7.5 Experiments

To train the U-net, we use Adam optimization algorithm with a learning rate 0.001 and binary

cross-entropy loss function. We tested batch sizes b = 1, 2, 3 due to the lack of GPU memory and

got the best accuracy with batch size b = 2.

We test the application of U-net CNN to the general Navier-Stokes formulation (28) for lid-

driven cavity problem with different values of kinematic viscosity. The test data for the cavity

model is constructed by using Q2 − Q1 finite elements and mesh level l = 4 (16×16) to generate

the matrix formulation of the given problem. For the purpose of comparison, we choose ILU(τ)

as preconditioner and optimize threshold parameter τ in a way that it has the same level of fill-in

as preconditioner generated using neural network output. We adjust parameter τ for each value of

kinematic viscosity to get a comparable level of fill-in. From Table 20, we can see that the rate of

convergence of the GMRES method is somewhat lower for ILU generated using the pattern from
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U-net and diverges for ν < 1/400.

Table 20: Lid driven cavity flow, Q2 − Q1finite elements, grid level l = 4 comparison of U-net
pattern ILU and ILU(τ).

U-net ILU(τ)

ν it fill-in τ it fill-in

1/50 194 0.63 0.15 64 0.466

1/100 253 0.51 0.2 60 0.5

1/200 418 0.45 0.3 239 0.51

1/300 326 0.52 0.27 135 0.53

1/400 div — 0.23 175 0.87

The conducted experiment shows that our proposed neural network-based method of building

preconditioners works for the lid-driven cavity flow problem up to a certain Reynolds number.

Currently, it performs worse in terms of convergence speed than a threshold based incomplete LU

preconditioning with similar fill-in level but leaves room for improvement. We expect that trying

different network architectures, training hyperparameters, and using more powerful hardware could

significantly improve on the quality of generated preconditioners.
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8 Conclusions

In this dissertation we studied preconditioning techniques for linear algebraic systems that arise

from finite element approximation of the Navier-Stokes equations. Our focus was on testing, im-

proving and showing advantages of LU -type preconditioners applied to fluid dynamics problems.

We studied the performance of proposed preconditioners in the Krylov subspace method based on

two-parameter threshold ILU factorization of non-symmetric saddle point problems. It was ob-

served that the ILU(τ1, τ2) preconditioner for a suitable choice of parameters has a low fill-in and

leads to faster convergent iterations compared to ILU(τ). Advantages of two-parameter incom-

plete factorization preconditioners can be seen from numerical results in Chapter 6. ILU(τ1, τ2)

is insensitive to the type of finite element discretization and domain geometry. We found that

two-parameter ILU(τ1, τ2) can be successfully used in practice and improves the performance of

the iterative method.

With the increasing applications of deep learning in image analysis and other fields, we tested

the image segmentation algorithm applied to a discrete formulation of the Navier-Stokes equation

in the matrix-vector form. Image segmentation is a task in which we classify each pixel of an image

as belonging to a non-zero pattern. The U-Net convolutional neural network is one of the most

well-recognized algorithms to solve that problem. It is effective even with a limited dataset. Our

results in Chapter 7 showed that convolutional neural networks can be used for generating patterns

for L and U factors for ILU -type preconditioners. It is a first step towards using deep learning in

preconditioner design. We expect to improve performance with bigger and more diverse data sets

as well as with tailored network architecture.
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